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Mangrich, Mark V., M.S., January 2001 Computer Science

Hierarchical Feature Extraction, A Stepwise Approach to Image Classification

Director: David W. Opitz

Scientists frequently use remotely sensed digital imagery as a tool to measure and 
quantify the effects of global change. Accurate interpretation of digital imagery can 
make the difference between a correct and incorrect decision regarding our environment. 
The current techniques for image analysis are: (1) too slow to effectively interpret the 
volume of existing imagery, and (2) generally unsuccessful at accurately identifying 
cartographic features at a level that meets the expectations of the earth science 
community. Simplifying the image analysis process is an emerging and pressing need; 
more imagery is becoming available and the cost of gathering the data is decreasing in 
price. Recent improvements in image interpretation are utilizing inductive learning 
algorithms. These systems show promise since they can process imagery quickly. 
However objects in images are very complex. It is difficult for inductive learners to 
identify complex features in an image with one model. The results are often incorrect 
and cluttered. We present an “assisted feature extraction system” that extends the simple 
one-pass inductive learning approach. The system applies a hierarchy of inductive 
learning algorithms that assist an analyst in interactively removing classification errors 
through a “data-driven” process. The basic idea is to tackle the classification task 
iteratively, reducing the problem into sub-problems that are more specific. Successive 
steps in the hierarchy eliminate extraneous concepts and leave the learner to focus on 
learning in an isolated problem area. The results are exciting since they show the 
hierarchical approach is more accurate than baseline single-pass machine learning 
algorithms at image classification.
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1. In t r o d u c t io n

Earth’s environment is constantly changing. To keep abreast of the changes, scientists 

frequently utilize information that is in some way referenced to a geographic location 

(called geo-spatial data). Making appropriate use of geo-spatial data often involves the 

use of a Geographic Information System (GIS). In the strictest sense, a GIS is a 

computer system capable of assembling, storing, and manipulating geographically 

referenced information. Most GIS experts would probably agree that a large percentage 

of the value in a GIS lies in the geographic accuracy of its data. Remotely sensed digital 

imagery provides huge quantities of data that are both geographically accurate and 

current. Unfortunately most GIS systems cannot effectively extract the desired 

cartographic features from the volume of available imagery. We present an “assisted 

feature extraction system ” based on a hierarchy o f inductive learning algorithms that 

allows a GIS analyst to iteratively improve the quality o f identifying cartographic 

features.

Feature extraction is the process of identifying the cartographic objects contained in an 

image, and is often performed together with image classification. Image classifiers 

separate features into distinct categories, reducing the feature space and facilitating object 

recognition in imagery. This is an important step in image analysis, but is often very 

time-consuming. Because the current demand for interpreted spatial data is unmet, 

simplifying the feature extraction task is a central problem in GIS. Analysts need new 

and innovative systems to extract information from imagery rapidly and with a high 

degree of accuracy.
1
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Until recently, accurate image classification was only possible through the tedious 

method of ‘heads up’ onscreen hand digitization. As you can imagine, manually 

digitizing mass amounts of data is unfeasible. Consequently, automated techniques have 

been created to make large jobs possible. Many of these automated classifiers rely 

heavily on statistical or probabilistic classification approaches, and often focus only on 

spectral reflectance identification. The problem with this approach is poor performance 

on features that are highly dissimilar or do not exhibit an obvious spectral reflectance.

For example, urban areas are relatively easy to identify spectrally in a scene, but spectral 

signature alone can't distinguish concepts such as the shape of a building or location of 

exit ramps along the freeway. These types of problems require spatial context. In 

addition, specialized feature finding algorithms only work for explicit features, and fail 

with varied parameters such as image resolution, change in season/time-of-day, 

geographic location, etc.

Inductive learning algorithms prove to be a viable alternative to current automated image 

classification processes (Bain, 2000; Burl et al., 1998; Maloof et al., 1998). Inductive 

learning is the approach of creating a program that is capable of generalization and can 

automatically improve its ability over time. Inductive learners take labeled examples and 

develop a model that predicts an output on unseen instances. The process begins with an 

initial training period, where the learner generates a hypothesis. Then the learner 

classifies the unseen input pixels in the image. Through empirical (real-world) examples, 

the learner actually generalizes at a level that custom fits the data, making inductive 

learning classifiers extremely adaptable to many problem types. In addition, these 

systems have the ability to recognize spatial patterns. Spatial pattern recognition permits
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more information to be interpolated into the decision process. This allows us to more 

closely simulate the way a human understands an image via spatial context. A final 

advantage of these systems is their ability to process imagery quickly. The inductive 

learning process described in this paper is 200 times faster than hand classification and 50 

times faster than the process of hand classification and commercial image processing 

techniques (Opitz, et al., 2000).

A noticeable tendency of inductive learners is to over predict the frequency of a feature in 

the image, sometimes called the “false positive effect” (Palhang, et al, 1997). We often 

find that the learner incorrectly includes in the classification superfluous features along 

with correctly identified features. The cause of this problem stems from the fact that the 

learner is attempting to make a prediction for the features in the scene with one model. It 

is a difficult task to identify all the nuances of a complex feature in a single classification. 

The learner tends to include excessive clutter in the results more often than missing an 

object. Most baseline inductive learning systems do not allow the user to remove error 

after the classification stage, and unlike the hierarchical approach, these systems simply 

make one attempt at classifying the image. The user is unable to return to the 

classification in order to reduce errors. Errors introduced by “single-pass” machine 

learning approaches are present in the final results. One way to address this problem is to 

apply a hierarchy of inductive learners. This way the user and the system work together 

to improve the classification of image features.

Hierarchical feature extraction can iteratively remove clutter in a stepwise fashion and 

iteratively retrieve missing objects. The process begins with an intial classification, and
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then we iteratively reduce one type of error to an acceptable level. At this point the 

system can use a new learning algorithm to retrieve the missed objects. We can quit and 

accept the classification at any time. The system assists the analyst in identifying the 

targets in a scene quickly in hierarchical passes. It simplifies the classification process 

because we first identify general patterns and later focus our attention on classifying 

more specific patterns. For instance, suppose we are looking for all occurrences of 

primary highways in an image. A single pass learner may not be capable of discerning 

the difference between a primary road and secondary road. On the other hand, a 

hierarchical learner may be able to identify primary roads after an initial pass where we 

find all the roads. Now we only look within the road results to find the primary roads.

