1,631 research outputs found

    Differential temperature sensors: Review of applications in the test and characterization of circuits, usage and design methodology

    Get PDF
    Differential temperature sensors can be placed in integrated circuits to extract a signature ofthe power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper firstdiscusses the singularity that differential temperature sensors provide with respect to other sensortopologies, with circuit monitoring being their main application. The paper focuses on the monitoringof radio-frequency analog circuits. The strategies to extract the power signature of the monitoredcircuit are reviewed, and a list of application examples in the domain of test and characterizationis provided. As a practical example, we elaborate the design methodology to conceive, step bystep, a differential temperature sensor to monitor the aging degradation in a class-A linear poweramplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how,for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamicrange is required. A circuit solution for this objective is proposed, as well as recommendations for thedimensions and location of the devices that form the temperature sensor. The paper concludes with adescription of a simple procedure to monitor time variability.Postprint (published version

    Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit

    Get PDF
    A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations

    A software controlled voltage tuning system using multi-purpose ring oscillators

    Full text link
    This paper presents a novel software driven voltage tuning method that utilises multi-purpose Ring Oscillators (ROs) to provide process variation and environment sensitive energy reductions. The proposed technique enables voltage tuning based on the observed frequency of the ROs, taken as a representation of the device speed and used to estimate a safe minimum operating voltage at a given core frequency. A conservative linear relationship between RO frequency and silicon speed is used to approximate the critical path of the processor. Using a multi-purpose RO not specifically implemented for critical path characterisation is a unique approach to voltage tuning. The parameters governing the relationship between RO and silicon speed are obtained through the testing of a sample of processors from different wafer regions. These parameters can then be used on all devices of that model. The tuning method and software control framework is demonstrated on a sample of XMOS XS1-U8A-64 embedded microprocessors, yielding a dynamic power saving of up to 25% with no performance reduction and no negative impact on the real-time constraints of the embedded software running on the processor

    Design and Implementation of Signal Processing Circuitry for Implantable Sensors

    Get PDF
    Recent technological advancements in integrated circuits and medical technology have made real-time monitoring of physiological factors possible. One such important physiological factor to be measured is glucose. Continuous monitoring of glucose is extremely important for patients with diabetes as it helps make optimal treatment decisions. To enable continuous measurement, a chip containing the sensors and the electronic circuitry is implanted in the human body. This implanted chip provides for continuous measurement and helps reduce inconvenience caused to diabetic patients. A potentiostat forms an integral part of a sensor signal processing circuit. In this thesis the design and simulation of an on-chip potentiostat circuit has been presented. A potentiostat is needed to maintain a constant potential, so that the sensor can measure glucose. This design has been fabricated using a 0.35-m bulk CMOS process available through MOSIS

    Rotorcraft digital advanced avionics system (RODAAS) functional description

    Get PDF
    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented

    Low-Power Slew-Rate Boosting Based 12-Bit Pipeline ADC Utilizing Forecasting Technique in the Sub-ADCS

    Get PDF
    The dissertation presents architecture and circuit solutions to improve the power efficiency of high-speed 12-bit pipelined ADCs in advanced CMOS technologies. First, the 4.5bit algorithmic pipelined front-end stage is proposed. It is shown that the algorithmic pipelined ADC requires a simpler sub-ADC and shows lower sensitivity to the Multiplying DAC (MDAC) errors and smaller area and power dissipation in comparison to the conventional multi-bit per stage pipelined ADC. Also, it is shown that the algorithmic pipelined architecture is more tolerant to capacitive mismatch for the same input-referred thermal noise than the conventional multi-bit per stage architecture. To take full advantage of these properties, a modified residue curve for the pipelined ADC is proposed. This concept introduces better linearity compared with the conventional residue curve of the pipelined ADC; this approach is particularly attractive for the digitization of signals with large peak to average ratio such as OFDM coded signals. Moreover, the minimum total required transconductance for the different architectures of the 12-bit pipelined ADC are computed. This helps the pipelined ADC designers to find the most power-efficient architecture between different topologies based on the same input-referred thermal noise. By employing this calculation, the most power efficient architecture for realizing the 12-bit pipelined ADC is selected. Then, a technique for slew-rate (SR) boosting in switched-capacitor circuits is proposed in the order to be utilized in the proposed 12-bit pipelined ADC. This technique makes use of a class-B auxiliary amplifier that generates a compensating current only when high slew-rate is demanded by large input signal. The proposed architecture employs simple circuitry to detect the need of injecting current at the output load by implementing a Pre-Amp followed by a class-B amplifier, embedded with a pre-defined hysteresis, in parallel with the main amplifier to boost its slew phase. The proposed solution requires small static power since it does not need high dc-current at the output stage of the main amplifier. The proposed technique is suitable for high-speed low-power multi-bit/stage pipelined ADC applications. Both transistor-level simulations and experimental results in TSMC 40nm technology reduces the slew-time for more than 45% and shorts the 1% settling time by 28% when used in a 4.5bit/stage pipelined ADC; power consumption increases by 20%. In addition, the technique of inactivating and disconnecting of the sub-ADC’s comparators by forecasting the sign of the sampled input voltage is proposed in the order to reduce the dynamic power consumption of the sub-ADCs in the proposed 12-bit pipelined ADC. This technique reduces the total dynamic power consumption more than 46%. The implemented 12-bit pipelined ADC achieves an SNDR/SFDR of 65.9/82.3 dB at low input frequencies and a 64.1/75.5 dB near Nyquist frequency while running at 500 MS/s. The pipelined ADC prototype occupies an active area of 0.9 mm^2 and consumes 18.16 mW from a 1.1 V supply, resulting in a figure of merit (FOM) of 22.4 and a 27.7 fJ/conversion-step at low-frequency and Nyquist frequency, respectively

