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Abstract 

 

Recent technological advancements in integrated circuits and medical technology have made 

real-time monitoring of physiological factors possible. One such important physiological factor 

to be measured is glucose. Continuous monitoring of glucose is extremely important for patients 

with diabetes as it helps make optimal treatment decisions. To enable continuous measurement, a 

chip containing the sensors and the electronic circuitry is implanted in the human body. This 

implanted chip provides for continuous measurement and helps reduce inconvenience caused to 

diabetic patients. A potentiostat forms an integral part of a sensor signal processing circuit. In 

this thesis the design and simulation of an on-chip potentiostat circuit has been presented. A 

potentiostat is needed to maintain a constant potential, so that the sensor can measure glucose. 

This design has been fabricated using a 0.35-m bulk CMOS process available through MOSIS.  
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Chapter 1 

1 Introduction 
 

1.1 Overview 
 

Technological advancements in healthcare monitoring systems and the down-scaling of CMOS 

technology have paved the way for many medical applications. These include continuous 

monitoring of physiological factors such as oxygen, glucose, lactose, pH level etc in a human 

body using implantable sensors, telemedicine, telesurgery etc.  

 

This advancement in sensor electronics is highly beneficial for patients who need regular 

metabolic monitoring. Regular metabolic monitoring can be done using an implantable biosensor 

system. An implantable biosensor system converts a biologically or a chemically produced signal 

into an electrical signal, which is transmitted out of the body by suitable means and then 

monitored. Biosensors help treat the patient more effectively since any irregularities in the 

patient‟s system can be detected immediately. In addition to giving accurate data on a regular 

basis, these can also be particularly useful in the case of emergencies. These monitored 

parameters can be transmitted through a personal digital assistant (PDA) or a cell-phone to the 

hospital and the doctor can perform the necessary action as soon as the data is available. 

 

The development of the concept of telemedicine along with the growth of improved and 

innovative wireless sensor networks has led to the application of sensor technology in the field of 

healthcare. Wireless sensors are creating a huge impact in the area of healthcare because of their 

ease of accessibility to patients and healthcare professionals. They help provide real-time 
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response results as well as access to the laboratory results, the medical history of the patients as 

well as their insurance related information. It can also help the hospital management staffs to 

monitor a patient database. Wireless sensor applications also extend the concept of 

„Telemedicine‟ where the patient can get treated at home via a remote access to the medical 

facilities or medical professionals. Different types of implantable sensors can be used to 

continuously monitor different physiological parameters. This could be particularly helpful in the 

case of emergencies as it saves valuable time. 

 

Another area in the medical field where wireless sensors are finding their application is in the 

field of „Telesurgery‟. In this scheme, the doctor need not be physically present in the same 

room. The patient can be operated by robot manipulators. The doctor can remotely monitor the 

robot manipulators.  Some of the sensor networks that can be used for health care applications 

are wireless body area network (WBAN), radio frequency identification (RFID), wireless 

personal area network (WPAN), general packet radio service (GPRS)/universal mobile 

telecommunications system (UMTS) and wireless LAN. Figure 1.1 illustrates the applications of 

wireless sensors in the medical field.  
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Figure 1.1Applications of medical wireless networks [1] 
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1.2 Glucose sensing implantable sensors 
 

In this project, a biosensor system has been designed for monitoring blood-glucose levels of 

diabetic patients. Diabetes Mellitus or commonly known as diabetes is a condition in which a 

person has high levels of sugar in his blood. This may be due to the insufficient production of 

insulin (type 1 diabetes) or the ineffective use of insulin (type 2 diabetes). A person is said to 

have diabetes if his/her fasting plasma glucose level is at or above 7.0mmol/l. Diabetes is a fast- 

spreading disease world-wide. According to the WHO, more than 220 million people, worldwide 

[2] and nearly 24 million Americans have diabetes. Figure 1.2 shows the percentage of people 

with diabetes against the year.  

 

 

 

Figure 1.2 Graph showing the percentage of people with diabetes against the year [3]  
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1.3 Importance of continuous glucose monitoring 
 

Monitoring blood sugar levels is very important to patients since diabetes can lead to many 

complications such as kidney failure, blindness, nerve damage etc.  Continuous monitoring of 

glucose is particularly useful for type 1 diabetic patients. It helps take optimal treatment decision 

for patients. Discrete measurements of glucose cannot predict future trends but continuous 

monitoring does have a predictive capability. An intermittent or discrete glucose monitoring 

system requires the user‟s effort whereas a continuous glucose monitor does not. In addition, 

continuous measurements of glucose provide information about the direction, magnitude, 

duration, frequency and causes of fluctuations of blood glucose levels. Therefore continuous 

monitoring is required as it provides a greater insight into the blood-glucose levels of a patient. A 

method of continuous monitoring of glucose combined with an insulin pump would require no 

effort from the patients and thereby will help improve their quality of life.  

 

1.4 Techniques for measuring blood glucose levels 
 

The three commonly used techniques for blood sugar monitoring are 

 By means of invasive devices 

 Using minimally invasive monitors 

 By means of non-invasive sensors 
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1.4.1 Using invasive devices 

 

Invasive monitors analyze blood samples. Usually small lancets are used to prick the finger and 

obtain blood. The blood sample thus obtained is placed on a testing strip. The testing strip is then 

placed on a monitor that displays the blood sugar level. Figure 1.3 shows the measurement of 

blood glucose level using an invasive device.  

