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Abstract

Information visualization is an important aspect in the lives of many people and how they perform
their tasks. One of the way certain types of data can be represented is through the use of graphs,
which model various structures. One of the main challenges of representing graphs is the ever
increasing quantity and complexity of data. In a previous work, a tool called CleanGraph was
developed to address certain issues in current visualization and interaction tools for Family Trees
and Universal Modelling Language (UML) class diagrams.

CleanGraph differentiates itself with the capability for full graph representation along with
new interaction features that allow for a productivity boost, in certain tasks, over existing tools.
However, much work can still be done: the implemented layout algorithms don’t make an efficient
use of space, and the resulting layouts are quite static.

In order to improve this tool, two main tasks are devised: (1) research and implement state
of the art graph layout algorithms, the research has been done, for Family Trees many methods
were found mostly relying of partial layout, for UML class diagrams two general methods were
found that produce satisfactory layouts for diagrams with specific properties; (2) improve the graph
interaction features with graph animations and secondary layouts.

For Family Trees a hierarchical approach using a general purpose algorithm was used. To
make this possible the graph representation used in CleanGraph was modified to be compatible
with the algorithm. Further changes were needed to accommodate this modification across the
tool.

For UML Class Diagrams, a Topology-Shape-Metrics approach was used. Some modifications
to the graph representation of UML class diagrams used by CleanGraph were also needed to
convert it into a proper graph, so the algorithm could operate over it. There is also further work on
the radial layout feature of CleanGraph, taking inspiration from MoireGraphs.

Upon comparison between the old and new solutions and analysis of the new one, there are
possible pros and cons in the new layout for Family Trees. There are also a few extension oppor-
tunities that will allow the new layout to become more aesthetically pleasing.

In the case of UML diagrams, there is a clear improvement over the previous solution in the
resultant drawings, namely the avoidance of edge and node overlap. The new layout also achieves
a orthogonal aesthetic which is common in UML diagrams. However, some improvement still
need to be made, namely handling of certain special cases that the previous solution handled by
default.

In conclusion, there was a significant improvement in CleanGraph’s capabilities to display
Family Trees and UML class diagrams in certain aspects. But, these improvements come at a
cost in other areas, leaving some future work still to be done, to make CleanGraph an even better
tool for users seeking improved methods to view their ancestry data, as well as software archi-
tects, project managers and system analysts, who would benefit from a better platform for system
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representation.

Keywords: Diagrams, Interaction, Unified Modelling Language, Family Trees, Genealogical
Graphs, Graph Layout, Information Visualization
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Chapter 1

Introduction

Information visualization has existed ever since humans needed to share knowledge about a sub-

ject, and this can date back to prehistoric times, when humans engraved surfaces to communi-

cate experiences [Friendly and Wainer, 2021]. One of the many ways to represent information is

through graphs as their relational nature allows for the modeling of natural and human structures

and, through the use of graph theory, solving complex real-world practical problems [Riaz and

Ali, 2011].

Many individuals’ functions in society require the correct interpretation of data, be it politi-

cians, data analysts, or consultants. This interpretation can be done through the use of statistics,

which can be used to describe large samples of raw data, as raw data can be hard or impossible to

analyze. Another way to interpret data can be through the use of diagrams, which allow for a more

visual approach. However, diagrams must be properly designed and communicated to transmit the

intended information [Purchase, 2014].

Information Visualisation (InfoVis) Systems are systems that allow users to interact with visu-

alizations of data to extract understanding from it. They differentiate themselves from information

graphics as these only present static visual representations of data. InfoVis Systems leverage vi-

sual, textual, and interactive elements to create different views of data [Sorapure, 2019].

1.1 Context and Motivation

CleanGraph was developed in a previous dissertation work by Martins [Martins, 2021] with the

intent of addressing some shortcomings in Family Tree and UML class diagram visualization

tools. Of the implemented features, some aspects of the tool can be noted. The tool does full

graph representation (see Fig 1.1), which in the case of family trees, is a differentiating factor

from many solutions currently on the market. Pairing that up with new ways of data presentation

(see Fig 1.2) and exploration resulted in a tool that registered an overall increase in productivity in

certain tasks against common tools.

However, the final product still leaves some work to be done. Firstly, the majority of the

work done on the tool focused more on the Family Tree representation and interaction side. The

1



Introduction 2

Figure 1.1: Example of a full family tree representation in CleanGraph [Martins, 2021].

tool’s UML class diagram representation and interaction side was worked on but not developed

as much, which can be reflected by the lack of testing done to that section. This bias is because

a significant part of the project included building an interaction model and interface for the tool,

the development of a back-end server, which had parsing libraries to ingest specification files to

generate the graphs, and the development of graph layout algorithms for each of the types of

diagram. With this much work constrained by the dissertation time window, it was inevitable that

some parts would be left underdeveloped.

Of these parts, the notable ones are the implemented graph layout algorithms. While these

algorithms appear to give clean, readable drawings for small to medium graphs, their shortcomings

become apparent when the graph size increases further. One of the main issues is the inefficient

use of space, especially on Family Trees. The present layouts leave much white space that could

be better utilized (see Fig 1.3). Conveniently, the datasets used in the examples render good,

readable layouts. However, when the scale starts to increase, it is expected that edge crossings and

even edges overlapping with nodes begin to appear. Another point of improvement is the fact that

the layouts are relatively static. This opens a door for the improvement of the interaction aspect.

Although CleanGraph does have features that allow interaction with the layout, like zooming,

panning, and dragging nodes. The tool could also have more dynamic layouts that rearrange

themselves as the user navigation the data.

1.2 Objectives

This work aims to improve the graph visualizations of the tool, making better use of the space

while still providing good, readable layouts of Family Trees and UML class diagrams, as well as

improve graph exploration and navigation through interactions with the actual graph. These can

rely on many commonly used interaction techniques like animated transitions.

To improve the graph visualization and interaction of CleanGraph new graph layout algorithms

will be implemented to represent Family Trees and UML class diagrams, and new interaction
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(a) Overall interface.

(b) Sections of the auxbar presenting information
about a person.

Figure 1.2: CleanGraph user interface [Martins, 2021].

methods will also be implemented. These tasks will be performed while attempting to answer the

following questions:

• Q1: How can we achieve more space efficient and readable Family Tree and UML class

diagram visualizations?

• Q2: Can animated graph navigation boost graph exploration productivity?

Answers to these questions are obtained through testing the work done and checking whether

the results match the expected outcomes. For Q1, the testing can be related to measuring specific

aesthetic characteristics that directly correlate to a graph’s readability, e.g., number of edge cross-

ings, edge lengths, number of edge bends, etc. For Q2, tests similar to the ones in the previous

work can be done [Martins, 2021]. Having people with experience with dealing with these kinds

of diagrams go through a set of tasks while measuring the time to complete each one, and the

rate of mistakes can provide a measure of the productivity enabled by the platform. In addition,

questionnaires to extract points about the user experience may also help in this manner.

To ensure proper results, some goals can be defined to guide the development of the improve-

ments [Victorelli et al., 2020] [Locoro et al., 2017], some are inherited from the previous work

[Martins, 2021]:

• Data Representation Accuracy — The graphs and respective layouts that are created must

follow the rules set by the underlying data type. If no rules are specified, the representation

should try and be as informative and clear as possible.
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Figure 1.3: Layout of a considerably bigger tree in CleanGraph, inefficient use of space starts to
become apparent [Martins, 2021].

• Readability — The produced layouts should be easy to understand, with minimal clutter

and good aesthetics.

• Intuitivity — The interaction methods to be implemented need to be capable of organizing

information in such a way that a user can identify certain properties quickly.

• Usability — This work seeks an improvement of CleanGraph’s current graph visualization

and navigation. So, the results need to provide a user experience that is comparable or better

than the one provided by the current CleanGraph version and other solutions.

The main contributions of this work are the new layout algorithm implementations that hope

to improve the visualization of both Family Trees and UML class diagrams in CleanGraph. It also

provides discussions on how these algorithms can be extended to improve the drawings further or

support more features or special cases.

1.3 Dissertation Structure

Along with the introduction this document features three more chapters.

Chapter 2 introduces Family Trees and UML class diagrams, some history of both, with visual

aspects. Ways of how these can be represented as graphs are also introduced.

In Chapter 3, the related work is discussed. This includes works on graph layout methods for

graphs in general and more specialized for Family Trees and UML class diagrams. As well as

interaction features that are bundled with these layouts.

In Chapter 4, problems regarding graph layout are discussed and related with the specific

constraints that might be introduced with Family Trees and UML class diagrams. It also addresses

how new interaction methods may be implemented in CleanGraph and a decision is made on

certain aspects of each layout as well as the additional interaction feature to be implemented.

In Chapter 5 goes over the implementations of the chosen algorithms for the layout of the

graphs, as well as the implementations of interaction features. Implementation details like graph

representation modifications are addressed here as well.

Chapter 6 presents comparisons between the results of the new layouts and the old ones. Some

pros as cons are drawn and possible extensions to the algorithms are presented.

Chapter 7 presents conclusions and future work.



Chapter 2

Background

This chapter introduces some graph concepts that will be useful to understand throughout this

dissertation. It also introduces Family Trees and UML class diagrams and how they can be related

to graphs. The latter is especially relevant to understanding how the state of the art works over

them. A short overview of CleanGraph’s core features is also done.

2.1 Core Graph Concepts

This section will cover and explain some core graph theory concepts that will be useful in under-

standing some of the algorithms that will be covered in this dissertation. They are also important

in understanding some parts of the implementation chapter as well as the ideas suggested in the

discussion chapter.

2.1.0.1 Graph Embedding

An embedding of a graph can be regarded as an equivalence class of drawings of that graph. It

associates each vertex v of the graph to a list l(v) of its incident edges sorted in the clockwise order

that they appear around said vertex [Eiglsperger and Kaufmann, 2001] [Bertolazzi et al., 1994].

Figure 2.1a shows an example of an embedding. It is to note that the initial element isn’t relevant.

What matters is that the edges are sorted based on their clockwise order around the node.

A graph embedding is considered planar if there is a drawing of the graph that preserves that

embedding and contains no edge crossings [Eiglsperger and Kaufmann, 2001], i.e., edges intersect

only at their endpoints. The edges in the drawing don’t need to be straight lines. Figure 2.1b shows

a planar embedding of the graph from Fig. 2.1a along with a corresponding drawing.

In directed graphs, embeddings can be further constrained to upward planar embeddings. An

embedding of a graph is upward planar if there is a drawing that preserves the embedding in which

all edges increase monotonically in the upward direction [Eiglsperger and Kaufmann, 2001]. Fig-

ure 2.1c shows an example of such an embedding along with a corresponding drawing. It is

implied that for such a condition to be possible, the graph needs to be acyclic.

5
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(a) Embedding. (b) Planar embedding.

(c) Upwards planar embedding.

Figure 2.1: Embedding examples.

An interesting characteristic of upwards planar embeddings is that the incoming and outgoing

edges form non-overlapping ranges in the planar embeddings. This also means that, in drawings

of upwards planar embeddings, if, for each vertex, a horizontal line is drawn through its center, the

vertex’s incoming edges will be situated below this line, and outgoing edges will be situated above

it. Every edge in the graph will have an angle α with the horizontal in the range 0° < α < 180°

[Bertolazzi et al., 1994].

Finally, there are mixed upward planar embeddings. An embedding of a mixed graph, i.e. a

graph with both directed and undirected edges, is mixed upward planar if there is a drawing that

preserves the embedding and in which the directed edges in the graph are represented by arcs

monotonically increasing in the vertical direction [Eiglsperger and Kaufmann, 2001]. Undirected

edges can take whichever path.

2.1.0.2 Graph Faces

When a graph is drawn without edge crossings, it divides the plane into a set of regions, called

the faces of a graph [Bertolazzi et al., 1994]. Generally, they are defined by a clockwise circular

ordering of the edges that define the region’s boundary. Figure 2.2 shows an example of a planar

graph drawing with the definition of its faces. Relevant things to point out are that edges appear

exactly two times across the definition of all faces; it is possible for both times to be on the same

face, as exemplified with face f 2 in Fig. 2.2. By convention, the unbounded region outside of the
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Figure 2.2: Example of a planar graph and the definition of it’s faces.

graph is also considered a face, and its definition has edges in the reverse order, as shown with

face f 3. This face is generally referred to as the outer or external face.

The faces of a graph can be calculated algorithimically, granted a planar embedding of the

graph is available. Given a graph G = (V,E) with a set of nodes V and a set of edges E, and a

planar embedding of G that maps every node v ∈ V to a list l(v) containing a clockwise ordering

of its incident edges, the algorithm to calculate the graph’s faces goes as follows:

1. Pick the node v ∈V with the lowest degree which hasn’t been fully processed.

2. Pick an incident edge e = (v,w) that hasn’t been visited yet.

3. In w pick the edge j that sits just before edge e in l(w), i.e. the next edge in the counter-

clockwise order.

4. Repeat step 3 until v is reached once again.

In the context of node v, an edge is considered visited if it was traversed in the direction exiting

node v. A node is considered fully processed if all of its incident edges were visited. Figure 2.3

provides a visualization of the order of the edge traversal for each face in the graph from Fig. 2.2.

2.1.0.3 Orthogonal Representation

An Orthogonal Representation H of a graph G describes the generic orthogonal shape of the faces

of G, being very useful for creating orthogonal drawings of graphs [Tamassia, 1987]. It is a
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Figure 2.3: Graph from Fig. 2.2 with edge traversal orders.

Figure 2.4: Orthogonal drawing of a graph with accompanying orthogonal representation.
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mapping from the set of faces F of the graph to lists of tuples (er,ar,br), where er is an edge, ar

is the angle er makes with the following edge, stored as a multiple of 90°, and br a list of bends of

the edge. In each tuple, ar ∈ Z is constrained to 1 <= ar <= 4, and br is a list of ones and zeros,

ones represent angles of 270° and zeros represent angles of 90°. Figure 2.4 shows an example of

such a representation.

Since ar is constrained to being at least 1, it is implied that for there to be a possible orthogonal

representation of a graph, each of its nodes cannot have more than four incident edges, meaning

as well that each edge is assigned to a unique side of the node. For graphs where nodes have more

than four incident edges, a Quasi-Orthogonal Representation is required. It is defined in the same

way as Orthogonal Representations with the addition that it allows ar to be 0 as well, i.e. 0° angles

are allowed between edges, which means that multiple edges can be attached to the same side of a

node.

2.2 Family Trees

Family Trees are charts that represent people and their family relationships [Collins English Dic-

tionary, 2021]. The most common visual representation of Family Trees might just be a hierarchi-

cal tree-like structure, as is evidenced in a state-of-the-art study in [Martins, 2021].

Family trees can also be referred to as pedigree charts or genealogies and can be useful to track

a person’s ancestors. This is a focal part of genealogy [Sharpe, 2011]. This type of work has been

important since ancient times. Back then, a person’s pedigree would usually define their social

status. In ancient Greece, genealogy was used to prove descent from gods, which gave people

social status. However, these methods weren’t very scientific. In ancient Rome, genealogy was

practiced to distinguish between the plebeians and people of noble descent. In the Old Testament,

genealogies were used to provide myths, "helping to define Israel’s nationhood, and confirming

the authority of its kings and priests" [Sharpe, 2011]. In Medieval Europe, genealogies were also

used in the politics of inheritance and succession [Pálsson, 2002].

While family trees use the tree analogy in their representation, they might not be trees in

the strict sense used in graph theory. Since it is possible for distant relatives to marry and have

children, the path between an ancestor and descendant may not be unique anymore [McGuffin

and Balakrishnan, 2005]. Trees also assume, in general, a single root node from which the entire

structure proliferates. However, family trees may have more than one root node in the form of

individuals with no ancestors. In this case, family trees are better considered as normal graphs,

and since ancestors are always born before their children, these graphs are actually directed acyclic

graphs (DAGs).

The visual representation of genealogical information as graphs can also be done in many

different ways. These affect how the information is displayed. The most obvious approach would

be to apply the definition of a graph, mapping people to nodes and relationships to edges (Fig.

2.5a). In a sense, this already represents the relationships very well on an information level.

However, visualizing such a graph can be cumbersome. While it would be simple to identify
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ancestors, descendants, and marriages, one of the characteristics of family trees is that it is possible

to identify from which marriage a person was born (e.g. Fig. 2.5b shows a child whose parent had

two marriages, but it is impossible to know which marriage the child originated from). Many

solutions use notation such as or similar to the genogram notation to display such information,

where married people are linked by an edge and their children are connected to the marriage edge

and not their parents (Fig. 2.5c). CleanGraph also uses this approach to display family trees

[Martins, 2021]. However, this notation does not represent a pure graph as there are no edges

between edges and nodes in graph theory. An approach that maps family trees to graphs and

allows for the information extraction mentioned above is to map certain relationships to nodes,

such as marriages. Married people would then be connected to their respective marriage node, and

the children resulting from such a marriage would also be connected to the respective node (Fig.

2.5d). The direction of the edges would then indicate who the parents are and who the children are.

[Mařík, 2016] uses a representation like this to be able to apply a generic graph layout algorithm

to draw family trees.

(a) Example of a direct mapping of
genealogical information to a graph.

(b) Direct graph mapping of a family
tree with 2 marriages.

(c) Representation of a marriage with
two children through using a notation
similar to genograms.

(d) Example of mapping of genealog-
ical information to a graph where
marriages are mapped to nodes.

Figure 2.5: Various representations of genealogical information as graphs.

