
Improving Bi-Objective Shortest Path Search
with Early Pruning

L. Mandowa;* and J.L. Pérez de la Cruza

aUniversidad de Málaga, Andalucía Tech, Dpto. de Lenguajes y Ciencias de la Computación, Málaga, España
ORCiD ID:

Abstract. Bi-objective search problems are a useful generalization
of shortest path search. This paper reviews some recent contributions
for the solution of this problem with emphasis on the efficiency of the
dominance checks required for pruning, and introduces a new algo-
rithm that improves time efficiency over previous proposals. Exper-
imental results are presented to show the performance improvement
using a set of standard problems over bi-objective road maps.

1 Introduction

Bi-objective search problems are a useful generalization of shortest
path search. Since [6], several algorithms have been proposed for
multi-objective (MO) search in general (e.g. [17] [13] [14] [19]),
and bi-objective search in particular (e.g. [16] [15] [8] [5] [1][20]
[9]). Ideas relevant to multi-objective search apply to bi-objective
search as well. However, the special properties of bi-objective prob-
lems make it possible to devise specific and more efficient procedures
for this case, turning it into a separate research subject.

The work of [13] showed the importance of the consistency prop-
erty of heuristics in MO search, and analysed NAMOA*, an algo-
rithm that is optimal in the number of paths explored under such
property.

Although the number of explored paths is a fundamental measure
in the efficiency of MO search, other important computational con-
siderations need to be taken into account. In A*, each path to a known
node can be pruned or preserved with a constant-time check on its
cost. However, MO search requires dominance checks betweeen the
vector costs of all paths (open or closed) reaching a given node. Ad-
ditionally, newly generated paths need to be checked for dominance
against the set of solution costs already found. A dominance check
between a given vector and a set of vectors is potentially a computa-
tionally costly operation [2]. Several recent contributions on the run-
time efficiency of multi-objective search have focused on reducing
this cost, with special emphasis in the bi-objective case [14] [9].

This paper reviews these recent contributions under a common

∗ Financiado por Plan Propio de Investigación de la Universidad de Málaga
(UMA), Campus de Excelencia Internacional Andalucía Tech. Work sup-
ported by the Spanish Ministry of Science and Innovation, European Re-
gional Development Fund (FEDER), Junta de Andalucía, and Universi-
dad de Málaga through the research projects with reference IRIS PID2021-
122812OB-I00, PID2021-122381OB-I00 and UMA20-FEDERJA-065. Cor-
responding Author Email: lmandow@uma.es. This is the pre-review version
of a paper accepted and presented at the 26th European Conference on Artifi-
cial Intelligence (ECAI 2023), published in the conference proceedings (DOI:
10.3233/FAIA230452).

framework, and identifies a new additional technique that further im-
proves dominance check efficiency.

Section 2 presents the problem definition and necessary notation.
Sections 3 and 4 review recent contributions in efficient dominance
checks for biobjective search and identify a new area of improve-
ment. Sections 5 and 6 describe a new biobjective search algorithm
and discuss some properties. Experiments on the efficiency of the
new approach over road map benchmark problems are presented and
discussed in sections 7 and 8. Finally, conclusions are summarized
and future work is outlined.

2 Problem definition and notation

Let G be a locally finite directed weighted graph G = (S,A,C),
where S is a finite set of states; A is a set of arcs A =
{(ii, j1), ..., (im, jm)} ⊆ S × S; and C is a function that assigns to
each arc (i, j) ∈ A a vector of 2 positive costs c⃗(i, j) = (c1ij , c

2
ij) ∈

R2+. Let a path from state s1 to state sk be a sequence of states
(s1, s2, . . . sk) such that ∀i < k (si, si+1) ∈ A. Let the cost vector
of a path be defined as the sum of the cost vectors of its component
arcs. Bi-objective cost vectors induce a partial order preference rela-
tion ≺ called dominance,
∀y⃗, y⃗′ ∈ R2 y⃗ ≺ y⃗′ ⇔ y1 ≤ y′

1 ∧ y2 ≤ y′
2 ∧ y⃗ ̸= y⃗′.

We also define the dominance or equality (⪯) relation,
∀y⃗, y⃗′ ∈ R2 y⃗ ⪯ y⃗′ ⇔ y⃗ ≺ y⃗′ ∨ y⃗ = y⃗′.
Given a set of vectors X , we define nd(X), the set of non-

dominated vectors in X as, nd(X) = {x⃗ ∈ X | ∄y⃗ ∈ X y⃗ ≺ x⃗}.
LetP be the set of all paths in the graph G, with start state sstart ∈ S
and goal state sgoal ∈ S. Let X be the set of their costs.

The full bi-objective shortest path problem (G, sstart, sgoal) con-
sist in finding all paths in P with costs in nd(X ). This paper deals
with the cost-unique bi-objective shortest path problem [9], which
consists in finding only one path in P for each cost in nd(X ).

Many multi-objective best-first search algorithms use the min lex-
icographic order ≺L, since the lexicographic minimum in a set is
also non-dominated. This total order is defined as follows,
∀y⃗, y⃗′ ∈ R2 y⃗ ≺L y⃗′ ⇔ y1 < y′

1 ∨ (y1 = y′
1 ∧ y2 < y′2)

and the preference relation ⪯L has its natural meaning,
∀y⃗, y⃗′ ∈ R2 y⃗ ⪯L y⃗′ ⇔ y⃗ ≺L y⃗′ ∨ y⃗ = y⃗′

A heuristic function h⃗(s) is a function that for each state s returns
an estimation of the cost of non-dominated paths from state n to the
goal. We say that h⃗(s) is monotone or consistent if, for all arcs (s, s′)
in the graph, the following condition holds,

h⃗(s) ⪯ c⃗(s, s′) + h⃗(s′).



