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ABSTRACT: Due to the complexity of multi-objective optimization problems (MOOPs) in general, it is 

crucial to test MOOP methods on some benchmark test problems. Many benchmark test problem 

toolkits have been developed for continuous parameter/numerical optimization, but fewer toolkits 

reported for discrete combinational optimization. This paper reports a benchmark test problem 

toolkit especially for multi-objective path optimization problem (MOPOP), which is a typical category 

of discrete combinational optimization. With the reported toolkit, the complete Pareto front of a 

generated test problem of MOPOP can be deduced and found out manually, and the problem scale 

and complexity are controllable and adjustable. Many methods for discrete combinational MOOPs 

often only output a partial or approximated Pareto front. With the reported benchmark test 

problem toolkit for MOPOP, we can now precisely tell how many true Pareto points are missed by a 

partial Pareto front, or how large the gap is between an approximated Pareto front and the 

complete one. 

1. Introduction 

In reality, optimization often has to be carried out subject to not just one but multiple objectives, so 

come multi-objective optimization problems (MOOPs). Such multiple objectives in MOOPs are often 

conflictive to each other, which means improving one objective might cause some other objectives 

to degrade as costs. Therefore, a major goal of resolving MOOPs is to achieve a good balance 

between multiple objectives. An ideal balance can be represented by a Pareto optimal solution, 

which in definition means there exists no solution that has at least objective improved without 

sacrificing other objectives [1–4]. Since not just one but many Pareto optimal solutions exist for a 

MOOP, this often makes it more complicated and more difficult to resolve a MOOP than a SOOP 

(single-objective optimization problem). The projections of all such Pareto optimal solutions in the 

objective space compose the Pareto front of the MOOP. Basically, resolving a MOOP demands 

effective methods to calculate or find out the Pareto front of the MOOP. Because of the importance 

of MOOP to both theoretical research and daily life applications, many methods have been reported 

to resolve various MOOPs. Roughly speaking, most existing methods for MOOPs can be classified 

into three categories: aggregate objective function (AOF) based methods, constrained objective 

function (COF) based methods, and Pareto-compliant ranking-based (PCR) methods [4,12]. An AOF 

method needs to construct a single aggregate objective function which combines all of the original 

objectives in an MOOP, and then optimize the single aggregate objective function by resolving the 

single-objective optimization problem (SOOP) [2,5–10]. The COF methods are also based on SOOPs 

because, in a COF method, only one single objective is optimized while all other objectives are 

treated as extra constraints [11–14]. The PCR methods, by favoring nondominated solutions and 

employing population-based evolutionary approaches (such as a genetic algorithm, particle swarm 

optimization, and ant colony optimization), generate and operate on a pool of candidate solutions, 

and therefore are capable of identifying multiple Pareto non-dominated solutions [15–29]. It should 



be noted that AOF and COF methods are much less popular than PCR methods these years. 

However, many existing MOOP methods mainly aim to find a partial or approximated Pareto front 

(AOF and COF methods may find some Pareto points with theoretical guarantee, while PCR methods 

often output just some non-dominated solutions), and there are not many theoretical results on 

finding out the complete Pareto front [4,12]. It is often difficult to tell if they have found the 

complete Pareto front [12]. In particular, very few results are available on the quality of the 

approximation of the Pareto front for discrete MOOPs [4]. Due to the stochastic nature of PCR 

methods and their wide applications to discrete MOOPs [27–29], relevant approaches to evaluate 

the performance of PCR methods for discrete MOOPs are highly demanded. To evaluate the 

performance of such MOOP methods, it is crucial to find out how partial the calculated Pareto front 

is, or how big the gap is between the approximated Pareto front and the true one. To conduct such 

performance evaluation for MOOP methods, we need to know the complete Pareto front in the first 

place. There are two strategies to get the information about complete Pareto front: (i) we design 

optimization methods capable of finding out complete Pareto front with theoretical guarantee of 

optimality, or (ii) we design MOOPs whose complete Pareto front can be preset or deduced 

manually. The first strategy looks ideal, but it is difficult to achieve (otherwise, there would have not 

been so many MOOP methods that can only find a partial or approximated Pareto front). Compared 

with the enormous number of results on generating incomplete Pareto front, there exist a very 

handful of publications talking about how to find complete Pareto front to some specific MOOPs 

e.g., shortest path problem [30–38], spanning tree problem [39,40], knapsack problem [41,42], and 

integer program problem [43–45]. Basically, once a specific MOOP is resolved by these methods, we 

can use that MOOP as a case study problem to evaluate those MOOP methods that can only find a 

partial or approximated Pareto front. However, the first strategy has a serious practicability issue, 

because (i) there is no control on any features of Pareto front (e.g., assume we want a concave 

Pareto front with many Pareto points on it, but resolving a specific MOOP could output a convex 

Pareto front with only a few Pareto points on it), and (ii) those methods in Refs. [30–45] only works 

on small problem scale. The second strategy is actually to design benchmark test problem toolkit. In 

this strategy, we are supposed to have a good control on many important features of generated 

benchmark MOOPs, e.g., the shape of Pareto front and the problem scale. By adjusting such 

features, the generated benchmark MOOPs can be used to make a comprehensive evaluation on the 

performance of a MOOP method under test. For example, can the MOOP method find both convex 

and concave Pareto front? Will the MOOP method be easily entrapped into major clusters of Pareto 

points and thus miss out some niche clusters? Does the MOOP method have a good scalability (e.g., 

extending to many-objective problems)? It should be noted that a test problem toolkit is different 

from a case study problem. The former can generate many test problems, and the most important, 

the Pareto front of a test problem generated by toolkit is controllable and pre-known before we use 

it to test MOOP methods. The latter is just a single test problem, its Pareto front is usually not 

controllable, and what is worse, the Pareto front of a complicated case study problem is often 

unknown. This means that, if we use such a case study problem, we can only tell relative 

performance difference between MOOP methods, but cannot make any absolute performance 

evaluation for a MOOP method in terms of finding the complete Pareto front. By employing some 

carefully-designed mathematical functions as objectives, there have already been some benchmark 

test problem toolkits reported, and they have significantly boosted the MOOP research [46–53]. 

However, these MOOP toolkits are mainly for continuous numerical optimization, and there still 

lacks effective benchmark test problem toolkit for discrete combinational MOOPs. As is well known, 

resolving discrete combinational optimization often demands highly purpose-designed methods, and 

those continuous numerical optimization methods can hardly apply. For example, some classical 

designs of mutation and crossover for genetic algorithm are very effective for continuous numerical 



optimization, but they will simply cause serious infeasibility issues to discrete combinational 

optimization [54,55]. In other words, a MOOP method working well on continuous numerical 

optimization toolkit does not necessarily mean it will also work well on discrete combinational 

MOOPs. Therefore, we need benchmark test problem toolkit to evaluate methods for discrete 

combinational MOOPs. This paper makes an attempt to develop a benchmark test problem toolkit 

especially for multi-objective path optimization problem (MOPOP), which is a typical discrete 

combinational MOOP. In existing literature on MOPOPs, focus was usually put on how to design 

effective methods to resolve MOPOPs, and such methods were often tested on case study problems 

[30–38]. Attention has relatively much less been paid to develop test problem toolkits for evaluating 

MOPOP methods. In this paper, Section 2 gives the mathematical description of MOPOP. Section 3 

explains to how to design a test problem toolkit for MOPOP. Section 4 makes some analyses on the 

reported toolkit. Experimental results are reported in Section 5, and the paper ends with some 

conclusions in Section 6.  

2. Problem description of MOPOPs 

In this paper, we mainly study one-to-one static MOPOP, i.e., finding all Pareto optimal paths 

between a pair of origin and destination nodes, denoted as [𝑂, 𝐷], in a static route network. Assume 

a route network 𝐺(𝑉, 𝐸) is composed of node set 𝑉 and link set 𝐸. 𝑉 has 𝑁N different nodes 

including the origin and the destination, and 𝐸 has 𝑁L links between nodes. This route network can 

be recorded as an 𝑁N × 𝑁L adjacent matrix 𝐴. The matrix entry 𝐴(𝑖, 𝑗) = 1, 𝑖 = 1, … , 𝑁N; , 𝑗 =

1, … , 𝑁N, defines a link from node 𝑖 i to node 𝑗. Otherwise, 𝐴(𝑖, 𝑗) = 0 means no link. We assume 

𝐴(𝑖, 𝑖) = 0, i.e., no self-connecting link is allowed in this study. There are 𝑁Obj costs, i.e., 

𝐶k(𝑖, 𝑗), 𝑘 = 1, … , 𝑁Obj, associated with each link 𝐴(𝑖, 𝑗), and 𝐶k(𝑖, 𝑗) will be used to calculate the kth 

objective of a path. Here, the route network 𝐺(𝑉, 𝐸) is called static, because both 𝐴(𝑖, 𝑗), and 

𝐶k(𝑖, 𝑗) are fixed and will not change during the procedure of path optimization. 

