2,068 research outputs found

    Object Detection in High Resolution Aerial Images and Hyperspectral Remote Sensing Images

    Get PDF
    With rapid developments in satellite and sensor technologies, there has been a dramatic increase in the availability of remotely sensed images. However, the exploration of these images still involves a tremendous amount of human interventions, which are tedious, time-consuming, and inefficient. To help imaging experts gain a complete understanding of the images and locate the objects of interest in a more accurate and efficient way, there is always an urgent need for developing automatic detection algorithms. In this work, we delve into the object detection problems in remote sensing applications, exploring the detection algorithms for both hyperspectral images (HSIs) and high resolution aerial images. In the first part, we focus on the subpixel target detection problem in HSIs with low spatial resolutions, where the objects of interest are much smaller than the image pixel spatial resolution. To this end, we explore the detection frameworks that integrate image segmentation techniques in designing the matched filters (MFs). In particular, we propose a novel image segmentation algorithm to identify the spatial-spectral coherent image regions, from which the background statistics were estimated for deriving the MFs. Extensive experimental studies were carried out to demonstrate the advantages of the proposed subpixel target detection framework. Our studies show the superiority of the approach when comparing to state-of-the-art methods. The second part of the thesis explores the object based image analysis (OBIA) framework for geospatial object detection in high resolution aerial images. Specifically, we generate a tree representation of the aerial images from the output of hierarchical image segmentation algorithms and reformulate the object detection problem into a tree matching task. We then proposed two tree-matching algorithms for the object detection framework. We demonstrate the efficiency and effectiveness of the proposed tree-matching based object detection framework. In the third part, we study object detection in high resolution aerial images from a machine learning perspective. We investigate both traditional machine learning based framework and end-to-end convolutional neural network (CNN) based approach for various object detection tasks. In the traditional detection framework, we propose to apply the Gaussian process classifier (GPC) to train an object detector and demonstrate the advantages of the probabilistic classification algorithm. In the CNN based approach, we proposed a novel scale transfer module that generates enhanced feature maps for object detection. Our results show the efficiency and competitiveness of the proposed algorithms when compared to state-of-the-art counterparts

    Multilayer Markov Random Field Models for Change Detection in Optical Remote Sensing Images

    Get PDF
    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of ground truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches

    Hierarchical feature extraction: A stepwise approach to image classification

    Get PDF

    A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors

    Get PDF
    International audienceRemote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associatedmeasurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images

    Measuring trustworthiness of image data in the internet of things environment

    Get PDF
    Internet of Things (IoT) image sensors generate huge volumes of digital images every day. However, easy availability and usability of photo editing tools, the vulnerability in communication channels and malicious software have made forgery attacks on image sensor data effortless and thus expose IoT systems to cyberattacks. In IoT applications such as smart cities and surveillance systems, the smooth operation depends on sensors’ sharing data with other sensors of identical or different types. Therefore, a sensor must be able to rely on the data it receives from other sensors; in other words, data must be trustworthy. Sensors deployed in IoT applications are usually limited to low processing and battery power, which prohibits the use of complex cryptography and security mechanism and the adoption of universal security standards by IoT device manufacturers. Hence, estimating the trust of the image sensor data is a defensive solution as these data are used for critical decision-making processes. To our knowledge, only one published work has estimated the trustworthiness of digital images applied to forensic applications. However, that study’s method depends on machine learning prediction scores returned by existing forensic models, which limits its usage where underlying forensics models require different approaches (e.g., machine learning predictions, statistical methods, digital signature, perceptual image hash). Multi-type sensor data correlation and context awareness can improve the trust measurement, which is absent in that study’s model. To address these issues, novel techniques are introduced to accurately estimate the trustworthiness of IoT image sensor data with the aid of complementary non-imagery (numeric) data-generating sensors monitoring the same environment. The trust estimation models run in edge devices, relieving sensors from computationally intensive tasks. First, to detect local image forgery (splicing and copy-move attacks), an innovative image forgery detection method is proposed based on Discrete Cosine Transformation (DCT), Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. Using Support Vector Machine (SVM), the proposed method is extensively tested on four well-known publicly available greyscale and colour image forgery datasets and on an IoT-based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples. Second, a robust trust estimation framework for IoT image data is proposed, leveraging numeric data-generating sensors deployed in the same area of interest (AoI) in an indoor environment. As low-cost sensors allow many IoT applications to use multiple types of sensors to observe the same AoI, the complementary numeric data of one sensor can be exploited to measure the trust value of another image sensor’s data. A theoretical model is developed using Shannon’s entropy to derive the uncertainty associated with an observed event and Dempster-Shafer theory (DST) for decision fusion. The proposed model’s efficacy in estimating the trust score of image sensor data is analysed by observing a fire event using IoT image and temperature sensor data in an indoor residential setup under different scenarios. The proposed model produces highly accurate trust scores in all scenarios with authentic and forged image data. Finally, as the outdoor environment varies dynamically due to different natural factors (e.g., lighting condition variations in day and night, presence of different objects, smoke, fog, rain, shadow in the scene), a novel trust framework is proposed that is suitable for the outdoor environments with these contextual variations. A transfer learning approach is adopted to derive the decision about an observation from image sensor data, while also a statistical approach is used to derive the decision about the same observation from numeric data generated from other sensors deployed in the same AoI. These decisions are then fused using CertainLogic and compared with DST-based fusion. A testbed was set up using Raspberry Pi microprocessor, image sensor, temperature sensor, edge device, LoRa nodes, LoRaWAN gateway and servers to evaluate the proposed techniques. The results show that CertainLogic is more suitable for measuring the trustworthiness of image sensor data in an outdoor environment.Doctor of Philosoph

    Landslides

    Get PDF
    Landslides - Investigation and Monitoring offers a comprehensive overview of recent developments in the field of mass movements and landslide hazards. Chapter authors use in situ measurements, modeling, and remotely sensed data and methods to study landslides. This book provides a thorough overview of the latest efforts by international researchers on landslides and opens new possible research directions for further novel developments
    • …
    corecore