A common choice for a consistent biobjective heuristic is h⃗(s) =
(h∗

1(s), h
∗
2(s)) where optimal costs h∗

1(s), h
∗
2(s) are precalculated

using two single-objective Dijkstra searches (one for each objective)
from the goal state over the graph with reversed arcs [18]. This has
also been empirically analyzed by [10]. The computational cost of
its precalculation is generally quite small compared to the ensuing
bi-objective search. Alternative heuristics are discussed in [11] [4].

3 Antecedents
Most current unidirectional algorithms for multi-objective search
are generalizations of the A* algorithm for single-objective short-
est paths [7]. Succinctly, A* builds a search tree, with root at the
start state sstart, that keeps the best known path to each visited state.
When two different paths reaching the same state are found, only the
best is kept and the other is discarded (pruned), breaking ties arbi-
trarily. Each path in the tree reaches a different state s with cost g(s).
These states are kept in a priority queue Open in increasing order of
the characteristic function f(s) = g(s)+h(s). States in the tree that
are not present in Open are said to be ’closed’. The procedure iter-
atively removes and expands the first state in Open, i.e. it generates
its successors and adds them to the tree and Open when appropri-
ate. When h(s) satisfies the consistency property A* can be shown
to be optimal in its class over the number of states expanded [3]. The
procedure terminates when a goal state sgoal is selected from Open.

NAMOA* [12] is a multi-objective extension of A* that shares
an analogous optimality property when heuristics are consistent.
In other words, NAMOA* expands the optimal number of paths
[13]. This is a landmark property regarding the efficiency of multi-
objective search. However, those paths generated but not explored
by the algorithm are pruned on the basis of dominance checks.
Dominance is a computationally costly operation. Therefore, several
subsequent algorithms have improved the runtime performance of
NAMOA* focusing on efficient ways to perform the necessary dom-
inance checks. This is also the focus of our discussion.

There are several important differences between single and multi-
objective search that need to be tackled by any multi-objective best-
first algorithm. Firstly, there are generally many non-dominated (op-
timal) paths reaching each state. Therefore, each relevant path is
identified by a label, which combines the path’s terminal state with
its associated vector cost. A newly found path to a state s is locally
pruned if its cost is dominated by that of some previously found path
to s. Likewise, a new path can prune a previously known one if both
reach the same state and the former dominates the latter. In the bi-
objective case, each label has the form (s, (g1(s), g2(s))), where
g1(s) and g2(s) denote the two cost functions to be minimized.

Secondly, each path or label (s, g⃗) has an evaluation cost f⃗ =

g⃗+h⃗(s). In the bi-objective case f⃗ = (f1, f2). Throughout this paper
we will use ’extended’ labels (s, g⃗, f⃗) when necessary for the sake
of clarity. However, in practice the evaluation costs may be actually
stored in the label or calculated on demand. Labels are kept in an
Open queue, and at each iteration a non-dominated (optimal) one
according to its evaluation cost f⃗ is removed and expanded.

All algorithms described in the following sections implement
Open as a priority queue of labels with min lexicographic order (see
section 2) of evaluation costs. The reason is that the lexicographic
order is a total order relationship, and the lexicographic optimum in
a set is guaranteed to be non-dominated. We assume the following
priority queue operations:

• empty(queue) : returns true if the queue is empty, false other-

wise.
• insert(l, queue) : inserts label l in the queue.
• top(queue) : returns the min (top) label from the queue, and

leaves the queue unchanged.
• pop(queue) : removes and returns the min (top) label in queue.
• update(l1, l2, queue) : replaces label l1 with l2 in the queue,

preserving queue order.

Finally, the full multi-objective search problem aims to find the
set of all non-dominated solution paths. Any path with heuristic cost
dominated by that of a found solution can be discarded (this is a dif-
ferent kind of pruning sometimes referred to as ’filtering’). Search
terminates when Open is empty, i.e. when all labels have been either
expanded, discarded (pruned), or identified as solutions. The recent
BOA* algorithm solves the simpler cost-unique problem (see sec-
tion 2). We assume the same problem definition in this paper. The
extension to the more general full problem is straightforward. The
next subsections review the improvements in dominance check ef-
ficiency over NAMOA* proposed by two recent bi-objective algo-
rithms: NAMOAdr* and BOA*.

3.1 NAMOA∗
dr

NAMOAdr* (NAMOA* with dimensionality reduction) [14] is an
efficient revision of NAMOA* that assumes lexicographic order-
ing and consistent heuristics. Figure 1 presents a pseudocode freely
adapted to the cost-unique bi-objective case. Pruning operations are
highlighted with comments.

The overall idea is similar to A*. An initial label lstart is inserted
in the Open priority queue. Then, labels are iteratively selected from
Open on a lexicographic best-first basis according to their evalua-
tion cost (f1, f2). Goal labels are recorded, and non-goal ones are
expanded1.

We describe NAMOA∗
dr highlighting its improvements against

NAMOA*. In order to carry out local pruning operations, NAMOA*
keeps two local sets Gop and Gcl associated to each state s. The first
keeps the labels of open paths reaching s, while the second keeps
the labels of closed ones. It also keeps a set of non-dominated solu-
tion labels Sols. Each time a new label is generated for s, its cost is
checked against Gop(s) and Gcl(s) for local pruning, and its heuris-
tic cost against Sols for global pruning (filtering). If the label is not
pruned, then any labels it may dominate are pruned from Gop(s)

2.
Additionally, each time a new solution label is added to Sols, the
heuristic costs of labels in Open and the Gop(s) sets are checked
against it for filtering3. In summary, NAMOA* performs all these
pruning operations as soon as possible. We collectively denote this
default behavior in NAMOA* as ’eager pruning’.

To be more precise, we extend the terminology of [14] and distin-
guish four different kinds of pruning:

• cl-pruning: when the cost of a new label (s, g⃗) is dominated by
some label in Gcl(s) .