In order to demonstrate the flexibility and accuracy of the hierarchical classification 

method, we studied three diverse classification tasks: (1) a forest fire bum site in eastern 

Montana, (2) vehicle identification in an urban landscape, and (3) building detection in a 

high-resolution image of the Presidio in San Francisco. Each of the three classification 

tasks uniquely demonstrates potential applications for the system. We gain a substantial 

improvement in accuracy over one pass machine learning classifiers. In addition, the 

system performs very well classifying wildfire burn areas in eastern Montana.

In order to show the efficiency of an “assisted” feature extraction system, based on a 

hierarchy of inductive learning algorithms, this thesis is organized into sections on the 

background of the image classification task, methodology of the task, and results of the 

same. Finally, Section 6 discusses conclusions and future work for the project.



2. B a c k g r o u n d

Image interpretation comes naturally to humans. We look at an image and immediately 

recognize our uncle, even if we have not seen him in years. However when asked to 

process thousands of images, the task quickly becomes overwhelming. That is why 

computers are used as a tool to help us interpret images. This section introduces and 

discusses the importance of image classification in the GIS community.

2.1. Image Classification Task

Image classification developed from the need to remove noise in geo-spatial data, 

allowing an expert to better interpret images. It evolved into quantitative techniques for 

automating the identification of features in a scene. Even before the launch of Landsatl 

in 1972, there has been great interest in the extraction of land use and land cover 

information from digital satellite remotely sensed data using digital image processing 

techniques (Lillesand and Kiefer, 1999). The objective of image classifiers is to 

categorize image features into classes or themes. The classified images produce thematic 

maps of the scene, which simplify image interpretation. The thematic maps are fed into a 

GIS database to be used by environmental decision-makers and GIS analysts. Figure 1 

illustrates an example of image themes that an analyst may use in classification. Image 

classifiers can also be used to extract specific objects from images. This type of feature 

extraction is called object or target recognition. Multi-spectral and hyper-spectral 

imagery contain bands of data recorded in explicit spectral

5
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zones. Pixels in these images have a numeric value or digital number (DN) for every 

band. Even the most simple color images displayed on a computer screen contain bands 

of data.

eature iype
Clear water

2 (green) Dense Forest with closed canopy
3 (yellow) Shrubs, Less dense forest
4 (orange) Grass
5 (cyan) Bare soil, built-up areas
6 (blue) Turbid water

Figure 1: Example of image classes or themes 

For example, a pixel in a simple color image has three DNs, one for the red spectral zone,

one for the blue spectral zone and one for the green spectral zone. Multi-spectral and

hyper-spectral images have many more bands than simple color images. These bands

describe the image in many levels or energy spectral zones. By looking at the data bands

wholly we can ‘see’ information invisible to the human eye. The power in this

representation is that if used correctly, the bands contain a wealth of information about

the image, and help to improve classification accuracy. However, in remote sensing

image analysis, the difficulty arises in the fact that a feature type is often a conglomerate

of objects or materials. As a result, the real world task of image classification is difficult

because: (1) two objects may look entirely different but comprise the same feature type,

and (2) spectral information alone is not enough to extract all features.

For example, suppose we want to identify all objects representing buildings in an image. 

It turns out that building detection is an extremely tough problem where a number of 

approaches have been tried (Gruen, 1997). One reason why is because the concept of
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"building" is a broad one, possibly ranging from irregular shacks to complex residential 

or commercial buildings all in the same image. Real world concepts like these are 

difficult because they are highly disjunctive. Direct application of commonly used image 

classifiers is problematic when processing these features, because the classifier must be 

capable of saying, “a building is a skyscraper” or “a building is a shack.” Confusion 

between skyscrapers and shack is often the undesirable result. Figure 2 illustrates a 

disjunctive feature ‘B ’ in a simple two-dimensional plane.

Disjunctive
Concept

Figure 2: The disjunctive classification task

A second example illustrates the difficulty of feature extraction using only spectral

information. Suppose our task is to discern the difference between asphalt roads, asphalt 

parking lots, and asphalt rooftops. The spectral signature of asphalt is very easy to 

identify, but spectral information alone makes it very challenging to separate these three 

similar concrete structures. In this case, space and context must be incorporated into the 

feature extraction process. The classifier must not look only at the spectral value for a 

pixel but also look at surrounding pixels to infer the notion of spatial perspective. Figure 

3 gives an example to illustrate the importance of incorporating spatial context in the 

classification process.
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(a) (b)
Figure 3: Two classification techniques for the same scene. Figure (a) uses spatial 

context, while Figure (b) does not.

Extracting complex multi-faceted features from an image made up of discrete pixels is a 

very challenging task. It is also a problem of great economic importance, because many 

real world decisions affecting each one us are made based on this information.

Depending on the resolution, a pixel in a remotely sensed image can also be an aggregate 

of different material substances present on the ground. Despite considerable research 

effort, image classification remains a difficult task. As the information content of 

imagery increases, we need quality tools to autonomously determine and classify 

complex aggregate features.

2.2. Current Techniques

The suite of image classification tools available to the GIS analyst is impressive. Such 

products include automated or semi-automated techniques like “unsupervised”,
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“supervised”, or “hybrid” approaches, and manual techniques such as the commonly used 

“heads up” hand digitization approach. Another option used to a lesser extent is to 

employ a computer specialist to write custom feature extracting software. These 

specialized algorithms can work great in context, but often perform poorly if the feature’s 

characteristics change. For instance, a road finding algorithm that works well with 

images taken in the spring may need to be radically modified to find roads in the same 

area in the winter. Many analysts are finding that custom written classifiers are not 

versatile and too time consuming to write. In this section we will discuss a few of the 

most commonly used techniques and their effectiveness.

2.2.1. Hand Classification
Hand digitization, or hand classification, is probably one of the most universal 

approaches to feature extraction, especially to object recognition. It is often the most 

accurate approach available to many GIS analysts. In this process, a trained specialist 

manually traces the outline of a feature by clicking points on the screen. The difficulty 

is this process requires a great deal of time and skill to visually interpret just a few digital 

images, even when they are already placed in an orthographic map projection. For many 

applications this laborious process is unfeasible for the following reasons:

• The process is simply too slow to meet the demand for processed imagery.

• There is a lack of trained analysts available to perform the task.

• The cost of paying an expert to do this work by hand is prohibitive.

• The resulting quality diminishes as the expert becomes tired.

These problems have caused general users of GIS information to dismiss the accurate

interpretation of imagery (Jensen and Cowen, 1997). To make matters worse, new high-
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resolution remote sensor imagery will be inundating the GIS community in the next few 

years. It has become obvious that hand digitizing techniques are incapable of accurately 

processing the volume information. So quantitative techniques for automating the 

identification of features in a scene must be used.

