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On d-regular Schematization of Embedded Paths

Andreas Gemsa1, Martin Nöllenburg?1,2, Thomas Pajor1, and Ignaz Rutter1

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Department of Computer Science, University of California, Irvine, USA

Abstract. In the d-regular path schematization problem we are given an embedded path P
(e.g., a route in a road network) and an integer d. The goal is to find a d-schematized embedding
of P in which the orthogonal order of all vertices in the input is preserved and in which every
edge has a slope that is an integer multiple of 90◦/d. We show that deciding whether a path can
be d-schematized is NP-hard for any integer d. We further model the problem as a mixed-integer
linear program. An experimental evaluation indicates that this approach generates reasonable
route sketches for real-world data.

1 Introduction

Angular or C-oriented schematizations of graphs refer to a class of graph drawings, in which
the admissible edge directions are limited to a given set C of (usually evenly spaced) slopes.
This includes the well-known class of orthogonal drawings and extends more generally to
k-linear drawings, e.g., octilinear metro maps. Applications of schematic drawings can be
found in various domains such as cartography, VLSI layout, and information visualization.

In many schematization scenarios the input is not just a graph but a graph with an
initial drawing that has to be schematized according to the given set of slopes. This is the
case, e.g., in cartography, where the geographic positions of network vertices and edges are
given [6], in sketch-based graph drawing, where a sketch of a drawing is given and the task is
to improve or schematize that sketch [3], or in dynamic graph drawing, where each drawing
in a sequence of drawings must be similar to its predecessor [5]. For such a redrawing task it
is crucial that the mental map [13] of the user is preserved, i.e., the output drawing must be
as similar as possible to the input. Misue et al. [13] suggested preserving the orthogonal order
of the input drawing as a simple criterion for maintaining a set of basic spatial properties
of the input, namely the relative above/below and left/right positions of all pairs of input
nodes. The orthogonal order has been used successfully as a means for maintaining the mental
map [4,7, 9, 11].

The motivation behind the work presented here is the visualization of routes in road
networks as sketches for driving directions. An important property of a route sketch is that it
focuses on road changes and important landmarks rather than exact geography and distances.
Typically the start and destination lie in populated areas that are locally reached via a
sequence of relatively short road segments. On the other hand, the majority of the route
typically consists of long highway segments with no or only few road changes. This property
makes it difficult to display driving directions for the whole route in a single traditional map
since some areas require much smaller scales than others. The strength of route sketches for
this purpose is that they are not drawn to scale but rather use space proportionally to the
route complexity.

? Supported by grant NO 899/1-1 of the German Research Foundation (DFG)
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Related Work. Geometrically, we can consider a route to be an embedded path in the plane.
The simplification of paths (or polylines) in cartography is well studied and the classic line
simplification algorithm by Douglas and Peucker [8] is one of the most popular methods.
Two more recent algorithms were proposed for C-oriented line simplification [12, 14]. These
line simplification algorithms, however, are not well suited for drawing route sketches since
they keep the positions of the input points fixed or within small local regions around the
input points and thus edge lengths are more or less fixed. On the other hand, Agrawala
and Stolte [1] presented a system called LineDrive that uses heuristic methods based on
simulated annealing to draw route sketches. Their method allows distortion of edge lengths
and angles. It does not, however, restrict the set of edge directions and does not give hard
quality guarantees for the mental map such as the preservation of the orthogonal order.

A graph drawing problem that has similar constraints as drawing route sketches is the
metro-map layout problem, in which an embedded graph is to be redrawn octilinearly. The
problem is known to be NP-hard [15] but it can be solved successfully in practice by mixed-
integer linear programming [16]. The existing methods covered in a survey by Wolff [17] do
aim to keep the mental map of the input but no strict criterion like the orthogonal order is
applied. Brandes and Pampel [4] studied the path schematization problem in the presence of
orthogonal order constraints in order to preserve the mental map. They showed that deciding
whether a rectilinear schematization exists that preserves the orthogonal order of the input
path is NP-hard. They also showed that schematizing a path using arbitrarily oriented unit-
length edges is NP-hard. Delling et al. [7] gave an efficient algorithm to compute C-oriented
drawings of monotone paths that preserve the orthogonal order and have minimum schemati-
zation cost. The schematization cost counts the number of edges that are not drawn with their
closest C-oriented direction. The authors also sketch a heuristic approach for schematizing
non-monotone paths.

Contributions. In this paper we close the complexity gap of the path schematization problem
that remained open between the hardness result of Brandes and Pampel [4] for rectilinear
paths and the efficient algorithm of Delling et al. [7] for monotone C-oriented paths. We prove
that deciding whether a C-oriented orthogonal-order preserving drawing of an embedded input
path exists is NP-hard, even if the path is simple. This is true for every d-regular set C of
slopes that have angles that are integer multiples of 90◦/d for any integer d. The case d = 1
is covered by Brandes and Pampel [4] but their proof relies on the absence of diagonal edges
and hence does not extend to other values of d. We show the hardness in the octilinear case
d = 2 in Section 3 and subsequently, in Section 4, how this result extends to the general d-
regular case for d > 2. We finally design and evaluate a mixed integer-linear program (MIP)
for solving the d-regular path schematization problem in Section 5. Our experimental results
show that routes in practice usually consist of only a small number of relevant road segments
and that our MIP is indeed able to quickly generate reasonable sketches for those routes.

