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Abstract:  Controller design for the Anti-Lock Braking System (ABS) of  a wheeled vehicle is  a
challenging task because of  the complex and nonlinear nature of the tyre-road interaction.  An
efficient ABS controller should be capable of maintaining the wheel slip at an optimal value, which
is suitable for the particular road conditions experienced at a given instant in time, preventing the
wheel from locking while braking. Many controller designs in the literature track either an optimal
slip  which is  assumed constant or  are  not  supported  by experimental  validation or simulation
testing with higher order models. This paper first presents an ABS system based on a conventional
Sliding Mode Control  (SMC).  The performance of  this  controller  is  tested on an experimental
vehicle. The results are compared with simulation results obtained with both a quarter car model
and a full-car model built in the Matlab/Simulink environment. The performance of this controller
is improved by effective state estimation using a Sliding Mode Differentiator (SMD) where the
results are benchmarked with an implementation using an Extended Kalman Filter (EKF). The
paper then presents a controller based on Time-Varying Sliding Mode Control (TV-SMC) which
tracks an optimal slip trajectory. 

Keywords: TV-SMC, ABS control, Vehicle Control, Nonlinear Control.

1. INTRODUCTION

Increasing environmental concerns regarding CO2  emissions
from  conventional  vehicles  have  resulted  in  increasing
interest  in  the  development  of  Electric  or  Hybrid  Electric
Vehicles (EV or HEV).  The EV or HEV vehicles are more
energy  efficient  compared  to  conventional  vehicles.
Conventional  vehicles  dissipate  more  energy  converted  to
heat  through  friction  whereas  EV  or  HEV  equipped  with
regenerative braking can capture some of this wasted energy
during braking. The use of regenerative braking systems in
EV or HEV vehicles to further reduce energy consumption is
of significant interest. The technology thus has the potential
to reduce  fuel consumption.     

ABS  systems  have  been  installed  in  wheeled  vehicles  for
several  decades to prevent  the wheels  from locking during
braking thereby ensuring steerability and increased braking
performance. This is done by controlling the wheel slip. Slip
control  allows  the  braking  force  to  be  maximised  by
maintaining the wheel slip at an optimal value with respect to
varying  road  conditions  thus  increasing  the  braking
efficiency. During braking, a braking torque is applied to the
wheel  to  reduce  the  angular  velocity.  This  increases  the
difference between the reduced linearised wheel velocity and
the vehicle velocity which causes the vehicle to skid and this
skidding is called wheel slip. The slip varies from minimum

of zero and  to a maximum of one. Zero slip implies that the
linearised wheel velocity is the same as the vehicle speed and
slip of one suggests that the linearised wheel velocity is zero
and the wheel  is  locked but the car  is  still  moving,  which
corresponds  to  the  vehicle  skidding.  The  installed  ABS
prevents  the  wheel  locking  and  improves  braking
performance. Control of wheel slip dynamics is a challenging
problem due to the highly nonlinear and complex nature of
the  tyre/road  interaction.  In  addition,  the  system  is  also
subject to external disturbances and parametric uncertainties.
Hence,  it  is required to design a controller which is robust
enough  to  overcome  these  uncertainties  and  disturbances.
These requirements have motivated the use of SMC control
methods for the ABS control problem.    

