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aDistributed Events Analysis Research Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences
H-1111 Budapest, Kende u. 13-17, Hungary, E-mail: lastname.firstname@sztaki.mta.hu

bInstitute of Informatics, University of Szeged, 6701 Szeged, P. O. Box 652, Hungary, Email: kato@inf.u-szeged.hu
cINRIA, AYIN team,2004 route des Lucioles, 06902 Sophia Antipolis, France, Email: josiane.zerubia@inria.fr

Abstract

In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change

detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our pur-

poses are twofold. On one hand, we highlight the significance of the focused model family and we set them against various

state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class

comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of ground truth

generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand

we also emphasize the differences between the three focused models at various levels, considering the model structures, feature

extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quan-

titative comparison results using principally a publicly available change detection database which contains aerial image pairs and

Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions,

if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of

applications, considering the different usage options of the three approaches.
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1. Introduction

Automatic evaluation of aerial image repositories is an im-

portant field of research, since periodically repeated manual

processing is time-consuming and cumbersome in cases of high

number of images and dynamically changing content. Change

detection is an important part of many remote-sensing applica-

tions. Some country areas are scanned frequently (e.g. year-

by-year) to spot relevant changes, and several repositories con-

tain multitemporal image samples for the same area. Through

the extraction of changes, the regions of interest in the images

can be significantly decreased in several cases, helping applica-

tions of urban development analysis, disaster protection, agri-

cultural monitoring, detection of illegal garbage heaps or wood

cuttings. Beside being used as a general preliminary filter, the

obtained change map can also provide useful information about

size, shape or quantity of the changed areas, which could be ap-

plied directly by higher level event detector and object analyzer

modules.

However, the definition of “relevant change” is highly task-

specific, leading to a large number of change detection meth-

ods with significantly different goals, assumptions and applied

tools. Even for a given specific problem the data comparison

may be notably challenging, considering that due to the large

time lag between two consecutive image samples, one must ex-

pect seasonal changes, differences in the obtained data quality

and resolution, 3D geometric distortion effects, various view-

points, different illumination, or results of irrelevant human in-

tervention (such as crop rotation in the arboreous lands).

1.1. Related work

The change detection algorithms in the literature can be

grouped based on various aspects. First, they may follow ei-

ther the Post-Classification Comparison (PCC) or the direct ap-

proach. Second, depending on the availability of training data,

they can be supervised or unsupervised. Third, they may real-

ize region based (e.g. detecting new forest regions), or object
based (e.g. searching for changed buildings) scene interpreta-

tion.

1.1.1. PCC versus direct approaches
PCC methods (Liu and Prinet, 2006; Castellana et al., 2007;

Zhong and Wang, 2007; Szirányi and Shadaydeh, 2014) seg-

ment first the input images into various land-cover classes, like

urban areas, forests, plough lands etc. In this case, changes

are obtained indirectly as regions with different class labels in

the different time layers. On the other hand direct methods

(Wiemker, 1997; Bruzzone and Fernandez-Prieto, 2002; Bazi

et al., 2005a; Ghosh et al., 2007; Benedek and Szirányi, 2009;

Singh et al., 2014) derive a similarity-feature map between the

multitemporal input images (e.g. a difference image (DI) or a

block correlation map) and then they cluster the feature map
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to separate changed and unchanged areas. A straightforward

advantage of PCC approaches is that besides change detection,

they classify the observed differences at the same time (e.g. a

forest region turns into a built-in area). A difficulty with re-

gion comparison is that, in several cases we must rely on noisy

cluster descriptors during the classification step, and the exact

borders of the clusters in the images may be ambiguous. For

this reason, if we apply two independent segmentation algo-

rithms for the two images, the segmented regions may have

slightly different shapes and sizes, even if the image parts have

not changed in fact. As possible solutions, the segmentation

quality can be enhanced by interactive segmentation of the im-

ages (Benedek and Szirányi, 2007) or exploiting estimated class

transition probabilities (Castellana et al., 2007; Liu et al., 2008).

Since direct methods do not use explicit land cover class

models, the change detection process does not require defining

various segmentation classes with reliable feature models. In

addition, in several applications ‘intra-class’ transitions - which

are ignored by PCC methods - may also be worth of attention:

e.g. inside an urban region, it could be necessary to detect de-

stroyed or re-built buildings, relocated roads etc. On the other

hand, due to lack of exact change definition, it is much more

difficult to describe the validity range of these models.

1.1.2. Supervised and unsupervised models
Another important point of view is distinguishing supervised

(Serpico and Moser, 2006; Castellana et al., 2007; Chatelain

et al., 2008; Fernandez-Prieto and Marconcini, 2011) and unsu-
pervised techniques (Wiemker, 1997; Melgani and Bazi, 2006;

Carincotte et al., 2006; Ghosh et al., 2007; Qi and Rongchun,

2007; Patra et al., 2007; Bovolo et al., 2008; Moser et al., 2011;

Subudhi et al., 2014). Since unsupervised methods do not use

manually labeled ground truth data, they usually rely on prior

assumptions (Fung and LeDrew, 1988), such as the area of un-

changed regions is significantly larger. In that case, changes

can be obtained through outlier detection (Hodge and Austin,

2004) or clustering (Xu and Wunsch, 2005) in the feature space.

However, as shown by Benedek and Szirányi (2009), in opti-

cal images the feature statistics for the different classes may be

multi-modal and strongly overlapping, therefore unsupervised

separation is usually more challenging than in models using

multispectral measurements (Bruzzone and Fernandez-Prieto,

2002; Bovolo et al., 2008). Especially, atmospheric and light

variations may result in artifacts for change detection on optical

images (Castellana et al., 2007). On the other hand if training

data is available, we can gain a significant amount of additional

information for the classification process. In many real appli-

cations, the image repositories contain large batches of images

from the same year taken with the same quality, camera settings

and similar seasonal and illumination conditions, where it can

be admissible to prepare ground truth from a minor part of the

available data.

1.1.3. Targeted scenarios
Differences between approaches can also be taken regarding

the exact application goals and circumstances. Several methods

deal only with either agricultural (Kumar et al., 2012) or urban

(Liu and Prinet, 2006) territories, moreover, they often focus on

a specific task like built-up area extraction (Lorette et al., 2000;

Zhong and Wang, 2007; Benedek and Szirányi, 2007), disas-

ter assessment after earthquakes (Kosugi et al., 2004), floods

(Martinis et al., 2011; Wang et al., 2013), and mine counter-

measure in oceans (Shuang and Leung, 2012). Besides region

level change monitoring, a number of approaches consider the

change detection task as a problem of training-based object

recognition, for example Liu and Prinet (2006) proposed ap-

plications for building development monitoring. However the

latter approach can only be used if the changes can be inter-

preted at object levels, where we need a precisely restricted en-

vironment.

1.2. Markovian change detection models
As the above discussion already foreshows, visual change de-

tection is in itself a largely diversified topic, and giving a com-

plete overview would extend the scope of this article. Therefore

we introduce various specifications for our investigations in this

comparative paper: we limit our survey to region level non-

object-based approaches working on optical remote sensing im-

ages. Among the different modeling tools we focus on the com-

parison of Multilayer Markov Random Field based techniques.

At the region level of change detection, Markov Random

Fields (MRFs) (Kato and Zerubia, 2012) are widely used tools

since the early eighties (Kalayeh and Landgrebe, 1986; Sol-

berg et al., 1996; Bruzzone and Fernandez-Prieto, 2000). MRFs

are able to simultaneously embed a data model, reflecting the

knowledge on the measurements; and prior constraints, such as

spatial smoothness of the solution through a graph based image

representation, where nodes belong to different pixels and edges

express direct interactions between the nodes. Although a num-

ber of the corresponding MRF based state-of-the art models

deal with multispectral (Bruzzone and Fernandez-Prieto, 2002;

Ghosh et al., 2007; Xu et al., 2012; Chen and Cao, 2013; Ghosh

et al., 2013; Subudhi et al., 2014) or SAR (Melgani and Ser-

pico, 2003; Bazi et al., 2005b; Carincotte et al., 2006; Gamba

et al., 2006; Martinis et al., 2011; Wang et al., 2013; Baselice

et al., 2014) imagery, the significance of handling optical im-

ages is also increasing (Zhong and Wang, 2007; Benedek and

Szirányi, 2009; Moser et al., 2011; Szirányi and Shadaydeh,

2014; Hoberg et al., 2015).

Since conventional MRFs show some limitations regarding

context dependent class modeling, different modified schemes

have been recently proposed to increase their flexibility. Triplet

Markov fields (Wang et al., 2013) contain an auxiliary latent

process which can be used to describe various subclasses of

each class in different manners. Mixed Markov models (Frid-

man, 2003) extend MRFs by admitting data-dependent links be-

tween the processing nodes, which enables configurable struc-

tures in feature integration. Conditional Random Fields (CRFs)

directly model the data-driven posterior distributions of the seg-

mentation classes (Chen et al., 2007; Hoberg et al., 2012, 2015).