 

1.4.1 Using minimally invasive devices 

 

Minimally invasive devices use needle-like electrodes, which are implantable subcutaneously. 

Minimally invasive monitors analyze interstitial fluid of the subcutaneous tissue. There are 

different methods to get a sample, like a laser induced puncture in the skin and vacuum 

collection of the trans-membrane fluid or with the aid of a low frequency ultra-sound, which 

causes the permeability of the skin to increase by 25 times. Minimally invasive monitors do not 

puncture any blood vessels. Figure 1.4 shows an implanted sensor unit.  
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Figure 1.3 Depiction of a blood glucose test using invasive devices [4] 

 

 

Figure 1.4 A minimally invasive monitoring system 
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1.4.2 Using non-invasive devices 

 

Use of non-invasive devices, result in having no skin injury and are totally painless. The 

accuracy of these devices depends upon factors like body temperature, ambient temperature, 

body sweat etc. According to the Food and Drug Administration (FDA), the accuracy of non- 

invasive devices is 15%. Non-invasive methods fall into two classes: with an external factor and 

without any external factor. Electromagnetic radiation is a commonly used external factor. Near 

infrared (IR) radiation is used since the maximum transmission range in a bio-tissue is 800- 1200 

nm. Blood glucose concentration can be measured without an external factor, by analyzing 

liquids secreted from the human body, such as tears, saliva or sweat. But, these methods do not 

provide continuous monitoring. Non-invasive techniques are rarely used due to their high 

percentage of measurement errors [5]. Figure 1.5 shows a non-invasive method of monitoring 

blood glucose. It is known as a gluco-watch. It uses low levels of electric current to extract 

glucose and move it into a transdermal pad. The glucose levels are estimated by an auto sensor. 
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Figure 1.5 A non-invasive gluco-monitoring system [6] 

 

1.5 Basic Glucose-Sensor Concepts 
 

A minimally invasive biosensor is used to detect the level of blood glucose and convert the 

signal into an electrical signal. This electrical signal can be analyzed for any irregularities. A 

biosensor is a device used for the detection of a physiological change. It consists of three major 

components: 
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1. Biological recognition elements, which help differentiate the target 

analyte from various other molecules. 

2. A transducer, which helps convert the reaction of the glucose 

molecules into a current. 

3. The electronic circuitry needed to convert the signal into a user-

readable form.  

 

The commonly used transducers are electrochemical, optical, thermometric, piezoelectric and 

magnetic. For glucose sensing, electrochemical transducers are commonly used. They are 

preferred due to their better sensitivity, selectivity, lower power consumption and low cost. 

Figure 1.6 shows the factors affecting an electrochemical sensor.  

 

 

 

Figure 1.6 Block diagram showing the factors affecting an electrochemical sensor  
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1.5.2 Types of electrochemical sensors 

 

There are three types of electrochemical sensors: potentiometric, amperometric and 

conductimetric.  

i. Potentiometric sensors: They measure the change in charge density at the surface of an 

electrode.  

ii. Amperometric sensors: Amperometric sensors monitor currents generated when an 

exchange of electrons takes place either directly or indirectly between an electrode and a 

biological system. These sensors have evolved along with the fabrication technology [7]. 

iii. Conductimetric sensors: In such sensors, the measurement of solution resistance provides 

the concentration of charge. These sensors are therefore not species-selective. 

Conductimetric sensors are called so because they measure electrical conductance as their 

signal change.  

1.5.1 Oxidation of glucose 

 

Usually, the measurement of glucose (C6H12O6) requires an enzyme. Different enzymes have 

different redox potentials, turn-over rates and selectivity for glucose. The common enzyme used 

for glucose measurement is glucose oxidase (GOx). It is preferred because it is easy to obtain, has 

a low cost, can withstand greater levels of pH and has a greater ionic strength. Glucose oxidase 

thus places relatively relaxed conditions for biosensor users. The oxidation reaction of glucose in 

the presence of glucose oxidase is given by,  

 

Glucose + O2 
               
              Gluconic acid + H2O2       (1.1)   
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Hydrogen peroxide (H2O2) is oxidized at a platinum electrode. The electrode recognizes the 

number of electron transfers. The number of electrons produced is proportional to the glucose 

molecules present in the analyte [8].  

 

H2O2 
 
  2H

+
 + O2 + 2e

-
        (1.2)  

 

1.6 Scope of the thesis 
 

 An implantable biosensor consists of a sensing system, a potentiostat and signal processing 

circuitry. A potentiostat helps in providing a proper bias between the electrodes of a sensor. In 

other words it enables the sensing system to measure a certain physiological element, as different 

physiological elements have different values of bias voltages. This thesis summarizes the design 

and testing of a potentiostat for implantable sensor applications. The power and area constraints 

are taken into account while designing this potentiostat.  

 

The main concerns while designing an implantable biosensor are the size of the system, long-

term bio-compatibility and minimal usage of power. The use of CMOS technology for signal 

processing in medical applications helps reduce the size of the sensor system drastically. A 

miniature sensor system is highly preferred since the sensor and the signal processing units are to 

be implanted in a human body. In addition, CMOS technology helps achieve low power 

consumption which is an essential requirement for implantable sensor electronics.  
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Powering an implanted system is very critical. An implantable biosensor should be powered by 

means that are non-invasive, reliable, long lasting and effective. An inductive link is preferred, as 

it satisfies all the above requirements. It helps improve the lifetime of the system and also 

provides for a secure transmission of power and data transmission.  

