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ABSTRACT 

Scheduling aims at allocation of resources to perform a group of tasks over a period 

of time in such a manner that some performance goals such as flow time, tardiness, 

lateness, and makespan can be minimized. Today, manufacturers face the challenges in 

terms of shorter product life cycles, customized products and changing demand pattern 

of customers. Due to intense competition in the market place, effective scheduling has 

now become an important issue for the growth and survival of manufacturing firms. To 

sustain in the current competitive environment, it is essential for the manufacturing firms 

to improve the schedule based on simultaneous optimization of performance measures 

such as makespan, flow time and tardiness. Since all the scheduling criteria are 

important from business operation point of view, it is vital to optimize all the objectives 

simultaneously instead of a single objective. It is also essentially important for the 

manufacturing firms to improve the performance of production scheduling systems that 

can address internal uncertainties such as machine breakdown, tool failure and change 

in processing times. The schedules must meet the deadline committed to customers 

because failure to do so may result in a significant loss of goodwill. Often, it is necessary 

to reschedule an existing plan due to uncertainty event like machine breakdowns. The 

problem of finding robust schedules (schedule performance does not deteriorate in 

disruption situation) or flexible schedules (schedules expected to perform well after 

some degree of modification when uncertain condition is encountered) is of utmost 

importance for real world applications as they operate in dynamic environments.  

According to the shop environments, the shop scheduling problems can be classified 

as flow shop, flexible flow shop, job shop, and flexible job shop scheduling. Shop 

scheduling problems are combinatorial optimization class of problems which means 

searching for an optimal solution in a finite set of potential solutions. Exact or complete 

algorithms guarantee to find an optimal solution for every finite size instance of a 

combinatorial optimization problem in bounded time. The typical combinatorial problems 

like the shop scheduling problem are usually NP-hard i.e. hardly any algorithm exist can 

solve the problem in polynomial time. Therefore, exact algorithm needs unexpected 

computation time leading to impractical computational burden for large scale application. 

Despite the relative success of exact algorithms and heuristic methods, they are still 

incapable of solving medium and large instances and too complex for real world 

problems. Therefore, non-exact but efficient heuristics must be explored to find the 

solution in a reasonable period of time. Efficient meta-heuristics procedures like tabu 



IV 
 

search (TS), ant colony optimization (ACO), artificial immune system (AIS), simulated 

annealing (SA), particle swarm optimization (PSO) and genetic algorithm (GA) have 

been proposed to find an approximate solution close to the optimum with considerably 

less computational time in various engineering applications. Extensive literature review 

suggests that the flexible flow-shop scheduling problems (FFSP) and flexible job-shop 

scheduling problems (FJSP) are least explored. As FFSP and FJSP are more complex 

problems than the FSP and JSP problems, it encourages the researchers to apply the 

meta-heuristic techniques which will provide high quality solutions in a reasonable 

computational time. 

PSO is an effective algorithm which gives quality solutions in a reasonable 

computational time and requires less number parameters to be tuned in comparison to 

other evolutionary approaches. However, PSO has an inherent drawback of getting 

trapped at local optimum due to large reduction in velocity values as iteration proceeds 

and poses difficulty in reaching at best solution. This drawback can be effectively 

addressed using quantum-behaved particle swarm optimization (QPSO) due to its 

advanced global search ability. Mutation, a commonly used operator in genetic 

algorithm, can be introduced in QPSO so that premature convergence can be avoided. 

Logistic mapping can be used to generate chaotic numbers instead of random numbers 

to improve the solution diversity.  

In this dissertation work, a novel particle swarm optimization (PSO) and quantum 

particle swarm (QPSO) optimization algorithm have been proposed for solving the single 

objective as well as multi-objective scheduling for flexible flow shop and job shop 

scheduling problems. Methodology for obtaining robust schedule is proposed to deal 

with uncertain situation in flexible flow shop and job shop scheduling. It is demonstrated 

that solution quality improves when PSO and QPSO algorithms are embedded with 

chaotic numbers and mutation.  

 

Keywords: Flexible flow shop; Flexible job shop; PSO; QPSO; Multi-objective 

optimization; MOPSO; Makespan; Flow time; Tardiness, Chaotic Number; 
Mutation; Maximum deviation theory 
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1.1 Introduction 

Scheduling is one of the important decision making processes in both manufacturing 

and service industries for improving organizational effectiveness and customer 

satisfaction. Scheduling deals with the allocation of operations on machines (i.e. a 

sequence of operations on machines) in such a manner that some performance goals 

such as flow time, tardiness, lateness and makespan can be minimized [1]. Effective 

scheduling has become a basic necessity for survival and business growth of a firm in 

the marketplace. Nowadays, the manufacturing industry is experiencing some new 

challenges such as global competition, shorter product life cycles, customized products 

and market demand changes etc. In order to sustain in the competitive environment, it is 

vital for the manufacturing companies to improve the performance of their production 

scheduling systems under increasing market fluctuations (e.g. rush orders and job 

cancellation) and internal uncertainties in the manufacturing process (e.g. machine 

breakdown, tool failure, and change of processing times). Scheduling is a process by 

which limited resources are assigned over time among parallel or sequential activities. 

Such situations are found routinely in factories, publishing houses, shipping, hospitals, 

airports etc Scheduling finds extensive applications in manufacturing, transportation, 

communication, health care, space exploration, education, network distribution etc. [2] 

Good scheduling algorithms can lower the production cost in a manufacturing process 

so as to enable the company to remain competitive. In general, intelligent scheduling 

methods are needed to assign activities to processors (machines) when faced with 

limited execution time and scarce resources. Organizations must meet the deadline 

committed to customers because failure to do so may result in a significant loss of 

goodwill. The organizations need to schedule activities in such a manner that available 

resources should be used in an efficient manner. There are many different performance 

measures to optimize a scheduling problem. One objective may be the minimization of 

the completion time of the last job and another may be the minimization of the number of 

jobs completed after their respective due dates [3]. 

Shop Scheduling problems are typical representatives of combinatorial optimization 

class of problems which means searching for an optimal solution in a finite set of 

potential solutions. A wide variety of scheduling problems have been identified and even 

wider range of solution methodologies has been proposed. At the very beginning, 

research has been focused on exact methods. Exact or complete algorithms guarantee 

to find an optimal solution for every finite size instance of a combinatorial optimization 
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problem in bounded time. The typical combinatorial problems like the shop scheduling 

problem are usually non-deterministic polynomial-time hard (NP-hard) i.e. no algorithm 

exist to solve those problems in polynomial time [4]. Therefore, exact algorithm needs 

unpredictably computation time in most cases leading to impractical computational 

burden for large scale application. The most common exact method for scheduling 

problem are branch and bound, branch and cut, Lagrangian relaxation and dynamic 

programming. Due to lack of computational resources and the need to solve large scale 

scheduling problems, it has been realized that exact methods are impractical and thus 

research focused on development of heuristic methods to obtain the approximate 

solution [5, 6, 7]. A heuristic method is based on a specified thumb rule for a particular 

problem. 

1.2 Importance of scheduling in a manufacturing system  

The current environment in manufacturing companies is characterized by massive 

competition faced by market and customers‟ requirement and expectations. These 

characters are increasing spontaneously high in terms of quality, cost and delivery time. 

Generally, the firm performance is built in two dimensions [8].  

 Technological dimension 

 Organizational dimension 

The role of the technological dimension is to develop the inherent performance of 

marketed products in order to satisfy the requirement of quality and lower cost of the 

product. In this regard, it must be noted that the rapid technological growth for these 

products forced the companies to opt for mass production. This needs a flexible and 

progressive production system capable of adapting to market demand and needs quickly 

and efficiently. 

 An organizational dimension intends to performance improvement in terms of 

production cycle times, expected delivery date, inventory and work in process 

management etc. Therefore, companies must have powerful method and tools at their 

disposal for production planning and control. 

To achieve these goals, an organization normally implements a number of functions 

including scheduling with variety of products, processes and production levels, 

production planning, material and capacity planning etc. for better coordination to 

increase productivity and minimize operation costs. A production schedule detects the 

control over the release of jobs to the shops, ensure required raw materials are ordered 

in time and find strategies for resource conflicts. A production schedule can determine 
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whether delivery promises can be met and identify time period available for preventive 

maintenance [9]. In manufacturing environment, all jobs or tasks are associated with a 

due date. These jobs have to be processed on the machines in a given order or 

sequence. Sometimes the processing of jobs may be delayed because certain machines 

are busy; preemptions may occur when high priority jobs arrive; unforeseen events such 

as machine breakdowns or uncertain processing times may occur. The release times, 

routings and processing times of the jobs are stochastic parameters and not known in 

advance [10] . 

1.3 Classification of scheduling problems 

Scheduling plays an important role in most manufacturing and service systems as 

well as in most information processing environments. Schedules are divided into two 

classes, feasible schedule and infeasible schedules. A feasible schedule is a schedule in 

which all tasks meet their deadlines with a specified constraint (resource availability 

constraints, precedence constraints etc.).The infeasible schedules are those schedules 

that violate some or all constraints. Scheduling also derives its importance from the two 

following different considerations:  

 Ineffective scheduling results in poor utilization of available resources. A 

noticeable indication is the idleness of facilities, human resources and apparatus 

waiting for orders to be processed. As a result, the cost of production increases.  

 Poor scheduling normally creates delays in the flow of some orders through the 

systems.  

The major scheduling models are categorized by specifying the resource 

configuration and the nature of the tasks. For instance, a job may need processing on 

one machine or several machines. If it contains one machine, jobs are likely to be 

processed on a single stage whereas jobs may be processed on multiple machines in 

multiple stages. If all jobs to be scheduled are available at the beginning of the 

scheduling process, the problem is known as static scheduling. If the set of jobs to be 

processed is continuously changing over time, the problem is known as dynamic 

scheduling. The release times, routings and processing times of the jobs are stochastic 

parameters and not known in advance .Generally, static scheduling is easily controllable 

than dynamic scheduling and has been studied extensively. When all parameters are 

known with certainty, the scheduling model is called deterministic. On the other hand, 

the scheduling is called stochastic when uncertainty exists for any one of the scheduling 

parameters [11]. 
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Basically, in scheduling problems, it is assumed that the setup times are negligible or 

as a part of the processing time. But if the set up time is considered then it is known as 

scheduling with sequence dependent setup times (SSDST). In some scheduling 

problems, buffer at some stages of the production process is considered and a job 

spends some time in the buffer between two consecutive operations. This important 

class of scheduling problems is characterized by the presence of no-wait or blocking 

constraints between consecutive operations of the jobs. A no-wait constraint occurs 

when two consecutive operations must be performed without any interruption. 

1.4 Types of scheduling 

Scheduling has a very wide area of application. Almost every service provider and 

manufacturer experiences a kind of scheduling problem. For instance, airports have 

landing and take-off sequencing problem, airline operator having timetabling and routing 

problems, a university must have class and examination scheduling, a manufacturer 

experiences several shop problem in order to meet customer demand [12]. The 

taxonomy of scheduling problems are as follows: 

 Project Scheduling 

 Single machine scheduling 

 Flow shop scheduling 

 Job shop scheduling 

 Flexible flow shop scheduling 

 Flexible job shop scheduling 

1.4.1 Project scheduling  

Project Scheduling mostly deals with the sequencing of activities subject to 

precedence constraints and allocation of resources to these activities in a project. The 

project scheduling problem is similar to parallel machine problem that has an infinite 

number of machines. The objective is to minimize the makespan. The methods used for 

project scheduling are critical path method (CPM) and program evaluation and review 

technique (PERT).CPM is used for projects with deterministic activity duration while 

PERT is used for projects with probabilistic activities. The project scheduling is known as 

resource constrained project scheduling problem (RCPSP) while it involves executing a 

group of activities limited by constraints. For accomplishment of each activity, a 

predefined amount of resources which are available in limited quantities per unit time is 

needed. 
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Jj Jj-1 J2 J1 M1 M2 Mm-1 Mm 

Jobs Machines 

1.4.2 Single machine scheduling 

When the jobs to be scheduled pass through a single machine or facility, the 

scheduling problems are called single machine scheduling problems. The single 

machine scheduling problem consists of „n‟ jobs with a single operation on each of the 

jobs. The objective of single machine scheduling is to find the best sequence of the jobs 

such as to optimize the objective function. 

1.4.3 Flow shop scheduling 

The flow-shop scheduling problem (FSP) consists of „m‟ machines and „n‟ jobs. The 

scheduler‟s objective is to find an optimal sequence of „n‟ jobs on „m‟ machines. All „m‟ 

machines are situated in a defined series. All „n‟ jobs have to be processed on each 

machine. The routing of the jobs through the different machines is same for all jobs 

(unidirectional flow). Once a job is completed on one machine, it is placed into the queue 

of the next machine in series. Normally, jobs are removed from the queue on a first-in, 

first-out (FIFO) basis but this can be modified to fit the needs of the problem such as 

higher priority jobs could be bumped to the front of the queue. Figure 1.1 is an example 

of the flow-shop example where each job flows in an orderly fashion from one machine 

to the next. In the example, there are „j‟ number of jobs and „m‟ number of machines 

where „J1‟ is the first job and „M1‟ is the first machine. 

 

 

 

 

 

Figure 1.1 Generalized flow-shop problem. 

1.4.4 Job shop scheduling 

A classical job shop scheduling problem (JSP) deals with a set of „n‟ jobs to be 

processed by a set of machines. Each job is processed on machines in a given order 

with a given processing time and each machine can process only one job at a time. The 

scheduler‟s objective is to find an optimal ordering of all the jobs with respect to their 

varied routing requirements through the machines. Each job must visit the machine in a 

sequence but the difference with the flow shop is that the sequence may be different for 

each job (multidirectional flow). Figure 1.2 shows an example of the job-shop problem 

where each job follows its own path through the various machines. The machines in the 

example are labeled as Mx,y where the „x‟ represents the job number and „y‟ represents 
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the location of the machine with respect to the other machines. Machine M1,3 be used for 

job 1 before M1,4 as it is the third machine in the route and M1,4 is the fourth machine. All 

jobs may not require the same number of machines. In order to show that each route 

may have a different number of machines, each route ends with a different variable for 

„y‟. Each row in the Figure 1.2 represents the ordering of a job with respect to the same 

„m‟ number of machines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Generalized job-shop problem 

1.4.5 Flexible flow shop scheduling  

The flexible flow-shop scheduling problem (FFSP) is an extension of the flow-shop 

problem where parallel machines are combined with the flow-shop problem. Therefore, 

instead of m machines in series like flow-shop, there is a series of „m‟ stages with each 

stage having one or more machines. The scheduler‟s objective is to find an optimal 

ordering through m stages for the „n‟ jobs by taking advantage of the multiple machines 

in one or more stages. All the jobs still have to be processed by one machine in each 

stage [8]. Figure 1.3 represents an example of the flexible flow-shop problem where 

multiple machines can do the operation in order to limit bottlenecks in the process. The 

machines have a label, Mx,y where x signifies the stage in which the machine belongs to 

and y is the machine number in that stage. Hence, M1,h is the „h‟ machine in stage „1‟. 

Note that the stages may have a different number of machines.  
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Figure 1.3 Diagram of the generalized flexible flow-shop problem 

1.4.6 Flexible job shop scheduling  

The flexible job shop scheduling problem (FJSP) is an extension of the job shop 

problem (JSP) where operations are allowed to be processed on any among a set of 

available machines at a facility. In the flexible job shop, parallel machines are combined 

with the job-shop problem having a total of „P‟ possible work centers. Each work center 

consists of a set of „m‟ machines from which one machine is chosen to perform the task 

or operation. FJSP is considered to be more difficult than the classical JSP because it 

contains an additional problem of assigning operations to machines. This model is 

particularly useful when it is employed to overcome bottlenecks by adding machines in 

parallel where slowdowns occur in the process. Figure 1.4 shows a diagram of the 

flexible job-shop where work centers have the parallel machines. The machines are 

labeled as Mx,y1,y2 where „x‟ represents the job number, „y1‟ represents the work center 

number, and „y2‟ represents the number of machines in a particular work center. Notation 

M4,3,5 represents the fifth machine in third stage of the route for job 4. 
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Figure 1.4 Diagram of the generalized flexible job-shop problem 

1.5 Complexity of the scheduling problem 

Computational complexity of a problem is the maximum number of computational 

steps needed to obtain an optimal solution. The notion of complexity refers to the 

computing effort required by a solution algorithm. Computing effort is described by order-

of-magnitude notation. Suppose a particular algorithm is used to solve a problem of size 

„n‟ (n denotes the amount of information needed to specify the problem). The number of 

computations required by the algorithm is typically bounded by a function of „n‟. If the 

order of magnitude of this function is polynomial as „n‟ gets large then the algorithm is 

polynomial. For instance, if the function has order of magnitude „n2‟, denoted „O(n2)‟ then 

the algorithm is polynomial. On the other hand, if the function is „O(2n)‟ then the 

algorithm is non-polynomial (exponential) [13]. Based on complexity of the problem, all 

problems can be classified into two classes called „P‟ and „NP‟ in the literature. The class 

„P‟ consists of the problems for which the execution time of the solution algorithm grows 

polynomially with the size of problem. The time taken to solve a problem belonging to 

the NP class grows exponentially. In actual practice, the algorithms are preferred whose 

execution time grows polynomially because it gets a solution in a reasonable time. 