1.3. Multilayer segmentation models
We continue with the discussion of feature selection. For

many problems, scalar valued features alone may be weak to
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model complex segmentation clusters appropriately, thus the

integration of multiple observations is a crucial issue. In a

straightforward solution called observation fusion, the differ-

ent feature components are integrated into an n dimensional

feature vector, and for each class, the distribution of the fea-

tures is approximated by an n dimensional multinomial density

function (Clausi and Deng, 2005; Kato and Pong, 2006). For

example, one can fit a Gaussian mixture to the multivariate fea-

ture histogram of the training images (Kato and Pong, 2006),

where the different mixture components correspond to the dif-

ferent classes or subclasses. However, in the above case, each

relevant prototype of a given class should be represented by a

significant peak in the joint feature histogram, otherwise the

observation fusion approach becomes generally less efficient.

The multilayer segmentation models can overcome the be-

fore mentioned limitation (Kato et al., 2002; Reed et al., 2006;

Jodoin et al., 2007; Benedek et al., 2009). Here the layers corre-

spond usually to different segmentations which interact through

prescribed inter-layer constraints. The model is called deci-
sion fusion if the layers are first segmented independently by

e.g. MRFs, thereafter, a pixel by pixel fusion process infer-

ences purely on the obtained labels (Reed et al., 2006), followed

by a smoothing step. We can also mention here Factoral MRF

models (Kim and Zabih, 2002) with multiple interacting MRF

layers, or the fusion-reaction framework proposed by Jodoin

et al. (2007), which implements a sequential process of over-

segmentation and label fusion.

A multilayer MRF framework has been introduced in Kato

et al. (2002), where a single energy function encapsulates all

the constraints of the model, and the result is obtained by a

global optimization process in one step. Here, in contrast to

decision (Reed et al., 2006) or label (Jodoin et al., 2007) fusion,

the observed features are in interaction with the final label map

during the whole segmentation process.

1.4. Outline of the paper

Different multilayer MRF techniques have recently been pro-

posed for change detection, which differ in both feature selec-

tion and in model structure. Since the literature of multilayer

MRFs is not as deeply established as in the single-layer case, it

is often not straightforward to decide from the application point

of view, which are the advantages and drawbacks of the differ-

ent approaches in a given situation.

The goal of this paper is to present a comparative study about

three multilayer MRF techniques, developed earlier in the re-

search laboratories of the authors. Sec. 2 provides an overview

on the three methods, focusing briefly on the similarities and

differences between them. In Sections 3-5, each method is in-

troduced following the same presentation scheme so that the

Reader can follow the main similarities and differences in the

model structures, used features and the working constraints.

Sections 6. and 7. cover the optimization and parameter set-

tings issues, respectively. In the experimental Sec. 8, quantita-

tive and qualitative comparison will be provided relying princi-

pally on the SZTAKI AirChange Benchmark Set (Benedek and

Szirányi, 2009).

2. Overview on the three compared models

In the paper, we compare three state-of-the-art multilayer

MRF techniques for change detection, which have been devel-

oped for optical remote sensing image analysis. For a graphical

comparison, Figs 1-3 show the structures and the processing

workflows of the three models. The main properties of the dif-

ferent techniques are summarized in Table 1.

The Multicue MRF model (L3MRF, Fig. 1) (Singh et al.,

2014) integrates the modified Histogram of Oriented Gradients

(HOG) and graylevel difference (GLD) features into the orig-

inal Multi-MRF structure framework proposed by Kato et al.

(2002), where two layers correspond to the two feature maps

and the third one is the final segmentation layer. The class

models and the inter-layer interaction terms are both affected

by observation dependent and prior constraints, while within a

given layer the prior Potts terms (Potts, 1952) ensure a smooth

segmentation.

The second discussed method is the Conditional Multilayer
Mixed MRF (CXM, Fig. 2) proposed by Benedek and Szirányi

(2009). CXM has - in a first view - a similar structure to

the L3MRF, however, we can find a number of key differ-

ences. First, CXM is a multilayer implementation of Mixed

Markov models (Fridman, 2003), which uses besides regular

MRF nodes the so called address nodes in the graph. Address

nodes can link regular nodes in a flexible way based on vari-

ous data- and prior conditions, ensuring a configurable graph

structure. Second, in CXM the feature maps only affect di-

rectly the individual graph nodes, while the interaction terms

implement purely prior label fusion soft-constraints. Third, the

applied features are also different from L3MRF. In CXM, the

change detection result is based on two weak features: global

intensity co-occurrence statistics (ICS) and block correlation;

while as a third feature, a contrast descriptor locally estimates

the reliability of the weak change descriptors at each pixel po-

sition.

Regarding the targeted application fields and the expected

image inputs, the scopes of the L3MRF and CXM model are

quite similar. Both work on grayscale inputs and their output

is a binary change mask. As practical differences, CXM may

handle better scenarios when large radiometric differences may

occur between unchanged regions, while L3MRF is quicker and

less sensitive to the presence of registration errors.

While the L3MRF and CXM models have a similar struc-

ture, the Fusion-MRF Model (FMRF, Fig. 3) proposed by

Szirányi and Shadaydeh (2014) follows a significantly differ-

ent approach. First, while L3MRF and CXM are direct tech-

niques working without any land cover class models, FMRF is

a Post-Classification Comparison (PCC) method which simul-

taneously implements an adaptive segmentation and change de-

tection model for optical remote sensing images. Even the con-

cept of layer is significantly different here. While in the first two

models the different layers correspond to different image fea-

tures, in FMRF each layer represents given input image; Thus

’multi-layers’ refers to multi-temporal images.

As another important difference between the models, FMRF

has been designed to compare several images (two or more)
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Method L3MRF CXM FMRF
Model type Multicue MRF Mixed Markov model Fusion-MRF

Change category Direct approach Direct approach Post-Classification Comparison

(PCC)

Number of input images 2 images 2 images ≥2 images

Number of layers 3 4 equal to the num. of input images

Used image channels gray level intensity gray level intensity Luminance and color channels

Key image features Histogram of Oriented Gra-

dients, gray level difference

joint intensity histogram,

block correlation, variance

color, texture, multi-structure

Inter layer interactions data- and label fusion terms purely label fusion segmentation in the joint multitem-

poral image domain, CRA similar-

ity calculation

Parameter estimation supervised training supervised training unsupervised or supervised

Optimization Graph cut Modified Metropolis Graph cut

Table 1: Main properties of the discussed three models.

from different time instances, while the L3MRF and CXM

methods can compare always two multitemporal images. It is

also possible to use the FMRF with an input of an image pair,

but the use of three or more images are generally preferred to

enhance cluster definitions depending on the quality of the im-

ages and the degree of similarity between these images. The

FMRF method applies clustering on a fused image series by us-

ing the Cluster Reward Algorithm (CRA) (Inglada and Giros,

2004) as cross-layer similarity measure, followed by a multi-

layer MRF segmentation (see Fig. 3). The resulted label map

is applied for the automatic training of the single layers. After

the segmentation of each single layer separately, changes are

detected between the single label-maps.

Although the selected techniques have been mainly tested on

optical images, no specific information of image sources is pre-

scribed. However, since L3MRF and CXM are based on sin-

gle channel inputs, they typically expect intensity images pro-

vided by airborne or spaceborne sensors. On the other hand, the

FMRF method can deal with multi-modal as well as multispec-

tral images. Here during the tests with FMRF, the chrominance

(i.e. color) channels of the images are also exploited, while in

the original paper (Szirányi and Shadaydeh, 2014), the Reader

may also find an example for fusion with an infra-red image.

There are also differences in the applied MRF optimization

techniques, which affect the quality and computational speed

of the change detection process. Due to the sub-modular struc-

tures of the L3MRF and FMRF models, the energy function can

be optimized by the efficient graph-cut based technique. On the

other hand, the complex structure components of CXM yield

that the energy optimization process is more complicated, and

the computationally more expensive simulated annealing algo-

rithm should be adopted.

As for the use of training data, L3MRF and CXM are super-

vised models, i.e. the feature model parameters are set using

training regions. On the other hand, the FMRF model may be

used both in an unsurpervised and in a supervised way upon the

availability of manually labeled sample regions.

Regarding the necessary image resolution, our experiments

showed that a minimum of 0.5m/pixel is expected, if we want to

highlight e.g. built-in changes in semi-urban areas. There is no

explicit upper limit for the image resolution, since the focused

techniques use pixel-level and block-based features, and the

sizes of blocks can be upscaled for photos with larger resolution

(some experiments with 1.5m resolution images were presented

in (Benedek and Szirányi, 2009)). For the FMRF model, image

resolution affects the accuracy of detected changes as discussed

in Sec. 7.3.