SMC belongs to a well-studied class of discontinuous control
and exhibits robustness to unmodeled dynamics, uncertainties
and  disturbances.  Y.  Oniz  et  al  (2009)  presented  an  ABS
controller  based  on  SMC  enhanced  by  grey-theory.  This
paper used a grey-predictor to estimate the vehicle velocity
and the wheel angular velocity. The proposed controller was
tested  with  a  quarter  car  model  and  two-wheel  lab
experimental set up to track a varying optimal slip trajectory.
It  produced  faster  convergence  and  better  noise  response
compared to traditional approaches. Wheel slip control using
engine torque control which employs moving sliding surfaces
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is  presented  by K. Chun et  al  (2004).  This only considers
tracking a constant optimal slip and it is also assumed to have
precise torque sensors. J. Song et al (2005) presented a SMC
controller  based on an integral  sliding surface design for a
HEV. E. J. Park et al (2006) presented a conventional SMC
for  EV  with  no  hydraulics  and  the  brakes  are  purely
controlled by an electromagnetic brake system. N. Hamzah et
al (2007) designed a traditional SMC without including the
dynamics  of  the  hydraulic  brake  and  presented  digital
simulation results with ABS. Design of a conventional SMC
based ABS controller with a Sliding Mode Observer (SMO)
is  discussed  by  Unsal  and  Kachroo  (1999).  The  SMC
controller is first designed to regulate the wheel slip and then
the  SMO is  designed  to  estimate  the  vehicle  velocity.   S.
Drakunov et al (1995) treated the SMC design in a different
manner than the approach based on the separation principle.
The problem is considered in two steps: first the optimal slip
is estimated and then this  is  treated as  a  tracking problem
relating to that  optimal value.  An adaptive SMC controller
for vehicle traction is considered by A. El Hadri et al (2002).
The relative velocity between the vehicle velocity and wheel
velocity  (named  slip  velocity)  is  used  as  the  controlled
variable  instead  of  the  relative  slip.  The  adaptive  law
combines conventional SMC and estimation of the tyre/road
friction coefficient. The overall system stability is proven by
the  Lyapunov  theory.  A  robust  SMC  controller  in
combination with Neural Networks (NN) is presented by Y.
Jing et  al  (2009).  M. Wu et  al  (2001) presented a method
integrating the SMC and Pulse Width Modulation (PWM) for
slip  control.  This  work  was  extended  and  compared  with
convectional SMC in M. Wu et al (2003) 

This paper is structured as follows. Section 2 presents  a full-
vehicle nonlinear model used for testing and a corresponding
quarter  car  model  that  is  used  for  controller  design.  An
optimal  slip  trajectory generator  is  presented  in  Section 3.
Then a conventional SMC controller design is implemented
in conjunction with a sliding mode differentiator to estimate
longitudinal velocity to improve the overall performance in
section 4. In section 5 the new TV-SMC controller design is
presented.  Finally concluding remarks and future  work are
addressed in section 6.

2. MATHEMATICAL MODELS

2.1  Nonlinear full -vehicle Model 

This model is based on a prototype vehicle and is used to test
the  designed  controllers  before  they  are  tested  with  the
industrial  simulation  platform  CarMaker  prior  to
experimental testing on a vehicle.
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The heave,  pitch and roll  motions of  the vehicle body are
included. The lateral and longitudinal velocities of the vehicle
are vx and  v  y, respectively and the yaw rate, φ̇. v  is the
vehicle velocity  and δ is the front wheel steering angle. The
lengths  Lf and  Lr refer to the longitudinal distance from the
centre of gravity to the front wheels and to the rear wheels,
respectively, and  Lw is track width.  Let the longitudinal and
lateral tire forces be given by Fx ijand Fyij , respectively. The
superscript  or subscript  i  =  fR  indicates the front and rear,
while the superscript or subscript j = lR indicates the left and
right tyres, respectively. 

  z̈s=
1

mb

[mg−K f z s
fL
−B f

˙z s
fL
−K f z s

fR
−B f

˙zs
fR
]                     (4)

     −[K r zs
rL
−Br

˙z s
rL
−K r zs

rR
−Br

˙zx
rR
]

 θ̈=
h f

Iθ
(F x

fL
+F x

fR
)cosδ+(F y

fL
+F y

fR
)sinδ−hr(F x

fL
+F x

fR
)

      −L f (K f z s
fL
+B f

˙z s
fL
+K f z s

fR
+B f

˙zs
fR
)                           (5)

      +Lr(K r z s
rL
−Br

˙z s
rL
−K r z s

rR
−Br

˙z x
rR
)

     ϕ̈=
h f

Iϕ
(F y

fL
−F y

fR
)sinδ+(F x

fL
−F x

fR
)cosδ

        +h r (F x
rR
−F x

rL
)−

Lw

2
(K f zs

fR
+B f

˙z s
fR
+K r z s

rR
+Br

˙zs
rR
)     (6)

