876 research outputs found

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    A study on flexible flow shop and job shop scheduling using meta-heuristic approaches

    Get PDF
    Scheduling aims at allocation of resources to perform a group of tasks over a period of time in such a manner that some performance goals such as flow time, tardiness, lateness, and makespan can be minimized. Today, manufacturers face the challenges in terms of shorter product life cycles, customized products and changing demand pattern of customers. Due to intense competition in the market place, effective scheduling has now become an important issue for the growth and survival of manufacturing firms. To sustain in the current competitive environment, it is essential for the manufacturing firms to improve the schedule based on simultaneous optimization of performance measures such as makespan, flow time and tardiness. Since all the scheduling criteria are important from business operation point of view, it is vital to optimize all the objectives simultaneously instead of a single objective. It is also essentially important for the manufacturing firms to improve the performance of production scheduling systems that can address internal uncertainties such as machine breakdown, tool failure and change in processing times. The schedules must meet the deadline committed to customers because failure to do so may result in a significant loss of goodwill. Often, it is necessary to reschedule an existing plan due to uncertainty event like machine breakdowns. The problem of finding robust schedules (schedule performance does not deteriorate in disruption situation) or flexible schedules (schedules expected to perform well after some degree of modification when uncertain condition is encountered) is of utmost importance for real world applications as they operate in dynamic environments

    Robustness and stability measures for scheduling: Single-machine environment

    Get PDF
    This paper addresses the issue of finding robust and stable schedules with respect to random disruptions. Specifically, two surrogate measures for robustness and stability are developed. The proposed surrogate measures, which consider both busy and repair time distributions, are embedded in a tabu-search-based scheduling algorithm, which generates schedules in a single-machine environment subject to machine breakdowns. The performance of the proposed scheduling algorithm and the surrogate measures are tested under a wide range of experimental conditions. The results indicate that one of the proposed surrogate measures performs better than existing methods for the total tardiness and total flowtime criteria in a periodic scheduling environment. A comprehensive bibliography is also presented

    Rescheduling parallel machines with controllable processing times

    Get PDF
    Ankara : The Department of Industrial Engineeringand the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical references.In many manufacturing environments, the production does not always endure as it is planned. Many times, it is interrupted by a disruption such as machine breakdown, power loss, etc. In our problem, we are given an original production schedule in a non-identical parallel machine environment and we assume that one of the machines is disrupted at time t. Our aim is to revise the schedule, although there are some restrictions that should be considered while creating the revised schedule. Disrupted machine is unavailable for a certain time. New schedule has to satisfy the maximum completion time constraint of each machine. Furthermore, when we revise the schedule we have to satisfy the constraint that the revised start time of a job cannot be earlier than its original start time. Because, we assume that jobs are not ready before their original start times in the revised schedule. Therefore, we have to find an alternative solution to decrease the negative impacts of this disruption as much as possible. One way to process a disrupted job in the revised schedule is to reallocate the job to another machine. The other way is to keep the disrupted job at its original machine, but to delay its start time after the end time of the disruption. Since the machines might be fully utilized originally, we may have to compress some of the processing times in order to add a new job to a machine or to reallocate the jobs after the disruption ends. Consequently, we assume that the processing times are controllable within the given lower and upper bounds. Our first objective is to minimize the sum of reallocation and nonlinear compression costs. Besides, it is important to deliver the orders on time, not earlier or later than they are promised. Therefore, we try to maintain the original completion times as much as possible. So, the second objective is to minimize the total absolute deviations of the completion times in the revised schedule from the original completion times. We developed a bi-criteria non-linear mathematical model to solve this nonidentical parallel machine rescheduling problem. Since we have two objectives, we handled the second objective by giving it an upper bound and adding this bound as a constraint to the problem. By utilizing the second order cone programming, we solved this mixed-integer nonlinear mathematical model using a commercial MIP solver such as CPLEX. We also propose a decision tree based heuristic algorithm. Our algorithm generates a set of solutions for a problem instance and we test the solution quality of the algorithm solving same problem instances by the mathematical model. According to our computational experiments, the proposed heuristic approach could obtain close solutions for the first objective for a given upper bound on the second objective.Muhafız, MügeM.S

    The Integration of Maintenance Decisions and Flow Shop Scheduling

    Get PDF
    In the conventional production and service scheduling problems, it is assumed that the machines can continuously process the jobs and the information is complete and certain. However, in practice the machines must stop for preventive or corrective maintenance, and the information available to the planners can be both incomplete and uncertain. In this dissertation, the integration of maintenance decisions and production scheduling is studied in a permutation flow shop setting. Several variations of the problem are modeled as (stochastic) mixed-integer programs. In these models, some technical nuances are considered that increase the practicality of the models: having various types of maintenance, combining maintenance activities, and the impact of maintenance on the processing times of the production jobs. The solution methodologies involve studying the solution space of the problems, genetic algorithms, stochastic optimization, multi-objective optimization, and extensive computational experiments. The application of the problems and managerial implications are demonstrated through a case study in the earthmoving operations in construction projects

    Anticipatory Batch Insertion To Mitigate Perceived Processing Risk

    Get PDF
    The literature reviewed on lot-sizing models with random yields is limited to certain random occurrences such as day to day administrative errors, minor machine repairs and random supply due to faulty delivery of parts. In reality however, the manufacturing industry faces other risks that are non random in nature. One example would be yield discrepancies caused by non random triggers such as a change in the production process, product or material. Yield uncertainties of these types are temporary in nature and usually pertain until the system stabilizes. One way of reducing the implications of such events is to have additional batches processed earlier in the production that can absorb the risk associated with the event. In this thesis, this particular approach is referred to as the anticipatory batch insertion to mitigate perceived risk. This thesis presents an exploratory study to analyze the performance of batch insertion under various scenarios. The scenarios are determined by sensitivity of products, schedule characteristics and magnitude of risks associated with causal triggers such as a process change. The results indicate that the highest return from batch insertion can be expected when there are slightly loose production schedules, high volumes of sensitive products are produced, there are high costs associated with the risks, and the risks can be predicted with some degree of certainty

    Classification of the Existing Knowledge Base of OR/MS Research and Practice (1990-2019) using a Proposed Classification Scheme

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOperations Research/Management Science (OR/MS) has traditionally been defined as the discipline that applies advanced analytical methods to help make better and more informed decisions. The purpose of this paper is to present an analysis of the existing knowledge base of OR/MS research and practice using a proposed keywords-based approach. A conceptual structure is necessary in order to place in context the findings of our keyword analysis. Towards this we first present a classification scheme that relies on keywords that appeared in articles published in important OR/MS journals from 1990-2019 (over 82,000 articles). Our classification scheme applies a methodological approach towards keyword selection and its systematic classification, wherein approximately 1300 most frequently used keywords (in terms of cumulative percentage, these keywords and their derivations account for more than 45% of the approx. 290,000 keyword occurrences used by the authors to represent the content of their articles) were selected and organised in a classification scheme with seven top-level categories and multiple levels of sub-categories. The scheme identified the most commonly used keywords relating to OR/MS problems, modeling techniques and applications. Next, we use this proposed scheme to present an analysis of the last 30 years, in three distinct time periods, to show the changes in OR/MS literature. The contribution of the paper is thus twofold, (a) the development of a proposed discipline-based classification of keywords (like the ACM Computer Classification System and the AMS Mathematics Subject Classification), and (b) an analysis of OR/MS research and practice using the proposed classification
    corecore