Although the discussed three models are able to support var-

ious applications, they also face some joint limitations. First,

since the methods are purely based on pixel level or rectangular

block-based image features, only very limited amount of ge-

ometric object information can be incorporated in the models.

Therefore at object level, geometric approaches such as Marked

Point Processes (Benedek et al., 2012) could be used more

efficiently. Secondly, since the outputs are binary change/no

change masks, the techniques are directly not suitable for high-

lighting specific kinds of changes or novelty detection (such as

distinguishing new and demolished buildings). However, there

are some indirect options for change classification. Due to the

nature of the PCC approach, if we train the supervised FMRF

with semantically meaningful training classes (such as built-in

vs. natural areas), we can provide a classification of the changes

through the different class transitions. We can also cluster the

changes in the CXM model in a limited way, by highlighting

only the ICS based (homogeneous regions) or the correlation

based (textured urban areas) differences.

3. Change Detection with the Multicue MRF Model

In Singh et al. (2014), a Multicue Markovian model has been

proposed for change detection in registered optical aerial image

pairs with large time differences. A Multicue Markov Random
Field takes into account information at two feature layers from

two different sets of features:

• difference of a modified Histogram of Oriented Gradients

(HOG) and

• graylevel (GL) difference
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Figure 1: Structure of the L3MRF model and overview of the Multicue change detection process. Column (a): registered input images and ground truth change

mask for validation, Column (b): feature maps, Column (c): Structure diagram of the L3MRF model, Column (d): Output change mask

Figure 2: Structure of the CXM model and overview of the segmentation process. Column (a): inputs and and ground truth, Column (b): g(.), ν(.) and c(.) feature

maps extracted from the input image pair. Column (c): Structure diagram of the CXM model. (note: the inter-layer connections are only shown regarding three

selected pixels), Column (d): Output label maps of the four layers after MMD optimization. The segmentation result is obtained as the labeling of the S ∗ layer.
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Figure 3: Structure of the FMRF model and workflow of the implemented Post-Classification Comparison process.

The third layer provides the final change detection by a prob-

abilistic combination of the two feature layers via MRF inter-

actions. Thus we integrate both the texture level as well as the

pixel level information to generate the final result. The pro-

posed model uses pairwise interactions which also ensures that

sub-modularity condition is satisfied. Hence a global energy

optimum is achieved using a standard max-flow/min-cut algo-

rithm ensuring homogeneity in the connected regions (Singh

et al., 2014).

3.1. Image Model and Features

Let us consider a registered gray scale image pair, G1 and

G2, over the same pixel lattice S = {s1, s2..., sN}. We denote the

grayscale values of a given pixel s ∈ S by g1(s) and g2(s) in the

first and second image, respectively. The goal is to classify each

site s ∈ S as changed (foreground) or unchanged (background).

Hence the assignment of a label to a particular site is from the

set: λ = {fg, bg} where fg refers to foreground class and bg

refers to the background class. The background/ foreground

classes are modeled as random processes generating the ob-

served image features. These random processes are modeled by

fitting a suitable distribution function over the histograms cor-

responding to each of the foreground and background classes

using a set of training image pairs. The training image pairs

contain a Ground Truth having all the pixels manually labeled

by an expert. The features adopted in Singh et al. (2014) char-

acterize the changes in terms of intensity (GL difference) and

in terms of texture/structure (HOG difference).

The graylevel (GL) difference feature d(s) computed over the

aligned image pairs for each corresponding pixel is simply

d(s) = ‖g1(s) − g2(s)‖. (1)

Analysing the histogram of the background class using the

WAFO toolbox (Brodtkorb et al., 2000), the generalized gamma

density proved to be a good parametric model to represent these

features, thus

P
(
d(s)|bg

)
= f (d(s)|a, b, c) =

c
bacΓ(a)

d(s)ac−1e−
(

d(s)
b

)c

, (2)

where Γ(.) is the gamma function, and (a,b,c) are the back-

ground parameters.

As for the foreground, basically any d(s) value is allowed,

hence it is represented by a uniform density function given as

P
(
d(s)|fg)

=

⎧⎪⎪⎨⎪⎪⎩
1

bd−ad
, if d(s) ∈ [ad, bd].

0, otherwise.
(3)

using (ad, bd) foreground parameters.

The Histogram of Oriented Gradient (HOG) is a feature de-

scriptor that has mainly been used for object detection. It ba-

sically involves counting the number of occurrences of differ-

ent orientations of gradients inside fixed sized windows and

then rounding it to the correct bin of the histogram. In Dalal

and Triggs (2005) the image was divided into blocks and then

further into small cells for which the histogram of gradients is

computed. Finally the concatenation of all resulting histograms

leads to the descriptor for the entire image. The HOG feature

used in Singh et al. (2014) is a somewhat modified version of
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the original method proposed in Dalal and Triggs (2005): in-

stead of cells, a sliding window of size 11 × 11 is used to com-

pute HOG. Given the gradients (Ix, Iy) computed at each pixel

via a standard finite difference operator, the magnitude and ori-

entation can be calculated using the following equations:

‖H‖ =
√

I2
x + I2

y θ = arctan

(∥∥∥∥∥ Iy

Ix

∥∥∥∥∥
)

Note that θ ∈ [0, π/2]. Then a HOG with 9 bins is computed

at every position of the sliding window over the entire image,

yielding a 9 dimensional vector
−→
fs associated with every pixel

s ∈ S . The HOG difference feature h(s) corresponding to a

particular pixel s is thus given by:

h(s) = ‖−→fs1
− −→fs2
‖ (4)

As for the GL difference feature, the background is mod-

eled as a generalized gamma density function P
(
h(s)|bg

)
=

f (h(s)|u, v,w) with parameters u, v,w and the foreground is rep-

resented as a uniform distribution over the [ah, bh] interval.

3.2. Multicue Model

Using the features d(s) and h(s), a three-layer MRF model is

constructed in Singh et al. (2014) to solve the change detection

problem as a foreground/ background segmentation. As shown

in Fig. 1, the proposed MRF segmentation model (Kato et al.,

2002; Kato and Zerubia, 2012) is built over a Graph G com-

posed of three different layers, namely S h, S c and S g, all being

of the same size as the lattice S of the input images. Each pixel

s ∈ S has a corresponding site associated with it in each of

these layers denoted as

sh ∈ S h, sc ∈ S c, sg ∈ S g (5)

where S h, S c and S g are the layers representing the modified

HOG difference feature, final desired change map, and GL dif-

ference feature respectively.

Every site si, i ∈ {h, c, g} has also a class label associated to

it, which is denoted by ω(si) and modeled as a discrete random

variable taking values from the label set λ = {fg, bg}. The hid-

den label process is thus the set of all the labels over the entire

graph G as follows:

ω =
{
ω(si)|s ∈ S , i ∈ {h, c, g}

}
(6)

The neighborhood system (representing the conditional depen-

dencies of nearby sites) are shown in Fig. 1. The intra-layer

interactions consist of singleton and doubleton cliques denoted

by C1 and C2, respectively. These cliques correspond to a stan-

dard first order neighborhood system (Kato and Zerubia, 2012),

in which singletons with single individual sites are linking the

model to the two observation features, while doubletons ensure

homogeneity within each layer. Note that singletons are not de-

fined for the combined layer S c as it has no direct interaction

with the observations, while for the other two layers, single-
tons represent the HOG features for S h and GL features for S g,

yielding the observation process

F = {h(sh)|s ∈ S } ∪ {d(sg)|s ∈ S }, (7)

The inter-layer cliques, marked by C5, are doubletons as dis-

played in Fig. 1, and they are responsible for feature integration.

Hence the graph G has the set of cliques

C = C1 ∪ C2 ∪ C5 (8)

The goal is to find the optimal labeling ω̂ which maximizes

the a posteriori probability P(ω|F ), which is the maximum a

posteriori (MAP) estimate (Geman and Geman, 1984) given as

ω̂ = argmax
ω∈Ω

P(ω|F ) (9)

where Ω denotes the set of all the possible labellings. Based on

the Hammersley-Clifford theorem, the posterior probability for

a particular labeling follows a Gibbs distribution:

P(ω|F ) =
exp(−U(ω))

Z
=

1

Z
exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
C∈C

VC(ωC)

⎞⎟⎟⎟⎟⎟⎟⎠ (10)

where U(ω) is the energy function, VC denotes the clique po-
tential of a clique C ∈ C having the label configuration ωC ,

and Z is a normalization constant independent of ω given by

Z =
∑
ω∈Ω exp(−U(ω)). Therefore by defining the potentials

VC for the cliques completes the MRF model definition and the

above MAP problem becomes a standard energy minimization

problem.

Since the labellings for S h and S g layers are directly influ-

enced by the values of h(.) and d(.) respectively, ∀s ∈ S the

singleton will link these layers to the respective observations

as:

V{sh}(ω(sh)) = − log P(h(s)|ω(sh)) (11)

V{sg}(ω(sg)) = − log P(d(s)|ω(sg)), (12)

where the conditional probabilities P(.|ω(.)) given that the la-

bel being a background or a foreground class generate the h(s)

or d(s) observations, has already been defined in Section 3.1.

However, the labels corresponding to the sites of the S c layer

have no direct influence by these observations and hence the

singleton cliques on S c are not used.

For the intra-layer cliques C2 = {si, ri} where C2 ∈ C2 and

i ∈ {h, c, g}, a simple Ising-type potential (Besag, 1986) can be

used to ensure local label homogeneity:

VC2

(
ω(si), ω(ri)

)
=

⎧⎪⎪⎨⎪⎪⎩0, if ω(si) = ω(ri).

2K i, if ω(si) � ω(ri).
(13)

where i ∈ {h, c, g}. K i ≥ 0 is a parameter controlling the homo-

geneity of the regions. As K i increases, the resulting regions

in the corresponding layer (indexed i) become more homoge-

neous.

Finally, the inter-Layer cliques are C5 = {si, r j} where C5 ∈
7



C5 and {i, j} ∈ {{h, c}, {c, g}}, and the potentials are given by:

VC5
= f

(
ω(si), ω(r j)

)
=⎧⎪⎪⎨⎪⎪⎩ρ

hc ∗Wr ∗ ‖V{sh}(ω(sh)) − V{sh}(ω(rh))‖, (a).

ρcg ∗Wr ∗ ‖V{sg}(ω(sg)) − V{sg}(ω(rg))‖, (b).
(14)

where (a) and (b) refer to {i, j} = {h, c} and {i, j} = {c, g} re-

spectively. Also V{sh}(ω(.)) and V{sg}(ω(.)) are the singleton po-

tentials for the sites sh ∈ S h and sg ∈ S g dependent on the

labeling ω(.). Both parameters (ρhc ≥ 0 and ρcg ≥ 0) control

the influence of the feature layers(S h and S g) to the combined

(S c) layer. Wr is the weight of the interaction. Higher weight

(Wr = 0.6) is assigned to the corresponding site whereas smaller

weights (Wr = 0.1 each) to the other 4 neighboring sites.

Hence the optimal MAP labeling ω̂, which maximizes

P(ω|F ) can be calculated as the minimum energy configuration

(Singh et al., 2014)

ω̂ = argmin
ω∈Ω

−
∑
s∈S

log P(h(s)|ω(sh))−
∑
s∈S

log P(d(s)|ω(sg)) +
∑

C2∈C2

VC2
(ωC2

) +
∑

C5∈C5

VC5
(ωC5

) (15)

4. Change detection with the Multilayer Conditional Mixed
Markov Model

In Benedek and Szirányi (2009), a Multilayer Conditional

Mixed Markov model (CXM) has been proposed for change de-

tection in optical image pairs. The CXM is defined as the com-

bination of a mixed Markov model (Fridman, 2003) and a con-

ditionally independent random field of signals. The model has

four layers: three of them are feature layers, while the fourth

one is the final segmentation layer, having a similar role to the

combined layer of the L3MRF model. The feature layers corre-

spond to the following descriptors:

• joint 2D gray level histogram of the multitemporal image

inputs

• normalized block correlation using a fix sized window

around each pixel

• variance of gray levels within a sliding window for local

contrast estimation

Since the gray level histogram and the correlation are comple-

mentary features working either in homogeneous or in highly

textured image region, the variance descriptor plays an indica-

tor role: Based on the local contrast, one can decide which fea-

ture is more reliable at a given pixel location. The fourth layer

provides the final change detection by a probabilistic combina-

tion of the three feature layers via MRF interactions. Similarly

to L3MRF, pairwise interactions are used between the nodes,

but as a significant difference, the variance layer is composed of

address nodes of the Mixed Markov model, while all the other

layers contain regular nodes.

4.1. Image model and features
Here the same image model and the corresponding notations

are used as introduced in Sec. 3.1 by the L3MRF model. The

starting step of the modeling process is again the extraction

of local features at each s ∈ S which give us information for

classifying s as a changed foreground (fg) or unchanged back-
ground (bg) surface point. The fg/bg classes as considered

henceforward as random processes generating the features ac-

cording to different distributions.

The first feature in the CXM model is based on the investi-

gations in the joint intensity domain of the two images. Here,

instead of prescribing an intensity offset or other global linear

transform between the corresponding g1(s) and g2(s) gray lev-

els (as seen by the L3MRF), we give a multi modal description

of the observed data. We approximate the 2-D histogram of the

g(s) = [g1(s), g2(s)]T vectors by a mixture of Gaussians dis-

tribution. In this way, one can measure which intensity values

occur often together in the two images. Thereafter, the prob-

ability of the g(s) observation in the background is calculated

as: P
(
g(s)

∣∣∣bg
)
=

∑K
i=1 κi · η(g(s), μi,Σi

)
, where η(.) denotes a

two dimensional Gaussian density function with μi mean vec-

tor and Σi covariance matrix, while the κi terms are positive

weighting factors. Using a fixed K = 5, the distribution pa-

rameters are estimated automatically by the conventional EM

algorithm. On the other hand, any g(s) value may occur in the

changed regions, hence the ‘ch’ class is modeled by a uniform

density: P
(
g(s)

∣∣∣fg)
= u. However, this multi-Gaussian intensity

based approach (MGI) may erroneously mark several unaltered

regions as changes compared: the miss-classifications would

mainly be limited to highly textured regions (e.g. buildings and

roads) since the g(s) gray values occurring there are less fre-

quent in the global image statistics.

For obtaining the second feature, denoted by c(s), we calcu-

late the correlation between the rectangular z× z neighborhoods

of s in G1 and in G2 (used v = 17). Pixels with higher c(s)

values lie more likely in unchanged image regions. The exper-

iments of the authors showed that the P(c(s)|bg) and P(c(s)|fg)

probabilities can be approximated by different Gaussian dis-

tributions. Note that in itself, a simple Maximum Likelihood

(ML) classification based on c(.) would also results in a fairly

poor segmentation, but the g(s) and c(s) are efficient comple-

mentary features. In low contrasted image regions, where the

noisy c(s) may be irrelevant, the decision based on g(s) is reli-

able. In textured areas one should choose c(s) instead of g(s).

As the previous paragraphs suggest, we may estimate the re-

liability of the segmentation based on the g(s) intensity respec-

tively c(s) correlation features at each pixel s. Let νi(s) be the

variance of the gray levels in the neighborhood of s, and let

be ν(s) = [ν1(s), ν2(s)]T . For implementing a probabilistic fea-

ture selection process, we approximate the ν(s) variances of the

low and high contrasted image regions by 2-D Gaussian density

functions, where the parameters are estimated with an iterative

algorithm presented in Benedek and Szirányi (2009).

4.2. Multilayer Mixed Markov model
As mentioned in the introduction, Mixed Markov models

(Fridman, 2003) extend the modeling capabilities of Markov

8



random fields: they enable using both static and observation-

dependent dynamic links between the processing nodes. We

can take here the advantage of this property, since the ν(s) fea-

ture plays a particular role: it may locally switch ON and OFF

the g(s) and c(s) features into the integration procedure. We

consider the task as a composition of four interactive segmenta-

tion processes. Thus we project the problem to a graph G with

four layers: S g, S c, S ν and S ∗. We assign to each pixel s ∈ S
a unique graph node in each layer: e.g. sg is the node corre-

sponding to pixel s on the layer S g. Denote sc ∈ S c, sν ∈ S ν

and s∗ ∈ S ∗ similarly.

Following the approach of Sec. 3.2, we introduce next the la-

beling random process, which assigns a labelω(.) to all nodes of

G. As usual, graph edges express direct dependencies between

the corresponding node labels. The present approach exploits

that Mixed Markov models distinguish two types of processing

units, called regular and address nodes (Fridman, 2003). The

S g, S c, and S ∗ layers contain regular nodes, where the label de-

notes a possible fg/bg segmentation class: ∀s ∈ S , i ∈ {g, c, ∗} :

ω(si) ∈ {fg, bg}. For each s, ω(sg) resp. ω(sc) corresponds to

the segmentation based on the g(s) resp. c(s) feature; while the

labels at the S ∗ layer present the final change mask.

On the other hand, the S ν layer contains address nodes,

where for sν ∈ S ν the label ω(sν) is a pointer to a regular node

of G. In contrast with static edges, address pointers represent

dynamic connections between the nodes.