In MOPOP, a pair of origin and destination nodes [𝑂, 𝐷]are specified, and then the goal is to find 

Pareto optimal paths from 𝑂 O to 𝐷. Suppose a candidate path is recorded as an integer vector 

whose element 𝑃(𝑖) = 𝑗 means node 𝑗 is the 𝑖th node in the path, , 𝑖 = 1, … , 𝑁P and 𝑗 = 1, … , 𝑁N, 

where 𝑁P tells how many nodes, including the origin and the destination, are included in the path. 

Obviously, 𝑃(1) is the origin and 𝑃(𝑁P) is the destination, i.e., 𝑃(1) = 𝑂 and 𝑃(𝑁P) = 𝐷. Since no 

loop is allowed in this study, no node can appear in a path for more than once, i.e., 

𝑃(𝑖) ≠ 𝑃(𝑗), 𝑖𝑓 𝑖 ≠ 𝑗, ∀𝑖, 𝑗     (1) 

For a given path P, we can calculate its total cost from the origin to the destination in terms of each 

objective 

𝑓𝑘(𝑃) = ∑ 𝐶𝑘[𝑃(𝑖), 𝑃(𝑖 + 1)]𝑁P−1
1 , 𝑘 = 1, … , 𝑁Obj   (2) 

 

where 𝑓𝑘(𝑃) is the 𝑘th objective of an MOPOP. Please note that the problem description of this 

study is in a general form, and depending on what real world MOPOP is to be resolved in an 

application, the objectives 𝑓𝑘(𝑃), 𝑘 = 1, … , 𝑁Obj, may be given relevant definitions of real-world 

meanings, such as travelling time, physical distance, fuel consumption and road service charge. 

Then, a general mathematical formulation of MOPOP can be given as follows: 

min
𝑃

[𝑓1(𝑃), 𝑓2(𝑃), … , 𝑓𝑁Obj
(𝑃)]

T
    (3) 



subject to Eq. (1) 

𝑃 ∈ ΩP      (4) 

where ΩP is the set of all possible paths connecting the given pair of [𝑂, 𝐷]. 

A Pareto-optimal path 𝑃∗ to the above problem is such that there exists no 𝑃 that makes 

𝑓𝑖(𝑃) ≤ 𝑓𝑖(𝑃∗), ∀ 𝑖 = 1, … , 𝑁Obj     (5) 

𝑓𝑗(𝑃) < 𝑓𝑗(𝑃∗), for at least one 𝑗 ∈ [1, … , 𝑁Obj]   (6) 

The projection of such a 𝑃∗ in the objective space, i.e., the point [𝑓1(𝑃∗), 𝑓2(𝑃∗), … , 𝑓𝑁Obj
(𝑃∗)], is 

called a Pareto point. For the above MOPOP, there is usually a set of Pareto-optimal paths, and the 

projection of this set in the objective space is called the Pareto front. Assume there are 𝑁PP Pareto-

optimal paths to the above MOPOP, then, the complete Pareto front will have 𝑁PP Pareto points. 

Although it is possible that some Pareto points might happen to have exactly the same coordinates 

in the objective space (i.e., some Pareto optimal paths share the same 

[𝑓1(𝑃∗), 𝑓2(𝑃∗), … , 𝑓𝑁Obj
(𝑃∗)], in this study, we still view them as different Pareto points as long as 

they are associated with different Pareto optimal paths. 

Basically, MOPOP is a typical category of discrete combinational optimization problem and finding 

the complete Pareto front of MOPOP is a challenging task. Although there are many methods which 

may be used to resolve the above MOPOP, most of them can only find a partial of approximated 

Pareto front. Fig. 1 gives an example about the performance of some methods for MOPOP in terms 

of finding Pareto optimal paths. As shown in Fig. 1, the well-known AOF method can only find a 

partial Pareto front composed of 4 convex Pareto points, and misses out many other Pareto points, 

which are probably better tradeoff between two objectives for decision-makers. NSGA-II, because of 

its stochastic nature, outputs an approximated Pareto front where 4 associated solutions are not 

Pareto optimal at all. According to the theoretical proves of [30], we know the results of method in 

Ref. [30] should be the true, complete Pareto front to the MOPOP of the left-hand side subplot. 

However, the MOPOP in Fig. 1 has a very small problem scale, e.g., it has only 𝑁N = 49 nodes and 

𝑁Obj = 2 objectives. It is not clear how the method of [30] could perform in large-scale MOPOP, but 

it does seem to have an issue of computational efficiency if applied to large-scale MOPOP. 

Actually, in the existing literature, very few results have been reported on testing methods on large-

scale MOPOP, partially because we do not have any proper large-scale MOPOP whose complete 

Pareto front we have precisely known in advance. Without such knowledge on complete Pareto 

front, testing a method on large-scale MOPOP does not make much sense in terms of performance 

assessment. Therefore, there is a need for benchmark test problems of large-scale MOPOP, whose 

complete Pareto front must be known before running any MOPOP method. Such benchmark test 

problems will put us in a good position to evaluate various methods for those discrete combinational 

problems that can be converted into MOPOP. 

 

3. Benchmark test problem toolkit 

The core or engine of benchmark test problem toolkit for MOPOP is a network model, which should 

be able to generate a network with any 𝑁N, 𝑁L (of course 𝑁L should be subject to certain conditions 

depending on 𝑁N, e.g., 𝑁L ≤ 𝑁N × (𝑁N − 1) 2⁄  if no more than one link can be set up between a 



pair of nodes), 𝑁Obj, and 𝑁PP, and the most important, all the 𝑁PP Pareto optimal paths between a 

given [𝑂, 𝐷] pair in a generated network must be easily and manually deduced out without the help 

of any MOPOP method. 

Here, suppose we need to generate a route network with 𝑁NN nodes and 𝑁L links, each link has 𝑁Obj 

costs 𝐶k(𝑖, 𝑗), and between a given pair of nodes, say [𝑂, 𝐷],there should exactly exist 𝑁PP Pareto 

optimal paths in terms of 𝑁Obj objective functions, which are calculated based on 𝐶k(𝑖, 𝑗),  according 

to Eq. (2). 

Assume 𝑁PP sets of [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
] values are given, 𝑚 = 1, … 𝑁PP. For any 𝑚 ∈ [1, … , 𝑁PP], 

there exists no 𝑛 ∈ [1, … 𝑁PP], such that 

𝑓𝑖,𝑛 ≤ 𝑓𝑖,𝑚, ∀ 𝑖 = 1, … 𝑁Obj    (7) 

𝑓𝑖,𝑛 < 𝑓𝑖,𝑚, for at least one 𝑗 ∈ [1, … 𝑁Obj]    (8) 

In other words, these 𝑁PP sets of [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
] are not Pareto dominated by each other. So, 

these 𝑁PP sets of [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
] will be used as the objective values of 𝑁PP Pareto optimal 

paths in a network to be generated by the model of this paper. 

Under the above specified requirements, our model will generate a somehow random network by 

three main steps. 

Step 1: Set up two nodes first, one as 𝑂, and the other as 𝐷; set up 𝑁PP direct dummy links between 

[𝑂, 𝐷]; each dummy link has 𝑁Obj costs, and for the 𝑚th dummy link, 𝑚 = 1, … 𝑁PP, set its 𝑘th cost 

equal to 𝑓𝑘,m, 𝑘 = 1, … 𝑁Obj, i.e., the 𝑚th dummy link has a costs vector [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
]. 

Step 2: Randomly insert some nodes into each of these 𝑁PP direct dummy links between [𝑂, 𝐷], in 

order to divide each dummy link into some true links for route network. Assume we want to insert 

𝑁ISN > 0 nodes into the 𝑚th dummy link to generate (𝑁ISN + 1) true links. Then, we assign random 

positive values to [𝑐1(𝑙), 𝑐2(𝑙), … , 𝑐Obj(𝑙)] for the 𝑙th true link resulting from inserting nodes, 𝑙 =

1, … 𝑁ISN + 1, and make sure 

∑ 𝑐𝑘(𝑙)

𝑁ISN+1

𝑙=1

= 𝑓𝑘,𝑚, 𝑘 = 1, … 𝑁Obj                                                  (7) 

Then, we update 𝐴(𝑖, 𝑗) and 𝐶k(𝑖, 𝑗) accordingly. 