2.2.2. Automated Image Classification
Fortunately, we now have tools that can automatically classify images. Generally 

speaking, automated feature extraction techniques begin by, (1) defining the categories of 

interest (the features), (2) characterizing the categories using statistical analysis or 

inductive learning, (3) comparing each image pixel to the categories, making an 

assignment, (4) and finally, output the identified features. In this section three commonly 

used automated techniques are discussed.

Unsupervised Classification
Unsupervised classifiers group pixels in an image into classes based on the natural 

clusters present in the image values without the use of training data. The clustering 

methods create statistically defined spectral classes, of which the user has no prior 

knowledge. After the clusters are created, each pixel is classified based on statistical 

similarity to the clusters (Kramber and Morse, 1994). Finally the analyst identifies and 

labels each spectral class using existing information from ground maps, aerial photos, 

ground visits, or knowledge of the study area.

Since unsupervised classifiers do not utilize training data, the classes that result are based 

solely on the natural groupings in the image data. This can be convenient if the classes 

are not initially known, or if the analyst has trouble defining the classes in the image. 

However, problems arise in the following applications:
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• The spectral classes are not linearly separable.

• The feature of interest is highly disjunctive (i.e., comprised of pixels from 
different spectral classes).

• The feature lacks highly distinctive spectral characteristics.

An example that illustrates these problems is a situation in which the computer defined 

classes have little informational value, like sunlit versus shaded conifers, or conversely if 

the spectral classes correspond to both conifers and deciduous trees (Lillesand and 

Kiefer, 1999). The process of unsupervised classification is too inflexible to cope with 

extracting complicated features in today’s images.

Supervised Classification
Supervised classification methods use predefined training examples to generalize on 

unseen data. The process is often more accurate than unsupervised classification. The 

analyst begins by specifying the classes to be identified based on prior knowledge about 

the area shown in the image. The idea is to define the specific features of interest in the 

scene. Unlike the unsupervised classification process, the analyst is given the freedom to 

choose what classes are important. After the classes have been identified the analyst 

selects some representative pixels for training the classifier from each class. For 

example, let’s say we are looking for the feature “conifers”, we would identify examples 

of conifers in the scene and provide these as training data. During classification, each 

image pixel is assigned to a class based on either its statistical similarity to the training 

data, or the output of the inductive learning model.

One drawback to using the statistical approach to determining the similarity of a pixel to 

the training data is that it sometimes must assume a priori distribution of training pixels
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(Mather, 1999). Inductive learning models do not have this requirement. They can 

accept a wider range of types of input data. Supervised classification is not perfect, and 

to address some of these problems, various techniques for hybrid classification have been 

developed.

Hybrid Classification
The objective of hybrid classification is to improve the accuracy of purely supervised or 

unsupervised procedures. Hybrid classifiers leverage the good qualities from both 

unsupervised and supervised classification, and thereby improve performance. There are 

many types, but basically a hybrid technique uses either supervised, unsupervised or 

both. An example of a hybrid classification sequence might be:

1. Carry out unsupervised classification of an image

2. Merge the pixels into raster polygons.

3. Manually delineate "Areas of Interest" (AOIs)

4. Select training data within those AOIs.

5. Associate spectral class values with training data.

6. Apply supervised classification to raster polygons within AOIs only.

Note: The concept of AOIs is an important one that will be addressed in Section 3.

2.3. Machine Learning

Machine learning draws on concepts from many fields: statistics, artificial intelligence, 

biology, mathematics, and others (Mitchell, 1997). The number of algorithms that fall 

under the heading machine learning is astounding, as it is a highly researched field 

(Langley, 1996). This thesis focuses on a subsection of machine learning algorithms
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called inductive learners. They infer (approximate) an output from a set of labeled 

inputs, i.e., inductive learners take labeled training examples and generate a model that 

predicts an output from unseen instances. Given a sufficiently large set of training 

examples and a proper hypothesis space, an inductive learner can successfully generalize 

beyond the observed data. This is a fundamental theory of machine learning (Mitchell, 

1997). A learner’s hypothesis space is the set of all possible predictions that can be made 

by a learner, and is used to describe the capability of the learning model.

Practice is required to effectively set up the problem so that a computer learns a concept 

effectively. The following three points represent decisions that must be made when 

applying machine learning to a classification problem.

(1) Training examples must be chosen so that they are representative of the 

concept to be learned, and so that they characterize the problem to be 

solved. Keep the idea in mind that the learner is capable of drawing a 

general conclusion from concepts present in the training data. Be sure that 

the training examples represent the output that you are trying to achieve.

(2) An output function (or target) must be chosen carefully because it 

determines the kind of knowledge that will be learned and how well the 

learner will perform. For example, if the goal is to distinguish the 

difference between a bird and a giraffe, then it is not important to concern 

the learner with what type of bird and how many spots on the giraffe 

(Langley, 1996, pp.187).
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(3) The learning algorithm must be chosen with an appropriate bias for the 

job. Learning algorithms differ in the way in which they represent the 

hypothesis space and similarly the way in which they can represent target 

concepts. Each algorithm has its own bias. Without bias, the learner 

cannot generalize to anything outside the training set. Bias in machine 

learning is a good thing.

Our hierarchical feature extraction approach utilizes two inductive learning algorithms: 

artificial neural networks, and k-nearest neighbor. The artificial neural network (ANN) is 

a powerful learning algorithm that learns by adjusting weights in a network of 

interconnected web of nodes. After training, the inputs are fed into one side of the 

network, and a classification is given as output on the other side. The type of ANN we 

use is back-propagation. ANN learning is excellent for image classification because it is 

robust to noisy training data, and it can classify very quickly. Back-propagation is 

capable of creating a disjunctive output function, which is ideal for feature extraction. 

Figure 4 shows a general example of a 3 layer neural network with three hidden units.

IN2

IN5

IN4

IN3

INI

0 U T 2

0UT1

Figure 4: A 3 layer neural network with three hidden units.
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K-nearest neighbor (KNN) is a widely used instance based learning method that works by 

classifying unseen examples based on the labels of the closest ‘k’ training instances 

(Mitchell, 1997). In contrast to ANN, which builds an output function during an initial 

training stage, instance-based learning algorithms create an output function dynamically 

for each new instance to be classified. This approach allows the learner to handle 

disjunctive concepts easily, and results show KNN can often out perform other learning 

algorithms at image classification (Maloof et al. 1998, Bain 2000). A drawback to this 

accuracy (there always is one) is that it takes a long time for KNN to classify. We will 

discuss how hierarchical learning can be used to reduce the classification time of KNN 

and increase the overall speed of image classification in Section 3. For more information 

on these algorithms please see Artificial Neural Networks, Chapter 4 of Mitchell’s 

Machine Learning book, (Mitchell, 1997), and Instance Based Learning, Chapter 8 of the 

same book.