We use the following notations: ω̃(sν) := ω(ω(sν)) is the

label of the (regular) node addressed by sν, and ω = {ω(si)|s ∈
S , i ∈ {g, c, ν, ∗}} denotes a global labeling. Let F = {Fs|s ∈ S }
be the global observation, where Fs is the union of the g(s),

ν(s) and c(s) local features extracted at pixel s. By definition

of Mixed Markov models (Fridman, 2003), (static) edges may

link any two nodes, and the a posteriori probability of a given

global labeling ω is given by:

P(ω|F ) = α
∏
C∈C

exp
(
− VC

(
ωC , ω

ν
C ,F

) )
, (16)

where C is the set of cliques in G. For C ∈ C: ωC = {ω(q)|q ∈
C} and ωνC = {ω̃(sν)

∣∣∣sν ∈ S ν ∩ C}. VC is a C → R clique poten-
tial function, which has a ‘low’ value if the labels within the set

ωC ∪ ωνC are semantically consistent, while VC is ‘high’ other-

wise. Scalar α is a normalizing constant, which is independent

of ω. Note that we will also use singleton cliques which contain

single nodes.

Next, we define the cliques of G and the corresponding VC

clique potential functions. The observations affect the model

through the singleton potentials. As we stated previously, the

labels in the S g and S c layers are directly influenced by the

g(.) respectively c(.) values, while the labels in S ∗ have no

direct links with these measurements. For this reason, let be

V{sg} = − log P
(
g(s)

∣∣∣ω(sg)
)
, V{sc} = − log P

(
c(s)

∣∣∣ω(sc)
)

and

V{s∗} ≡ 0. Note that the above distributions were already de-

fined in Section 4.1, and V{sν} will be later given.

For presenting smooth segmentations, we put connections

within each layer among node pairs corresponding to neighbor-

ing pixels on the S image lattice. Denote the set of the resulting

intra-layer cliques by C2. The prescribed potential function of

a clique in C2 will penalize neighbouring nodes having differ-

ent labels. Assuming r and s to be neighboring pixels on S ,

the potential of the doubleton clique C2 = {ri, si} ∈ C2 for each

i ∈ {g, c, ν, ∗} is calculated similarly to formula (13) from Sec.

3.2.

We continue with the description of the inter-layer interac-

tions. Based on previous investigations, ω(s∗) should mostly

be equal either to ω(sg) or to ω(sc), depending on the observed

ν(s) feature. Hence, we put an edge among s∗ and sν, and pre-

scribe that sν should point either to sg or to sc . As for the

singleton potentials in the S ν layer, if sν points to sψ|ψ∈{g,c}, let

be V{sν} = − log P
(
ν(s)

∣∣∣hψ). On the other hand, we get the po-

tential of the inter-layer clique C3 = {s∗, sν} with a fixed ρ > 0

as

VC3

(
ω(s∗), ω̃(sν)

)
=

{
0 if ω(s∗) = ω̃(sν)
ρ otherwise

Finally, based on (16), the ω̂ maximum a posteriori estimate of

the optimal global labeling, which maximizes P(ω̂|F ) (hence

minimizes − log P(ω̂|F )) can be obtained as:

ω̂ = argmin
ω∈Ω

∑
s∈S ; i

V{si}
(
ω(si),Fs

)
+

+
∑

{s,r}∈C2; i

VC2

(
ω(si), ω(ri)

)
+

∑
s∈S

VC3

(
ω(s∗), ω̃(sν)

)
(17)

where i ∈ {g, c, ν, ∗} and Ω denotes the set of all the possible

global labelings. The final segmentation is taken as the labeling

of the S ∗ layer.

5. Multitemporal Image Segmentation with the Fusion-
MRF Model

In the Fusion-MRF (FMRF) method (Szirányi and Shaday-

deh, 2014), remote sensing areas of fused image series are ex-

amined in different levels of MRF segmentation; the goal is to

automatically detect the category changes of the yearly trans-

muting areas having rich variations within a category by using

more sample layers. The overlapping combination of category

variations can be collected in a multilayer MRF segmentation;

this supports the layer-by-layer MRF segmentation and change

detection later. The definition of change is parallel to the def-

inition of similarity; locations of image time series data that

come from different sensors at different lighting and weather

conditions can be compared if robust in-layer and cross-layer

descriptors could be found. For this reason, in the proposed

FMRF method, block-wise similarity measures is added to the

stacking of the layers’ pixel/microstructure information; the au-

thors propose to use Cluster Reward Algorithm (CRA) (Inglada

and Giros, 2004) in the multilayer fusion calculated between

layer pairs in the series. The novelties of the FMRF approach

are discussed in the following:

• Finding clusters on the stack of image-layers results in

aligned cluster-definition for the different layers;
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• Fused segmentation on the stack of image-layers, resulting

in multilayer labeling;

• Multilayer labeling is used for the unsupervised clustering

of the single-layer labeling; this aligned labeling makes

the change detection unequivocal;

• A noise-tolerant cross-layer similarity measure, CRA, is

used to better identify some classes where radiometric val-

ues are dubious.

5.1. Multitemporal Image Model and Similarity Feature
In a series of N layers of remote sensing images,

let xLi
s denote the feature vector at pixel s of layer Li,

i = 1, 2, · · · ,N. This feature vector might contain color,

texture/micro-structural features, cross layer similarity mea-

sures, or mixture of these. Set X = {xs|s ∈ S } marks the global

image data. An example of a feature vector would be

xLi
s = [xLi

C(s)
, xLi

M(s)
]T (18)

where xLi
C(s)

contains the pixel’s color values, and xLi
M(s)

is the

cross layer similarity measures between the image and other

two or more images in the series. The cross layer similarity

measure might be correlation, mutual information, or CRA.

The multiple layers of remotely sensed images time series

are characterized by the stack x
Li1 ...in
s of these vectors for a rea-

sonable set of them, n ≤ N:

x
Li1 ...in
s = {xLi1

s , x
Li2
s , ...xLin

s } (19)

Different similarity measures have been considered in the

preliminary tests, such as distance to independence, mutual in-

formation, CRA (Inglada and Giros, 2004), Kullback Leibler

divergence (see (Alberga, 2009) and references therein). The

CRA similarity measure is chosen as it gives better segmenta-

tion and change detection results than other similarity measures

such as Kullback Leibler divergence and mutual information.

5.2. Fusion-MRF: multilayer segmentation and change detec-
tion

The segmentation and change detection procedure contains

different levels of MRF optimization in the following main

steps:

1. Selecting and registering the image layers; an example is

shown in Inglada and Giros (2004). In case of professional

data suppliers orthonormed and geographically registered

images are given; no further registration is needed. In the

discussed method no color-constancy or any shape/color

semantic information is needed; the color of the corre-

sponding areas and the texture can differ strongly layer-

by-layer.

2. Finding clusters in the set of vectors (x
Li1 ...in
s ) and calcu-

lating the cluster parameters (mean and covariance of the

conditional term in (22)) for the fusion based ”multilayer
clusters”. This step can be performed either by using un-

supervised methods such as the K-means algorithm, or by

choosing the characteristic training areas manually.

3. Running MRF segmentation on the fused layer data

(x
Li1 ...in
s ) containing the cross-layer measures, and the multi-

layer cluster parameters, resulting in a multilayer labeling

ΩLi1 ...in
;

4. Single-layer training: the map of multilayer labeling

ΩLi1 ...in
is used as a training map for each image layer Li:

cluster parameters are calculated for each single layer con-

trolled by the label map of multilayer clusters.

5. For each single layer Li (containing only its color and

maybe texture features) a MRF segmentation is processed,

resulting in a labeling: ΩLi ;

6. The consecutive image layers (..., (i − 1), (i), ...) are com-

pared to find the changes among the different label maps

to get the δi−1,i change map:

δi−1,i(.) =
[(
ΩLi (.) � ΩLi−1

(.)
)
= TRUE

]
(20)

In the proposed segmentation algorithm a multilayer MRF

model is applied by contributing the term of the cross-layer

CRA similarity measure calculated between each pair in a sub-

set of three or more consecutive images. In what follows three

consecutive images are used, however the algorithm can be eas-

ily extended to more layers. The stack of feature vectors xL1...3
s

is generated as follows

1. For each pair of the three consecutive images Li, Li+1 and

Li+2, the CRA image is calculated. In the calculation of the

CRA image at each pixel, we use D × D-pixel estimation

window around this pixel to calculate the local histograms;

Let the obtained CRA images be CRA(i, i+1), CRA(i+1, i+
2), and CRA(i, i + 2).

2. Let xLi
s denote the luminance value of pixel s in image Li.

Construct the stack of feature vectors for pixels s in the

three images Li, Li+1 and Li+2 as follows:

xLi,i+1,i+2

s = [xLi
s + αCRAs(i, i + 1),

xLi+1
s + αCRAs(i + 1, i + 2),

xLi+2
s + αCRAs(i, i + 2)]T (21)

where α is a positive normalizing scalar ensuring the same

range of the two different terms.

Note that the use of the addition of xLi
s and CRAs(i, i + 1) in

the feature vector as given in (21) means lower dimensional-

ity than using these features as two separate values as in (18).

However, with the assumption that xLi
s and CRAs(i, i + 1) are

statistically independent, it can be verified that they will con-

tribute similar terms to the energy of MRF as when they are

used as two separate features.

