959 research outputs found

    The Solar System in perspective : from debris discs to extrasolar planets

    Get PDF
    The last twenty-five years have seen our understanding of the formation and abundance of planets revolutionised, thanks to the first detections of debris discs, and, a decade later, of the first extrasolar planets. Hardly a week now goes by without a planet discovery, and the range of methods used to search for planets has expanded to include techniques that are efficient at detecting different types of planets. By combining the discoveries of the various methods, we therefore have the opportunity to build a picture of planet populations across the Galaxy. In this thesis, I am presenting work done as a basis towards such an effort: first I present work carried out to improve modelling methods for gravitational microlensing events. Since the first microlensing observing campaigns, the amount of data of anomalous events has been increasing ever faster, meaning that the time required to model all observed anomalous events is putting a strain on available human and computational resources. I present work to develop a method to fit anomalous microlensing events automatically and show that it is possible to conduct a thorough and unbiased search of the parameter space, illustrating this by analysing an event from the 2007 observing season. I then discuss the possible models found with this method for this event, and their implication (Kains et al. 2009), and find that this algorithm locates good-fit models in regions of parameters that would have been very unlikely to be found using standard modelling methods. Results indicate that it is necessary to use a full Bayesian approach, in order to include prior information on the parameters. I discuss the analytical priors calculated by Cassan et al. (2009) and suggest a possible form of an automatic fitting algorithm by incorporating these priors in the algorithm used by Kains et al. (2009). Another topic with which this thesis is concerned is the evolution of debris discs around solar-type stars. Late-type stars are expected to be the most numerous host stars of planets detected with the microlensing technique. Understanding how their debris discs evolve equates to understanding the earliest stages of planet formation around these stars, allowing us to truly put our Solar System in perspective. Using the analytical model of Wyatt et al. (2007a), I modelled the evolution of infrared excess flux at 24 and 70 microns using published data of debris discs around solar-type (spectral types F, G and K) stars from the Spitzer Space Telescope. By comparing the results of this study to an analogous study carried out by for A stars by Wyatt et al. (2007b), I find that although best-fit parameters are significantly different for solar-type stars, this may be due to the varying number of inefficient emitters around stars of different spectral types. I suggest that although effective properties are different by an order of magnitude or more, intrinsic properties, while still different, are so by a much smaller factor. These differences may be due to the longer timescales over which solar-type stars evolve, which allow for the formation of larger and stronger planetesimals

    RR Lyrae mode switching in globular cluster M 68 (NGC 4590)

    Get PDF
    D.M.B. acknowledges NPRP grant # X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). A.A.F. acknowledges the support of DGAPA-UNAM through project IN106615-17.We build on our detailed analysis of time-series observations of the globular cluster M 68 to investigate the irregular pulsational behaviour of four of the RR Lyrae stars in this cluster. M 68 is one of only two globular clusters in which mode switching of RR Lyrae stars has previously been reported. We discuss one additional case, as well as a case of irregular behaviour, and we briefly revisit the two previously reported cases with a homogeneous analysis. We find that in 2013, V45 was pulsating in the first-overtone mode alone, despite being previously reported as a double-mode (fundamental and first overtone) pulsator in 1994, and that the amplitude of the fundamental mode in V7 is increasing with time. We also suggest that V21 might not have switched pulsation modes as previously reported, although the first overtone seems to be becoming less dominant. Finally, our analysis of available archival data confirms that V33 lost a pulsation mode between 1950 and 1986.Publisher PDFPeer reviewe

    Fourier Decomposition of RR Lyrae light curves and the SX Phe population in the central region of NGC 3201

    Get PDF
    CCD time-series observations of the central region of the globular cluster NGC~3201 were obtained with the aim of performing the Fourier decomposition of the light curves of the RR~Lyrae stars present in that field. This procedure gave the mean values, for the metallicity, of [Fe/H]ZW=−1.483±0.006_{ZW}=-1.483 \pm 0.006 (statistical) ±0.090\pm 0.090 (systematical), and for the distance, 5.000±0.0015.000 \pm 0.001~kpc (statistical) ±0.220\pm 0.220 (systematical). The values found from two RRc stars are consistent with those derived previously. The differential reddening of the cluster was investigated and individual reddenings for the RR Lyrae stars were estimated from their V−IV-I curves. We found an average value of E(B−V)=0.23±0.02E(B-V)= 0.23 \pm 0.02. An investigation of the light curves of stars in the {\it blue stragglers} region led to the discovery of three new SX~Phe stars. The period-luminosity relation of the SX~Phe stars was used for an independent determination of the distance to the cluster and of the individual reddenings. We found a distance of 5.0 kpcComment: To appear in Revista Mexicana de Astronom\'ia y Astrof\'isica, Octuber 2014 issue, Vol 50. 17 pages, 10 figure

    Bayesian analysis of caustic-crossing microlensing events

    Full text link
    Aims: Caustic-crossing binary-lens microlensing events are important anomalous events because they are capable of detecting an extrasolar planet companion orbiting the lens star. Fast and robust modelling methods are thus of prime interest in helping to decide whether a planet is detected by an event. Cassan (2008) introduced a new set of parameters to model binary-lens events, which are closely related to properties of the light curve. In this work, we explain how Bayesian priors can be added to this framework, and investigate on interesting options. Methods: We develop a mathematical formulation that allows us to compute analytically the priors on the new parameters, given some previous knowledge about other physical quantities. We explicitly compute the priors for a number of interesting cases, and show how this can be implemented in a fully Bayesian, Markov chain Monte Carlo algorithm. Results: Using Bayesian priors can accelerate microlens fitting codes by reducing the time spent considering physically implausible models, and helps us to discriminate between alternative models based on the physical plausibility of their parameters.Comment: Accepted in A&A - 7 pages, 4 figure

    Study of meta-analysis strategies for network inference using information-theoretic approaches

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Reverse engineering of gene regulatory networks (GRNs) from gene expression data is a classical challenge in systems biology. Thanks to high-throughput technologies, a massive amount of gene-expression data has been accumulated in the public repositories. Modelling GRNs from multiple experiments (also called integrative analysis) has; therefore, naturally become a standard procedure in modern computational biology. Indeed, such analysis is usually more robust than the traditional approaches focused on individual datasets, which typically suffer from some experimental bias and a small number of samples. To date, there are mainly two strategies for the problem of interest: the first one (”data merging”) merges all datasets together and then infers a GRN whereas the other (”networks ensemble”) infers GRNs from every dataset separately and then aggregates them using some ensemble rules (such as ranksum or weightsum). Unfortunately, a thorough comparison of these two approaches is lacking. In this paper, we evaluate the performances of various metaanalysis approaches mentioned above with a systematic set of experiments based on in silico benchmarks. Furthermore, we present a new meta-analysis approach for inferring GRNs from multiple studies. Our proposed approach, adapted to methods based on pairwise measures such as correlation or mutual information, consists of two steps: aggregating matrices of the pairwise measures from every dataset followed by extracting the network from the meta-matrix.Peer ReviewedPostprint (author's final draft

    A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

    Get PDF
    Aims. We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. Methods. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10^(-3). Thanks to our detection of higher-order effects on the light curve due to the Earth’s orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. Results. We find that the lens is made up of a planet of mass 0.53 ± 0.21 M_J orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M_⊙. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1−1.5 AU
    • 

    corecore