Unfortunately, most of the practical scheduling problems belong to the non-deterministic 

polynomial-time hard (NP-hard) [14]. Based on this complexity concept, it is concluded 

that one may not be able to find optimal solutions with available techniques to solve 

large versions of an NP-hard problems which are applied to many scheduling problems. 
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Normally, these problems are too difficult to be solved exactly within a reasonable 

amount of time and heuristics become the method of choice.  

1.6 Terminologies  

While dealing with job attributes for scheduling problems, it is useful to distinguish 

between information that is known in advance and information that is generated as the 

result of scheduling decisions. Information that is known in advance serves as input to 

the scheduling process. The basic pieces of information that help to describe jobs in the 

scheduling problems are [6]: 

Processing time (pj) : The amount of processing time required by job j 

Release date (rj) : The time at which job j is available for processing 

Due date (dj) : The time at which the processing of job j is due to be  

  Completed 

Completion time (Cj)    : The time at which the processing of job j is finished 

Flow-time (Fj) : The time job j spends in the system: Fj = Cj − rj 

Lateness (Lj) : The amount of time by which the completion time of job j 

  exceeds its due date Lj = Cj – dj 

These two quantities (flow time and lateness) reflect two kinds of service. Flow time 

measures the response of the system to individual demands for service and represents 

the interval a job waits between its arrival and its departure. (This interval is sometimes 

called the turnaround time). Lateness measures the conformity of the schedule to a 

given due date and takes on negative values whenever a job is completed early. 

Negative lateness represents earlier service than requested; positive lateness 

represents later service than requested. 

Tardiness (Tj): The lateness of job j if it fails to meet its due date, or zero otherwise: 

Tj = max {0, Lj} 

Schedules are generally evaluated by aggregate quantities that involve information 

about all jobs, resulting in one-dimensional performance measures. Measures of 

schedule performance are usually functions of the set of completion times in a schedule. 

For example, suppose that n jobs are to be scheduled. Aggregate performance 

measures that might be defined include the following  

Total flow time:   ∑   
 
    

Total tardiness:   ∑   
 
    

Maximum flow time:         
      

{  } 
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Maximum tardiness:         
      

{  } 

Number of tardy jobs:   ∑   
   (  )  where  ( )    if     and  ( )    otherwise 

Maximum completion time:         
      

{  } 

1.7 Performance measures in scheduling 

It is not easy to state objectives in scheduling as they are numerous, complex and 

often conflicting. A measure of performance is said to be regular if it is a non-decreasing 

function of job completion times and the scheduling objective is to minimize the 

performance measure. A large number of scheduling problems have been studied with 

regular performance measures. The most widely considered regular performance 

measures are [15] 

 Makespan: the objective is to minimize the maximum completion time of the 

schedule. 

 Mean flow time: the objective is to minimize the average time spent by a job in 

the system. Flow time is defined as the elapsed time since the job is ready to be 

processed until it has finished  

 Total tardiness: the objective is to minimize the summed lateness of all jobs in 

the system. Lateness is defined as how much later a job has finished after its 

deadline. 

Makespan and total flow time are related to maximizing system utilization and work 

in process inventory while the tardiness is related to job due dates. Scheduling with 

makespan criteria is very important in order to increase the productivity and maximum 

utilization of resources. In modern manufacturing and operations management, on time 

delivery is a significant factor towards the stress of competition on the markets i.e 

industry has to offer a great variety of different and individual products while customers 

are expecting ordered goods to be delivered on time. As lack of success in meeting the 

due dates can result in the loss of customer and market competitiveness. Hence, 

scheduling problems with due date related objectives have attracted increasing attention 

from managers and researchers. In today‟s competitiveness environment, cost of 

production must be reduced in order to survive in this dynamic environment which has 

been done by effective utilization of all the resources and production in shorter time to 

increase the productivity also simultaneously considering due dates of the job. Most of 

the research reported in the literature is focused on the single objective case of shop 

scheduling problems, in which the makespan is minimized. Some researchers have 
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investigated multi-objective perspective of scheduling problems but the amount of 

literature in this area is still scarce compared to the single objective case. In this dynamic 

and conflicting environment, industries have to achieve number of performance 

measures for survival and hence scheduling system with multi-objective performance 

measures have given due attention since 1980. Various researchers have considered 

multi-objective nature of scheduling problem but restricted to two or three criteria of 

performance measures. Despite the tremendous effort devoted to development of 

production scheduling techniques, few successful applications in solving real-world 

scheduling problems have been reported. Most of the research works tend to be based 

on highly unrealistic assumptions, implementation them is almost infeasible to deal with 

scheduling problems in real world manufacturing environments, which are complex, 

dynamic, and stochastic and is subjected to various disruptions due to a wide range of 

stochastic uncertainties. For example, resource shortages and machine breakdowns can 

delay a schedule‟s completion time. Among all the uncertain events, machine 

breakdown is one of the significant disruptions in shop scheduling problems. In addition 

to normal performance measures such as makespan, flow time, and tardiness, two more 

measures known as robustness (the schedule performance does not deteriorate in 

disruptions situation) and stability (the schedule which does not deviate the completion 

time of the unaffected operations from the original schedule in a disrupted situation) are 

considered in the uncertain environments [16]. 

1.8 Need for research 

Despite the relative success of exact algorithms and heuristic methods, they are still 

incapable of solving medium and large instances and are too complex for real world 

problems. It is essential to study non-exact but efficient heuristics [17, 18, 19]. Therefore, 

efficient meta-heuristics procedures like tabu search (TS), ant colony optimization 

(ACO), artificial immune system (AIS), simulated annealing (SA), particle swarm 

optimization (PSO) and genetic algorithm (GA) have been proposed to find an 

approximate solution close to the optimum with considerably less computational time 

[20,21,22]. It has been found from the literature that the FFSP and FJSP problems are 

least explored to the field of research. As FFSP and FJSP are more complex problems 

than the FSP and JSP problems, encourage the researchers to apply the meta-heuristic 

techniques which will provide high quality solutions in a reasonable computational time. 

The efficiency of a meta-heuristics algorithm depends on two goals such as 

exploration and exploitation. Exploration ensures every part of the solution domain is 
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searched enough to provide a global optimum solution. Exploitation concentrates the 

search effort around the best solutions found so far by searching the neighborhoods to 

reach at better solutions. PSO can update its particle‟s positions according to individual‟s 

memory (personal best) and swarm‟s information (global best) in an iteration leading to 

efficient exploration and exploitation capability. With the collective intelligence of the 

particles, the whole swarm can converge to an optimum or near-optimum solution. Such 

type of collective intelligence is hardly incorporated in GA. PSO is not only flexible but 

also possesses a well-balanced method than GA to improve and adjust to the global and 

local exploration and exploitation abilities within a short computation time. PSO is more 

computationally elegant than the GA as it uses less number of controlling parameters. 

These characteristics make PSO highly reasonable to be used for solving single 

objective and also multi-objective optimization problems. Due to the simple concept, 

easy implementation, and rapid convergence, PSO has gained much attention and been 

successfully applied to a wide range of applications such as power and voltage control, 

mass spring system, supply chain network and vehicle routing problems [23,24,25]. 

In this dissertation work, a novel particle swarm optimization (PSO) and quantum 

particle swarm (QPSO) optimization algorithm have been proposed for solving the single 

objective as well as multi-objective problems and also proposed a robust schedule in an 

uncertain situation for the flexible flow shop and flexible job shop scheduling. Chaotic 

numbers are used instead of random numbers to improve the solution diversity. In 

addition, mutation, a popular operator in genetic algorithm, is embedded in the standard 

PSO and QPSO algorithm to escape from local optima. 

1.9 Research objectives  

This research work aims at the development of artificial intelligence techniques using 

general proposed meta-heuristics to solve flexible flow shop and job shop scheduling 

problem 

1. To develop an enhanced scheduling method embedding chaotic numbers and 

mutation operator for flexible flow shop and job shop scheduling problem with no-

wait processing condition using meta-heuristic procedures, especially by particle 

swarm optimization and quantum particle swarm optimization for minimizing the 

makespan.  

2. To design a multi-objective framework by considering the makespan and the 

robust measures simultaneously to generate the robust schedules that minimizes 
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the effect of machine breakdowns in the overall performance for the flexible flow 

shop and job shop scheduling problem. 

3. To propose and implement a novel multi-objective particle swarm optimization 

(MOPSO) technique for solving the flexible flow shop and job shop scheduling 

problem with an objective to minimize makespan, mean flow time and mean 

tardiness simultaneously with the goal of finding approximations of the optimal 

Pareto front. 

1.10 Organization of thesis  

Seven chapters presented in this thesis are organized as follows: 

1.10.1 Chapter 1: Background and motivation 

To meet the above objectives, the thesis is organized into seven chapters including 

Chapter 1. This chapter introduces the concept of scheduling including basic 

applications and solution methodology. This chapter provides the justification, motivation 

and need for present research work.  

1.10.2 Chapter 2: Literature review 

The purpose of this chapter is to review related literature so as to provide 

background information on the issues to be considered in the thesis and to emphasize 

the relevance of the present study. Literature review provides a summary of the base 

knowledge already available about job scheduling. This chapter adopts an exploratory 

approach for identifying and examining a diverse range of issues in job scheduling. The 

chapter highlights the solution methodology and problems associated with various 

aspects of scheduling problem. Finally, the chapter is concluded by summarizing the 

heuristics/dispatching rules and meta-heuristic approaches proposed in the literature 

and possible literature gap so that relevance of the present study can be emphasized 

1.10.3 Chapter 3: Flexible flow shop scheduling 

This chapter briefly discusses the flexible flow shop scheduling. The evolutionary 

technique namely particle swarm optimization (PSO) and quantum particle swarm 

optimization (QPSO) has been adopted to determine the optimum solution. The 

benchmark instances are evaluated using makespan and compared with other solution 

approaches. The chaotic numbers are used instead of random numbers to improve the 

solution diversity. The mutation, a popular operator in genetic algorithm, is embedded in 

the standard PSO algorithm to escape from local optima.  
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1.10.4 Chapter 4:  Flexible job shop scheduling 

This chapter briefly discuss about the flexible job shop scheduling. The proposed 

particle swarm optimization (PSO) and quantum particle swarm optimization (QPSO) 

has been implemented to determine the optimum solution. 

1.10.5 Chapter 5: Flexible flow shop and job shop scheduling with machine 

breakdown 

This chapter addresses to produce a robust schedule for a flexible flow shop and job 

shop scheduling problem with random machine breakdown. A multi objective framework 

based on particle swarm optimization (PSO) and quantum particle swarm optimization 

(QPSO) is proposed to generate the robust schedule by minimize the makespan and the 

robust measure simultaneously. An experimental study and analysis of variance 

(ANOVA) is conducted to study the effect of different proposed robustness measures on 

the performance under uncertainty situation. 

1.10.6 Chapter 6: Multi-objective flexible flow shop and job shop scheduling 

problem 

In this chapter, a novel multi-objective particle swarm optimization (MOPSO) 

technique is proposed and implemented for solving the flexible flow shop scheduling 

problem (FFSP) and flexible job shop scheduling problem (FJSP) with an objective to 

minimize makespan, mean flow time and mean tardiness with the goal of finding 

approximations of the optimal Pareto front and is compared with non-dominated sorting 

genetic algorithm II (NSGA-II) in terms of four performance metrics. The Pareto-optimal 

solutions obtained through MOPSO have been ranked by the composite scores obtained 

through maximum deviation theory (MDT) to avoid subjective-ness and impreciseness in 

the decision making. 

1.10.7 Chapter 7: Discussion and Conclusion 

 This chapter presents the summary of the results, recommendations and scope for 

future work in the direction of job scheduling. It also discusses the specific contributions 

made in this research work and the limitations there in. This chapter concludes the work 

covered in the thesis with implications of the findings and general discussions on the 

area of research. 
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2.1 Introduction 

Production scheduling concerns with allocation of finite manufacturing resources 

such as manpower, equipment, and tools to perform a collection of tasks with optimizing 

one or more objectives [1]. A variety of scheduling problems like flow shop, job shop, 

flexible flow shop, flexible job shop etc has been recognized from real-world 

manufacturing environment. However, most academic research mainly emphases on 

some classical ones (flow shop and job shop scheduling) [25, 26].The shop scheduling, 

one of the most classical and challenging scheduling problems, has interested the 

researchers from both academia and industry. The basic shop scheduling model 

comprises a set of jobs and machines and deals with determining an optimal or near 

optimal job sequence on each machine under some constraints. All the shop scheduling 

problems belong to the NP-hard class [10, 29]. These problems become much more 

difficult to solve when multiple performance measures and stochastic environment are 

considered. 

In this direction, the current chapter highlights the development and problems 

associated with various aspects shop floor scheduling. Heuristic procedures for solving 

scheduling problems were introduced in mid 1950s. The literature survey begins with 

papers published after 1990 with maximum attention paid to last ten years. The search 

was restricted on those articles for which full text was available. Table 2.1 provides the 

source and number of citations from each source. The majority of the citations are found 

in peer-reviewed journals. 

Table 2.1 Summary of publications referred 

Source   Citation 

Annals of Operations Research 2 

Applied Mathematics and Computation 2 

Applied Soft Computing  1 

Computers and Industrial Engineering,  17 

Computers and Operation Research  18 

Computing 1 

European Journal of Industrial Engineering  1 

European Journal of Operational Research  25 

IEEE Transactions on Evolutionary Computation 1 

Expert Systems with Applications  5 

Flexible Services and Manufacturing Journal  1 

Future Generation Computer Systems  3 

IEEE Transactions on Robotics and Automation 2 
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IEEE Transactions on Systems, Man, and Cybernetics 2 

IEEE Transactions on Evolutionary Computation 2 

IIE Transactions  2 

International Journal of Advanced Manufacturing Technology 13 

International Journal of Computational Intelligence Systems 1 

International Journal of Production Economy  7 

International Journal of Production Research 5 

International Transactions in Operational Research 1 

Journal of Complexity International  1 

Journal of Intelligent Manufacturing  3 

Journal of Scheduling  3 

Journal of the Operational Research Society 1 

Management Science 2 

Materials Science Forum 1 

Mathematical Methods of Operations Research 1 

Mathematics and Computers in Simulation 1 

Naval Research Logistics Quarterly 1 

OMEGA: International Journal of Management Science 3 

Operations Research  6 

Operations Research Letters  2 

Production Planning and Control  4 

Books 4 

Conference papers 4 

Total 149 

 

2.2 Classification of literature 

The literature review gives enough confidence to identify a pertinent gap or 

methodological weaknesses in the existing literature to solve the research problem. The 

literature on scheduling can be broadly classified in two ways - one based on types of 

scheduling and other one - the way the solution methodology used for scheduling which 

is illustrated in Figure 2.1. Next sections provide brief discussion on these issues. 