    Low-Power Slew-Rate Boosting Based 12-Bit Pipeline ADC Utilizing Forecasting Technique in the Sub-ADCS

    Get PDF
    The dissertation presents architecture and circuit solutions to improve the power efficiency of high-speed 12-bit pipelined ADCs in advanced CMOS technologies. First, the 4.5bit algorithmic pipelined front-end stage is proposed. It is shown that the algorithmic pipelined ADC requires a simpler sub-ADC and shows lower sensitivity to the Multiplying DAC (MDAC) errors and smaller area and power dissipation in comparison to the conventional multi-bit per stage pipelined ADC. Also, it is shown that the algorithmic pipelined architecture is more tolerant to capacitive mismatch for the same input-referred thermal noise than the conventional multi-bit per stage architecture. To take full advantage of these properties, a modified residue curve for the pipelined ADC is proposed. This concept introduces better linearity compared with the conventional residue curve of the pipelined ADC; this approach is particularly attractive for the digitization of signals with large peak to average ratio such as OFDM coded signals. Moreover, the minimum total required transconductance for the different architectures of the 12-bit pipelined ADC are computed. This helps the pipelined ADC designers to find the most power-efficient architecture between different topologies based on the same input-referred thermal noise. By employing this calculation, the most power efficient architecture for realizing the 12-bit pipelined ADC is selected. Then, a technique for slew-rate (SR) boosting in switched-capacitor circuits is proposed in the order to be utilized in the proposed 12-bit pipelined ADC. This technique makes use of a class-B auxiliary amplifier that generates a compensating current only when high slew-rate is demanded by large input signal. The proposed architecture employs simple circuitry to detect the need of injecting current at the output load by implementing a Pre-Amp followed by a class-B amplifier, embedded with a pre-defined hysteresis, in parallel with the main amplifier to boost its slew phase. The proposed solution requires small static power since it does not need high dc-current at the output stage of the main amplifier. The proposed technique is suitable for high-speed low-power multi-bit/stage pipelined ADC applications. Both transistor-level simulations and experimental results in TSMC 40nm technology reduces the slew-time for more than 45% and shorts the 1% settling time by 28% when used in a 4.5bit/stage pipelined ADC; power consumption increases by 20%. In addition, the technique of inactivating and disconnecting of the sub-ADC’s comparators by forecasting the sign of the sampled input voltage is proposed in the order to reduce the dynamic power consumption of the sub-ADCs in the proposed 12-bit pipelined ADC. This technique reduces the total dynamic power consumption more than 46%. The implemented 12-bit pipelined ADC achieves an SNDR/SFDR of 65.9/82.3 dB at low input frequencies and a 64.1/75.5 dB near Nyquist frequency while running at 500 MS/s. The pipelined ADC prototype occupies an active area of 0.9 mm^2 and consumes 18.16 mW from a 1.1 V supply, resulting in a figure of merit (FOM) of 22.4 and a 27.7 fJ/conversion-step at low-frequency and Nyquist frequency, respectively

    Ultra-low Quiescent Current NMOS Low Dropout Regulator With Fast Transient response for Always-On Internet-of-Things Applications

    Get PDF
    abstract: The increased adoption of Internet-of-Things (IoT) for various applications like smart home, industrial automation, connected vehicles, medical instrumentation, etc. has resulted in a large scale distributed network of sensors, accompanied by their power supply regulator modules, control and data transfer circuitry. Depending on the application, the sensor location can be virtually anywhere and therefore they are typically powered by a localized battery. To ensure long battery-life without replacement, the power consumption of the sensor nodes, the supply regulator and, control and data transmission unit, needs to be very low. Reduction in power consumption in the sensor, control and data transmission is typically done by duty-cycled operation such that they are on periodically only for short bursts of time or turn on only based on a trigger event and are otherwise powered down. These approaches reduce their power consumption significantly and therefore the overall system power is dominated by the consumption in the always-on supply regulator. Besides having low power consumption, supply regulators for such IoT systems also need to have fast transient response to load current changes during a duty-cycled operation. Supply regulation using low quiescent current low dropout (LDO) regulators helps in extending the battery life of such power aware always-on applications with very long standby time. To serve as a supply regulator for such applications, a 1.24 µA quiescent current NMOS low dropout (LDO) is presented in this dissertation. This LDO uses a hybrid bias current generator (HBCG) to boost its bias current and improve the transient response. A scalable bias-current error amplifier with an on-demand buffer drives the NMOS pass device. The error amplifier is powered with an integrated dynamic frequency charge pump to ensure low dropout voltage. A low-power relaxation oscillator (LPRO) generates the charge pump clocks. Switched-capacitor pole tracking (SCPT) compensation scheme is proposed to ensure stability up to maximum load current of 150 mA for a low-ESR output capacitor range of 1 - 47µF. Designed in a 0.25 µm CMOS process, the LDO has an output voltage range of 1V – 3V, a dropout voltage of 240 mV, and a core area of 0.11 mm2.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore