139 research outputs found

    A benchmark test problem toolkit for multi-objective path optimization

    Get PDF
    Due to the complexity of multi-objective optimization problems (MOOPs) in general, it is crucial to test MOOP methods on some benchmark test problems. Many benchmark test problem toolkits have been developed for continuous parameter/numerical optimization, but fewer toolkits reported for discrete combinational optimization. This paper reports a benchmark test problem toolkit especially for multi-objective path optimization problem (MOPOP), which is a typical category of discrete combinational optimization. With the reported toolkit, the complete Pareto front of a generated test problem of MOPOP can be deduced and found out manually, and the problem scale and complexity are controllable and adjustable. Many methods for discrete combinational MOOPs often only output a partial or approximated Pareto front. With the reported benchmark test problem toolkit for MOPOP, we can now precisely tell how many true Pareto points are missed by a partial Pareto front, or how large the gap is between an approximated Pareto front and the complete one

    Approximating Multiobjective Optimization Problems: How exact can you be?

    Full text link
    It is well known that, under very weak assumptions, multiobjective optimization problems admit (1+ε,…,1+ε)(1+\varepsilon,\dots,1+\varepsilon)-approximation sets (also called ε\varepsilon-Pareto sets) of polynomial cardinality (in the size of the instance and in 1ε\frac{1}{\varepsilon}). While an approximation guarantee of 1+ε1+\varepsilon for any ε>0\varepsilon>0 is the best one can expect for singleobjective problems (apart from solving the problem to optimality), even better approximation guarantees than (1+ε,…,1+ε)(1+\varepsilon,\dots,1+\varepsilon) can be considered in the multiobjective case since the approximation might be exact in some of the objectives. Hence, in this paper, we consider partially exact approximation sets that require to approximate each feasible solution exactly, i.e., with an approximation guarantee of 11, in some of the objectives while still obtaining a guarantee of 1+ε1+\varepsilon in all others. We characterize the types of polynomial-cardinality, partially exact approximation sets that are guaranteed to exist for general multiobjective optimization problems. Moreover, we study minimum-cardinality partially exact approximation sets concerning (weak) efficiency of the contained solutions and relate their cardinalities to the minimum cardinality of a (1+ε,…,1+ε)(1+\varepsilon,\dots,1+\varepsilon)-approximation set

    Speeding up Martins' algorithm for multiple objective shortest path problems

    Get PDF
    The latest transportation systems require the best routes in a large network with respect to multiple objectives simultaneously to be calculated in a very short time. The label setting algorithm of Martins efficiently finds this set of Pareto optimal paths, but sometimes tends to be slow, especially for large networks such as transportation networks. In this article we investigate a number of speedup measures, resulting in new algorithms. It is shown that the calculation time to find the Pareto optimal set can be reduced considerably. Moreover, it is mathematically proven that these algorithms still produce the Pareto optimal set of paths

    Corridor Location: Generating Competitive and Efficient Route Alternatives

    Get PDF
    The problem of transmission line corridor location can be considered, at best, a "wicked" public systems decision problem. It requires the consideration of numerous objectives while balancing the priorities of a variety of stakeholders, and designers should be prepared to develop diverse non-inferior route alternatives that must be defensible under the scrutiny of a public forum. Political elements aside, the underlying geographical computational problems that must be solved to provide a set of high quality alternatives are no less easy, as they require solving difficult spatial optimization problems on massive GIS terrain-based raster data sets.Transmission line siting methodologies have previously been developed to guide designers in this endeavor, but close scrutiny of these methodologies show that there are many shortcomings with their approaches. The main goal of this dissertation is to take a fresh look at the process of corridor location, and develop a set of algorithms that compute path alternatives using a foundation of solid geographical theory in order to offer designers better tools for developing quality alternatives that consider the entire spectrum of viable solutions. And just as importantly, as data sets become increasingly massive and present challenging computational elements, it is important that algorithms be efficient and able to take advantage of parallel computing resources.A common approach to simplify a problem with numerous objectives is to combine the cost layers into a composite a priori weighted single-objective raster grid. This dissertation examines new methods used for determining a spatially diverse set of near-optimal alternatives, and develops parallel computing techniques for brute-force near-optimal path enumeration, as well as more elegant methods that take advantage of the hierarchical structure of the underlying path-tree computation to select sets of spatially diverse near optimal paths.Another approach for corridor location is to simultaneously consider all objectives to determine the set of Pareto-optimal solutions between the objectives. This amounts to solving a discrete multi-objective shortest path problem, which is considered to be NP-Hard for computing the full set of non-inferior solutions. Given the difficulty of solving for the complete Pareto-optimal set, this dissertation develops an approximation heuristic to compute path sets that are nearly exact-optimal in a fraction of the time when compared to exact algorithms. This method is then applied as an upper bound to an exact enumerative approach, resulting in significant performance speedups. But as analytic computing continues to moved toward distributed clusters, it is important to optimize algorithms to take full advantage parallel computing. To that extent, this dissertation develops a scalable parallel framework that efficiently solves for the supported/convex solutions of a biobjective shortest path problem. This framework is equally applicable to other biobjective network optimization problems, providing a powerful tool for solving the next generation of location analysis and geographical optimization models