Finally, the chapter is concluded by summarizing the advancement taken place in 

scheduling problem and possible literature gap so that relevance of the present study 

can be emphasized. 
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Figure 2.1 Taxonomic frameworks for Scheduling 

2.3 Flow shop scheduling problem  

The flow-shop scheduling problem (FSP) has been an interesting area of research 

for over last thirty years ever since Johnson [26] has anticipated the two stage 

scheduling problem with the makespan as an objective. The early research on flow-shop 

scheduling problems is mostly based on Johnson‟s rule which provides a procedure to 

obtain an optimal solution with two or three machines with certain characteristics. Palmer 

[27] has proposed a slope index based on the processing time to sequence the jobs on 

the available machines. The heuristic suggested by Campbell, Dudek and Smith (CDS) 

[28] is basically an extension of Johnson‟s algorithm. The CDS algorithm splits into a 

series of an equivalent two machine flow-shop problem for the „m‟ machine problem and 

solves each equivalent problem by Johnson's rule. Gupta [29] has recommended 

another heuristic which is similar to Palmer‟s heuristic considering some exciting facts 

about optimality of Johnson‟s rule. NEH (Nawaz, Encore and Ham) heuristic is based on 

the assumption that a job should be given higher priority whose total processing time on 

all the machines is higher than job with low total processing time [30]. The NEH 
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algorithm does not transform the original m-machine problem into an artificial dummy 

two-machine problem. It generates the final sequence in a constructive way by 

accumulating a new job at every step and obtains the best solution. An improved 

heuristic for solving the flow-shop scheduling problem has been developed by Ho and 

Chang [31] and its performance with respect to makespan, mean utilization, and mean 

flow time is superior when compared with five well known heuristics. Rajendran and 

Chaudhuri [17] have proposed a heuristic algorithm to minimize flow time for a flow-shop 

scheduling problem using three heuristic criteria. The first criterion deals with the sum of 

idle times. The second criterion incorporates the sum of idle times and the waiting times. 

The third criterion includes the completion times of the partial schedule at various stages 

along with the above mentioned two criteria. Rajendran [32] has proposed an improved 

CDS algorithm. A heuristic preference relation is suggested and used as the basis to 

confine the search for possible enhancement in the multiple objectives. A proportionate 

flow-shop scheduling problem has been proposed in which the job processing times are 

inversely proportional to machine speeds by minimizing the maximum completion time 

[33]. Bulfin and M‟Hallah [34] has proposed an exact algorithm to solve the two machine 

flow-shop scheduling problem with objective of weighted number of tardy jobs. Pranzo 

[35] has considered the two-machine batch scheduling flow-shop problem with sequence 

independent setup times and removal times. The study proposes a number of special 

cases of the problem and reduces the special cases to travel salesman problem (TSP).  

Brown et al. [36] have recommended a non-polynomial time solution method and a 

heuristic for the no-wait flow-shop problem with sequence independent setup times and 

optimized the performance measures for both the makespan and total flow time. 

Blazewicz et al. [37] have investigated different solution procedures for the two machine 

flow-shop scheduling problem with a common due date and weighted late work 

criterion. Grabowski and Pempera [38] have addressed the no-wait flow-shop problem 

with makespan criterion and presented several variants of descending search and tabu 

search algorithms. The multi moves has been introduced to accelerate the convergence 

rate. Tabu search algorithm uses a dynamic tabu list to avoid to be trapped at a local 

optimum. Franca et al. [39] have presented a memetic approach (MA).The proposed 

MA algorithm uses an organized structured population as a ternary tree and local 

search scheme called RAI (recursive arc insertion). The experimental results indicate 

that the MA is superior to other algorithms but requires greater computational effort. 

Fink and Vob [40] have examined the application of different meta-heuristic methods to 
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solve the continuous flow-shop scheduling problem by minimizing the total completion 

time. An approach based on trade-off between solution quality and computational time 

is recommended. Ponnambalam et al. [41] have proposed a hybrid approach known as 

TSP-GA algorithm for flow-shop scheduling considering weighted sum of multiple 

objectives. The weights were randomly generated for each generation to enable a multi-

directional search. The proposed algorithm was appraised by solving the benchmark 

problems available in the OR-Library. Lodree et al. [42] have developed a new 

scheduling heuristic for minimizing the number of tardy jobs in a dynamic flow-shop (job 

arrival or release dates are not known in advance). Ravindran et al. [43] have 

suggested three heuristic algorithms for solving the flow-shop scheduling problem to 

minimize the makespan and total flow time.  

Ignall and Schrage [44] have proposed the first branch and bound (B&B) algorithms 

for permutation flow-shop problem with makespan minimization. The branch and bound 

algorithm for scheduling jobs with sequence dependent setup times on a single 

processor was suggested by Lockett and Muhlemann (1972) to optimize the total 

number of tool changes. It was computationally restrictive and suitable only for small 

sized problems. Hariri and Potts [45] have used B&B algorithm with at most fifteen jobs. 

Carlier et al. [46] have proposed two branch and bound algorithms for the permutation 

flow-shop problem. They used disjunctive graphs association with each operation on a 

machine which is a unique value of head and tail. The head is length of the longest path 

in the disjunctive graph from the source to the operation and tail is the length of the 

longest path from the current operation to the end. The branching rule was such that the 

first branching sequences a job at the beginning of the sequence and the second 

branching sequences a job at the end of the sequence. The node with the smallest value 

for the lower bound is selected as the branching node. Fry et al. [47] have suggested a 

branch and bound procedure to minimize mean absolute lateness. The branch and 

bound technique was used in conjunction with a one pass linear program. Blazewicz et 

al. [48] have assigned the two machine non-preemptive flow-shop scheduling problem 

with a common due date total and a weighted late work measure. A branch-and-bound 

algorithm for a two-machine flow-shop scheduling problem with deteriorating job. 

Gowrishankar et al. [49] have considered two types of problems. In the first case, m-

machine flow shop scheduling with minimizing variance of completion times of jobs and 

second case with minimizing sum of squares of deviations of the job completion times 

from a common due date. A simple linear deterioration function was assumed and the 
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objective was to obtain a sequence that minimizes the makespan. Nowicki and 

Smutnicki [50] have addressed a new algorithm which uses some elements of the 

scatter search, the path relinking technique and some properties of neighborhoods to 

solve the flow-shop scheduling problem with the makespan criterion. Su and Lee [51] 

have considered the scheduling problem where a set of jobs are available for processing 

in a no-wait and separate setup two-machine flow-shop system with a single server. 

They compared the proposed branch-and-bound algorithm with method which was 

proposed by Aldowaisan [52] and the results are found to be encouraging. 

A wide variety of meta-heuristic procedures like tabu search (TS), ant colony 

optimization (ACO), artificial immune system (AIS), simulated annealing (SA), particle 

swarm optimization (PSO) and genetic algorithm (GA) are used to solve such problems 

and generate approximate solutions close to the optimum with considerably less 

computational effort. Santos et al. [53] have improved the makespan of the multi-stage 

parallel flow-shop scheduling problem through fundamental adjustment of the exchange 

heuristic (EH). A hybrid approach of ordinal optimization and genetic algorithm called as 

order based genetic algorithm (OGA) for flow-shop scheduling problems was proposed 

by Wang et al. [54]. The simulated results illustrate that the OGA gives better solutions 

than GA, NEH and Blind search methods. They have also tested the various parameters 

of OGA and provided statistical results. A tabu search algorithm along with neural 

networks for permutation flow-shop scheduling problem was proposed by Solimanpur et 

al. [55].They have used the modified NEH algorithm proposed by Taillard [56] to 

generate the initial solution. They have used the insertion mechanism to generate the 

neighborhood structure since it was found to be more effective than a random swap 

mechanism [56]. Rajendran and Ziegler [57] have considered the problem of scheduling 

in permutation flow-shops by using ACO algorithms with the objective of minimizing the 

sum of the total flow time of jobs and makespan. The efficiency of the recommended ant 

colony optimization algorithm was assessed by considering the benchmark problems 

and upper bound values for makespan given by Taillard [56]. Shyu et al. [58] have 

developed the ACO algorithm to solve the two machine flow-shop scheduling problem 

with no waiting between operations including the set up time. Job processing times have 

been chosen randomly from the interval 0 to 100 and setup times also randomly chosen 

from different intervals 0-10, 0-50 and 0-100. Problem sizes vary from 50, 100, 150, 200 

and 250 jobs. They have shown that the ACO algorithms outperform other algorithms. 

Lian et al. [59] have suggested a particle swarm optimization algorithm for solving the 
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permutation flow-shop scheduling problem with respect to minimization of makespan 

and computation experiments show that it is more efficient than GA. However, some 

problems cannot be solved to guarantee optimality. Pan et al. [60] have proposed a 

discrete particle swarm optimization (DPSO) algorithm for solving the no-wait flow-shop 

scheduling problem with both makespan and total flow time criteria. Solution quality was 

improved by hybridizing the DPSO algorithm with the variable neighborhood descent 

(VND) algorithm. Kuo et al.[61] have recommended a new hybrid particle swarm 

optimization model (HPSO) that combines the random-key encoding scheme (RK), 

individual enhancement scheme (IE) and particle swarm optimization (PSO) to solve the 

flow-shop scheduling problem (FSP) to obtain a sequence of jobs that minimizes 

makespan. The experimental results indicate that the flow-shop scheduling problem 

based on the proposed HPSO produces a better solution than the solutions based on 

GA. A hybrid genetic algorithm for the flow-shop scheduling problem was proposed by 

Tseng and Lin [62]. A modified version of NEH was used to generate the initial 

population and a new orthogonal array crossover was developed as the crossover 

operator of the genetic algorithm. Salmasi et al. [63] have established meta-heuristic 

algorithm based on ant colony optimization (ACO) and a lower bounding technique for 

flow-shop scheduling problem. They confirmed that the proposed ACO has a better 

performance than the other available meta-heuristics in the literature. 

2.4  Job shop scheduling problem 

Job-shop scheduling problem (JSP) was first proposed by Muth and Thompson [64]. 

In the last forty years, the JSP has become a standard scheduling problem closely 

related to industrial engineering and contributions have also been made by other 

research disciplines such as operations research, manufacture science, computer 

science and management science. The job-shop scheduling problem is a classical NP-

hard problem, especially difficult to solve even in relatively small instances [65]. As an 

example, a particular instance having 10 machines and 10 jobs [65] remained unsolved 

for over 20 years until it has been solved by Carlier and Pinson [66]. Thus great deal of 

research has been made to study various job-shop scheduling problems in last four 

decades. Adams et al. [67] have proposed the shifting bottleneck (SB) which is a 

powerful heuristic for solving the JSP. In this method, the bottleneck machine (machine 

having maximum workload) is to be chosen for sequence. Each time a new machine has 

been sequenced, the sequence of each previously sequenced machine may be 

subjected to re-optimization. A non-linear mixed-integer programming model (MIP) has 
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been presented to formulate this problem. Branch and bound method is proposed by 

Singer and Pinedo [68] for solving JSP with due date criteria that minimizes the total 

weighted tardiness. Amaral et al. [69] have applied tabu search (TS) combined with 

dispatching rules to achieve an initial solution and searches new solutions in a 

neighborhood based on the critical paths of the jobs to solve the JSP with the objective 

of minimizing the total weighted tardiness. 

Choi and Choi [70] have studied JSP with alternative operations and sequence-

dependent setup times (SDST). A mixed integer program integrated with local-search 

scheme is proposed. Artigues and Roubellat [71] have proposed a polynomial insertion 

algorithm for multi-resource job-shop scheduling with sequence-dependent setup times 

for minimization of maximum lateness. First, they described the algorithm for pure JSP 

and then multi-resource requirements were introduced for the operations and finally, 

SDST was integrated in the multi-resource context. Low et al. [72] have determined the 

benefit of each lot-splitting situation in a job-shop environment. They have developed a 

mathematical programming approach with the objective of minimizing the sum material 

processing cost, setup time cost and inventory cost. Subramaniam et al. [73] have 

developed a framework to solve and optimize JSP problem with uncertain processing 

times in which imprecise processing times are modeled as triangular fuzzy numbers 

(TFN). Fandel et al. [74] have investigated an integrated job-shop production planning 

and scheduling problem. A new probabilistic model was introduced by Hongan et al. 

[75].  

The conventional GA based on binary representation have been introduced to the 

job-shop scheduling problem [76]. Yamada and Nakano [76] have proposed a GA that 

uses problem-specific representation of solutions with crossover and mutation which are 

based on the Giffler and Thompson (GT) algorithm. Jaszkiewicz [77] has proposed 

genetic local search (GLS) which is a hybridization of GA and local search. The first 

ACO algorithm was proposed by Colorni et al. [78] to tackle a shop scheduling problem. 

The performance of ACO algorithm was unsatisfactory due to slow convergence, long 

computing time and falling into a local optimum easily. Steinhofel et al. [79] have 

presented simulated annealing based algorithms for the classical JSP problem where 

the objective is to minimize the makespan. Kolonko [80] has proposed a new approach 

that used a small population of SA embedded with the GA framework. Moreover, SA 

algorithm was used in three schemes i.e. pairwise exchange, insertion, and random 

insertion to solve job-shop scheduling problem. Zuo and Fan [81] have suggested an 
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immune algorithm for JSP. The antibody clone, antibody crossover, receptor editing, 

hyper mutation and niche technology has been used to retain the diversity of the 

population. Some benchmark problems were solved to verify the effectiveness of the 

recommended method. Chandrasekaran et al. [82] have recommended AIS algorithm to 

obtain optimal makespan values for different sized JSP problem. The algorithm was 

based on clonal selection and affinity maturation principles. A two phase mutation 

procedure and receptor editing has been used to generate new antibodies. Shuster [83] 

has studied the complexity of the job-shop scheduling problem with no-wait constraint 

and solved with a tabu search approach. Sha and Lin [22] have proposed a hybrid 

particle swarm optimization (HPSO) for job-shop scheduling problems and modified the 

representation of particle position, particle movement, and particle velocity to better 

performance and also applied tabu search to enhance solution quality. The 

computational results show that HPSO can produce better results than other methods. 

Essafi et al. [84] have considered the job-shop scheduling problem (JSP) with due dates 

and release dates to minimize the total weighted tardiness. A genetic algorithm 

integrated with a local search is adopted.  

Baptiste et al.[85] have considered the JSP with the earliness and tardiness 

penalties. They have suggested two Lagrangian relaxations of the problem. The first one 

was based on the relaxation of precedence constraints while the second one was based 

on the relaxation of machine constraints. The results show that the relaxation of the 

resource constraints often leads to better lower bounds. Roshanaei et al. [86] have 

introduced a variable neighborhood search to solve sequence dependent setup times 

job shop scheduling problem. The meta-heuristic approach uses three different 

neighborhood search structures centered on insertion operator concept. Bozejko and 

Makuchowski [87] have presented a hybrid TS algorithm for a no-wait job-shop 

scheduling problem for minimizing the makespan. Pan and Huang [88] have proposed a 

hybrid genetic algorithm to solve the job-shop scheduling problem with no-wait 

constraint. In this algorithm, the new solutions are generated by transforming the 

chromosomes. Part of each chromosome is transformed into a travelling salesman 

problem (TSP) which is solved by heuristics to get a new sequence. This idea provides a 

better convergence for the algorithm. Jinwei et al. [89] have recommended a novel 

competitive co-evolutionary quantum genetic algorithm (CCQGA) for a stochastic job-

shop scheduling problem (SJSP) with the objective to minimize the expected value of 

makespan. Three new strategies such as competitive hunter, cooperative surviving and 



24 
 

the big fish eating small fish are developed in population growth process. To increase 

the diversity of genes to avoid premature convergence, the suggested algorithm 

maintains the population size dynamically and accelerates the convergence speed.  

Kachitvichyanukul and Sitthitham [90] have suggested a two-stage genetic algorithm 

(2SGA) for multi-objective job-shop scheduling problems with three measures i.e. 

makespan, total weighted earliness and total weighted tardiness. At first stage, parallel 

GA is applied to find the best solution of each individual objective function and then 

populations are combined at the second stage using the weighted aggregating objective 

function. The proposed algorithm can be used with one or two objectives without 

modification. Mati et al. [91] have suggested an efficient MA with a novel local search to 

solve the JSP. A systematic change of the neighborhood is accomplished to avoid 

trapping into local optima in the local search and two neighborhood structures are 

designed by exchanging and inserting based on the critical path. The objective of 

minimizing makespan is considered while satisfying a number of hard constraints. 

