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Abstract The latest transportation systems require the best routes in a large network
with respect to multiple objectives simultaneously to be calculated in a very short
time. The label setting algorithm of Martins efficiently finds this set of Pareto op-
timal paths, but sometimes tends to be slow, especially for large networks such as
transportation networks. In this article we investigate a number of speedup measures,
resulting in new algorithms. It is shown that the calculation time to find the Pareto
optimal set can be reduced considerably. Moreover, it is mathematically proven that
these algorithms still produce the Pareto optimal set of paths.
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1 Introduction

This paper presents two adaptations to a label setting algorithm, which was presented
by Martins in 1984 [24], to solve the multiple objective shortest path problem. This
is to date still a reference work to solve the multiple objective shortest path problem
making use of graph algorithms. This section starts with a description of the problem
tackled in this algorithm. Then an overview is given of what can be found in litera-
ture about multiple objective shortest path problems and their solutions. Finally, the
contributions and objectives of this research are explained.
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1.1 Problem description

In this section, we present one of the possible applications of the research presented
in this article, namely routing in transportation networks.

With the evolvement of GPS systems, routing in transportation networks gains
more attention. One of the main characteristics of these transportation networks is
that they tend to be large. For example the TIGER/Line network, covering the USA,
consists of approximately 24 million nodes and 29 million links and the PTV Europe
network contains approximately 19 million nodes and 23 million links [1]. In most
applications, a preprocessing phase reduces the size of these networks, but even then,
they are still extensive. On the other hand, these networks tend to be sparse with an
average node degree between 2 and 3.

Moreover, in recent years, multimodal transportation (i.e. using multiple modes of
transportation) becomes a valuable alternative to avoid road traffic jams. Multimodal
networks are often represented by a layered network model in which each modus has
its own transportation network and trans-shipments between the modes are modeled
by trans-shipment links connecting nodes from different modes of transportation [9].
This results in even more extensive networks than the unimodal ones.

At the same time, logistic applications need to find the best route as soon as pos-
sible while taking into account multiple objectives. The transport needs to be both as
fast, as cheap, as ecological, etc. as possible. The problem tackled in this article is
how to calculate in a very short time the multiple objective shortest paths between an
origin and a destination in a transportation network. As there are multiple objectives
that need to be optimized, there is no single optimal path, but a set of paths that is
called Pareto optimal. A path is called Pareto optimal if no objective can be ame-
liorated without deteriorating another objective (see section 2.1 for a more formal
definition).

For this, we will further improve the MOSP (multiple objective shortest path)
algorithm of Martins, which has proven to be an efficient way to find the complete
Pareto optimal set of paths [12], especially for lower density networks such as trans-
portation networks. Unfortunately, this algorithm, in its original form, has to examine
the whole network to find the Pareto optimal set of routes. This is quite time consum-
ing for large networks, such as (multimodal) transportation networks. Therefore, we
will attempt to limit the search area of the algorithm, namely by formulating a stop
condition to interrupt the search process and by searching the network bidirectionally
(i.e. simultaneously from the origin and the destination).

In this article we assume that all objectives need to be minimized and all con-
cepts are defined according to this assumption. Moreover, it should be noted that the
research presented here assumes that all costs are non-negative and that there are no
cycles with cost 0.

1.2 Literature overview

Multiple objective shortest path problems, which are known to be NP-hard [39],
started to gain attention in the 70s and the beginning of the 80s with the works of
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Vincke [43] and Hansen [21], in which they focused on the case with two objectives,
the bi-objective shortest path problem. Since then, several exact methods, for both
the general multi-objective and the bi-objective shortest path problem, have been de-
veloped to find all Pareto optimal paths between two nodes in a network.

The most straight-forward (and easiest) way to deal with multiple objectives is
making use of single objective shortest path techniques with a weighted objective
function. Unfortunately, this method only finds a subset of all Pareto-optimal paths.
If we present all Pareto-optimal paths in a decision space, the paths found by this
algorithm are situated on the convex hull. The other Pareto-optimal paths are situ-
ated in the so-called duality gaps. References [13] and [37] provide a more detailed
discussion on this subject.

Exact methods to find the set of Pareto-optimal paths for the shortest path problem
with two objectives have been thoroughly studied. As we focus in this article on the
general multi-objective shortest path algorithm, we would just like to refer to the
works of Skriver [40] and Raith and Ehrgott [37] for an overview of most of the
bi-objective shortest path algorithms.

In [7], Clı́maco and Pascoal give an overview to solve the multi-objective shortest
path problems. According to the taxonomy presented in their article, the research pre-
sented in this paper can be categorized in the class of multicriteria path problems with
additive metrics and a-posteriori aggregation of preferences method. In this class, two
major categories can be distinguished: ranking techniques and labeling techniques.

Ranking techniques, like for example [6] and [2], use a ranking method for listing
the paths in a decreasing order according to one of the objectives. Subsequently, from
this list of paths a set of non-dominated paths is determined. Three groups of path
ranking methods can be determined: deletion algorithms ([25], [22], [29]) in which
at the start of each iteration the path found in the previous iteration is eliminated
from the network, labeling algorithms ([28], [26], [34]) in which nodes may contain
K labels (for the K paths) and that resemble the K shortest path algorithms, and
deviation algorithms ([23], [14], [27]) in which a new path is considered to be a
deviation from the previous path.

Labeling techniques are well known to solve the single objective shortest path
problem ([10], [3]). Similar to the single objective case, two categories can be dis-
tinguished: label-setting algorithms and label-correcting algorithms. An exact label-
setting algorithm for the bi-objective shortest path problem was proposed by Hansen
[21]. This work was then generalized by Martins for the multiple objective shortest
path problem [24]. To this date, this article is still a reference work for the multi-
objective shortest path algorithms.Next to label-setting algorithms, a number of label-
correcting algorithms were presented. Similarly, this research started with bicriteria
shortest path problems ([43], [5], [41]) and was then generalized for multiple crite-
ria [38]. Guerriero and Musmanno studied the impact of label selection versus node
selection in label-correcting algorithms [20]. For a detailed theoretical study of the
properties of label correcting and label setting algorithm to solve the multi-objective
shortest path problem, we would like to refer to [30].