• op-pruning: when the cost of a new label (s, g⃗) is dominated by
some label in Gop(s) or, conversely, some label in Gop(s) is dom-
inated by such new label.

1 The pseudocode abstracts the details of successor label generation for
brevity. Given a label l1 = (s, (g1, g2), (f1, f2)) and a successor state
s′ of s with cost c⃗(s, s′) = (c1, c2), then l2 = (s′, (g′1, g

′
2), (f

′
1, f

′
2)) is

a successor label with g′i = gi + ci, and f ′
i = g′i + hi(s

′) for i = 1, 2.
2 Due to the consistency of the heuristic, labels in Gcl(s) are locally non-

dominated, so there is no need to check them.
3 Again, due to consistency, no closed label can be dominated by a newly

found solution label.

2



Open← empty queue; Sols← ∅;
Set default value ∀s ∈ S gmin

2 (s)←∞;
Set default value ∀s ∈ S Gop(s) ← ∅;
Let lstart be (sstart, (0, 0), (h1(s), h2(s)));
parent(lstart)← null;
insert(lstart, Open);
while ¬empty(Open) do

l1 ← pop(Open);
Let l1 be (s, (g1, g2)(f1, f2));
Remove l1 from Gop(s) ;
if f2 ≥ gmin

2 (sgoal) then
continue; // lazy filter

end
gmin
2 (s)← g2;

if s = sgoal then
add(l1, Sols);
continue;

end
foreach new label l2 successor of l1 do

Let l2 be (s′, (g′1, g
′
2), (f

′
1, f

′
2));

if (g′2 ≥ gmin
2 (s′)) ∨ (f ′

2 ≥ gmin
2 (sgoal)) then

continue; // eager cl-prune/filter

end
if Gop(s

′) ≺ (g′1, g
′
2) then

continue; // eager op-prune
end
Remove from Gop(s

′) all vectors dominated by
(g′1, g

′
2); // eager op-prune

parent(l2)← l1;
insert(l2, Open);
insert(l2, Gop(s

′));
end

end
Algorithm 1: NAMOA∗

dr algorithm, freely adapted from [14] for
cost-unique bi-objective search.

• old-filter: The evaluation cost f⃗ of newly generated labels (s, g⃗, f⃗)
is checked against known (old) solution labels in Sols, and dis-
carded if found to be dominated.

• new-filter: Newly found solution labels are checked against the
heuristic cost of all open labels, and those found to be dominated
are pruned.

The bi-objective search algorithms discussed in this paper differ
mainly in the way they implement the dominance checks needed for
these four pruning operations. Therefore, we highlight these differ-
ences.

NAMOA∗
dr applies two efficient techniques to reduce the compu-

tational cost of dominance checks in cl-pruning and filtering. These
exploit the following property. When a set of non-dominated bi-
dimensional vectors {y⃗} is min ordered lexicographically, then (i)
the sequence of y1 values is monotonically non-decreasing, and (ii)
the sequence of y2 values is monotonically non-increasing. If all vec-
tors are different, then the sequences are (i’) strictly increasing and
(ii’) strictly decreasing, respectively. This follows naturally from the
definition of lexicographic ordering (see section 2).

Let us assume some dominated vectors are inserted in lexico-
graphic order in an ordered non-dominated sequence. These can be
easily identified scanning the sequence in min lexicographic order.
Any vector that breaks the monotonically non-increasing sequence
of y2 values is dominated.

NAMOA∗
dr exploits this property and keeps a scalar value gmin

2 (s)
for each node, equal to the minimum second cost component of all
closed labels to s (i.e. that of the one most recently selected). A new
label (s, (g1, g2)) can be cl-pruned if g2 > gmin

2 (s) avoiding the
need for an explicit and computationally costly full dominance com-
parison against Gcl(s) . This technique is called ’dimensionality re-
duction’, since bi-dimensional vector dominance checks are reduced
to constant-time uni-dimensional scalar checks [14]4. Notice that the
cl-pruning operation is still ’eager’, in the sense that it is carried out
as soon as possible, only with a more efficient procedure.

NAMOA∗
dr also reduces to a great extent the cost of both new and

old filtering operations. Old-filter operations can also be carried out
with a constant time scalar check between the evaluation cost f2 of
each new label and the minimum g2 of labels in Sols. This is again an
incarnation of the same dimensionality reduction idea, since solution
labels are found by the algorithm following also a min lexicographic
ordering.

New-filter operations can be particularly costly, since the Open set
can be large. NAMOA∗

dr applies in this case a technique called ’lazy
filtering’. When a new solution label is found, no particular opera-
tion is carried out (i.e. no eager filtering checks are applied). Current
open labels wait their turn in the Open queue, and are eventually
checked for filtering only when they reach the top of the queue. At
that point the filtering operation can be carried out again with a con-
stant time scalar check between the heuristic cost f2 of the selected
label and the minimum g2 of labels in Sols. The term ’lazy’ means
the pruning is not made as soon as possible, but rather delayed until
label selection, when it can be carried out in a more efficient way.

Finally, NAMOA∗
dr performs eager op-pruning operations using

dominance against the Gop sets, just as NAMOA*.
These improvements made NAMOA∗

dr an order of magnitude
faster than NAMOA* on a benchmark of bi-objective road map prob-
lems [14].

4 Analogously, for k-objective problems, k dimensional checks are reduced
to k − 1 dimensional ones.

3



3.2 BOA*

BOA* (Bi-objective A*) [8] [9] is a recent extension of A* for bi-
objective search problems. A pseudocode is presented in algorithm 2
with pruning operations highlighted by comments.