    Multi-objective network optimization: models, methods, and applications

    Get PDF
    There can be an array of planning objectives to consider when identifying alternatives for using, modifying, or restoring natural or built environments. In this respect, multi-objective network optimization models can provide decision support to both managers and users of the system. While there can be an infinite number of feasible solutions to any multi-objective optimization problem in large networks (e.g., urban transportation systems), the efficient ones are usually more desirable in the decision-making process. However, identification of efficient solutions can be challenging in practical applications. To address this issue, this dissertation details mathematical formulations and solution algorithms for a range of real-world planning problems in the context of intelligent transportation systems, vehicle routing problem, natural conservation and landscape connectivity. While the combination of objectives being optimized is unique for each application, the underlying phenomena involves modeling movement between origins and destinations of a networked system. To demonstrate the type of insights that can be achieved using these modeling approaches, the location and number of times solutions appear in different realizations of system and given different solution approaches (e.g., exact and approximate methods) are visualized on network using a commercial geographic information system

    An Analysis of Some Algorithms and Heuristics for Multiobjective Graph Search

    Get PDF
    Muchos problemas reales requieren examinar un número exponencial de alternativas para encontrar la elección óptima. A este tipo de problemas se les llama de optimización combinatoria. Además, en problemas reales normalmente se evalúan múltiples magnitudes que presentan conflicto entre ellas. Cuando se optimizan múltiples obje-tivos simultáneamente, generalmente no existe un valor óptimo que satisfaga al mismo tiempo los requisitos para todos los criterios. Solucionar estos problemas combinatorios multiobjetivo deriva comúnmente en un gran conjunto de soluciones Pareto-óptimas, que definen los balances óptimos entre los objetivos considerados. En esta tesis se considera uno de los problemas multiobjetivo más recurrentes: la búsqueda de caminos más cortos en un grafo, teniendo en cuenta múltiples objetivos al mismo tiempo. Se pueden señalar muchas aplicaciones prácticas de la búsqueda multiobjetivo en diferentes dominios: enrutamiento en redes multimedia (Clímaco et al., 2003), programación de satélites (Gabrel & Vanderpooten, 2002), problemas de transporte (Pallottino & Scutellà, 1998), enrutamiento en redes de ferrocarril (Müller-Hannemann & Weihe, 2006), planificación de rutas en redes de carreteras (Jozefowiez et al., 2008), vigilancia con robots (delle Fave et al., 2009) o planificación independiente del dominio (Refanidis & Vlahavas, 2003). La planificación de rutas multiobjetivo sobre mapas de carretera realistas ha sido considerada como un escenario de aplicación potencial para los algoritmos y heurísticos multiobjetivo considerados en esta tesis. El transporte de materias peligrosas (Erkut et al., 2007), otro problema de enrutamiento multiobjetivo relacionado, ha sido también considerado como un escenario de aplicación potencial interesante. Los métodos de optimización de un solo criterio son bien conocidos y han sido ampliamente estudiados. La Búsqueda Heurística permite la reducción de los requisitos de espacio y tiempo de estos métodos, explotando el uso de estimaciones de la distancia real al objetivo. Los problemas multiobjetivo son bastante más complejos que sus equivalentes de un solo objetivo y requieren métodos específicos. Éstos, van desde técnicas de solución exactas a otras aproximadas, que incluyen los métodos metaheurísticos aproximados comúnmente encontrados en la literatura. Esta tesis se ocupa de algoritmos exactos primero-el-mejor y, en particular, del uso de información heurística para mejorar su rendimiento. Esta tesis contribuye análisis tanto formales como empíricos de algoritmos y heurísticos para búsqueda multiobjetivo. La caracterización formal de estos algoritmos es importante para el campo. Sin embargo, la evaluación empírica es también de gran importancia para la aplicación real de estos métodos. Se han utilizado diversas clases de problemas bien conocidos para probar su rendimiento, incluyendo escenarios realistas como los descritos más arriba. Los resultados de esta tesis proporcionan una mejor comprensión de qué métodos de los disponibles sonmejores en situaciones prácticas. Se presentan explicaciones formales y empíricas acerca de su comportamiento. Se muestra que la búsqueda heurística reduce considerablemente los requisitos de espacio y tiempo en la mayoría de las ocasiones. En particular, se presentan los primeros resultados sistemáticos mostrando las ventajas de la aplicación de heurísticos multiobjetivo precalculados. Esta tesis también aporta un método mejorado para el precálculo de los heurísticos, y explora la conveniencia de heurísticos precalculados más informados.Many real problems require the examination of an exponential number of