Most of the research described above assumes that all objectives are additive, but
also other objective types can be used. One of the most popular is a combination of
both additive objectives and objectives of the bottleneck type (i.e. minmax, maxmin).
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Gandibleux et al. [16] generalized the algorithm of Martins to the case in which one
of the objectives is a bottleneck. In [8] and [35] an algorithm is presented to solve the
tricriteria shortest path problem in which at least two objectives are of the bottleneck
type. A twofold extension to this latter research has been proposed by Bornstein et
al. [4]. As we will focus on additive objectives in this research, we will not elaborate
further on this.

Next to these exact methods, a number of well known heuristics have been ap-
plied to the multi-objective shortest path problem. In [32], for example, evolutionary
algorithms are used to find a subset of the Pareto optimal paths.

A complete overview of multiple objective shortest path algorithms, both for bi-
criteria and multicriteria problems can be found in [17]. In this article we will focus
on the exact label setting algorithm of Martins [24] with additive objectives, and pro-
pose a number of adaptations to speed up the calculation in the case where we want
to find all non-dominated paths between a single origin node and a single destina-
tion node. In the following section more details are given on the objectives and the
contributions that are made in this research.

1.3 Contributions and objectives

Our research focuses on exact and fast algorithms to solve multiple objective shortest
path problems with n objectives, which are all sum problems. This problem can be
described mathematically as

minp∈Ps,t (z1(p),z2(p), ...,zn(p))

in which Ps,t represents the set of all paths between a node s and a node t while zi(p) is
the cost of path p with respect to objective i. While some of the algorithms presented
in the literature are especially for the bicriterion problem ([40], [37]), we opted not to
limit the number of objectives (as for example in [20] and [38]). Moreover, we want
to speed up the calculations without losing the guarantee of finding all Pareto optimal
paths, in contrast with for example the heuristic search algorithm of [32].

This article focuses on two exact speedup techniques, namely a well-defined stop
condition and searching the network bidirectionally. It is shown that the two pro-
posed improvements achieve a considerable speedup compared to other exact graph
algorithms, while at the same time maintaining the optimality of the solution.

In the first improvement a speedup is achieved by stopping the search as soon
as all Pareto optimal paths between the origin and the destination are found, instead
of searching the whole network. The second one searches the network from both the
origin and the destination simultaneously, resulting in a speedup factor of more than
2 (where the bidirectional algorithm of Dijkstra achieves a speedup factor of around
2). This is clarified experimentally.

2 Unidirectional multiple objective shortest path algorithm

In order to better understand the remainder of the article, the unidirectional algo-
rithm from which we started, is presented briefly in this section, together with a well-
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defined stop condition that finishes the search process as soon as all Pareto optimal
paths are found. The first subsection discusses some basic (mathematical) concepts
that are used by the algorithm. Subsequently, in the second subsection, the multi-
ple objective shortest path algorithm is presented. In order to avoid investigating the
whole network, as the basic version of this algorithm does, a speedup can be achieved
by making use of an efficient stop condition which is presented in subsection 2.3, to-
gether with a proof of the correctness of this stop condition.

2.1 Basic concepts

A network is defined as a graph G(V,A) with V the set of nodes and A the set of
directed links. Each link (x,y), connecting node x and node y, has assigned to it a
number of values representing the costs for the different objectives, which is repre-
sented by a vector c(x,y) = [cxy1,cxy2, . . . ,cxyn]. In this paper we will assume that no
parallel links are allowed. Nevertheless, parallel links would have no impact on the
operation of the algorithms presented here.

A path or a route in a graph is defined as a vector with a cost of the path for
every objective together with an ordered list of nodes, for which holds that each pair
of consecutive nodes is connected by a link. So it can be represented as [c̄,P] with
c̄ = [c1,c2, . . . ,cn] = [ci] the cost vector and P = [v1, . . . ,vk] the ordered list of nodes
with ∀i ∈ {1, . . . ,k−1} : (vi,vi+1) ∈ A. Here the path contains k nodes and thus k−1
links.

Similarly to the algorithm of Dijkstra [10], the algorithms presented in this arti-
cle make use of labels to indicate the ‘distance’ to a certain node. A label contains
a cost value for every objective and a reference to a previous label. In this way, a
label can be represented as L = [v, c̄,PrevL] with v the node to which this label is
assigned, c̄ = [c1,c2, . . . ,cn] the value vector and PrevL the reference to the previous
label. The reference to the previous label enables reconstructing the path afterwards
by backtracking it. It should be noticed that, in this way, from every label a path can
be constructed. While in the algorithm of Dijkstra paths are reconstructed by back-
tracking nodes, here this happens at label level.

In order to compare labels with each other, two relationships need to be defined
on the cost vectors: dominance and ordering.

We will first define the dominance relationship between vectors in order to come
to a definition of Pareto optimality, as the result of the MOSP algorithm is a Pareto
optimal set.

Definition 1 (dominance)
The vector [a1, . . . ,an] dominates the vector [b1, . . . ,bn] if and only if

(∀i ∈ {1, . . . ,n} : ai ≤ bi)∧ (∃i ∈ {1, . . . ,n} : ai < bi)

A path P1 dominates another path P2 if and only if the cost vector of P1 dominates the
one of P2.
A label L1 dominates another label L2 if and only if the vector of L1 dominates the
one of L2.
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Definition 2 (Pareto optimality)
A path is Pareto optimal if and only if there exists no feasible path which is better in
one of the objectives and not worse in all the other objectives.
A set of paths S is called Pareto optimal if and only if none of the elements of S is
dominated by another feasible path.

So, for example, if we have the paths A, B and C with cost vectors ā = [5,9,3],
b̄ = [2,1,3] and c̄ = [5,3,2] respectively, then A is dominated by both B and C. The
paths B and C, on the other hand, form a set of Pareto optimal paths within the set
{A,B,C}.

At certain points in the algorithm, the smallest/largest label needs to be deter-
mined, so an ordering needs to be defined. We opted for a lexicographical ordering
according to following definition.