2 Preliminaries

A plane embedding of a graph G = (V,E) is a mapping π : G→ R2 that maps every vertex
v ∈ V to a distinct point π(v) = (xπ(v), yπ(v)) and every edge e = uv ∈ E to the line segment
π(e) = π(u)π(v) such that no two edges e1, e2 cross in π except at common endpoints. For
simplicity we also use the terms vertex and edge to refer to their images under an embedding.
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Fig. 1. A Monotone Planar 3-Sat instance with four variables and three clauses.

We measure the slope of an edge uv as the counterclockwise angle formed between the
horizontal line through π(u) and the line segment π(uv). For a set of angles C we say that a
drawing is C-oriented if the slope of every edge e ∈ E is contained in C. A set of slopes C is
called d-regular for an integer d if C = Cd = {i · 90◦/d | i ∈ Z}.

Let π and ρ be two embeddings of the same graph G. We say that ρ respects the orthogonal
order [4] of π if for any two vertices u and v ∈ V it holds that xρ(u) ≤ xρ(v) if xπ(u) ≤ xπ(v)
and yρ(u) ≤ yρ(v) if yπ(u) ≤ yπ(v). In other words, the orthogonal order defines the relative
above-below and left-right positions of any two vertices.

Let (G, π) be a graph G with a plane input embedding π. A d-regular schematization (or
d-schematization) of (G, π) is a plane embedding ρ that is Cd-oriented, that preserves the
orthogonal order of π and where no two vertices are embedded at the same coordinates. We
also call ρ valid if it is a d-schematization of (G, π).

3 Hardness of 2-regular Path Schematization

In this section we show that the problem of deciding whether there is a 2-schematization for
a given embedded graph (G, π) is NP-hard, even if G is a simple path. In the latter case
we denote the problem as the (d-regular) Path Schematization Problem (PSP). We fix
d = 2. To prove that 2-regular PSP is NP-hard we first show hardness of the closely related
2-regular Union of Paths Schematization Problem (UPSP), where (G, π) is a set P
of k embedded disjoint paths P = {P1, . . . , Pk}.

We show that 2-regular UPSP is NP-hard by a reduction from Monotone Planar 3-
Sat, which is known to be NP-hard [2]. Monotone Planar 3-Sat is a special variant of
Planar 3-Sat where each clause either contains exactly three positive literals or exactly
three negative literals and additionally, the variable-clause graph admits a planar drawing
such that all variables are on the x-axis, the positive clauses are embedded below the x-axis
and the negative clauses above the x-axis. An example instance of Monotone Planar 3-
Sat is depicted in Fig. 1. In a second step, we show how to augment the set of paths P to
form a single simple path P that has the same properties as P and thus proves that PSP is
NP-hard.

In the following, we assume that ϕ is a given Monotone Planar 3-Sat instance with
variables X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}.

3.1 Hardness of the Union of Paths Schematization Problem

In the following we first introduce the different types of required gadgets and then show how
to combine them in order to prove the hardness of UPSP.
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Fig. 2. Border gadget B that is rigid and regular.
The horizontal component is denoted by Bh and the
vertical one by Bv.

Fig. 3. The switch s is linked with edge e; (a) shows
the input embedding, in (b) e is pulled up and in (c)
it is pulled down.

Border Gadget. For all our gadgets we need to control the placement of vertices on discrete
positions. Thus our first gadget is a path whose embedding is unique up to scaling and
translation. This path will induce a grid on which we subsequently place the remaining
gadgets.

Let ∆x(u, v) be the x-distance between the two vertices u and v. Likewise, let ∆y(u, v)
be the y-distance between u and v. We call a simple path P with embedding π rigid if
a 2-schematization of (P, π) is unique up to scaling and translations. Further, we call an
embedding π of P regular if there exists a length ` > 0 such that for any two vertices u, v
of P it holds that ∆x(u, v) = zx · ` and ∆y(u, v) = zy · ` for some zx, zy ∈ Z. Thus in a
regular embedding of P all vertices are embedded on a grid whose cells have side length `.
For our border gadget we construct a simple path B of appropriate length with embedding π
that is both rigid and regular. Hence, π is essentially the unique 2-schematization of (B, π),
and after rescaling we can assume that all points of B lie on an integer grid. The border
gadget consists of a horizontal component Bh and a vertical component Bv which share a
common starting vertex v1 = v′1, see Fig. 2. The component Bh alternates between a 45◦

edge to the upper right and a vertical edge downwards. The vertices are placed such that
their y-coordinates alternate and hence all odd, respectively all even, vertices have the same
y-coordinate. The vertical component consists of a copy of the horizontal component rotated
by 90◦ in clockwise direction around v1. To form B, we connect Bv and Bh by identifying
their starting points v1 and v′1.

Lemma 1. The border gadget B with its given embedding π is rigid and regular.

Proof. First note that in Bh due to the orthogonal order all vertices vi with i odd and all
vertices vi with i even have the same y-coordinates, respectively, in any valid schematization.
Hence ∆y(vi, vi+1) is the same for all i. We show that vi and vi+1 for i odd, also have the
same x-distance ∆x(vi, vi+1) = ∆y(vi, vi+1).

Since the edge v1v2 connects two vertices with different y-coordinates and since v2v3 must
be embedded vertically, v1v2 must be embedded with an angle of 45◦. And hence we have
∆x(v1, v2) = ∆y(v1, v2). The same argument holds for all edges vivi+1 with i odd and hence
Bh is both regular and rigid.

Since the vertical border gadget Bv is a copy of Bh it is also regular and rigid. Moreover,
we have that ∆x(v′1, v

′
2) = ∆x(v1, v2), i.e., the distances between vertices of Bv that lie on
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the same horizontal or vertical lines are the same as for Bh. Hence the border gadget B is
regular. ut

In the following we define the length of a grid cell induced by B as 1 so that we obtain
an integer grid. We choose B long enough to guarantee that any vertex of our subsequent
gadgets lies vertically and horizontally between two pairs of vertices in B.