2.3 UML Class Diagrams

The Unified Modelling Language (UML) is a language for modeling software systems. Its devel-

opment was first done as an effort to unify the disparate modeling methods of Booch, Jacobson,

and Rumbaugh, which were in turn developed in the 1990s to provide a modeling language in

response to the needs of increasingly complex applications at the time[Booch et al., 1999]. The
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three unified their method in an effort to stabilize the ecosystem, letting developers settle with

a mature solution [Booch et al., 1999]. UML then became a language that lets users visualize,

conceptualize and document their systems [Visual Paradigm team, 2021].

UML as a language is expressive enough to allow users to create different types of diagrams,

each type useful to a different kind of stakeholder. These are divided into structure and behavior

diagrams [OMG, 2017]. The types of diagrams this work is going to focus on are Class Diagrams.

UML Class Diagrams are static diagrams that show the structure of a system by displaying its

classes, along with its attributes, behavior, and relationships.

UML Class Diagrams are mainly comprised of class tables and relations connecting them.

Class tables are divided into three compartments: the Title, printed in bold and centered, it is

also capitalized; the Attributes, left aligned and lower camel case; the Operations, left aligned and

lower camel case as well (Fig. 2.6).

Figure 2.6: UML Class

Attributes and operations in a class can have a visibility, they must be prepended with the

specific symbol: ’+’ for Public, ’-’ for Private and ’#’ for Protected

The scope of each member can also be defined: underlined members are working in the class

scope.

Relations in UML are drawn as lines connecting the classes. The looks of the lines change

depending on the type of relation. UML defines the following:

• Generalization — also called inheritance, it’s a directional relation that indicates a super-

class/sub-class relationship. It is drawn as a solid line with a single hollow white arrow

pointing from the sub-class to the super-class. Usually, when there are multiple sub-classes

to a super-class, the relations may converge into a single arrow (Figure 2.7a).

• Dependency — directed relation specifying a client/supplier relationship. In these relation-

ships, a supplier has what a client needs for its implementation. It is represented as a dashed

line with a thin arrow pointing from the client to the supplier (Figure 2.7b).

• Association — represents a link between two or more classes, can be directed or undirected

and adorned with additional data such as names and multiplicities. Directed associations

have a thin arrow at the end (Figure 2.7c).
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• Aggregation — a kind of association that represent a "has a" relationship and is strictly

binary. Aggregations can occur when a class serves as a container of instances of another

class, but these instances don’t rely on the container to exist, so, the container can be de-

stroyed and the contained instances will still exist. It is represented as a solid line with a

hollow diamond on the side of the container class (Figure 2.7d).

• Composition — similar to the Aggregation relation, however, with this relationship, if the

container is destroyed, the contained instances also cease to exist. It is represented as a solid

line with a filled diamond pointing towards the container class (Figure 2.7e).

(a) Generalization (b) Dependency

(c) Association (d) Aggregation

(e) Composition

Figure 2.7: UML Relation Notations

Due to their nature, UML Class Diagrams end up resembling graphs, with classes being nodes

and relations being edges. This becomes useful for researchers, as they can use various graph

theory concepts to work over these diagrams, e.g. tackle the planar embedding problem to auto-

matically draw diagrams, use clustering algorithms to automatically deduce modules in a system’s

architecture, etc. The benefits of these approaches become more evident once the scale of the dia-

grams increases as well. However, UML Class Diagrams can not always be represented as graphs

due to certain elements. One such element is the Association Class. These are special classes

that are used to label certain associations with more information. They have the appearance of

normal classes and are connected to associations through an edge. Which in graph theory is not

possible, as discussed above, since edges can’t connect to other edges. So, adaptations are neces-

sary. Chapter 5 covers how these situations are handled in the new CleanGraph layout algorithm

implementations.

Definitions of UML Class Diagrams as graphs are very similar if not equal to the standard

mathematical definition of a graph. A class diagram can be represented as a graph G = (V,E) with

a set of nodes V containing all classes and a set of edges E containing all relations between classes.

Since class diagrams are very rich in information, these nodes and edges are then decorated with

this information as attributes. The classes information doesn’t affect how the graph will be rep-

resented. However, the relation information will affect the edges that represent these, namely the
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Figure 2.8: CleanGraph’s interface.

directionality, e.g. associations may be bi or uni-directional, which means that edges may be di-

rected or undirected. Uses of this representation can be found in many research works such as [Hu

et al., 2012] and [Seemann, 1997] which define the graph in such a way, using the information

stored in the attributes to guide the execution of their graph layout algorithms. [Eiglsperger et al.,

2003] also uses this definition. However, prefers to separate the edges into different subsets as

their algorithm only works with different kinds of edges at different stages. [Eiglsperger et al.,

2004] also features an algorithm that represents the diagram as a graph G = (V,A,E), where A are

all edges representing generalizations and E are all other types of associations.

Lastly, class diagrams can also be defined as hypergraphs. These are generalizations of graphs

in which edges join any number of vertices. This might be useful as generalization relations can

be drawn as a merge of multiple arrows. In a hypergraph, this can be represented as an edge

containing the super-class along with all of its sub-classes.

2.4 Clean Graph

This section will focus on introducing some of the core features in CleanGraph for the sake of

building some prior knowledge of the platform [Martins, 2021]. This will help in understanding

how the implemented feature in this work will compare with the pre-existing ones.

The interaction model of CleanGraph consists, at the basic level, of a viewport to navigate

through graph visualizations and an auxiliary bar that sits to the right of the viewport (Fig. 2.8).

The viewport for the navigation of graphs is provided by Cytoscape.js, which allows some form

of interaction like zooming, panning, and dragging nodes around. The auxiliary bar to the right is

used to display information about elements a user touches in the viewport. The auxiliary bar also

contains a search bar to allow the user to search for elements in the graph. Which elements are

searched for depends on the type of graph being displayed.

2.4.1 Family Trees

When a user loads a Family Tree file into CleanGraph, it will display a full layout of the family

tree (e.g. Fig. 2.9a). This allows the user to quickly observe the entire Family Tree. The graph
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(a) Full layout.

(b) Auxbar with person’s in-
formation.

Figure 2.9: CleanGraph full layout of a Family Tree and auxiliary bar.

layout also has some information already visible, such as the name of the people in the Family

Tree above their respective nodes.

Upon clicking on a person, the auxiliary bar will update to contain available information about

that person, e.g. their birthday, their gender, their spouses, their children, etc (e.g. Fig 2.9b).

Clicking on an edge will update the auxiliary bar to contain information about which type of

relation the edge represents. The search bar in the auxiliary bar can be used to search for people

whose name matches the input. The people that match are highlighted in the viewport.

The auxiliary bar in "Family Tree" mode contains a settings tab that allows for the manipula-

tion of certain characteristics of the family tree visualization. Firstly, it allows toggling between

the normal layout and a second layout that maps nodes to positions in the vertical axis according

to their dates. This secondary layout is helpful in distinguishing the ages of people. Secondly, it

has a function called Generational Highlight, which highlights people that are closely related to a

selected person. How close they are related can be adjusted with a slider.

2.4.2 UML class diagrams

Like in Family Trees, when a UML class diagram is loaded into CleanGraph, a full graph layout

will be computed. Clicking on a class will update the auxiliary bar with information about that

class. When typing into the search bar to find classes, it doesn’t just match the names of the classes

but also attributes, operation names, and operation parameters. The classes that match the query

are highlighted in the viewport.

The layout algorithm works by creating a radial style layout around a center class. Which

class is at the center is determined automatically. However, the user can pick a new class to be
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Figure 2.10: CleanGraph full UML class diagram layout.

the center class by double-clicking it. If the user does so, the layout rearranges itself around the

selected class (e.g. Fig 2.11).
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Figure 2.11: Rearranged layout around selected class.



Chapter 3

Related Work

This chapter dives into the state of the art in graph layout and interaction, and explores how

these subjects are approached. Understanding is essential for the development of improvements to

CleanGraph.

3.1 Graph Layout Algorithms

The first subject to study is automatic graph layout algorithms. Since one of the major objectives

of this work is improving the current layouts in CleanGraph, understanding the state of the art in

layout algorithms is essential. The ways in which graphs can be drawn are many and varied.

3.1.1 Generic Graph Layout Algorithms

Firstly, a look into more general-purpose algorithms is done. These can usually act as frameworks

onto which further rules are applied to draw more specific data types.

3.1.1.1 Force-Directed Layouts

Force-directed graph layouts are achieved by modeling the graph as a physical system. Forces are

assigned to nodes and edges based on their relative positions. These forces can then be used to

simulate their movement or minimize the energy of the graph [Kobourov, 2012].

One of the more traditional force-directed methods is by Eades [Eades, 1984], where a me-

chanical model is used to layout simple graphs. The following quote succinctly explains the

algorithm:

... we replace the vertices by steel rings and replace each edge with a spring to form a

mechanical system ... The vertices are placed in some initial layout and let go so that

the spring forces on the rings move the system to a minimal energy state.

Some adjustments were made to this initial model [Eades, 1984]: the springs have logarithmic

strength due to the linear spring strength in Hooke’s Law being too strong when vertices are far

17
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apart, and non-adjacent vertices have a repelling force. This results in adjacent vertices being

closer together and non-adjacent vertices being more apart.

Fruchterman and Reingold [Fruchterman and Reingold, 1991] further pioneer force directed

graph layouts. The algorithm defines attractive forces that are applied to adjacent vertices and

repelling forces that are applied to all pairs of vertices. This reflects their principles:

1. Vertices connected by an edge should be drawn near each other.

2. Vertices should not be drawn too close to each other.

It is similar to Eades’ [Eades, 1984] approach as both define attractive forces for adjacent

vertices and repelling ones for non-adjacent vertices. However, it further builds on the concept

by adding a notion of "temperature" to the algorithm, which controls the displacement of vertices

and becomes lower at every iteration, resulting in smaller adjustments as the graph approaches the

ideal layout [Kobourov, 2012].

3.1.1.2 Hierarchical Layouts

Hierarchical layouts are a way of representing directed acyclic graphs (DAGs). These layouts

divide nodes into layers (hierarchies) in such a way that all or almost all edges are pointing in the

same direction.

Sugiyama et al. [Sugiyama et al., 1981] present a procedure to find hierarchical drawings of

graphs. Nikolov sums up the framework with the following problem definition [Nikolov, 2016]:

Given a directed graph (digraph) G(V,E) with a set of vertices V and a set of edges

E, the Sugiyama algorithm solves the problem of finding a 2D hierarchical drawing

of G subject to the following readability requirements:

• (a) Vertices are drawn on horizontal lines without overlapping; each line repre-

sents a level in the hierarchy; all edges point downwards.

• (b) Short-span edges (i.e., edges between adjacent levels) are drawn with straight

lines.

• (c) Long-span edges (i.e., edges between nonadjacent levels) are drawn as close

to straight lines as possible.

• (d) The number of edge crossings is the minimum.

• (e) Connected vertices are placed as close to each other as possible.

• (f) The layout of edges coming into (or going out of) a vertex is balanced, i.e.,

edges are evenly spaced around a common target (or source) vertex.

Having these requirements, the Sugiyama algorithm solves the problem by separating it into 4

distinct steps [Kobourov, 2012]:

• Step 1: Preparatory step for transforming the input digraph G into a proper

hierarchy.
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– Step 1.1: Transform the input digraph G into a directed acyclic graph

(DAG) by reversing the direction of some edges.

– Step 1.2: Transform the dag into a multilevel digraph, called a hierarchy,

by partitioning V into l levels (or layers) V 1,V 2, . . . ,Vl such that for each

edge e = (v,w) ∈ E if v ∈Vi then w ∈Vi+1. Levels are drawn on horizontal

lines which determine the y-coordinates of the vertices.

– Step 1.3: Transform the hierarchy into a proper hierarchy by introducing

dummy vertices along long-span edges; one dummy vertex at each crossing

of a long-span edge with a level.

• Step 2: For each level Vi, specify a linear order σi of the vertices in Vi with the

goal of minimizing the total number of edge crossings.

• Step 3: Determine the x-coordinates of the vertices subject to requirements (c),

(e), and (f) while preserving the linear order in the levels.

• Step 4: Draw G in a 2D drawing area where dummy vertices are removed and

the long-span edges are restored.

Figure 3.1: Application of the Sugiyama framework steps [Nikolov, 2016]

Sugiyama et al.’s [Sugiyama et al., 1981] key work focuses on providing efficient heuristics

for steps 2 and 3, which are hard to solve given the readability constraints. Figure 3.1 shows an

example of the application of the framework’s steps.

Each of the steps in the algorithm defines a problem that needs to be solved, the output of

one step defining the input of another [Kobourov, 2012]. As mentioned above, some of them are

difficult to solve, i.e. steps 2 and 3, and others can be quite easy if the only requirements are the

ones listed above, i.e. steps 1.1 and 1.2. However, those steps can become NP-hard once more
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Figure 3.2: Example of dot output [Gansner et al., 1993]

constraints are applied (e.g. in step 1.1, minimizing the number of reversed edges is NP-hard).

Other steps are trivial to execute, i.e. steps 1.3 and 4. Since each step is a different problem, there

have been many studies over the years looking into each specific problem, defining improved

heuristics for solving them more efficiently, or to fit them to a certain context better, this latter

point will be explored in further sections below. Because of this "modular" nature of the Sugiyama

algorithm, it is usually called the "Sugiyama Framework" [Kobourov, 2012].

Gansner et al. [Gansner et al., 1993] also describe an algorithm to layout directed graphs. It

uses a four-pass approach similar to the Sugiyama algorithm. The first pass ranks each node with

discrete ranks; the second pass orders the nodes within each rank to minimize edge crossings; the

third pass assigns coordinates to each node, and the fourth pass calculates the control points for the

path of each edge. The differences with the Sugiyama algorithm lie in the heuristics used to order

the edges within layers as well as the method to calculate the x-coordinates of nodes. Another

difference is that long-span edges are rendered as splines (whose control points are defined in the

fourth pass), while the Sugiyama algorithm simply draws them as a sequence of straight lines.

This described algorithm has been used on dot [Gansner et al., 2015], a graph drawing program.

Figure 3.2 shows an example output for the dot program.

3.1.1.3 Radial Layouts

Radial layouts draw trees in a way that expands radially and outward (see Fig 3.3). These layouts

usually focus on a root node, displaying the nodes related to it around it. The distance of each node

to the center is usually related to the level of the node in the tree, although some implementations

of radial layouts use other metrics to define that distance (e.g. see Section 3.1.2.2).
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Figure 3.3: Example of a radial layout [Smith, 1925].

An example of the application of radial layouts is the work by Jankun-Kelly and Ma, who

look into visualization techniques for graphs with visual nodes [Jankun-Kelly and Ma, 2003].

They contribute with MoireGraphs, a visualization technique that combines a radial layout with

navigation techniques to aid people in navigating graphs with visual information. The layout

creates a spanning tree originating from a root node, using a breadth-first search, and separates

the circle around the root into rings, called levels. Each level corresponds to the distance from the

node to the root in terms of hops through the spanning tree. The width of each level decreases the

further away it is from the center, i.e. the root node, meaning the nodes appear smaller the further

they are from the root. The angular area around the center is divided to give enough space for the

subtrees of each child of the root. Figure 3.4a shows an example of this happening. Results can be

seen in Fig 3.4b, which shows a MoireGraph of images from the NASA Planetary Photojournal.

3.1.2 Genealogical Graph Layout

Displaying genealogical information through graphs adds some extra things to look out for when

laying these out. There are certain kinds of information that can be intuitively displayed through

the intelligent layout of genealogical graphs. Some of these are the chronological aspects of the

information as well as the generations of the individuals. These characteristics are some of the

things users expect to easily notice in these visualizations.

3.1.2.1 Dual Trees

McGuffin and Balakrishnan [McGuffin and Balakrishnan, 2005] present a visualization of ge-

nealogical graphs with the goal of it being easy to interpret and scaling well. For this, the authors

look into subsets of data that are familiar to users and how they can be displayed or combined

in a manner that is easy to interpret and scales well. The achieved solution was a so-called dual

tree, which is a merge of a tree of ancestors and a tree of descendants of different individuals. It

works by obtaining a tree of ancestors A(x) and a tree of descendants D(y), such that y is one of

x’s ancestors, and merging them and displaying them in an indented tree layout (see Fig. 3.5).
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(a) Division of angular area
around the center.

(b) Layout example.

Figure 3.4: Moire graphs visualizations [Jankun-Kelly and Ma, 2003].

Figure 3.5: Creation of a dual tree, through merging an ancestor tree (in blue) and a descendant
tree (in red) [McGuffin and Balakrishnan, 2005].
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Figure 3.6: Example of the radial and force directed layout [Keller et al., 2010].

Evaluation of the dual tree visualization was done through a single informal session with a

practicing genealogist, and it involved free-form exploration by the user, demonstration by the

author, and the completion of certain tasks. From this session, the user reported the visualization

being clear and easy, although the depiction of relationships was unfamiliar and took getting used

to. There was also a comment pointing out the lack of a connection between spouses, which other

conventional diagrams show.

3.1.2.2 Radial and Force Directed Approach

Keller et al. [Keller et al., 2010] developed a family tree representation combining two different

layout techniques: radial and force-directed layouts. The representation displays a sub-graph

centered around a single individual, showing their ancestors and descendants. The algorithm for

the representation runs in two phases. Firstly a radial layout of the graph is computed with the

individual at the center, with some constraints:

• ancestors are placed on the top and descendants are places on the bottom half of the diagram.

• the distance to the center is used to represent time, so, the older an ancestor and the younger

a descendant are than the individual, the further way from the center they are placed.

Secondly, a force-directed layout algorithm is used to reduce the clutter of the nodes and keep

the diagram more aesthetically pleasing. Figure 3.6 shows an example output of the approach.

This study provides some insight into how different approaches can be merged together to

create new visualizations. The strengths of different approaches can be used to tackle different

stages of a layout algorithm. This approach uses a radial layout to set the initial structure and a

force-directed layout to improve its aesthetics.
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Figure 3.7: Example layout of Mařík’s approach, applied on a family tree consisting of 1671
people[Mařík, 2016]

3.1.2.3 Hierarchical Layout Approach

As mentioned previously, genealogical information can be mapped to a directed acyclic graph.

This opens the door for hierarchical layout methods to be taken advantage of.

Mařík did exactly this,[Mařík, 2016] picking up on the algorithm by Gansner et al.[Gansner

et al., 1993], and defining an algorithm to assign for node rank assignment, and an algorithm for

ordering the nodes within ranks, taking the characteristics of a genealogical graph into considera-

tion. As per Mařík’s words [Mařík, 2016]:

A genealogical graph is an acyclic bipartite directed graph G(VP,VM,E) with two sorts

of nodes, people VP and marriages/partnerships VM. The edges E are directed from

parent nodes to marriage nodes and from marriage nodes to children nodes.

The node rank assignment works to preserve generation separation, i.e. siblings sit in the

same rank, and ancestors sit in ranks above their descendants. The in-rank node ordering keeps

siblings clustered while parents can be mixed. This leads to easier identification of families, as

the clustering of siblings makes the edges coming from marriage nodes more parallel. Figure 3.7

shows the result of the application of the new algorithm on a large family tree.

The drawback of this work is that Mařík did not write the algorithm from scratch, choosing

instead to use the developed algorithms to generate constrained input for the dot program [Gansner

et al., 2015] that influences it to generate the desired layout. This is not a perfect approach as the

program might choose a different ordering if it finds it improves its target metrics, which might go

into conflict with metrics relevant for genealogical graphs.
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Figure 3.8: Examples of results from Seeman’s algorithm. [Seemann, 1997]

3.1.3 UML Class Diagram Layout

There are many studies into the layout of UML class diagrams, with many different approaches

used.

3.1.3.1 Hierarchical Approach

The hierarchical approach is based on the use of algorithms like the Sugiyama algorithm [Sugiyama

et al., 1981] to layout a subset of the diagrams map. This approach bases itself on the fact that

inheritance relations are usually drawn in an upwards direction. So, hierarchical layout algorithms

are used to ensure this constraint.

An early example is Seemann’s work [Seemann, 1997], where he developed an approach to

drawing UML class diagrams by making use of hierarchical layout algorithms. Their approach

is based on the condition that sub-classes must be drawn under their respective super-classes to

emphasize the inheritance relationship between them. Their developed algorithm first computes

a sub-graph containing all classes involved in inheritance relationships and lays it out with the

Sugiyama algorithm, obtaining a hierarchical layout of these classes that satisfies the aforemen-

tioned condition. In the next steps, all remaining nodes are organized into sets of nodes related to

each of the sub-graph nodes and incrementally added to the layout. The last steps adjust the node

positions and create orthogonal paths for the association edges. Figure 3.8 shows examples of the

resultant layout.

Eichelberger [Eichelberger, 2006] also presents an algorithm for laying out UML class dia-

grams based on hierarchical algorithms, along with an edge crossing reduction strategy tailored

to UML class diagrams. His approach relies on the same constraint that inheritance relations

should be emphasized but also takes into account other aspects like edge crossing, edge length and

compactness. Figure 3.9 shows an example layout produced by Eichelberger’s algorithm.
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Figure 3.9: Example layout of Eichelberger’s algorithm [Eichelberger, 2006].

3.1.3.2 Rank-Directed Approach

Hu et al. [Hu et al., 2012] describe a UML class diagram layout method called the rank-directed

method. With this method, the authors’ aim is to create a layout that emphasizes classes of higher

importance. Here they assume that classes with more relations are more important. Their method

consists of ranking all classes in the graph and separating it into sub-graphs, each of these sub-

graphs containing one of the most important classes along with their more closely related classes.

Each of these sub-graphs is then laid out using a magnetic force-directed algorithm that keeps

the most important class as a central node. The final layout is computed by creating a new graph

where its nodes are the created sub-graphs, and edges are created to represent the edges that

connect nodes in different sub-graphs. This graph is then laid out using a force-direct approach

as well. Figure 3.10 shows a comparison between a hierarchical method and the rank-directed

method. The authors mention that through this layout, there is a sacrifice of aesthetics for better

semantic readability.

3.1.3.3 Topology-Shape-Metrics Approach

Eiglspeger et al. [Eiglsperger et al., 2003] introduce an algorithm that uses a different approach

to hierarchical and rank-directed layouts. It uses the topology-shape-metrics approach. The al-

gorithm they specify aims to create orthogonal drawings of UML class diagrams (Fig. 3.11).

Orthogonal graph drawings are graph drawings in which edges are drawn as a combination of

horizontal and vertical segments. This approach, like the Sugiyama hierarchical approach, defines

several steps:

• Planarization — Determines the topology of the graph by creating a planar embedding of

it. The process of planarization involves converting a non-planar graph into a planar one by

replacing edge crossings with dummy nodes.

• Orthogonalization — Determines the overall shape of the graph by determining the shapes

of its edges along with the angles they do between each other at their endpoints. Since the

resulting drawing is orthogonal, these angles are increments of 90°.
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Figure 3.10: Comparison between a hierarchical method and the rank-directed method [Hu et al.,
2012]
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Figure 3.11: Example layout of the Topology-Shape-Metrics approach [Eiglsperger et al., 2003]

• Compaction — Final coordinates are assigned to nodes and edge bends.

The approach used in this algorithm models classes as nodes and the relations between them

as edges. It allows for the definition of certain edges in the graph to be directed, meaning the graph

is a mixed graph. The algorithm will try to draw these directed edges in the upwards direction,

meaning that the planar embedding that is calculated by the first step is a mixed upward planar

embedding.

Each of the steps in the algorithm is a complex problem in itself. Eiglspeger et al. provide, in

their work, references to solve each one. The following sections will be used to cover each step

and the algorithm used to solve the associated problems.

Before running the algorithm, some pre-processing is done on the graph. Firstly, the connected

components of the graph are calculated. The algorithm actually runs on each of these components,

so any following steps assume the graph is connected. Secondly, the directed edges are to see if

they induce an acyclic subgraph. If they don’t, edges are marked as undirected until they do. The

directed edges are also checked to see if the subgraph they induce is connected. If not, some

undirected edges are marked as directed by the use of a minimum spanning tree algorithm.

3.1.3.4 Planarization

The planarization step creates a mixed upward planar embedding of the graph. This is necessary to

ensure that the graph can be drawn on the plane without edge crossings. If the graph is not planar,

then it is planarized, i.e. converted into a graph that is planar by replacing its edge crossings with

dummy nodes.

The method used to obtain a mixed upward planar embedding of the UML diagram’s graph fol-

lows an incremental planarization method developed by Eiglsperger and Kaufmann [Eiglsperger

and Kaufmann, 2001]. This method follows two main steps:
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1. Finds a sub-graph of the original graph which is planar. A graph is planar if it admits a

planar embedding. This sub-graph must include all nodes from the original graph. Edges

from the original graph that are not in the sub-graph are leftover.

2. Incrementally add the leftover edges back into the sub-graph. Any edge crossings that result

from adding a new edge are resolved by splitting the edges into sub-segments, having a

auxiliary crossing node representing the crossing.

The method to find the maximal planar sub-graph follows a modified version of an algorithm

by Goldschmidt and Takvorian (GT) [Eiglsperger and Kaufmann, 2001] [Goldschmidt and Takvo-

rian, 1994]. The algorithm goes as follows:

1. Compute an ordering of the nodes of the graph, and arrange them in a line according to the

ordering (Fig. 3.12b).

2. Obtain, for each edge, the positions of the nodes they connect. These positions define the

range that the edge covers.

3. Create an auxiliary conflict graph, which contains one node for each edge in the graph,

two nodes are connected if the corresponding edges cross. Considering π(v) is the position

of v in the ordering and two edges e1 = (a,b) and e2 = (c,d) such that π(a) < π(b) and

π(c)< π(d). Edges e1 and e2 are crossing if π(a)< π(c)< π(b)< π(d) or π(c)< π(a)<

π(d)< π(b). Figure 3.13a shows the generated graph from the ordering in Fig. 3.12b.

4. A two coloring algorithm is run on the conflict graph to obtain two distinct independent sets

of edges. Each of these sets represent a side of the line, edges are routed through the side

that the set represents (Fig. 3.13b). It is not guaranteed that all edges will be assigned a

color, the ones to which this happens are considered as the input for the next step of the

planarization.

The modification done the GT algorithm in the cited work introduces a new algorithm for Step

1 that ensures a mixed upward planar embedding is possible. The main point of the modification

is ensuring that directed edges point all in the increasing order. This ensures that a mixed upward

planar sub-graph because, if we arrange the nodes in a vertical line according to the ordering, the

directed edges that are selected for the independent sets will be pointing up.

After calculating a mixed upward planar sub-graph, the process that re-adds the leftover edges

functions over two phases. The first phase re-introduces the directed edges, and the second phase

re-introduces the undirected edges. The method for adding directed edges to the graph is a con-

strained version of the method to add undirected edges so, for explanation sake, these steps will

be covered in reverse order.

Undirected edge addition works by routing the to be added edges through the graph’s faces

with the help of an auxiliary routing graph. The algorithm works as follows (Fig. 3.14):

1. For each edge e = (v,w) to add:
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(a) Example graph.
(b) Graph’s node arranged according to ordering, with an overlay of its edges.

Figure 3.12: An example graph, along with an ordering of it’s nodes and edge ranges.

(a) Generated, two colored
conflict graph.

(b) Visual representation of the edges routed according to the set they’re in.

Figure 3.13: Two colored conflict graph and visual representation of the two independent sets.
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(a) Initiate a routing graph.

(b) Create a node in the routing graph for each face in the graph.

(c) For each edge in the graph, create and edge with length 1 in the routing graph connect-

ing the nodes that represent the faces the edge is adjacent to (Fig. 3.14b).

(d) Create auxiliary nodes vv and vw in the routing graph representing nodes v and w

respectively, and connect them to the faces each node is adjacent to with edges of

length 0 (Fig. 3.14c).

(e) Run a shortest path algorithm from vv to vw to obtain a path (Fig. 3.14d).

(f) All edges with length 1 in the obtained path are crossings that must be introduced into

the graph.

This algorithm must be run per leftover edge because with each new addition the planar em-

bedding is changed. Certain nodes acquire new neighbours, while others have their neighbours

change. This requires a recalculation of the graph’s faces after each edge addition.

Directed edge addition further constrains the undirected edge addition. While undirected edges

can be added independent of each other, directed edges can’t, as introduction of crossing nodes

introduces changes to the node ordering. This might result in cycles if edges are added later.

Figure 3.15 shows an example of such a case, after the (5,9) edge was added, edge (3,4) can’t be

added without causing a directed cycle.

The algorithm for directed edge addition, works over directed s-t graphs, which are graphs

with a single source and sink. There are methods to augment an upwards planar graph into an s-t

graph, which will be explained in a later section.

Assuming the graph is an s-t graph. The algorithm avoids cycles by creating a layering of the

graph. A valid layering l assigns layers to each nodes of the graph such that l(w)> l(v) for every

edge (v,w). For this layering the leftover edges are temporarily added into the graph. The routing

graph is constructed as such:

• The routing graph contains a node for each layer that each face spans.

• Two nodes in the same face, representing adjacent layers are connected by an edge of length

0 from the lower to the upper layer.

• Two nodes at the same layer, representing adjacent faces, are connected with an edge of

length 1 if there is an edge in the s-t graph adjacent to both faces that spans that layer.

• The vv and vw of edge (v,w) that are added to the routing graph are connected to adjacent

faces as such: vv is connected to the "faces nodes" in the same layer as v with edges that go

from vv to the face nodes, and vw is connected the face nodes in the layer directly below it

with edges that go from the face nodes to vw. All edges added in this manner have length 0.
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(a) Initial graph.

(b) Routing graph with connected face
nodes. (c) Connect nodes with adjacent faces.

(d) Applied shortest path algorithm. (e) Edge added with crossing node in
black.

Figure 3.14: Visualization of the undirected edge addition algorithm adding an edge between the
highlighted nodes.
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Figure 3.15: Example of directed edge addition causing a cycle [Eiglsperger and Kaufmann,
2001].

The outer face of the graph is also split into two separate faces, the left side and the right side.

The resulting routing graph doesn’t contain edges in decreasing layer order, which implies that the

routing graph is directed. And, once again, edges of length 1 represent a crossing.

The graph over which the algorithm runs will most likely be a result of an augmentation

process that converts it into an s-t graph. This augmentation process temporarily adds edges into

the graph. Since crossing over these edges doesn’t mean crossing over edges of the original graph,

every edge that represents a crossing over an edge added during the augmentation process has a

length of 0.

After constructing the routing graph, the algorithm can proceed in the same way as the undi-

rected edge insertion one. Using a shortest path algorithm to determine the route of the edge to be

added. Just like the undirected edge addition, this algorithm is also run for every edge that needs

to be added for the same reasons. Figure 3.16 visualizes a run of the algorithm for edge (5,9) from

the example shown in Figure 3.15.

Finally The overall algorithm for the planarization of the UML class diagram graph is as

follows:

1. Calculate a mixed upward planar sub-graph.

2. Make undirected edges in the sub-graph temporarily directed according to the ordering in

the sub-graph calculation.

3. Augment sub-graph into an s-t graph.

4. Run directed edge insertion algorithm for each directed edge that isn’t in the sub-graph.
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(a) Graph layering. (b) Routing graph construction. (c) Connecting nodes to face
nodes.

(d) Apply shortest path algorithm.

(e) Add edge, resolve crossings with crossing
nodes.

Figure 3.16: Visualization of the directed edge addition algorithm adding edge (5,9) with extra
leftover edge (3,4). Face nodes are offset from their layers for visual clarity.
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(a) Embedding. (b) f 1 switch assignment.

Figure 3.17: An upwards planar embedded graph and the assignment of the switches to face f 1.

5. Remove edges inserted in augmentation process.

6. Run undirected edge insertion algorithm for each undirected edge that isn’t in the sub-graph.

3.1.3.5 Augmenting Graph into S-T Graph

As mentioned above, directed edge addition only works over s-t graphs. In order to generalize the

algorithm, the graphs need to be augmented into an s-t graph.

Bertolazzi et al. in a work to create a method for testing the upward planarity of tri-connected

graphs, present a method of augmenting a bi-connected graph into an s-t graph [Bertolazzi et al.,

1994]. The augmentation method requires that the graph is upwards planar.

The first step of the method is to identify the switches of each face. Switches are nodes that

are either sources or sinks, i.e. nodes without in edges or out edges, respectively. Graph switches

are switches on the whole graph’s scope. Face switches are switches only on the face scope. As

an example, node b in Figure 3.17a is a graph switch since it only has in edges, node a is a face

switch in face f 1 since it only has in edges in the face.

After determining all face switches, it is required to determine the kind of angle they form

inside their faces. These angles are distinguished between big (B) angles and small (S) angles.

Figure 3.17b exemplifies the assignment of the angles to the switches face f 1.

The next step of the method creates, for each face f , a cyclic sequence of symbols, "obtained

by traversing f in clockwise order and assigning sB and tB (B-symbols) to source-switches and

sink-switches labeled B in f , and sS and tS (S-symbols) to source-switches and sink-switches

labeled S in f." [Bertolazzi et al., 1994]. After this the following algorithm is performed:

1. If the face has exactly one source and one sink, stop.
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2. Find a sequence (x,y,z) of one B-symbol followed by two S-symbols, once found:

(a) If (x,y,z) = (sB, tS,sS), add edge (vz,vx).

(b) If (x,y,z) = (tB,sS, tS), add edge (vx,vz).

(c) Remove x and y from the cyclic symbol list.

3. Repeat from Step 1.

This algorithm must be run on all internal faces. Once it is done, all of the graphs sources and

sinks will be present on the external face. The sources will be present on the bottom side, and the

sinks will be present on the top side. It is also expected that all of them will form big angles in

the external face. From here, a source and a sink node can be created, to which the all sources and

sinks will be connected, respectively. It is worth pointing out that the source and sink nodes only

need to be created if the graph has more than one of the respective kind. See Figure 3.18 for a step

by step visualization.

3.1.3.6 Orthogonalization

The orthogonalization step defines the more concrete shape requirements of the graph. It takes as

input a planar embedding of the graph and outputs a quasi-orthogonal representation of the graph.

In his work, Tamassia [Tamassia, 1987], describes a 1:1 correspondence between the orthog-

onal representation of a graph G and a flow over some network NG. The network contains the set

of nodes U = {s}∪{t}∪{Uv}∪{U f }, where s and t are the source and sink of the network, Uv

contains a node for every vertex of G and U f contains a node for every face of G. Paraphrasing

from Fößmeier and Kaufmann, the arcs between the network’s nodes are the following [Fößmeier

and Kaufmann, 1996]:

a) arcs from s to nodes v ∈Uv with cost 0 and capacity 4−deg(v), for every node with degree

below or equal to 4.

b) arcs from s to nodes f ∈U f , where f represents an internal face of G with deg( f ) <= 3;

these arcs have cost 0 and capacity 4− deg( f ); deg( f ) for a face f denotes the number of

edges in its clockwise list of edges, including the repeated ones;

c) arcs from nodes f ∈U f representing the external face or representing internal faces f with

deg( f )>= 5 to t; these arcs have cost 0 and capacity deg( f )−4 if f is an internal face and

capacity deg( f )+4 for the external face;

d) arcs of cost 0 and capacity ∞ from nodes v ∈Uv to nodes f ∈U f , if v is incident to an edge

of the face f ;

e) arcs of cost 1 and capacity ∞ from a node f ∈U f to a node g ∈U f , whenever the faces f

and g of G have at least one common edge.
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(a) Symbol assignment. (b) Split face f 2. (c) Split face f 2 again.

(d) Split face f 1 again.

(e) Add auxiliary sink.

Figure 3.18: Step by step s-t graph augmentation.
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Each unit of flow in the network represents an angle of 90°. "The flow on the arcs in d) defines

the angles of the orthogonal representation: If xv, f is the flow from the node v ∈Uv to the node

f ∈U f then the angle at vertex v in face f is (xv, f +1)×90°" [Fößmeier and Kaufmann, 1996]. For

arcs in e), the flow x f ,g from node f ∈U f to node g ∈U f represents the number of 90° angles that

edges shared by faces f and g make inside face f . Considering b(v,w) to represent the capacity of

arc (v,w). Any flow of value ∑u b(s,u) = ∑w b(w, t) through the network with cost B, corresponds

to an orthogonal representation with exactly B bends. Which means that applying a minimum cost

flow algorithm over the network will yield a representation with the minimum amount of bends.

To obtain a quasi-orthogonal representation of the graph, the network needs to be extended

to support 0° angles between edges. Fößmeier and Kaufmann, developed such an extension

[Fößmeier and Kaufmann, 1996]. Since a flow of 0 from a node to a face represents an angle

of 90°, 0° angles are represented by a flow of -1. This is represented as a flow of 1 in the opposite

direction, from the face to the node. Some additional arcs are added to the network:

f) arcs of cost 0 and capacity deg(v)− 4 from nodes v ∈ Uv to t, for all nodes in Uv with

deg(v)> 5.

g) arcs of cost 0 and capacity 1 from a node f ∈U f to a node v ∈Uv, whenever there is an arc

of type d) from v to f .

Arcs of type g) aren’t actually directly created in the network as there are some restrictions

around when flow can go through them, this relates to how the graph needs to be correctly drawn.

The overall graph layout algorithm follows the Kandinsky model, in which the bend-or-end prop-

erty states that at most one edge attached to each side of a vertex can be straight, these edges are

called the middle edges. This means that when there is a flow from a node f ∈U f to a node v∈Uv,

there must also be a flow from a node g ∈U f to f , this ensure that at most one edge is straight, to

ensure this condition arcs of type g) can be replace by arcs of type h) which go from g directly to

v. Another cautionary step to take is that all edges to the left of the middle edges must bend to the

left, and all edges to the right of the middle edge must bend to the right. These restrictions impose

special prohibited cases of flow on the network. These cases are avoided by creating a special

construction that replaces arcs of type h).

The construction that establishes arcs of type h) and ensures the compliance of the necessary

restrictions goes as quoted [Fößmeier and Kaufmann, 1996]:

Let v be a node in Uv and fi1 , . . . , fik an ordered list of the faces around the vertex v

in the graph (e.g. in clockwise order); let ei1 , . . . ,eik be the edges that separate these

faces such that ei j separates face fi j−1 mod k and face fi j (e.g. Fig 3.19a). (. . . )

Then we add for every edge ei, being incident to v two nodes H l
ei j

and Hr
ei j

, where

H l
ei j

(Hr
ei j

) corresponds to the arc of type h) crossing edge ei j in clockwise (counter-

clockwise) order around v; further H fi j
are new nodes in the network for every face

fi j .

New arcs are:
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(a) Faces and edges in clockwise order
[Fößmeier and Kaufmann, 1996].

(b) Auxiliary construction.

Figure 3.19: Auxialiary construction for 0° angles. Network angles and edges in gray. All capaci-
ties are 1, costs that are not indicated are 0.

• Arcs with capacity 1 and cost 2c+1 (c having a suitable value) from fi j to Hr
ei j

and to H l
ei j+1 mod k

, i.e. to the edges of the graph corresponding to the arcs of type

h) starting in face fi; and crossing a bounding edge of this face.

• Arcs with capacity 1 and cost 0 from the nodes H fi j
to node v; the arcs of these

two types replace the arcs of type h).

• Arcs with capacity 1 and cost 0 from node H l
ei j

to node H fi j
and from node

Hr
ei j+1 mod k

to node H fi j
, i.e. from two auxiliary nodes for two neighboured edges

to the auxiliary node for the face between them. (. . . )

• Arcs with capacity 1 and cost −c from node H l
ei j

to node Hr
ei j

and vice versa.

Every pair of such arcs defines a cycle of cost −2c and thus a cost minimum

path from a node fi j to a node v has cost 2c+1−2c = 1 corresponding to one

necessary bend as in the case at the arcs of type h). Every time a second flow

unit passes one of the nodes H l
ei j

or Hr
ei j

, the arcs with negative cost are already

satisfied and thus the path from fi j to v has cost 2c + 1.

The only worry here is making sure the constant c is an appropriate value to ensure the con-

struction avoids violating the drawing restrictions, having a value of c > B works well enough.



Related Work 40

Figure 3.19 shows a visualization of the construction.

This concludes the basic functionality of an orthogonalization step. However, Eiglsperger et.

al. add some additional steps. The shapes of the directed edges are pre-calculated through a linear

complexity algorithm, this will ensure the that they are drawn in the upward direction. Since

some edges’ shapes area already pre-defined, an extension to the orthogonalization step is used to

enforce these shapes. This extension, developed by Brandes et. al., adds additional devices to the

flow network NG that provide hints of which angles nodes should make inside a face and which

bends edges should have. This can be considered as providing a graph sketch for the algorithm to

work with [Brandes et al., 2002].

3.1.3.7 Compaction\Coordinate Assignment

The compaction phase is responsible for assigning edge coordinates to nodes and edge bends.

The compaction algorithm used for this step in Eiglsperger et. al.’s work, is specified in a paper by

Eiglsperger and Kaufmann [Eiglsperger and Kaufmann, 2002]. Their paper tackles the compaction

problem for graphs types of graphs with increasing complexity. First, a solution for compaction

of 4-graphs with point nodes is presented. Secondly, the solution is expanded to support n-graphs

(n > 4), i.e. support for 0° angles. Lastly, the algorithm is further expanded to support variable

sized nodes, this is the most important part of the algorithm since nodes that represent classes in

UML class diagrams are all rectangular and have different sizes.

Before starting the coordinate assignment process, some prepossessing must be done. The

coordinate assignment algorithm takes a quasi-orthogonal representation of the graph and for any

tuple (er,ar,br) in the orthogonal representation where br is not empty, the corresponding edge er

is split into segments connected by dummy nodes representing the edge bends. This is necessary

as the algorithm relies on all edges in the graph being straight. The rest of the explanation assumes

that this splitting has been performed.

Using the information in the orthogonal representation H, it is possible to determine the ori-

entation of all of the edges in the graph. The orientation dir of an edge e can be represented as

dir(e) = u if the edge is vertical and dir(e) = r if the edge is horizontal. For each edge e = (v,w),

there are two entries in H, in one entry the edge is traversed from v to w and in the other it is

traversed in the reverse direction from w to v. Using this information it is possible to calculate

in which absolute direction d ∈ {up,down, le f t,right} an edge is traversed during face traversal.

This information can be directly appended to the tuples in H. For the rest of the section, the graph’s

edges are assumed to all be pointing to the right if they are horizontal and upwards if they are

vertical, this is to simplify some explanations.

With the orientations of every edge in the graph calculated, two sub-graphs are created Gr =

(V,Er), containing only the horizontal edges of the graph, and Gu = (V,Eu), containing only the

vertical edges in the graph. Denoting Sr the set of connected components in Gr, and Su the set

of connected components in Gu, the elements of theses sets can be called, horizontal segments

or vertical segments, respectively. Two segments are adjacent if they share a node. seg(e) is the
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(a) Graph. (b) Segment definition.
(c) Dr

(d) Du

Figure 3.20: Example of graph’s vertical and horizontal segments, with respective constraint
graphs [Eiglsperger and Kaufmann, 2002].

segment to which edge e belongs, vert(v) is the vertical segment to which node v belongs and

hor(v) is the horizontal segment to which v belongs.

Then, a pair of constraint graphs that define the ordering of the segments is created. The

constraint graphs Du = {Sr,Au} and Dr = {Su,Ar}, have their edges defined as follows:

Au = {(hor(v),hor(w)) : (v,w) ∈ Eu}

Ar = {(vert(v),vert(w)) : (v,w) ∈ Er}

A shape description S = (Dr,Du) combines both constraint graphs to define the overall shape

requirements of the graph. If the shape description is complete, a standard layering algorithm

is able to obtain a valid orthogonal drawing of the graph. By creating a layering of each of the

constraint graphs, integer coordinates can be assigned to each segment. A node v’s x coordinate is

determined by the layer of vert(v) and the y coordinate by the layer of hor(v).

As mentioned above, it is only possible to obtain a valid drawing if the shape description

S is complete. Since each node is only contained in one horizontal and one vertical segment,

this means that two adjacent segments only geometrically overlap each other on the node that

they share. A complete shape description ensures this by making sure non adjacent segments are

properly separated. If a shape description is not complete, the application of the layering of the

segments will cause node overlap in the final drawing (e.g. Fig. 3.21). To resolve this problem, a

super-set of S that is complete, denominated the complete extension of S, can be computed using

heuristics.

The method to extend the shape description S relies on decomposing the faces of the graph into

rectangles by looking for patterns of bends by iterating through the orthogonal representations of

each face. By denoting angles of 90° with a ’0’ and angles of 270° with a ’1’, a list l of tuples

t = (a,s,d) can be created, with a ∈ {0,1} representing the bends, s being the segment of the edge

that forms the angle and d being the direction in which the edge was being traversed. Nodes that
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Figure 3.21: Example of an incomplete shape description producing an invalid drawing. The
layering of the constraint graphs is correct, however, nodes v2 and v7 overlap. Constraint graphs
from Fig. 3.20.
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Figure 3.22: Cutting a rectangle from a face [Eiglsperger and Kaufmann, 2002].

form a 360° angle inside of a face belong to a segment that only contains them (e.g. Fig 3.20a

S6 only contains v2 and S7 only contains v7). In this sense, angles of 360° are converted into two

consecutive tuples with a = 1, the first one contains the segment that makes the 360° angle, and

the second contains the aforementioned segment. 180° angles are not considered bends. The list l

for the external face of the graph in figure 3.20a would be:

{(1,s4,down), (1,s3,right), (1,s5,up), (1,s7, le f t), (0,s5,down),

(0,s2, le f t), (0,s4,up), (1,s1,right), (1,s6,up), (1,s1, le f t)}

The list l is repeatedly searched for patterns of ’100’, this pattern represents a rectangle that

can be cut and replaced with a ’0’ angle (e.g. 3.22). This rectangular decomposition doesn’t

change the original graph G, but just adds extra edges to the shape description (e.g. Fig. 3.23).

After decomposing all faces of the graph, including the external face (Fig. 3.24), the shape de-

scription of the graph will be complete. A layering of the segments will now yield valid orthogonal

drawings (e.g. Fig. 3.25).

To support graphs where nodes can have degree higher than 4, the concept of sub-segments is

introduced. Since nodes in 4-graphs have at most one edge attached per side, a segment can be

modeled as a path with a single orientation. In n-graphs this is not guaranteed since nodes can

have multiple edges in one side. So segments become more of a collection of paths. As quoted

[Eiglsperger and Kaufmann, 2002]:

We call two edges (u,v) and (v,w) a right-join (left-join) if they have the same direc-

tion and between them in the cyclic order (reverse cyclic order) there are only edges

with different directions.

Sub-segments are paths of edges with the same direction where every two consecutive edges

are right-join or every two consecutive edges are left-join. Sub-segments can also be composed

of a single edge. A sub-segment is maximal if it is not contained inside other sub-segments.

The algorithm only handles maximal sub-segments, so any mention of a sub-segment in later parts

assumes that it is maximal. Figure 3.26 show a segment in an n-graph along with its sub-segments.

The rectangular decomposition in n-graphs needs to be modified. First, in the definition of

the list l of tuples t = (a,s,d), s is now the sub-segment to which the edge belongs according to
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Figure 3.23: Example of the addition of new constraint edges during rectangle decomposition.

d. Since it needs to be able to handle 0° angles, those are denoted with a ’-1’. Then, before per-

forming regular rectangle decomposition, the ’-1’ bends need to be eliminated through a modified

decomposition algorithm. This algorithm will look for the patterns ’0-11’, ’1-10’ and ’1-11’.

Figure 3.27 shows how the different cases of zero angles are resolved. For the ’1-11’ sequence,

there are two different ways it can be resolved, i.e. cases c) and d). Which one is chosen depends

on some technical constraints.

After eliminating the zero angles with the above decomposition, the regular decomposition

algorithm that was defined before can be run on the resultant list l to decompose the face into

rectangles once more. The segments that are connected together are the segments corresponding

to the sub-segments in the list’s tuples. An exception is when a segment is connected with itself,

in this case the connection in not made.

The adaptation of the algorithm to support nodes with different sizes involves the creation of

a simplification of the original graph G = (V,E). Denoting width(v) as the width of a node v and

height(v) as the height. It is assumed that the of number edges attached to the top or bottom of

a node v is lower than width(v)+1 and the number of edges attached to the left or right is lower

then height(v)+1.

Considering the set B⊂V of dummy nodes introduced at the start to represent bends in edges.

All other nodes V \B are replaced with rectangular faces. For each edge e adjacent to v, a new

node p(e,v) is created which represents the port of e on v. Also, four corner nodes nw(v), ne(v),

sw(v) and se(v) are created. Each node face has four adjacent node-segments: the top side segment

t(v), the bottom side segment b(v), the left side segment l(v), and the right side segment r(v). The

result of this process is graph GS = (VS,ES) with an orthogonal representation HS. GS is a 4-graph,
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Figure 3.24: Rectangular decomposition applied to the external face of the graph in Fig. 3.20a.
Edges added in each step in gray.



Related Work 46

Figure 3.25: Layering of constraint graphs with a complete shape description now produce a valid
drawing.

Figure 3.26: A segment in an n-graph. According to the definition, the sub segments are (a,c,g),
(b,e), (d) and (c, f ) [Eiglsperger and Kaufmann, 2002].

Figure 3.27: Rules to remove zero degree angles [Eiglsperger and Kaufmann, 2002].
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however, a valid drawing of a 4-graph won’t guarantee a valid drawing of GS.

There are some constraints that must be imposed over creating a drawing of GS, in order for it

to map to a valid drawing of G:

1. The edges adjacent to corner nodes may have a length of 0.

2. The distance between the segments representing a node’s sides must respect the node’s

dimensions.

For this, the constraint graphs in the shape description are refined by adding a length function.

The shape description of GS is defined as follows S′ = {D′u,D′r}, D′u is defined with A′u = Au ∪
N+

u ∪N−u , with:

N+
u = {(b(v), t(v)) : v ∈V}

N−u = {(t(v),b(v)) : v ∈V}

D′r is defined in the same way. The length function length(e) is defined for A′u as:

length(e) =



0, if e ∈ Au,e is adjacent to a corner

height(v), if e ∈ N+
u

−height(v), if e ∈ N−u

1, otherwise

The rectangular decomposition of GS is made in tandem with the rectangular decomposition

of G. Before doing that, some extra elements must be added to S′, some definitions follow.

Considering v ∈ V \B and d ∈ {up,down, le f t,right}. The function seg(v,d) is defined as

such:

seg(v,d) =



r(v), if d = up

l(v), if d = down

t(v), if d = le f t

b(v), if d = right

Let s = e0, . . . ,er be a sub-segment, with e0 = (v0,v1),e1 = (v1,v2), . . . ,er = (vr,vr+1), d ∈
{up,down, le f t,right}, and simple(e) a function that maps an edge e from G to the corresponding

edge in Gs. The corresponding meta-segment meta(s,d) is defined as:

{seg(v0,d),simple(e0),seg(v1,d),simple(e1), . . . ,simple(vr),seg(vr+1,d)}
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Figure 3.28: Example of face with mn(s) nodes colored yellow. Edges connecting HS segments to
their corresponding meta segment nodes in dashed gray.

Now, for every face f of G, the zero angle elimination from above is run on f , this results in a

list of tuples l, this list is generated from H, not HS. For every tuple t = (a,s,d), a meta segment

node mn(s) is created in the corresponding constraint graph, this node represents the boundaries

of the meta segment inside the face. Edges are created connecting mn(s) and every segment of the

meta segment. These meta segment nodes are considered to be inside the face, so, the direction of

the edges must defined in a way that they canonically point to the right or upwards (e.g. Fig 3.28).

The length of these edges is 0. Lastly some additional edges are created between meta segment

nodes and normal segments to properly separate nodes that might overlap at their corners (Fig.

3.29). Lastly, the rectangular decomposition is run on l, when rectangles are cut from faces in H,

the corresponding meta segments in HS are connected to enforce the same restrictions (e.g. Fig.

3.30).

Figure 3.29: Example of two nodes that might overlap, and how it is avoided with the constraints.
mn(s) nodes in yellow, added edges in red.
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Figure 3.30: Example rectangle decomposition with meta segment nodes.

3.1.4 Summary

The algorithms for graph layout and respective resultant layouts depend on the objectives they are

trying to achieve and the constraints they are trying to fit into.

Regarding Family Tree visualizations, users depending on them might have varying objectives.

This reflects the varied approaches mentioned, which result in very different layouts. The Dual

Trees approach’s objective is to provide a clean and scalable way to browse through genealogical

data while respecting some user necessities like preserving the generational ordering [McGuffin

and Balakrishnan, 2005]. The radial+force-directed approach had a bigger emphasis on the tem-

poral aspect, having the nodes’ exact position be influenced by their timestamp data and making

the tree visualization more pleasing [Keller et al., 2010]. These methods display only parts of

the genealogical graph, while Mařik’s work [Mařík, 2016] aims at a full view of the genealogical

graph without hiding any information, which is beneficial in some cases. All approaches are good

at displaying hierarchical information, which genealogical data can be categorized as. In compari-

son, the Dual Trees and radial+force-directed approaches are suitable for displaying clean layouts

but lack the ability to display full graphs, while hierarchical graph drawing approaches like the

one in [Mařík, 2016] can display the entire network of families but lack readability as the graphs

start to scale up.

For UML class diagrams, the objectives behind their usage are very similar, i.e. understanding

the static structure of a system. Even so, layout algorithms achieve different results due to differing

philosophies of how they should be drawn. Hierarchical approaches strictly force inheritance rela-

tions to be drawn in an upwards fashion, making the layouts centered around these relations. This

has the advantage of clean layouts with short edges when the diagrams rely a lot on inheritance.

However, these approaches become inefficient when diagrams start to rely more on associations.

Seemann even admits this in his work [Seemann, 1997]. The Topology-Shape-Metrics approach

has a bigger concern with overall graph aesthetics, leaving the upwards drawings of inheritances
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as a secondary concern. The layouts produced around these concerns end up being cleaner overall

and with fewer bends, although edges can be on the longer side. The Rank-Directed approach

by Hu et al. [Hu et al., 2012] has different objectives from the last two methods. While the last

two methods were only concerned with clean layouts without awareness of the importance of

each class, this rank-directed approach makes an effort to identify which parts of the system are

closely related to ensure the classes belonging to those parts are drawn closer together, sacrificing

some readability. In comparison, the Hierarchical and Topology-Shape-Metrics approaches give

readable drawings of class diagrams, but their lack of understanding of the meaning behind the re-

lations might be detrimental, while an approach like the rank-directed one helps users understand

the most important parts of a system with a sacrifice in the cleanliness of the drawing.

3.2 Graph Interaction and Navigation

Some of the works presented above also feature interaction features to complement the produced

visualizations. This section documents them.

3.2.1 Dual Tree Interactions

The dual tree layout work mentioned in Section 3.1.2.1 [McGuffin and Balakrishnan, 2005] also

presents features for interacting with the visualization to allow for easy exploration and informa-

tion extraction. The interaction features are centered around four basic operations: expanding and

collapsing of a node’s parents and expanding and collapsing of a node’s descendants. The expan-

sion of certain nodes will have side effects on the layout, e.g. expanding the parents of a node in

the descendants tree will require the layout to be rearranged, nodes need to be moved, and some

others will need to be hidden to keep the dual tree scheme. The expansion, collapse, and move-

ment of the nodes are shown through 1-second animations. These animations have three stages:

fade out nodes that need to be hidden, move nodes to new positions, and fade in nodes to be added.

Although these animations may get complex, the authors believe a complicated animation is better

than no animation at all and that users can benefit from tracking just a few nodes. Panning and

zooming of the camera can be done manually or automatically through animations as well.

The selection of which nodes to expand or collapse is done through a "subtree-drag-out widget

for “dragging out” subtrees to any depth" [McGuffin and Balakrishnan, 2005] (see Fig. 3.31). It

works by using a secondary mouse button to click on a node, the node will be highlighted, and an

initial widget will popup to select whether the user wants to work over the tree of ancestors (up)

or the tree of descendants (down), the user then must drag in the direction of the tree they want to

work on. After that, a second widget appears to select whether the users want to expand (down) or

collapse (up) the tree. It allows the user to select the level to which expand or collapse while also

displaying the level up to which the tree is expanded.
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Figure 3.31: Dual Trees interaction widget [McGuffin and Balakrishnan, 2005].

3.2.2 Radial and Force Directed Interactions

The prototype for the work on the Radial+Force Directed visualization in Section 3.1.2.2 [Keller

et al., 2010] also has some interaction features:

• Dynamic Root Node Switching: A user can change the root node of the visualization. By

doing this, the focus point of the tree will change. When the root node changes, a transition

between layouts will happen, certain parts of the tree will collapse, and others will expand

to show the ancestors and descendants of the new root node. When changing the root to

a child or parent of the root node, the transition will first hide sub-trees that need to be

collapsed, transition the nodes to their new positions and then show the sub-trees that need

to be expanded. The transition in the node positions is done by linearly interpolating the

nodes’ polar coordinates rather than their Cartesian ones. When the new root node is more

separated from the current one, e.g. grandmother or grandson, the transition will play along

the path between the nodes, e.g. when changing to the maternal grandmother, it will first

transition to the mother node and then to the grandmother node.

• Hover Tooltip: Used to keep the visualization less cluttered by assigning a tooltip to each

node. It provides additional information about each person, e.g. birthdates, and spouses.

• Age Bracket Highligthing: The visualization includes a slider that allows the user to high-

light nodes within a certain age difference from the root node. The difference in age is

calculated between a node and the root node, so positive values will highlight ancestors, and

negative values will highlight descendants.

• Search: A text box that allows the user to search people by their names. Nodes are dynam-

ically highlighted as the user types the search query. This feature allows the visualization to

be much more scalable since nodes become easier to find.
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• Same Generation Highlight: Similar to the age bracket highlighting. In this case, it high-

lights nodes within a certain generation in relation to the root node. It also uses a slider.

Similar to the age bracket slider, positive numbers highlight ancestors, and negative num-

bers highlight descendants. One of the uses for this feature is the extraction of age trends

within generations as well as the range of ages.

• Cone Steepness: Another slider is provided to change the steepness level of the tree. The

steepness level dictates how spread out the nodes are. More spread-out nodes reduce clutter

and make it easier to see each individual node. Having them less spread out allows for the

fitting of more nodes in the visualization.

• Zooming and Repositioning: For better ease of use, other implemented features were

zooming in and out of the tree using the right mouse click and the manual repositioning

of the nodes, which the user can do by clicking and dragging the nodes, to better fit the

user’s preference. The repositioning is constrained so that the distance from the moved

node to the root node stays the same and reflects the relative age. So, the repositioning can

be seen more as a rotation of the node.

3.2.3 MoireGraphs Interactions

The work on the MoireGraphs visualization shown in Section 3.1.1.3 [Jankun-Kelly and Ma, 2003]

also introduces several interactive features to allow a user to fine-tune the visualization:

• Changing Focus Strength: The focus strength dictates the size of the root node in relation

to subsequent layers. Higher values will make the root node larger, with layers towards

the periphery becoming smaller and losing detail, while smaller values will reduce the root

node’s size with periphery layers becoming bigger and gaining detail.

• Radial Rotation: The feature allows a user to offset the angle of the nodes’ polar coordi-

nates. This is useful when the edge direction has significance, e.g. temporal information.

• Level Highlighting: While hovering the mouse over a certain level, the level gets allocated

twice its available space, resulting in its nodes increasing in size while other levels become

smaller. There is also a visual queue that colors the respective level. Abrupt transitions are

avoided by animating the changes in size from highlighted to non-highlighted states (and

vice-versa). Useful for comparisons between certain levels and the root node.

• Secondary Foci: Secondary foci can be chosen to compare individual nodes with the root

node. A node that is chosen as a secondary focus increases in size relative to its siblings.

However, the layout doesn’t change, which can result in the node occluding its siblings.

Secondary foci are chosen by hovering the mouse over them.

• Animated Graph Navigation: Graph navigation is supported by the ability to choose new

root nodes. When a new root node is chosen, the visualization displays the animation be-

tween the old and new layouts. Node positions are animated by linearly interpolating the
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polar coordinates of the nodes. Since nodes can change levels between layouts, their size

change is also animated.

• Node Tooltips: Used to display extra metadata about each node.

• Display Properties: Edges that don’t belong to the spanning tree may be displayed or not.

If they are displayed, they are made thinner.

3.2.4 Summary

The interaction techniques are quite varied across the reviewed literature. A key takeaway about

these techniques is that they sit on top of layouts where information is not displayed equally. In

some cases, information is hidden either to keep clutter to a minimum or because only a sub-graph

is actually being drawn, while in others, it is given less importance to bring more attention to other

areas (e.g. node size distortion in MoireGraphs). Some of these interaction techniques offer ways

to work around this.

In the context of hidden information, tooltips are seen being used to display extra informa-

tion about nodes that would otherwise clutter the graph, like is seen on the Radial+Force-directed

approach and in MoireGraphs. The problem of only a sub-graph being displayed is addressed

by providing ways of causing the layout to dynamically change, usually through sub-tree col-

lapse or expansion like the widget in the Dual Trees prototype or the root node switching on the

Radial+Force-directed approach. These layout transitions are portrayed through animations to

help the user keep context. Dynamic layout changes also occur in MoireGraphs when switch-

ing the focus (root) node. Here there is no collapse or expansion of sub-trees but an animated

rearrangement of node positions and sizes. These features are very useful to help keep the visu-

alizations clean and help the user not lose track of things. However, some caution must be taken.

Tooltips are useful to display extra information but not all of it. And animations run the risk of

being too complex to follow once they start involving too many nodes.

Other interaction techniques that are worth mentioning here relate to ones that allow the user

to manipulate layout algorithm parameters, like the cone steepness slider in the Radial+Force-

directed approach and the focus strength and radial rotation options in MoireGraphs. Although

these serve functional purposes, users might end up using them to tune the visualization to their

liking. The drawback behind this is that these options should come with good defaults to save

users the effort of having to tune the visualization every time.
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Problem and Proposed Solution

This chapter presents some insight into the challenges of drawing graphs, including Family Trees

and UML class diagrams, as well as some discussion on how CleanGraph’s graph interaction can

be improved. It also contains some decisions made on how these improvements are going to be

implemented.

4.1 Graph Layout

This section covers the static layout portion of the work. Some challenges are presented, along

with existing solutions in Cytoscape.js. Finally, some decisions are made for the algorithms to be

implemented.

4.1.1 Challenges of Drawing Graphs

The main aim of automatic graph layout algorithms is to create a mapping of a graph to coordinates

while following a set of constraints or objectives which may or may not be imposed by the data in

the graph. Some of these objectives usually involve the optimization of certain aesthetic criteria,

which measure mathematically defined properties of the graph layouts. Examples of aesthetic

criteria are, quoting from Eiglsperger et al. [Eiglsperger et al., 2003] [Battista et al., 1998]:

• minimize number of edge crossings CROSSING

• minimize number of bends BEND

• minimize number of node and edge overlap OVERLAP

• maximize number of orthogonal edges ORTHOGONAL

• maximize angular resolution RESOLUTION

• minimize edge length EDGE LENGTH

• minimize area AREA

• maximize rectangular aspect-ratio ASPECT RATIO

• maximize number of edges respecting flow FLOW

54
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• maximize symmetry SYMMETRY

Studies were done on the influence these criteria have on the readability of diagrams [Pur-

chase, 1997] [Purchase et al., 1997]. The experiments were based on students answering questions

about graph drawing. Between BEND, CROSSING, RESOLUTION, ORTHOGONAL and SYMMETRY,

CROSSING, BEND and SYMMETRY proved to be the most important.

It is also worth pointing out that certain criteria contradict, e.g. CROSSING and AREA con-

tradict, since edges crossing might be solvable by routing edges through alternative paths, which

leads to the graph requiring more space. As such, drawing graphs can be seen as solving a multi-

objective optimization problem [Eiglsperger et al., 2003] [Battista et al., 1998].

4.1.2 Challenges of Drawing Family Trees

In essence, family trees are directed graphs that describe the relationships between people in a

family. Such graphs can also be called genealogical graphs. Drawing such graphs has many

challenges, some of which are mentioned in [Martins, 2021]. In an ideal situation, each individual

in a genealogical graph would only marry at most once, with a non-blood-related person, and have

at most two parents. However, in reality, many unusual cases can occur: people can marry multiple

times, marriages can happen between blood-related people, and inter-generational couples can

form, to name a few. These situations can cause constraints in automatic layouts, but it is still

information that needs to be displayed.

[McGuffin and Balakrishnan, 2005] presents some analysis of the theoretic properties of ge-

nealogical graphs. The challenge of drawing these is reliant on the scheme used to represent them

as well as certain properties that can be observed inside the family. If to the standard familiar

relationships of parent, child, ancestor and descendant, we add the relationships:

• Consanguine relatives: individuals with a common ancestor.

• Conjugal relatives: individuals connected by an undirected path through one or more mar-

riages, e.g. brothers-in-law.

We can define different types of intermarriage in a family:

• Type 1 Intermarriage: marriage between people who are consanguine relatives.

• Type 2 Intermarriage: marriage between people who are conjugal relatives via a path that

doesn’t include their marriage.

Depending on the non-existence of these kinds of intermarriages and the scheme of the graph, a

genealogical graph can be considered a tree. Trees are planar and can be easily drawn without edge

crossings. However, it isn’t uncommon for users to require nodes to be ordered by time in a way

that makes generations apparent. Such a constraint leads to edge crossings becoming unavoidable.

Relaxing the constraints so that the ordering only applies between parent and child lets the edges
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crossing disappear, with the drawback of very long edges [McGuffin and Balakrishnan, 2005]. If

these properties can’t be observed, if the scheme allows the graph to be a DAG, it can be drawn

with generic drawing algorithms like Sugiyama et al.’s [Sugiyama et al., 1981], or the one in

[Gansner et al., 1993].

Most commercial solutions for genealogical graph visualization address these challenges by

displaying portions of the graph and hiding information to achieve a cleaner view. However, it also

creates the possibility for misinterpretation of data [Martins, 2021]. Also, one of CleanGraph’s

standout points is the representation of graphs in their entirety, so these approaches are not an

option, at least for the static representation.

In conclusion, to develop an algorithm to layout genealogical graphs, several aspects can be

considered, mainly the existence of intermarriage and the degree to which a user wants to retain

generational ordering. The developed algorithm might allow for automatic detection of these

situations and pick the best way to draw the graph. However, caution might be necessary. Users

might be thrown off by this behavior, and deem the program inconsistent.

4.1.3 Challenges of Drawing UML Class Diagrams

UML class diagrams represent the architecture of a system, which means that the complexity of

these diagrams is directly related to the complexity of the system itself. This complexity can be

identified by an increase in the size of the diagram, be it the number of classes or the number of

relations between classes. With the increase in the size of the diagram, the challenges related to

drawing it become apparent.

UML class diagrams have also been studied, with some aesthetic criteria being defined for

this specific type of diagram. Aesthetic criteria more specific to class diagrams are [Eichelberger,

2002] [Eiglsperger et al., 2003]:

• use hyperedge notation for generalization relation HYPEREDGE,

• center n-ary association CENTER,

• place comment nodes and association classes near to the related model elements

PROXIMITY.

Purchase et. al also conducted research into these aesthetic criteria [Purchase et al., 2001],

it concluded that BEND and FLOW worsen the readability of class diagrams, while ORTHOGONAL

had no influence. User preference is also indirectly linked to the readability of a class diagram

as different people can interpret things differently [Eiglsperger et al., 2003]. In a study on user

preference for criteria in class diagrams by Purchase et al. [Purchase et al., 2000], CROSSING,

followed by BEND and HYPEREDGE is the order of importance attributed to the respective criteria.

Eiglsperger et al. conclude from these studies that CROSSING and BEND play an important

role in class diagrams. FLOW and HYPEREDGE might play an important role as well, but there isn’t

sufficient investigation. Nonetheless, they should be considered [Eiglsperger et al., 2003].
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An algorithm that aims to draw UML class diagrams has to take into account these various

aesthetics criteria. Which ones to pick and optimize is a choice of the creators. Some degree of

user preference should be considered and influence the way the layout is calculated. An example

of such is the work from Eiglsperger et al. [Eiglsperger et al., 2003], their layout algorithm permits

the user to enforce certain edges to follow the FLOW criterion, e.g. drawing sub-classes below their

super-classes, and the HYPEREDGE criterion.

4.1.4 Cytoscape.js Layout Algorithm Implementations

CleanGraph is built on top of Cytoscape.js, a graph theory library than enables graph visualization

and analysis. Some of its features include: support for many graph types, graph manipulation,

many graph theory algorithms, and, most notably, automatic layout algorithms [Franz et al., 2016].

Since most of this work involves improving CleanGraph’s current static layouts, it is worth looking

into the available options.

Cytoscape.js has many layout offerings, whether it be through native implemented ones or

through extensions. A few of them are as follows [Cytoscape.js, 2021]:

• Geometric Layouts: Organize the graph into geometric shapes

– grid: organizes the nodes in a well-spaced grid.

– circle: organizes the nodes into a circle. Nodes are sorted manually.

– concentric: places node in concentric circles. Which circle a node is placed into is

based on a metric. The higher the metric, the innermost the node will be placed.

– avsdf: same as circle. However, the nodes are sorted automatically to avoid edge

overlap.

• Hierarchical Layouts: Good for trees and DAGs

– dagre, elk-layered, elk-mrtree, klay: all very similar, dagre and elk-layered

offer similar results for smaller data-sets, klay is a predecessor to elk-layered.

The elk algorithms are all bundled into a single file, so the size can be a limiting factor.

– breadthfirst: organizes nodes in levels according to the levels generated by a

breadth-first search applied on the graph.

– concentric: can be hierarchical if the metric is the level obtained from a breadth-

first search.

• Forced-directed Layouts: in general, all work in a similar way. Differences might be perfor-

mance or the ability to set constraints.

In conclusion, there is a wide selection of algorithms one can choose from. Hierarchical

layouts are promising for genealogical graphs. However, they don’t offer much customizability

in terms of defining custom ways to rank nodes or ordering them within ranks. This is important
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because genealogical graphs can have some semantic constraints when creating drawings of them,

e.g. keeping siblings close together. They might give satisfactory results for smaller graphs, but on

larger data-sets, these rules won’t be as respected. So specializing these algorithms so they scale

better for larger graphs is necessary. Another point is that none of the offered solutions seem to

fit the layout of UML class diagrams well enough. Finally, these algorithms treat every node in

the graph as equal, which is something that isn’t necessarily true for Family Trees and UML class

diagrams. Some nodes within these types of graphs need to be treated differently and may even be

just auxiliary nodes that shouldn’t be displayed. With this in mind, the algorithms to be used will

need to be developed from scratch.

4.1.5 Algorithm Choices

Having discussed some of the challenges of drawing both kinds of graphs, some decisions about

the algorithms to be implemented are made.

4.1.5.1 Genealogical Graphs

For genealogical graphs, as stated in Section 4.1.2, it would be ideal for the application to detect

certain structural properties of the graph and use the most appropriate algorithm to efficiently draw

the diagram, all while listening to the user’s preference in generational ordering. However, this

would require the design of multiple different algorithms, which, in the time frame and context

of this work, is unfeasible. So, the algorithm to implement will be a more general solution that

is still optimized for genealogical graphs. The approach in [Mařík, 2016], with its modifications

to the algorithm in [Gansner et al., 1993], is a very compelling one. There is also an opportunity

for improvement of the approach since the author only used their methods to define a constrained

input for the algorithm and didn’t implement the algorithm from scratch. Because of this, the

algorithm can ignore the proposed ordering if it finds a better one, leading to wasted computing

power. Directly implementing the changes into the algorithm allows for the mitigation of these.

Also, since the approach aims to keep families clustered, the algorithm can be further optimized

to work by reordering the clusters instead of reordering individual nodes. Another opportunity for

improvement is the combination of different approaches, like in [Keller et al., 2010], the applica-

tion of a force-directed approach to order the nodes within levels might be interesting, especially

if it is specialized for genealogical graphs.

4.1.5.2 UML class diagrams

For UML class diagrams, there are many solutions using hierarchical methods to draw these, re-

lying on the initial layout of inheritance relationships as a base from which to draw the rest of the

diagram around. However, there are some sound arguments against the usefulness of these meth-

ods. These approaches assume that there is a large number of inheritance relations in the diagram

and that these relations should be strictly drawn in an upward direction. However, in practice,

this isn’t necessarily the case. Class diagrams don’t have to contain inheritance relations. Also,
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extensive use of inheritance is actually a discouraged practice in software engineering for a long

time; composition being often encouraged instead [Gamma et al., 1995]. So, there it is expected

that many class diagrams have more associations than inheritance relations. Even diagrams with

inheritance may suffer, as they end up not being as deep as desired for good layouts, resulting

in very wide layouts. These arguments are presented in [Eiglsperger et al., 2003] along with the

topology-shape-metrics approach to drawing these diagrams, which takes into consideration of

the overall topology of the diagram. It also attempts to draw inheritance relation in an upward

direction but doesn’t force it if it sacrifices readability, taking it more as a relaxed constraint. This

approach seems like a better method for drawing class diagrams.

Another thing that should be considered is the semantics behind the diagrams. The systems

they represent can usually be divided into modules of closely related classes, and making sure

these classes are drawn closer helps people understand the overall components of a system. The

work in [Hu et al., 2012] attempts something like this by clustering the graph around a set of most

important classes, with trade-offs in readability. So, it is evident that ensuring the closeness of

groups of classes might conflict with readability criteria. A solution for this might be having a

second layout that focuses more on grouping closely related classes.

4.2 Graph Interaction and Navigation

In this work, graph interaction and navigation pertain to how a user can interact with graph vi-

sualizations to better extract information from them and build a better understanding of the data.

Over the analyzed state of the art, many interactive features and methods were observed. One

thing which can be taken away from it is that these interaction methods are centered around the

visualization of subsets of the graph, focusing on a certain part of the graph or a mixture of both.

Interaction based on partial graph visualization can be tied to how these works choose to deal

with scale. As graphs get bigger, these interaction methods manage scale by reducing the amount

of data displayed at once and provide features that allow users to quickly and effectively navigate

and extract information. These become less needed when full graph visualizations are used since

all the information is displayed at once and not hidden. The challenge with this approach centers

more around keeping the graph layouts clean and semantically readable, which is explained in the

section above. This does not mean that full representation of graphs lack of interaction features,

just that they are less interesting in a sense.

Interaction with full graph visualizations has the aim of allowing a user to extract informa-

tion more easily through, for example, allowing for changes in the level of detail of the graph’s

elements or helping the users spot elements more easily. One very basic feature is zooming and

panning [Herman et al., 2000]. Using these, the user can view certain parts of the layout with more

detail and focus on those. Another is node highlighting, which helps the user in spotting nodes

that match certain criteria. Pairing this with a search feature can be very useful. Lastly, enabling

the user to manually rearrange the layout by moving nodes to different positions allows for better

productivity as the initial drawing may have some shortcomings and not fit the user’s preferences
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[Keller et al., 2010]. These are all things that CleanGraph already implements in its interaction

model, some of which are enabled by the use of Cytoscape.js [Martins, 2021].

That being the case, the improvement of CleanGraph’s graph interaction might actually rely on

the use of secondary layouts and interaction techniques like the ones found in the state of the art.

This means that these layouts won’t be focused on the full graph visualization. They will instead

show parts of graphs or emphasize certain nodes. Traversal of these layouts will then have to rely

on well-crafted animated transitions to help the user maintain context. An example would be the

Dual Trees visualization [McGuffin and Balakrishnan, 2005], or the MoireGraphs [Jankun-Kelly

and Ma, 2003] which could be applied to UML class diagrams to help a user better understand the

relations between classes.

4.3 Completed Work

This section now covers the work that was completed in the scope of this dissertation. This work is

divided into three main tasks: implementation of a new Family Trees layout algorithm, implemen-

tation of a new UML class diagrams layout algorithm, and the update of the existing navigation

feature for UML class diagrams.

The Family Trees layout algorithm is based on the hierarchical style of layout algorithms and

follows the specification of existing work. For this, some alterations in the graph representation of

Family Trees were necessary for the graph to be compatible with the algorithm.

The UML class diagrams layout algorithm is based on the Topology-Shape-Metrics approach,

and its implementation also follows the specification of existing work. Like in Family Trees, the

graph representation needed to be altered for the graph to be compatible with the algorithm.

The navigation feature update was based on the implementation of a new radial layout of UML

class diagrams, which allows the user to jump from class to class and allows them to analyze the

relationships between classes from a different perspective.

The next chapter will contain implementation details for each of the tasks performed.



Chapter 5

Implementation

This chapter is going to cover the implemented layouts for each graph type, i.e. Family Trees

and UML Class Diagrams, explaining how they work with implementation details, along with

documenting changes that were done to the existing work to accommodate the new layouts.

5.1 Family Trees Layout

In family trees, the relationships between parents and children are hierarchic in nature. Hierarchi-

cal graph drawings are very good at representing flow in DAGs. If in Family Trees, we consider

the flowing "thing" to be time or the passing of lineages onto new generations, these kinds of

drawings can be very useful for representing Family Trees, as already seen in the work analyzed

in previous sections.

As mentioned in previous chapters, hierarchical graph drawings try to assign nodes into hier-

archies so as to ensure that every edge points in an upward direction. They generally have three

steps:

1. Layering – Assign nodes to layers.

2. Node Ordering – A linear order in each layer is computed in order to minimize the number

of edge crossings.

3. Coordinate Assignment – Assigning coordinates to nodes in order to optimize certain aes-

thetic criteria.

The implemented algorithm for Family Tree layout is mostly based on Gansner et al’s work

[Gansner et al., 1993]. The following sections explain implementation details of the algorithm.

5.1.1 New Representation

Before implementing the layout algorithm, some changes to the existing representation of Fam-

ily Trees need to be made. The current version of CleanGraph represents marriages as edges, as
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(a) Old

(b) New

Figure 5.1: Same marriage represented with the old and new graph representations.

they are essentially a relationship between two people (nodes). However, this results in children

resulting from marriages being represented as edges connecting the children to the marriage edge.

Traditional graphs don’t support the idea of edges connecting to other edges, meaning that lay-

out algorithms also don’t work over this kind of representation. In light of this, marriages were

converted from edges to nodes. A more formal explanation follows: every edge m = (v,w) repre-

senting a marriage between persons v and w, and respective edges (c1,m), . . . ,(ci,m) representing

the children c1, . . . ,ci born from said marriage, are replaced with a node M and edges (v,M),

(w,M) and (M,c1), . . . ,(M,ci).

This can be seen as marriages being less treated as a relationship and more as an event. And

the direction of the edges connected to marriage nodes represents the role each person has in that

marriage. Figure 5.1 shows a comparison between both representations.

5.1.2 Layering

As mentioned above, this step involves the assignment of nodes to layers. The center objective

is to ensure that every edge in the graph points in the same direction, i.e. pointing from a lower

layer to a higher one, or vice versa. This is only possible if the graph is acyclic, so an important

part of this step in general layout algorithms is ensuring that the graph is a DAG, and if it isn’t,

transform it into one by reversing some edges, this step is trivial if no constraints are applied on it,

e.g. reverse the minimum amount of edges.

In the case of Family Trees in CleanGraph, the graph is guaranteed to be a DAG. The trans-

formation in the section above ensures the edges flow from parent to child in marriages, and the

GEDCOM1 to graph conversion already ensures that direct relationships between parent and child

point from the parent to the child. This eliminates the possibly costly first part of this step.

1File format for exchanging genealogical data: https://www.gedcom.org/.

https://www.gedcom.org/.
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The actual assignment of layers to nodes can be done through a simple random walk algorithm,

starting at a node at layer 0 and traversing through the graph along the edges, assigning layers to

nodes depending on the direction the edge was traversed. If the traversal flowed from a child node

v to a parent of marriage node w, w’s layer l(w) will be l(v)− 1. If the traversal flowed from a

parent node v to a marriage or child node w, then l(w) = l(v)+1.

However, some constraints were applied to the basic algorithm. Since marriages are now

represented as nodes, the graph now has two types of nodes, representing two distinct things. It

might be undesirable to have person nodes and marriage nodes next to each other as it can cause

visual clutter. To ensure this, the algorithm assigns person nodes to even layers and marriage nodes

to odd layers. This way, person nodes, and marriage nodes are assigned to distinct layers and can

be more easily differentiated.

5.1.3 Node Ordering

The node ordering step of the algorithm is focused on creating a linear order of the nodes in

each rank so that the overall number of edge crossings in the whole graph is minimized. The

implementation of the algorithm follows the method in Gansner et al’s work [Gansner et al., 1993].

Algorithm 1 shows the general structure. A set number of iterations are run over the entire graph.

Each iteration runs the wmedian() heuristic (Algorithm 2), which sorts the nodes in each layer

according to the median positions of their neighbors in adjacent layers. Depending on whether the

iteration is odd or even, the heuristic puts a bias on the positions of neighbors in higher or lower

layers, respectively.

Algorithm 1: Node Ordering [Gansner et al., 1993]

1 order← initial_order();
2 best← order;
3 for i in 0..max_iter do
4 wmedian(order, i);
5 if crossing(order)< crossing(best) then
6 best← order;
7 end
8 end

Algorithm 3 shows how the median position of a node’s neighbours is calculated. This median

is calculated as a weighted median value, the objective is to influence nodes to be placed closer to

areas where it’s neighbours are more closely packed. ad j_positions() in line 1 returns a sorted list

of the positions of node v’s neighbours in the layer ad j_rank. If a node does not have neighbours

in ad j_rank, the algorithm will make sure its position doesn’t change.

The sorting algorithm, specified in Algorithm 4, sorts nodes based on the calculated median

position of their neighbours, nodes marked with a median of −1, i.e. nodes without neighbours,

are kept in their original positions.
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Algorithm 2: wmedian Procedure [Gansner et al., 1993]
Data: order, iter

1 if iter mod 2 = 0 then
2 for r in 1..Max_rank do

/* Sort nodes in ranks based on positions of neighbours
in the previous layer */

3 for v in order[r] do
4 median[v]← median_value(v,r−1);
5 end
6 sort(order[r],median);
7 end
8 else
9 for r in (Max_rank−1)..1 do

/* Sort nodes in ranks based on positions of neighbours
in the next layer */

10 for v in order[r] do
11 median[v]← median_value(v,r+1);
12 end
13 sort(order[r],median);
14 end
15 end

Algorithm 3: median_value Procedure [Gansner et al., 1993]
Data: v, ad j_rank

1 P = ad j_positions(v,ad j_rank);
2 m = |P|/2;
3 if |P|= 0 then
4 return −1.0
5 else if |P| mod 2 = 1 then
6 return P[m]
7 else
8 if |P|= 2 then
9 return (P[0]+P[1])/2

10 else
11 le f t← P[m−1]−P[0];
12 right← P[|P|−1]−P[m];
13 return (P[m−1]∗ right +P[m]∗ le f t)/(le f t + right)
14 end
15 end
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Algorithm 4: sort() Procedure
Data: rank, median

1 F ← [];
2 for i in 0..|rank| do
3 if median[rank[i]] =−1 then
4 F+= (rank[i], i);
5 Remove rank[i] from rank;
6 end
7 end
8 Sort rank based on median values;
9 for (v, i)inF do

10 Insert v into rank at index i;
11 end

5.1.4 Coordinate Assignment

The coordinate assignment step of the algorithm calculates the coordinates of the nodes while

trying to optimize certain heuristics like edge length and edge slope (i.e. how "vertical" they are).

Y-coordinates are calculated based on the layer the nodes were assigned.

X-coordinate calculation (Algorithm 5) follows a similar approach to the node ordering step.

It also runs a set of iterations over the graph. At each iteration, it runs a heuristic that places each

node at the median position of its neighbors in adjacent layers. Depending on the iteration, the

neighbors in the upper or lower layer are considered, just like the node ordering algorithm. The

main difference is that the median is no longer weighted, as the node position that minimizes the

length of a node’s edges is the median position of its neighbors [Gansner et al., 1993]. Another

aspect to keep in mind when placing nodes is that the node order has to be respected. So, the

coordinate in which each node is placed is clamped, so it always stays to the right of nodes that

come before it in the layer’s linear ordering.

Algorithm 5: X-coordinate Assignment

1 xcoords← initial_xcoords();
2 best← xcoords;
3 for i in 0..max_iter do
4 median_pos(xcoords, i);
5 if xlength(xcoords)< xlength(best) then
6 best← xcoords;
7 end
8 end
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Algorithm 6: median_pos Procedure
Data: coords, iteration iter, node separation amount S

1 if iter mod 2 = 0 then
2 for r in 1..Max_rank do
3 lowerBound←−∞;
4 for v in coords[r] do
5 m← median_x(v,r−1);
6 lowerBound← max(x, lowerBound +S);
7 median[v]← lowerBound;
8 end
9 end

10 else
11 for r in (Max_rank−1)..1 do
12 for v in coords[r] do
13 m← median_x(v,r+1);
14 lowerBound← max(x, lowerBound +S);
15 median[v]← lowerBound;
16 end
17 end
18 end

5.2 UML Class Diagrams

This section covers the implementations of features for the visualization of UML class diagrams.

A new full graph layout algorithm was implemented, along with an update to CleanGraph’s radial

layout feature.

5.2.1 Global Layout

The global layout algorithm for UML Class diagrams draws the graph that represents the diagram

in its entirety. The kind of drawing it tries to achieve is an orthogonal box drawing, i.e. a graph

drawing where nodes are represented as boxes and edges are drawn as sequences of horizontal and

vertical lines. The algorithm implementation follows the work by Eiglsperger et. al. [Eiglsperger

et al., 2003]. Their algorithm intakes a UML class diagram as a mixed graph and creates an

orthogonal style mixed upward planar drawing of it. The main reason the class diagram is taken as

a mixed graph is so that the mixed upward planar drawing ensures certain relations between classes

are drawn in the upward direction, i.e. inheritance/generalization relations, which are commonly

drawn with the super-class above the sub-classes.

The algorithm models a UML class diagram as a mixed graph G = (V,E), where classes are

nodes V and relations between classes are edges E. There is also a subset D∈V of directed edges.

Recapping the explanation from Section 3.1.3.3, the algorithm works in three main phases:

• Planarization — The graph is planarized and a planar embedding of it is constructed. This

is an important step because if a graph in not planar, it can’t be drawn in the plane without
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(a) Before bug fix.
(b) After bug fix.

Figure 5.2: Before and after the association bug fix.

edge crossings. If the graph’s embedding is not planar the rest of the algorithm also won’t

function properly.

• Orthogonalization — An orthogonal representation of the graph is created, in which the

angles and bends in the drawing are specified. This is necessary input for the next step of

the algorithm. The bends and angles that are calculated during this phase are increments

of 90°. This will give the drawing a orthogonal look, which usually a style UML class

diagrams are drawn in.

• Compaction — In this step, node coordinates are finally calculated using the orthogongal

representation as input.