Definition 3 (lexicographic ordering)
The vector [a1, . . . ,an] is lexicographically smaller than (denoted by <l) the vec-

tor [b1, . . . ,bn] if and only if

∃k ∈ {1, . . . ,n} : (∀i < k : ai = bi)∧ (ak < bk)

A label L1 is lexicographically smaller than a label L2 if and only if the vector of L1
is smaller than the one of L2

Now, if we want to order the vectors ā, b̄ and c̄, as presented previously, from
small to large then we get the sequence b̄ <l c̄ <l ā.

This relationship is a total ordering relation, as it is reflexive, anti-symmetric and
transitive and two elements can always be compared to each other.

The lexicographic ordering is not the best ordering for multi-objective shortest
path algorithms. In [33] it is shown that a weighted sum aggregate ordering results
in a remarkable reduction of the calculation time. Nevertheless, we opted for a lexi-
cographic ordering as it is easy to incorporate and the aggregate ordering requires a
normalization of the objectives (and according fine tuning of the parameters) which
may differ from network to network.

2.2 The basic algorithm

The basic algorithm presented in this section is based on the multiple objective short-
est path algorithm of Martins [24], which is, in turn, based on the algorithm of Dijk-
stra [10]. Instead of only one label, nodes will now contain a set of labels. Moreover,
this set only contains non-dominated labels. So, when adding a new label to a node,
this label is only added when it is not dominated by one of the existing labels. More-
over, labels that are dominated by the new label are removed from the set. Below the
pseudo code of the algorithm is given, which calculates for every node of the network
the set of Pareto optimal paths from a specific origin. For clarity reasons, an explana-
tion of the pseudo code is given in table 1.

Algorithm 1
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Table 1 Explanation of the pseudo code used in algorithm 1.

T the set of temporary labels
[<node>,[v[1],...,v[n]],<label>] a label represented by its owner (node), a vector of

values (i.e. the cost of the path from the origin to this
node) and the previous label

<node>.addLabel(<label>) adds a label to a node while removing all dominated
labels

T.removeMin() removes the minimum label from T according to the
lexicographic ordering

T.add(<label>) adds a label to the temporary set T
<label>.owner() returns the node which is the owner of the label
<node>.neighbors() returns the set of nodes which are adjacent to the node
getLinkBetween(<node1>,<node2>) returns the link from node1 to node2
[a[i]+b[i]] the pointwise sum of a and b. This is a short notation

for [a1 +b1, . . . ,an +bn]

T := EMPTYSET;

originLabel := [origin,[0,...,0],NULL];

origin.addLabel(originLabel);

T.add(originLabel);

while(T is not empty){
label := T.removeMin();

owner := label.owner();

neighbours := owner.neighbours();

forall(nb in neighbors){
link := getLinkBetween(owner, nb);

newLabel := [nb,[label[i]+link.cost[i]], label];

if(newLabel not dominated by any of nb.labels()){
nb.addLabel(newLabel);

T.add(newLabel);

}
}

}

Two phases can be distinguished: an initialization and the search phase. At ini-
tialization all nodes have empty label sets, except for the origin node which con-
tains the null label, i.e. a label containing the null vector and a null reference. This
label is added to the temporary set T . The algorithm runs until this temporary set
is empty. At every iteration the minimum label, according to the lexicographic or-
dering relationship, is determined and new labels are constructed for the neighbors
of its owner (the owner of a label indicates the node which contains this label).
[label[i] + link.cost[i]] denotes a vector which represents the pointwise sum of the
vectors label and link.cost. If not dominated by any other, these new labels are added
to both the corresponding neighbor and the temporary set. Moreover, as a part of the
addLabel function, labels from the specific neighbor which are dominated by the new
label are removed. If this new label is added to the label set of its owner, it is also
added to the temporary set.
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The main difference with the algorithm of Dijkstra is that this algorithm works
at label level instead of node level. The temporary set contains labels and instead of
changing the label of a node, the Pareto optimal set of a node is altered by adding new
labels and removing dominated ones. Moreover, parents of labels are labels them-
selves.

2.3 Stop condition

The algorithm presented in section 2.2 investigates the whole network in order to
find a set of Pareto optimal paths from one node to all others. In this research, we are
interested in all Pareto optimal paths between a single origin and a single destination
node. Investigating the whole network then is superfluous as the Pareto optimal set
is often already found before the algorithm terminated. In this section we present
a stop condition, which is similar to the one in [42], [11] and [36], also known as
‘dominance by early results’ or multi-objective A*. The basic idea is that labels that
are dominated by one of the labels of the destination node can never lead to a Pareto
optimal path, and thus are not worth investigating further. This follows from the fact
that all costs are non-negative and the objectives are of the additive type.

In contrast with the multi-objective A* algorithm, we opted not to check this
condition for every label when removed from the temporary set, but to keep track
of the minimum values for each objective of all labels present in the temporary set
and check whether this vector is dominated by one of the destination labels. As the
vector with the minimum values only differs little in each iteration, the number of
comparison operations needed to check the dominance can be limited. This means
that labels which are dominated by one of the result labels (i.e. the labels of the
destination node) may still be investigated, but this does not outweigh the smaller
number of comparison operations.

Assume [mini(T )] represents the pointwise minimum of every objective value
of all labels in T , resulting in the vector [min1(T ),min2(T ), . . . ,minn(T )]. It can be
shown that if this minimum vector is dominated by any of the destination labels, the
search can be finished.

Stop Condition 1 (unidirectional s-t algorithm)
The search process can be stopped as soon as [mini(T )] is dominated by at least one
of the destination labels R ∈ Ldestination.

This can be proven (by contradiction) as follows.