The grid in combination with the orthogonal order gives us the following properties:

1. If we place a vertex v with two integer coordinates, i.e., on a grid point, its position in
any valid embedding is unique;

2. if we place a vertex v with one integer and one non-integer coordinate, i.e., on a grid edge,
its position in any valid embedding is on that grid edge;

3. if we place a vertex v with two non-integer coordinates, i.e., in the interior of a grid cell,
then its position in any valid embedding is in that grid cell (including its boundary).

Basic Building Blocks. We will frequently make use of two basic building blocks that rely on
the above grid properties.

The first one is a switch, i.e., an edge that has exactly two valid embeddings. Let s = uv
be an edge within a single grid cell where u is placed on a grid point and v on a non-incident
grid edge. We call u the fixed and v the free vertex of s. Assume that u is in the lower left
corner and v on the right edge of the grid cell. Then in any valid d-schematization s is either
horizontal or diagonal, see Fig. 3 for an example.

The second basic concept is linking of vertices. We can synchronize two vertices in different
and even non-adjacent cells of the grid by assigning them the same x- or y-coordinate. We call
two vertices u and v linked, if in π either xπ(u) = xπ(v) or yπ(u) = yp(v). Then the orthogonal
order requires that u and v remain linked in any valid embedding. This concept allows us
to transmit information on local embedding choices over distances. Two edges ei = uu′ and
ej = vv′ are linked if there is a vertex of ei that is linked to a vertex of ej . We use linking
of edges in combination with switches. Namely, we link a switch s via its free vertex with
another edge e, as illustrated in Fig. 3. Then the choice of the embedding of s determines one
of the two coordinates of the linked vertices in e. In the case depicted in Fig. 3 the switch
s determines the y-coordinate of both vertices of e; we say that s pulls e up (Fig. 3(b)) or
down (Fig. 3(c)). Such a switch is called a vertical switch. Analogously, edges can be pulled
to the left and to the right by a horizontal switch.

Variable Gadgets. The variable gadget for a variable x is a simple structure consisting of a
horizontal switch and a number of linked connector vertices on consecutive grid lines below
the switch, one for each appearance of x or ¬x in a clause of ϕ. We denote the number of
appearances as t(x). All connector vertices share the same x-coordinate in π. Each one will
be connected to a clause with a diagonal connector edge. A connector edge spans the same
number of grid cells horizontally and vertically and hence can only be embedded at a slope of
45◦. In order to have the correct slope, the positions of both endpoints within their grid cell
must be the same. The upper vertices will connect to the gadgets of the negative clauses and
the lower vertices to the gadgets of the positive clauses. The variable gadget has two states,
one in which the switch pulls all vertices to the left (defined as true), and one in which it
pulls them to the right (defined as false). Figure 4 shows an example. A variable gadget gx
for a variable x takes up one grid cell in width and t(x) + 1 grid cells in height.
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(a) (b) (c)

Fig. 4. (a) The input embedding of a variable gadget with three connector vertices, (b) the state true, and
(c) the state false.

Clause Gadgets. The general idea behind the clause gadget is to create a set of paths whose
embedding is influenced by three connector edges. Each of those edges carries the truth value
of the connected variable gadget. The gadget consists of three diagonal edges e2, e3, e4, two
vertical edges e1 and e5 and four switches s1, s2, s3, s4, see Fig. 5. For positive clauses, we
want that if all its connector edges are pulled to the right, i.e., all literals are false, there is
no valid embedding of the clause gadget. This is achieved by placing the edges of the gadget
in such a way that there are certain points, called critical points, where two different non-
adjacent edges can possibly place a vertex. Further, we ensure with the help of switches that
each of the three diagonal edges of the clause gadget has exactly one vertex embedded on a
critical point in a valid embedding.

Key to the gadget is the critical edge e3 that is embedded with one fixed vertex on a grid
point and one loose vertex in the grid cell A to the top left of the fixed vertex. Edge e3 is
linked with switches s2 and s4. These switches ensure that the loose vertex must be placed
on a free corner of the grid cell. The three free corners are all critical points. It is clear that
there is a valid embedding of e3 if and only if one of the three critical points is available.

We use the remaining edges of the gadget to block one of the critical points of A for each
literal that is false. The lower vertex of the middle connector edge is placed just to the
left of the upper left corner of A such that it occupies a critical point if it is pulled to the
right. Both of the left and right connector edges have another linked vertical edge e1 and e5
appended each. Now if e1 is pushed to the right by its connector edge, then edge e2 is pushed
upward since e1 and e2 share a critical point. Due to switch s1 edge e2 blocks the lower left
critical point of A in that case. Similarly, edge e4 blocks the upper right critical point of A if
the third literal is false.

The clause gadget for a negative clause works analogously such that a critical point is
blocked for each connector edge that is pulled to the left instead of to the right. It corresponds
basically to the positive clause gadget rotated by 180◦.

Lemma 2. A clause gadget has a valid embedding if and only if at least one of its literals is
true.

Proof. To see this we note that there are five critical points in the gadget and the connector
edge of each literal that is false blocks one of the critical points. The three edges e2, e3, e4
must also occupy one critical point each. So if all literals are false, there are only two
critical points remaining for three edges and hence there is no valid embedding of the gadget.
Conversely, if there is a valid embedding, then one of the connector edges does not block a
critical point and hence the literal that it represents is true. ut
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e4
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e5

s1

s2

s3

s4

x1 x2 x3 x4

C1

C2

C3

Fig. 5. Sketch of a clause gadget. Critical points
are marked as white disks.