Since much of the algorithm was already explained from Section 3.1.3.3 downwards. The

following sections will provide some more insight into the executed steps, as well as provide some

implementation details that were relevant throughout the implementation of the layout algorithm.

5.2.1.1 Association Bug Fix

Before the implementation of the algorithm, a bug in the converter responsible for turning the

XMI2 files into graph data for Cytoscape.js needed to be fixed. The issues lay in the generation of

association edges. When an association had an association class, the association class would be

created along with the edge to connect that class. However, the creation of the association edge

itself was being skipped when this was the case (e.g. Fig. 5.2).

5.2.1.2 Pre-Processing Step

Before laying out the UML Class Diagram, some changes need to be made to the graph repre-

sentation of the diagram. Like in Family Trees, there are some instances of edges connecting

other edges. That is the case for associations with association classes and user-defined constraints.

2A standard for exchanging data, commonly as an interchange format for UML models, https://www.omg.
org/spec/XMI/2.5.1/About-XMI/

https://www.omg.org/spec/XMI/2.5.1/About-XMI/
https://www.omg.org/spec/XMI/2.5.1/About-XMI/
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These cases are converted to valid graph representations by splitting the connected edges into two

segments with an intermediate node:

• For every edge e = (v,w) representing an association with an association class C to which

it is connecting with edge j = (e,C), edges e and j are removed and replaced with an

intermediate node eI , and edges (v,eI), (eI,w) and (eI,C).

• For every edge c = (e, j) representing a user defined constraint between association edges

e = (v,w) and j = (s, t), edges c, e and j are removed and replaced with intermediate nodes

eI and jI , and edges (v,eI), (eI,w), (s, jI), ( jI, t), (eI, jI).

About the definition of which edges are directed. All edges representing inheritance relations

are marked as directed. This way, there is no need for the step of removing directed edges since

inheritance relations don’t cause cycles. The step that marks extra edges as direct to induce a

connected graph proceeds in the same way as the specification.

Another pre-processing step deals with self-associations. Self associations create loop edges,

i.e. edges connecting a node to itself, which aren’t well handled. Since these edges connect twice

to a node, they need to appear twice in graph embeddings. This can lead to many special edge

cases along the algorithm. This also seems to be a case not handled often in literature as well as

the specification, specifically for the algorithms in the planarization and orthogonalization phases.

For the correct handling of these cases, these edges are temporarily removed from the graph and

re-added at a later, intermediate point.

5.2.1.3 Planarization

The planarization step was implemented as specified in Eiglsperger and Kaufmann’s work. As

already mentioned in Section 3.1.3.4, the algorithm in this step creates a mixed upward planar

embedding of the graph. This means that the output of this step is a planar embedding of the

graph.

Usually, it is easy to calculate a planar embedding if a drawing of the graph is already present.

However, the drawing of the graph is only obtained after the entire layout algorithm. Creating an

intermediate layout just for this step would also be inefficient. Luckily, after the calculation of

the maximum planar sub-graph, it is possible to use the obtained information to calculate a planar

embedding for the sub-graph. During this calculation, the nodes are arranged in a line, and the

sub-graph’s edges are marked as being routed through the RIGHT or LEFT of this line. This

information specifies a "virtual drawing" of the sub-graph, through which the planar embedding

can be calculated as so:

1. For each node v:

(a) Let LEFT (v) be the list of nodes to which v is directly connected through LEFT

edges. And RIGHT (v) be the list of nodes to which v is directly connected through

RIGHT edges.
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(b) Sort LEFT (v) by descending order, and RIGHT (V ) by ascending order.

(c) Create l(v) by appending both lists together.

After this, as edges are re-added into the sub-graph, the planar embedding can be further edited

to stay up to date with the graph.

5.2.1.4 Augmenting Graph into S-T Graph

The planarization algorithm requires the calculated maximum planar sub-graph to be an s-t graph.

And, if it isn’t, it needs to be augmented into one.

As already explained in Section 3.1.3.5, the augmentation requires the graph to be upwards

planar, meaning it needs to have an upwards planar embedding. This is easy to guarantee since,

if the undirected edges in the sub-graph are directed according to the calculated ordering in the

planarization step, the derived planar embedding from the previous section is guaranteed to be

upwards planar.

The main concern of the algorithm is the definition of the type of angles made by face switches.

If a planar upward drawing of the graph was available, the angles could be determined trivially

through the slope of the edges. However, as discussed above, an intermediate layout of the graph

isn’t efficient. To be able to deduce the angle, the information from the upwards planar embedding

of the graph can be used to deduce the angles.

Considering a node v and the following sets of edges:

• T R(v): the list of v’s out RIGHT edges sorted by the descending order of the neighbour they

connect to.

• T L(v): the list of v’s out LEFT edges sorted by the ascending order of the neighbour they

connect to.

• BL(v): the list of v’s in LEFT edges sorted by the ascending order of the neighbour they

connect to.

• BR(v): the list of v’s in RIGHT edges sorted by the descending order of the neighbour they

connect to.

• OUT (v): the list resultant from appending T R(v) and T L(v).

• IN(v): the list resultant from appending BL(v) and BR(v).

OUT (v) is a list of v’s out edges sorted in the clockwise order, starting at the left most one.

And, IN(v) is a list of v’s in edges sorted in the clockwise order, starting at the right most one.

Figure 5.3 exemplifies.

We can check if a face switch forms a big or small angle by relying on the IN and OUT lists.

Considering node v is a face source, and e1 and e2 the edges surrounding it in a certain face such

that e1 comes before e2 in the face’s clockwise order. Considering as well, that I(e,v) is the index
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Figure 5.3: Creation of node’s lists.

of edge e in OUT (v). If I(e1) < I(e2), then v is creating a big (B) angle in the face. If not, it is

creating a small (S) angle. The same logic can be applied for face sinks, but in that case the IN(v)

list is considered. Figure 5.4 visualizes the logic.

An implementation detail about this algorithm is that the original specification only works

with bi-connected graphs, meaning all faces are circuits. This means that faces where there are

duplicate edge entries are not allowed. A way to adapt this algorithm to work with any kind of

graph is by inducing non-circuit faces into circuit faces (Fig. 5.5). This allows for the list of

symbols to be created. This is done implicitly during the algorithm by checking each pair of

edges in the face traversal. If the node they share is the source or target node of both, the node is

considered a face switch at that position. In Figure 5.5, node 1 is a switch of face f 1, but only in

one case.

One final point of information that can be extracted from the algorithm is the external face

of the graph. Knowing which face is the external face is important for the directed edge addition

algorithm since it needs to split it into two sides. This is easy to do for upwards embedded planar

graphs. It is a property of these kinds of embeddings that face switches in internal faces have two

more small angles than big ones, and in the external face have two more big angles than small

ones [Bertolazzi et al., 1994]]. So, to find the external face of the graph, one just needs to look for

the face that has two more big angles than small ones in its switches.

Figure 5.4: How big and small angles are determined. Taking advantage of information on up-
wards planar embeddings. Edges pointing in the face traversal direction.
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Figure 5.5: Dealing with non circuit faces in s-t graph augmentation.

5.2.1.5 Orthogonalization

The orthogonalization step in this implementation skips the edge shape pre-calculation and simply

implements the algorithm by Fößmeier and Kaufmann for the computation of an orthogonal rep-

resentation [Fößmeier and Kaufmann, 1996]. This means that the extension to the flow network to

accept graph sketches was also not implemented. The reason for this was simply time constraints.

The only effect this has is the inability to control what the graph will look like. It will still produce

valid orthogonal drawings.

5.2.1.6 Self Associations

After the orthogonalization step, the self-association edges that were removed in the pre-processing

step can now be re-added to the graph. Before they are re-added, the situation of the same edge

appearing twice in a node’s embedding list is avoided by splitting the edge into two sub edges con-

nected by an intermediate node. These edges are placed such that they are rendered in the top left

corner of the node with a rectangular shape (Fig. 5.6). This step is done after the orthogonalization

because the current implementation of the step doesn’t guarantee which shape the edge will have.

So, when inserting the new edges, the orthogonal representations that were calculated will have

to be altered to accommodate the new edges. Another point to note is that the addition of these

two-edge cycles effectively creates a new face in the graph, for which an orthogonal representa-

tion will need to be "manually" calculated. Figure 5.7 exemplifies the process for the addition of

a single self-association.

5.2.1.7 Compaction\Coordinate Assignment

The compaction phase was also implemented without deviation or extension of the work by Ei-

glsperger and Kaufmann [Eiglsperger and Kaufmann, 2002].
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Figure 5.6: Example of how self associations are drawn.

An implementation detail worth mentioning is the definition of the Au and Ar sets for the Du

and Dr constraint graphs. The original paper’s definition assumes that all edges in the graphs are

pointing either right or up. However, in more practical scenarios, this is not always the case,

so a more general algorithm to define these sets is necessary. Thanks to the absolute directions

appended to H during the preparation steps of the algorithm, it is possible to calculate which side

s = {top,bottom, le f t,right} of a node each edge attaches to. Algorithm 7 uses this information

to calculate the sets.

Another implementation detail worth mentioning is the definition of right and left joined edges

in segments, which are then used to define the sub-segments of the segment. The original paper’s

definition of right and left join makes the same assumptions as above. Considering a horizontal

segment of the graph, a more general algorithm to identify left and right joins inside it is the

following:

1. For each node in the segment, filter its clockwise list of edges to only contain edges inside

the segment.

2. For every edge e in the segment:

(a) TO FIND RIGHT JOINS

(b) Find the face in which e is traversed to the right.

(c) In the traversal of the face, pick the node v that follows e.

(d) In v’s filtered clockwise list of edges, pick the edge w that follows e in the anti-

clockwise direction.

Figure 5.7: Example of insertion of split self association into orthogonal representation.
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Algorithm 7: Creation of Au and Ar sets
Data: An orthogonal representation H of the graph.

1 Initialize empty sets Ar and Au;
2 for Every edge e = (v,w) in Eu do

/* Vertical edges are only attached to either the top or
bottom sides. */

3 s← Side of node v edge e is attached to;
4 if s = top then
5 Append edge (hor(v),hor(w)) to Au;
6 else
7 Append edge (hor(w),hor(v)) to Au;
8 end
9 end

10 for Every edge e = (v,w) in Er do
/* Horizontal edges are only attached to either the left or

right sides. */
11 s← Side of node v edge e is attached to;
12 if s = right then
13 Append edge (vert(v),vert(w)) to Ar;
14 else
15 Append edge (vert(w),vert(v)) to Ar;
16 end
17 end
18 return Sets Ar and Au
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(a) Former layout.

(b) New layout.

Figure 5.8: Former and new UML class diagram layouts.

(e) If w is attached to the opposite side of v that e is attached to, v and w are right-joined.

(f) TO FIND LEFT JOINS

(g) Find the face in which e is traversed to the le f t.

(h) In the traversal of the face, pick the node v that follows e.

(i) In v’s filtered clockwise list of edges, pick the edge w that follows e in the anti-

clockwise direction.

(j) If w is attached to the opposite side of v that e is attached to, v and w are left-joined.

To find left and right joins in vertical segments, the same algorithm can be run. However,

instead of looking for the faces where edges are traversed to the right or left, the searched faces

are the ones where edges are traversed up or down.

5.2.1.8 Results

The results of the implementation seem satisfactory. The former layout solution worked by picking

the class with the highest amount of relations to other classes, placing in the center. After that, the

algorithm would try to divide the area around the center class for the other classes around it. The

final result was a radial like layout (Fig. 5.8a) [Martins, 2021].

The new implementation follows the orthogonal aesthetic, creating drawings that resemble the

more traditional UML class diagram look (Fig. 5.8b).

5.2.2 Radial Layout

This section covers further work on a feature of CleanGraph initially implemented in previous

work. The radial layout [Martins, 2021]. This radial layout is part of a feature of the former global
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Figure 5.9: Example of former Radial UML layout.

layout that allows the user to select a different center class to create the drawing around (Fig. 5.9).

Now, this feature is updated with a new implementation and some extra diagram styling features.

After being presented with the fully drawn graph, the user is then able to select a class in the

diagram. Selecting a class will create a temporary radial layout that displays the selected class

in the center, with the remaining classes arranged around it. The layout takes inspiration from

MoireGraphs [Jankun-Kelly and Ma, 2003]. Classes are arranged in layers around the center.

The layer each class belongs to is based on a spanning tree. The spanning tree is calculated

using a BFS starting from the selected class. The layers of each node are calculated based on the

number of hops along the tree the node is far from the center. From this calculation a data structure

can also be created: considering a node v ∈ V of the graph G, l(v) represents the layer of node

v, and C(v) represents the children of v, i.e. the nodes in layer l(v)+ 1 that are connected to v

through an edge of the spanning tree.

The coordinates of the nodes in the radial layout are determined with polar coordinates (d,θ),

which are calculated by the radial layout algorithm. To be able to determine these coordinates,

three things need to be calculated:

1. The node radius of each layer.

2. The radius of the layer.

3. The angular span of each node.

The node radius of each layer represents how much space is occupied by the nodes within it.

It must be big enough to fit any of its nodes without any "spill". The MoireGraphs solution sets

an initial size for the first layer, making subsequent ones smaller by a certain fraction. This has in

mind that all nodes have the same size, and its goal is to make nodes appear smaller as they get

farther away from the center, so they are scaled down to fit the layer anyway. In the case of UML
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classes, it is not desirable to have the nodes scale down, adding the fact that Cytoscape.js doesn’t

provide facilities to do that easily. The node radius of each layer is determined based on the size

of the nodes within it. Given a layer li, its node radius rni is equal to the length of the diagonal of

the node with the biggest diagonal in li.

The radius of each layer represents how far away the layer is from the center. The radius of a

layer li depends on the radius of the previous layer plus its node radius. Given layers l0, l1, . . . , lk
with node radii rn0 ,rn1 , . . . ,rnk , the radii rl0 ,rl1 , . . . ,rlk of the layers are calculated as such:

rl0 = 0

rl1 = rn0 + rn1 +P

rli = rli−1 + rni−1 + rni +P, i ∈ [2,k]

P is a padding constant that can be adjusted to add more spacing between layers. The radius

of the layer a node is inside maps directly to the d portion of its polar coordinate.

The angular spread of a node relates to how much angular space it takes up in a radial layout.

A node’s angular spread depends on the angular spread of its children, the angular spread of its

siblings, and the angular spread of its parent. First, a bottom-up pass is done, starting at the leaves

of the tree and moving up towards the root node. A node’s angular spread is only calculated

when the angular spread of all its children is calculated. If a node v is a leaf of the tree, its

angular spread α(v) is calculated with α(v) = 2×arctan(rni/rli), with i = l(v). If v is not a leaf,

α(v) = ∑w∈C(v) α(w). After this pass, all nodes will have an angular spread calculated, even the

root node nr. However, it is not guaranteed that sum of the angular spreads of the children of

the root node nr totals at 2π radians. To address this, a second, top-down pass is performed to

readjust the angular spreads of nodes. The angular spread of nr is forcibly set to 2π , then its

children’s angular spreads are re-scaled to fit the new angular spread. This might result in them

becoming smaller or larger. However, their proportions are kept. This re-scaling is then performed

recursively down the list. Taking a node n with new radial spread α(n), the sum of its children’s

current angular spreads is calculated ChildSum = ∑w∈C(v) α(w), for each children ci ∈ C(v) its

new angular spread is equal to (α(ci)/ChildSum)×α(v). The angular spread of all nodes, except

for nr, is limited to at most π radians. This avoids cases of root nodes with only one child then

being surrounded by their grandchildren, etc.

The final placement of the nodes is based on polar coordinates. The angle portion is based on

the angular spread. Nodes are place in the center of their assigned region. The radius portion of

the coordinates is based on the radius of the layer where the node is placed. Algorithm 8 specifies

the process.

Edges in the radial layout have different styles depending on whether they are part of the

spanning tree or not. All edges which are not part of the spanning tree are grayed out in order

to highlight the ones that are part of it. This helps with identifying the relation path between the

center class and the other ones. The nodes representing classes in the diagram are also styled
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Algorithm 8: placeNodes(), Radial Coordinate Assignment
Data: Node v
Data: Starting angle θ

Data: Center position (x,y)
1 angle← θ +(α(v)/2);
/* r(l(v)) = radius of the layer in which v is placed */

2 x(v)← cos(angle)× r(l(v))+ x;
3 y(v)← sin(angle)× r(l(v))+ y;
4 currentAngle← θ ;
5 for w ∈C(v) do
6 placeNodes(w,currentAngle,centerPos);
7 currentAngle← currentAngle+α(w);
8 end

according to the layers they are on. The further away they are from the center class, the more

transparent they become. This is made in the hope of helping highlight the degree of importance

each class has in relation to the class in the center. Figure 5.10 shows an example of the new radial

layout on the same graph as Figure 5.9 with the same class at the center.

After the radial layout is complete, if the user selects another class, the layout is recomputed

with that class at the center. The nodes’ positions are linearly interpolated from their old positions

to the new ones over half a second. This interpolation also happens when going from the global

layout to the radial one. The styles of the components in the graph, i.e. edge color and node

opacity, also get recomputed and transitioned smoothly.
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Figure 5.10: Example of new Radial UML layout.



Chapter 6

Discussion

This chapter will cover the results of the implementation process and compare them to the previous

solutions. Comparisons will be made between the old and new solutions. Some possible pros and

cons of each solution will be presented. Finishing off with possible paths to take to improve the

layouts or implement more features in them.