Proof Assume that, once the stop condition holds, there still exists a label C with
vector c = [ci] which is an element of the temporary set T and which is not dominated
by any of the destination labels. As this label is part of T :

ci ≥ mini(T ),∀i

The stop condition says that [min1(T ), . . . ,minn(T )] is dominated by at least one of
the destination labels R = [destination, [ri],PrevR] ∈ Ldestination, which means that

mini(T )≥ ri,∀i
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with at least one j for which
min j(T )> r j

This results in
ci ≥ ri,∀i

with at least one j for which
c j > r j

According to the definition of dominance, this means that C is dominated by R, which
means that our initial assumption is false and that there exist no non-dominated labels
in T . ut

Applying this stop condition to the basic algorithm can easily be done by sub-
stituting the line ’while(T is not empty)’ with ’while(T is not empty and

mini(T ) is not dominated by R in destination.labels())’

3 Bidirectional multiple objective shortest path algorithm

As searching the network bidirectionally has been proven useful when speeding up
algorithms, in this section a bidirectional multiple objective shortest path algorithm
is presented, together with the proof that this algorithm always returns the Pareto
optimal set of paths.

3.1 The algorithm

Multiple possibilities exist to speed up shortest path queries [15], like goal-directed
search [19], bidirectional search [31], hierarchical search [18], etc. Some of them
have already been applied to the multi-objective shortest path problem, such as the
goal-directed (A*) algorithm of [42]. We opted to investigate the bidirectional speedup
technique, as, with a well defined stop condition, this technique is able to guarantee
still finding the optimal path for single objective shortest path problems. The basic
idea of a bidirectional shortest path algorithm is that the search procedure is divided
into two separate procedures: a forward search starting from the origin node and a
backward search starting from the destination node.

There are two factors that influence the efficiency of bidirectional shortest path
algorithms, namely the alternation between the forward and the backward search and
the stop condition, of which the former is less critical than the latter. One can de-
termine to alternate equally between the two searches or to pick the search direction
with the smallest label. In this research we opted to alternate equally, but this can
easily be changed.

The stop condition determines when it can be guaranteed that the optimal path has
been found, and thus when both searches can be interrupted. For the single objective
shortest path search, it has been proven [31] that the shortest path is found once the
cost of the shortest path found so far (i.e. the minimum sum of the forward and the
backward label of the same node) is smaller than or equal to the sum of the minimum
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labels of the forward and the backward temporary set. It should be noted that the
performance of the bidirectional shortest path algorithm (with the stop condition as
mentioned before) is dependent upon the network configuration. Examples exist of
networks in which the two searches proceed in different directions, resulting in two
nearly completely unidirectional search trees. Predicting the average speedup factor
based on qualitative or quantitative measures of the network is difficult. Nevertheless,
for most planar and evenly distributed networks (i.e. networks in which the link costs
are of the same magnitude), like the networks we are using in our research, a speedup
of around 2 can be achieved.

The bidirectional multiple objective shortest path algorithm starts two search pro-
cesses simultaneously: one from the origin and one from the destination. These search
processes are similar to the search process of the unidirectional algorithm, in which
new labels are constructed for the neighbors of the owner of the investigated label.
These new labels are then added to the (forward or backward) label set of the spe-
cific nodes, if not dominated by any of the existing labels. Moreover, labels, which
are dominated by this new label, are removed from this set. It should be noticed that
nodes now contain two (Pareto optimal) label sets: one for the forward search and
one for the backward search. When a new label is added to one of the label sets of a
node and the other label set is not empty (i.e. this node has been visited in the other
direction), this new label is combined with all labels of the other label set in order to
form paths between the origin and the destination. These paths are then added to the
temporary Pareto optimal solution set. It should be noted that a path is represented by
a cost vector, together with a description of the path itself (i.e. a list of nodes/links).
However, in order to save memory space, in the implementation only the cost vector
together with the forward and the backward label, that were combined, are stored in
the solution set. As each label contains a reference to its predecessor label, the path
can be constructed from these two stored labels.

When all Pareto optimal paths are found both searches should be aborted. There-
fore, a stop condition needs to be defined which guarantees that all Pareto optimal
paths are found. For this, we make use of the pointwise minima (defined as in sec-
tion 2.3) [mini(TF)] and [mini(TB)] of the forward and the backward temporary set
respectively. A new label will be constructed which contains the pointwise sum of
these minima [mini(TF)+mini(TB)] and this label will be compared to the paths of
the solution set (R ∈ Lresult ). In the next section, it will be proven that the following
stop condition guarantees that all feasible Pareto optimal paths have been found.

Stop Condition 2 (bidirectional s-t algorithm)
The forward and the backward search can be aborted when
[mini(TF)+mini(TB)] is dominated by any of the result paths R ∈ Lresult .

Below, pseudo code of the bidirectional multiple objective algorithm is given.
The code which has not been used in algorithm 1 is explained in table 2.

Algorithm 2

T[forward] := EMPTYSET;

T[backward] := EMPTYSET;
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Table 2 Explanation of the pseudo code used in algorithm 2.

T[<direction>] the set of temporary labels in a specific direction
L[result] the set of Pareto optimal (result) paths
<node>.addLabel(<label>,<direction>) adds a label to a node in a specific direction while

removing all dominated labels in that direction
<node>.labels(<direction>) returns the set of labels of a node in a specific direc-

tion
getDirection() determines in which direction the iteration of the al-

gorithm will take place
d’ the opposite direction of d
combine(<label>, <set of labels>) combines the label with each of the elements of the

set to form a set of paths
Lresult.addPaths(<set of paths>) adds all elements of the set to the result set, while

removing the dominated paths

Lresult := EMPTYSET;

originLabel := [origin,[0,...,0],NULL];

origin.addLabel(originLabel, forward);

T[forward].add(originLabel);

destinationLabel := [destination,[0,...,0],NULL];

destination.addLabel(destinationLabel, backward);

T[backward].add(destinationLabel);

while([mini(T[forward])+mini(T[backward])]

is not dominated by any R in Lresult){
d := getDirection();

label := T[d].removeMin();

owner := label.owner();

neighbours := owner.neighbors();

forall(n in neighbors){
link := getLinkBetween(owner, n);

newLabel := [n,[label[i]+link.cost[i]], label];

if(newLabel not dominated by any of n.labels(d)){
n.addLabel(newLabel, d);

T[d].add(newLabel);

if(n.Labels(d’) is not empty){
results := combine(newLabel, n.labels(d’));

Lresult.addResults(results);

}
}

}
}

First, both the forward and the backward temporary sets are initialized with an
empty set. Similarly, the solution set Lresult is initialized. The temporary sets are or-
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dered according to the lexicographic ordering relationship, similar to the unidirec-
tional algorithm. The solution set is a Pareto optimal set, which means that paths can
be added only if they are not dominated by any of the existing paths and that existing
paths which are dominated by the newly added path have to be removed from the set.
Subsequently, a null label, i.e. a label containing the null vector and a null reference,
is assigned to both the origin and the destination. The origin label is added to the
forward temporary set, while the destination label is added to the backward set.