Fig. 6. Sketch of the gadgets for the instance ϕ
from Fig.1.

The size of a clause gadget (not considering the switches) depends on the horizontal
distances ∆1, ∆2 between the left and middle connector edge and between the middle and
right connector edge, respectively. The width of a gadget is 6 and its height is ∆1 +∆2 − 5.

Gadget Placement. The top and left part of our construction is occupied by the border gadget
that defines the grid. The overall shape of the remaining construction is similar to a slanted
version of the standard embedding of an instance of Monotone Planar 3-Sat as in Fig. 1.

We place the individual variable gadgets horizontally aligned in the center of the drawing.
Since variable gadgets do not move vertically there is no danger of accidentally linking vertices
of different variable gadgets by placing them at the same y-coordinates. For the clause gadgets
to work as desired, we must make sure that any two connector edges to the same clause
gadget have a minimum distance of seven grid cells. This can easily be achieved by spacing
the variable gadgets horizontally so that connector edges of adjacent variables cannot come
too close to each other.

To avoid linking between different clause gadgets or clause gadgets and variable gadgets,
we place each of them in its own x- and y-interval of the grid with the negative clauses to
the top left of the variables and the positive clauses to the bottom right. The switches of
each clause gadget are placed at the correct positions just next to the border gadget. Figure 6
shows a sketch of the full placement of the gadgets for a Monotone Planar 3-Sat instance
ϕ. Since the size of each gadget is polynomial in the size of the formula ϕ, so is the whole
construction. The above construction finally yields the following theorem.

Theorem 1. The 2-regular Union of Paths Schematization Problem is NP-hard.

Proof. For any given Monotone Planar 3-Sat instance ϕ with variables X = {x1, . . . , xn}
and clauses C = {c1, . . . , cm} we construct and place the paths for the border, variable and
clause gadgets as in Section 3.1. From Lemma 2 we know that a clause gadget has a valid
embedding if and only if it contains a true literal. So the whole construction has a valid
embedding if and only if every clause gadget has a valid embedding. This is the case if and
only if ϕ is satisfiable.

Both the size of the construction and the time to create it are polynomial in n and m,
the number of variables and clauses in ϕ. ut



8 Andreas Gemsa, Martin Nöllenburg, Thomas Pajor, and Ignaz Rutter

(a) Variable gadget

e2

e4
e3

e1

e5

(b) Clause gadget

x1 x2 x3 x4

C1

C2

C3

(c) Sketch of full instance

Fig. 7. Augmented gadget versions. Additional path edges are highlighted in blue.

3.2 Hardness of the Path Schematization Problem

Finally, to prove that 2-regular PSP is also NP-hard we have to show that we can augment
the union of paths constructed above to form a single simple path that still has the property
that it has a valid embedding if and only if the corresponding Monotone Planar 3-Sat
formula ϕ is satisfiable.

The general idea is to start the path at the lower end of the border gadget and then
collect all the switches next to the border gadget. From there we enter the upper parts of
the variable gadgets and walk consecutively along all the connector edges into the negative
clause gadgets. Once all negative connectors have been traversed, the path continues along
the positive connectors and into the positive clauses. The additional edges and vertices must
be placed such that they do not interfere with any functional part of the construction.

The only major change is that we double the number of connector vertices in each variable
gadget and add a parallel dummy edge for each connector edge. That way we can walk into
a clause gadget along one edge and back into the variable gadget along the other edge. We
also need a clear separation between the negative and positive connector vertices, i.e., the
topmost positive connector vertices of all variable gadgets are assigned the same y-coordinate
and we adjust the required spacing of the variable gadgets accordingly. Figure 7(a) shows
an example of an augmented variable gadget with one positive and two negative connector
edges.

The edges e1–e5 of each clause gadget are inserted into the path in between the leftmost
connector edge and its dummy edge and in between the rightmost connector edge and its
dummy edge, respectively. The details are illustrated in Fig. 7(b). It is clear that by this
construction we obtain a single simple path P that contains all the gadgets of our previous
reduction. Moreover, the additional edges are embedded such that they do not interfere with
the gadgets themselves. Rather they can move along with the flexible parts without occupying
grid points that are otherwise used by the gadgets. Hence we can summarize:

Theorem 2. The 2-regular Path Schematization Problem is NP-hard.
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(a) (b) (c) (d)

Fig. 8. (a) A meta cell with its three minor cells for d = 4; (b) input embedding of a vertical switch; (c)+(d)
the two possible output embeddings of the vertical switch.

4 Hardness of d-regular PSP for d > 2

In Section 3 we have established that the 2-regular Path Schematization Problem is NP-
hard. Here we show that d-regular PSP is NP-hard for all d > 2 by modifying the gadgets of
our reduction for d = 2.

Theorem 3. The d-regular Path Schematization Problem is NP-hard for any d > 2.

Proof. An obvious problem for adapting the gadgets is that due to the presence of more than
one diagonal slope the switches do not work any more for uniform grid cells. In a symmetric
grid, we cannot ensure that the free vertex of a switch is always on a grid point in any valid
d-schematization. This means that we need to devise a different grid in order to make the
switches work properly. We construct a new border gadget that induces a grid with cells of
uniform width but non-uniform heights. We call the cells of this grid minor cells and form
groups of d− 1 vertically consecutive cells to form meta cells. Then all meta cells again have
uniform widths and heights. For an example of a meta cell and its minor cells see Figure 8(a).