Step 3: Assume after inserting nodes into dummy links, we still need 𝑁EN extra nodes and 𝑁EL extra 

links, so that the generated network will have 𝑁N nodes and 𝑁L links in total. To add an extra link, 

we randomly choose two nodes between which there is no direct link. Assuming nodes 𝑖 and 𝑗 are 

chosen, then we set 𝐴(𝑖, 𝑗) = 1, and assign a value to 𝐶k(𝑖, 𝑗) according to certain rules that can 

guarantee any path going through link 𝐴(𝑖, 𝑗) will definitely not be Pareto optimal (we will give and 

explain some examples of such rules in Sub-section 4.3). To add an extra node, first we randomly 

choose an existing link, and then insert a node to divide it into two new links. If the chosen link 

comes from a dummy link, then spread the costs of the chosen link over the two new links. If the 

chosen link is an extra link newly added, then set up the costs of the two new links according to 

certain rules to avoid resulting in any new Pareto optimal path. At last, update 𝐴(𝑖, 𝑗) and 𝐶k(𝑖, 𝑗) 

accordingly.  



The model above can generate a route network with 𝑁N nodes and 𝑁L links, and between node pair 

[𝑂, 𝐷] there are exactly 𝑁PP Pareto optimal paths, and the mth Pareto optimal path has pre-given 

objective values of [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
] as required. Fig. 2 gives a simple example to illustrate how 

the proposed network model can generate a MOPOP for the purpose of testing various path 

optimization methods. Fig. 3 summarizes the toolkit as a flowchart, which particularly shows the 

toolkit has a good control on key features of generated test case of MOPOP. For example, those 

nodes added in Step 2 mainly aim to adjust certain features of 𝑁PP Pareto optimal paths, while those 

nodes generated in Step 3 will not increase or reduce the number of Pareto optimal paths, and will 

not cause any change to the shape of Pareto front, either. In next section, we will explain in detail 

how to control and tune such key features of generated MOPOP. Please note that, in this study of 

toolkit, like some other theoretical studies on algorithms [30–37], MOPOP is defined in an abstract 

way, not referring to any specific real-world applications. If we want to use the reported toolkit to 

study certain real-world MOPOP, we need to introduce some problem-specific measures and/or 

constraints to modify the reported network model. For example, in many real transportation 

systems, a node usually has no more than 4 links, a link may be directed, and the costs of a link may 

be within certain ranges according to the physical meanings of objectives. 

4. Analysis of the toolkit 

4.1. Scalability of toolkit 

The problem scale of MOPOP is largely dependent on 𝑁N, 𝑁L, 𝑁Obj and 𝑁PP. Basically, the larger the 

values of these, the larger the problem scale. Fortunately, the network model in Section 3 uses 𝑁N, 

𝑁L, 𝑁Obj and 𝑁PP as major model parameters, and with a given set of 𝑁N, 𝑁L, 𝑁Obj and 𝑁PP values, 

the model will generate a MOPOP with relevant problem scale. In particularly, many-objective 

problems (where 𝑁Obj ≫ 3) rather than multi-objective problems (where 𝑁Obj is often 2 or 3, barely 

larger than 10) have now become the focus of MOOP research. The reported toolkit can easily 

generate test problems with 𝑁Obj > 100. No matter how large the problem scale is, no need of help 

from any MOPOP method, we know for sure that between [𝑂, 𝐷] in the generated route network, 

there are 𝑁PP Pareto optimal paths, which are composed by those links resulted from dividing 𝑁PP 

dummy links, and have pre-given objective values [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
], 𝑚 = 1, … 𝑁PP. Therefore, 

the reported toolkit has very good scalability. It should be noted that there might be some limits for 

setting up 𝑁N, 𝑁L, 𝑁Obj and/or 𝑁PP, depending on which application area is targeted. For example, if 

we want to generate test networks similar to city route networks, then 𝑁N might be about 

thousands, and 𝑁L is about 2𝑁N to 3𝑁N, because in a city route network, a node usually has 2 to 4 

links. If we want to generate test networks to study free-flight network of civil aviation in a country, 

then 𝑁N should be the number, or a few times of the number of airports in the country, and 𝑁L 

could be up to 𝑁N(𝑁N − 1) 2⁄ . Such application-dependent setup (or limit) of 𝑁N and 𝑁L is 

somehow out of the scope of this study, whose focus is a general model of generating test networks.  

4.2. Shape of generated complete pareto front 

As is well known, the shape of Pareto front is a main factor determining how difficult a MOOP is [46–

52]. Therefore, a good multi-objective test problem toolkit is supposed to have a good control in the 

shape of Pareto front for generated test problems. For continuous numerical optimization, there 

have been quite a few toolkits that can generate test problems with purpose-designed, sophisticated 

Pareto front shape, in order to fully explore and evaluate the capability and performance of MOOP 

methods. Unfortunately, for discrete combinational optimization, such as MOPOP, there lacks such a 

toolkit to generate a test problem with certain desired Pareto front shape. For some kinds of 



discrete combinational MOOPs, such as knapsack problem and path optimization, some researchers 

have reported some methods that can find the complete Pareto front [30–45], and thus their case 

studies may be used as benchmark problems to test and evaluate other methods. However, their 

case study problems have little control in Pareto front shape. Actually, it is not clear at all if they paid 

any attention to control Pareto front shape when setting up their case study problems [30–45]. 

Basically, it is something like “whatever shape, as long as there is a test problem”. Differently, the 

toolkit of Section 3 has a full control in Pareto front shape of generated MOPOP. Basically, any shape 

we can imagine and want, convex, concave, smooth, sharp, zigzag, piece-wise, with local attractions 

evenly distributed or clustered, the reported toolkit is always capable generating MOPOP with the 

desired Pareto front shape. This is achieved in a very straightforward way, because desired Pareto 

front shape is represented by objective values [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
] , 𝑚 = 1, … 𝑁PP, which are 

parameters to the network model of Section 3. In other words, we sample a desired Pareto front 

shape for 𝑁PP times, in order to get 𝑁PP sets of objective values [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
], and then use 

such values to set up those 𝑁PP Pareto optimal paths in the generated route network. 

For continuous numerical optimization, many typical challenging Pareto front shapes have been 

suggested with detailed mathematical descriptions [46–51]. The toolkit of Section 3 for MOPOP can 

take advantage and make full use of such results of continuous numerical MOOP. If we want MOPOP 

to have a Pareto front shape reported in Refs. [46–51], we simply use the associated mathematical 

formula to generate such a shape. Then, we choose 𝑁PP points on the shape, and use their 

coordinates to set up our network model parameters [𝑓1,m, 𝑓2,m, … , 𝑓𝑁Obj,m
] , 𝑚 = 1, … 𝑁PP. Then, 

according to the model of Section 3, the projections of those 𝑁PP Pareto optimal paths of the 

generated MOPOP will have the desired shape in the objective space.  

Fig. 4 and Fig. 5 gives two simple examples, one has a concave shape, and the other has a convex 

shape. Basically, for a MOPOP with 𝑁Obj objectives, we say its Pareto front is concave if there exists 

at least one Pareto point, for which there exist another 𝑁Obj Pareto points such that this Pareto 

point is above the hyper-plane determined by these 𝑁Obj Pareto points. Otherwise, we say the 

Pareto front is convex. In the example of Fig. 4, 𝑁Obj = 2 and the Pareto front is composed 4 Pareto 

points. Pareto point (8,9) is above the straight line determined by Pareto points (3,12) and (12,3). 

So, the Pareto front is concave. In Fig. 5, 𝑁Obj = 2 and the Pareto front is also composed 4 Pareto 

points. But no Pareto point is above any straight line determined by a pair of other Pareto points. So, 

the Pareto front is convex. Fig. 6 further illustrates how to get a desirable Pareto front shape for 

generated MOPOP. 

4.3. Distance between pareto points and pareto dominated points 

Besides problem scale and Pareto front shape, how closely Pareto points and Pareto dominated 

points are mixed together in the objective space can also influence the complexity of MOOP. 

Basically, if most Pareto dominated points are far away from the Pareto front, this often implies 

there could be a good chance to employ certain heuristic rules to filter out such Pareto dominated 

points at an early stage of optimization, in order to effectively narrow down search space, which is 

good news for MOOP methods. Otherwise, i.e., if Pareto points and Pareto dominated points are 

closely mixed, this often implies a high chance for MOOP methods to be distracted by local optimal 

solutions. For example, in the MOPOP of Fig. 4, assuming we employ a heuristic rule of choosing the 

link with the smallest costs to add to a path, then we can avoid all Pareto non-optimal paths. 

However, this heuristic rule will not work well in the MOPOP of Fig. 5. Assume we have travelled 

along path 𝑂 − 3 − 7, and now we need to choose which way to go next, link (7, 𝐷) or link (7,4)? If 



𝐶1(𝑖, 𝑗) is our major concern, then we will be distracted to link (7,4), which will lead to a Pareto non-

optimal path.  