2.5 Flexible flow shop scheduling 

In the past, scheduling problem in a hybrid or flexible flow-shop has received 

attention of researchers because of its importance from both theoretical and practical 

points of view. This problem has been showed as an adequate model for the study of a 

great number of production systems specifically process industries such as glass, paper, 

metallurgy, wood, textile and aerospace. The flexible flow-shop scheduling problem is 

first proposed by Arthanari and Ramamurthy [92] in 1971 and solved by branch and 

bound algorithm. The problem has taken attention after 1994 while Gupta and Tunc [94] 

have considered a two-stage flow-shop scheduling problem when there is one machine 

at stage one and the number of identical machines in parallel at stage two is less than 

the total number of jobs. The setup and removal times of each job at each stage are 

separated from the processing times. They proposed a heuristic that was empirically 

tested to determine the effectiveness of finding an optimal solution. Guinet et al. [93] 

have proposed a heuristic for the makespan minimization problem in a two stage flexible 

flow-shop based on Johnson‟s rule. They compared the heuristic with the shortest 

processing time (SPT) and the longest processing time (LPT) dispatching rules. It is 

proved that the LPT rule gives good results for the makespan problem in a two-stage 

flexible flow-shop. 

Liu and Chang [95] have exploited Lagrangian relaxation and proposed a search 

heuristic for the flexible flow-shop scheduling problem with sequence dependent setup 
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time, sequence dependent setup cost and non-zero release date to minimize the sum of 

setup times and costs. They have formulated the problem as a separable integer 

programming problem. Moursli and Pochet [5] have introduced a branch and bound 

algorithm to minimize makespan for hybrid flow-shop. Botta-Genoulaz [96] has used six 

new heuristics to solve the hybrid flow-shop scheduling (HFSP) problem with setup and 

removal time, precedence constraints and time lags. The goal is to minimize maximum 

lateness. Neron et al. [97] have presented the use of time-bound adjustment to enhance 

the efficiency of branch and bound procedures for solving the hybrid flow-shop 

scheduling problem.  

Gupta et al.[98] have proposed heuristics to solve the HFSP considering variation of 

the processing times of the operations on some machines and a due date assignment 

cost. The objective is to minimize makespan. Su [99] has considered two-stage hybrid 

flow-shop. The first stage consists of a batch processor and the second stage consists of 

a single processor. Each batch processor can process a batch of jobs simultaneously. 

They have proposed a mixed integer linear programming (MILP) formulation to find the 

optimal solution and a heuristic algorithm is developed. The heuristic algorithm is divided 

into two stages: in 1st stage, the jobs are allocated to batches such that the number of 

batches formed is minimized; and in 2nd stage, the jobs are sequenced within a batch 

and the batches are later sequenced. The results from the heuristic are compared with 

MILP and it is observed that the heuristic performed consistently well with low CPU 

times.  

Hmida et al. [100] have presented the depth-bounded discrepancy search (DDS) 

method to obtain near-optimal solutions with makespan of high quality. This method 

contains no idleness for the search tree expansion for the hybrid flow-shop scheduling 

(HFS). Again to improve the solutions of HFS problem, they have proposed a local 

search method known as climbing depth-bounded discrepancy search (CDDS) which is 

a hybridization of two existing discrepancy-based methods: DDS and climbing 

discrepancy search (CDS). Kurz and Askin [101] have considered the problem of flexible 

flow line scheduling with sequence-dependent setup times to minimize the makespan. 

They have proposed an integer programming (IP) model and a lower bound for the 

problem. They have also developed a random keys genetic algorithm (RKGA) because it 

is difficult to solve the problem by using the IP model. Engin et al. [20] have proposed an 

improved artificial immune system where a computational method based on clonal 

selection principle and affinity maturation mechanism of the immune response is used. 
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Low [102] has considered the problem of flexible flow-shop scheduling with unrelated 

parallel machines to minimize total flow time. The assumptions considered are 

independent setup and dependent removal times. A simulated annealing is proposed 

based on heuristic to solve the problem. Oguz et al. [103] have proposed a genetic 

algorithm for FFSP and integrated with a new crossover operator. First, it performed a 

preliminary test to set the best values of the control parameters i.e. population size, 

crossover rate and mutation rate. An extensive computational experiment was carried 

out to evaluate the performance of the proposed four versions of genetic algorithm in 

terms of the percentage deviation of the solution from the lower bound. Ruiz and Maroto 

[104] have recommended a genetic algorithm for a complex generalized flow-shop 

scheduling problem with sequence dependent setup times, unrelated parallel machines 

at each stage. They have proposed hybrid genetic algorithm which integrated with new 

characteristics and four new crossover operators. Janiak et al. [105] have suggested the 

problem of hybrid flow-shop for minimizing the summation of the total weighted 

earliness, the total weighted tardiness and the total weighted waiting time. Three 

constructive algorithms and three meta-heuristics based on tabu search and simulated 

annealing algorithms are proposed to solve the problem. Ying and Lin [106] have 

suggested an novel ant colony system (ACS) for solving multistage hybrid flow-shop 

scheduling problem with multiprocessor tasks. In the proposed algorithm, the same 

formula is used as classical ACO, but with a different starting solution procedure that 

affects the probability function so the quality of the solution is improved. Tseng et al. 

[107] have proposed multistage hybrid flow-shop scheduling problem with 

multiprocessor tasks. They have solved the problem by PSO with a new a velocity 

equation. They have verified the PSO algorithm with nine possible combinations of PSO 

with three velocity equations and three neighborhood topologies and compared with two 

existing genetic algorithms and an ant colony optimization algorithm. The proposed PSO 

algorithm outperforms all the existing algorithms for the same benchmark problems.  

Kahraman et al. [108] have addressed the hybrid flow-shop (HFS) scheduling 

problems to minimize the makespan value. They proposed an efficient genetic algorithm 

based on a permutation representation of the n jobs. A direct coding approach was used 

i.e. a chromosome represents a schedule of the jobs directly. Allahverdi and Al-

Anzi [109] have studied a two-stage assembly scheduling problem where there 

are „m‟ machines on the first stage and an assembly machine at the second stage. In 

their model the setup times are treated as separate from the processing times. A 
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dominance relation was presented and proposed three heuristics i.e a hybrid tabu 

search, a self-adaptive differential evolution (SDE), and a new self-adaptive differential 

evolution (NSDE). Al-Anzi and Allahverdi [110] have considered the same problem of 

[109] where setup times was ignored and proposed some heuristics based on tabu 

search, particle swarm optimization (PSO), and self-adaptive differential evolution (SDE) 

along with the earliest due date (EDD) and Johnson heuristics to solve the problem. 

Computational experiments reveal that both PSO and SDE are superior to tabu search 

and PSO performs better than SDE. Mirsanei et al. [111] have considered hybrid flow-

shop scheduling with parallel identical machines and makespan criterion. A novel 

simulated annealing (NSA) algorithm is proposed to obtain a reasonable schedule within 

an adequate computational time. The obtained results are compared with immune 

algorithm (IA) and random key genetic algorithm (RKGA) from the literatures. The results 

reveal that NSA outperforms both IA and RKGA. 

2.6 Flexible job shop scheduling problem 

Brandimarte [112] is the innovator in addressing flexible job-shop scheduling 

problem (FJSP). They have developed a polynomial algorithm for solving this problem 

with two jobs. Brandimarte [112] has applied hierarchical approach for FJSP based on 

decomposition and dispatching rule. First, routing sub-problem is solved and then 

sequencing sub-problem is solved using a TS algorithm. Saidi-Mehrabad et al. [113] 

have suggested a hierarchical approach. Brucker et al. [114] have suggested methods 

based TS algorithm to solve FJSP for both hierarchical and integrated approach. 

Dauzere-Peres and Paulli [115] have proposed a new neighborhood structure for the 

FJSP problem and recommended the TS algorithm for re-sequencing and rearranging 

the operation. Mastrolilli and Gambardella [116] have recommended two neighborhood 

functions incorporated with TS algorithm to find better performances than other existing 

meta-heuristics in terms of computation time and solution quality. 

Kacem et al. [117] have suggested an evolutionary method for solving FJSP. 

Integrated approaches consider both assignment and sequencing sub-problems 

simultaneously. Usually, integrated approaches produce better solutions than 

hierarchical approaches but more difficult to solve and consumes more computational 

time. Xia and Wu [16] have presented a practical hierarchical solution approach by 

making use of PSO to assign operations on machines and simulated annealing 

algorithm to schedule operations on each machine. Zhang et al. [118] have proposed a 

multistage operation based GA to deal with the flexible job-shop scheduling problem 
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from a point view of dynamic programming. Fattahi et al. [119] have proposed a 

mathematical model and integrated two meta-heuristics approaches (SA and TS 

algorithms) for solving FJSP. Six different searching algorithms have been presented 

besides two established meta-heuristics considering both integrated and hierarchical 

approaches. Ho et al. [120] have developed an architecture known as learnable genetic 

architecture (LEGA) for learning and evolving solutions for the FJSP. The architecture 

identifies a population generator module that produces the initial population of schedules 

and also trains the schemata learning module. A large range of benchmark data taken 

from literature are used to analyze the efficacy of LEGA.  

Pezzella et al. [121] have presented a genetic algorithm (GA) that incorporates 

different approaches for creating the initial population, selecting the individuals for 

reproduction and reproducing new individuals. The computational study indicated that 

the integration of certain strategies in a genetic framework leads to results comparable 

to those obtained by the best-known algorithm. Gao et al. [122] have employed a hybrid 

GA and variable neighborhood descent (VND) algorithm for FJSP. VND involves two 

local search procedures: local search of moving one operation and local search of 

moving two operations. Xing et al.[123] have proposed a knowledge-based ant colony 

optimization algorithm (KBACO) which is integration between ant colony optimization 

(ACO) model and knowledge model to solve the FJSP. In the KBACO algorithm, 

knowledge model learns some available knowledge from the optimization of ACO and 

then applies the existing knowledge to guide the current heuristic searching.  Bagheri et 

al. [124] have employed an artificial immune system (AIS) algorithm to solve the flexible 

job-shop scheduling problem. The AIS algorithm used different strategies for producing 

the initial population and selecting the individuals for reproduction. Different mutation 

operators are also utilized for reproducing new individuals. Yazdani et al. [125] have 

developed a parallel variable neighborhood search (PVNS) algorithm for solving FJSP. 

Parallelization in the presented optimization method increases the diversification and the 

exploration in the search space. Defersha and Chen [126] have developed a parallel GA 

to minimize the makespan in a complex flexible job-shop scheduling which includes 

sequence dependent setup times, machine release dates and time lag requirements. 

Hmida et al. [127] have recommended a new discrepancy-based method known as 

climbing depth-bound discrepancy search (CDDS). They have used a block concept of 

Jurisch [128] to find the neighborhood structure. The computational experiments 

revealed that proposed method outperforms the GA of Pezzella et al. [121] and the TS of 
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Mastrolilli and Gambardella [116] for all instances. Bozejko et al. [87] have proposed a 

parallel double-level meta-heuristic approach for the flexible job-shop scheduling 

problem based on two methods implemented i.e. tabu search and population-based 

approach. Additionally, they have implemented two new major modules: the machine 

selection module refers to execute sequentially and the operation scheduling module to 

execute in parallel. Zhang et al. [129] have recommended an effective GA for solving the 

FJSP to minimize makespan.  In the proposed algorithm, global selection (GS) and local 

selection (LS) has been designed to generate high-quality initial population in the 

initialization stage. An improved chromosome representation was used to conveniently 

represent a solution of the FJSP and different strategies for crossover and mutation 

operator were adopted. Computational results proved that the proposed genetic 

algorithm is effective and efficient for solving flexible job-shop scheduling problem. 

2.7 Scheduling based on machine breakdown 

Efforts on scheduling problems normally consider a static environment with a fixed 

number of jobs, deterministic processing times and no unexpected events that would 

influence the job processing when the schedule is executed [130, 131]. A two-machine 

flow-shop scheduling problem with an availability constraint was proposed by Lee [132]. 

He has developed a pseudo-polynomial dynamic programming algorithm to solve the 

problem optimally and also developed two O(n log n) time heuristic algorithms with an 

error bound analysis. Allahverdi and Mittenthal [133] have considered dual-criteria 

scheduling on a two-machine flow-shop subject to random breakdowns with respect to 

both makespan and maximum lateness objective functions. They provided an elimination 

criterion in a two-machine flow-shop when both machines are subjected to random 

breakdowns. They proved that the longest processing time and the shortest processing 

time orders are optimal with respect to both criteria in a two machine ordered flow-shop 

when the first or the second machine respectively suffers stochastic breakdowns. Mehta 

and Uzsoy [134] have generated a predictive schedule by using the available information 

on uncertainties. The effect of disruptions on planned activities was measured by the 

difference between the planned completion times of jobs in the predictive schedule and 

their realized completion times. Completion time deviations were reduced by inserting 

additional idle time into the predictive schedule i.e. by under-capacity scheduling. The 

amount of additional idle time inserted based on the structure of the predictive schedule 

and the nature and frequency of the disruptions that is expected to occur. Thus, the 

completion times of jobs in the predictive schedule depend on the schedule and the 
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amount of additional idle time inserted. Holthaus [135] has investigated simulation-based 

analysis of dispatching rules in job-shop scheduling taking into account machine 

breakdown. Results reveal that different levels of breakdown parameters have significant 

impact on performance of scheduling rules. Sabuncuoglu and baylz [136] have studied 

the reactive scheduling problems in a stochastic manufacturing environment and tested 

on several scheduling policies under machine breakdowns in a classical job-shop 

system. In addition, they have measured the effect of system size and type of work 

allocation (uniform and bottleneck) on the system performance. The performance of the 

system was measured for the makespan and mean tardiness criteria. The robust and 

flexible solutions for flexible job-shop scheduling problems was proposed by 

Jensen[137]. A robustness measure has been defined and investigated by using a 

genetic algorithm to obtain robust and flexible schedules with a low makespan. These 

schedules were demonstrated to perform significantly better in rescheduling after a 

breakdown than ordinary schedules.  

A robustness framework has been introduced by Allaoui et al. [138] to minimize 

makespan of a stochastic FFS problem under machine breakdown. Rangsaritratsamee 

et al. [139] have suggested a rescheduling method with local search genetic algorithm 

for a job-shop scheduling with dynamically arriving jobs. The proposed algorithm 

considers the efficiency by preserving the makespan, tardiness and stability by 

minimizing the jobs starting time deviations simultaneously. Here, the rescheduling takes 

place at definite time intervals using all available jobs at the rescheduling moment. 

Kasap et al.[140] have investigated optimal sequencing policies for the expected 

makespan problem on a single machine subject to random breakdowns where jobs have 

to be reprocessed in their entirety if preemptions occur because of breakdowns. They 

identified a class of uptime distributions under which LPT minimizes expected 

makespan. Suwa and Sandoh [141] have proposed a new when-to-schedule policy in 

reactive scheduling which considers time of schedule revision based on the concept of a 

control limit policy. Schedule revision is carried out based on a cumulative job delay and 

can be measured to determine suitable timing of schedule revision.  

Goren and Sabuncuoglu [142] have defined two robustness measures and three 

stable measures. Then, a dominance rule and two lower bounds for one of the 

robustness measures are used in a branch-and bound algorithm to solve the problem 

exactly. A beam search heuristic is also proposed to solve large problems for all five 

measures. Gholami et al. [131] have proposed a heuristic to solve FFS scheduling 
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problems with sequence-dependent setups and stochastic machine breakdown. This 

method employs the random key genetic algorithm (GA) to identify the optimal solution. 

They have proposed a simulator in which the event-driven policy and the right-shift 

heuristic approach is incorporated into the GA to evaluate the expected makespan. The 

robustness of the algorithm is analyzed using the Taguchi parameter design. The 

number of jobs, the number of stages, the mean-time-between-failure and the population 

size are found to have a significant impact on the robustness of the algorithm.  