Next, we define the MRF energy model. Let S =

{s1, s2, ...sH} denote the image pixels, and ω = {ω =

(ωs1
, . . . , ωsH ) : ωsi ∈ Λ, 1 ≤ i ≤ H} be the set of all possi-

ble labels assigned to the image classes.
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The output labeling is taken again as the MAP estimator of

the following energy function:

ω̂ = argmin
ω∈Ω

[∑
s∈S
− log P(xs|ω(s)) +

∑
r,s∈S

VC2
(ω(r), ω(s))

]
(22)

where similarly to the intra-layer interactions in the L3MRF and

CXM methods, the Potts constraint (Potts, 1952) is used again

to obtain smooth connected regions in the segmentation map

(see formula (13) from Sec. 3.2).

6. MRF optimization

There is a large variety of MRF optimization algorithms used

by the different change detection models, such as the Iterated

Conditional Modes (ICM) (Besag, 1986) algorithm, or various

simulated annealing techniques. Graph cut based minimiza-

tion techniques have particularly become popular in the last ten

years, since unlike the above iterative approaches, they guar-

antee to provide the global minimum of the energy in polyno-

mial time. However the energy function must fulfill a number

of specific requirements which must be considered during the

modeling phase, limiting the possible model structures.

The Multicue MRF segmentation model presented in Sec-

tion 3.2 provides a binary labeling, where a label ω(si), s ∈ S
and i ∈ {h, c, g}, can be regarded as a binary variable taking

values 0 and 1. Moreover, the Gibbs energy given in (15) is

composed of singleton and doubleton potentials only, i.e. the

model has unary and pairwise interactions only. Therefore the

Gibbs energy in (15) can be represented as a weighted graph

G = (V,E) (Kolmogorov and Zabih, 2004). The set of ver-

tices’s V in the graph G consists of all the sites of the three-

layer MRF model and two terminal nodes: the source s and

the sink t. The edges E are present between interacting sites

as defined by the MRF model and special edges are connect-

ing each site with the terminal nodes s and t (for more details

see (Kolmogorov and Zabih, 2004)). Estimating the minimal

energy configuration is equivalent to compute the min cut /max

flow on the corresponding graph G. The energy function E(ω)

is composed of unary and pairwise interactions (Kolmogorov

and Zabih, 2004):

E(ω) =
∑
s∈S

Es(ω(si)) +
∑

(s,r)∈C−{C1}
Es,r(ω(si), ω(r j)) (23)

where i, j ∈ {h, c, g}; i = j for intra-layer cliques and inter-

layer clique’s otherwise. The above equivalence between en-

ergy minimization of E and the min cut /max flow on the graph

is only true, if E also satisfies the submodularity constraint.

Hence the authors used a standard graph-cut algorithm imple-

mented by Vladimir Kolmogorov (http://pub.ist.ac.at/

~vnk/software.html) to minimize the energy in (15).

The energy term of (16) in the CXM model can be minimized

by conventional iterative techniques, like ICM or simulated an-

nealing (Geman and Geman, 1984). For choosing a good com-

promise between the quality factor and processing speed, the

CXM model adapted the deterministic Modified Metropolis re-

laxation algorithm (Kato and Zerubia, 2012) to the multilayer

model structure, as detailed in Benedek and Szirányi (2009).

Accordingly the four layers of the model are optimized simul-

taneously, and their interactions develop the final segmentation,

which is taken at the end as the labeling of the S ∗ layer. As

the authors noted, due to the fully modular structure of the en-

ergy term, the introduced model could be completed straight-

forwardly with additional sensor information (e.g. color or

infrared sensors) or task-specific features depending on avail-

ability, in exchange that the iterative optimization takes usually

longer time than the graph-cut optimization.

Similarly to the L3MRF model, the FMRF energy function

can be optimized by graph cut based techniques. The authors in

Szirányi and Shadaydeh (2014) adopted the α-expansion algo-

rithm for MRF energy minimization, using the implementation

of Szeliski et al. (2006). This relaxation technique ensures the

convergence to a solution, where the energy is guaranteed to be

under a boundary defined by the global minimal solution mul-

tiplied by a constant factor.

7. Parameter settings in the different model

The L3MRF and CXM models follow a supervised approach

of change detection. Hence all the parameters are estimated us-

ing the training data provided in each of the three data sets.

Regarding the data term parameters, different feature distri-

butions for the changed and unchanged regions should be es-

timated based on the empirical feature histograms obtained

from the labeled training data. The standard Expectation-

Maximization (EM) algorithm was applied in both models,

however in CXM the EM steps were embedded into an itera-

tive framework due mutual dependency between the parameters

(Benedek and Szirányi, 2009).

In the FMRF, calculation of the cluster parameters for the

fusion based multilayer clusters can be performed either by us-

ing unsupervised methods such as the K-means algorithm, or

by supervised training by choosing the characteristic training

areas manually. In all experiments presented here the unsuper-

vised K-means algorithm was used.

7.1. L3MRF parameters
The following parameters are used in the proposed model

which need to be estimated :

• Parameters for Modified HOG feature selection: {dw, nb}
• Parameters of the various pdf’s as introduced in (3), (4),

(6), (7) : {a, b, c, u, v,w, ad, bd, ah, bh}
• Parameters of the intra-layer and inter-layer clique poten-

tial functions : {K i, ρhc, ρcg} where i ∈ {h, c, g}
The initial parameters for the HOG feature selection namely the

detection window size dw and the bin size nb were set by evalu-

ating the maximum-likelihood results. By experimentation the

desired results were obtained by setting the detection window

to 11 × 11 and the number of bins to 9 (Singh et al., 2014).
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Figure 4: CXM parameter analysis example. Error of the mixture of Gaussians

approximation of the joint intensity statistics as a function of the number of

mixture components (K).

Parameters for the Generalized Gamma Distribution (in (3),

(6)) corresponding to the background class (both for the gray

level and the Modified HOG features) were learned from the

training data provided in each of the data sets. The threshold

values for the uniform distribution (in (4), (7)) corresponding

to the foreground class for both the gray level and the HOG

features were set to the optimal values again for each of the

training data belonging to its respective data set.

The intra- and inter-layer clique potentials are independent

of the input images hence we set their values by trial and error

over a small training dataset and then keep these values for all

input image pairs.

7.2. CXM parameters

The CXM segmentation model has the following parameters:

• Preliminary parameters of feature calculation (see Sec.

4.1): Λ = {K, z}
• Parameters of the probability density functions introduced

in Sec. 4.1: Θ = {μi,Σi|i ∈ 1 . . .K} ∪ {μc, σc, μψ,Σψ}
• Parameters of the intra- and inter-layer potential functions:

Φ =
{
ρ,K i : i ∈ {g, c, ∗, ν}}

The first step is determining the Λ preliminary parameters.

K, which is the number of the Gaussian mixture components

in the background’s intensity model, was set by a quantitative

analysis. We considered the distribution sequence PK(g(s)|bg)

for K = 1, 2, . . . where PK is obtained by EM estimation from

the training data using K mixture components. Thereafter

we measured the Bhattacharyya distances between the empir-

ical histogram and the approximated distributions. As Fig. 4

demonstrates in the Szada set, the minimal error has been ob-

served at K = 5, but the variance of the measured error rates

was under 10% for the different K components between 2 and

10.

On the other hand the size of the correlation window z
particularly depends on the image resolution and textureness.

Since in the considered images the buildings were the princi-

pal sources of texture, we have chosen a correlation window

which narrowly covers an average house (for the three test sets

we used z = 17). During the tests we found this choice op-

timal: with significantly larger windows (z > 30) some indi-

vidual building changes have been erroneously ignored, while

small rectangles (z < 5) reported many false changes.

After fixing Λ, the Θ parameters can be obtained automati-

cally from the training image pairs using conventional estima-

tors embedded in an iterative framework as detailed in Benedek

and Szirányi (2009). As for the Φ parameter set, the experi-

ments indicated that the model is not sensitive to a particular

setting within a wide range, and these parameters can be esti-

mated a priori. We used ρ = K i = 1, i ∈ {g, c, ∗, ν}.

7.3. FMRF parameters

The following parameters are used in the FMRF model

• Number of image layers N and number of classes H.

• Window size D used in the calculation of the CRA simi-

larity measure.

• The homogeneity weight K used in the Potts term of the

energy function.

For the present experiments using three image layers in the

comparison gives good results. Using more layers requires di-

mensionality reduction or larger training areas that assure the

presence of sufficient independent samples. Moreover, in such

case, the number of possible CRA image combinations is larger

than the number of layers. The used CRA images can be se-

lected on the basis of maximal cross-layer information com-

plexity. The number of classes used is based on the change

detection application.