A good test problem toolkit is supposed to also have a good control in the average distance between 

Pareto points and Pareto dominated points. Fortunately, the network model of Section 3 has such a 

capability by introducing necessary rules in Step 3 when assigning value to the 𝐶k(𝑖, 𝑗) of extra links. 

By employing different rules in Step 3, we can roughly control the average distance between Pareto 

points and Pareto dominated points. Here are 3 rules for example to set up the costs of extra link.  

Rule 1: 𝐶k(𝑖, 𝑗) can be any value that satisfies 

𝐶k(𝑖, 𝑗) ≤ max(𝑓𝑘,1, … , 𝑓𝑘,𝑁PP
) , 𝑘 = 1, … , 𝑁Obj    (10) 

Rule 2: 𝐶k(𝑖, 𝑗) can be set as small as possible, as long as [𝐶1(𝑖, 𝑗), … , 𝐶𝑁Obj
(𝑖, 𝑗)] is dominated by at 

least one Pareto point, i.e., there exists at least one 𝑚 ∈ [1, … 𝑁PP], so that 

𝐶k(𝑖, 𝑗) ≥ 𝑓𝑘,m, 𝑘 = 1, … , 𝑁Obj    (11) 

𝐶h(𝑖, 𝑗) > 𝑓ℎ,m, for at least one ℎ ∈ [1, … 𝑁Obj]   (12) 

Rule 3: Find the shortest single-objective paths in terms of each of the 𝑁Obj objective function 

between node 𝑖 and node 𝑂, and between node 𝑗 and node 𝐷; also find the shortest single-objective 

paths between node 𝑖 and node 𝐷, and between node 𝑗 and node 𝑂; then set up 𝐶k(𝑖, 𝑗) as small as 

possible, making sure combining link (𝑖, 𝑗)) with those shortest single objective paths between [𝑂, 𝑖] 

and [𝑗, 𝐷], and between [𝑂, 𝑗] and [𝑖, 𝐷], will not generate any new Pareto optimal path 

between [𝑂, 𝐷]. In particular, we have the follow Theorem below for Rule 3.  

Theorem. Suppose among all paths that are constructed by combining those single-objective optimal 

sub-paths and the extra link to connect 𝑂 and 𝐷, 𝑓𝑆𝑂,𝑘 is the smallest value for the 𝑘th objective, 𝑘 =

1, … , 𝑁𝑂𝑏𝑗. If the point [𝑓𝑆𝑂,1, … , 𝑓𝑆𝑂,𝑁Obj
] is dominated by at least one of those 𝑁PP Pareto points set 

up in Step 1 and Step 2 of the network model, then, adding the extra link will not introduce any new 

Pareto points, i.e., any path travelling through the extra link newly added cannot be Pareto optimal.  

Proof. Assume a path travels through the extra link from 𝑂 to 𝐷, and it has costs [𝑓1, … , 𝑓𝑁Obj
]. Since 

𝑓𝑆𝑂,1, … , 𝑓𝑆𝑂,𝑁𝑂𝑏𝑗
 are associated with those paths that are constructed by combining those single-

objective optimal sub-paths and the extra link to connect 𝑂 and 𝐷, clearly, one has 𝑓𝑘 ≥ 𝑓𝑆𝑂,𝑘 , 𝑘 =

1, … , 𝑁Obj. Because point [𝑓𝑆𝑂,1, … , 𝑓𝑆𝑂,𝑁Obj
]  is dominated by at least one of those 𝑁𝑃𝑃 Pareto 

points, then point [𝑓1, … , 𝑓𝑁𝑂𝑏𝑗
] must also be dominated by the same Pareto points. Therefore, the 

path travelling through the extra link cannot be Pareto optimal.  

Fig. 7 gives a simple illustration about the above Theorem for Rule 3. In Fig. 7, 𝑁Obj = 2, and 𝑁PP =

4. 𝑃A and 𝑃B are associated with the paths which are constructed by combining single-objective 

optimal sub-paths and the extra link, and have the smallest 1st objective and the smallest 2nd 

objective, respectively. Obviously, any path travelling through the extra link can be located only 

within Zone II of Fig. 7. If 𝑃C is dominated by at least one Pareto point, i.e., 𝑃C is located outside of 

Zone I in Fig. 7, then, any point in Zone II will also be dominated. Thus, all paths that travel through 

the extra link will not be Pareto optimal. Basically, Rule 1 will generate MOPOP with Pareto 

dominated points far away from Pareto front. In the case of 𝑁Obj = 2, Pareto dominated points 

under Rule 1 will be distributed in Zone I of Fig. 8.  



In theory, under Rule 2, Pareto dominated points could be in any place of Zone I to Zone IV in Fig. 8, 

assuming 𝑁Obj = 2 for example. In practice, they are more likely to be scattered in Zone I, Zone III 

and Zone IV. Compared with points in Zone I, a point in Zone III or Zone IV is more difficult for MOOP 

methods to distinguish from Pareto points. However, if we can find out those best single-objective 

solutions, which is much easier than resolving MOOP, we can then introduce a heuristic rule to help 

MOOP methods to filter out all points in Zone III and Zone IV. For instance, in Fig. 8, if we know 

Pareto points 𝑃1 and 𝑃𝑁PP
, then we know any point with 𝑓2 > 𝑓2,1 or 𝑓2 > 𝑓2,𝑁PP

, is not Pareto point. 

A more general description of the above heuristic rule is as follows. Assume 𝑆k is the best solution in 

terms of the kth objective function, 𝑘 = 1, … , 𝑁Obj, and 𝑆k has a projection of [𝑓1,k
∗ , … , 𝑓1,𝑁Obj

∗ ] in the 

objective space. Then, if a solution for at least one 𝑖𝜖[1, … , 𝑁Obj], has its 𝑓i satisfying 

𝑓i > max
𝑗≠𝑖,𝑗𝜖[1,…,𝑁Obj]

𝑓𝑖,j
∗       (13) 

the solution is not Pareto optimal.  

Obviously, if a Pareto dominated point is within Zone II of Fig. 8, then the above heuristic rule can 

help nothing, which means it is the most difficult for MOOP methods to distinguish such a point from 

Pareto points. Under Rule 3 for Step 3 of our network model in Section 3, it is more likely to 

generate MOPOP with more Pareto non-optimal paths projected into Zone II, given 𝑁Obj = 2 for the 

sake of simple illustration. Therefore, with Rule 1 to Rule 3, the toolkit of Section 3 can have a 

control to some extent in the average distance between Pareto points and Pareto dominated points. 

Furthermore, we may develop some more relevant rules for Step 3, in order to achieve a better 

control, which is no doubt a direction for improving the reported toolkit in future research. 

4.4. Distribution of pareto points on pareto front 

 The distribution of Pareto points on Pareto front may also influence the complexity of MOOP. In 

general, if Pareto points are distributed more smoothly and evenly on Pareto front (see Fig. 9(a) for 

example), then it could be relatively easier for MOOP methods to find most Pareto points that are 

important and/or representative. If Pareto points are highly clustered and unevenly distributed on 

Pareto front (see Fig. 9(b) for example), then, it might be difficult for MOOP methods to find any 

Pareto point located in a niche cluster. For continuous numerical MOOP, the distribution of Pareto 

points on Pareto front might seem like the same issue as Pareto front shape. However, for discrete 

combinational MOOP, such as MOPOP, they are two issues quite different from each other, because 

a same Pareto front shape can give many different sets of 𝑁PP sample points. Fortunately, because 

the network model of Section 3 allows us to sample a desirable Pareto front in any way we like to set 

up model parameters [𝑓1,m, … , 𝑓𝑁Obj,m
] , 𝑚 = 1, … 𝑁PP, we can have a good control in the 

distribution of Pareto points on Pareto front. For example, for the case of Fig. 9(b), we can 

particularly sample a few points on the niche cluster, so that we can generate suitable MOPOP to 

test a method about its capability of searching for niche clusters on Pareto front.  

One might argue that a niche cluster on Pareto front does not necessarily mean it is associated with 

less Pareto optimal solutions. This is true because a Pareto point is the projection of one or multiple 

Pareto optimal solutions (if they have the same objective values) in objective space, and if a niche 

cluster is associated with many Pareto optimal solutions, then a MOOP method usually stands a 

good chance to find one or a few Pareto points in this niche cluster. Fortunately, this does not affect 

the practicability of the proposed MOPOP toolkit at all. Basically, we want a toolkit to generate 

complex test problems, as simple test problems can hardly distinguish MOOP methods in terms of 



their performance. Clearly, a niche cluster associated with many Pareto optimal solutions implies 

less complexity, so, it is less useful from the viewpoint of evaluating MOOP methods. 