Yahyaoui et al. [143] have suggested a new shifting method for job-shop scheduling 

problems with machine unavailability. In their research, six rules were put forward to 

determine when and how to right shift by determining the different starting times for each 

operation in order to minimize the makespan. Shifting one operation to the right will 

affect not only the succeeding operations of the same job but also the operations on the 

same machine. Zandieh and Adibi [144] have suggested a scheduling method based on 

variable neighborhood search (VNS) to solve a dynamic job-shop scheduling problem 

that considers random machine breakdown. In their method, an event-driven policy is 

selected. To enhance the efficiency and effectiveness of the scheduling method, an 

artificial neural network with a back propagation error learning algorithm is used to 

update parameters of the VNS at any rescheduling point according to the problem 

condition. The problem of scheduling stochastic job-shop scheduling subjected to 

breakdown was proposed by Lei [145]. An efficient genetic algorithm (EGA) is used to 

solve JSP with exponential processing time and non-resumable jobs. The objective is to 

minimize the stochastic makespan. A novel random key representation is suggested to 

represent the schedule of the problem and a discrete event-driven decoding method 

applied to build the schedule and handle breakdown. Al-Hinai and Mekkawy [146] have 

defined a number of bi-objective measures combining the robustness and stability of the 

predicted scheduling. Consequently, a two-stage hybrid genetic algorithm is proposed to 

generate the predictive scheduling. Hasan et al. [147] have proposed an improved local 

search technique, shifted gap reduction (SGR), which improves the performance of GAs 

when solving relatively difficult test problems. The new algorithm for JSP with machine 

unavailability or breakdown is modified considering two scenarios of machine 

unavailability.  

2.8 Multi-objective scheduling 

Although the single-objective FFSP and FJSP have been widely investigated, the 

research on the multi-objective FFSP and FJSP is still relatively limited. In such multi-
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objective scheduling problems, it is common to obtain a set of pareto-optimal or efficient 

solutions such that all solution obtained are the best solution i.e. the solutions in the set 

do not dominate each other. Ponnambalam et al. [148] have suggested a multi-

objective genetic algorithm (MOGA) to derive the optimal machine-wise priority 

dispatching rules to resolve the conflict among the contending jobs in the Giffler and 

Thompson (GT) procedure applied for job-shop scheduling problems. The performance 

criterion considered is the weighed sum of the multiple objectives minimization of 

makespan, minimization of total idle time of machines and minimization of total 

tardiness. The weights assigned for combining the objectives into a scalar fitness 

function are not constant. The weights are specified randomly for each evaluation. This 

leads to the multidirectional search in the proposed multi-objective genetic algorithm. 

Parsopoulos and Vrahatis [149] were the first to propose the particle swarm optimization 

method in multi-objective optimization problems. Kacem et al. [117] have proposed a 

localization approach to solve the resource assignment problem and an evolutionary 

approach controlled by the assignment model to solve the mono-objective and multi-

objective FJSP. Chang et al. [150] have proposed the gradual priority weighting 

approach to search the pareto optimal solution for multi objective FSP. The proposed 

approaches search the feasible solution space from the first objective at the beginning 

and towards the other objective step by step. They considered the multi-objective flow-

shop scheduling problem by considering makespan, total flow time, total tardiness and 

maximum tardiness as the performance measures. The effectiveness and efficiency of 

gradual-priority weighting (GPW) approach is compared with the variable weight 

approach and the proposed method performs quite effectively and efficiently. 

Coello et al.[151] have presented an approach in which Pareto dominance is 

combined into particle swarm optimization in order to allow the heuristic to handle 

problems with several objective functions. Xia et al. [152] have recommended a practical 

hierarchical solution approach for solving multi-objective FJSP. The proposed approach 

use particle swarm optimization (PSO) to allocate the operations on machines and 

simulated annealing (SA) algorithm to schedule operations on each machine. The 

objective is to minimize makespan, the total workload of machines, and the workload of 

the critical machine. Suresh and Mohanasundaram [153] have applied pareto archived 

simulated annealing to the multi-objective job-shop scheduling problem in which the 

related objectives are minimization of makespan and mean of flow time. Lei and Wu 

[154] have proposed a crowding measure based multi-objective evolutionary algorithm 
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(CMOEA) which makes use of the crowding measure to adjust the external population 

and assign different fitness for individuals. The comparison between CMOEA and 

strength pareto evolutionary algorithm (SPEA) indicates that CMOEA performs better in 

job-shop scheduling with two objectives including minimization of makespan and total 

tardiness. Gao et al. [155] have addressed the FJSP problem with three objectives such 

as minimization of makespan, maximal machine workload and total workload. The 

authors have developed a new genetic algorithm hybridized with an innovative local 

search procedure for the problem. Advanced crossover and mutation operators are 

proposed to adapt to the special chromosome structures and the characteristics of the 

problem. The bottleneck shifting works over two kinds of effective neighborhood which 

use interchange of operation sequences and assignment of new machines for 

operations on the critical path. The performance of the proposed method was tested by 

numerical experiments on a large number of representative problems. Ho et al. [156] 

have studied a hybrid evolutionary algorithm combined with a guided local search and 

an external pareto archive set. They have proposed an efficient approach for solving the 

multiple-objective flexible job-shop scheduling by combining evolutionary algorithm and 

guided local search (GLS). Instead of applying random local search to find neighboring 

solutions, they introduced a GLS procedure to accelerate the process of convergence to 

pareto-optimal solutions. The main improvement of this combination is to diversify the 

population toward the pareto front. A branch and bound algorithm was also proposed to 

obtain the lower bounds of multiple-objective solutions. Experimental results indicate that 

the multiple-objective pareto-optimal solutions of the algorithm dominate previous 

designs for solving the same benchmarks while incurring less computational time. 

Try et al.[157] have solved multi-objective flexible job-shop scheduling problems 

using dispatching rules discovered through genetic programming. They have evaluated 

and employed suitable parameters and operators for evolving composite dispatching 

rules using genetic programming with an aim towards greater scalability and flexibility. 

Experimental results show that composite dispatching rules generated by genetic 

programming framework outperforms the single dispatching rules and composite 

dispatching rules selected from literature over five large validation sets with respect to 

minimum makespan, mean tardiness and mean flow time as objectives. Yagmahan and 

Yenisey[158] have considered the flow-shop scheduling problem with multi-objectives of 

makespan, total flow time and total machine idle time. Ant colony optimization (ACO) 

algorithm was proposed to solve this problem. The proposed algorithm was compared 
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with solution performance obtained by the existing multi-objective techniques. Lei [159] 

have presented a particle swarm optimization for multi-objective job-shop scheduling 

problem in order to simultaneously minimize makespan and total tardiness of jobs. Job-

shop scheduling is converted into a continuous optimization problem by constructing the 

corresponding relation between real vector and the chromosome obtained by using 

priority rule-based representation method. They have also designed a Pareto archive 

particle swarm optimization in which the global best position selection is combined with 

the crowding measure-based archive maintenance. Sha and Lin [22] have presented 

PSO for multi-objective job-shop scheduling problem. The original PSO was used to 

solve continuous optimization problems. Due to the discrete solution spaces of 

scheduling optimization problems, they modified the particle position representation, 

particle movement, and particle velocity in their study. The modified PSO was used to 

solve various benchmark problems. Zhang et al. [160] have proposed a new method 

based on multi-objective particle swarm optimization to deal with the flexible job-shop 

scheduling problems with multiple objectives such as minimizing completion time, total 

machine workload and the biggest machine workload. This algorithm adopts linear 

weighting method to change multi-objective optimization problem into the single 

objective optimization problem and introduces random and uniform design method to 

produce weight coefficient. Wang et al. [161] have presented a multi-objective genetic 

algorithm (MOGA) based on immune and entropy principle to solve the multi-objective 

FJSP. In this improved MOGA, the fitness scheme based on Pareto-optimality was 

applied and the immune and entropy principle was used to keep the diversity of 

individuals and overcome the problem of premature convergence. Efficient crossover 

and mutation operators were proposed to adapt to the special chromosome structure.  

2.9  Discussions 

This chapter provides the insight into various past developments and improvements 

in the area of scheduling. Based on established shared themes, it is divided into six main 

sections i.e. flow-shop scheduling, job-shop scheduling, flexible flow-shop scheduling, 

flexible job-shop scheduling, scheduling under machine breakdown situation and multi-

objective scheduling. Figure 2.2 provides the breakdown of the number of citations 

based on the types of scheduling. The Figure 2.2 reveals that most of the research is 

concentrated on the flow-shop and job-shop scheduling. However, the researchers are 

attracted slowly towards the FFSP and FJSP to propose suitable methods to reduce the 

computational burden and obtain the near optimal solution in a reasonable time.  
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Reviewed literature is classified among the different solution methodology and 

techniques adopted by the authors. Figure 2.3 shows a pie chart with this distribution. It 

illustrates that 51% of the studied literature propose meta-heuristic approach whereas 

26% propose heuristic methods. 23% of the studied literature use classical methods for 

solving scheduling problems. Most of the articles focus on efficient meta-heuristics that 

can be used for solving real-life problems at reasonable computational effort. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 illustrates that the literature is heavily biased towards the single objective 

criterion with a 78% of the references. It is striking to see from all surveyed papers that 

only a 10% deals with the machine breakdown situation criterion and 12% deals with the 

multi-objective scheduling. 

 

Figure 2.3 Percentage of paper surveyed based on solution methodology 
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2.10  Conclusions 

After a comprehensive study made on the existing literature, it is concluded that the 

scheduling problem is a rich and promising field of research with application in 

manufacturing and industrial engineering. The analysis of scheduling problem in 21st 

century shows a change of interest in FSP and JSP topics studied by researchers and 

focus their attention on extended FSP and JSP models i.e. flexible flow-shop and flexible 

job-shop scheduling with new heuristic, optimization algorithms for the both single and 

multiple objectives. With regard to scheduling under machine breakdown scenario, 

adequate research effort has not been addressed to any possible combinations of robust 

measure with different fundamental scheduling approaches. Thus, the potential research 

opportunity is identified and an attempt has been made to propose a scheduling 

framework combining with the robust measure to deal with machine breakdown scenario 

in an FFSP and FJSP. In the last decade, several meta-heuristic algorithms have been 

developed which is based on the nature inspired analogy. However, despite of having 

several attractive features, it has been observed that most of these algorithms do not 

always perform as per expectations. The achievement of most of the meta-heuristics 

optimization algorithms depends on exploration and exploitation capability of the 

algorithm. The exploration and exploitation capability can be achieved by using local 

search methods or global search approaches or an integration of both global and local 

search strategies. 

The present research work proposes an efficient PSO algorithm which has gained 

much attention and been successfully applied to a wide range of applications. Hence, in 

this work, an attempt has been made to proposed and analyzes the improvement of 

PSO algorithm with other search techniques and presents a comparison of the proposed 

PSO and QPSO, which is a new version of PSO, with the well-known algorithm from the 

literature. The next chapter briefly discusses the FFSP. The evolutionary techniques 

namely PSO and QPSO have been proposed to determine the optimum schedule in 

FFSP.

Figure 2.4 Percentage of paper surveyed based on types of objectives 
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3.1 Introduction 

In the manufacturing environment, scheduling is primarily related to the problem of 

finding successive assignment of limited resources to a number of jobs which is optimal 

in terms of certain performance measures such as flow time, tardiness, lateness, and 

makespan [94]. A flexible flow shop problem (FFSP), an extended version of the simple 

flow shop, consists of two or more production stages in series and there exists one or 

more parallel machines at each stage. Usually, the flexible flow shop problem is denoted 

as .    (  ( ))
   

 
      / in which flexible flow shop or hybrid flow shop is denoted as 

    with number of stages m and (  ( ))
   

 
 represents that one or more number of 

identical parallel machines exists in all stages j=1,......,m [162]. FFPS has been 

successfully applied in a wide variety of industries to solve a wide range scheduling 

problems. The industries include the electronics [163, 164, 165], textile [166], production 

of concrete [167], manufacturing of photographic film [168,169], and others [170; 104; 

171, 172, 173, 174]. FFSP has also been applied in non-manufacturing areas like civil 

engineering [175], internet service architectures [175] and container handling systems 

[177]. 

In this chapter, scheduling of a multistage flexible flow shop with parallel identical 

machines in each stage is considered with the objective to minimize the makespan 

(Cmax) i.e., the completion time of all jobs in the last stage. A set of n jobs, i =1,2,3…..n, 

needs to be processed in a production system with m production stages and at each 

stage, a set of identical parallel machines Mj exists as illustrated in the Figure 3.1. Job i 

requires a processing time Pij in stage j. It is assumed that each job is available at time 

zero and pre-emption is not allowed. The jobs are assumed to be independent of each 

other and each job is processed as a whole i.e. a job cannot be divided. 

 

 

 

 

 

Figure 3.1 A flexible flow shop environment 
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The FFSP scheduling problem can be formulated mathematically as Mixed Integer 

Linear Programming (MILP) problem as follows [178]. The symbols used are as follows:  

m Number of stages  

n Number of jobs to be scheduled  

   Number of machines at stage j, j=1, 2…Mj 

    The number of jobs which are processed on machine k at stage j,          ; 

  (         ) 

     The processing time when job i is processed on machine k at stage j, i = 

1,2,…Njk, j =1,2,..m, k =1,2,..Mj 

     The time when job i is finished on machine k at stage j 

     The time when job i starts to be processed on machine k at stage j 

     = 1, if job i is processed on machine k at stage j,  

= 0, otherwise  

    The hth job which is processed on machine k at stage j,              

The constraints of FFSP are as follows: 

The constraints of assigning  

Each job can be assigned to one machine at every stage i.e. 

∑        
  

   
                                                               (3.1) 

For each stage, the number of the jobs assigned to machines must be n 

∑            
  

   
                                                                        (3.2) 

The constraints of time: a job cannot be processed at next stage until it has finished its 

processing at the current stage. This is expressed as 

       (   )                                                               (3.3) 

For any job, its finishing time is determined by its processing time and starting time on a 

machine at a stage. It can be given by 

                                                               (3.4) 

For a machine at any stage, it can process next job only after it has finished the current 

one. The mathematical expression is given as 

         (   )                                                         (3.5) 

Makespan of the schedule must be always equal or greater than the completion time of 

last job at last stage. 

        *    +                                        (3.6) 
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For example, four jobs need to be scheduled in two processing stages with three 

machines at each stage then total number of decision variables becomes 24 (4 jobs × 2 

stages × 3 machines = 24). The number of constraints according to the equation 3.1 is 8 

(4 jobs × 2stage = 8) , according to the equation 3.2 it is 2 ( 2 stages), according to the 

equation 3.3 it is 36 ((4 jobs × 3 machines)stage 1 × (3 machines ) stage 2 = 36), 

according to the equation 3.4 it is 24 (4 jobs × 2 stages × 3 machines = 24), according to 

the equation 3.5 it is 18 (3 jobs ( n-1) × 2 stages × 3 machines =18). From the above 

instance, total eighty eight numbers of constraints are found for such a small problem. 

Thus, scheduling of jobs in a flexible flow shops is considered as NP-hard problem 

because increase in problem size leads to increase in number of constraints resulting in 

finding solution in polynomial time. Therefore, classical approach like integer programing 

for solving scheduling problems requires exponential computation time in most cases 

leading to impractical computational burden for large scale application. 

For such problems, it is not always possible to find an optimal solution in a 

reasonable time. Gupta [94] has shown that even the two-stage flow shop scheduling 

problem with parallel processors to minimize makespan is a non-deterministic 

polynomial-time hard (NP-hard) problem. The above formulation can be solved by 

branch and bound (B&B) method for general FFSP problem with any number of stages 

and any number of parallel machines per stage [4]. Despite the relative success of exact 

algorithms, they are still incapable of solving medium and large size problems and too 

complex for real world problems. Therefore, it is essential to look for non-exact but 

efficient meta-heuristics that can be used for solving real-life problems at reasonable 

computational effort. To address this issue, a variety of heuristic procedures such as 

dispatching rules and local search and meta-heuristics procedures like tabu search (TS), 

simulated annealing (SA), particle swarm optimization (PSO) and genetic algorithm (GA) 

are used to solve such problems and generate approximate solutions close to the 

optimum with considerably less computational time [4,16,57,177,179]. Most meta-

heuristics proposed for the FFSP use a simple strategy of restricting the search to the 

space of job permutations. The idea is to find a permutation of the n jobs and builds a 

schedule by assigning jobs onto the machines according to this ordering. 