6.1 Family Trees

The conversion of marriages from edge relationships to nodes increases the node count of the

graph considerably. This increase in nodes also increases the number of layers they are distributed

into. This has the effect of increasing the height of the graph. Figure 6.1 shows a comparison of

both algorithms’ hierarchical style layouts of the same tree.

The new marriage nodes can help provide clarity on identifying families due to the bundles of

edges forming around them. It can also be a better option than the old layout when people have

more than two marriages. The switch from edge to node also helps in extracting more information

from the graph. Previously, all of the marriage information was displayed in a tooltip that would

appear when the marriage edge was hovered. Now, since marriages are nodes, they are easier

to target with a mouse or tap on a touchscreen, and their information is now displayed in the

auxiliary bar. Marriages are also easier to distinguish from divorces. When using edges, they were

differentiated using the color of the edge. Marriages nodes are differentiated from divorce nodes

through their shape with a different icon.

CleanGraph has a feature that modifies the layout to use the vertical axis to represent the birth

year of people. In this layout, the people’s ages are better represented than their generations.

Since this layout is created by modifying the initial one, the new layout can also use this same

secondary layout. The only necessary modification was to provide a value for the marriage nodes

to be interpolated, i.e. the date of marriage. In this aspect, the old layout seems to fair better with

nicer drawings. Figure 6.2 shows a comparison. A possible reason seems to be that the addition

of marriage nodes makes the graph more cluttered. Since children tend to be born soon after

marriages, the overlap between both nodes might happen (Fig. 6.3a). Another situation that might

79



Discussion 80

(a) Old layout.

(b) New layout.

Figure 6.1: Comparison of the old and new family tree layouts.

occur is nodes being placed in such a way that their order according to their layers isn’t respected

(Fig. 6.3b). The old layout also rearranges siblings so that the "by age" layout draws siblings

forming a concave shape. Future work might look into how nodes can be arranged to create nicer

drawings when arranging nodes by date, e.g. properly center marriage nodes between spouses

when there are no associated children.

As seen in the implementation chapter, the new layout algorithm is very general purpose.

Some optimizations were done due to knowing the nature of the graphs beforehand, i.e. the lay-

ering step, which didn’t require a "DAG checking step". However, the algorithm could be further

specialized and optimized to fit the semantics of family trees, especially the node reordering step.

The implemented solution currently tries to move single nodes around to optimize edge crossings.

However, in family tree semantics, it might be beneficial to keep the integrity of families in the

drawing by keeping siblings clustered. In this way, the algorithm could try to reorder whole clus-

ters instead of single nodes, which might optimize its running time. Works like the one by Mařík

[Mařík, 2016] which creates node orderings that keep siblings clustered could be integrated into

the algorithm.

Since this algorithm is implemented in an interactive environment, it needs to run quickly to

not keep users waiting for a layout. Due to this, many heuristics and steps in the original work

[Gansner et al., 1993] were not implemented as they would increase the computational intensity of

the algorithm. For example, the node ordering phase of the implemented solution skips a local op-

timization step that switches neighboring nodes’ positions. And the x-coordinate assignment has
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(a) Old "by age" layout.

(b) New "by age" layout.

Figure 6.2: Comparison of the old and new layouts in the "by year" variant.

(a) Child overlapping marriage node.

(b) Nodes appearing out of layer order.

Figure 6.3: "By year" layout issues.
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File People count Marriage count Node count in old Node count in new
shakespeare 31 10 31 41

bach 33 8 33 41
elisabeth 40 8 40 48

kennedy family 70 19 70 89
lord of the rings 108 31 108 139

Table 6.1: Family Tree GEDCOM test files information.

many additional heuristics that improve the quality of the drawings which were not implemented.

Although they can improve the quality of the results, they are complicated to implement, which

would not fit within the time constraints of the dissertation, and fine-tuning would be complicated

as the heuristics start to interfere with each other [Gansner et al., 1993]. Gansner’s work also

presents an alternate method to calculate the coordinates by solving the layering problem in an

auxiliary graph [Gansner et al., 1993].

In the context of the coordinate assignment, different methods could also be explored to im-

prove the initial drawing achieved by the initial run of the implemented algorithm. Future work

can look into the use of force-directed algorithms to optimize the empty space between nodes

on the same layers. Instead of moving freely in space, nodes can be locked to their layer’s y-

coordinate and let a force-directed algorithm improve their x-coordinate. The forces applied to

nodes could also be modeled in a way that follows family tree semantics, e.g. a person node is re-

pelled less by a sibling than by a person from another family. Another possible change to consider

is the positioning of marriage nodes. Since marriage nodes and people nodes are placed in distinct

layers, the layers with marriage nodes could be placed closer to the parents or the children. This

could remedy the increase in graph height to a certain degree. Whether the marriage nodes are

positioned closer to the parents or the children would need to be researched.

6.1.1 Performance Comparison

Both the old and new layout algorithms were benchmarked to measure their running times on a set

of pre-existing GEDCOM files. Table 6.1 contains details about each file, along with the resultant

node counts in each of the graph representations used by each of the layout algorithms. Note that

the new layout algorithm has a higher node count since it creates a node for each marriage.

Each file was run three times in each algorithm, and an average of the running time in millisec-

onds was taken. Figure 6.4 shows the results. From these, it can be observed that the new layout

algorithm is slower than the former one. It is not possible, however, to determine if this deficit in

performance is proportional, as the differences in running time seem to be constant. More testing

with increasingly larger files is needed to determine if this deficit increases with graph size or if it

stays the same.
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Figure 6.4: Results of the layout algorithm benchmarks.

6.2 UML Class Diagrams

The new algorithm successfully creates drawings of UML class diagrams using the available test

data. It improves on the old algorithm by creating a drawing that looks more like a traditional

UML Class diagram, with its orthogonal look. The edge routing also prevents cases of edges

overlapping nodes, something which often happened in the old layout (e.g. Fig. 6.5). In some

cases, edges would overlap each other, giving the impression of a single edge. This is due to the

old algorithm being a simpler implementation.

However, the simpler implementation also allowed the algorithm to be more feature complete.

The current solution still has some limitations compared with the old one. A situation not handled

by the new algorithm is multiple/parallel edges, i.e. groups of edges that connect the same two

nodes, as some intermediate stages in the algorithm do not support these situations. The old

algorithm handled these cases using Cytoscape.js’ renderer, which detects when two edges are

parallel and draws them with a slight curve to differentiate them. This issue is better addressed in

a later section.

The orthogonalization step can also be extended to take a graph sketch as input, and creates

an orthogonal representation that is close to the input sketch [Eiglsperger et al., 2004] [Brandes

et al., 2002]. This means the algorithm can compute hints for angles between edges and their

(a) Initial layout. (b) Some nodes slightly moved.

Figure 6.5: Example of edge and node overlap in the former layout.
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(a) Desired result.

(b) Current possible results.

Figure 6.6: Desired result of drawing association classes and defined constraints.

shapes. This feature is very useful because it allows the enforcing of certain characteristics in the

final drawing, e.g. certain edges can be forced to be completely straight, and directed edges can

also be forced to point upwards. It will also be helpful in dealing with association classes and

user-defined constraints. These appear as edges connecting other edges and, in regular diagrams,

usually "stem off" perpendicularly from the association edges (Fig. 6.6). Currently, the algorithm

doesn’t ensure this, usually creating 90° bends and the connection points due to there being a

node present. However, with the mentioned extension, it could be possible to enforce how these

connection points look.

6.2.1 Radial Layout

The update to the radial layout provides satisfactory results. However, it can still be further im-

proved.

Although the expansion tree edges are highlighted, and others are grayed out, some degree of

clutter might still happen due to their crossings. Some reordering of nodes within each layer can

be done to reduce the number of edges crossing each other or even reduce the length of the edges,

effectively reducing the amount of "chaos" in the layout. A possible local optimization can be

done between siblings. If there are edges between siblings in the layout, these can be reordered in

a way that those edges don’t overlap with other siblings. This has the result of clearing making it

so these edges aren’t obfuscated.

Like in MoireGraphs, there is a possibility to alter an offset to the angular portion of the polar

coordinates of all nodes that causes the whole layout to rotate around the root node [Jankun-Kelly

and Ma, 2003]. This can be a useful feature in the context of UML class diagrams to apply some

orientation to certain kinds of relations. As an example, inheritance relations are usually drawn so

that the super-class is located above its sub-classes. The children of the root node can be ordered
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in such a way that after applying an angular offset to the layout, all of the root class’s sub-classes

are drawn below it.

As mentioned in the implementation chapter, when transitioning from one root node to an-

other, the nodes’ positions are linearly interpolated over a certain duration. This type of transition

frequently features nodes cutting across the center of the layout to reach their destinations. And

since all nodes transition to their new positions at the same time, the animation can be quite

cluttered. A different approach for this can be taken: instead of linearly interpolating the Carte-

sian coordinates of the nodes, interpolate the polar coordinates of the nodes, like what is done in

MoireGraphs [Jankun-Kelly and Ma, 2003]. This kind of animation will display the layout going

through a "rotation" where the nodes assume their new positions. The path the nodes take to get

to their new position is a circular one, which fits the radial aesthetic of the graph. There will still

be nodes overlapping each other during the transition, but the effect should be less pronounced.

The biggest challenge for this would be that node animations in Cytoscape.js are done through

an interface that only supports linear interpolation. So an implementation from scratch would be

necessary, or an extension could be developed for Cytoscape.js.

Finally, there is a concern about using this layout in graphs with a higher number of nodes.

Although layers are sized to fit the dimensions of their nodes, they are not sized to fit all of their

nodes. This might result in node overlap when a layer has too many nodes or when a parent doesn’t

have enough angular spread for its children. The only way for a layer to have more space for its

nodes is by increasing its radius, effectively decreasing the angular spread each node occupies in

the layer.

6.2.2 Special Case Implementation Ideas

6.2.2.1 Multiple/Parallel Edges

A possible integration of support for multiple/parallel edges is by bundling them into a bundle

edge and unpacking them at a point where they are no longer an issue. A precaution to take is if

one of the edges is directed. In that case, the bundle edge should be directed as well and pointing

in the direction of that edge.

Where the bundle edge should be un-bundled is the main point of investigation. Some ideas

are:

1. During the planarization phase after the s-t graph induction but before the directed edge

addition.

2. Right after the planarization.

3. After orthogonalization.

With every option, editing of embeddings and the creation of new faces will be necessary.

Option 1) is risky since the main authors of the algorithms in that phase assume the non-existence

of parallel edges [Bertolazzi et al., 1994] [Eiglsperger and Kaufmann, 2001], the reasons are not
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Figure 6.7: Example of the un-bundling of a bundle edge with crossings.

specified. Option 2) is past the planarization phase, and the specifications of the algorithms past

this point don’t make assumptions about parallel edges. A downside of this option is that after

planarization, the bundle edge might have been crossed by other edges and split with crossing

nodes. To un-bundle the edge, these crossing nodes will also need to be multiplied and linked in

the correct order (Fig. 6.7). It will also affect the orthogonalization due to the fact that parallel

edges usually have the same shape/path. This fact would need to be enforced. Option 3) still has to

deal with the multiplication of crossing nodes. However, ensuring all edges have the same shape

is easier since they just need to inherit the shape of the bundle edge.

6.3 Cytoscape.js Technical Limitations

As mentioned previously, CleanGraph is built on top of Cytoscape.js, which comes pre-packaged

with a graph theory model along with a renderer to display graphs. This cuts down on devel-

opment time as most basic functionality for handling and displaying graphs is already provided.

However, some particularities of Cytoscape.js and how CleanGraph works sparked some issues in

development.

An example of such issues relates to the UML radial layout and the switching between it and

the global layout. In the UML global layout, edges usually have bends within them. These bends

are represented by intermediate nodes. This means that, internally, edges with bends are replaced

with segment edges connected by the intermediate nodes. On the other hand, in the radial layout,

edges are straight as the overlap between them isn’t a concern. This means that when switching

from the global layout to the radial layout, the segment edges needs to be removed, and the original

edges need to be restored. In Cytoscape.js, when an edge is removed, its object isn’t deleted from

memory. This is so it can be easily restored back into the graph without having to be recreated.

So, all that needs to be done in CleanGraph is to keep track of which segment edges and original

edges exist in a collection and restore/remove the appropriate ones at the correct time. The problem

starts when dealing with association classes and predefined constraints. These are represented as

edges between other edges. However, Cytoscape.js only supports these cases through the use of

an extension. This extension creates an auxiliary node at the midpoint of every edge, which allows

for edges to be visually connected. For this to happen, the edges involved in these cases must

be created through the extension. When one of these edges is deleted, the respective auxiliary
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node is removed as well. However, when it is restored, the auxiliary node isn’t. This causes

the extension to crash to a data inconsistency error which rendered the application unusable. To

circumvent this, original edges also have to be differentiated between normal ones and ones that

were created by the extension. The ones created by the extension were restored by creating a new

edge that is identical to the original and forgetting the original one. This differentiation increased

the complexity of the implementation of the functionalities and made the application code harder

to read, effectively slowing down the implementation process as there were some complex states

that needed to be tracked. The solution ended up not being elegant and having something similar

to a memory leak. Since deleted edges remain in memory, when switching from the global to the

radial layout, the edges created through the extension will be permanently "lost" in memory. If

there are multiple switches between the global and radial layouts in a single session, the "restored"

edges will be deleted as well, taking up more and more memory until the user refreshes the page.
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Conclusions and Future Work

CleanGraph is an InfoVis system platform developed to address shortcomings in both Family

Trees and UML class diagram visualization tools. As a standout, it sports full graph representa-

tion, something few other solutions do for Family Trees, and interaction features that provide a

productivity boost in certain tasks. However, since the work on the tool was spread out through

many fields, the implemented layout algorithms were not optimal, and the interaction with the

graphs was quite static.

The purpose of this work is to improve both the layout algorithms and interaction features of

CleanGraph. The layout algorithms are expected to improve the efficiency in the use of space

while keeping the visualizations readable. The interaction with graphs is expected to rely more on

the use of dynamic layouts and animated graph transitions.

The improvement of such aspects relied on an investigation into the state of the art for graph

layout and interaction, covering generic graphs, Family Trees, and UML class diagrams. This

investigation allowed to gain knowledge about the most popular solutions for graph layout and

interaction along with situations in which they are better suited, along with the caveats of using

each.

For Family Tree layout, many solutions rely on the visualization of portions of the genealogical

graph at a time. This is due to wanting to keep a clean layout while respecting some semantic rules.

Although, there is also work on full genealogical graph drawings, which seem like a better fit for

CleanGraph.

For UML class diagram layout, full graph representation is strictly necessary, and the studied

state of the art reflects that. Hierarchical approaches to drawing class diagrams seem like a popular

approach, although Topology-Shape-Metrics approaches seem like a better overall solution for

these types of graphs.

On the interaction side, most studied work relies on partial graph representation or graph

distortions and providing features to manipulate these visualizations. Of these features, sub-tree

collapsing and expanding and root node switching paired up with animated transitions seem like

the most interesting. Most of the interactive features for full graph representation are already
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implemented in CleanGraph, so improvements to the tool’s interaction features will most likely

rely on the use of secondary layouts.

After studying the different solutions, decisions were made on which layout algorithms to

implement for each of the graph types. For Family Trees, a hierarchical style general purpose lay-

out algorithm was chosen. This meant needing to adapt the graph representation to eliminate the

existence of edges between other edges. For UML class diagrams, a Topology-Shape-Metrics al-

gorithm was chosen for its ability to generate orthogonal style drawings. The graph representation

for UML class diagrams was also adapted for the same reasons as in Family Trees.

The results of the implementation of the new layout for Family Trees show that the new repre-

sentation has possible negative effects on the layout. However, it also presents some advantages in

the visualization of information. The implemented solution also doesn’t produce very good results

when using the "by year" layout, with the former implementation having much nicer results.

The new layout algorithm for UML class diagrams provides an improvement over the former

one. Edge and node overlap doesn’t happen, and the drawings have an orthogonal style which is

much closer to traditional UML class diagram drawings. However, it still has some limitations by

not being able to handle some special cases, which the former solution was able to handle.

In light of the limitations of the implemented solutions, the following should be considered for

future work:

• Family Trees:

– Specialize the node ordering phase of the Family Trees layout algorithm. Currently,

the implementation is a general purpose one and can be specialized to fit better fit

Family Tree semantics.

– Improve the Family Trees coordinates assignment phase. Especially in the "by year"

layout, coordinate assignment could be done with this feature in mind to prevent node

overlaps. Other methods for coordinate assignment could also be used, like force

directed ones which adjust the position of nodes along their layer.

• UML Class Diagrams:

– Implement support for self associations. These are a common occurrence in UML

class diagrams, so it is critical that they are supported by the algorithm.

– Implement support for multiple associations between the same two classes. This is the

same case as self associations.

For the future work to be done in UML class diagrams, the implementation of the extension

to the orthogonalization phase to take in a graph sketch can greatly help in the implementation

of both features. The implementation of the orthogonalization extension will also help enforce

certain characteristics in the drawing and better display UML class diagrams semantics.

The UML class diagrams radial layout can still be further developed to achieve: cleaner draw-

ings through node reordering, better relation representation through angular offsets to the layout,

and a cleaner navigation through the change in the node transition style.
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Finally, the new layout algorithm and interaction features have not been tested for usability.

Analyzing how users interact with the tool to perform certain tasks helps to verify whether the

work that was done helped improve the tool as a whole. In UML class diagrams, due to limitations

on the XMI parser that generates the graph information for the layouts, it was not possible to do

these tests. The efforts taken to try to fix these limitations caused time constraints that ended up

making it unfeasible to test the other features.
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