In CRA similarity measure calculation, the choice of the win-

dow size D, used in the estimation of local histograms, is se-

lected based on the resolution of the images and the scale of

the desired change detection. The size of the window should be

less than the size of the change to be detected. The detection

of small changes requires small window size; however larger

window size gives better estimation of the CRA similarity mea-

sures. In our experiments, a minimum window size of 5x5 win-

dow is required regardless of image resolution to obtain good

estimate of the local histograms used in CRA similarity mea-

sure calculation. Finding the optimum window size for each

point adaptively, along with the definition of the scale of change

detection and the image resolution, needs further research. In

an attempt to deal with this problem Shadaydeh and Szirányi

(2014) proposed new method for improved similarity measure

estimation using weighted local histograms. The weight as-

signed to each pixel in the histogram estimation window fol-

lows an exponential function of its distance from the center

of the window and the corresponding pixel value in an initial

change map image which is derived from other microstructure

or radiometric information. This improved similarity measure

benefits from the good detection ability of small estimation

window and the good estimation accuracy of large estimation

window; hence it can replace the time-consuming multi-scale

selection approaches for statistics based similarity measures in

remote sensing.
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The homogeneity weight K was again set by trial and error,

similarly to the L3MRF model.

8. Method comparison

8.1. Test Databases and Experimental Conditions
For comparative evaluation of the L3MRF, CXM and FMRF

techniques, we used mainly the SZTAKI AirChange Bench-

mark Set1. This benchmark has already been used in Benedek

and Szirányi (2009) for an extensive validation of the CXM

model, which was compared to the then-state-of-the-art, and

it serves well the comparison between CXM and L3MRF. The

benchmark contains images from three data sets of optical

aerial images provided by the Hungarian Institute of Geodesy

Cartography & Remote Sensing (FÖMI) and Google Earth and

corresponding Ground Truth change masks. All the images

have been aligned as orthophotos.

The first data set – called Szada – contains co-registered im-

ages taken by FÖMI in years 2000 and 2005. This test set con-

sists of seven - also manually evaluated - image pairs, covering

in aggregate 9.5km2 area at 1.5m/pixel resolution (the size of

each image in the test set is 952 × 640 pixels). The second
test set – called Tiszadob – includes five image pairs from 2000

and 2007 (6.8km2) with similar size and quality parameters to

Szada. Images of 2000 and 2005 were scanned on photo-films

(Hasselblad 500 EL/M) before digital scan. The 2007 image

has been originally scanned in digital form (Nikon D3X, with

AF-S Nikkor 50 mm 1.4G lens). Finally, in the third data set –

called Archive – an aerial image taken by FÖMI in 1984 can be

compared to a corresponding Google Earth image from around

2007. The latter case is highly challenging, since the image

from 1984 has a degraded quality, and several major differ-

ences appear due to the 23 years time difference between the

two shots. An important additional information is that the im-

age pair from the Archive set has been taken from the same area

as the first image pair of the Szada set, therefore in this region

four co-registered images available with different time stamps

(three of them are partially shown in Fig. 6). The latter fact

can be utilized by the Fusion-MRF (FMRF) model (Szirányi

and Shadaydeh, 2014), which may consider several images to

obtain a robust change mask between two selected time layers.

Considering the above conditions, during the experiments

with the FMRF model, three image layers were used on the

Szada data set by extracting changes between years 2000 and

2005. The authors used as third (auxiliary) image the Google

Earth photo of Archive from 2007. As the input of the PCC ap-

proach, two segmentation classes were used: one for urban and

one for non-urban areas. The feature vector used for the mul-

tilayer segmentation contained luminance value and the CRA

similarity measure as defined in (21), while the CIE L*a*b*

color values were only used in the single layer segmentation

step. For change detection between years 1984 and 2007 (ex-

periment Archive), the Szada 2005 image was used as third

1http://web.eee.sztaki.hu/remotesensing/airchange_

benchmark.html.

Method Precision Recall F-rate

PCA 21.7 42.4 28.7

Hopfield 18.3 32.8 23.5

Parzen 19.1 35.5 24.8

MLP 21.1 32.2 25.5

CXM 36.2 55.3 43.8
L3MRF 36.0 21.1 26.6

Table 3: Method evaluation: Precision, Recall and F-measure rates in percent

w.r.t. the ‘change’ class in the Szada set (higher values are preferred)

image. Similarly to the previous case, urban and non-urban

regions have been distinguished during the segmentation and

the used feature vector included luminance and CRA similar-

ity. For single layer segmentation, luminance values and tex-

ture features (output energy of Laws filters) were exploited. All

the used features were normalized to have maximum value of 1.

Finally a third experiment has been conducted in a fully natural

(non-urban) region, called Forest (see Fig. 7), which was not

included in the AirChange Benchmark. From the selected area,

three high resolution images (around 0.5m/pixel) were avail-

able, but only two images were used in the final validation test,

as the experiments did not report further improvement by in-

cluding the third image. For the segmentation, three classes

were defined here: meadow, planted meadow and forest. The

feature vector contained the luminance and CRA similarity as

usual. In single layer segmentation, no color components were

used except luminance in addition to the Laws features.

8.2. Ground Truth generation

Relevant Ground Truth (GT) generation is a difficult and of-

ten controversial issue in change detection evaluation. For this

reason, we will discuss two different GT approaches in this pa-

per: one for Direct techniques, and one for Post-Classification
Comparison (PCC) methods, with also showing experiments

for cross-validation.

In Direct methods the users often define from the application

point of view the relevant types of changes, and they directly la-

bel the changed regions. The creators of the AirChange Bench-
mark Set followed this approach, and they considered three

main prototypes of changes, as displayed in Fig. 5: (a) new

built-up regions and building operations (b) planting of large

group of trees of forestation (c) fresh plough-land or ground-

works before building over. Note that this AirChange GT
does NOT contain change classification, only binary changed-

unchanged decision for each pixel.

On the other hand, in PCC methods, where the results of dif-

ferent image segmentations are compared, the GT should be

generated for the classification step at each time layer, there-

after the change GT can be automatically derived as taking the

image regions with altered class labels. This evaluation ap-

proach is followed in the Region PCC GT generation process of

Szirányi and Shadaydeh (2014), where different segmentation

classes have been considered for the different image pairs (see

Sec. 8.1), such as urban and non-urban for Szada and Archive;

meadow, planted meadow and forest for the Forest image pair.
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Method
Szada data set Tiszadob data set Archieve data set

F-A M-A O-E F-A M-A O-E F-A M-A O-E

PCA (Wiemker, 1997) 4.51 1.70 6.21 3.26 3.39 6.65 2.30 6.76 9.06

Hopfield (Ghosh et al., 2007) 4.32 1.98 6.30 4.17 3.16 7.33 8.26 5.86 14.12

Parzen (Bruzzone and Fernandez-Prieto, 2002) 4.44 1.90 6.34 4.82 3.37 8.19 4.69 7.18 11.87

MLP (Castellana et al., 2007) 3.55 2.00 5.56 2.65 3.72 6.38 5.53 5.96 11.48

CXM (Benedek and Szirányi, 2009) 2.87 1.32 4.19 2.91 1.77 4.68 7.60 3.06 10.66

L3MRF (Singh et al., 2014) 1.11 2.33 3.44 0.06 3.90 3.96 2.23 6.43 8.66

Table 2: Method evaluation: False-Alarm (F-A), Missed-Alarm (M-A) and Overall-Error (O-A) rates of the CXM & L3MRF methods, and further reference

techniques (best values are typeset with bold). All error rates are given in percentage of the number of processed image pixels.

(a) New built-in regions or building operations (b) Planting a group of trees or forestation (c) Fresh plough-lands or groundworks

Figure 5: Change prototypes considered for Ground Truth (GT) generation in the SZTAKI AirChange Benchmark Set. Each image triplet displays the first and

second images and the highlighted GT changes

Image

AirChange GT Region PCC GT

CXM FMRF CXM FMRF

Pr Rc Fr Pr Rc Fr Pr Rc Fr Pr Rc Fr

Szada/1 36.5 58.4 44.9 32.6 54.3 40.8 34.5 50.3 40.9 45.6 69.0 54.9
Archieve 47.0 62.7 53.7 27.9 71.2 40.1 51.4 32.7 40.0 59.1 72.2 65.0
Forest 61.7 93.4 74.3 13.4 18.5 15.6 31.3 39.1 34.8 61.5 69.6 65.3

Table 4: Comparative evaluation between the CXM and the FMRF multilayer models, Precision (Pr), Recall (Rc) and F-measure rates (Fr) are displayed (better

values are typeset with bold). AirChange GT and Region PCC GT mark two different Ground Truth masks as described in Sec. 8.2

8.3. Results and Evaluation

A few qualitative change mask examples obtained by the dis-

cussed multilayer Markovian models are shown in Fig. 6 and 7

for selected image regions from the Szada and Forest data sets

respectively. We provide the numerical validation results in two

parts. First, we compare the two direct methods: L3MRF and

CXM. In addition, to demonstrate the efficiency of multilayer

models within the state-of-the-art, we also match the obtained

results to four previous methods from the literature which focus

on similar goals but use different approaches of the problems.