Like NAMOA∗
dr , BOA* incorporates dimensionality reduction

for eager cl-pruning and lazy filtering. However, BOA* introduces
several additional simplifications. Since the algorithm solves the
cost-unique problem (i.e. only searches for a single path for each
non-dominated cost), there is no need to explicitly keep the Gcl sets
for each node5. The main contribution, from the point of view of our
discussion on pruning operations, is an efficient implementation of
op-pruning, that eliminates the need for the Gop sets as well.

The elimination of the Gop sets means newly generated labels to
a known state s cannot be compared straightaway against other cur-
rently open labels to s. Instead, all such labels are inserted into Open.
Only when labels reach the top of Open, they are compared against
the gmin

2 value of their state. This is a constant time operation be-
tween two scalar values. The result is a simpler and more efficient
bi-objective search procedure.

In summary, BOA* incorporates dimensionality reduction in eager
cl-pruning and lazy filtering, and extends these ideas to op-pruning.
We call this operation ’lazy op-pruning’. These improvements
showed BOA* to be around three times faster than NAMOA∗

dr on
a benchmark set of bi-objective road map problems [9].

Open← empty queue; Sols← ∅;
Set default value ∀s ∈ S gmin

2 (s)←∞;
Let lstart be (sstart, (0, 0), (h1(s), h2(s)));
parent(lstart)← null;
insert(lstart, Open);
while ¬empty(Open) do

l1 ← pop(Open);
Let l1 be (s, (g1, g2)(f1, f2));
if (g2 ≥ gmin

2 (s)) ∨ (f2 ≥ gmin
2 (sgoal)) then

continue; // lazy op-prune/filter
end
gmin
2 (s)← g2;

if s = sgoal then
add(l1, Sols);
continue;

end
foreach new label l2 successor of l1 do

Let l2 be (s′, (g′1, g
′
2), (f

′
1, f

′
2));

if (g′2 ≥ gmin
2 (s′)) ∨ (f ′

2 ≥ gmin
2 (sgoal)) then

continue; // eager cl-prune/filter

end
parent(l2)← l1;
insert(l2, Open);

end
end

Algorithm 2: BOA* algorithm, adapted from [9]

4 Computational overhead of lazy pruning
In this section we provide some insights on how the costly domi-
nance checks between vectors and sets of vectors are eventually re-
placed by (apparently) constant-time scalar comparison operations in
5 We also applied this simplification in our pseudocode of NAMOA∗

dr in
algorithm 1 adapted to the cost-unique problem.

bi-objective search algorithms. We discuss in turn the different kinds
of pruning operations (cl-pruning, filtering, and op-pruning).

Let us first address the case of dimensionality reduction applied to
cl-pruning. As explained above, the key of this technique is the fact
that best-first algorithms already need to sort open labels in some way
so that nondominated ones are always selected (best-first search).
Sorting with a min lexicographic order results in a double advantage.
Since the sequence of labels selected from Open is lexicographi-
cally monotonically non-decreasing, when a label (s, (g1, g2)) is se-
lected, its g1 value is already known to be as large as all those pre-
viously selected for s (and present in Gcl(s)). All that remains to be
checked for dominance is the scalar constant time comparison of g2
and gmin

2 (s), regardless the size of Gcl(s). Therefore, this technique
is virtually computationally free. The computational cost of the lex-
icographic ordering is actually needed for the best-first operation of
the algorithm, and dimensionality reduced cl-pruning just takes ad-
vantage of it. Practically all the comparisons between vector costs re-
quired for cl-pruning have already implicitly taken place in the queue
ordering process. The cl-pruning operation is still eager (i.e. carried
out as soon as possible) and vastly more efficient. A similar analysis
applies to dimensionality reduced eager old-filtering.

Let us now analyze the case of lazy new-filtering used also in
NAMOA∗

dr and BOA*. Instead of performing an eager filtering op-
eration each time a new solution is found (i.e. checking the cost of
the new solution label against all open labels), no Open labels are
checked at the time. The final constant time checks are performed
gradually as each of them is selected from the top of the queue.

Unlike dimensionality reduced cl-pruning, lazy new-filtering is not
completely free from a computational point of view. Once a label
l = (s, (g1, g2), (f1, f2)) is selected from Open, the check between
f2 and gmin

2 (sgoal) can be performed in constant time. However,
if label l could have been filtered eagerly by some solution label l∗

found after l entered Open, then l has lingered longer in Open than
it could have. It could have been filtered earlier (eagerly), just when
l∗ was found. As a result, the size of Open was larger than strictly
necessary in the period between the discovery of l∗ and the selection
of l. As a side effect, this increases the average computational cost of
insertion and deletion operations in Open during that period.

Finally, the lazy op-pruning operation carried out by BOA* also
incurs in a similar overhead for Open queue operations. Explicit
dominance checking operations are replaced by more efficient im-
plicit ordering ones inside the Open queue. However, labels that
could have been eagerly op-pruned against their Gop(s) sets pop-
ulate the Open queue until they are eventually selected and checked
with a final constant time operation.

The identification of this computational overhead of lazy pruning
techniques is important, since it opens up the possibility of further
improvements in the runtime of bi-objective search algorithms.

In the next section we present a new bi-objective search algorithm.
This algorithm applies an alternative dimensionality reduced prun-
ing technique that lies in between eager and lazy pruning. We call
this technique ’early pruning’, since it generally does not prune as
soon as possible, but does not wait as much as lazy pruning either.
Experimental results in section 7 will show that this new technique
produces a practical reduction in runtime.

5 Algorithm EBA*

This section introduces EBA* (Early pruning Bi-objective A*), a
new bi-objective search algorithm. Our proposal relies on the same
assumptions of previous algorithms (NAMOA∗

dr , BOA*), i.e. use of

4



lexicographic ordering, and a consistent heuristic function.
The pseudocode of EBA* is included in algorithm 3. Like previous

algorithms, EBA builds a search tree with root at the start state sstart.
Found solution labels are stored in a set Sols. Each node s keeps a
variable gmin

2 (s) with the smallest value of g2 among expanded la-
bels to s, and in particular gmin

2 (sgoal) keeps the smallest value of g2
among solutions found. These are used for efficient checking in eager
old-filtering and cl-pruning respectively (dimensionality reduction).
One difference between EBA and previous algorithms is the manage-
ment of the priority queues of labels:

• Each state s in the tree keeps a local priority queue of unexplored
labels Gop(s) , according to a min lexicographic order of cost
vectors (g1, g2)6.