After initialization, the following steps are repeated until the stop condition (stop
condition 2) is met. First, a direction is determined. Multiple possibilities exist to do
this, like for example choosing the direction with the largest/smallest temporary set
or alternating between the forward and the backward search. We opted for the latter
one in order not to favor one of the directions. Then, the smallest label (according to
a lexicographic ordering) is taken from the temporary set of the specific direction and
investigated. This means that all neighbors of the owner of this label are determined
and new labels are constructed from the investigated label and the cost vectors of
the links between this owner and its neighbors. Every new label then is added to the
specific (forward/backward) label set of the specific neighbor, if it is not dominated
by any of the existing labels of this set. When added successfully, all existing labels
which are dominated by the new label are removed from the set and the new label
is added to the temporary set of the specific direction. Moreover, if this neighbor
contains labels in the other direction d′ (i.e. the label set of the other direction is not
empty), this new label is combined with each of the labels of the label set of the other
direction in order to form new paths. These new paths are then added to the solution
set. It should be noted that this solution set is Pareto optimal, meaning that if the new
paths are dominated by one of the existing paths, they will not be added, and that, if
they are added, all existing paths dominated by them will be eliminated.

This is repeated until the stop condition is met, which means that the label con-
taining the pointwise sum of the pointwise minima of the temporary sets is dominated
by at least one of the resulting paths. These minima of the temporary sets are updated
every time a new label is added to the set and every time a label is removed from it
(when this label is investigated or when a temporary label is removed from a label set
of a node).

This algorithm guarantees to find all Pareto optimal paths between the origin and
the destination, as will be shown in the next section.

3.2 Proof of the optimality

In this section we will prove the correctness of following theorem.

Theorem 1 (optimality bidirectional MOSP algorithm)
All Pareto optimal paths are found once the stop condition holds for the bidirectional
multiple objective shortest path algorithm.

Proof The bidirectional algorithm searches the network simultaneously from the ori-
gin and the destination, similar to the search process of the unidirectional algorithm.
When a node contains both forward and backward labels, these labels are combined



Speeding up Martins’ algorithm for MOSP 13

to form paths, which are then added to the solution set, if Pareto optimal. Once the
stop condition holds, all forward labels XF with

∃i : xF
i < mini(TF)

and all backward labels XB with

∃i : xB
i < mini(TB)

have been investigated, i.e. they are permanent labels.
This means that for all forward labels which have not been investigated yet holds that

∀i : xF
i ≥ mini(TF) (1)

and for all uninvestigated backward labels

∀i : xB
i ≥ mini(TB) (2)

The stop condition says that the pointwise sum of the pointwise minima of the tempo-
rary sets is dominated by at least one path R = [[ri],PR] of the Pareto optimal solution
set Lresult , or

(∀i : mini(TF)+mini(Tb)≥ ri)∧ (∃i : mini(TF)+mini(Tb)> ri) (3)

Let us now assume that there still exists a path C = [[ci],PC], which has not been
found yet, but should be an element of the solution set. This means that this path is
not dominated by any of the result paths R = [[ri],PR],R ∈ Lresult . According to the
dominance definition, this implies that

∃i : ci < ri (4)

From the operation of bidirectional algorithm we know that this path C is constructed
by combining two labels of the same node, namely CF and CB, thus

∀i : ci = cF
i + cB

i (5)

Combining equations (3), (4) and (5) results in

∃i : cF
i + cB

i < ri ≤ mini(TF)+mini(TB) (6)

or
∃i : cF

i + cB
i < mini(TF)+mini(TB) (7)

We will now demonstrate that this path C does not exist or that all paths for which
condition (7) holds, have already been found by the algorithm. As path C has not been
found yet, this means that either ∀i : cF

i ≥mini(TF) or ∀i : cB
i ≥mini(TB) or both. This

latter case is in contradiction with comparison (7) and thus can never lead to a Pareto
optimal path. Two possible situations remain, namely ∀i : cF

i ≥ mini(TF)∧ (∃i : cB
i <

mini(TB)∨∀i : cB
i = mini(TB)) and (∃i : cF

i < mini(TF)∨∀i : cF
i = mini(TF))∧∀i :

cB
i ≥mini(TB). Due to the symmetric character of the bidirectional algorithm we will
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only discuss one of these cases. The other one then can be deduced in the same way.
Let us assume that

(∃i : cF
i < mini(TF)∨∀i : cF

i = mini(TF))∧∀i : cB
i ≥ mini(TB)

This means that the backward label has not been investigated yet, while the for-
ward label is already made permanent. The investigated forward label implies that
all neighboring labels are already present in the network (some of them permanent,
others not). If the path C has not been found yet by the algorithm, this means that the
label CB is not yet present in the network.

We will now look at the predecessor label C′B of this backward label CB. Let n′C be
the owner of this label C′B, while nC denotes the owner of the labels CF and CB. Since
CB and C′B are neighboring labels, the nodes nC and n′C are connected. Moreover, CF

is a permanent label, which implies that its neighboring labels are already present in
the network. From this, we can deduce that n′C contains a forward label C′F which
has CF as predecessor label. All ‘labels’ can be divided into three subsets (areas) for
both the forward and the backward search: labels which have been investigated (i.e.
permanent labels), labels which are added to a node but have not been investigated
yet (i.e. temporary labels) and labels which have not been found yet by the algorithm.
We know that C′F is already present in the network, which means that it is either
permanent or temporary. Since label CB has not been found yet by the algorithm,
label C′B has not been investigated yet, which means that is either a temporary label
or a label which has not been found yet. This leads to four cases for C′F and C′B as
illustrated in figure 1.

Case 1: C′F is a permanent label and C′B is a temporary label. This path has been
found by the algorithm as both the forward and the backward label are present in the
network.

Case 2: C′F is permanent and C′B is not an element of the backward search space
(i.e has not been found yet). This means that

(∃i : c′Fi < mini(TF)∨∀i : c′Fi = mini(TF))∧∀i : c′Bi ≥ mini(TB)

which can be reduced to the initial situation by translating C′F and C′B to CF and CB

respectively.

Case 3: Both C′F and C′B are temporary labels. Similar to case 1, this path has been
found since both the forward and the backward label are present in the network.

Case 4: C′F is an element of the forward temporary set and C′B has not been found
yet. As the label C′F is an element of the forward temporary set, this means that
∀i : c′Fi ≥ mini(TF). Moreover, the label C′B is situated outside the backward search
area, which means that ∀i : c′Bi ≥ mini(TB). Combining these labels will result in a
path for which equation (7) does not hold and which thus cannot be an element of the
Pareto optimal set.
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From this we can conclude that there exists no path which has not been found yet, but
which should be an element of the Pareto optimal solution set. Once the stop condi-
tion holds all Pareto optimal paths are found. ut

Fig. 1 Part of the forward and the backward search area. The gray areas contain all permanent labels,
while the rings around these areas contain the labels of the temporary sets.

4 Experimental results

In this section the experimental results are presented. First, an overview is given of
the setup in which the experiments were executed, together with a description of the
networks to which the algorithms were applied. Subsequently, in the next subsec-
tion, it is shown for which networks applying the stop condition of section 2.3 in the
unidirectional s-t algorithm is really advantageous. Moreover, an analysis is made of
the execution time in one specific network and it is investigated how the number of
objectives influences the speedup factor. In the last subsection, we will look at the
bidirectional algorithm, more specifically at the speedup factors in different network
configurations, the execution time in one specific network and the impact of an in-
creasing number of objectives. Finally, the cardinality of the Pareto optimal solution
set is discussed briefly.



16 S. Demeyer et al.

4.1 Setup of the experiments

All algorithms presented in this paper were implemented in Java (version 1.6.0-18).
We opted to represent the temporary set by a (lexicographically ordered) priority
queue. Moreover, the label sets of the nodes were implemented as has hsets. All
experiments were executed on a machine with the following configuration: Intel (R)
Core(TM) 2 Duo CPU P8600, 2.40 GHz and 4 GB of RAM.

All graphs that are used in this research are assumed to be directed. All undirected
links were replaced by two inverse directed links. There are 4 network configurations
that are used: transportation, square grid, random and complete networks.

A number of transportation networks (Transport X) were provided by a Belgian
company who is a major industrial player in the field of traffic information. In this
research, we made use of a network representing the Belgian road network (B). More-
over, the three transportation networks that were used in [36] and [37] were retrieved.
These networks are road networks of the US, more specifically those of Washington
DC (DC), Rhode Island (RI) and New Jersey (NJ). Next to the length of the links
(i.e. streets, or part of streets), travel time information was made available. For the
experiments, the length (in meters) was utilized as first objective and the travel time
(in milliseconds) as second objective. Since we do not have more data at hand, for
the other objectives random values between 0 and 1000 were used.

In a square grid network (Square Grid N) nodes are placed on a square grid (N ·N)
and all the direct (horizontal and vertical) neighbors are connected to each other. This
means that each node has at most 4 neighbors. A grid network of this type is often
denoted with the term ‘Manhattan network’. The cost vectors assigned to the links
consist of n (assumed that there are n objectives) completely uncorrelated random
values between 0 and 1000.

A random network (Random N(d)) contains N nodes and (d ·N) links. These
nodes are randomly connected to each other by the specified number of links, where
we made sure that the networks are connected. This means that the network needs to
contain at least (N-1) links. Again, (completely uncorrelated) random values between
0 and 1000 were used to represent the different costs of the links. Random networks
have the advantage that the number of nodes and the number of links can be changed
easily. In this research we will use the random networks to determine trends in the
speedup factors in function of the number of nodes in the networks and the average
node degree in the networks.

Finally, a complete (or full dense) network (Complete N) is a network with N
nodes in which each node is connected to each of the other nodes. Here too, we made
use of n completely uncorrelated random values (between 0 and 1000) to represent
the cost vectors of the links.

An overview of all networks that were used in the experiments is given in table 3.
All experiments were executed for 1000 randomly selected origin-destination

pairs and the presented results are averages over these 1000 multiple objective short-
est path calculations. For both presented speedup techniques, speedup factors are
reported, with a speedup factor (SUF) of algorithm A over algorithm B is defined as:

SUF(A/B) =
avg. execution time algorithm B
avg. execution time algorithm A
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Table 3 Overview of all network configurations used for the experiments.

network configuration # nodes # links average
outdegree

Transport (DC) 9 559 29 765 3.1
Transport (B) 23 080 50 364 2.2
Transport (RI) 53 658 138 083 2.6
Transport (NJ) 330 386 869 471 2.6
Complete 100 100 9 900 99
Complete 300 300 89 700 299
Square Grid 30 900 3 480 3.86
Square Grid 100 10 000 39 600 3.96
Random 10000(3) 10 000 30 000 3
Random 20000(3) 20 000 60 000 3
Random 100000(3) 100 000 300 000 3
Random 10000(4) 10 000 40 000 4
Random 10000(5) 10 000 50 000 5
Random 10000(6) 10 000 60 000 6

A speedup factor higher than 1 means that algorithm A is faster than algorithm B.
For clarity issues, we will denote the unidirectional MOSP algorithm without the
stop condition with U, the unidirectional MOSP algorithm with the stop condition
with US and the bidirectional MOSP algorithm (with the stop condition) with B.