4.5. Pareto optimal paths similar in appearance 

Please note that the network model of Section 3 will generate 𝑁PP Pareto optimal paths completely 

separated from each other, i.e., the generated 𝑁PP Pareto optimal paths share no common nodes 

(except 𝑂 and 𝐷) or links with each other.  

However, sometimes we might want a test problem to study the local searching capability of a 

MOOP method. For example, it is important for genetic algorithm (GA) to have a good capability of 

identifying, inheriting and protecting good common genes in chromosomes. Those 𝑁PP Pareto 

optimal paths generated by the network model of Section 3 simply share no common genes.  

First, despite the above demerit, the network model of Section 3 is still useful, because 𝑁PP Pareto 

optimal paths sharing no common nodes or links often means more difficult to find complete Pareto 

front, i.e., the generated test problem is a more challenging MOPOP. As is well known, in path 

optimization, it is a popular practice to modify already-found optimal/good paths in order to find 

more other optimal/good paths. For example, in the 𝑘-shortest paths problem, the first 𝑗 shortest 

paths are often used to calculate the (𝑗 − 1)th shortest path, 1 ≤ 𝑗 < 𝑘 [56,57], and in dynamical 

path optimization, the optimal path of current time instant is often used to calculate the optimal 

path of next time instant [58,59]. The MOPOP generated by the model of Section 3 can reveal the 

disadvantage of such a popular practice in path optimization, and therefore demands developing 

more effective path optimization methods.  

Second, for the purpose of testing local searching capability, Step 1 of the network model in Section 

3 can be modified to some extent, in order to allow some Pareto optimal paths to share some 

common nodes (besides 𝑂 and 𝐷) and links. For instance, assume we want the 𝑖th Pareto optimal 

path and the 𝑗th Pareto optimal path share some common nodes and links. Then, in Step 1 of 

modified network model, we divide the objective values of each path into three parts as follows, 

𝑓𝑘,i = 𝑥k + 𝑦k + 𝑧k,i, 𝑘 = 1, … , 𝑁Obj    (14) 

𝑓𝑘,j = 𝑥k + 𝑦k + 𝑧k,j, 𝑘 = 1, … , 𝑁Obj    (15) 

Now, we set up 4 path segments between 𝑂 and 𝐷, one path segment connects 𝑂, one path 

segment connects 𝐷, and the other two path segments are parallel in the middle. We let the path 

segment connecting 𝑂 have objective values of [𝑥1, … 𝑥𝑁Obj
], the path segment connecting 𝐷 have 

objective values of [𝑦1, … 𝑦𝑁Obj
], and the other two path segments have [𝑧1,i, … 𝑧𝑁Obj,i

] and 

[𝑧1,j, … 𝑧𝑁Obj,j
], respectively. Then, we go on to Step 2 of the model in Section 3. Fig. 10 illustrates the 

network model with modified Step 1.  

So, Step 1 of the model in Section 3 can be modified to allow Pareto optimal paths to share common 

nodes and links. Actually, the model of Section 3 may be further modified to allow more complicated 

situations of sharing common nodes and links between Pareto optimal paths, and this is no doubt a 

direction worth further investigation in future.  

4.6. Global optima and local optima 



In the study of MOPOP, global optima are 𝑁PP Pareto optimal paths, while a local optimum may be 

defined as a path which has a sub-path that can dominate a relevant sub-path in a Pareto optimal 

path. Such a local optimum might distract a searching method from the true Pareto optimal path.  

Basically, in the network model of Section 3, (i) global optima are generated in Step 1 and Step 2, 

and Step 1 and Step 2 can generate only global optima; (ii) Step 3 can generate only non-Pareto-

optimal paths, and local optima may be generated in and only in Step 3.  

A simple way of generating a local optimum is described as follows. After an extra link (whose costs 

are such that any path travelling through this link will be dominated by at least one of the 𝑁PP 

Pareto optimal paths generated in Step 1 and Step 2) is added in Step 3, we can add an extra node to 

the link, so, two new links appear. Then, we divide the costs of the original link so that a new link will 

have very small costs. In this way, local optima may be generated, as illustrated in Fig. 11. There are 

𝑁PP = 2 Pareto optimal paths in Fig. 11, i.e., path 𝑂 → 1 → 3 → 𝐷 and path 𝑂 → 2 → 4 → 𝐷, and 

their costs are [6,9] and [9,6], respectively. First, an extra link is added between node 2 and node 3, 

and its costs are set as (5,5). Clearly, any path that includes this link is not Pareto optimal in Fig. 11. 

Then, an extra node, node 5 is added to this link, diving it into two new links, one new link is given 

costs (1,1), and the other new link (4,4). Thus, for a searching method which favors such links with 

small costs, it will be more likely to be distracted by going from node 2 to node 5 rather than to node 

4.  

Please note that the definition of local optima in MOPOP is somehow dependent of searching 

method under test. The major effect of local optima is to distract a searching method from global 

optima. From a width-first searching method's point of view, the example of Fig. 11 has no local 

optima. But if we add an extra link directly between node 1 and node D, we will then get a local 

optimum. In other words, depending on what kind of searching methods are tested, we may adopt 

relevant measures for adding extra links and nodes in Step 3 of the reported network model. 

4.7. Number of intermediate nodes in pareto optimal paths 

The percentage of 𝑁N nodes used to insert into dummy links in Step 2 of Section 3 will also influence 

the complexity of generated MOPOP. Basically, if a smaller proportion of 𝑁N nodes are inserted into 

dummy links in Step 2, then on average, a Pareto optimal path will have fewer intermediate nodes. 

Thus, a heuristic rule (e.g., depth-first search) that favors those nodes closer to the destination in 

terms of intermediate nodes could bring an advantage to problem resolving. If a larger proportion of 

𝑁N nodes are inserted into dummy links in Step 2, then in general, more of 𝑁L links are included in 

Pareto optimal paths. Thus, a heuristic rule (e.g., crossover in genetic algorithm) that explore 

common links could lead to fast convergence.  

A difficult test problem should be challenging to both heuristic rules. One way that might lead to 

generate such a challenging test problem is to restrict the total number of intermediate nodes in all 

Pareto optimal paths, and at the same time, to allow the number of intermediate nodes in a single 

Pareto optimal path to vary within a wide range. Therefore, the total number of intermediate nodes 

in all Pareto optimal paths and the range for the number of intermediate nodes in a single Pareto 

optimal path are two model parameters to control the complexity of generated test problem. 

4.8. Complexity of the reported network model 

Basically, Step 1 and Step 2 of the reported network model in Section 3 are straightforward, i.e., set 

up 𝑁PP Pareto optimal paths, and then randomly insert a given number of nodes to these 𝑁PP 

Pareto optimal paths. Here, we mainly analyze the complexity of Step 3. Depending on the rule 



adopted to assign costs to an extra link, Step 3 will consume quite different computational time and 

then have different complexity.  

Suppose 𝛼 × 𝑁N nodes and 𝛽 × 𝑁L are included in those 𝑁PP Pareto optimal paths in Step 1 and 

Step 2, 0 < 𝛼 < 1, 0 < 𝛽 < 1N, then we need to add (1 − 𝛼) × 𝑁N extra nodes and (1 − 𝛽) × 𝑁L  

extra links in Step 3. The most challenging part is to assign costs to extra links, which provides a 

guarantee that the generated network has and only has those 𝑁PP paths set up in Step 1 and Step 2 

as Pareto optimal paths.  

If we adopt Rule 1 in Sub-section 4.3 to assign costs to extra links, then we simply generate 

𝑁Obj × (1 − 𝛽) × 𝑁L random values which satisfy Condition (10). So, the associated complexity may 

be assessed as 𝑂(𝑁Obj × 𝑁L).  

If we adopt Rule 2 in Sub-section 4.3 to assign 𝑁Obj costs to an extra link, then for a set of randomly 

generated costs, we need to make 𝑁Obj × 𝑁PP comparisons according to Conditions (11) and (12) in 

the worst case, in order to guarantee those 𝑁PP Pareto optimal paths set up in Step 1 and Step 2 will 

not be dominated. Suppose on average, we need to generate 𝑁SRC sets of random costs before we 

can find a set which satisfies Conditions (11) and (12). So, for ((1 − 𝛽) × 𝑁L extra links, the 

associated computational burden may be assessed as 𝑂(𝑁Obj × 𝑁PP × 𝑁SRC × 𝑁L).  