The d−1 different heights of the minor cells are chosen such that the segments connecting
the upper left corner of a meta cell to the lower right corners of its minor cells have exactly
the slopes that are multiplies of (90/d)◦ and lie strictly between 0◦ and 90◦. This restores the
functionality of switches whose fixed vertex is placed on the upper left corner of a meta cell
and whose free vertex is on a non-adjacent grid line of the same meta cell. See Figure 8(b)
for an example of a vertical switch.

Border Gadget. As before the border gadget consists of a horizontal part Bh and a vertical
part Bv. The horizontal part Bh of the border gadget consists of two smaller gadgets that we
will describe next.

The spiral gadget is a single path consisting of 2d− 2 edges. Its main part is the subpath
that is formed by the first d edges ES = (e1, . . . , ed) with vertices v1, . . . , vd+1. The purpose
of the remaining edges only is to ensure that several gadgets can be joined to a single path.
Although the spiral does not have a unique embedding (up to scaling and translation) we do
at least know that the edge e1 uses the largest non-vertical slope. We construct it as follows.

First, we embed the edge e1 such that v2 is above and to the left of v1. The whole gadget
will fit into the bounding box spanned by these two points. We embed vi+1 with 2 ≤ i < d
horizontally between vi−1 and vi. If i + 1 is odd (even) we put vi+1 above (below) the edge
ei−1 and below (above) the vertex vi. Vertex vd+1 is embedded on the same vertical line as
vd and between vd−1 and vd−2. We place the remaining vertices such that the whole path is
crossing-free and the last edge runs vertically upward with the last vertex of the spiral in the
upper right corner of the bounding box spanned by e1.
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(a) d = 3
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(b) d = 4
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(c) d = 5

Fig. 9. Spiral gadget for different values of d.

In each valid schematization of the spiral for a fixed d we have that the edges ei ∈ ES
with 1 ≤ i ≤ d− 1 are embedded diagonally and with strictly decreasing slopes. This can be
seen as follows. Each edge ei with i > 1 is contained in the bounding box of ei−1. Moreover,
if vi−1 is the upper left corner of this bounding box then vi+1 is embedded below ei−1 and if
vi−1 is the lower right corner then vi+1 is embedded above ei−1. Hence, the edge ei must be
embedded with smaller slope than the diagonal of this bounding box, which is ei−1. Moreover,
edge e1 is embedded diagonally as v3 prevents a vertical embedding. Similarly, also edge ed−1
is embedded diagonally as vertex vd+1 prevents a horizontal embedding. Hence all edges ei
with 1 ≤ i ≤ d− 1 are embedded diagonally and with strictly decreasing slopes. As there are
only d−1 different diagonal slopes in a d-schematization the slopes of these edges are unique.

We can place two copies of a spiral vertically above each other such that corresponding
vertices have the same x-coordinates and join them by identifying the first vertex of the upper
copy with the last vertex of the lower copy. The fact that the slope of the first edge e1 is fixed
shows that this structure is in a sense regular; both spirals have the same width and height.

The spiral provides us with a simple way of creating a construction that contains evenly
spaced points. Although, at a first glance, it seems that we might be able to use the spiral
gadgets directly to form a grid this is not the case since the vertices in the interior of the
gadget would influence the embedding of the remaining gadgets. Hence, we need another
gadget, the stairs gadget, which overcomes this drawback, but is not rigid by itself.

A stairs gadget consists of d− 1 diagonal edges placed in a zig-zag pattern from bottom
to top in such a way that per gadget only two x-coordinates are used (see Figure 10(a)
and 10(b)). We wish that in any valid schematization the edges ei = vivi+1, i = 1, . . . , d− 1
are all embedded diagonally and their slopes are increasing.

To achieve that the first edge is not embedded horizontally we add an additional vertex u1
that shares its y-coordinate with v1 and its x-coordinate with v2. For each i with 2 ≤ i ≤ d−1
we construct two spirals that are joined as described above and such that the starting point
of the first spiral has the same y-coordinate as vi and its endpoint has the same y-coordinate
as vi+1. We then place an additional point ui vertically between vi−1 and vi+1 that has the
same y-coordinate as the endpoint of the upper spiral.
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Fig. 10. Substructures of the border gadget for d = 4. (a) The stairs gadget; (b) stairs gadget with additional
vertices; (c) non-path vertical border gadget; (d) transformation of (c) into a union of paths.

The properties of the spirals imply that the vertical distance between ui and vi is the
same as the vertical distance between vi−1 and vi in any valid d-schematization. Since vi+1

must be embedded strictly above ui the edge ei+1 must be embedded steeper than ei. As we
have only d − 1 diagonal slopes the fact that the stairs gadget has d − 1 edges shows that
each of them is used exactly once and in increasing order along the path.

Placing k identical stairs directly next to each other yields k unit-width grid rows. If we
link the corresponding vertices of the stairs gadgets with each other we need to place the
vertices ui only in one of the stairs gadgets. Since we want to combine all gadgets to a path in
the end, we use this observation and create a single stairs gadget with the additional vertices
to the left of all other stairs gadgets. We can now create a path starting in this leftmost stairs
gadget and then connecting the remaining k − 1 stairs gadgets.

Now that we have established the horizontal part Bh of the border gadget we can assume
that all grid columns are of equal width 1. Hence the meta grid cells have height tan((d −
1)/d ·90◦). We want to choose the heights of the minor cells such that the line segments from
the upper left corner of the meta cell to all grid points on the right side of the meta cell
have a slope in Cd, see Figure 10(c). This property is necessary for constructing switches as
explained later.