 

1.7 Thesis organization 
 

Chapter 2 gives a detailed description of the various blocks involved in the construction of an 

implantable sensor for metabolic monitoring. The various blocks described are the band gap 

reference circuit, the potentiostat, the signal processing block and the inductive link.  

 

Chapter 3 describes in detail the purpose and design of a potentiostat, which is used to provide a 

proper bias to the implanted sensor. It also describes in detail the various blocks that constitute a 

potentiostat. This improved potentiostat is designed taking the power and area constraints into 

consideration. 

 

Chapter 4 consists of the presentation of simulation results and the test results. 

 

Chapter 5 gives the conclusion and recommends future work that could be done to further 

improve the potentiostat design.  
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Chapter 2 

2 System overview 

2.1 Introduction  
 

This chapter presents an overview of the different blocks constituting an implantable sensor 

system. An implantable sensor system generally constitutes the actual sensors implanted in the 

body and sensor electronics block consisting of - a signal processing block and a transmission 

system. The implantable sensor electronic system being considered here is for monitoring the 

level of glucose and/or other physiological parameters in the human body. The whole system 

runs on a voltage supply of 2.5V.  

The various blocks that constitute an implantable sensor electronic system are as follows: 

 Band gap voltage reference 

 Potentiostat 

 Signal processing block which consists of 

 Data generator 

 Frequency generator 

 Inductive link 

 

2.2  Band gap Voltage Reference 
 

A voltage reference is needed to provide a constant and stable voltage which is insensitive to 

changes in temperature. Of the different voltage reference circuits, a band gap voltage reference 
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is the most widely used. Usually the output voltage of the band gap reference circuit is 1.25V. In 

order to generate a voltage reference that does not change with temperature, it is assumed that if 

two quantities that have opposite polarities of temperature co-efficient are added with proper 

weighting factors, then the resultant quantity would have a zero temperature co-efficient. The 

base-emitter voltage VBE in a BJT has a negative temperature coefficient of -2.2 mV/
o
C and the 

thermal voltage Vt (=kT/q) has a positive temperature coefficient of +0.085 mV/
o
C. If the 

thermal voltage is multiplied by a constant m and then added to VBE, we get,  

 

VREF = VBE + mVt           (2.1) 

 

 

Figure 2.1 shows the operating principle of a band gap reference circuit. Figure 2.2 shows the 

block diagram of a band-gap reference circuit. A supply independent current source produces a 

current I1, which passes through Q1. An equal amount of current I2 passes through Q2, which has 

m BJT s connected in parallel. The voltage difference between VBE1 and VBE2 can be expressed 

as follows 

 

 VBE1- VBE2 = ΔVBE = VT 










SI

I1ln  - VT 










SmI

I 2ln  = VT  mln     (2.2) 

 

From Figure 2.3, the output voltage at R2 is given by [9], 

 

 Vref = VBE3 + 
 

2

1

ln
R

R

mVT
 = VBE3 + IR2        (2.3) 
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Where, IDiode = IS











T

BE

V

V

e ,   I = I1 = I2 and I 1 = I2 = 
 

1

ln

R

mVT  

 

The band gap voltage reference circuit consists of an operational amplifier, two PMOS 

transistors, two large on-chip resistors, two bipolar junction transistors, and a start-up circuit. 

 

 

 

 

 

 

 

Figure 2.1 Operating principle of the band gap reference circuit 
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Figure 2.2 Block diagram of a band gap reference circuit 
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Figure 2.3 Complete schematic of the band gap reference circuit [10] 
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2.3 Potentiostat 
 

A potentiostat is required to provide the desired bias to an electrochemical sensor. The biosensor 

produces a current proportional to the concentration of glucose molecules, provided the voltage 

between the Reference electrode and the Working electrode is maintained at a constant value of 

0.7V. This is done by using electronic circuitry comprising of an opamp and two class-AB 

buffers. The third electrode i.e. the Collector electrode collects the charges and produces a sensor 

current. The sensor current is further modified and made into a user-readable form. The circuit 

description and schematic of the potentiostat is discussed in detail in chapter 3.  

 

2.4 Signal Processing Block 
 

The purpose of the signal processing block is to convert the current received from the Collector 

electrode to an FSK signal that can be transmitted out of the human body. To transmit the data 

from the implantable sensor in the body, a modulation scheme is required. Amongst the various 

available modulation schemes, a frequency shift keying (FSK) mechanism is preferred because 

of its ease of implementation and low cost. FSK modulation scheme has been chosen due to its 

ease of implementation and immunity to noise. Since the power and the data are transmitted 

through the same set of coils, FSK modulation is used to avoid any power-amplifier non-linearity 

issues. 

 

 The signal processing circuitry consists of two blocks – the data generator and the frequency 

generator. The functions of these two blocks are explained in the following sections.  
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2.4.1 Data Generator  

 

The function of the data generator block is to convert the input sensor current into a data signal. 

Figure 2.4 shows the block diagram of a data generator block. The input to the data generator 

block is the current generated from the electrochemical sensor. The current is fed to a current 

mirror (N1-N2). This mirrored current charges the integrating capacitor Cint to the supply voltage 

(VDD). As the capacitor gets charged up, the voltage at the input of the Schmitt trigger decreases. 

When the input of the Schmitt trigger goes below its lower threshold voltage, the output turns 

low. This output is connected to an inverter. Therefore the output of the inverter is high. This is 

connected to a PMOS transistor, which acts as a switch. When its input is high, it turns on, and 

thereby forming a shorted connection between VDD and the input to the Schmitt trigger. This 

shorted path discharges the capacitor and hence starts a new cycle. The rate at which the 

capacitor charges, is dependent on the mirrored current, which depends on the sensor current. 

Therefore, the frequency of the data signal is dependent on the sensor current. It can be seen in 

Figure 2.5 that the frequency of the data signal is directly proportional to the sensor current. 

 

The second inverter is needed to minimize the effect of loading on the data signal. The output of 

the second inverter is finally connected to a D-latch, to make the duty cycle of the data signal to 

approximately 50% and also to provide a frequency separation of ten times between the data and 

the lowest carrier frequency[11]. The Schmitt trigger and the D latch are explained in the next 

sections.  
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Figure 2.4 Block diagram of a data generator 

 

 

 

Figure 2.5 Variation of frequency with respect to change in current obtained from the       

sensor 
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2.4.2 Schmitt trigger 

 

A Schmitt trigger is a type of comparator that gives the output as low if the input is below the 

lower threshold voltage and outputs high if the input is above the higher threshold voltage. The 

hysteresis makes the circuit immune to noise. Figure 2.6 shows the schematic of a Schmitt 

trigger.  

 

 

 

Figure 2.6 Schematic of a Schmitt trigger 
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2.4.3 D latch 

 

A D latch is a variation of the SR latch. It is constructed by connecting the inverted S input to the 

R input. The advantage of a D latch is that it cannot experience a “race” condition. One of the 

applications of a D latch is a frequency divider. Here, it is used for the same purpose. The output 

Qbar is connected to the D input. Figure 2.7 shows a frequency divider using a D latch.  

The truth table for a D latch is as shown in Table 2.1. 

 

Table 2.1: Truth table of a D latch 

 

Clock D Q Qprevious 

1 0 0 X 

1 1 1 X 

0 0 Qprevious  

0 1 Qprevious  
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Figure 2.7 Block diagram of a frequency divider 

 

2.4.4 Frequency Generator 

 

To transmit the data from the implantable sensor in the body, a modulation scheme is required. 

Usually an amplitude shift keying (ASK) or a frequency shift keying (FSK) mechanism is 

preferred because of their ease of implementation and low cost. Here, an FSK modulation 

scheme has been used. FSK modulation scheme has been chosen due to its ease of 

implementation and immunity to noise. Since the power and the data are transmitted through the 

same set of coils, FSK modulation is used to avoid any power-amplifier non-linearity issues. 

 

The frequency generator block comprises a Schmitt trigger, an inverter, a switched capacitor 

structure and an NMOS (M1) transistor. The NMOS transistor (M1) is used to discharge the 
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capacitor. A beta multiplier is used to provide a constant current. This current charges the 

switched-capacitor structure towards the supply voltage VDD. When the capacitor voltage reaches 

the upper threshold voltage of the Schmitt trigger, a negative pulse is generated by the Schmitt 

trigger. The Schmitt trigger is connected to an inverter and hence the output of the inverter is 

positive/high. This is fed to the NMOS transistor, which discharges the capacitor. The rate at 

which the capacitor discharges is dependent on the value of the capacitance and the on resistance 

of the NMOS, M1. To get a 50% duty cycle of the carrier frequency, the on resistance of M1 is 

optimized with equivalent capacitance of the switched-capacitor structure.  

 

There are three capacitances involved in the switched-capacitor structure. They are C1, C2 and 

Cp. An NMOS transistor (M2) is connected in parallel with C2. The data signal from the data 

generator is given as input to the gate of M2. When the data signal is low, the capacitance value 

can be expressed as  

Ceq,LOW = Cp + 
     

      
             (2.4) 

When the data signal is high, M2 acts as a short and therefore the effective capacitance becomes, 

Ceq,HIGH = Cp + C1                     (2.5) 

It can be observed that when the data signal is low, the equivalent capacitance is low and the 

output frequency is high. When the data signal is high, the equivalent capacitance is high and the 

output frequency is low. Thus the frequency generator produces two different frequencies based 

on the high or low value of the data signal. Figure 2.8 shows the schematic of the frequency 

generator. The values of the capacitors used are, Cp = 1.2pF, C1 = 2.4pF and C2= 800fF.     
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Figure 2.8 Block diagram of a frequency generator 

 

2.5  Inductive link 
 

An inductive link is used in this system to transmit power to the implanted sensor unit and also to 

transmit the FSK modulated signal from the sensor to the external unit. The transmission of data 

between an implanted sensor and the outside world can be done using other methods i.e. through 

batteries, wire cables etc. Powering an implantable sensor using batteries is not usually preferred 

since a battery usually has a short life and therefore frequent replacement or recharging of the 

battery is required. Also, there are leakage problems involved and these may prove to be 

injurious to the patient. A battery also increases the size of the implanted system. An inductive 

link is a safe option since there is less risk of infection and it is durable for long term use. 

However an inductive link has disadvantages due to the size of the coils used and the attenuation 

of signal through the skin of the user. 

 



` 

27 
 

An inductive link is formed by a loosely coupled transformer comprising of a pair of coils 

arranged co-axially. The primary coil is excited using an alternating current. This current creates 

an electro-magnetic field and the change in the flux linkage produces a voltage in the secondary 

coil. The overall performance of the inductive link coils depends on the coil dimensions, 

coupling factor, coil spacing and frequency of operation. The larger the dimension of the coil, 

greater is its efficiency. The mutual inductance is directly proportional to the coupling co-

efficient. Increase in the spacing between the coils causes a decrease in the efficiency. The 

operating frequency should be low enough to keep the tissue absorption at a minimum and high 

enough to allow a sufficient data transfer rate.  

 

An FSK modulation scheme is one the preferred methods of transmission due to its high power 

efficiency, better noise performance and simple implementation. Figure 2.9 shows the block 

diagram of an implanted unit powered with inductive links. 

 

 

 

Figure 2.9 Block diagram of an implanted sensor powered using inductive links 
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Chapter 3 

3 The Potentiostat 
 

3.1 Introduction 
 

Recently there has been much advancement in the field of implantable sensor technology. An 

implantable sensor is useful in situations when in vivo measurement of a substance in an analyte 

is required. Implantable sensors are mainly useful in medical applications when it is required to 

monitor physiological factors like the levels of glucose, lactate, pH, oxygen etc. The output from 

the sensor is usually a current and this current can be converted into a voltage signal and 

transmitted outside the human body for analysis and monitoring purposes.  A potentiostat is an 

integral part in an implantable sensor. It is used to set a fixed potential for the proper operation of 

the sensor. The electrochemical sensor produces a current, proportional to the target analyte 

when the voltage between the reference and the working electrode is constant. Therefore the 

potentiostat has to maintain a constant voltage between the reference electrode and the working 

electrode. [12].  

 

3.2 Principle of a potentiostat 
 

A potentiostat can be considered as a controlling and a measuring device.  It is the electronic 

circuitry that is used to bias a sensor. It helps maintain a constant potential between the 

Reference and the Working electrode. The Working electrode is the sensing electrode. It is 

chemically inactive and the electrochemical reaction of the analyte occurs here. The Collector 
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electrode is used to collect the current present in the solution. The third electrode is known as a 

Reference electrode. The Reference electrode is needed to maintain a constant reference. Figure 

3.1 shows the construction of a basic three electrode sensor and a potentiostat. The current 

resulting from the Faradaic reaction occurring at the Working electrode can be written as,  

 

 If = kfAwCo          (3.1) 

 

where Aw is the area of the working electrode, Co is the concentration of the analyte, and kf is the  

proportionality constant[13].  

 

The constant value of voltage to be maintained between the Reference and the Working 

electrodes depends on the purpose the potentiostat is being used for. For example if it is a part of 

a glucose sensing system the value of the bias voltage is 0.7V, for a lactate sensing system, the 

bias voltage is 0.6V, for oxygen sensing the bias voltage should be -0.1V etc. For this project, the 

potentiostat has been designed to maintain a 0.7V difference between the Reference and the 

Working electrode. The resistance of the analyte i.e. blood is assumed to be in the order of kilo 

ohms.  

 

3.3 Potentiostat using constant cathode potential  
 

Earlier this type of potentiostat was used; however it is not suitable for implantable purposes. In 

such a device, the potential at the cathode is measured continuously with respect to a Reference 

electrode. This Reference electrode is in the form of a saturated calomel electrode. The total 
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potential applied to the cell is controlled with the aid of a voltage divider, such that the potential 

at the cathode is constant. Figure 3.2 shows the diagram of the device. The saturated calomel 

electrode, the salt bridge, the cathode and the anode are immersed in the solution being 

monitored. 

 

 

 

 

 

 

 

Figure 3.1 Block diagram of a basic three electrode system  
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Figure 3.2 A potentiostat using a constant cathode potential 

 

3.4 On-chip potentiostat with four op-amps 
 

There are four operational amplifiers involved in this circuit. Figure 3.3 shows the block diagram 

of the potentiostat. They are U1, U2, U3 and U4. Op-amps U1 and U2 function as buffers, U3 

functions as a unity gain differential amplifier and U4 acts as an error amplifier. The input at the 

non-inverting terminal of the error amplifier (U4) is fixed at 0.7V. This voltage is fixed with the 

aid of a resistive divider from the band gap reference, which provides a constant 1.2 V. The 

output of the error amplifier is fed back to the work electrode [14].  
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The feedback loop ensures that the voltage at the inverting and the non-inverting terminals of U4 

remains the same. The voltage at the inverting terminal of U4 is equal to the output of U3, which 

is 0.7V. This is because there is no current flowing into the inverting terminal. The voltage of the 

non-inverting input of U3 is Vwork_el/2, because of the resistive divider used. Using Kirchhoff s 

current law at the inverting input of the differential amplifier (U3), we get  

 

0.7
2

work_el
V

2

work_el
V

ref_el
V 

         (3.2) 

 

Therefore, 0.7
ref_el

V
work_el

V         (3.3) 

 

 

 