Problem Representation
How does one apply an inductive learner to the task of feature extraction? At its most 

basic level, we train a learner on a few example pixels, whose classification is known, 

and then classify every pixel in the image based on the prediction of the learner. This 

process is supervised classification. Pixels are inputs to the learning algorithm.

Ancillary data such as elevation can also be inputs. The output or target is the 

classification. When classifying multiple band images, a pixel’s input set to the learner is 

the set of spectral values. Each element in the set represents the pixel’s DN for a band.

If we have a 7-band image, in the simplistic approach, every pixel has an input set with 7 

numeric values.



16

As we talked about in Section 2, many of the traditional image classifiers rely heavily on 

spectral information within the image. One of the problems with these techniques and 

with the simplistic representation listed in the previous paragraph is absence of spatial 

context when classifying. The representation used in the hierarchical technique 

incorporates spatial perspective. If we classify a scene by simply looking at a single 

pixel, we must base classification solely on spectral pattern recognition. In contrast, 

spatial pattern recognition incorporates into the classification geometric shape, and 

spatial context. Image classifiers that utilize spatial pattern recognition expand the set of 

input values to mclude surrounding pixels in a sliding window. Figure 5 illustrates an 

example of a shding window; the center pixel’s input set includes the surrounding 8 

pixels for each band. This window is moved throughout the image, and is used to create 

the input set for every pixel.

Figure 5: Example of pixel values in bands
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All of the DNs in the input set describe the scene for that pixel spatially. This gives the 

reflectance value for the pixel spatial context to improve classification. The width of the 

sliding window can be fine-tuned to recognize shapes of different sizes. Unfortunately, 

as the size of the window gets large, the number of values in the input set can become 

overwhelming for the learner. In response to this problem, a convolution spatial filter 

that averages groups of pixels on the edges of the sliding window is often used to reduce 

the size of a pixel’s input set (Bain, 2000). Modeled after human foveal vision, center 

pixels in this approach stay in focus while surrounding pixels are blurred in the periphery. 

Besides reducing the size of the input set, foveal representations may decrease noise 

present at maximum resolution, and may make the model inherently more scale invariant. 

In short, the foveal convolution filter is an example of any number of pre-processing 

image operations that can be performed to improve classification (Seul, et al. 2000).

There are various ways to digitally manipulate images. Each technique pulls out certain 

image traits, and may improve the ability of a classifier to recognize a feature.



3. H ie r a r c h ic a l  A p p r o a c h

With any classifier there is the potential for two types of error: (1) false positives and (2) 

false negatives. False positives, also called errors of comission or “clutter”, occur when a 

classifier identifies an object incorrectly as the feature of interest. False negatives, or an 

error of omission, occur when an object is fully or partially missed by the classification. 

The goal of hierarchical feature extraction is to leverage a human’s impressive vision 

ability to improve classification results by mitigating clutter (false positives), and 

retrieving false negatives. The overall process iteratively narrows the classification task 

into sub-problems that are more specific and well defined. Figure 6 illustrates the 

hierarchical approach.

Classify Image

Clutter

Figure 6: Hierarchical Feature Extraction Process

We begin the hierarchical process the same as we approach any baseline inductive 

learning classification, i.e., select labeled examples for the feature being extracted, train 

the learner, and then classify every pixel in the image based on the learner’s prediction. 

At this point if we are not satisfied with the results, we can apply a hierarchy of learners 

to improve the classification. The lower two boxes in Figure 6 illustrate how we can 

iteratively reduce clutter and/or false negatives. The classification is improved in passes;

18
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each new pass is designed to remove one form of error from the results of the previous 

pass. ' he concept goes back to the machine learning decisions in Section 2.3, i.e., 

correctly choosing training examples to emphasize a learning task.

Clutter Mitigation
Clutter is the most common form of error in automated feature extraction The objective 

of clutter mitigation is to remove false positives, and thereby reducing the comission 

error. Thus, the learning task is to distinguish between false positives and correctly 

identified positives. The user generates a training set by labeling the positive features 

from the previous classification as either positive or negative The trained learner then 

classifies only the positive instances from the previous pass The negative instances from 

the previous pass are considered correct in clutter mitigation and are thus masked out 

An example of clutter mitigation is shown in Figure 7. The classifier creates clutter by

(a) (b) (c) (d)
Figure 7: The classification on a section of an image: (a) Original unclassified image, (b) The true vehicle

classification, (c) Clutter evident from Pass 1, (d) Clutter-mitigation results after Pass 2.

identifying small shadows as vehicles. The true classification of vehicles is given in 

Figure 7(b). Notice how the clutter in Figure 7(c) has been eliminated from the 

classification in Figure 7(d). We make a clutter mitigation pass between Figure 7(c) and 

Figure 7(d) to remove the small shadows from the classification.
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False Negative Retrieval
The intention of false negative retrieval is to focus the learner on finding missed objects 

in the image, and thereby reducing the error of omission. Here, the learning task is to 

distinguish between false negatives and correctly identified negatives. The user generates 

a training set by simply selecting missed objects; the remaining negatives are assumed to 

be true negatives. The new learning task is more narrowly defined since the variability of 

the positives should be reduced; however, clutter could easily be reintroduced, which 

could latci be mitigated.

Figure 8 illustrates the stepwise process of retrieving false negatives. Again, dark 

colored cars are very similar to small shadows. Notice in Figure 8(c) the dark vehicles 

are not classified. The training examples arc selected from non-vehicle pixels within the 

image and from unclassified dark cars visible in Figure 8(c). We make a false negative 

retrieval pass between Figure 8(c) and Figure 8(d). The learner is trained to only classify 

the dark colored vehicles. The results from the object retrieval pass are combined with

(a) (b) (c) (d)
Figure 8: Retrieving false negatives, (a) Original unclassified image, (b) true vehicle classification, (c) 

yellow arrows identify unclassified dark v ehicles (d) final hierarchical classification.
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the results from the previous pass via a logical ‘or’ function to give the results shown in 

Figure 8(d). The intent is to combine the results from both passes and pull dark vehicles 

into the classification.

