1,435 research outputs found

    Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation

    Full text link
    The application of traction control systems (TCS) for electric vehicles (EV) has great potential due to easy implementation of torque control with direct-drive motors. However, the control system usually requires road-tire friction and slip-ratio values, which must be estimated. While it is not possible to obtain the first one directly, the estimation of latter value requires accurate measurements of chassis and wheel velocity. In addition, existing TCS structures are often designed without considering the robustness and energy efficiency of torque control. In this work, both problems are addressed with a smart TCS design having an integrated acoustic road-type estimation (ARTE) unit. This unit enables the road-type recognition and this information is used to retrieve the correct look-up table between friction coefficient and slip-ratio. The estimation of the friction coefficient helps the system to update the necessary input torque. The ARTE unit utilizes machine learning, mapping the acoustic feature inputs to road-type as output. In this study, three existing TCS for EVs are examined with and without the integrated ARTE unit. The results show significant performance improvement with ARTE, reducing the slip ratio by 75% while saving energy via reduction of applied torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22 Jan 201

    Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle

    Get PDF
    As the society pays more and more attention to the environment pollution and energy crisis, the electric vehicle (EV) development also entered in a new era. With the development of motor speed control technology and the improvement of motor performance, although the dynamic performance and economical cost of EVs are both better than the internal-combustion engine vehicle (ICEV), the driving range limit and charging station distribution are two major problems which limit the popularization of EVs. In order to extend driving range for EVs, regenerative braking (RB) emerges which is able to recover energy during the braking process to improve the energy efficiency. This thesis aims to investigate the RB based pure electric braking system and its implementation. There are many forms of RB system such as fully electrified braking system and blended braking system (BBS) which is equipped both electric RB system and hydraulic braking (HB) system. In this thesis the main research objective is the RB based fully electrified braking system, however, RB system cannot satisfy all braking situation only by itself. Because the regenerating electromagnetic torque may be too small to meet the braking intention of the driver when the vehicle speed is very low and the regenerating electromagnetic torque may be not enough to stop the vehicle as soon as possible in the case of emergency braking. So, in order to ensure braking safety and braking performance, braking torque should be provided with different forms regarding different braking situation and different braking intention. In this thesis, braking torque is classified into three types. First one is normal reverse current braking when the vehicle speed is too low to have enough RB torque. Second one is RB torque which could recover kinetic energy by regenerating electricity and collecting electric energy into battery packs. The last braking situation is emergency where the braking torque is provided by motor plugging braking based on the optimal slip ratio braking control strategy. Considering two indicators of the RB system which are regenerative efficiency and braking safety, a trade-off point should be found and the corresponding control strategy should be designed. In this thesis, the maximum regenerative efficiency is obtained by a braking torque distribution strategy between front wheel and rear wheel based on a maximum available RB torque estimation method and ECE-R13 regulation. And the emergency braking performance is ensured by a novel fractional-order integral sliding mode control (FOISMC) and numerical simulations show that the control performance is better than the conventional sliding mode controller

    Discrete-time slip control algorithms for a hybrid electric vehicle

    Get PDF
    This thesis develops a discrete-time sliding mode control scheme for a slip control of a hybrid electric vehicle. In order to handle different road conditions, fuzzy logic technique is employed to develop control of slip ratio. A discrete-time Sliding mode observer is also designed to estimate the vehicle velocity online. Furthermore, in order to cope up with changing slip dynamic for varying road conditions an Adaptive sliding mode control has been designed by employing Lyapunov theory. The performances of developed adaptive sliding mode control, Sliding mode control and Fuzzy logic control for slip ratio are compared through extensive Matlab simulation and it is observed that the discrete time Fuzzy adaptive sliding mode control perform effectively

    Integration of anti-lock braking system and regenerative braking for hybrid/electric vehicles

