17 research outputs found

    Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports

    Full text link
    We present a fundamentally different approach to orthogonal layout of data flow diagrams with ports. This is based on extending constrained stress majorization to cater for ports and flow layout. Because we are minimizing stress we are able to better display global structure, as measured by several criteria such as stress, edge-length variance, and aspect ratio. Compared to the layered approach, our layouts tend to exhibit symmetries, and eliminate inter-layer whitespace, making the diagrams more compact

    Incremental Grid-like Layout Using Soft and Hard Constraints

    Full text link
    We explore various techniques to incorporate grid-like layout conventions into a force-directed, constraint-based graph layout framework. In doing so we are able to provide high-quality layout---with predominantly axis-aligned edges---that is more flexible than previous grid-like layout methods and which can capture layout conventions in notations such as SBGN (Systems Biology Graphical Notation). Furthermore, the layout is easily able to respect user-defined constraints and adapt to interaction in online systems and diagram editors such as Dunnart.Comment: Accepted to Graph Drawing 201

    Drawing Activity Diagrams

    Get PDF
    Activity diagrams experience an increasing importance in the design and description of software systems. Unfortunately, previous approaches for automatic layout support fail or are just insufficient to capture the complexity of the related requirements. We propose a new approach tailored to the needs of activity diagrams which combines the advantages of two fundamental layout concepts called "Sugiyama's approach" and "topology-shape-metrics approach", originally developed for layered layouts of directed graphs and for orthogonal layout of undirected graphs respectively

    On d-regular Schematization of Embedded Paths

    Get PDF
    In the d-regular path schematization problem we are given an embedded path P (e.g.,a route in a road network) and an integer d. The goal is to find a d-schematized embedding of P in which the orthogonal order of allvertices in the input is preserved and in which every edge has a slope that is an integer multiple of 90/d. We show that deciding whether a path can be d-schematized is NP-hard for any integer d. We further model the problem as a mixed-integer linear program. An experimental evaluation indicates that this approach generates reasonable route sketches for real-world data

    Veröffentlichungen und VortrĂ€ge 2003 der Mitgleider der FakultĂ€t fĂŒr Informatik

    Get PDF

    Automated drawing of metro maps

    Get PDF
    This work investigates the problem of drawing metro maps which is defined as follows. Given a planar graph G of maximum degree 8 with its embedding and vertex locations (e.g. the physical location of the tracks and stations of a metro system) and a set L of paths or cycles in G (e.g. metro lines) such that each edge of G belongs to at least one element of L, draw G and L nicely. We first specify the niceness of a drawing by listing a number of hard and soft constraints. Then we show that it is NP-complete to decide whether a drawing of G satisfying all hard constraints exists. In spite of the hardness of the problem we present a mixed-integer linear program (MIP) which always finds a drawing that fulfills all hard constraints (if such a drawing exists) and optimizes a weighted sum of costs corresponding to the soft constraints. We also describe some heuristics that speed up the MIP and we show how to include vertex labels in the drawing. We have implemented the MIP, the heuristics and the vertex labeling. For six real-world examples we compare our results to official metro maps drawn by graphic designers and to the results of previous algorithms for drawing metro maps