PSO is an effective algorithm which gives high quality solutions in a reasonable 

computational time and consists of less number of parameters to be adjusted as 

compared to the other evolutionary meta-heuristics like GA [152]. Due to the simple 

concept, easy implementation, and quick convergence, PSO has gained much attention 



40 
 

and been successfully applied to a wide range of applications such as job scheduling, 

power and voltage control, mass spring system, supply chain network and vehicle 

routing problems [21, 22, 23, 24, 25]. Recently, a new variant of PSO, called quantum-

behaved particle swarm optimization (QPSO), has been proposed in order to improve 

the global search ability of the original PSO [180]. PSO has an inherent drawback of 

getting trapped at local optimum due to large reduction in velocity values as iteration 

proceeds and poses difficulty in reaching at best solution. However, this drawback can 

be effectively addressed using quantum-behaved particle swarm optimization due to its 

advanced global search ability of the original PSO. The iterative equations of QPSO is 

different from that of PSO in that it needs no velocity vectors for particles, needs fewer 

parameters to be adjusted and can be executed easily. It has been proved that such 

iterative equations leads QPSO to be global convergent [181]. The stagnation of search 

in PSO can also be avoided by introducing diversity in the solution through the use of 

mutation, an important operator used in genetic algorithm. Mutation operator is an 

integral part of evolutionary computation techniques preventing loss of diversity in a 

population of solutions which allows a greater region of the search space to be covered. 

Mutation operators introduce new individuals into a population by creating a variation of 

a current individual; thus adding variability into the population and preventing stagnation 

of the search in local optima. It has been demonstrated that optimization algorithms 

using chaotic sequence can carry out overall searches at higher speeds than stochastic 

searches that depend on probabilities due to the non-repetition of chaotic sequence. In 

this context, several optimization algorithms using chaotic sequences have been 

proposed for solving various problems (182,183). Application of chaotic sequences 

instead of random sequences in PSO is a powerful strategy to obtain a diversified 

population of particles and improve the PSO‟s performance in preventing premature 

convergence. 

In this chapter, the search mechanism of the particle swarm optimization (PSO) and 

quantum particle swarm optimization (QPSO) is explored to solve FFSP. The proposed 

approach uses PSO and QPSO to assign jobs on machines at each stage and schedule 

job sequence on each machine in the corresponding stages. The objective considered in 

this chapter is to minimize makespan. Chaotic numbers are used instead of random 

numbers to improve the solution diversity [184]. In addition, mutation, a popular operator 

in genetic algorithm, is embedded in the standard PSO and QPSO algorithm to escape 

from local optima.  
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3.2 Particle swarm optimization 

Particle swarm optimization (PSO) algorithm, originally introduced by Kennedy and 

Eberhart [185], is a population based evolutionary computation technique. It is motivated 

by the behavior of organisms such as bird flocking and fish schooling. In PSO, each 

member is called particle and each particle moves around in the multidimensional 

search space with a velocity which is constantly updated by the particle‟s own 

experience and the experience of the particle‟s neighbors or the experience of the whole 

swarm. The members of the entire population are maintained throughout the search 

procedure so that information is socially shared among individuals to direct the search 

towards the best position in the search space. Two variants of the PSO algorithm have 

been developed, namely PSO with a local neighborhood and PSO with a global 

neighborhood. According to the global neighborhood, each particle moves towards its 

best previous position and towards the best particle in the whole swarm, called the gbest 

model in the literature. On the other hand, based on the local variant so called the pbest 

model, each particle moves towards its best previous position and towards the best 

particle in its restricted neighborhood. PSO is basically characterized as a simple 

heuristic of well-balanced mechanism with flexibility to progress and adjust to both global 

and local exploration capabilities. Compared with GA, all the particles tend to converge 

to the best solution quickly even in the local version in most cases. PSO does not 

require that the optimization problem be differentiable as is required by classical 

optimization methods such as gradient descent and quasi-Newton methods. PSO can, 

therefore, also be used on optimization problems that are partially irregular and noisy. In 

PSO, the initial population is generated randomly and parameters are initialized. After 

evaluation of the fitness function, the PSO algorithm repeats the following steps 

iteratively: 

 Personal best (best value of each individual so far) is updated if a better value is 

discovered. 

 Then, the velocities of all the particles are updated based on the experiences of 

personal best and the global best in order to update the position of each particle 

with the velocities currently updated. 

 Permutation is determined through an encoding scheme so that evaluation is 

again performed to compute the fitness of the particles in the swarm. 
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After finding the personal best and global best values, velocities and positions of each 

particle are updated using equations. 3.7 and 3.8 respectively.  

   
         

        (   
       

   )      (   
       

   )                                           (3.7) 

   
     

       
                                                                           (3.8) 

Where    
  represents velocity of particle i at iteration t with respect to jth dimension (j 

=1,2,……n).    
  represents the position value of the ith personal best with respect to the jth 

dimension.   
  represents the global best (gbest) i.e the best of pbest among all the particles. 

    
  is the position value of the ith particle with respect to jth dimension.     and    are positive 

acceleration parameters which provide the correct balance between exploration and 

exploitation, and are called the cognitive parameter and the social parameter, respectively. 

   and    are the random numbers provide a stochastic characteristic for the particles 

velocities in order to simulate the real behavior of the birds in a flock. The inertia weight 

parameter „w‟ is a control parameter which is used to control the impact of the previous 

history of velocities on the current velocity of each particle. Hence, the parameter „w‟ 

regulates the trade-off between global and local exploration ability of the swarm. The 

recommended value of the inertia weight w is to set it to a large value for the initial stages, 

in order to enhance the global exploration of the search space, and gradually decrease it to 

get more refined solutions facilitating the local exploration in the last stages. In general, the 

inertia weight factor is set according to the following equation 3.9 

       
         

    
                   (3.9) 

where     ,      are initial and final weights, „t‟  is the current iteration number and 

     is the maximum number of iterations. 

The pseudo-code for the particle swarm optimization 

Initialize the parameters, including swarm size, maximum number of iteration, 

    ,     ,   ,   

While (termination condition i.e. maximum Iteration) 

Do 

t=0 

Initialize particle‟s position and velocity stochastically; 

Evaluate each particle‟s fitness, i.e. the objective function; 

Initialize pbest position; 

Initialize gbest position with the particle with lowest fitness in the swarm; 

t= t+1; 
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Update the velocity of the particles by the equation (3.7); 

Update the position of the particles by the equation (3.8); 

Evaluate each particle‟s fitness, i.e. the objective function; 

Find the new gbest and pbest value by comparison; 

Update gbest of the swarm and pbest of each particle; 

end do 

end 

3.3 Quantum behaved particle swarm optimization 

The main disadvantage of the classical PSO algorithm may be that it does not 

guarantee global convergence because it is trapped into local optima although it 

converges fast. The reason being that the velocity vectors assume very small values as 

iterations proceed. The PSO algorithm has a risk of trapping at local optima and loses its 

exploration-exploitation ability. Clerc and Kennedy [181] have showed that although 

PSO is capable of finding a reasonable quality solution much faster than other 

evolutionary algorithms but it cannot improve the quality of the solution as the number of 

generations is increased. If pbest and gbest of a particle are very close to each other then it 

becomes inactive in the swarm. In other words, when (   
       

   )    (   
       

   ) are 

both small in equation 3.7 and at the same time    
  has a small value then this particle 

lose its exploration ability. This could happen at early stages for the gbest particle and as 

a consequence the PSO is trapped in local minima. To avoid the drawbacks of original 

PSO, QPSO was proposed stimulated by analysis of the convergence of the PSO. In the 

quantum PSO, the state of a particle is described by wave function  (   ) instead of 

velocity. The dynamic behavior of the particle is broadly divergent from that of the 

particle in classical PSO systems in that the exact values of „x‟ and „v‟ cannot be 

determined simultaneously. We can only learn the probability of the particle‟s appearing 

in position x from probability density function   (   )  , the form of which depends on the 

potential field the particle lies in and then the probability distribution function of the 

particle‟s position can be calculated through the probability density function. Employing 

the Monte-Carlo method, the particle position is updated according to the following 

equations, 

   (   )
 

    (   )
 

   .      
      

 
/    (  ⁄ )                       (3.10) 

   (   )
 

    (   )
 

   .      
      

 
/    (  ⁄ )                       (3.11) 

   (   )
 

           

 
 (   )        

 
              (3.12) 
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∑         

  
                   (3.13) 

Where    is the local attractor,         

 
 are the best positions which the of particle ith at 

iteration t with respect to jth dimension has achieved so far and       
 
 the best position of 

all particles in current generation.       
  is the mean best position which is defined as 

the mean of all the best positions of the population in current generation,       are 

random number distributed uniformly on [0,1]. The parameter   in equation 3.10 and 

3.11 is called contraction expansion (CE) coefficient which can be tuned to control the 

convergence speed of the particle. The starting value of   =1 is used to initially 

accommodate a more global search and is dynamically reduced to   = 0.4. The idea is to 

terminate the QPSO algorithm with a better local search. The   value is adaptively 

allocated as per the equation 3.14 

       ,*(         )     ⁄ +   -             (3.14) 

where      is the initial contraction expansion factor value,      is the final contraction 

expansion factor value , „t‟  is the current iteration number and      is the maximum 

number of iterations.  

The pseudo code for the search procedure of the QPSO is as follows.  

Initialize the population size, the current position and the dimensions of the particles; 

While (termination condition i.e maximum Iteration) 

Do 

t= t+1; 

Compute the mean best position       by equation (3.13); 

Select a value of   by equation (3.14); 

for i=1 to population size 

for j=1 to dimensions of the particles 

  rand (0,1); 

   (   )
 

           

 
 (   )        

 
 ; 

  rand(0,1); 

  rand(0,1); 

If       

         (   )
 

    (   )
 

   .      
      

 
/    (  ⁄ ) ; 

else 

    (   )
 

    (   )
 

   .      
      

 
/    (  ⁄ )    
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    end if 

end for 

Evaluate the fitness value of   (   ) that is the objective function 

Update the         
 and         

  

 end for 

end do 

end 

3.4 Problem representation of flexible flow shop scheduling 

For solution representation of flexible flow shop scheduling problem, a real number 

encoding is used. The fractional part of the number is used to sort the jobs assigned to 

each machine whereas the integer part represents the machine number to which the job 

is assigned. The position of the particle represented by a real number is used for 

encoding. The dimension of the particle is equal to the number of jobs to be processed. 

Suppose a FFSP has four jobs to be processed in three processing stages. Stage one, 

two and three are having two, three and four machines respectively. Real numbers 

between [1, 1+Mj] (j =1, 2, 3) are generated for each stage where Mj is the number of 

machines in jth stage. The processing times of the jobs on different stages are given as, 

P=[

     
     
     
     

]. The initial positions of the particle are generated as four real numbers within 

the range of 1 to 3 for the 1st stage. The real part of the position values is used for 

ensuring machine number on which the job is to be processed and fractional part is used 

to sequence the jobs on the same machine. For stage 1, the position values of four jobs 

are giving as [1.05, 2.33, 1.45, and 2.67]. At stage one, job 1 and job 3 are assigned to 

machine 1 and job 2 and job 4 are assigned to machine 2. The process order of jobs to 

be scheduled on the same machine depends on the value of fractional parts. 

The job is sequenced according to the ascending order of the fractional part which is 

processed by the same machine. The order of jobs to be scheduled on machine1 is job 

3 followed by job 1 because the fractional part of job 3 is greater than the fractional part 

of job 1. At stage j (j >1), if two jobs are assigned to the same machine, the jobs are 

assigned according to the completion time in the (j-1) stage to schedule its processed 

sequence. In other words, the job which completes first in the former stage will be 

processed first. If the completion time of the former stage is same then values of 

fractional parts of the particle positions are compared. The job whose value of fractional 
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parts is smaller will be processed first. If the values are also equal then the job 

processing sequence is randomly chosen. The encoding scheme is given in Figure 3.2 

and the Gantt chart for a possible is shown in Figure 3.3 

 

 

 

 

 

 

 

 

Figure 3.2 Problem representations for the example problem 

 

Figure 3.3 Gantt chart for the example problem 

3.5 Chaotic numbers 

Various versions of PSO have been presented in last few years. Most PSO 

algorithms use uniform distribution to generate random numbers. Chaos is a kind of 

characteristic of nonlinear systems, which is a bounded unstable dynamic behavior that 

exhibits sensitive dependence on initial conditions and includes infinite unstable periodic 

motions [186,187]. Recently, chaotic sequences have been adopted instead of random 

sequences to obtain good results in many applications like machine loading problem in 

flexible manufacturing systems [184]. The purpose of chaotic sequences as a substitute 

of random sequences in PSO is a powerful strategy to diversify the PSO population and 
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improve its performance in preventing premature convergence to local minima. Various 

chaotic time series sequences such as logistic map, tent map, Henon map, Ikeda map, 

Chua‟s system, Lorenz‟s systems, and Lozi‟s map are available [188,189,190].Recently, 

several attempts were made for PSO using chaos methods based on logistic map to 

overcome the drawbacks of PSO technique of premature convergence 

[183,191,192,193,194]. 

In most of the stochastic search algorithms, random number generators (RNGs) 

have been widely used. RNGs are known for slow convergence and have an inherent 

characteristic of sticking to a solution. To overcome this difficulty, chaotic generators 

have recently been used instead of RNGs. The following equation is used to replace 

RNGs [182]. 

N(t)= R* N(t-1)*(1-N(t-1))              (3.15) 

The logistic map illustrated in equation (3.15) is one of the simplest dynamic systems 

which demonstrates chaotic behavior where N(t) is the value of chaotic variable in tth 

iteration and R shows the bifurcation parameter of the system [186]. In Figure 3.4, a 

comparison is made between chaotic numbers and random numbers. The above 

formula was coded in Matlab 7 to generate two hundred chaotic numbers between 0 and 

1. Here, R and N are initialized to 4 and 0.1 respectively while rand () function is used to 

generate two hundred random numbers. The function rand () returns a random value 

between 0 and RAND_MAX, where RAND_MAX is maximum value that can be stored 

by an integer variable. The numbers were divided by RAND_MAX to get two hundred 

random numbers between 0 and 1. From Figure 3.4, it can be observed that chaotic 

numbers have higher degree of disorder which facilitates high diversity in the particles 

and thus helps the algorithm to converge rapidly towards the solution.  

Figure 3.4 Comparison between random numbers and chaotic numbers 
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3.6 Mutation strategy  

Particle swarm optimization typically converges relatively rapidly in the first part of 

the search and then slows down or stops. This behavior has been attributed to the loss 

of diversity in the population and a number of researchers have suggested methods to 

overcome this drawback with varying degrees of success [195]. Looking at the positions 

of the particles when the swarm had stagnated, it is clear that the points were very tightly 

clustered and the velocities were almost zero. The points were often not that far from the 

global optimum but the updating equations, due to the almost zero velocity, were unable 

to generate new solutions which might lead the swarm out of this state. This behavior 

can also lead to the whole swarm being trapped in a local optimum from which it 

becomes impossible to escape. As mutation is capable of introducing diversity in the 

search procedure, two types mutation have attracted the researchers - mutation of 

global best and mutation based on sharing information from neighbors. Because the 

global best individual attracts all members of the swarm, it is possible to lead the swarm 

away from a current location by mutating a single individual if the mutated individual 

becomes the new global best. This mechanism potentially provides a means both 

escaping local optima and speeding up the search.  

In this chapter, a mutation operator is introduced which mutates some particles 

selected randomly from the swarm. Mutation is not carried out each time, the mutation 

process will begin if the number of iteration is less than the product of maximum number 

of iteration and probability of mutation then only the mutation is performed on the 

position of the particle. Given a particle, a randomly chosen variable, say   , is mutated 

to assume a value   
  as given by following equation.  

  
  { 

    (       )                

    (       )                
             (3.16) 

when flip denotes the random event of returning 0 or 1. UB and LB denote the upper and 

lower bound of the variable    respectively. The function  (   ) returns a value in the 

range [0, x] such that the probability of  (   ) being close to 0 increases as y increases. 

 (   )     (   
.  

 

     
/
 

)              (3.17) 

where r is the random number generated in the range [0, 1],       is the maximum 

number of iterations and t is the number of iteration. The parameter b determines the 

degree of dependence of mutation on the iteration number. There are two reasons for 
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adopting this method: (i) if there is no premature convergence (ii) The algorithm will not 

increase computational overhead much. 