Frequently in computer science, difficult problems are simplified to try to make some 

progress and gain insights, in hope that the insights can be then used to make progress on 

the original problem. As discussed in Section 2.3 above, choice of the target function 

characterizes the learner’s ability to generalize. The idea of our method is to order the 

learning task so that we attempt large general problems first and then manage the more 

complex, specific concepts. One of the reasons why the process works is because 

features are inherently nested inside other features, e.g., dark cars, red cars, blue cars, and 

green cars are all cars. A specific feature is often a subset of a broad general feature, and 

we exploit this observable fact in the system to help the learner improve the results. 

Remotely sensed images often exhibit this general to specific ordering of features 

(Woodcock, et. al.1992). Thus, a common difficulty with single pass classifiers is their 

inability to completely identify complex features with a single model. The hierarchical 

technique addresses one of the major challenges to image classification, the problem of 

identifying aggregate disjunctive features, a problem we outlined in section 2.1. If a 

feature is composed of aggregate parts, possibly too disjunctive to classify with one 

model, then by means of this system, we mitigate clutter or retrieve false negatives to 

simplify the complexity of the feature.

The hierarchical process dynamically creates what the literature calls “Areas of Interest” 

(AOI) or a “Focus Of Attention” (FOA) (Burl et al, 1994). AOIs defined in the clutter
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mitigation pass can greatly reduce the number of pixels to be classified in the image. 

Recall that KNN dynamically generates an output function with each new pixel to be 

classified. Classification can be a slow process as KNN builds a new prediction for every 

pixel. The AOIs reduce KNN classification time. We can use the accurate KNN 

algorithm without the high costs associated with full image classification using the 

algorithm.

The process is “data driven”, where as other statistically based supervised or hybrid 

classifiers often require an analyst’s prior knowledge about a domain. The hierarchy is 

applied based on the constraints of the data. For example, suppose an expert analyst has 

learned to group hay and grass together as one feature because they are spectrally similar, 

and because he/she knows this will improve the results. Unfortunately, this technique 

requires the knowledge that hay and grass are spectrally similar. The nice thing about 

hierarchical feature extraction is that it will automatically find a logical alignment of 

features based on the data, eliminating the guesswork of ordering the feature extraction 

task.



4. M e t h o d o l o g y

We choose three unique study areas to present our hierarchical classification system: (1) 

vehicle extraction in high-resolution imagery (2) building detection in an urban scene, 

and (3) classifying the severity of wildfire to vegetation. All three experiments 

demonstrate the systems ability to remove error and fine-tune the results. Moreover, the 

fire experiment is an excellent example of the system’s ability to tackle a real-world 

problem defined externally by the US Forest Service. In this section we begin by 

describing general methods used for each experiment. Then in each specific section, we 

outline the nature of the classification task and how we approach solving the problem.

General Methods
This section is a general description of the parameters for all three experiments 

performed in this thesis. Training examples are selected by hand with as much accuracy 

as possible via visually interpreting the image. The outputs from the inductive classifiers 

are real valued numbers normalized between 0 and 255. The analyst chooses a threshold 

anywhere in this range to fine-tune the classification, (e.g., any output above 155 is 

positive and anything below 155 is negative). We use the standard values of learning rate 

of 0.1, momentum of 0.9, and a single hidden layer topology for ANN (Mitchell, 1997). 

The KNN is set to k=5 neighbors with inverse squared real-valued distance weighting. A 

rule based aggregation post processing step called “merge” is used to form groups of 

contiguous pixels with the same classification. We use the MEGA merge version with a 

similarity matrix of 0-255. The interested reader can consult Ford, 1997 for more 

information about “merge.” The classification can be converted to an ordered set of



sling tool, ESRI Arc View GIS. Due to the 

jpecific methodology are separated in their

4.1. Vehicles Experiment

The vehicle experiment is conducted on images of the Presidio, a former military base in 

San Francisco. The scenes contain a near infrared (NIR) band along with red, green and 

blue (RGB) bands (shown in Figure 9 as grayscale). Here we are interested in 

demonstrating the ability of the system to improve on the single pass classification 

process.

Task
The classification task is simply to extract and classify all the vehicles in the image. As 

you can see from Figure 9, there are many forms of vehicles present in the scene. The 

concept “vehicle” is highly disjunctive. Vehicle recognition is a difficult task for two 

reasons: (1) all vehicles cannot be identified by ‘one’ unique spectral signature (e.g. red 

cars and blue cars are spectrally distinct), and (2) all vehicles do not have ‘one’ explicit 

shape (e.g., semi trailers are much larger than sport cars).

Specific Methodology
In the vehicles experiment, we follow the standard machine learning protocol of leaving a 

test set out of the learning process (Langley, 1996). Take two images ‘A’ and ‘B’, and 

make one of them the test image and the other the training image. Choose image ‘A’ to



25

train and then classify on image ‘B’. The classification on image ‘A’ is our training 

image results, and the classification on image *B‘ is our test image results, which shows 

the learning algorithm’s ability to generalize beyond the training set. We use a 5x5 

sliding window input pixel representation. The training set is comprised of pixels that 

actually represent a vehicle and false positive pixels. The ANN classifiers run for 35 

epochs.

Figure 9: An urban section of the Presidio area used in the vehicles experiments
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4.2. Building Detection Experiment

The building detection experiment was conducted on a residential area of the same 

Presidio imagery used in the vehicle experiments. Again the classifiers use the near 

infrared, red, green and blue bands contained in the image as inputs, with 8 bit pixel size. 

Figure 1 shows an area of the Presidio image used for this experiment.

Figure 1: A residential section of the Presidio area used in the building detection experiments.

Task
The classification task is simply to detect and classify all the buildings in the image. The 

image in Figure 1 is a good example of the complexity of the task. The buildings are 

oriented in many different directions and come in different sizes and shapes. One
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difficulty is the image contains concrete patios that look very similar to rooftops. This is 

a challenge for the learner.

Specific Methodology
In this experiment, we have two images; one a test set and the other a training set. The 

group of DN making up the inputs for a pixel is made up of a basic 3x3 sliding window, 

plus we use a foveal convolution filter to blur (average) eight 3x3 blocks surrounding the 

window. Counting the 4 input bands, this increases the cardinality of the input set from 

36 to 68. Figure 11 illustrates the use of the foveal input representation. The idea is to 

size the sliding window so that it is proportional to the size of the buildings in the image. 

Similar to the vehicles experiment we use a high number of training examples, and in the 

case of ANN, a low number of epochs.