alternatives in order to find the best choice. They are the so-called combinatorial optimization problems. Besides, real problems usually involve the consideration of several conflicting magnitudes. When multiple objectives must be simultaneously optimized, there is generally not an optimal value satisfying the requirements for all the criteria at the same time. Solving these multiobjective combinatorial problems commonly results in a large set of Pareto-optimal solutions, which define the optimal tradeoffs between the objectives under consideration. One of most recurrent multiobjective problems is considered in this thesis: the search for shortest paths in a graph, taking into account several objectives at the same time. Many practical applications of multiobjective search in different domains can be pointed out: routing in multimedia networks (Clímaco et al., 2003), satellite scheduling (Gabrel & Vanderpooten, 2002), transportation problems (Pallottino & Scutellà, 1998), routing in railway networks (Müller-Hannemann & Weihe, 2006), route planning in road maps (Jozefowiez et al., 2008), robot surveillance (delle Fave et al., 2009) or domain independent planning (Refanidis & Vlahavas, 2003). Multiobjective route planning over realistic road maps has been considered as a potential application scenario for the multiobjective algorithms and heuristics considered in this thesis. Hazardous material transportation (Erkut et al., 2007), another related multiobjective routing problem, has also been considered as an interesting potential application scenario. Single criterion shortest path methods are well known and have been widely studied. Heuristic Search allows the reduction of the space and time requirements of these methods, exploiting estimates of the actual distance to the goal. Multiobjective problems are much more complex than their single-objective counterparts, and require specific methods. These range from exact solution techniques to approximate ones, including the metaheuristic approximate methods usually found in the literature. This thesis is concerned with exact best-first algorithms, and particularly, with the use of heuristic information to improve their performance. This thesis contributes both formal and empirical analysis of algorithms and heuristics for multiobjective search. The formal characterization of algorithms is important for the field. However, empirical evaluation is also of great importance for the real application of these methods. Several well known classes of problems have been used to test their performance, including some realistic scenarios as described above. The results of this thesis provide a better understanding of which of the available methods are better in practical situations. Formal and empirical explanations of their behaviour are presented. Heuristic search is shown to reduce considerably space and time requirements in most situations. In particular, the first systematic results showing the advantages of the application of precalculated multiobjective heuristics are presented. The thesis also contributes an improved method for heuristic precalculation, and explores the convenience of more informed precalculated heuristics.This work is partially funded by / Este trabajo está financiado por: Consejería de Economía, Innovación, Ciencia y Empresa. Junta de Andalucía (España) Referencia: P07-TIC-0301

    Analysis of FPTASes for the Multi-Objective Shortest Path Problem

    Get PDF
    We propose a new FPTAS for the multi-objective shortest path problem. The algorithm uses elements from both an exact labeling algorithm and an FPTAS proposed by Tsaggouris and Zaroliagis (2009). We analyze the running times of these three algorithms both from a the- oretical and a computational point of view. Theoretically, we show that there are instances for which the new FPTAS runs an arbitrary times faster than the other two algorithms. Fur- thermore, for the bi-objective case, the number of approximate solutions generated by the proposed FPTAS is at most the number of Pareto-optimal solutions multiplied by the number of nodes. By performing a set of computational tests, we show that the new FPTAS performs best in terms of running ti

    Improving Bi-Objective Shortest Path Search with Early Pruning.

    Get PDF
    Bi-objective search problems are a useful generalization of shortest path search. This paper reviews some recent contributions for the solution of this problem with emphasis on the efficiency of the dominance checks required for pruning, and introduces a new algorithm that improves time efficiency over previous proposals. Experimental results are presented to show the performance improvement using a set of standard problems over bi-objective road maps.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Financiado por Plan Propio de Investigación de la Universidad de Málaga (UMA), Campus de Excelencia Internacional Andalucía Tech. Work supported by the Spanish Ministry of Science and Innovation, European Regional Development Fund (FEDER), Junta de Andalucía, and Universidad de Málaga through the research projects with reference IRIS PID2021-122812OB-I00, PID2021-122381OB-I00 and UMA20-FEDERJA-065
    • …
    corecore