3.7 Proposed particle swarm optimization algorithm for FFSP 

The proposed methodology introduces an improved algorithm by combining PSO with 

chaotic numbers and mutation operator is embedded to escape from local optima and to 

improve the solution diversity. Various steps involved in the proposed PSO algorithm are 

listed out below. 

Step 1. Initialize the parameters such as population size, maximum iteration, 

decrement factor, inertia weight, social and cognitive parameters.  

Step 2. Input number of jobs, number of stages, and number of machines at each 

stage, and processing times. 

Step 3. Generate the initial position values of the particle:    
       (         )  

 (   ) where xmin = 1.0, xmax = 1+Mj and N(0,1) is a chaotic number between 

0 and 1. Generate initial velocities of the particle    
       (         )  

 (   ) where vmin = -4.0, vmax = 4.0 and N(0,1) is a chaotic number between 0 

and 1 where Mj is the number of machines in jth stage 

Step 4. Get the schedule using encoding scheme as mentioned in Section 3.4.  

Step 5. Evaluate each particle‟s fitness (makespan).  

Step 6. Find out the personal best (pbest) and global best (gbest).  

Step 7. If (t< (      * PMUT), then perform mutation on    
 .  

                  (PMUT is the probability of mutation)  

Step 8. Update velocity, position and inertia weight by using equations (3.7), (3.8) 

and (3.9). All the random number used in equation 3.7 is replaced by chaotic 

number. 

Step 9. Terminate if maximum number of iterations is reached and store the gbest 

value. Otherwise, go to Step 3. 

Step 10. End 

3.8 Proposed quantum-behaved particle swarm optimization algorithm for FFSP 

The proposed methodology introduces an algorithm by combining QPSO with chaotic 

numbers and mutation operator is embedded to escape from local optima and to 

improve the solution diversity. Various steps involved in the proposed QPSO algorithm 

are listed out below 

Step 1. Initialize the parameters such as population size, maximum iteration, k,  ,   

with chaotic number between 0 and 1.  
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Step 2. Input number of jobs, number of stages, and number of machines at each 

stage, and processing times. 

Step 3. Initialization of swarm positions: Generate the initial position values of the 

particle :    
       (         )   (   ) where xmin = 1.0, xmax =1+Mj and 

N(0,1) is a chaotic number between 0 and 1. 

Step 4. Get the schedule using encoding scheme as mentioned in section 3.4.  

Step 5. Evaluate each particle‟s fitness (makespan).  

Step 6.  Comparison to pbest (personal best): Compare each particle‟s fitness with the 

particle‟s pbest. 

Step 7.  Comparison to gbest (global best): Compare the fitness with the population‟s 

overall previous best. 

Step 8. If (t< (      * PMUT), then perform mutation on    
 .  

(PMUT is the probability of mutation)  

Step 9.  Then calculate the mean value of the best position (Mbest) using Eq. 3.13 and 

generate the Contraction-Expansion factor using equation. 3.14. 

Step 10. Update the positions of all particles according to equations.3.10 and 3.11 

Step 11. Repeat the cycle: loop to Step 4 till the stop criterion is met or terminate if 

maximum number of iterations is reached and store the gbest value. 

Step 12.   END 

3.9 Results and discussions 

The computational study aims to analyze the performance of the proposed PSO and 

QPSO to minimize the makespan for the flexible flow shop scheduling problems. The 

algorithm was implemented in Matlab 7 on a Pentium IV running at 2 GHz on the 

Windows XP operating system. The benchmark problems are taken from Carlier and 

Neron‟s (2000) [196].The Carlier and Neron‟s [196] problem sizes vary from 10 jobs×5 

stages to 15 jobs×10 stages. The processing times of jobs are uniformly distributed 

between 3 to 20. Three characteristics are used to represent a problem, which are the 

number of jobs, the number of stages, and the number of identical machines at each 

stage. For instance, the notation of j10c5a2 means a 10-job, 5-stage problem. The 

letters j and c denote job and stage, respectively. Letter a defines the structure of the 

machine distribution at the stages. The last number 2 is the instance index for a specific 

type.  

Figure 3.5 illustrates the comparison of the performance of the random and chaotic 

numbers for an instance j15c10a1. It is conceivable to note that QPSO algorithm with 
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chaotic numbers improves the makespan and that the best makespan, equal to 236, is 

reached after 88 iterations. It can be observed from Figure 3.5 that the solution 

converges towards the best value faster when the chaotic numbers are used. This is 

because of higher degree of disorderness of the chaotic numbers which facilitates high 

diversity in the particles and helps the algorithm to converge rapidly towards the solution.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 The convergence curve of the problem j15c10 a1 

In order to validate the performance of the proposed methods, the results are 

compared with the earlier studies of Kahraman et al [108], Neron et al‟s[97],Engin and 

Doyen [20] and Alaykiran et al. [19]. The Table 1 represents the comparison of the best 

makespan value obtained by our proposed PSO and QPSO with the GA model 

proposed by Kahraman et al [108], artificial immune system (AIS) model proposed by 

Engin and Doyen‟s [20], branch and bound (B&B) model proposed by Neron et al‟s [97] 

and ant colony optimization model (ACO) proposed by Alaykiran et al. [19]. 

In the Table 3.1 the first columns symbolize the name of the problem. The second 

column shows the Lower Bound of the makespan for the problem. The third and fourth 

column refers to the best makespan result from the proposed PSO and QPSO algorithm. 

The fifth column up to the eight one represent the best makespan resulted from GA, AIS, 

ACO, B&B respectively. Relative deviation criterion is used to compare the results of the 

proposed QPSO with those of the above five mentioned algorithms. The results are 

represented in terms of percentage deviation (PD) of the solution from the lower bound 

(LB) [108].Percentage Deviation (%PD) is defined in the following relation.  

    
                    

          
                    (3.18)  
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Table 3.1 The computational results 

Problem LB 

Proposed                             
PSO 

Proposed                             
QPSO 

GA 
[108] 

AIS 
[20] 

ACO 
[19] 

B&B 
[97] 

 Cmax 
 % 
PD 

 Cmax 
 % 
PD 

 Cmax 
 % 
PD 

 Cmax 
 % 
PD 

 Cmax 
 % 
PD 

 Cmax 
 % 
PD 

j10c5a2 88 88 0 88 0 88 0 88 0 88 0 88 0 

j10c5a3 117 117 0 117 0 117 0 117 0 117 0 117 0 
j10c5a4 121 121 0 121 0 121 0 121 0 121 0 121 0 
j10c5a5 122 122 0 122 0 122 0 122 0 124 1.639 122 0 
j10c5a6 110 110 0 110 0 110 0 110 0 110 0 110 0 
j10c5b1 130 130 0 130 0 130 0 130 0 131 0.769 130 0 
j10c5b2 107 107 0 107 0 107 0 107 0 107 0 107 0 
j10c5b3 109 109 0 109 0 109 0 109 0 109 0 109 0 
j10c5b4 122 122 0 122 0 122 0 122 0 124 1.639 122 0 
j10c5b5 153 153 0 153 0 153 0 153 0 153 0 153 0 
j10c5b6 115 115 0 115 0 115 0 115 0 115 0 115 0 
j10c5c1 68 68 0 68 0 68 0 68 0 68 0 68 0 
j10c5c2 74 74 0 74 0 74 0 74 0 76 2.703 74 0 
j10c5c3 71 71 0 71 0 71 0 72 1.408 72 1.408 71 0 
j10c5c4 66 66 0 66 0 66 0 66 0 66 0 66 0 
j10c5c5 78 78 0 78 0 78 0 78 0 78 0 78 0 
j10c5c6 69 69 0 69 0 69 0 69 0 69 0 69 0 
j10c5d1 66 66 0 66 0 66 0 66 0 NA 

 
66 0 

j10c5d2 73 73 0 73 0 73 0 73 0 NA 
 

73 0 
j10c5d3 64 64 0 64 0 64 0 64 0 NA 

 
64 0 

j10c5d4 70 70 0 70 0 70 0 70 0 NA 
 

70 0 
j10c5d5 66 66 0 66 0 66 0 66 0 NA 

 
66 0 

j10c5d6 62 62 0 62 0 62 0 62 0 NA 
 

62 0 
j10c10a1 139 139 0 139 0 139 0 139 0 NA 

 
139 0 

j10c10a2 158 158 0 158 0 158 0 158 0 NA 
 

158 0 
j10c10a3 148 148 0 148 0 148 0 148 0 NA 

 
148 0 

j10c10a4 149 149 0 149 0 149 0 149 0 NA 
 

149 0 
j10c10a5 148 148 0 148 0 148 0 148 0 NA 

 
148 0 

j10c10a6 146 146 0 146 0 146 0 146 0 NA 
 

146 0 
j10c10b1 163 163 0 163 0 163 0 163 0 163 0 163 0 
j10c10b2 157 157 0 157 0 157 0 157 0 157 0 157 0 
j10c10b3 169 169 0 169 0 169 0 169 0 169 0 169 0 
j10c10b4 159 159 0 159 0 159 0 159 0 159 0 159 0 
j10c10b5 165 165 0 165 0 165 0 165 0 165 0 165 0 
j10c10b6 165 165 0 165 0 165 0 165 0 165 0 165 0 
j10c10c1 113 115 1.77 115 1.77 115 1.77 115 1.77 118 4.425 127 12.39 
j10c10c2 116 117 0.862 116 0 117 0.862 119 2.586 117 0.862 116 0 
j10c10c3 98 113 15.31 108 10.2 116 18.37 116 18.37 108 10.2 133 35.71 
j10c10c4 103 112 8.738 110 6.796 120 16.5 120 16.5 112 8.738 135 31.07 
j10c10c5 121 125 3.306 122 0.826 125 3.306 126 4.132 126 4.132 145 19.83 
j10c10c6 97 103 6.186 102 5.155 106 9.278 106 9.278 102 5.155 112 15.46 
j15c5a1 178 178 0 178 0 178 0 178 0 178 0 178 0 
j15c5a2 165 165 0 165 0 165 0 165 0 165 0 165 0 
j15c5a3 130 130 0 130 0 130 0 130 0 132 1.538 130 0 
j15c5a4 156 156 0 156 0 156 0 156 0 156 0 156 0 
j15c5a5 164 164 0 164 0 164 0 164 0 166 1.22 164 0 
j15c5a6 178 178 0 178 0 178 0 178 0 178 0 178 0 
j15c5b1 170 170 0 170 0 170 0 170 0 170 0 170 0 
j15c5b2 152 152 0 152 0 152 0 152 0 152 0 152 0 
j15c5b3 157 157 0 157 0 157 0 157 0 157 0 157 0 
j15c5b4 147 147 0 147 0 147 0 147 0 149 1.361 147 0 
j15c5b5 166 166 0 166 0 166 0 166 0 166 0 166 0 
j5c5b6 175 175 0 175 0 175 0 175 0 176 0.571 175 0 
j15c5c1 85 85 0 85 0 85 0 85 0 85 0 85 0 
j15c5c2 90 90 0 90 0 91 1.111 91 1.111 90 0 90 0 
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For seventy seven benchmark problems solved here, it is observed from the Table 1 

that most of the makespan values by the proposed PSO and QPSO algorithm have 

smaller PD over GA, AIS, ACO and B&B. Again it is noticeable that proposed QPSO 

performs better than the proposed PSO algorithm. Average percentage deviation (APD) 

of the proposed QPSO is also compared with proposed PSO, GA, AIS, ACO and B&B 

for benchmark problems of flexible flow shop scheduling problem. The Average 

percentage deviation (APD) is defined as follow. 

     
∑   ( ) 

   

 
                                      (3.19) 

Where I is the total number of problems and L stands for index of the problem. The 

APD for proposed PSO, GA, AIS, ACO and B&B are 1.368, 1.624, 1.659, 1.443 and 

3.634 respectively. The APD for proposed QPSO is obtained as 1.012 which happens to 

be superior as compared to other algorithms. The performance of B&B is worst among 

all the algorithms. 

The improvement rate for APD using QPSO is defined as follows: 

                 ( )  
(                         )

                 
                                 (3.20) 

The improvement rate of average percentage deviation (APD) of proposed QPSO is 

found to be 26.0812 % with respect to proposed PSO, 37.73% with respect to GA, 

38.95% with respect to AIS, 29.946% with respect to ACO and 72.18 % with respect to 

j15c5c3 87 87 0 87 0 87 0 87 0 87 0 87 0 
j15c5c4 89 89 0 89 0 89 0 89 0 89 0 90 1.124 
j15c5c5 73 74 1.37 73 0 75 2.74 74 1.37 73 0 84 15.07 
j15c5c6 91 91 0 91 0 91 0 91 0 91 0 91 0 
j15c5d1 167 167 0 167 0 167 0 167 0 167 0 167 0 
j15c5d2 82 84 2.439 82 0 84 2.439 84 2.439 86 4.878 85 3.659 
j15c5d3 77 83 7.792 80 3.896 83 7.792 83 7.792 83 7.792 96 24.68 
j15c5d4 61 81 32.79 77 26.23 84 37.7 84 37.7 84 37.7 101 65.57 
j15c5d5 67 80 19.4 80 19.4 80 19.4 80 19.4 80 19.4 97 44.78 
j15c5d6 79 82 3.797 81 2.532 82 3.797 82 3.797 79 0 87 10.13 
j15c10a1 236 236 0 236 0 236 0 236 0 236 0 236 0 
j15c10a2 200 200 0 200 0 200 0 200 0 200 0 200 0 
j15c10a3 198 198 0 198 0 198 0 198 0 198 0 198 0 
j15c10a4 225 225 0 225 0 225 0 225 0 228 1.333 225 0 
j15c10a5 182 182 0 182 0 182 0 182 0 182 0 183 0.549 
j15c10a6 200 200 0 200 0 200 0 200 0 200 0 200 0 
j15c10b1 222 222 0 222 0 222 0 222 0 222 0 222 0 
j15c10b2 187 190 1.604 189 1.07 187 0 187 0 188 0.535 187 0 
j15c10b3 222 222 0 222 0 222 0 222 0 224 0.901 222 0 
j15c10b4 221 221 0 221 0 221 0 221 0 221 0 221 0 
j15c10b5 200 200 0 200 0 200 0 200 0 NA 

 
200 0 

j15c10b6 219 219 0 219 0 219 0 219 0 NA   219 0 

Average percentage 
deviation (APD) 

1.368  1.012  1.624  1.659  1.443  3.634 
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branch and bound (B&B) for seventy seven benchmark problems considered in the 

study. 

The convergence curve is drawn for different data set to compare the proposed 

QPSO and proposed PSO algorithm. The Figure 3.6 (a) to 3.9 (a) shows the 

convergence of the problems 10jobs 5stages, 10jobs 10stages, 15jobs 5stages, 15jobs 

10stages. It is conceivable to note that proposed QPSO algorithm perform better than 

the proposed PSO algorithm as it converges as a faster rate as compared to proposed 

PSO algorithm. The Figure 3.6 (b) to 3.9 (b) illustrates the performance of basic QPSO 

and the proposed QPSO for the benchmark problems. It can be observed from Figure 

3.6 (b) to 3.9 (b) that the solution converges towards the best value faster when the 

chaotic numbers are used for initialization of the particle position and mutation is used to 

avoid premature convergence. 