4.2 The unidirectional MOSP algorithm

In this section we will demonstrate that using the stop condition (see section 2.3) in-
deed speeds up a number of unidirectional shortest path calculations in some network
configurations. In the first part a comparison will be made of the speedup factors for
the different network configurations. Subsequently, we will look at one specific con-
figuration and see how the calculation time varies with a varying ‘distance’ between
the origin and the destination.

Table 4 shows the average execution time of the unidirectional MOSP algo-
rithm without the stop condition and the speedup achieved by using stop condition
1 (SUF(US/U)) for a number of network configurations, and this for both 2 and 3
objectives. One can see that the speedup factors for the transportation networks are
much higher than those for the other networks. The results for the three US network
(DC, RI and NJ) are comparable to the results of [36]. For the square grid networks,
on the other hand, slightly higher speedup factors are perceived. Applying the stop
condition in a complete network does not result in smaller execution times. At all
times, the whole network needs to be investigated and the algorithm with the stop
condition is even slightly slower than the algorithm without the stop condition, due
to the overhead of checking the stop condition. Looking at the random networks,
two trends are perceived. When the number of nodes in the network increases, the
speedup factor increases as well. The larger the network is, the higher the chance that
the origin and the destination node are ‘closer’ to each other and that only a smaller
part of the network needs to be investigated. If the number of nodes in the network is
kept constant and the average out degree of the nodes is increased, the speedup factor
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Table 4 The execution times of the unidirectional MOSP algorithm without the stop condition and the
speedup factors of the unidirectional algorithm with the stop condition over the one without the stop
condition (SUF(US/U)) in different network configurations.

2 objectives 3 objectives
network configuration CPU time (ms) SUF(US/U) CPU time (ms) SUF(US/U)
Transport (DC) 127 2.35 962 2.55
Transport (B) 443 3.35 47 657 3.41
Transport (RI) 1 914 2.39 156 494 2.86
Transport (NJ) 18 191 2.96 1 784 817 3.25
Complete 100 40 0.99 229 0.98
Complete 300 839 0.99 7 837 0.99
Square Grid 30 136 1.33 16 312 1.44
Square Grid 100 978 1.59 103 435 1.62
Random 10000(3) 96 1.25 102 1.41
Random 20000(3) 547 1.58 717 1.96
Random 100000(3) 2 155 2.00 6 124 2.69
Random 10000(4) 199 1.15 674 1.19
Random 10000(5) 314 1.02 1 225 1.01
Random 10000(6) 498 0.99 2 068 0.99

decreases. For the highest out degrees, this is similar to the results of the complete
networks.

It is known that for the algorithm of Dijkstra interrupting the search process as
soon as the label of the destination node is permanent is only advantageous (with
respect to the calculation time) if the origin and the destination node are situated not
too far from each other. The calculation time increases monotonously in function of
the distance (i.e. shortest path length) between the origin and the destination node.
Now, we want to investigate the relationship between the calculation time of the uni-
directional MOSP algorithm and the ‘distance’ between the origin and the destination
node. Since, for multiple objective shortest path algorithms, there is no single value
that indicates the ‘distance’ between two nodes, an estimation needs to be used. We
will assume the minimum value of the first objective as an approximation of how far
apart two nodes are from each other.

As the speedup factors for the transportation networks are the highest, and the
concept of ‘distance’ is most significant for these networks, we opted to examine this
for transportation networks only. Here we made use of the Transport (DC) network.
Figure 2 shows the execution times of the unidirectional algorithm with and without
stop condition in function of the ‘distance’ (i.e. minimum value of the first objective)
between the origin and the destination node, for both 2 and 3 objectives. Moreover,
the minimum and the maximum values of the execution times are indicated. The
execution times of the algorithm without the stop condition are constant as each time
the whole network is investigated. As expected, when the stop condition is applied
smaller execution times are perceived for the ‘shorter’ paths and for the ‘longer’ paths
the execution times tilt to those of the algorithm without the stop condition. The bars
in the figures show that there is more variability in the execution times for the paths
with medium ‘length’. The curve for 3 objectives reaches its upper limit sooner than
the one for 2 objectives. When dealing with 3 objectives, more of the network needs
to be investigated, before the search can be aborted.
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Fig. 2 Calculation time of multiple objective shortest path algorithm with and without stop condition in
the Transport (DC) network with 2 objectives (top) and 3 objectives (bottom).

In table 4 results are shown for both two and three objectives. The speedup factors
of the unidirectional algorithm with the stop condition over the one without the stop
condition are slightly higher for 3 objectives than for 2 objectives. We now will in-
vestigate, for one particular case (the Transport (DC) network), if this trend continues
with higher number of objectives. Results are shown in table 5. It can be seen that
indeed the speedup factor increases as the number of objectives increases. Neverthe-
less, these increases are relatively small.

4.3 The bidirectional MOSP algorithm

In this section we will demonstrate how searching the network bidirectionally in most
cases indeed speeds up the calculations. Besides examining the speedup factors for
the different network configurations, we will see how the speed up factor reacts to
an increasing number of objectives in transportation networks. Moreover, it will be
indicated for which paths searching bidirectionally is really advantageous. Next to
this, we will have a quick look at the cardinality of the solution set.
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Table 5 Speedup factors (SUF) of the unidirectional MOSP algorithm for different number of objectives
in the Transport(DC) network.

# obj. SUF(US/U)
2 2.35
3 2.55
4 2.69
5 2.76
6 2.87
7 2.97
8 3.05

Table 6 The average execution times of the unidirectional MOSP algorithm with the stop condition and
the speedup factors of the bidirectional algorithm over the unidirectional algorithm with the stop condition
(SUF(B/US)) in different network configurations.