• A single Open priority queue of labels is ordered according to a
min lexicographic order of evaluation vectors (f1, f2). This queue
contains only the top label of each non-empty Gop(s) queue.
The top label in Open is trivially the best among all labels in
Gop(s) queues.

Open← empty queue; Sols← ∅;
Set default value ∀s ∈ S gmin

2 (s)←∞;
Set default value ∀s ∈ S Gop(s) ← empty queue;
Let ls be (sstart, (0, 0), (h1(sstart), h2(sstart)));
parent(ls)← null;
insert(ls, Open);
while ¬empty(Open) do

l1 ← popReplace(Open);
Let l1 be (s, (g1, g2)(f1, f2));
if f2 > gmin

2 (sgoal) then
continue ; // lazy filter

end
gmin
2 (s)← g2;

if s = sgoal then
add(l1, Sols);
continue;

end
foreach label l2 successor of l1 do

Let l2 be (s′, (g′1, g
′
2), (f

′
1, f

′
2));

if (g′2 ≥ gmin
2 (s′)) ∧ (f ′

2 ≥ gmin
2 (sgoal)) then

continue; // eager cl-prune/filter

end
parent(l2)← l1;
insertReplace(l2, Open);

end
end

Algorithm 3: EBA* Algorithm

The algorithm creates the start label, inserts it in Open and
Gop(sstart), and creates the search tree. Until Open becomes empty,
the best open label l1 is selected (popReplace). Then lazy filtering is
checked and l1 filtered if needed. Otherwise, the gmin

2 value of the
selected state is updated. If l1 is a goal label, then it is added to Sols.
Otherwise, the label is expanded. For each successor label l2 the al-
gorithm checks for dimensionality reduced eager cl-pruning and old-
filtering and the label is discarded if needed. Otherwise, it is added
to the search tree and the open queues (insertReplace).

6 Evaluation vectors (f1, f2) can be equivalently used since all labels in
Gop(s) reach the same state s.

l← top(Open);
Let l be (s, (g1, g2), (f1, f2)) ;
newlabel← false;
while ¬newlabel ∧ ¬empty(Gop(s) ) do

Let l′ be (s, (g′1, g
′
2)(f

′
1, f

′
2))← top(Gop(s) );

if (g′2 ≥ gmin
2 (s)) ∨ (f ′

2 ≥ gmin
2 (sgoal)) then

pop(Gop(s) );
// early op-prune, early-filter

else
update(l, l′, Open);
newlabel← true;

end
end
if ¬newlabel then

pop(Open); // remove l
end
return l;

Algorithm 4: popReplace(Open) algorithm.

Let l be (s, (g1, g2), (f1, f2));
if empty(Gop(s) ) then

insert(l, Open);
insert(l, Gop(s) );

else
l′ ← top(Gop(s) );
if l lexicographically better than l′ then

update(l′, l, Open);
end
insert(l, Gop(s) );

end
Algorithm 5: insertReplace(l,Open) algorithm.

5



The popReplace and insertReplace operations manage the Open
and local Gop queues. Both operations are detailed in algorithms 4
and 5 respectively.

Algorithm popReplace returns the best label in Open. Before
that, it checks if another open label of its state s can be promoted to
the Open queue. To this end, it iteratively pops labels from Gop(s) ,
applying dimensionality reduced early op-pruning and old-filtering,
until a suitable label is found or Gop(s) becomes empty. Notice that
this pruning operation is not eager nor lazy, as it is carried out just
before a label is transferred from Gop(s) to Open. If a suitable label
l′ is found, it is used to update Open. Otherwise, Gop(s) became
empty and label l is definitely removed from Open. After this pro-
cedure, Open still has the single best label for each state with non-
empty Gop .

The use of local Gop(s) queues reduces the overall Open size,
since there is at most one label in Open for each state at any given
time. Additionally, op-pruning operations are carried out on a local
basis. This key process prevents many labels from entering Open
when compared to lazy op-pruning. Labels are ’early’ pruned upon
reaching the top of their local Gop(s) queue, which is generally of a
small size compared to Open. In consequence, the overhead in local
queue operations due to early op-pruning is smaller compared to the
overhead in Open due to lazy op-pruning operations in BOA∗.

The popReplace operation also offers the chance to perform
early filtering, discarding additional labels before they even en-
ter the Open queue. More precisely, this allows labels to be ef-
ficiently checked against solutions found between the moment the
label was generated and the moment it reaches the top of its local
Gop(s) queue. This is a new source of efficiency over the lazy new
filtering applied by both NAMOA∗

dr and BOA*. Labels that can be
efficiently early filtered in the local Gop(s) queues, will never enter
Open nor produce overhead in its operations.

Finally, the insertReplace operation adds newly generated labels
to the open queues. Care is taken in case a new label beats the current
best of its state. In such case it replaces the previous representative
for that state in Open.

5.1 Example

Let us compare the workings of BOA* and EBA* through a simple
example (figure 1), with start s0 and goal s4. For simplicity let’s
assume blind search, i.e. ∀s, h1(s) = h2(s) = 0. Table 1 shows
the lexicographically ordered content of Open for both algorithms
at each iteration (only state and evaluation f⃗ for each label, since for
all labels f⃗(s) = g⃗(s)). Each label expansion for a state s updates
gmin
2 (s), but only gmin

2 (s2) is mentioned in our discussion, since it
is the only value actually used for pruning in this example.

Figure 1: Sample bi-objective graph.

BOA* starts expanding label [s0, (0, 0)]. At iteration 2 label
[s1, (1, 2)] is expanded and successor [s2, (2, 3)] added to Open.
Notice that label [s2, (4, 4)] is locally dominated, but no eager op-
pruning is applied and both labels to s2 coexist in Open. At iter-
ation 3 [s2, (2, 3)] is selected, setting gmin

2 (s2) = 3. At iteration

4 [s3, (3, 3)] is expanded and its successor [s2, (5, 4)] eagerly cl-
pruned. At iteration 5 label [s2, (4, 4)] is selected and lazy op-pruned
using gmin

2 (s2) = 3. The only solution is found at iteration 6.
In EBA* all expansions result in ’popReplace’, and successors

are processed by ’insertReplace’ using local queues. EBA* starts ex-
panding label [s0, (0, 0)], and all three successors are added to Open
and their local queues Gop(s1), Gop(s2), Gop(s3) (not shown in Ta-
ble 1). At iteration 1 EBA* expands [s1, (1, 2)]. The local Gop(s1)
queue becomes empty and ’insertReplace’ is called over successor
[s2, (2, 3)]. This is added to the local Gop(s2) queue along with
[s2(4, 4)]. Since it is the best label, it becomes the only represen-
tative of s2 in Open, replacing [s2(4, 4)]. At iteration 3 [s2, (2, 3)]
is selected, setting gmin

2 (s2) = 3, and ’popReplace’ early op-prunes
label [s2(4, 4)] from the local queue, which becomes empty. At iter-
ation 4 [s3(3, 3)] is selected, and its successor [s2(5, 4)] is eagerly
cl-pruned. Finally, the only solution is found at iteration 5.

This simple example illustrates how using local queues in EBA*
allows for earlier op-pruning of label [s2(4, 4)] at iteration 3, effec-
tively reducing the overall count of open labels when compared to
BOA* in subsequent iterations. This in turn reduces the computa-
tional cost of any subsequent queue operations.

It. BOA* EBA*
1 s(0, 0) s(0, 0)
2 s1(1, 2), s3(3, 3), s2(4, 4) s1(1, 2), s3(3, 3), s2(4, 4)
3 s2(2, 3), s3(3, 3), s2(4, 4) s2(2, 3), s3(3, 3)
4 s3(3, 3), s2(4, 4), s4(4, 5) s3(3, 3), s4(4, 5)
5 s2(4, 4), s4(4, 5) s4(4, 5)
6 s4(4, 5) -

Table 1: Open queue contents at each iteration for BOA* and EBA*.

6 Properties

We omit a full-fledged proof on the admissibility of EBA* due to
space limitations. However, the admissibility of the new procedure
can be easily sketched from previous results.

BOA* was shown to be admissible for the cost-unique bi-objective
problem [9](theorem 1). EBA* makes the same use of dimensionality
reduction in cl-pruning and lazy filtering as BOA*. The correctness
of these operations was established by [14](theorem 1).

EBA* differs from BOA* in: (a) the structure of queues; (b) the
early filtering operation; (c) the early op-pruning operation.

The management of the Open and local Gop queues by
popReplace and insertReplace guarantees that the best lexico-
graphic open label of each state is present in Open. The transitivity
of the lexicographic order guarantees then that the lexicographic op-
timal open label is always selected from Open. Therefore, selected
and expanded labels from Open have monotonically non-decreasing
f1 values, and those from the same state have monotonically increas-
ing f1 and monotonically decreasing f2 values [9](lemmas 2-4).

Regarding early filtering, the monotonically decreasing sequence
of gmin

2 (sgoal) values guarantees that any label pruned by early fil-
tering would be pruned by lazy filtering as well. The former operation
only anticipates the result.

Regarding early op-pruning, all open labels for a given state s are
always present at the Gop queue. The relative ordering of selection
of local labels is unaffected by labels of other states. Therefore, the
decreasing sequence of gmin

2 (s) values guarantees that both early
and lazy op-pruning prune the same sets of label costs. Once again,
the former operation only anticipates the result.

6



Therefore, given the equivalence of all pruning operations, EBA*
is admissible for the cost-unique bi-objective problem under the same
conditions of BOA*: non-negative arc costs and consistent heuristics.

7 Experiments
A recent contribution [9] showed BOA* to improve the runtime ef-
ficiency of NAMOA∗

dr . Therefore, we limit our experimental com-
parison to EBA* and BOA*.

We use a publicly available C implementation of BOA*7. An ef-
ficient binary heap is used for the Open queue. We build our C im-
plementation of EBA* sharing as much code as possible, and use the
same kind of binary heaps for Open and the Gop(s) queues. We ran
both algorithms over a set of publicly available test problems on bi-
objective road maps used in [9]. These comprise eight sets of fifty
problem instances, defined over different road maps. Due to space
limitations we present results here for the four largest road maps (Ta-
ble 2a), which include the hardest problem instances. The maps are
available from the "9th DIMACS implementation challenge: shortest
paths"8. The maps provide sets of states (locations) and arcs (roads)
with cost information regarding distance (c1) and travel time (c2).

Experiments were run on an Intel (R) Core(TM) I7 10700K
3.8GHZ S1200 16Mb CPU with 64Gb DDR4 RAM under Ubuntu
22.04. Each process was run on a single thread.

Both algorithms perform the same number of label expansions and
find the same number of solution labels over all problem instances. In
other words, both explore the same portion of the state space, being
the difference the efficiency of that exploration.

Table 2b presents results on the runtime of EBA* and BOA* over
the instances of the different maps. Table 2c records some statistics
on the number of basic heap percolation operations carried out by
both algorithms. In the case of BOA* this includes percolations in
Open, while for EBA* this includes percolations over all queues
(Open and the Gop(s) queues). Table 2d presents some statistics
regarding the size of the queues in both algorithms. We measure the
average size of the Open queue for each problem instance. The table
shows the average of such values for all problem instances in each
map. We also measure the maximum size of Open for each instance,
and report the maximum of such values for the instances of each
map. We also report the maximum value of any Gop queue for each
problem set.

8 Discussion
Runtime results for BOA* in Table 2b are consistent with those re-
ported by [9], though our machine is somewhat slower. EBA* beats
BOA* in all four sets of instances, both in average and maximum
runtimes, and obtains a beneficial runtime ratio between 0.932 and
0.801 when compared to BOA*. Best performance is achieved over
the hardest set (LKS). The ratio over all test sets was 0.81, i.e.a saving
of 19% of the runtime taken by BOA*. Paired one-tailed Student’s t-
tests were carried out to validate the statistical significance of average
runtime results. These provided p-values of 0.029, 9.1×10−5, 0.021
and 2.9 × 10−5 for NW, NE, CAL and LKS respectively. These
tests confirm the significance of improvement in average runtime for
EBA* with confidence of at least 97, 1%, and much higher for the
more difficult LKS set.

The results in Table 2c provide some explanation for this better
performance. The use of local Gop(s) queues combined with early

7 https://github.com/jorgebaier/BOAstar/
8 https://users.diag.uniroma1.it/challenge9/download.shtml

Name Region States Arcs Avg. sols.
NW Northwest USA 1207495 2840208 1051
NE Northeast USA 1524453 3897636 1071
CAL California and Nevada 1890815 4657742 907
LKS Great Lakes 2758119 6885658 6057

(a) Road map sizes and average number of solutions in problem sets.
Avg. Max Min Med σ

NW (Northwest USA)
EBA* 3.79 46.35 0.34 0.67 8.55
BOA* 4.14 48.00 0.34 0.68 9.51
NE (Northeast USA)
EBA* 8.32 47.11 0.44 2.71 11.43
BOA* 8.92 52.53 0.44 2.69 12.31
CAL (California and Nevada)
EBA* 7.95 91.04 0.55 0.88 17.45
BOA* 8.73 106.67 0.55 0.93 19.80
LKS (Great Lakes)
EBA* 213.46 1087.99 1.92 82.99 276.60
BOA* 266.61 1422.41 2.00 94.96 360.75

Runtime ratios EBA*/BOA*
NW NE CAL LKS

0.913 0.932 0.911 0.801

(b) Runtime statistics (in seconds) for each of the 50 instance bench-
marks, and runtime ratios EBA*/BOA*.

Avg. Max Min Med σ
NW (Northwest USA)
EBA* 157.71 1509.23 0.02 24.10 336.89
BOA* 221.57 2023.89 0.02 32.62 469.39
NE (Northeast USA)
EBA* 293.51 1458.35 < 104 118.52 378.41
BOA* 413.74 2091.72 < 104 172.60 528.94
CAL (California and Nevada)
EBA* 269.62 2430.72 < 104 27.25 519.10
BOA* 378.14 3361.32 < 104 39.13 721.13
LKS (Great Lakes)
EBA* 5557.78 24707.62 73.91 2417.70 6550.34
BOA* 7663.18 33563.67 103.58 3404.71 8959.35

# percolations ratios EBA*/BOA*
NW NE CAL LKS

0.712 0.709 0.713 0.725

(c) Heap percolation operations (in millions) for different test
sets, and percolation ratios EBA*/BOA*.

NW NE CAL LKS
Average of Open average sizes
EBA* 5543.40 15529.39 11638.37 63859.85
BOA* 80949.22 268680.64 181907.00 2110226.94
Maximum of Open maximum sizes
EBA* 42705 79459 86191 234311
BOA* 1135990 1517523 2825448 12379212
Maximum of all Gop maximum sizes
EBA* 1110 926 1256 5118

(d) Queue size statistics for different test sets

Table 2: Experimental data and results.

7



pruning in EBA* saves a sizeable amount of heap percolations, well
over 8 billion in the hardest instance. Again, EBA* systematically
beats BOA* in all road maps, with a substantial reduction both in
average and maximum values. EBA* performs only 73.2% of the
percolations carried out by BOA* over all test sets.

The results in Table 2d provide in turn some explanation for the
reduced number of percolations in EBA*. The average size of Open
in EBA* is much smaller than in BOA* in all instance sets, and
clearly an order of magnitude smaller in the hard LKS set. The max-
imum size of Open is also at least an order of magnitude larger in
BOA* when compared to EBA* in all sets. In contrast, the size of the
Gop sets in EBA* is much smaller in size, reaching a global max-
imum of 5118 among all such sets in all problem instances. This
means heap operations (pop, insert, and update) are carried out in
EBA* in much smaller queues.

9 Conclusions and future work
This paper introduces EBA*, a new bi-objective shortest paths search
algorithm with efficient pruning checks.

Dimensionality reduction is an efficient dominance checking tech-
nique that exploits the min lexicographic ordering of labels in multi-
objective best-first search algorithms. Previous algorithms success-
fully applied this technique in a variety of eager and lazy pruning
operation types.

We present an analysis highlighting the different types of prun-
ing techniques applied by recent successful bi-objective algorithms.
More precisely, we characterize pruning operations depending on
their type (op-pruning, cl-pruning, old-filter, new-filter), the moment
they are applied (eager, early, lazy), and their use of dimensionality
reduction. Additionally, the computational overhead introduced by
apparently constant-time lazy pruning techniques is identified. The
new EBA* exact bi-objective algorithm is presented to reduce this
overhead. EBA* incorporates previous efficient dominance check
techniques, introducing early pruning, a new efficient technique that
exploits the use of global and local Gop queues to reduce the compu-
tational overhead of lazy op-pruning and filtering. The consequence
is a reduction in the number of open labels. This in turn results is a
significant reduction in the computational cost of queue operations
and algorithm runtime.