            +
Lw

2
(K f z s

fL
+B f

˙z s
fL
+K r zs

rL
+Br

˙z s
rL
)

   where zs
fL
=z s+ I f θ +I wϕ /2 , z s

fR
= zs+ I f θ− Iwϕ /2,

              zs
rL
= z s− I f θ+ I wϕ/2, z s

r R= z s−I f θ−I wϕ /2 ,

              ˙zs
fL
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The  above  equations  describe  the  vertical  motion  of  the

vehicle.  Let  zs and  zs
ij denote  the  vertical displacement  of

the body at the centre and the corner,   respectively,  zr
ij
 the

road  profiles, θ is  the body pitch angle,  mb is  the mass of

the vehicle without the mass of the front and rear wheels mi
ij
 ,

FN  is  the normal tyre  force,  and  hi is  the vertical  distance
from the centre of gravity to the centre of the front and the
rear wheel at equilibrium. The spring and damping constants
Ki and  Bi  ,  respectively,  are  the  lumped  parameters
associated  with  the  passive  suspension  system.  The  state
vector of the model is given as
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2.2  Quarter Car Model

                                      Fig.1. Quarter car

Fig.1 Illustrates the free body diagram of a quarter car vehicle
model  or  single  wheel  model  of  a  vehicle  in  longitudinal
braking  motion.  This  model  captures  the  fundamental
dynamic characteristics of the system in a simple form and it
is  widely  used  by  control  engineers  and  researchers.  The
dynamic equations are given as ,

                               J ω̇=r F x−T b                               (8)

                               m v̇=−F x                                       (9)

                              F x=F zμ(λ)                                 (10)

J is the inertia of the wheel, ω is the angular velocity of the
wheel, Fx  and  Fz  are the friction and  normal force acting on
wheel  respectively,  v   is  the   vehicle  velocity,  Tb   is  the
braking torque, μ is the tyre-road friction coefficient and  λ is
the relative wheel slip which is given as follows

                             λ=
v−ω r

v
                                   (11)

Hence, the slip dynamic equation can be derived as follows
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3. OPTIMAL SLIP GENERATION

One  of  the  objectives  of  an  ABS system is  to  reduce  the
braking distance by maximizing the braking force. However,
the maximum braking force that  could be generated  varies
with the road conditions. The desired or the optimal slip to
provide  a  maximum  braking  force  is  dependent  upon  the
tyre-road friction coefficient. Hence, in reality,  optimal slip
varies     continuously with changing  road condition.   The
Magic Formula (MF) or Pacejka model is used to describe
the tyre-road interaction. It  is  a widely used tyre model to
calculate  the  steady-state  tyre  forces  and  moments,  H.  B.
Pacejka,  et  al  (2002).  It  is  a  semi-empirical  model  and  is
given as follows

y ( x)=D sin[C arctan Bx−E (Bx−arctan Bx )]     (13)

where 

B =  Stiffness  factor,  C =  Shape  factor,  D =  Peak  value,
E = Curvature factor. 

The maximum braking force will be generated at the optimal
slip λ

d . Therefore, one can find,
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)
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From the Magic formula, it follows that
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Therefore, the optimized slip can be expressed as
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The magic formula optimization is given in Fig.2.

                    Fig.2. Magic Formula Optimisation

The shape coefficients B,C,D,E of the Magic formula depend
on the road conditions and should be updated. Typically an
Extended  Kalman  Filter  (EKF)  is  used  to  update  the
coefficients. The corresponding equations are given below.

The system is defined as 

x k+1= f (ak , uk )+wk , ak+1=ak+ξk , z k=h(a k )+vk     (18)

For this system , the parameters ak can be estimated by means
of the following equations, 

          a k+1=a k , pk+1
―
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The measurement update:
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, and the parameters in this model are

defined as 
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4. SLIDING MODE CONTROL  

SMC design consists of two steps. First, a sliding surface is
designed  to  define  the  desired  closed  loop  system
performance. Secondly, a control law is derived to drive the
system  states  towards  the  designed  sliding  surface  and
subsequently ensure that the states stay on the surface. The
traditional  SMC controller   developed to track the optimal
slip  in  this  section  is  similar  to  the  one  presented  by  M.
Schinkel et al (2002) and E. Kayacan et al (2009).  

The  switching  function or  the sliding surface  is  chosen as
follows

                            s=λ−λd                                           (22)

This is because  λd is  the slip ratio that  provides maximum
friction force and the error equation of slip ratio is defined as

e=λ−λd , so the controller should try to minimize this
error. The sliding motion occurs when the states reaches the
sliding surface defined by s = 0. The control effort required,
on average,  to maintain the states on the sliding surface is
termed the equivalent control and here it is name equivalent
brake torque, Teq. The dynamics in the sliding motion  satisfy

                            ṡ=0=λ̇−λ̇ d                                   (23)

Then by substituting (13) in (23) and assuming the optimal
slip is constant, it follows that 

               0=1
v
[
−r
J
(F x r−T b)+(1−λ) v̇ ]                     (24)

Solving  for  the  equivalent  brake  control  torque, Teq  ,  it  is
obtained that

               T eq=F x r−(1−λ)
v̇ J
r

                               (25)

If  the  system states  are  not  on  the  sliding  surface,  or  the
system  experience  uncertainty  or  disturbances,  then  an
additional control torque Tbh  is required.  Tbh is determined by
the following reaching condition

                            s ṡ≤−η s│s│                                      (26)

where η is strictly positive design parameter. Using (22) and
(24), (26) can be rewritten as

                              s λ̇≤−η s│ s│                                 (27)

Substitution of (24) into (27) results in

s
v
(
−r
J
(F x r−(T beq−T bh sgn (s)))+(1−λ)v̇)≤−η s│s│  (25)

Solving (25) to obtain Tbh results in

                T bh=
vJ
r
(F+ηs)                                           (26)

where  F≥((1−λ)│ v̇−̂̇v│) and ̂̇v is  the  estimate  of
the vehicle longitudinal acceleration. This is estimated by  an
EKF. The overall torque Tb  can be expressed as

                     T b=T beq−T bh sgn (s)                                (27)

To  eliminate  the  chattering  problem  the  discontinuous
switching  function  is  replaced  by  the  continuous  function
given by

                            f (s)=
s

│s│+δ
                                 (28)

where δ > 0.Therefore, the total brake torque Tb  is given by

      T b=F x r−(1−λ)
̂̇v J
r
−

vJ
r
(F+η s) f (s)          (29)

The experimental vehicle used is a Delta car with two traction
Electric Motors (EMs) that have been re-purposed to facilitate
braking and slip control is shown in Fig.3.

                        Fig.3 Experimental Vehicle

The vehicle starts  to  accelerate from standing to  reach the
target test speed before entering the gravel road. When the
vehicle enters  the lane,  the  driver  stops accelerating.   The
braking is initiated by the passenger,  by pressing a virtual
button on a PC.

           Fig.4 Full car and quarter car model slip responses

                     Fig.5. Experimental slip response

   



The simulation results with the quarter car model and fully
nonlinear car model as well as experimental results are given
in  Fig.4  and  5  respectively. It  can  be  seen  that  the
experimental  results  exhibit  a  very  oscillatory  response
compared to both sets of simulation results. The differences
are thought likely to be caused by ineffective estimation of
longitudinal velocity v by EKF.

The use of a Sliding Mode Differentiator (SMD) to estimate
v is considered in the following subsection.

4.1 Sliding Mode Differentiator (SMD)

The  SM  differentiator  toolbox  developed  by  M.
Reichhartinger  and S.K.  Spurgeon   (2016)  is  used  here  to
estimate  the  longitudinal  velocity  and  the  results  are
compared with the response of the EKF. The differentiator
block is presented in Fig.8. The higher order SMD was found
to produce a better estimate of the longitudinal  velocity.  It
can  be  seen  in  Fig.9  that  the  higher  the  order  of  the
differentiator, the better is the response produced.

                             Fig.8. Differetiator Block 

     Fig.9 Responses obtained with higher orders of SMD

                Fig.10. EKF and SMD error in estimation of v

The velocity response from the SMD is compared with the
EKF and shown in Fig.10. The SMD produced a much better
result when compared to the EKF.

5. TV-SMC CONTROLER

The  SMC  controllers  presented  in  the  literature  for  ABS
operation in braking are frequently based on constant optimal
desired  slip  corresponding  to  particular  surface  conditions.

However, in operation this assumption does not hold and the
optimal  slip  changes  with  time.  This  motivates  including
time-varying optimal slip in the controller design paradigm.
Here the development of an SMC with a time-varying surface
to track an optimal trajectory during braking is considered.