Figure 3.3 Block Diagram of the previously used potentiostat using four operational 

amplifiers 
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3.5 On chip potentiostat with a single op-amp 
 

The above mentioned potentiostat uses four op-amps, thereby increasing the number of 

components and hence increasing the area on the chip. Here, the proposed design of the on-chip 

potentiostat uses a single op-amp. It maintains a constant value of 0.7V between the Reference 

electrode and the Working electrode. The circuit diagram of the potentiostat is shown in Figure 

3.5. It consists of an op-amp in a non-inverting configuration and two class AB buffers. The 

positive terminal at the input and the output terminal of the op-amp are connected to class AB 

buffer circuits. The outputs of these buffer circuits are connected to electrodes, which are 

immersed in the analyte. The Reference electrode is connected to the buffer A, which is at the 

non-inverting (positive) input terminal and the Working electrode is connected to the buffer B, 

which is at the output of the op-amp. 

 

A band gap reference circuit is used to provide a stable reference voltage of 1.21V. The input at 

the positive terminal of the op-amp is 0.1V which is attained by using a resistive divider (R3 and 

R4) from the band gap reference circuit. The value of the resistors R3 and R4 are 1K Ω and 11K 

Ω respectively to give an output of 0.1V. Figure 3.4 shows the resistive divider. The resistors R1 

and R2 (the input resistance and the feedback resistance), connected to the op-amp can be 

adjusted to give a value of 1 V at the output of the op-amp. The ratio of R1 and R2 can be found 

by, 

V out = Vin (1 + R2/ R1)       (3.4) 

R2/ R1 = 9/1 

Here, R2 = 18KΩ and R1 = 2KΩ 
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The buffers are used to minimize the loss of signal strength at the output due to loading. They 

also help maintain a constant voltage. The resistance of the solution is modeled with a 300KΩ 

resistor. Since the potential between the electrodes is 0.7V and the current from the sensor is 

around 2µA. Therefore the resistance is approximately 300KΩ. The parameters of the buffer 

circuits and the op-amp are designed to have minimal variation with change in resistance of the 

solution. 

 

This resistance of the solution depends on the electrochemical reactions taking place in the 

analyte. The circuit is simulated assuming the resistance of the analyte to vary between 300KΩ 

to 1MΩ. The potentiostat maintains a fairly constant value with the above mentioned change in 

resistance. The operation of the class AB buffer and the operational amplifier are explained in 

the following sections.  

 

 

 

Figure 3.4 Resistive divider used at the Band gap Reference circuit 
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Figure 3.5  Block diagram of the potentiostat  
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3.6 Design of the Class AB buffers 
 

The class AB buffers are used to maintain constant voltages at their output terminals, since the 

electrodes are connected at these output terminals. A constant current (IBIAS), flows through M1 

and M2. This establishes a DC bias voltage VGG, between the gates of MN and MP. If MN and MP 

are matched and M1 and M2 are matched, then 

 IM=IBIAS (W/L)n/(W/L)1        (3.5) 

also,  

(VGS)M1 + (VGS)M2  = (VGS)MN + (VGS)MP      (3.6) 

  

The diode connected MOSFETS M1 and M2 are used for biasing since they are always in 

saturation. Figure 3.6 shows a class AB buffer. Here, the buffers are biased with a current of 20 

µA. The bias current and the dimensions of the transistors are chosen to maintain a stable 

difference of 0.7V between the output terminals of both the buffers. 
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Figure 3.6 Schematic of the Class AB buffer 
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3.7 Design and Simulation of the Rail to Rail Operational 

Amplifier  
 

CMOS operational amplifiers or op-amps find their applications in various analog and digital 

circuits. Here, in the circuit of a potentiostat, a rail to rail op-amp is used in the non-inverting 

configuration is used. A rail to rail op-amp gets its name from the fact that its output can go near 

the power supply rails. The op-amp had been tested for various factors such as its frequency 

response, phase margin, settling time, slew rate, offset voltage, common-mode range, CMRR etc. 

The circuit diagram of the op-amp is as shown in Figure 3.7. The input stage of the op-amp 

amplifies the difference between the two inputs. The input stage consists of a PMOS differential 

pair and an NMOS differential pair. The PMOS input-pair can detect a signal even as low as a 

ground signal and an NMOS differential pair can detect a signal as high as VDD. M1, M2, M7 and 

M8 form the differential pairs. M15, M16, M17 and M18 act as loads. VbiasP and VbiasN are used 

to bias the circuit.  M11 and M13 form the output buffer.  
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Figure 3.7 Rail to Rail CMOS Operational amplifier 

  

 

 

 

 

 

 



` 

40 
 

3.7.1 Frequency Response 

 

The frequency response of the amplifier is tested using the configuration shown in Figure 3.8. 

The DC gain of the amplifier is 72 dB. The phase margin is 59.5
o
. The unity gain frequency is 

found to be 835.56K Hz.  

 

 

 

 

 

 

Figure 3.8 Schematic to measure the frequency response of an op-amp 
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3.7.2 Slew Rate 

 

It is defined as the maximum rate of change of the output of the op-amp. The slew rate of the op-

amp is found by using the schematic shown in Figure 3.9. For simulation purposes, the load 

capacitor is assumed to be 5pF. The slew rate is found to be 2.1e
6
 V/s. The slew rate is given by 

the following equation 

MAX
out

dt

dV
SR            (3.7) 

 

 

 

 

 

 

Figure 3.9 Circuit configuration to measure Slew Rate 
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3.7.3 Common Mode Rejection Ratio 

 

CMRR can be defined as the ratio of the voltage gain for a differential mode input signal to the 

voltage gain for a common mode signal. An ideal op-amp will not respond to a common-mode 

signal. Figure 3.10 shows the test configuration.  