3x3 3x3 3x3

3x3
1 1 1

3 x31 * 1
1 1 1

3 x3 3x3 3x3

Figure 11: The input pattern for building detection experiment. Eight 3x3 blocks 

surround the center 3x3 window. The cells pixels in each of the eight surrounding 

3x3 blocks are averaged to give one input per band.

4.3. Fire Experiment

This experiment presents a real world application of the system. Here we classify a 

Landsat-7 TM image of a wildfire burn site in eastern Montana taken on August 27, 2000
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a few weeks after a 15,000-acre wild fire. The “fires of 2000” left many people 

wondering exactly how many acres burned and the severity of the damage to existing 

vegetation. The United States Forest Service requested a thematic map of the Fort 

Howes fire complex that burned near Ashland Montana in late July, 2000. The burned 

area actually spanned portions of two different Landsat-7 TM scenes, Path 35/Row 28 

and Path 35/Row 29. Here we demonstrate the systems ability to find a difficult feature 

with out prior knowledge of how to classify a wildfire burn site. We are interested in 

using the hierarchical approach to improve the classification based on analyst interaction. 

The results were given to an image analyst for verification. He checked for errors of 

omission and commission using aerial photography. Any errors found were mitigated 

through the system.

Task
Our task is to thematically map the Landsat-7 image into the eight classes:

1. Unburned Tree

2. Mixed Burn Tree (mosaic burn)

3. Burned Tree

4. Burned Grassland

5. Unburned Grassland

6. Burned Shrub Land

7. Unburned Shrub Land

8. Barren

This study area is different from the previous two domains in that we had a sparse 

training set derived from air photo interpretation, and given to us by an expert analyst.
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There were about 30 points provided for each class and from these few examples we 

classified the entire image. The concept “Mixed Burn Tree” is complicated since it is an 

aggregate of pixels from the classes “Unburned Tree” and “Burned Tree”. The classifier 

must realize that Mixed Burn Tree is made up of some Burned Tree pixels and some 

Unburned Tree pixels, since wild fires can burn an area completely in one pixel and not 

bum the area in the next pixel. Making this task even harder is the fact that Burned Tree 

and Unburned Tree are in the classification task by themselves. When a class is 

comprised of other classes, some classifiers will label each pixel in mixed burn areas as 

either burned or unbumed. The learner makes these types of classifications by using 

spatial context. Unbumed Tree and Burned Tree are disjunctive concepts. Thus, the 

classifier must be capable of grouping these features into one feature. The concepts 

“Burned Grass” and “Burned Shrub” are also difficult to classify because both appear 

very similar at the 30-meter resolution of the Landsat-7 imagery. It is more difficult 

when the life forms are burned.

Specific Methodology
In this experiment, we do not follow the standard machine learning protocol of leaving an 

image out for testing since we only have one image, and few training examples. To 

increase the number of training pixels we expand each training point to cover 9 pixels 

(the center pixel plus 8 surrounding pixels). It is common for the features to be only 4 or 

5 pixels across. Therefore, we use a sliding window input of 3x3. The idea is to size the 

sliding window small enough to take in account spatial context yet not too large to drown 

out these possibly small features. All eight classifications were extracted with a separate 

learner. The learner with the highest prediction decided the class for a pixel.



5. R e s u l t s  a n d  D is c u s s io n

5.1. Vehicles Experiment
Figure 12 through Figure 14 show the training image results of the vehicle experiment. 

The images are laid out in consecutive order to illustrate how the hierarchical process 

progresses. The image in Figure 12(a) is an original unclassified section of the Presidio; 

each successive figure contains this same view. Something to note in this image is the 

similarity between small shadows and dark vehicles. The green classification in Figure 

12(b) represents a carefully performed hand classification of the vehicles present in the 

scene. This classification was used for training. There may be error in this hand 

classification. Figure 13(a) starts the sequence of machine classifications. The results in 

this image are from a “single pass” inductive learning classifier. The high amount of 

clutter is apparent. Such clutter is typical when single pass techniques attempt a difficult 

concept such as vehicle detection. Following the hierarchical sequence we apply a 

clutter mitigation pass. Figure 13(b) illustrates nicely how one additional pass can 

successfully reduce a large quantity of false positives; however, note there are some 

vehicles (mostly dark colored ones) that are excluded from the classification during this 

pass. In the third step we want to retrieve the missed vehicles. Figure 14(a) contains the 

results after an attempt at retrieving missed objects. This step retrieves dark vehicles 

missed in previous passes. Note the vehicles on the highway at the top of the image and 

the vehicles in the parking lot at the center of the image. Also note this step reintroduces 

clutter that was mitigated in the previous stage. The solution applies a second clutter 

mitigation pass to the image, providing us with our final classification in Figure 14(b).

30
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(a) (b)
Figure 12(a): An unclassified section of the Presidio Study Area. Figure 12(b): A 

carefully hand classified image delineating the vehicles in the scene.
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(a) (b)

Figure 13(a): The training image of a ‘Single Pass” ANN classification illustrates the 

clutter often present with single pass classifiers. Figure 13(b): The clutter 

mitigation results after pass 2 filtering. Notice how well errors of comission are

reduced.
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Figure 14(a): illustrates the results of Passl false negative retrieval performed after 

clutter mitigation. Figure 14(b): Final classification after four passes.



34

The number of true vehicle pixels in the Presidio Study Area (see Figure 12(b)) is 

relatively small compared to the number of non-vehicle pixels in the image. This can 

make accuracy reporting difficult since a completely unclassified image is 99% accurate. 

We present our results using Receiver Operating Characteristic (ROC) curves (Swets 

1988). These curves offset the effects of data that is highly negative. The true positive 

rate is the ratio of correctly classified positive pixels to the number of total possible 

positive pixels. The false positive rate is the number of false positives (pixels that were 

classified as vehicles but really were not) over the number of pixels that are not vehicles 

in the image. The ratios may be easier to see in Figure 15. All pixels in the image that 

are truly vehicles are in the “yes” column under the truth heading. These “vehicle pixels” 

may be either correctly classified (true positives) or incorrectly classified (false 

negatives). All of the pixels in the “no” column under the truth heading are considered 

truly non-vehicle (all the pixels un-classified in Figure 12(b)).

Truth

YES NO

True
Positive

False
PositiveYES

Prediction
False

Negative
True

Negative
NO

Figure 15: A confusion matrix

A ROC curve is often used in decision-making to compare the effects of adjusting a 

decision parameter. The outputs of a target function or decision model are plotted based 

on sliding this decision parameter. In this thesis ROC curves assess the effectiveness of 

each classification pass in the hierarchy. We adjust the threshold level on the real valued
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outputs of the learning model from 0 to 255. Figure 16 plots the test set results for the 

images in the vehicles study area. The same plot is shown in Figure 17. We scale the 

horizontal axis in Figure 17, to highlight the differences between each pass. The goal is to 

push the curve to the upper left comer of the plot area. That would indicate a low number 

of false positives and a high number of true positives. The ideal curv e has a false positive 

rate of 0 and a true positive rate of 1. We select the best results from each pass as input to 

the following pass For example in these results, ANNPassl+ANNPass2 is slightly more 

accurate than ANNPassl+KNNPass2. Therefore we show the next pass with ANNPassl+ 

ANNPass2. The peak in ANNPassl+ ANNPass2+ANNPassl is evident in Figure 17.

This plot shows the following succession: initial “single pass” classification (ANNPassl), 

clutter mitigation (ANNPass2), false negative retrieval (ANNPassl), and a final clutter 

mitigation pass (ANNPass2). The horizontal axis in Figure 17 is scaled to highlight the 

effects of applying classification passes. KNN on the final pass gives us the highest

Single Pass" ANN

AnnPassI +AnnPass2

0 6 AnnPassI KnnPass2

AnnPassI +AnnPass2+AnnPass1
0.4

■*- AnnPassI +AnnPass2+KnnPass1

AnnPassI +AnnPass2+AnnPass1 +AnnPass0.2

■* AnnPass 1 +AnnPass2+AnnPass1+KnnPass

0.2 0.4  0.6
False Positive Rate

Figure 16: ROC comparison of vehicle classifiers. This chart shows the relationship between passes
of the hierarchical learning system.
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Figure 17: ROC curves of vehicle classifiers where the horizontal axis is scaled due to the high
number of negative instances in the image.

true positive rate and the lowest false positive rate. Figure 18 compares the area under 

each ROC curve. Clutter mitigation (ANNPass2 or KNNPass2) passes tend to reduce the 

number of true positives while decreasing the false positive rate, hence the low values in 

the two initial clutter mitigation passes in Figure 18.
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Figure 18: Approximate area under ROC curves for the vehicles experiments by “Pass”
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5.2. Building Detection Experiment

In this experiment, we also compare the hierarchical classification process with a “single- 

pass” inductive learning classification of the same scene. Here, the single pass classifier 

has trouble discerning the difference between small concrete patios and rooftops. Unlike 

small patios, buildings in the image have a telltale ridgeline running down the center, and 

often have a shadow to one side. The clutter mitigation filter removes patios from the 

classification presumably by keying off these slight differences. Figure 19 through 

Figure 24 illustrate the training image results. Again, the images are laid out in 

consecutive order to illustrate the hierarchical sequence. The image in Figure 19 is an 

original unclassified section of the Presidio; each successive figure contains this same 

view.

Figure 19: An unclassified section of the Presidio Study Area containing buildings.
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Figure 20: A careful hand classification of buildings present in the Presidio scene.

Figure 21: Building detection results with ‘Single Pass’ inductive learning classifier (ANN).
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Figure 2 2 : Initial clutter mitigation filter. Notice the mis-classified building upper left.

Figure 23: False negative retrieval pass. Notice the correctly classified building in upper left.
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Figure 24: Final training image building detection classification, every building is identified 

This particular sequence of images is interesting since the outlying building in the upper

left hand comer of the scene is mis-classified in the initial pass. Subsequently, Figure 23

shows the correctly classified building after the object retrieval pass. The final

classification in Figure 24 contains low clutter and every building is identifiable.

Again results are shown as ROC curves„ Figure 25 relates the passes in the system. Our 

KNN final pass again provides the best classification (shown in yellow), and improves 

over the ‘‘Single Pass” ANN The ROC curves in Figure 25 are shifted to the right slightly 

more than the ROC curv es in Figure 15. This is due to the fact that in these experiments 

a greater percentage of the image pixels are true positives.
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■\— "Single Pass" ANN
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Figure 25: ROC curves of building classifiers. This chart shows the relationship between passes of the

hierarchical learning system.

The ROC curves in Figure 25 reflect a higher number of true positive pixels than in the 

vehicles experiment. Figure 26 compares the area under each ROC curve. The final 

clutter mitigation pass has the highest area under the curve for all the classifications on 

the image. It is interesting to note that the initial clutter mitigation pass greatly reduces 

the area under the “Single Pass” ROC curve. The clutter mitigation pass greatly reduces 

the number of false positives in the classification. Since there are so many false positives 

in the image the effect on the curve is minimal. As noted above, clutter mitigation can 

also reduce the number of true positives. Since there are not as many positive pixels in 

the image as negative pixels, a slight loss of true positives is magnified. The effect is a 

noticeable change in the ROC curve.
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Approximate Area Under ROC Curve for Building Experiments

□ "Single Pass" ANN

□ AnnPass 1+AnnPass2

□  AnnPass 1+KnnPass2

□ AnnPassI + AnnPass2+AnnPass1 

B  AnnPass 1+AnnPass2+KnnPass1

□ AnnPassI +AnnPass2+AnnPass1 
+AnnPass2

B  AnnPassI+AnnPass2+AnnPass1 
+KnnPass2

    __          I
Figure 26: Approximate area under ROC curves for the building detection experiments by “Pass”

Classification Speed vs. Classification Accuracy
With all image classifiers there are two primary concerns regarding the effectiveness of 

the feature extraction system: (1) time the analyst needs to aceomplish the classification, 

and (2) accuracy of the classification processes with respect to a careful hand 

classification or ground truth World-class analysts at NASA’s Jet Propulsion Laboratory 

(JPL) using a combination of commercial image processing techniques and hand 

classification also performed the building detection experiments given in this thesis.

JPL’s feature extraction technique is performed in three stages.

1. Register the Presidio imagery with IFSARE (Interfcrometric Synthetic Aperture 

Radar-Elevation) 2.5m-rcsolution images and DEM (Digital Elevation Model) 5- 

meter imagery to provide 3-D visualization of the image.

2. Combine the blue and near infrared bands to reduce shadow effects. Then apply a 

Photoshop "Poster Edges" filter to identify AOI.

3. Finally, manually delineate buildings by hand (In lies the majority of analyst time.)
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Since building tops look spectrally the same as streets and parking lots, JPL reported that 

the thematic classification presented difficult challenges. They noted that conventional 

multispectral classification techniques were therefore not very helpful in this respect.