    Get PDF
    Vehicle electrification aims at improving energy efficiency and reducing pollutant emissions which creates an opportunity to use the electric machines (EM) as Regenerative Braking System (RBS) to support the friction brake system. Anti-lock Braking System (ABS) is part of the active safety systems that help drivers to stop safely during panic braking while ensuring the vehicle’s stability and steerability. Nevertheless, the RBS is deactivated at a safe (low) deceleration threshold in favour of ABS. This safety margin results in significantly less energy recuperation than what would be possible if both RBS and ABS were able to operate simultaneously. Vehicle energy efficiency can be improved by integrating RBS and friction brakes to enable more frequent energy recuperation activations, especially during high deceleration demands. The main aim of this doctoral research is to design and implement new wheel slip control with torque blending strategies for various vehicle topologies using four, two and one EM. The integration between the two braking actuators will improve the braking performance and energy efficiency of the vehicle. It also enables ABS by pure EM in certain situations where the regenerative brake torque is sufficient. A novelmethod for integrating the wheel slip control and torque blending is developed using Nonlinear Model Predictive Control (NMPC). The method is well known for the optimal performance and enforcement of critical control and state constraints. A linear MPC strategy is also developed for comparison purpose. A pragmatic brake torque blending algorithm using Daisy-Chain with sliding mode slip control is also developed based on a pre-defined energy recuperation priority. Simulation using high fidelity model using co-simulation in Matlab/Simulink and CarMaker is used to validate the developed strategies. Different test patterns are used to evaluate the controllers’ performance which includes longitudinal and lateral motions of the vehicle. Comparison analysis is done for the proposed strategies for each case. The capability for real-time implementation of the MPC controllers is assessed in simulation testing using dSPACE hardware

    On the vehicle sideslip angle estimation: a literature review of methods, models and innovations

    Get PDF
    Typical active safety systems controlling the dynamics of passenger cars rely on real-time monitoring of the vehicle sideslip angle (VSA), together with other signals like wheel angular velocities, steering angle, lateral acceleration, and the rate of rotation about the vertical axis, known as the yaw rate. The VSA (aka attitude or “drifting” angle) is defined as the angle between the vehicle longitudinal axis and the direction of travel, taking the centre of gravity as a reference. It is basically a measure of the misalignment between vehicle orientation and trajectory therefore it is a vital piece of information enabling directional stability assessment, in transients following emergency manoeuvres for instance. As explained in the introduction the VSA is not measured directly for impracticality and it is estimated on the basis of available measurements like wheel velocities, linear and angular accelerations etc. This work is intended to provide a comprehensive literature review on the VSA estimation problem. Two main estimation methods have been categorised, i.e. Observer-based and Neural Network-based, focusing on the most effective and innovative approaches. As the first method normally relies on a vehicle model, a review of the vehicle models has been included. Advantages and limitations of each technique have been highlighted and discussed

    Sliding mode control algorithms for wheel slip control of road vehicles

    Get PDF
    Sliding mode control approaches are presented in this paper for the wheel slip control of road vehicles. The major design requirement for the controllers is to make the wheel slip ratio follow a desired value, while guaranteeing that the sliding mode control is stabilizing. Its robustness in front of matched and unmatched uncertainties and data transmission delays is assessed in simulation. In the present paper different algorithms of first and second order type and integral or non integral nature are discussed. Simulation results are reported and analyzed, putting into evidence the superior performance, in the considered automotive context, of the integral sliding mode control

    Time-Varying Sliding Mode Control for ABS Control of an Electric Car

    Get PDF
    Controller design for the Anti-Lock Braking System (ABS) of a wheeled vehicle is a challenging task because of the complex and nonlinear nature of the tyre-road interaction. An efficient ABS controller should be capable of maintaining the wheel slip at an optimal value, which is suitable for the particular road conditions experienced at a given instant in time, preventing the wheel from locking while braking. Many controller designs in the literature track either an optimal slip which is assumed constant or are not supported by experimental validation or simulation testing with higher order models. This paper first presents an ABS system based on a conventional Sliding Mode Control (SMC). The performance of this controller is tested on an experimental vehicle. The results are compared with simulation results obtained with both a quarter car model and a full-car model built in the Matlab/Simulink environment. The performance of this controller is improved by effective state estimation using a Sliding Mode Differentiator (SMD) where the results are benchmarked with an implementation using an Extended Kalman Filter (EKF). The paper then presents a controller based on Time-Varying Sliding Mode Control (TV-SMC) which tracks an optimal slip trajectory

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    corecore