CMRR = 20 log (ADM / ACM)        (3.8) 

The CMRR of this op-amp is 67.15 dB. 

 

 

 

 

Figure 3.10 Circuit configuration to measure CMRR 
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3.7.4 Settling Time 

 

It is defined as the time needed for the output of the op-amp to reach a final value, when excited 

by a small signal. The circuit configuration used to determine the slew-rate is shown in Figure 

3.9. The settling time was found to be 2.68µs.  

 

3.7.5 Rise Time 

 

The time taken for the output signal to change from 10% to 90% of its final value when a step 

input is applied is known as rise time. The rise time is found to be 0.44µs.  

 

3.7.6 Power Supply Rejection Ratio (PSRR)  

 

It is defined as the product of the ratio of the change in supply voltage to the change in output 

voltage of the op-amp caused by the change in the power supply and the open-loop gain of the 

op-amp. Ideally, an op amp would have an infinite PSRR.  

PSRR
+
 = V

+
 / Vout         (3.9) 

PSRR
-
 = V

-
 / Vout        (3.10) 

Figure 3.11 shows the circuit configuration used to find the PSRR. From the simulation, PSRR
+
 

is found to be 118.2dB and PSRR
-
 is found to be 84.38dB.  

Figure 3.11 Circuit configuration to determine PSRR 
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Figure 3.11 Circuit configuration to determine PSRR 

 

3.7.7 Input Common Mode Range (ICMR) 

 

The common mode range is defined as the voltage range over which the input common mode 

signal can vary. Ideally, as the common-mode voltage varies, the output of the differential 

amplifier should remain constant. Figure 3.12  shows the circuit configuration used to measure 

the ICMR. The common mode range is found to be -1.25V to 1.25V.  

 

Figure 3.13shows the simulation result. The three stable regions are due to the fact that it is a rail 

to rail op-amp.  
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Figure 3.12 Circuit configuration to measure ICMR 

 

 

 

Figure 3.13 Simulation result showing the ICMR 
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Chapter 4 

4 Simulation and Test Results 
 

The schematic and layout have been created and simulated using CADENCE tools in a 0.35µm 

4M-2P bulk CMOS process. DRC (design rule check) and LVS (layout versus schematic) 

matching have been used to verify the layout.  

4.1 Actual Schematics Used 
 

In this section, the actual schematics used to simulate the various circuits have been presented. 

4.1.1 Schematic of the Band gap reference circuit 

 

 

 

Figure 4.1 Schematic of the Band gap reference circuit 
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4.1.2 Schematic of Operational Amplifier 

 

 

 

Figure 4.2 Schematic of Operational Amplifier 

 

4.1.3 Schematic of Class AB Buffer 

 

 

 

Figure 4.3 Schematic of Class AB Buffer 

 



` 

48 
 

4.1.4 Schematic of the Potentiostat circuit 

 

 

 

Figure 4.4 Schematic of the Potentiostat circuit using a single op-amp 
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4.1.5 Schematic of the data-generator circuit 

 

 

 

Figure 4.5 Schematic of the data-generator circuit 

 

4.1.6 Schematic of the frequency generator circuit 

 

 

 

Figure 4.6 Schematic of the frequency generator circuit 
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4.2 Actual Layouts Used 
 

The actual layouts created in a 0.35 µm bulk CMOS process using the CADENCE software are 

as follows: 

4.2.1 Layout of the Band gap reference circuit 

 

 

 

Figure 4.7 Layout of the bangap reference circuit 
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4.2.2 Layout of Operational Amplifier 

 

 

Figure 4.8 Layout of the operational amplifier  
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4.2.3 Layout of Class AB Buffer 

 

 

 

Figure 4.9 Layout of the class AB buffer 
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4.2.4 Layout of the Potentiostat circuit 

 

 

 

Figure 4.10 Layout of the Potentiostat circuit 
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4.3 Simulation results of schematics 
 

4.3.1 Output of the potentiostat circuit 

 

Figure 4.11 Voltages at the Working electrode and the Reference electrode Figure 4.11 shows 

the DC simulation of the schematic of the potentiostat. The difference between the Working 

electrode and the Reference electrode is almost a constant 0.7V for resistance varying from 

100KΩ to 1MΩ. The resistance is used to indicate the solution resistance, in which the electrodes 

are immersed. The total current consumed by this circuit is 107.8µA and the total power 

consumed is 0.215mW. Figure 4.12 shows the difference in potentials across the electrodes with 

changing resistance. The x axis represents the resistance of the analyte changing from 300KΩ to 

1MΩ. The y-axis represents the difference in voltages across the reference and the working 

electrodes. 
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Figure 4.11 Voltages at the Working electrode and the Reference electrode  

 

 

 

Figure 4.12 Graph of difference in voltage across the electrodes versus the change in 

resistance 

 

4.3.2 Output of the Band gap Reference Circuit 

 

Figure 4.13 shows the simulation result of a band gap reference circuit. We can see that the 

output is a constant value of 1.21 V. VbiasP and VbiasN are used to bias the op-amp. 