The classification performed by analysts at NASA JPL required an entire man month 

(160 hours) to complete. Analyst time in our approach is the time it took us to setup the 

classification process for the images, run two clutter mitigation passes, run a false 

negative retrieval pass, and to fine tune the system. Our approach takes about 200 

minutes (3.3 hours) to classify the same image as JPL. The process described in this 

paper is 50 times faster than the NASA JPL classification (Opitz et. ah, 2000). This is 

particularly exciting since the accuracy of the hierarchical process is comparable to the 

hand classification work performed by the experts at JPL.

5.3. Fire Experiment

An expert analyst provided the quantitative measure of accuracy used in this experiment. 

Figure 27 shows the unclassified Landsat-7 image used in the Ashland fire study area 

with bands 4, 5, 3 assigned to red green and blue.. The image is shown in false color. 

Orange is living vegetation, and ironically the darker the green the more stressed the 

vegetation. Figure 27 shows the results of the system to identify the perimeter of the fire. 

Each successive pass brought the classification closer to the expectations of the analyst. 

The fire perimeter underwent a clutter mitigation filter and a false negative retrieval pass. 

An inductive learner initially classified each of the seven features in the image. Input 

from the analyst was then used to reduce error evident in this initial pass through either a 

clutter mitigation filter or a false negative retrieval pass. Through the use of high-
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resolution aerial photography, taken of the area soon after the fire, we assessed the 

accuracy of subsequent passes. Our analyst believes the classifications for the eight 

features are very accurate. He did notice slight errors, however, in the “Burned Shrub”, 

“Unbumed Shrub”, and “Barren” features, but these mistakes are easily cleaned-up by 

hand. The analyst is confident in the classification at a level consistent with the imagery 

available.

The concept “Mixed Burn” is a difficult feature to identify. We will use mixed burn to 

illustrate the hierarchical process for the other seven classes. Results from the initial pass 

erroneously identify senescent vegetation outside the burn perimeter as mixed burn. We 

use a clutter mitigation pass to remove these areas from the mixed burn classification. 

Figure 29 illustrates the effects of the clutter mitigation filter. The initial classification is 

shown in Figure 29(a).

The yellow circles in Figure 29(b) point out the effects of the clutter mitigation filter. A 

second clutter mitigation pass was not needed. The other seven features in the image 

were identified similarly. Only concepts unburned shrub, unburned tree, and unbumed 

grass required a second and final clutter mitigation pass. Interestingly, these concepts are 

complex because they comprise the highly disjunctive group of unburned features in the 

image. Recall that the learner’s prediction is in the form of real valued outputs in the 

range from 0-255, and that all eight classifications were extracted with a separate learner. 

The class with the maximum prediction decides the classification for each pixel.
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Figure 27: LandSat-7 TM image in false color, bands 5, 4, 3 (R, G, B) for fire experiments.
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Figure 28: The Ashland burn perimeter delineated by the hierarchical feature extraction system.
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(a) (b)
Figure 29: Clutter mitigation on “Mixed Burn” classification in the Ashland Fire

Study Area. Notice Figure 29(a) contains mis-classified areas outside the burn

perimeter. The areas circled in Figure 29(b) show the clutter mitigation results of

Pass 2 filtering.



6. F u t u r e  W o r k

This study opens up many avenues for future work. The technique of classifying an 

image with successive passes in a hierarchical fashion fosters ideas about other 

possibilities for using the hierarchical concept to apply passes that may specifically 

improve some aspect of the classification. Once Areas of Interest have been identified, 

we can apply numerous types of passes to improve results. They do not necessarily need 

to be learning classifiers. The following sub-sections briefly describe some novel ideas 

for improving classification robustness and accuracy.

6.1. Shape Matching

Shape matching algorithms fit a template form to the outline of an object’s classification 

in an image. The idea is to morph the shape of the learner’s classification to match the 

template. For example, notice the vehicles in the Presidio images are rectangular in 

shape, and the final machine classification identifies vehicles as blobs. The results would 

be more accurate and look better if they were rectangular in shape. This would work to 

mitigate clutter surrounding an object by cleaning up the learner’s classification. Road 

and building classifications could also be improved by matching a template shape as a 

final pass in classification hierarchy.
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6.2. Rotational and Size Invariance

A challenging aspect of classifying linear features such as roads or sidewalks is inferring 

an orientation that is not represented in the training examples. The problem is that when 

the examples only contain sidewalks oriented vertically but the image contains horizontal 

sidewalks the learner will often only correctly classify the horizontal sidewalks. 

Rotational or Size Invariance either rotates or scales the training examples to key the 

learner in on the fact that these features may be of different sizes or orientations. This 

technique could be applied as an early pass in the hierarchical process.

6.3. Temporal Pattern Recognition

Temporal pattern recognition allows the learner to identify a cartographic feature present 

in an image taken at any time of the year or time of the day. The basic idea is to create a 

learner that can make a prediction even though slight temporal changes may naturally 

occur within the scenes to be classified. The learner needs to be capable of recognizing 

temporal patterns as well as spatial and spectral patterns because, for example, the same 

feature may look entirely different in the summer than it does in the winter. A 

cartographic feature found in multiple images taken over time is a highly disjunctive 

concept. The learner must be capable of making a prediction even though the object may 

be able to change over time. Recognizing a feature in any weather condition and at any 

time of the day has many real applications, but it is a difficult task.



7. C o n c l u s io n s

The goal of this study is to increase the accuracy of current image classification 

techniques through the use of a hierarchy of inductive learners. In this thesis we argue 

for the importance of extracting objects from digital images, outline reasons why the task 

is so difficult, and present a technique using a hierarchy of inductive learning algorithms 

to tackle the problem. Our approach is relatively simple, much quicker than traditional 

techniques, and improves the results of other automated feature extraction systems.

Semi-automated systems like the process described in this thesis must keep the amount of 

analyst input low, while using enough input and the right kind of information to guide the 

automated processes. The hierarchical system has this balance because it allows us the 

freedom to focus on areas where the classification task is difficult and to ignore areas that 

are easily recognized. The user quickly moves through the image to dynamically 

delineate areas of interest, simplifying the overall classification task. Although this 

technique is not a cut and dried solution, the hierarchical approach shows promise due to 

its ability to increase accuracy in iterative passes and narrow the classification task in the 

process. We show some exciting and positive results over current techniques more 

accurate, and can be faster than currently used manual and automated techniques.
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