    New Approaches on Octilinear Graph Drawing

    Get PDF
    Graphenzeichnen ist ein Bereich der Informatik mit langer Tradition. Insbesondere im Bereich des orthogonalen Graphenzeichnens wird seit den 1980er Jahren motiviert durch VLSI-Design (Chip-Design) und Grundrissplanung intensiv geforscht. In dieser Arbeit wird das klassische orthogonale Modell durch neue Elemente, unter anderem aus dem oktilinearen Graphenzeichnen, erweitert. Die ersten Ergebnisse, die wir in dieser Arbeit vorstellen, befassen sich mit oktilinearem Graphenzeichnen. Dieses Modell ist altbekannt und viele Aspekte wurden schon untersucht. Wir entwickeln eine Methode mit der fĂŒr planare Graphen mit einem beschrĂ€nkten maximalen Knotengrad (4 und 5) Zeichnungen mit maximal einem Knick pro Kante erstellt werden können. Außerdem zeigen wir, dass Graphen mit maximalem Knotengrad 6 nicht immer mit einem Knick pro Kante gezeichnet werden können. Damit schließen wir die LĂŒcke zwischen bekannten Ergebnissen, die besagen dass Graphen mit maximalem Knotengrad 3 immer ohne Knicke und alle Graphen bis zu einem maximalen Knotengrad von 8 mit höchstens zwei Knicken pro Kante oktilinear gezeichnet werden können. Durch Nutzerstudien konnte gezeigt werden, dass die Lesbarkeit von (Graphen) Zeichnungen durch Knicke auf den Kanten und schlecht identifizierbare Kreuzungen besonders beeintrĂ€chtigt wird. An diesem Punkt setzt unser neues Modell, das abgeschrĂ€gt orthogonale (engl. slanted orthogonal, oder kurz: slog) Graphenzeichnen an. Im slog Modell ist der kleinste erlaubte Winkel zwischen zwei aufeinander folgenden Kantensegmenten 135°. Das hat zur Folge, dass slog Zeichnungen keine normalen Knicke mehr haben, sondern sogenannte Halb-Knicke. Um Kreuzungen besser erkennbar zu machen sind im slog Modell Kreuzungen ausschließlich zwischen diagonalen Segmenten erlaubt. Wir zeigen, dass eine knick-minimale slog Zeichnung mindestens doppelt so viele Halb-Knicke benötigt, wie eine knick-minimale orthogonale Zeichnung Knicke hat. FĂŒr das slog Modell werden in dieser Arbeit Methoden zur Berechnung von knick-minimalen Zeichnungen vorgestellt. Da diese exponentielle FlĂ€che benötigen können, wird außerdem eine Heuristik entwickelt, die nur quadratische Fl ̈ache benötigt, dafĂŒr aber mehr Knicke zulĂ€sst. Die Ergebnisse einer experimentellen Evaluation des slog Modells werden ebenfalls prĂ€sentiert. Im Anschluss erweitern wir das slog Modell zu einer flexibleren Variante die wir sloggy nennen. Das sloggy Modell hat alle Eigenschaften des slog Modells, aber Kreuzungen werden jetzt auch zwischen orthogonalen Segmenten erlaubt. DafĂŒr wird die Anzahl Halb-Knicke beschrĂ€nkt auf genau zwei Mal die Anzahl Knicke der entsprechenden knick-minimalen orthogonalen Zeichnung. Außerdem wird die Anzahl an Kreuzungen zwischen diagonalen Segmenten maximiert. Wir entwickeln eine Methode zur Berechnung solcher Zeichnungen und zeigen, dass auch hier exponentielle FlĂ€che benötigt werden kann. Das slog und das sloggy Modell sind auf Graphen mit einem maximalen Knotengrad von 4 beschrĂ€nkt. Deswegen wenden wir uns als nĂ€chstes dem Kandinsky Modell zu, einem bekannten Modell mit dem Graphen mit beliebigem Knotengrad gezeichnet werden können. Wir erweitern das bekannte Modell mit Elementen aus dem slog Modell, den Halb-Knicken, um so zuvor verbotene Konfigurationen zeichnen zu können. Mit unserer Erweiterung wollen wir die Gesamtzahl an Knicken und die GrĂ¶ĂŸe der Zeichnungen verkleinern. Wir entwickeln eine LP Formulierung, mit der die optimale Zeichnung berechnet werden kann. Da diese sehr lange Zeit zur Berechnung beanspruchen kann, haben wir zusĂ€tzliche eine effiziente Heuristik entwickelt. In einer experimentellen Untersuchung vergleichen wir außerdem das neue Modell mit dem klassischen Kandinsky Modell. Im letzten Kapitel vereinen wir dann unsere Modifikation des Kandinsky Modells mit dem slog Modell im sogenannten sloginsky Modell, um Graphen mit beliebigem Knotengrad mit den Vorteilen des slog Modells zeichnen zu können. Wir entwickeln eine Methode zur Berechnung knick-optimaler sloginsky Zeichnungen, aber wir zeigen auch, dass eine solche Zeichnung nicht fĂŒr jede Eingabe möglich ist. Auch im sloginsky Modell kann eine Zeichnung exponentielle FlĂ€che beanspruchen, was in der experimentellen Evaluation ebenfalls sichtbar wird
    corecore