The admissibility of the new algorithm is discussed, given the
equivalence in pruning power of early and lazy pruning, i.e. both
techniques prune the same paths, though at different times during the
algorithm execution. Experimental results show a consistent and sig-
nificant reduction in runtime when compared to the previous BOA*
algorithm over standard road map problem sets.

Future work includes deeper experimental analyses on different
problem sets, the extension of early pruning to problems with more
objectives, and the evaluation of EBA* in combination with bidirec-
tional approaches for MO search. The recent work of [1] proposed
a bidirectional bi-objective search framework in which two BOA*
searches are run concurrently in opposite directions. This allows
sharing of solutions between searches for efficient filtering. Heuris-
tics can also be improved at runtime by exploiting information gained
in the opposite search. An evaluation of EBA* in this framework is
also a promising area of future research.

References
[1] Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby, ‘Bi-

objective search with bi-directional A’, in 29th Annual European Sym-
posium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portu-

gal (Virtual Conference), eds., Petra Mutzel, Rasmus Pagh, and Grze-
gorz Herman, volume 204 of LIPIcs, pp. 3:1–3:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, (2021).

[2] Jon Louis Bentley, Kenneth L. Clarkson, and David B. Levine, ‘Fast lin-
ear expected-time algorithms for computing maxima and convex hulls’,
in Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, 22-24 January 1990, San Francisco, California., pp. 179–
187, (1990).

[3] Rina Dechter and Judea Pearl, ‘Generalized best-first search strategies
and the optimality of A*’, Journal of the ACM, 32(3), 505–536, (July
1985).

[4] F. Geißer, P. Haslum, S. Thiébaux, and F. W. Trevizan, ‘Admissible
heuristics for multi-objective planning’, in Proceedings of the Thirty-
Second International Conference on Automated Planning and Schedul-
ing, ICAPS 2022, Singapore (virtual), June 13-24, 2022, eds., A. Ku-
mar, S. Thiébaux, P. Varakantham, and W. Yeoh, pp. 100–109. AAAI
Press, (2022).

[5] Boris Goldin and Oren Salzman, ‘Approximate Bi-Criteria Search by
Efficient Representation of Subsets of the Pareto-Optimal Frontier’, in
Proceedings of the Thirty-First International Conference on Automated
Planning and Scheduling (ICAPS 2021), pp. 149–158, (2021).

[6] P. Hansen, ‘Bicriterion path problems’, in Lecture Notes in Economics
and Mathematical Systems 177, pp. 109–127. Springer, (1979).

[7] P.E. Hart, N.J. Nilsson, and B. Raphael, ‘A formal basis for the heuristic
determination of minimum cost paths’, IEEE Trans. Systems Science
and Cybernetics SSC-4, 2, 100–107, (1968).

[8] C. Hernandez, W. Yeoh, J. Baier, H. Zhang, L. Suazo, and S. Koenig,
‘A simple and fast bi-objective search algorithm’, in Proceedings of the
30th International Conference on Automated Planning and Scheduling
(ICAPS 2020), pp. 143–151, (2020).

[9] Carlos Hernandez, William Yeoh, Jorge A. Baier, Han Zhang, Luis
Suazo, Sven Koenig, and Oren Salzman, ‘Simple and efficient bi-
objective search algorithms via fast dominance checks’, Artificial In-
telligence, 314, 103807, (2023).

[10] E. Machuca and L. Mandow, ‘Multiobjective heuristic search in road
maps’, Expert Syst. Appl., 39(7), 6435–6445, (2012).

[11] E. Machuca and L. Mandow, ‘Lower bound sets for biobjective shortest
path problems’, J. Glob. Optim., 64(1), 63–77, (2016).

[12] L. Mandow and J. L. Pérez de la Cruz, ‘A new approach to multiob-
jective A* search’, in Proc. of the XIX Int. Joint Conf. on Artificial
Intelligence (IJCAI’05), pp. 218–223, (2005).

[13] L. Mandow and J. L. Pérez de la Cruz, ‘Multiobjective A* search with
consistent heuristics’, Journal of the ACM, 57(5), 27:1–25, (2010).

[14] F. J. Pulido, L. Mandow, and J. L. Pérez de-la Cruz, ‘Dimensionality
reduction in multiobjective shortest path search’, Computers and Oper-
ations Research, 64, 60–70, (2015).

[15] Antonio Sedeño-Noda and Marcos Colebrook, ‘A biobjective dijkstra
algorithm’, European Journal of Operational Research, 276(1), 106–
118, (2019).

[16] Antonio Sedeño-Noda and Andrea Raith, ‘A dijkstra-like method com-
puting all extreme supported non-dominated solutions of the biobjec-
tive shortest path problem’, Computers and Operations Research, 57,
83–94, (2015).

[17] B. S. Stewart and C. C. White, ‘Multiobjective A*’, Journal of the
ACM, 38(4), 775–814, (1991).

[18] Chi Tung Tung and Kim Lin Chew, ‘A multicriteria Pareto-optimal path
algorithm’, European Journal of Operational Research, 62, 203–209,
(1992).

[19] Han Zhang, Oren Salzman, T. K. Satish Kumar, Ariel Felner, Car-
los Hernandez, and Sven Koenig, ‘A*pex: Efficient Approximate
Multi-Objective Search on Graphs’, in Proceedings of the Thirty-
Second International Conference on Automated Planning and Schedul-
ing (ICAPS2022), pp. 394–403, (2022).

[20] Han Zhang, Oren Salzman, T. K. SatishKumar, Ariel Felner, Car-
los Hernandez, and Sven Koenig, ‘Anytime Approximate Bi-Objective
Search’, in Proceedings of the Fifteenth International Symposium on
Combinatorial Search (SoCS2022), pp. 199–207, (2022).

8