2 objectives 3 objectives
network configuration CPU time (ms) SUF(B/US) CPU time (ms) SUF(B/US)
Transport (DC) 54 5.76 377 12.47
Transport (B) 132 5.91 13 976 14.46
Transport (RI) 801 7.77 54 718 16.16
Transport (NJ) 6 146 10.08 549 174 21.43
Complete 100 40 0.60 305 0.50
Complete 300 847 0.58 7 916 0.37
Square Grid 30 102 1.49 11 328 1.57
Square Grid 100 615 1.79 63 849 1.96
Random 10000(3) 77 3.29 72 3.54
Random 20000(3) 346 3.99 66 3.99
Random 100000(3) 1 078 4.52 2 277 4.67
Random 10000(4) 173 2.75 566 2.51
Random 10000(5) 308 2.01 1 213 1.30
Random 10000(6) 503 1.04 2 89 0.53

Table 6 shows, next to the average cardinality of the solution set, the speedup
factors of the bidirectional MOSP algorithm over the unidirectional algorithm with
the stop condition, for both 2 and 3 objectives. Clearly noticeable is the fact that the
speedup factors in the transportation networks are higher than those in the other net-
work configurations. Searching the network bidirectionally is certainly not a good
choice when dealing with complete networks. Here, the bidirectional algorithm is
even slower than its unidirectional counterpart. For square grid networks, only rel-
atively small speedups are achieved. Looking at the random networks, some trends
can be identified. When the number of nodes in the network increases, the speedup
factor increases too. If, on the other hand, the number of nodes is kept constant, and
the average out degree of the nodes is increased, the speedup factor decreases. These
trends are similar to the ones observed for the speedup factor of the unidirectional
algorithm with the stop condition over the one without the stop condition.

Similar to the results of section 4.2 we looked at the calculation time of the bidi-
rectional MOSP algorithm in the Transport (DC) network in function of the ‘dis-
tance’ (i.e. minimum value of the first objective) between the origin and the desti-
nation node. This is shown in figure 3, together with the calculation time of the uni-
directional algorithm with the stop condition, which is the same as in figure 2. One
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Fig. 3 Comparison of unidirectional and bidirectional algorithm in function of the number of hops in the
shortest path.

can see that the calculation times for the bidirectional algorithm are indeed much
smaller. The curves of the bidirectional algorithm increase monotonously, seemingly
without reaching an upper limit, like the curves of the unidirectional algorithms do.
This means that the highest speedups are achieved for the medium length paths. For
the shortest paths the curves are nearly flat for both algorithms, resulting in smaller
speedup factors. When the ‘distance’ between the origin and the destination node in-
creases, the calculation time of the unidirectional algorithm increases faster than that
of the bidirectional algorithm. This results in higher speedup factors. For the longest
paths the unidirectional algorithm has reached its upper limit, while the calculation
time of the bidirectional algorithm still increases, resulting in smaller speedup factors.
So, the highest speedup factors are calculated for the medium length paths.

Subsequently, we investigated the impact of the number of objectives on the
speedup factor. In table 6 results are shown for both 2 and 3 objectives, where it can
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Table 7 Speedup factors (SUF) of the bidirectional MOSP algorithm over the unidirectional algorithm
for different number of objectives in the Transport(DC) network.

# obj. SUF(US/U)
2 5.76
3 12.47
4 12.88
5 13.20
6 13.24
7 14.27
8 15.50

Table 8 Average cardinality solution set for different network configurations.

avg. # Lresult
2 objectives 3 objectives

Transport (DC) 14.97 32.67
Transport (B) 21.72 48.03
Transport (RI) 30.40 87.98
Transport (NJ) 83.23 151.15
Complete 100 12.83 58.79
Complete 300 17.98 120.29
Square Grid 30 23.52 242.49
Square Grid 100 173.64 502.37
Random 10000(3) 3.86 3.67
Random 20000(3) 3.94 7.87
Random 100000(3) 4.27 9.46
Random 10000(4) 4.89 10.98
Random 10000(5) 5.71 13.84
Random 10000(6) 6.56 17.11

be seen that the speedup factors are in most cases higher when there are 3 objectives.
For the complete networks, where it is not advantageous to search bidirectionally,
adding an objective is worse for the execution time of the bidirectional algorithm.
For the random networks with a higher average out degree of the nodes, this is also
the case. We now focus on the transportation networks and calculated the average
speedup of the bidirectional algorithm over the unidirectional algorithm (with stop
condition) for a different number of objectives. Results are shown in table 7. It is
shown that indeed the speedup factor increases with an increasing number of objec-
tives. There is a difference in the increase between two and three objectives and that
between a higher number of objectives. This can be explained by the fact that for the
first two objectives actual distances and travel time information was used, while for
the other objectives random values were selected.

Besides this, we investigated the average cardinality of the solution set. Looking
at table 8 one can see that this cardinality is highly dependent on the network config-
uration with the highest cardinalities for the square grid networks and the lowest ones
for the random networks. Moreover, the average cardinality is dependent on both the
number of nodes in the network and the average out degree of the nodes. When the
number of nodes in the network increases, the cardinality of the solution set increases.
Similarly, when the average out degree of the nodes increases, the cardinality of the
solution set does also. This is as expected.



Speeding up Martins’ algorithm for MOSP 23

5 Conclusion

In this article the main goal was to speed up the multiple objective shortest path
(MOSP) algorithm as presented by Martins [24], while still maintaining the guarantee
to find all Pareto optimal paths. The improvements prove to be very useful, especially
in large transportation networks.

First, a stop criterion for the unidirectional algorithm was introduced which fin-
ishes the search process as soon as the destination node contains all its labels, which
can be translated to the Pareto optimal paths. It has been proven that, once this stop
condition holds, all Pareto optimal paths are found. Experiments have shown that a
remarkable speedup can be achieved in transportation networks and that this speedup
is the largest if the origin and the destination node are ‘close’ to each other. Moreover,
the speedup factor increases when dealing with more objectives.

Secondly, a bidirectional MOSP algorithm was introduced, which searches the
network from the origin and the destination simultaneously. It is proven that this
algorithm always returns the complete Pareto optimal set of paths. In the experiments,
it can be seen that the speedup achieved by searching the network bidirectionally is
dependent upon the network configuration, the number of nodes in the network, the
average out degree of the nodes, the relative position of the origin and the destination
node, and the number of objectives.

From the experiments it can be concluded that the speedup measures presented in
this article are particularly well suited for (large) transportation networks. The highest
speedup is achieved by searching the network bidirectionally.
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