The system described in (12) is written in the form of

                      ẋ= f (x)+bu , y=x=λ                           (30)

where f ( x)=−
1
v
(
F x

m
(1−λ)+

r F x

J
), b=

r
vJ

and u = Tb.

f(x) is  a nonlinear function and includes uncertainties which
should  be  estimated.  The  control  objective  is  to  track  the
desired slip trajectory,

                                 x d=λ d=[x1d , x2d ..... xnd ]
T

                                           (31)

So the slip error is expressed as

              e=x−xd=[ x1−xd ......... x n−xnd ]
T                  (32)

The new time-varying sliding surface is defined as

                   σ ( x: t )=( d
dt
+k )

(n−1)

e                               (33)

                    σ ( x : t)=ΛT e                                           

where  Λ=[k n−1
(n−1)k n−2 .. k] and  k is  a  positive

value  selected  based  on  the  road  conditions.  The  positive
definite Lyapunov function candidate is chosen as

               V (σ )=1
2
σ Tσ =1

2
eT ΛΛT e                              (34)

V (σ)  guarantees that the error state converges to the sliding 
surface if the following condition holds
                        V̇ (σ )=σ σ̇ <0                                     (35)
Choosing σ̇ =η sign(σ ) and η > 0, it follows
        σ̇ =Λ

T ė=ΛT
( f (x)+bu− ẋd)=−η sign (σ )         

(36)
Hence the control u is derived as follows 

u=(ΛT b)−1 [ΛT ẋd−Λ
T f̂ (x)−η sign(σ )] ,(ΛT b)≠0 (37)

where f̂ (x) is an estimate of nonlinear function f (x). If  
f(x)  is available, then σ̇ can be written as
                     σ̇ =−η sign(σ )−ΛT

( f (x )− f̂ ( x))               
(38)
                    σ̇ =−η sign(σ )−ΛT

(Δ f ( x))
where Δ f (x) is  the estimation error for the function f(x)
and it is assumed that it can be bounded by a known function 
F = F(x) and    ǀ f̂ (x) - f (x) ǀ  ≤ F. 
Differentiation of the Lyapunov function candidate with 
respect to time yields

V̇=(σ )=σ σ̇ =−ησ sign(σ )+σ ΛT
Δ f ( x)              (39)

V̇=−η│σ │+σ ΛT
Δ f (x)

The σ -dynamics can be made globally asymptotically stable 
from (39) if η is chosen as  

   



                             η>Λ
T
.Δ f (x) .                         (40)

Choosing η according  to  (40)  ensures  that  V̇ (σ )  <  0.
Hence, according to Barbalat’s lemma σ converges to zero in
finite  time  if  η is  chosen  large  enough  to  overcome  the
destabilizing effects of the unmodeled dynamics Δ f (x). 

To  prevent  chattering  caused  by  the  discontinuity  in  the
control  law,  the  sign  function  can   be  replaced  by  the
continuous  function  tanh(  σ  /φ  ),  where  φ  is  the  sliding
surface boundary layer thickness.  Reducing   φ increases the
nonlinear  gain,  while  increasing   φ introduces  a  filtering
effect  if  measurements  are noisy.   So the proposed control
law is given by

u=(ΛT b)−1
[Λ

T ẋd−Λ
T f̂ (x)−η tanh(σ /ϕ )]               (41)

The controller is tested with nonlinear full car model and the 
results are given below.

 Fig.11. TV-SMC and SMC varying slip tracking response

          Fig.12. Braking torques of TV-SMC and SMC

6. CONCLUSIONS

Many  different  control  approaches  have  been  previously
applied to the ABS problem. Most model based approaches
fail  to  exhibit  the  required  level  of  adaptability  and
robustness to varying road surface conditions in practice. The
proposed TV-SMC produced better results when compared to
a classical  SMC. However,  tuning of the TV-SMC is time
consuming and the positive value k is selected by linearising
the model at different local points corresponding to various
tyre-road conditions.  The proposed SMD produced a much
better estimate of  v when compared to the EKF. Testing of
both the TV-SMC and SMD on an experimental vehicle will
be  the  subject  of  future  work.   Furthermore,  sliding mode
observers  will  be  designed  to  estimate  the  longitudinal
vehicle velocity and friction.      
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