Unfortunately, the gadget in Figure 10(c) is not a path and hence we cannot use it to
induce the required grid structure directly. Instead, we “stretch” the structure and use the
concept of linking in order to yield the same result. We use d− 1 grid columns—one for each
diagonal slope—with one “empty” grid column between any two non-empty grid columns
(see Figure 10(d)). To induce ` grid rows we repeat this structure ` times.

The horizontal and vertical parts of the border gadget are combined by placing the vertical
parts such that all vertices are placed on grid lines. A sketch of the complete border gadget
for d = 4 is shown in Figure 11.

Switches. Since the border gadget induces a non-regular grid the switches must be adjusted.
Each switch starts at the upper left corner of a meta cell. For a horizontal switch the free
vertex is placed on the lower edge of the meta cell. For a vertical switch the free vertex is
placed on the right edge of the meta cell in between two horizontal grid lines.

Variable and Clause Gadgets. The variable gadget is unchanged given that all its vertices
are placed on meta grid lines. The overall structure and functionality of the clause gadgets
remains unchanged as well. However, we need to do some slight modifications, see Figure 12.
The critical edge e3 is placed in the topmost minor cell of a meta cell. Due to the nature
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Fig. 11. Sketch of the border gadget for d = 4.

of our border gadget and the induced grid the diagonal edge e2 starts at the second-to-top
minor cell of a meta cell and the diagonal edge e4 starts at the bottommost minor cell of a
meta call. The edge e1 must have its upper vertex on the lower grid line of the second-to-top
minor cell. The edge e5 must have its lower vertex on the top grid line of the bottommost
cell in a meta cell.

Gadget Placement and Single Path. The placement of the gadgets is identical as for d = 2.
The variable gadgets are placed sufficiently spaced at the same height along the x-axis. The
negative clauses are to their upper left and the positive clauses to their lower right. The
border gadget is chosen large enough to induce a grid that covers all the gadgets. Combining
the gadgets to a single simple path works analogously to the case d = 2 and the size of all
gadgets is polynomial. This concludes the proof of Theorem 3. ut

Corollary 1. The d-regular Path Schematization Problem is NP-hard for any d ≥ 1.

Proof. From Theorem 2, Theorem 3, and the result of Brandes and Pampel [4] for d = 1 it
follows that the d-regular Path Schematization Problem is NP-hard for any d ≥ 1. ut

5 A Mixed Integer Program for Path Schematization

From Corollary 1 we know that the Path Schematization Problem is NP-hard for every
d ≥ 1. So we cannot hope for an efficient exact algorithm to solve the problem. Thus, first we
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Fig. 12. Clause gadget for d = 4.
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formulate the problem as a mixed integer linear program (MIP) and then justify our approach
through an experimental study by showing that for the application of drawing sketches for
real-world driving directions our MIP yields good results in reasonable time frames.

5.1 Modeling

Let I = (P, π, d) be an input instance of PSP consisting of a path P , an input embedding
π and an integer d. For an embedding π of P and an edge e of P we denote by απ(e) the
slope of e in π. Besides deciding whether I admits a valid d-schematization, we transform
PSP into the following optimization problem in order to find a valid d-schematization that is
as similar to the input path as possible.

Problem 1. Given a simple embedded path (P = (V,E), π) and an integer d ≥ 1, find a valid
d-schematization ρ such that

(i) for every edge e ∈ E the deviation of αρ(e) from απ(e) is minimal,

(ii) for every edge e ∈ E the length `(e) is at least a minimum length `min(e) > 0, and

(iii) the total length of the path
∑

e∈E `(e) is minimized.

In the following, we introduce our MIP that solves Problem 1 optimally.

Coordinate System. In order to handle the valid slopes of each edge with respect to Cd, we
extend the standard Cartesian coordinate system to include one axis for every slope contained
in Cd similarly to [16]. Therefore, we introduce continuous variables pos : V ×Cd → R for every
vertex and every possible slope. The value for each coordinate axis γ ∈ Cd is then defined by
pos(v, γ) = cos γ ·x(v)+sin γ ·y(v). Note, that these are linear constraints, as the values of sin γ
and cos γ are constants for fixed d. Moreover, our coordinate system allows us to introduce
binary variables dir : E×Cd → {0, 1} for deciding whether in the output embedding ρ an edge
e ∈ E is schematized with slope γ ∈ Cd, namely, if and only if dir(e, γ) = 1. To enforce that
every edge is schematized according to exactly one slope γ ∈ Cd, we add

∑
γ∈Cd dir(e, γ) = 1

as a constraint for every edge e ∈ E.

Orthogonal Order. To maintain the orthogonal order between all pairs of vertices vi, vj ∈ V ,
we can make use of the following observation. Let v1 ≺ . . . ≺ vn be the input x-order of
the vertices (with ties broken arbitrarily). Then we introduce a linear number of orthogo-
nal order constraints as follows. We set pos(vi, 0

◦) ≤ pos(vi+1, 0
◦) if xπ(vi) < xπ(vi+1) and

pos(vi, 0
◦) = pos(vi+1, 0

◦) if xπ(vi) = xπ(vi+1). Analogously, the same constraints are inde-
pendently introduced for the y-order of the vertices and the values pos(v, 90◦) for all v ∈ V .