Second, we compare the FMRF method (as a PCC technique)

to the CXM model, and discuss the experiments.

8.3.1. Comparison of direct models
The quantitative evaluation in this paper is primarily based

on the AirChange GT set, which has already been utilized in

Benedek and Szirányi (2009) for comparing the CXM tech-

nique to four different direct change detection models from

the literature (Wiemker, 1997; Bruzzone and Fernandez-Prieto,

2002; Ghosh et al., 2007; Castellana et al., 2007), and also in

Singh et al. (2014) where some comparative tests have been

provided between the CXM and L3MRF methods. Due to the

limitations of the WAFO toolbox (Brodtkorb et al., 2000), the

L3MRF method could have only been tested in a subset of

the AirChange Benchmark, which contains 5 image pairs from

Szada, 2 image pairs from Tiszadob and an image pair from the

Archive set. To keep here all validation figures relevant, we

limit our forthcoming surveys to this part of the Benchmark,

and refer to further results in Benedek and Szirányi (2009).

Since both methods are supervised, we used around 20% of the

available GT annotated image regions as training data.

The practical differences in the results originate from the dif-

ferences in the used features and the way of integration. A limi-

tation of standard pixel value differencing is that due to seasonal

changes or altered illumination, the observed gray levels may

be significantly different even in the corresponding unchanged

territories. While using the gray level difference (GLD) feature

of L3MRF the regions are always marked as change whenever

the gray levels are not close enough to each other, the intensity

co-occurrence statistics (ICS) feature of CXM may correctly

classify large homogeneous regions, even if the observed pixel

value changes are high. However, ICS is quite sensitive to the

calibration of the uniform distribution parameters. Note as well

that ICS interprets change as unusual events (i.e. rare pixel

value occurrences) rather than as difference, which assumption

is only correct in certain applications. For example, as Fig. 8

shows, the hardly visible fresh plough land has been indicated

as a region change with CXM, but not with L3MRF. In addi-
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(a) Image from 2000: G1 reference (b) Image from 2005: G2 reference (c) Image from 2007 – only used by FMRF

(d) AirChange Ground Truth (G1 vs. G2) (e) Region PCC Ground Truth (G1 vs. G2)

(f) L3MRF result (G1 vs. G2) (g) CXM result (G1 vs. G2) (h) FMRF result (G1 vs. G2)

Figure 6: Results by the three discussed multilayer change detection models for an image segment from the Szada data set (see (a) and (b)). Changes are displayed

with white color. The FMRF method also used here a third auxiliary input image from 2007 shown in (c). (d) and (e) display the two different Ground Truth

approaches, where the Region PCC Ground Truth has been generated based on urban/non-urban segmentation of the images. (f)-(h) images show the change

detection results by the three methods.
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(a) Image 1: G1 (b) Image 2: G2 (c) AirChange GT (d) CXM result (e) Region PCC GT (f) FMRF result

Figure 7: Qualitative comparison of the CXM and FMRF methods and the two different GT types on the Forest data sample.

tion, by using ICS a lot of changes in homogeneous regions can

mislead the statistical color assignment or if the intensity val-

ues of fine but low contrasted structures (such as blurred road

or building regions) are identical, they may be marked erro-

neously as outliers. Since the HOG feature exhibits invariance

to geometric and photometric transformations (except for object

orientation), the L3MRF method can handle registration errors

and parallax more robustly than correlation. From a structural

point of view, in CXM the noise of the variance meta-feature

may mean a bottleneck, as it can corrupt the relevant feature se-

lection step (e.g. low contrasted roads, buildings). On the other

hand, in L3MRF both features are simultaneously considered

during the integration step.

During the numerical tests, we used first the same metrics

as e.g. in Ghosh et al. (2007), where in the change masks,

the pixel level false alarms (F-A, number of unchanged pixels

which were detected as changes) and missed alarms (M-A, erro-

neously ignored changed pixels) are counted w.r.t. the GT, then

an overall error (O-E) is calculated simply as the sum of the pre-

vious two quantities. Numerical results for L3MRF, CXM and

the above four reference methods are listed in Table 2, where

the F-A, M-A and O-E rates are given in percent of the checked

pixels. We can observe that both multilayer models, (CXM and

L3MRF) outperform the other references and the L3MRF shows

a slight advantage versus CXM w.r.t. this metrics. We can also

notice based on Fig. 6 that the L3MRF approach produces more

homogeneous and smoothing effects than the CXM model.

A limitation of the above evaluation process is that the F-A,

M-A and O-E rates do not consider the quantity of changes in

the images. If the area of changed regions is very small com-

pared to the image size, even a weak classifier may yield low

O-E values. A possible alternative solution is to calculate the

Recall (Rc) and Precision (Pr) rates from the point of view of

the change class (Benedek et al., 2009), and calculate the F-

measure rate (Fr) as the harmonic mean of Pr and Rc. In Table

3 we have also provided the measured Precision–Recall–F-rate

triplets regarding the Szada test set. We can see here some ad-

vantage of the CXM method due to similar Precision but higher

Recall rates. This feature may mean benefits in applications,

where false alarms can be eliminated later by higher level (like

object level) processing modules.

(a) Image 1 (b) Image 2 (c) L3MRF (d) CXM

Figure 8: Difference between the obtained change masks: the large change area

of CXM corresponds to a hardly visible fresh plough land

8.3.2. Comparison of the FMRF and the CXM models

Since the AirChange GT set is only partially relevant for the

PCC-based FMRF method, we have not mixed the discussion

about FMRF with the direct approaches in the previous sub-

section. Instead, we selected three relevant image pairs, and

applied the quantitative evaluation both using the AirChange
GT and the Region PCC GT masks. The measured Pr, Rc and

Fr values are listed in Table 4, and two sample image parts are

shown in Fig. 6 and 7. We can observe that for the Szada

and Archive images, where FMRF used urban/non-urban im-

age classification, both methods gave quite similar results, and

they were less sensitive to the two different GT generation ap-

proaches. As also shown in Fig. 6 (d) and (e) the two GT

versions are not significantly different here, since most sources

of the changes were the new urban developments which issues

were focused by both GT models. On the other hand, regarding

the Forest (Fig. 7) images, which contain unpopulated regions

only, the sensitivity of evaluation against the chosen ground

truth type has strongly increased, i.e. the CXM showed only

efficient performance figures with the AirChange GT, while the

FMRF proved to be significantly better by the comparison to the

Region PCC GT. Here we can also observe large differences be-

tween the GT images (Fig. 7 (c) and (e)): the AirChange GT
mask only highlighted the forest cut and the fresh plough land

areas; the plough lands yielded large homogeneous image re-

gions with a characteristic gray level, appearing outlier in the

joint intensity domain. On the other hand, the Region PCC GT
indicated all differences between unplanted meadows, planted

meadows, and forest regions.
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8.4. Computational time

Although MRF based methods were regarded as computa-

tionally expensive techniques in the past, recent improvements

in hardware platforms and optimization techniques, such as the

introduction of the deterministic MMD algorithm or Graph cut

based energy minimization, enabled the wide usage of these

models in many practical tasks. Among the discussed three

models the L3MRF shows the most efficient computational per-

formance, as processing a sample image pair from the Air-

Change Benchmark set needs around 10-15 seconds with C++

implementation in a standard laptop. Under similar circum-

stances, the CXM performs the task within 25-30 seconds on

a computer with an Intel(R) Core(TM) i7 3.20 GHz CPU:

the feature extraction takes around 5 sec, and the remaining

time in necessary for the simulated annealing based MRF en-

ergy optimization. The FMRF – which was originally suited

to higher resolution inputs – works with Matlab implementa-

tion for around 2 minutes in an image pair, using a PC with

2.67GHz CPU. Here almost 80% of the CPU time is related

to the CRA similarity image computation step. Since in the in-

troduced change detection examples, we compared images with

several years time differences, we can assume that in most prac-

tical scenarios the problem can be solved offline, therefore the

computational requirements of any of the demonstrated models

should not mean bottleneck for the workflow.

9. Conclusion

In this paper we gave a comparative survey on three differ-

ent multilayer MRF solutions, whose main properties are sum-

marized in Table 1. We have observed that with appropriate

feature selection and parametrization we may obtain quite sim-

ilarly efficient change masks with all the three models, and the

results are also competitive with other MRF solutions proposed

earlier in the literature. The differences should be often eval-

uated based on the exact needs of the focused applications:

PCC methods are preferred if the changes can be interpreted

at the level of well defined segmentation classes, while direct

approaches can be trained simply by a batch of positive and

negative change examples. Since multilayer MRFs offer flex-

ible model structures, all the three models can be completed

with additional features or accommodated to different types of

remote sensing data. The paper has shown that although the

definition of image clusters and the focused change prototypes

are critical tasks in the detection, the different approaches may

lead to different, but effective models with established mathe-

matical background.
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