 

4.3.1 Output of the Data Generator Circuit 

 

Figure 4.14 shows the output of the data generator circuit for a sensor current of 0.2µA and 

Figure 4.15 shows the output of the data generator circuit for a sensor current of 2.33µA. For a 
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0.2 µA current, the frequency of the data signal is 15.15 KHz and for a 2.33 µA current, the 

frequency of the data signal is 163.39 KHz. 

 

4.3.1 Output of the Frequency Generator Circuit 

 

Figure 4.16 shows the output of the frequency generator circuit for a sensor current of 2.33µA 

(i.e. a solution resistance of 300KΩ). The upper trace shows the data signal, the middle trace 

shows the FSK modulated output and the bottom trace shows the frequency measurement of the 

second trace. The high frequency is 2.655 MHz and the low frequency is 2.056 MHz.  

 

 

 

Figure 4.13 Simulation result of the band gap reference circuit 
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Figure 4.14 Output of the Data Generator Circuit for a sensor current of 0.2µA 

 

 

 

Figure 4.15 Output of the data generator circuit for a sensor current of 2.33µA 
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Figure 4.16 Output of the Frequency Generator Circuit 

 

4.4  Post layout simulation results  
 

Simulating the layout is essential as it takes the parasitics into account.  

4.4.1 Voltages at the reference and the working electrodes 

 

Figure 4.17 shows the results of simulating the layout of the potentiostat. It can be seen that 

when the resistance changes from 100KΩ to 1MΩ, the difference between the Working electrode 

and the Reference electrode is maintained at almost a 0.7V.  
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Figure 4.17 Voltages at the Working electrode and the Reference electrode  
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4.5 Simulation of the potentiostat with I/O pads 
 

4.5.1 Screenshot of the potentiostat and the pads 

 

The dimensions of the potentiostat circuit on chip are 1392.4µm X 481.4µm. The area of the 

circuit with the pads is 0.67 mm
2
.  
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Figure 4.18 Screenshot of the potentiostat circuit with pads 
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4.5.2 Simulation of the potentiostat with the I/O pads 

 

Figure 4.19 shows the voltages at the working and the reference electrode, when the layout of the 

circuit is simulated with the pads. The resistance is taken to be 300KΩ. The graph between 

resistance of the analyte and the difference of voltages at the working electrode and the reference 

electrode is shown in Figure 4.20. From this graph, the percentage change in the voltage across 

the electrodes with respect to the change in resistance of the solution is calculated to be 1.14%.  

 

 

 

 

 

 

 

Figure 4.19 Simulation result of the potentiostat along with the I/O pads. 
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Figure 4.20 Graph representing the difference of voltages at the reference and the working 

electrodes with respect to the resistance of the solution 
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4.6 Post Fabrication Test results  
 

4.6.1 Microphotograph of the fabricated chip 

 

 

 

Figure 4.21 Micro-photograph of the chip 
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4.6.2 Test set-up  

 

In this section, photographs of the prototype boards and associated test system are provided. 

Figures show the hardware components that make up the prototype design. Figure 4.22 and 

Figure 4.23 show the test setup of the circuit. Table 4.1 shows the values of the inputs given to 

the circuit. 

 

 

 

Figure 4.22 Test setup of the circuit 

 

 

 

 

 



` 

66 
 

Table 4.1: Inputs to the circuit 

 

Parameter Value 

VDD 2.5 V 

V_BGR 1.215V 

VbiasP 1.714 V 

VbiasN 0.581 V 

Ibias1 20µA 

Ibias2 20µA 

 

 

 

 

 

Figure 4.23 Test setup of the circuit 
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4.6.3 Test Results 

 

In this section the test results of the fabricated chip have been presented. Figure 4.24 shows the 

voltage at the Reference electrode, which is 1.1V. Unfortunately, the voltage at the Working 

electrode is not as expected.  The working electrode is connected to the output of the second 

buffer. This buffer is in turn connected to the op-amp, so the variation maybe because either the 

second buffer or the operational amplifier is not fabricated properly. The output variation could 

also be due to improper bonding.  

 

 

 

Figure 4.24 Voltage at the Reference Electrode  
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    Chapter 5 

5 Conclusion  
 

5.1 Thesis Summary 
 

Potentiostats play an integral role in the functioning of any implantable sensor circuitry. The bias 

of the potentiostat depends on the application it is used for. This thesis has presented a 

potentiostat which can be used in an implantable system for detecting glucose concentration. 

This potentiostat consumes less area and less power, thus it is suitable for implantable bio-

medical applications. The pre layout and post layout simulation results were encouraging.  

 

5.2 Future Work 
 

Future work in this project would be to integrate the potentiostat with the remaining circuitry. 

The entire chip could be implanted and tested in real time with inductive powering. The current 

consumption of the entire circuit can be further reduced. This can be done by designing an op-

amp for low-power applications and by reducing the supply voltage from 2.5V to 1.5V. Another 

improvement could be to make a single potentiostat suitable for monitoring different 

physiological factors.  

 

Another improvement that could be made to the entire system is to see that the entire system 

does not remain on all the time. It could be devised such that it gives the measurement of the 

target analytes every one hour and then goes into a power saving mode. 
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