Edge Slopes and Lengths. To ensure that every edge e ∈ E is embedded according to the
slope γ for which dir(e, γ) = 1 holds, we make use of our extended coordinate system in the
following way. The edge e = uv is embedded according to γ ∈ Cd if and only if u and v have
the same coordinate on both orthogonal axes γ+90◦ and γ+270◦. Thus, for every e = uv ∈ E
and every γ ∈ Cd we add the constraints pos(v, γ + 90◦)− pos(u, γ + 90◦) ≤M(1− dir(e, γ))
and pos(v, γ + 270◦) − pos(u, γ + 270◦) ≤ M(1 − dir(e, γ)). Here, M is a sufficiently large
constant, which we choose as the maximum possible distance in our coordinate space. This
has the effect that the constraints are trivially satisfied for dir(e, γ) = 0 and that they enforce
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the correct slope for dir(e, γ) = 1. Additionally, we can set the minimum length for every
edge by adding constraints pos(v, γ)−pos(u, γ) ≥ −M(1−dir(e, γ))+ `min(e). Again, if M is
sufficiently large, these constraints are relevant only if dir(e, γ) = 1. In order to minimize the
total path length, we define variables len : E → R+

0 as an upper bound on the length of each
edge e = uv ∈ E by introducing for every γ ∈ Cd a constraint pos(v, γ)− pos(u, γ) ≤ len(e).
Note that minimizing len(e) through the objective functions will result in tight upper bounds
on the actual edge lengths, i. e., len(e) = `(e).

To minimize the deviation of the schematized slope of every edge e ∈ E to its input slope,
we add continuous variables dev : E → R+

0 that represent the deviation cost of e according
to its embedding in ρ. We set dev(e) =

∑
γ∈Cd c(e, γ) dir(e, γ), where c : E×Cd → R+

0 is some
user-defined deviation cost function. In our implementation we set c(e, γ) to the distance in
terms of the number of slopes in Cd between the selected slope and the slope in Cd that is
closest to the input slope απ(e).

Planarity. In the output embedding ρ, edges may be stretched and embedded with slopes
different from the input embedding. Thus, we have to ensure that the output embedding
is still crossing-free. Hence, we introduce two types of planarity constraints. First, for two
adjacent edges ei = uv and ej = vw we observe that ei and ej only intersect, if γ(ei) =
γ(ej)+180◦. Thus, for every pair of adjacent edges ei, ej and every γ ∈ Cd we add a constraint
dir(ei, γ) + dir(ej , γ + 180◦) ≤ 1.

For the remaining non-adjacent pairs of edges ei = uivi, ej = ujvj we can make use
of the following observation. The edges ei and ej do not intersect if there is at least one
coordinate axis γ ∈ Cd according to which both uj and vj lie beyond ui and vi. Thus,
we introduce binary variables sep : E × E × Cd → {0, 1} selecting for each pair of non-
adjacent edges the axis γ for which the previous observation needs to be true. We can now
enforce planarity by adding four constraints for every pair ei, ej and every γ ∈ Cd. We set
pos(X, γ) − pos(Y, γ) ≥ −M(1 − sep(ei, ej , γ)) + δ, where X ∈ {ui, vi}, Y ∈ {uj , vj}, and
δ ∈ R+

0 is a user-defined minimum distance to be kept between non-adjacent edge-pairs.

Note that this approach to enforce planarity requires O(|E|2) binary variables and con-
straints. However, in our experiments on real-world driving directions, we observe that most
of the planarity constraints seem to be unnecessary in the sense that the optimal solution
without planarity constraints already yields a crossing-free path. Thus, we may add planarity
constraints in a lazy fashion by an iterative process: We start by computing a solution with-
out planarity constraints. Then, we test whether the solution has any intersections and add
planarity constraints for these specific conflicting edge pairs. We then recompute a solution
with the new set of constraints until we finally obtain a crossing-free embedding ρ.

Objective Function. Subject to all the constraints described above we minimize the following
objective function:

Minimize
∑
e∈E

dev(e) +
1

M

∑
e∈E

len(e).

Note that the coefficient 1/M ensures that our primary goal is to minimize the total angular
deviation as modeled by

∑
e∈E dev(e), while minimizing the total path length becomes the

secondary goal.
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(a) (b) (c) (d) (e)

Fig. 13. A sample route from Bremen to Cuxhaven in Germany: (a) output of Google Maps, (b) simplified
route after preprocessing, (c) output of our MIP for d = 2, (d) output of our MIP for d = 3, and (e) output
of the algorithm by Delling et al. [7].

Experiments. We haven shown that PSP can be formulated as a MIP that is similar to a MIP
model for drawing octilinear metro maps [16]. This model was implemented for simple input
paths and we evaluate its performance by schematizing 1 000 quickest routes in the German
road network, where we select source and target nodes uniformly at random. The average path
length is 1020.7 nodes, hence, a schematization would yield a route sketch with far too much
detail. Therefore, in a preprocessing step, we simplify the path using the Douglas-Peucker
algorithm [8] but keep all important nodes such as points of road and road category changes.
Moreover, we shortcut self-intersecting subpaths whose lengths are below a threshold. This
is to remove over- or underpasses near slip roads of highways, which are considered irrelevant
for route sketches or would be depicted as an icon rather than a loop. Figure 13 illustrates an
example of a route sketch obtained by our MIP. It clearly illustrates how a schematic route
sketch, unlike the geographic map, is able to depict both high-detail and low-detail parts of
the route in a single picture. Comparing Figures 13(c) and 13(d) indicates that using the
parameter d = 2 for the schematization process yields route sketches with a very high level
of abstraction while using d = 3 results in route sketches which resemble the overall shape of
the route much better. For example, the route sketch in Figure 13(c) seems to suggest that
there is a 90◦ turn while driving on the highway but this is not the case. The route sketch
depict ed in Figure 13(c) resembles the original route much better. Generally, we found that
using the parameter d = 3 yields route sketches with a higher degree of readability.

For comparison, we show the output computed by the method of Delling et al. [7] in
Figure 13(e). Recall that their original algorithm takes as input only monotone paths. They
describe, however, a heuristic approach to schematize non-monotone paths by subdividing
them into maximal monotone subpaths that are subsequently merged into a single route
sketch. In order to avoid intersections of the bounding boxes of the monotone subpaths,
additional edges of appropriate length must be inserted into the path; the orthogonal order is
preserved only within the monotone subpaths. This may lead to undesired effects in sketches
of non-monotone routes, see Figure 13(e).

5.2 Experimental Evaluation

We performed two experiments that were executed on a single core of an AMD Opteron 2218
processor running Linux 2.6.27.23. The machine is clocked at 2.6 GHz, has 16 GiB of RAM
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Table 1. Results obtained by running 1 000 random queries in the German road network and schematizing
the simplified paths with our MIP. The tables reports average path lengths, percentage of infeasible instances,
average number of iterations, and average running times.

(a) Varying ε with d = 3.

ε ∼length % inf ∼iter ∼time [ms]

2−1 20.04 0.1 1.28 801.61
2−2 20.50 0.1 1.29 621.66
2−3 21.81 0.1 1.29 649.49
2−4 25.16 0.2 1.26 772.57
2−5 32.81 0.3 1.27 1102.20

(b) Varying d with ε = 2−3.

d % inf ∼iter ∼time [ms]

1 51.3 1.03 107.36
2 0.7 1.19 363.49
3 0.1 1.29 649.49
4 0.1 1.25 1075.82
5 0.1 1.21 1347.86

and 2 × 1 MiB of L2 cache. Our implementation is written in C++ and was compiled with
GCC 4.3.2, using optimization level 3. As MIP solver we use Gurobi 3.0.1.

In the first experiment we examine the performance of our MIP for d = 3 subject to
the amount of detail of the route, as controlled by the distance threshold ε between input
and output path in the path simplification step. We also set the threshold for removing self-
intersecting subpaths to ε. Table 1(a) reports our experimental results for values of ε between
2−1 and 2−5.

We observe that with decreasing ε, the lengths of the paths increase from 20.04 nodes to
32.81 nodes on average. This correlates with the running time of our MIP which is between
801.61 ms and 1 102.20 ms. Note that in practice a value of ε = 2−3 is a good compromise
between computation time and amount of detail. Further, we observe that adding planarity
constraints in a lazy fashion pays off since we need less than 1.3 iterations on average. The
number of infeasible instances, i. e., paths without a valid 3-schematization, is 0.1 %.

The second experiment evaluates the performance of our MIP when using different values
of d, see Table 1(b). We fix ε = 2−3. While for rectilinear drawings with d = 1 we need
107.36 ms to compute a solution, the running time increases to 1 347.86 ms when using d = 5.
Interestingly, more than half of the paths do not have a valid rectilinear schematization. By
allowing one additional diagonal slope (d = 2), the number of infeasible instances significantly
decreases to 0.7 % and for d = 3 only 0.1 %, i.e., a single instance, is infeasible.

Further Examples. In Figures 14 and 15 are two example routes as displayed in Google
Maps (left), simplified route determined by the Douglas-Peucker algorithm (middle), and
schematized by our MIP (right).

6 Conclusion

Motivated by drawing route sketches in road networks, we studied the problem of d-regular
schematization of embedded paths (PSP). In our problem definition we aimed for two main
goals: To preserve the user’s mental map we used the concept of orthogonal order, and to
reduce the visual complexity we restricted the valid edge slopes to integer multiples of (90/d)◦.
We analyzed the complexity of the problem and showed that PSP is NP-hard for d ≥ 2, thus,
closing the complexity gap between the hardness result of Brandes and Pampel [4] for the
special case of d = 1, and the polynomial-time algorithm of Delling et al. [7] for monotone
paths. In the second part of this work, we modeled the PSP as a mixed integer linear program
(MIP). To generate easily readable drawings, in our MIP we minimized the total path length
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(a) (b) (c)

Fig. 14. Route from Karlsruhe to Konstanz. Parameters used: ε = 2−3 and d = 3. Time to compute MIP
solution: 262ms.

(a) (b) (c)

Fig. 15. Route from Bochum to Karlsruhe. Parameters used: ε = 2−4, and d = 3. Time to compute MIP
solution: 126 ms.
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via the objective function while ensuring a certain minimum length for each individual edge.
An experimental evaluation on real-world data in the German road network revealed that we
are indeed able to compute solutions to the PSP within approximately 1 sec for reasonable
values of d ≤ 5, producing visually appealing drawings.

Using ideas of Nöllenburg and Wolff [16], our MIP can be further generalized to handle
both non-simple paths and general graphs, e. g., a set of alternative routes.

Acknowledgements. We thank an anonymous referee of [10] for helpful comments.
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7. D. Delling, A. Gemsa, M. Nöllenburg, and T. Pajor. Path schematization for route sketches. Proc.
12th Scand. Symp. & Workshops on Algorithm Theory (SWAT’10), pp. 285–296. Springer-Verlag, Lecture
Notes Comput. Sci. 6139, 2010.

8. D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Cartographica 10(2):112–122, 1973.

9. T. Dwyer, Y. Koren, and K. Marriott. Stress majorization with orthogonal ordering constraints. Proc.
13th Internat. Symp. Graph Drawing (GD’05), pp. 141–152. Springer-Verlag, Lecture Notes Comput. Sci.
3843, 2006.
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