If we adopt Rule 3 in Sub-section 4.3 to assign 𝑁Objj costs to an extra link, then first we need to find 

4NObj single-objective optimal sub-paths in the so-far network. Depending on which algorithm is 

employed, the computational complexity to find a single-objective optimal sub-path may vary. Here 

assuming Dijkstra's algorithm is employed and the so-far network has 𝑁N,SF nodes and 𝑁L,SFlinks, 

then, the complexity of finding a single-objective optimal sub-path can be assessed as 

𝑂(𝑁L,SF + 𝑁N,SF × log 𝑁N,SF) [60]. Since 𝑁N,SF ≤ 𝑁N and 𝑁L,SF ≤ 𝑁L for all so-far networks, we may 

use 𝑂(𝑁L + 𝑁N log 𝑁N) as an upper-bound for finding a single-objective optimal sub-path. Assume 

after combining those single-objective optimal sub-paths with the extra link, the associated smallest 

value for the 𝑘th objective is 𝑓SO,k, 𝑘 = 1, … , 𝑁Obj. Then, we need to compare point 

[𝑓SO,1, … , 𝑓SO,NObj
] with those 𝑁PP Pareto points, to check if it is dominated by at least one Pareto 

point. Again, assume on average we need to generate NSRC sets of random costs for the extra link 

before point [𝑓SO,1, … , 𝑓SO,NObj
] can be dominated by at least one Pareto point. So, there are 

𝑁Obj × 𝑁PP × 𝑁SRC comparisons for each extra link. Plus the computational burden of finding single-

objective optimal sub-paths, thus for (1 − 𝛽) × 𝑁L  extra links, the total computational burden of 

Step 3 can be assessed as 𝑂 ((𝑁Obj × 𝑁PP × 𝑁SRC + 4𝑁Obj × (𝑁L + 𝑁N log 𝑁N)) × 𝑁L).  

Clearly, on one hand, adopting Rule 3 makes Step 3 the most timeconsuming when compared with 

Rule 1 or Rule 2. On the other hand, according to Sub-section 4.3, adopting Rule 3 may generate 

much more challenging test problems.  

The complexity of Rule 2 and Rule 3 can be reduced if the network model is acceptable with a low 

degree of randomness. In other words, we do not try completely random values as costs for extra 

links. For example, under Rule 2, we randomly choose one of those 𝑁PP Pareto points, add small 

random positive values to the costs of the chosen Pareto point, and then use the new values as the 

costs for an extra link. In this way, we always have 𝑁SRC = 1, so, the complexity of Step 3 under Rule 

2 becomes 𝑂(𝑁Obj × 𝑁PP × 𝑁L)Similarly, under Rule 3, we can make 𝑁SRC = 1 if the costs of an 

extra link are chosen only from certain ranges that are determined by those 𝑁PP Pareto points and 

the minimal objective values of those single-objective optimal sub-paths. Then, the complexity of 



Step 3 under Rule 3 becomes 𝑂 ((𝑁Obj × 𝑁PP + 4𝑁Obj × (𝑁L + 𝑁N log 𝑁N)) × 𝑁L) given that 

𝑁PP ≪ 4(𝑁L + 𝑁N log 𝑁N), then we have 𝑂(𝑁Obj × (𝑁L + 𝑁N log 𝑁N) × 𝑁L). 

It should be noted that the complexity of generating a random test problem is different from the 

complexity of resolving a given test problem. The former is a concern of this manuscript, while the 

latter is a focus of algorithm design. For a given test problem, different algorithms (e.g., width-first-

search, depth-first-search, best-first-search methods) may have rather different complexities, which 

is somehow out of the scope of this study. 

 

5. Experimental results 

5.1. MOPOP methods for test 

In this section, we will demonstrate that the reported test problem toolkit can be used to evaluate 

the performance of methods for MOPOP. For demonstrating purposes, we will test three categories 

of MOPOP methods. The first category is capable of finding all Pareto optimal paths with a 

theoretical guarantee of optimality, and we choose the method reported in Ref. [30] as a 

representative. We denote this method as COM because it can find the complete Pareto front. COM 

can help to verify the correctness of the reported toolkit, i.e., if the results of COM are the same as 

those manually deduced Pareto fronts, then we know the toolkit works properly. Otherwise, there 

could be something wrong with the toolkit, theoretically or technically. 

The second category is capable of finding some true Pareto points (i.e., a partial Pareto front), and 

we develop a simple AOF (aggregate objective function) method as a representative. In the AOF, we 

combine the 𝑁Obj objectives into a single one as follows 

𝑓𝐴OF = ∑ 𝑤𝑘𝑓𝑘

𝑁Obj

𝑘=1

                                                                         (16) 

 

where 0 ≤ 𝑤𝑘 ≤ 1, and 0 < 𝑤𝑘 for at least one 𝑘. In this study, once a MOPOP is given by the 

toolkit, we randomly generate 100 sets of [𝑤1, … , 𝑤𝑁Obj
], in order to get 100 different aggregate 

objective functions 𝑓𝐴OF. Based on each 𝑓𝐴OF, we apply Dijkstra's algorithm of [60] to resolve a 

single-objective path optimization problem (SOPOP), so, we will get a best path in terms of the given 

𝑓𝐴OF, and such a best path is a Pareto-optimal path to the original MOPOP. It often happens that 

some different sets of [𝑤1, … , 𝑤𝑁Obj
] may result in a same Pareto-optimal path, so, the AOF method 

will usually output less than 100 Pareto-optimal paths. 

The third category employs Pareto-compliant ranking-based (PCR) techniques to approximate Pareto 

front, and we choose genetic algorithm (GA) as a representative. Since PCR methods are nowadays 

the most popular for resolving various MOOPs, particularly, discrete combinational MOOPs, here, 

we develop three simple GAs for MOPOP, in order to better demonstrate how the reported toolkit 

can help to evaluate PCR methods. 

All three GAs have the same chromosome structure, where the 𝑖th gene in a chromosome records 

the 𝑖th node in the path represented by the chromosome. In the first GA, denoted as GA1, a 

chromosome is always randomly initialized, i.e., when appending a new link to the end of so-far 



path, we simply make a random choice between all those links that start from the end of so-far path. 

GA1 only adopts a mutation operator. In the mutation of GA1, we randomly choose two non-

successive genes in a chromosome to be mutated, and if there exists a link in the route network 

between those two nodes recorded by those two non-successive genes, then we delete all genes 

between those two non-successive genes in the chromosome. GA1 has no crossover operator, 

because, as is well known, for many discrete combinational problems, crossover, if not properly 

designed, will be more destructive than helpful to convergence [54,55]. Fig. 12 illustrates the 

mutation operator in GA1.  

The second GA, denoted as GA2, has exactly the same design as GA1, except that when initializing a 

chromosome, we introduce a heuristic rule that if a link, once appended to the end of so-far path, 

can achieve Pareto non-dominance when compared with other links that start from the end of so-far 

path, then this link will stand a better chance to be chosen to attach to the end of so-far path. Fig. 13 

illustrates the heuristic rule in GA2 for initializing a chromosome.  

The third GA, denoted as GA3, also has exactly the same design as GA1, except that a crossover 

operator is introduced. In the crossover of GA3, we randomly choose two chromosomes as parents 

first. Then we use the binary representation techniques in Ref. [55] to identify common gene 

sections. A common gene section means at least two successive genes in two chromosomes are the 

same. Then, we swap non-common gene sections between two parent chromosomes in order to 

produce two offspring chromosomes. Basically, if a common gene section often appears in many 

good chromosomes, it is very likely that this gene section is useful to construct Pareto optimal paths. 

The crossover operator here can well identify, inherit and protect such a useful gene section, and 

therefore leads to a good convergence performance [55]. Fig. 14 illustrates the crossover operator in 

GA3. One might argue that the above crossover operator could cause a node to appear more than 

once in a path, and therefore lead to an infeasible path. In this study, for the sake of simplicity, once 

an infeasible path is produced, we will discard it and replace it with a randomly initialized new 

chromosome. Actually, the possibility of causing infeasible chromosomes by the above crossover is 

not very high, because a node close to the source/destination in a rout network is not likely to 

appear as a node close to the destination/source in a path, which means the above crossover is not 

likely to cause such a node to appear twice in an offspring chromosome. For example, in Fig. 14, 

because node 7 is closer (in terms of number of intermediate links) to the destination in the route 

network, it is very likely that many initialized chromosomes reach node 6 before reaching node 7. 

Therefore, crossing over such parent chromosomes will not cause node 7 to appear twice in 

offspring chromosomes.  

These three GAs employ the following common measures. When choosing a link to attach to the end 

of so-far path in chromosome initialization, if a link connects to the destination, then this link stands 

a better chance to be chosen. Besides, when initializing a chromosome, a node that needs to pass 

fewer intermediate nodes to reach the destination will be favored with a better chance of attaching 

to the end of so-far path. Elitism strategy is adopted in GAs, which means some best chromosomes 

in a generation will be directly passed on to the next generation. In contrast to an elitism strategy, 

an elimination strategy is used to replace some worst chromosomes in a generation by new, 

randomly initialized chromosomes. In each GA, when sorting and ranking those individuals in a 

generation, the techniques of NGSA − II in Ref. [19] were referred to.  

It should be emphasized that this study is not concerned with developing effective methods for 

resolving MOPOP. It is possible that one could develop a much more effective GA than GA1 to GA3 

by introducing more sophisticated designs, for example, introducing the heuristic rule of GA2 and 

the crossover operator of GA3 into GA1 simultaneously, and taking some feasibility-enforcing 



measures in the crossover operator of GA3 (in order to avoid a node appearing more than once in a 

path). Instead, this study simply aims to demonstrate that the reported test problem toolkit can well 

distinguish differences in performance of different methods. Here GA1 to GA3 have quite different 

designs, which could be suitable for some route networks, but not very effective to some other 

route networks. With the reported test problem toolkit, we are possible to show the merits and 

demerits of those design techniques adopted by GA1 to GA3, respectively. In other words, this study 

is not to prove that GA1, GA2 or GA3 is effective to MOPOP, but to demonstrate that the reported 

test problem toolkit can examine whether a GA design technique for MOPOP is effective to what 

extent. When evaluate the performance of different GAs, usually, people compare those Pareto non-

dominated solutions found by different GAs. However, due to the stochastic nature of GAs, we do 

not know if such Pareto non-dominated solutions are true Pareto optimal solutions, and what is 

worse, we even have no clue how many true Pareto optimal solutions are missed by GAs under test. 

Now, fortunately with the help of the reported test problem toolkit, we will know exactly which 

Pareto non-dominated solutions found by different GAs are true Pareto optimal solutions, and how 

many true Pareto optimal solutions are missed out. This allows us to evaluate the performance of 

different GAs (or GA design techniques) in a much more precise manner. In the following 

experiments, for each MOPOP, we apply COM once, and apply AOF, GA1, GA2 and GA3 for 100 

times, respectively. For each GA, the population size is 200, the number of evolving generations is 

500, the mutation probability is 0.2, 10% of best chromosomes in a generation will directly passed 

on to the next generation, and 10% of worst chromosomes in a generation will be replaced by 

randomly initialized new chromosomes. For GA2, a link with non-dominated costs is 3 times more 

likely to be chosen than a link with dominated costs. For GA3, the crossover probability is 0.4. 

5.2. Comparison between different categories of MOPOP methods 

In this sub-section, we aim to use the reported MOPOP toolkit to test three categories of MOPOP 

methods, and they are COM, AOF and GA1, capable of outputting complete, partial and 

approximate Pareto fronts, respectively. Since COM has a scalability issue [30], here we use the 

reported toolkit to generate MOPOPs with relatively small problem scales. We fix 𝑁N = 40, 𝑁L =

120, 𝑁PP = 30, and allow 𝑁Obj = 2,4,6,8,10. For each 𝑁Obj value, we generate 100 MOPOPs. The 

average results of COM, AOF and GA1 are given in Table 1, where CT, 𝑁PPF and 𝑅FCPF mean 

computational time (in second), number of true Pareto points found by a method, and the rate of a 

method for finding the complete Pareto front (i.e., in how many of the 100 route networks of a given 

𝑁Obj, the method has found the complete Pareto front), respectively. From Table 1, one may have 

the following observations. 

● COM can always find all of those 𝑁PP = 30 Pareto optimal paths for every MOPOP. COM has a 

theoretical guarantee to find complete Pareto front [30]. In this sub-section, the toolkit is supposed 

to generate MOPOPs with 𝑁PP = 30Pareto optimal paths. Therefore, the results of COM prove that 

the reported toolkit works properly as supposed. 

● However, the computational burden of COM soars up significantly as 𝑁Obj increases. In the most 

complicated case of 𝑁Obj = 10, COM is the most computationally expensive. This, in some sense, 

implies the difficulty in designing an efficient method that is capable of finding complete Pareto 

front, and therefore explains why those methods of finding partial or approximate Pareto fronts are 

more popular in practice of MOOPs. 

● The most computational efficient method is AOF. For a given MOPOP, AOF just needs to resolve 

100 SOPOPs, which Dijkstra's algorithm of [60] can resolve very fast. The CT of AOF is also the most 

stable, as it only changes slightly as 𝑁Obj increases. 



● However, based on the linear sum of 𝑁Obj original objectives according to Eq. (16), AOF cannot 

find any Pareto points located on those concave parts of Pareto front [4,12]. In a MOPOP generated 

by the toolkit with NPP sets of random [𝑓1,m, … , 𝑓𝑁Obj,m
] values, the Pareto front often has some and 

even many concave parts, covering most Pareto points (see Fig. 2 for example). This explains why 

AOF finds the least true Pareto points, and stands the smallest chance the find complete Pareto 

front (it is possible only when the Pareto front is completely convex). 

● It seems that GA1 could make a relatively good tradeoff between computational time and solution 

quality, i.e., in the most complicated case of 𝑁Obj = 10, GA1 takes less CT than COM, and finds more 

true Pareto points than AOF. This might help to explain why PCR methods are the most popular in 

real-world MOOP applications. 

● It should be noted that the experiments in this study mainly aim to demonstrate that the reported 

MOPOP toolkit can help to evaluate different MOPOP methods. To analyze a specific MOPOP 

method in more depth, more experiments will be needed. For example, we can change the way of 

choosing weights 𝑤k of Eq. (16) for AOF (e.g., from randomly setting to evenly sampling), and we 

can also change the number of sets of 𝑤k (basically, more sets of 𝑤k could result in more true Pareto 

points to be found by AOF). For GA1, we may change the population size, the number of 

generations to evolve, and the probability of mutation, and then study how the computational time 

and solution quality might change accordingly. However, due to limited space, in this study, we will 

not go deeper with every specific MOPOP method, and in next sub-section, we will use the toolkit 

only to analyze some GA designing techniques, because of the popularity of PCR methods. 

5.3. Comparison between 3 GAs 

In this sub-section, we further carry out 4 sets of experiments to compare three different GAs, i.e., 

GA1, GA2 and GA3 given in Sub-section 5.1, in order to demonstrate that the reported toolkit may 

help to evaluate different GA designing techniques. In each set of experiments, 100 MOPOPs are 

randomly generated by the reported toolkit with 𝑁N = 200,300,400,500,600, respectively. In all 

experiments, 𝑁L = 3𝑁N, 𝑁Obj = 2 and 𝑁PP = 100. In a route network of experiment set 1 (ES1), 

𝑁PP = 100 Pareto optimal paths share no common node except 𝑂 and 𝐷, and a link that does not 

belong to any Pareto optimal path has its costs set up according to Rule 2, Eq. (11) and Eq. (12) in 

Sub-section 4.3. In a route network of experiment set 2 (ES2), 𝑁PP = 100 Pareto optimal paths again 

share no common node except 𝑂 and 𝐷 but a link that does not belong to any Pareto optimal path 

has its costs set up according to Rule 3 and Eq. (13) in Sub-section 4.3. In a route network of 

experiment set 3 (ES3), 𝑁PP = 100 Pareto optimal paths may share some common nodes besides 

𝑂 and 𝐷 by following the modification described in Sub-section 4.5, and a link that does not belong 

to any Pareto optimal path has its costs set up according to Rule 2, Eq. (11) and Eq. (12) in Sub-

section 4.3. In a route network of experiment set 4 (ES4), 𝑁PP = 100  Pareto optimal paths again 

may share some common nodes, but a link that does not belong to any Pareto optimal path has its 

costs set up according to Rule 3 and Eq. (13) in Sub-section 4.3. Table 2 summarizes the key features 

of these four experiment sets. 

For the sake of simplicity but without jeopardizing demonstrating purposes, we set up other model 

parameters as simple as possible. In particular, we insert all 𝑁N nodes (except 𝑂 and 𝐷) into dummy 

links in Step 2 of network model, so, we only need to add some extra links in Step 3 of network 

model. According to Sub-section 4.6, a test problem generated in this way might not be very difficult 

to resolve. This is actually what we want here, because GA1 to GA3 are not professional, purpose-

designed methods, but simply developed only for demonstrating the usefulness of the reported 



toolkit. If we test GA1 − GA3 on very difficult problems, we could end up seeing no difference 

between these three GAs.  

In other words, the goal of this study is not to design difficult MOPOPs to beat all methods (or to 

design effective methods to resolve all MOPOPs), but to demonstrate that the reported toolkit can 

be properly tuned, in order to test certain features of a method. This study uses the reported test 

problem toolkit mainly to examine how many true Pareto optimal paths a GA could find. The mean 

results and standard deviation (SD) in terms of the number of true Pareto optimal paths found by 

GA1, GA2 and GA3 in four experiment sets are given in Tables 3–6, respectively, from which one 

may have the following observations. 

● In ES1 of Table 3, GA1 has the worst performance, GA3 is better, and GA2 is the best. This is 

explainable. In a route network of ES1, the costs of a link that does not belong to any Pareto optimal 

path are set up according to Eq. (11) and Eq. (12), which mean the link itself is dominated by Pareto 

optimal paths, let alone by links in Pareto optimal paths. GA2 employs a heuristic rule that favors 

nondominated links. Therefore, when initializing chromosomes, GA2 stands a better chance to 

choose those links belonging to Pareto optimal paths, and as a result, GA2 achieves the best 

performance in three GAs. Actually, Table 3 shows that GA2 can almost find out all of the  𝑁PP =

100  Pareto optimal paths. Although the quality of an initialized chromosome in GA3 is as poor as in 

GA1, the crossover operator employed in GA3 can help, through evolution generation by 

generation, to identify, inherit and protect some of those links belonging to Pareto optimal paths. 

Therefore, GA3 has a better performance than GA1 in ES1. 

● Actually, in all tests, GA3 outperforms GA1. One reason for this is because, as explained in the 

experimental setup, all 𝑁N nodes (except 𝑂 and 𝐷) are inserted into dummy links in Step 2 of 

network model. Thus, according to Sub-section 4.6, a generated MOPOP could be relatively more 

friendly to common-link-oriented measures such as the crossover operator of GA3. 

● When comparing Table 4 with Table 3, the performance of GA2 drops significantly. This is mainly 

because in ES2 of Table 4, the costs of a link that does not belong to any Pareto optimal path are set 

up according to Eq. (13), which means such a link is much less likely dominated by those links 

belonging to Pareto optimal paths. Therefore, the heuristic rule of GA2 is no longer an advantage in 

ES2, but instead becomes a disadvantage as it largely misleads GA2 to explore those links that do 

not belong to any Pareto optimal path. As a result, sometimes in ES2, the quality of initialized 

chromosomes in GA2 is worse than that in either GA1 or GA3, so is the performance of GA2. The 

performance of either GA1 or GA3 is relatively stable, but still degrades when compared with ES1 of 

Table 3. This is because, as explained in Sub-section 4.3, Pareto points are much closer to Pareto 

dominated points in ES2 than in ES1, which means the complexity of MOPOP is much higher in ES2. 

● When comparing ES3 of Table 5 with ES1 of Table 3, and comparing ES3 of Table 6 with ES1 of 

Table 4, we can see the performance of GA1 remains similar, which means whether Pareto optimal 

paths share common nodes or not does not influence GA1 much. GA2 performs a little better in ES3 

than in ES1, but a little worse in ES4 than in ES2. This can be explained again based on the heuristic 

rule of GA2. The setup that Pareto optimal paths share common nodes besides O and D means they 

share some common links. In other words, there are relatively less (more) links that do (do not) 

belong to Pareto optimal paths in ES3/ES4 than in ES1/ES2. In ES3, the heuristic rule enables GA2 to 

focus more on those less links belonging to Pareto optimal paths, and then stands a better chance to 

find more Pareto optimal paths. In ES4, the heuristic rule makes GA2 more likely to be distracted by 

those more links that do not belong to Pareto optimal paths, and then ends up with finding less 

Pareto optimal paths. In the case of GA3, its performance is obviously boosted in ES3 and ES4, 



because the crossover operator of GA3 is particularly designed for dealing with common links, and 

more common links shared by Pareto optimal paths imply a better chance for GA3 to find more 

Pareto optimal paths. 

● When comparing the performance of different GAs for discrete combinational MOOPs, 

researchers often compare the number of Pareto non-dominated solutions found by different GAs. 

However, a Pareto non-dominated solution is not necessarily Pareto optimal. Assume that one GA 

finds hundreds of Pareto non-dominated solutions but none of them are Pareto optimal, while 

another GA only finds a few Pareto non-dominated solutions but they are all Pareto optimal. Then, 

which GA is better? Obviously, comparing the number of Pareto non-dominated solutions found by 

GAs is not an ideal way to assess the performance of GAs. Differently, with the help of the reported 

test problem toolkits, here we can compare the number of true Pareto optimal solutions found by 

GAs, and then precisely evaluate and even rank the performance of GAs or GA design techniques. 

● Based on Tables 3–6 as well as these 4 experiment sets, we can give some discussions such as how 

problem scale might influence the performance of different GAs, and how fast each GA might 

converge. However, such discussions can also be made without the reported test problem toolkit. 

Therefore, to highlight the unique contribution of this paper, we will not go on with such things that 

other test problem toolkits may also contribute. In other words, those discussions made in previous 

bullet points are largely based on the capability of generating test problems with pre-given/known, 

desirable Pareto fronts. It is very difficult, if not impossible, for existing test problem toolkits for 

discrete combinational MOOP to achieve such a capability. Thanks to the reported toolkit of this 

paper, such a capability is now no longer a luxury we cannot have when evaluating the performance 

of methods for discrete combinational MOOP. 

● In the comparative experiment based on the reported test problem toolkit, we only use one 

performance indicator, i.e., the number of true Pareto points found by a method. It should be noted 

that there may be some other performance indicators to evaluate MOPOP methods. For example, in 

theory we may use the gap (or the distance) between calculated Pareto front (approximate Pareto 

front) and the exact Pareto front as a performance indicator. Basically, the gap between calculated 

Pareto front and the exact Pareto front may be defined in different ways. Once a definition of gap is 

given, we can usually calculate it precisely based on the information of exact Pareto front thanks to 

the reported toolkit. A possible definition of gap is the hyper-volume of the polyhedron determined 

by both the calculated Pareto front and the exact Pareto front. However, if the number of calculated 

Pareto points is less than 𝑁Obj, or the polyhedron is not enclosed, this definition will become difficult 

to apply. Another possible definition is the average Euclidean distance between each calculated 

Pareto point and its closest true Pareto point. However, sometimes this does not make a good 

indicator of MOPOP method performance. For example, assume 𝑁PP = 100  , method 1 only 

outputs 3 calculated Pareto points and they are all true Pareto points, while method 2 outputs 100 

calculated Pareto points, and none of them is true Pareto point, but they are all close to those 𝑁PP =

100  true Pareto points. In this case, the gap does not make much sense to compare two methods. 

Due to the above drawbacks of gap definitions, in the experiments of this section, we simply count 

and compare the number of true Pareto points found by each method. The definition of the gap 

between calculated Pareto front and the exact Pareto front is a technique needed after a test 

problem is given. This paper is more concerned with how to generate test problems before we need 

such a gap definition. In Section 6, further evaluating techniques (e.g., how to design effective 

performance indicators) based on the reported test problem toolkit are mentioned as future work. 

 



6. Conclusions 

This paper reports a benchmark test problem toolkit for multiobjective path optimization problems 

(MOPOPs). The reported benchmark test problem toolkit has a very good scalability in terms of 

numbers of objectives, nodes, links and Pareto points. The complexity of a generated test problem 

can also be well controlled and adjusted, for example, the Pareto front of a generated test problem 

can be of any possible shape (e.g., convex or concave), and Pareto points can be set close or far 

away from Pareto dominated points. The most important, the complete Pareto front of a generated 

test problem can be deduced and found out manually, no matter how large the problem scale is. 

Comprehensive experimental results demonstrate that the reported benchmark test problem toolkit 

can help to tell how many true Pareto points are missed by a partial method, and how large the gap 

is between the true Pareto front and the result of an approximate method. Compared with the 

strategy of testing a MOPOP method on some case study problems whose complete Pareto front is 

not known or adjustable, the reported toolkit enables a better performance evaluation. 

Test problem toolkits for continuous numerical multi-objective optimization problems (MOOPs) have 

significantly contributed to performance evaluation of relevant MOOP methods. There is a need for 

test problem toolkits particularly for discrete combinational MOOPs. This study makes an attempt by 

targeting MOPOP, which is a typical category of discrete combinational MOOPs. Future research may 

be conducted to explore the full potentials of the reported toolkit. For example, how to define 

effective performance metrics (e.g., the gap between true Pareto front and a partial or 

approximated one) needs to be studied for discrete combinational MOOPs. It is also worth efforts 

how to make problem specific modifications to the reported toolkit, in order to better apply 

to some real-world MOPOPs. Further attentions may be paid to investigate the possibility of 

extending the basic idea and techniques of this study to develop test problem toolkits for more 

other discrete combinational MOOPs. 
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