 

 

 

.
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Figure 3.6 The convergence curve for 10 jobs 5stages. (Problem j10c5a2) 
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Figure 3.7 The convergence curve for 10 jobs 10stages. (Problem j10c10c3) 
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Figure 3.8  The convergence curve for 15 jobs 5stages. (Problem j15c5c1) 
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Figure 3.9 The convergence curve for 15 jobs 10stages. (Problem j15c10a1) 
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3.10 Conclusions 

In this chapter, flexible flow shop scheduling problem which is NP-hard is considered 

and an efficient quantum particle swarm optimization on the value of an optimal 

scheduled as developed. A mutation operator used in genetic algorithm is introduced in 

PSO and QPSO for the solution to improve the solution diversity, which to accelerate 

convergence rate strategy and improve solution diversity. For preventing the premature 

convergence to local minima of the algorithm is improved through the use of chaotic 

numbers (Logistic map) instead of random numbers. Thereby, computational efforts can 

be reduced by a large extent. The proposed approach is tested on a set of seventy 

seven instances taken from the literature given by Carlier and Neron‟s [196].The 

comparison was made with the flexible flow shop scheduling problems with proposed 

PSO and proposed QPSO, the GA model proposed by Kahraman et al [108], AIS model 

proposed by Engin and Doyen‟s [20], B&B model proposed by Neron et al‟s [97] and 

ACO proposed by Alaykiran et al. [19]. The obtained results are encouraging in that the 

proposed QPSO algorithm gives smaller percentage deviation from lower bound over 

proposed PSO, GA, AIS, ACO and B&B. The improvement rate of average percentage 

deviation (APD) of proposed QPSO is found to be 26.0812 % with respect to proposed 

PSO, 37.73% with respect to GA, 38.95% with respect to AIS, 29.946% with respect to 

ACO and 72.18 % with respect to branch and bound (B&B) for seventy seven 

benchmark problems considered in the study. The advantage of QPSO algorithm lies in 

the fact that it requires less number of parameters to be controlled at arrive at good 

solutions as compared to other population based methods. The QPSO have been 

effectively tackled through use of mutation inspired from genetic algorithm to make it 

more efficient. The chaotic number used in the work provides solution diversity and 

reduces computational burden. The proposed QPSO approach is a good problem 

solving technique for a flexible flow shop scheduling problem. The next chapter briefly 

discusses on the flexible job shop scheduling. The proposed particle swarm optimization 

(PSO) and quantum particle swarm optimization (QPSO) have been implemented to 

determine the optimum schedule. 
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4.1 Introduction 

A classical job-shop scheduling problem (JSP) deals with a set of n jobs to be 

processed by a set of machines. Each job is processed on machines in a given order 

with a given processing time and each machine can process only one job at a time. In 

contrast, the flexible job-shop scheduling problem (FJSP) is a generalization of the 

classical JSP, where operations are allowed to be processed on any among a set of 

available machines. In fact, the FJSP mainly presents two difficulties. The first one is to 

assign each operation to a machine out of a set of capable machines, and the second 

one is to sequence the assigned operations on all machines. The FJSP is visualized as 

more complex version of the JSS problem [115,117]. Therefore, it is treated as a 

strongly NP-hard combinatorial problem and poses difficulty in solving by exact methods 

as computation time increases unexpectedly [65]. Instead of searching an optimal 

solution with high computational effort, it is prudent to use an efficient heuristic method 

to generate approximate solutions close to the optimum with considerably less 

computational time. In recent years, a large variety of heuristic and meta-heuristics have 

been extensively applied to solve the challenging FJSP because of its computational 

complexity. The heuristic procedures such as dispatching rules, local search, and meta-

heuristic procedures are used to solve such problems and generate approximate 

solutions close to the optimum with considerably less computational time. These 

methods can be classified into two main categories: hierarchical approach and 

integrated approach. In hierarchical approaches, the assignment of operations to 

machines and the sequencing of operations on the machines are treated separately. In 

effect, hierarchical approach is based on the idea of decomposing the original problem in 

order to reduce complexity. Brandimarte [112] has applied hierarchical approach for 

FJSP based on decomposition. First, the routing sub-problem is solved using 

dispatching rules and then the sequencing sub-problem is solved by using TS algorithm. 

Kacem et al. [117] have proposed a localization approach to solve the resource 

assignment problem and an evolutionary approach controlled by the assignment model 

for the FJSP. Integrated approaches consider both assignment and sequencing sub-

problems simultaneously. Usually, integrated approaches produce better solutions than 

hierarchical approaches but more difficult to solve [118].  

The flexible job shop problem is to organize the execution of „n‟ jobs on any among a 

set of available „m‟ machines at a facility. Flexible job shop has „p‟ possible work centers 

and each work center consists of a set of m machines in parallel from which one 
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machine is chosen to perform the task or operation. All jobs and machines are available 

at time zero and a machine can only execute one operation at a given time. Preemption 

is not allowed i.e. each operation must be completed without interruption once it starts. 

The FJSP is machine dependent because the performance of each operation on each 

allowable machine has a different processing time. The objective of the problem is to 

assign each operation to an appropriate machine and to sequence the operations on the 

machines in order to minimize the makespan which is the time required completing all 

the jobs. The FJSP scheduling problem can be formulated mathematically as mixed 

integer linear programming (MILP) problem as follows [119]. The symbols used are as 

follows:  

n: Total number of jobs      

m: Total number of machines 

   :   The     operation of job   

    :  Set of capable machine is assigned to operation     

   : Total number of operations of job   

    :  Processing time of      if performed on machine   

  :  A large number (either or constraint) 

    :  Completion time of operation      

    :  Start time of operation     on machine   

    :  Completion time of operation     on machine   

  :  Completion time of job   

    :  Makespan 

    :  Index of jobs,             

 :  Index of machines,           

    :  Index of operations,              

Decision Variables:- 

          {
                                           

                                                             
 

         {
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Objective:   

                                (4.1) 

Subject to: 

     ∑                                                                             
        (4.2) 

                                                                                        (4.3) 

                (      )                                                    (4.4) 

           (      )                                                                               (4.5) 

           (        )                                                                       (4.6) 

∑            
 ∑                 

                                                                 (4.7) 

∑                                                                             
                    (4.8) 
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Constraints set (4.2) determine the completion times of the jobs. Constraints set (4.3) 

and (4.4) imposes that the difference between the starting and the completion times is 

equal in the least to the processing time on machine k. Constraints sets (4.5) and (4.6) 

ensure that operation     and operation     cannot be done at the same time on any 

machine in the set        . Constraint set (4.7) ensures that the precedence 

relationships between the operations of a job are not violated, i.e. the operation     is not 

started before the operation       has been completed. A constraint set (4.8) ensures 

that an operation is performed on one and only one machine. Constraint set (4.9) set the 

starting and completion times of it on machine k equal to zero if operation     is not 

assigned to machine k and constraints (4.10) determine the makespan. 

Due to the complexity of FJSP, exact techniques, such as branch and bound [12, 

197] and dynamic programming [198,199] are only appropriate to small scale problems. 

For example, two jobs having two operations each need to be scheduled with three 

machines then total number of decision variables becomes 36. The number of 

constraints according to the equation 4.2 is 18 (3 machine^2operation per job× 2job = 

18) , according to the equation 4.3 it is 12 (2operation per job × 2job× 3 machine=12 ), 

according to the equation 4.4 it is 12 (2operation per job ×2job×3 machine=12), 

according to the equation 4.5 it is 24 ((2 operation per job × 2job ) × 2 job× 3 machines = 

24), according to the equation 4.6 it is ((2 operation per job × 2job ) × 2 job× 3 machines 

= 24), according to the equation 4.7 it is 12 (2operation per job ×2job×3 machine=12 ), 



63 
 

according to the equation 4.8 it is 12 (2operation per job ×2job×3 machine=12 ), 

according to the equation 4.9 it is ((2 operation per job ×2job ) × 2 job× 3 machines = 

24). From the above instance, total of 126 numbers of constraints are found for such a 

small problem. So the number of constraints will increase exponentially as the number of 

problem size increases. Therefore, integer programing need exponential computation 

time in most cases which leads to impractical computational burden for large scale 

application. Therefore, scheduling of jobs in a flexible job shops is considered as NP-

hard problem. 

 Most of them fail to obtain good solutions solving large scale problems because of 

the huge memory and lengthy computational time required. Despite the relative success 

of exact algorithms, they are still incapable of solving medium and large instances and 

are too complex for real world problems. It is essential to study non-exact but efficient 

heuristics. Therefore, efficient heuristic algorithms have been proposed to find an 

approximate solution. Hence, a variety of heuristic procedures such as dispatching rules, 

local search and meta-heuristics procedures are used to solve such problems and to 

generate approximate solutions close to the optimum with considerably less 

computational time. 

This chapter presents a novel PSO and QPSO combined with chaotic numbers and 

mutation operator for solving flexible job shop scheduling problem. The application of 

chaotic sequences based on chaotic logistic mapping instead of random sequences in 

PSO and QPSO, which is a powerful strategy to diversify the initial population and 

improve the algorithm‟s performance by preventing the premature convergence to local 

minima of the algorithm. The mutation operator is used to improve the solution diversity, 

which to accelerate convergence rate strategy. Thus, the possibility of exploring a global 

minimum in problems with many local optima is increased. The search will continue until 

a termination criterion is satisfied. The proposed approach uses PSO and QPSO to 

assign the operations of each job on available capable machines and sequence the 

operations on each machine. The objective considered in this chapter is to minimize 

makespan. 

4.2 Problem representation of flexible job shop scheduling 

In this chapter, a real number encoding system is proposed. The integer part is used 

to assign the operations of each job to the machine and fractional part is used to 

sequence of the operations on each machine. The position of the each particle is 

represented by a real number. The value of integer part allocate as a priority level for 
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each operation which is used to select the machine for the operation. First sequencing of 

available machines for an operation according to the increasing order of processing time 

is carried out. If tie occurs, the machine having lower number is given the priority. Priority 

levels for all machines are generated for processing all the operations of each job [16]. 

As an instance, a problem is to execute three jobs on four machines. Table 4.1 

represents data including jobs, operations, and processing times on different machines. 

Table 4.2 shows the order of priority or priority level i.e 1, 2, 3, 4 of machines 

corresponding to each operation.  

Table 4.1 Example problem of FJSP 
 

Job Operations Machine 1 Machine 2 Machine 3 Machine 4 

 
Job 1 

O1,1 9 5 4 3 
O1,2 7 8 9 5 
O1,3 5 8 8 3 

Job 2 O2,1 4 6 5 8 
O2,2 5 4 6 2 

Job 3 O3,1 3 8 6 3 
O3,2 5 5 2 2 

 
Table 4.2 Priority order 

 

Job Operations Priority 1 Priority 2 Priority 3 Priority 4 

 
Job 1 

O1,1 M4 M3 M2 M1 
O1,2 M4 M1 M2 M3 
O1,3 M4 M1 M2 M3 

Job 2 O2,1 M1 M3 M2 M4 
O2,2 M4 M2 M1 M3 

Job 3 O3,1 M1 M4 M3 M2 
O3,2 M3 M4 M1 M2 

 

Table 4.3 represents the stochastic particle position representation. Initial particle‟s 

positions in the swarm are generated using logistic map function. The maximum 

position (    ) of the particle is taken as the maximum value of priority level (mpl) i.e. 

the number of machines available. The position of the particle must be a positive integer 

as each particle position value represents priority level for each operation. Hence, it lies 

in the range [1, mpl]. For example, the 1st position is 2.25 and the integer value is 2. 

Therefore, operation O1,1 is assigned to machine 3 as per the priority order in Table 4. 2. 

The process order of operations to be scheduled on the same machine depends on the 

value of fractional parts. The operations are sequenced according to the ascending 

order of the fractional part which is processed by the same machine. For instance, 

operations O1,2 and O3,2 are assigned to machine 2. The sequence of operations to be 
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scheduled on machine 2 is operation (O3,2 ) followed by operation(O1,2 ) because the 

fractional part of the particle position for O3,2 is greater than fractional part of the particle 

position for O1,2. If the value of fractional parts is equal then the operation processing 

sequence is randomly chosen. 

Table 4.3 Stochastic particle position representation 

Operation O1,1 O1,2 O1,3 O2,1 O2,2 O3,1 O3,2 

Particle positions 2.25 3.64 1.12 2.44 3.14 2.05 4.82 
priority level 2 3 1 2 3 2 4 
Processing 
machine 

M3 M2 M4 M3 M1 M4 M2 

 

4.3 Proposed particle swarm optimization algorithm for FJSP 

The proposed methodology introduces an improved algorithm by combining PSO 

with chaotic numbers and mutation operator is embedded to escape from local optima 

and to improve the solution diversity. Various steps involved in the proposed PSO 

algorithm to solve flexible job shop are listed out below. 

Step 1. Initialize the parameters such as population size, maximum iteration, 

decrement factor, inertia weight, social and cognitive parameters.  

Step 2. Input number of jobs, number of stages, and number of machines at each 

stage, and processing times. 

Step 3. Generate the initial position values of the particle:    
       (         )  

 (   ) where xmin = 1.0, xmax = mpl and N (0,1) is a chaotic number between 0 

and 1. Generate initial velocities of the particle    
       (         )  

 (   ) where vmin = -4.0, vmax = 4.0 and N (0,1) is a chaotic number between 

0 and 1. 

Step 4. Get the schedule using encoding scheme as mentioned in Section 4.2.  

Step 5. Evaluate each particle‟s fitness (makespan).  

Step 6. Find out the personal best (pbest) and global best (gbest).  

Step 7. If (t< ( tmax× PMUT), then perform mutation on    
 .  

(tmax is the maximum number of iterations and PMUT is the probability of 

mutation)  

Step 8. Update velocity, position and inertia weight by using equations (3.7), (3.8) 

and (3.9). All the random number used in 3.7 is replaced by chaotic number. 

Step 9. Terminate if maximum number of iterations is reached and store the gbest 

value. Otherwise, go to Step 3. 
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Step 10. End 

4.4 Proposed quantum-behaved particle swarm optimization algorithm for FJSP 

Various steps involved in the proposed QPSO algorithm to solve flexible job shop are 

listed out below. 

Step 1. Initialization of swarm positions: Generate the initial position values of the 

particle:    
       (         )   (   ) where xmin = 1.0, xmax = mpl and 

N(0,1) is a chaotic number between 0 and 1.  

Step 2. Input number of jobs, number of operation of each job, number of machines, 

and processing times. 

Step 3. Generate the k ,  ,   with chaotic number between 0 and 1. 

Step 4. Get the schedule using encoding scheme as mentioned in Section 4.2. 

Step 5. Evaluate each particle‟s fitness (makespan).  

Step 6.  Comparison to pbest (personal best): Compare each particle‟s fitness with the 

particle‟s pbest. 

Step 7.  Comparison to gbest (global best): Compare the fitness with the population‟s 

overall previous best. 

Step 8. .     If (t< ( tmax × PMUT), then perform mutation on    
 .  

(tmax is the maximum number of iterations and PMUT is the probability of 

mutation)  

Step 9.  Then calculate the mean value of the best position (Mbest) using equations 

3.13 and generate the Contraction-Expansion factor using equation 3.14. 

Step 10. Update the positions of all particles according to equations 3.10 and 3.11. 

Step 11. Repeat the cycle: loop to Step 4 till the stop criterion is met or terminate if 

maximum number of iterations is reached and store the gbest value. 

Step 12.     END 
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4.5 Results and discussions 

The computational study aims to analyze the performance of proposed PSO and 

QPSO to minimize the makespan for the flexible job shop scheduling problems. The 

algorithms were implemented in Matlab 7 on a Pentium IV running at 2 GHz on the 

Windows XP operating system. The proposed algorithms are tested on three sets of 

problem instances from Kacem et al. [117], Brandimarte [112] and Dauzere-peres [115] 

(DP data). Kacem et al. [117]‟s data set contains three instances ranging from 8×8 to 

15×10 whose scale (n × m, n: number of jobs, m: number of machines). Brandimarte 

[112]‟s (BR) data set contains a set of 10 problems. The number of jobs ranges from 10 

to 20, the number of machine ranges from 4 to 15 and the number of operations for each 

job ranges from 5 to 15. These two data sets are the most commonly adopted 

benchmark instances in the literature on FJSP. The DP data set is a set of 18 problems. 

The number of jobs ranges from 10 to 20, the number of machine ranges from 5 to 10 

and the number of operations for each job ranges from 15 to 25. 

The first data set considered for analysis belongs to Kacem data [117]. Table 4.4 

compares the results of the proposed PSO and QPSO with approach by localization and 

classical GA (AL + CGA) [117], PSO + SA [152], Multistage-base GA (MGA) [118], 

[parallel variable neighborhood search algorithm (PVNS) [125] and hybrid genetic 

algorithm (hGA)[122]. The first column characterizes the size of the problem, in 

which „n‟ stands for the number of jobs and m symbolize the number of given machines 

in the problem. The second column up to the sixth one represent the best makespan 

resulted from AL + CGA, PSO + SA, MGA, PVNS and hGA, respectively. The seventh 

and eighth column signifies the best makespan obtained from five runs of PSO and QPO 

algorithm. Gantt chart of the obtained solution for problem 10×10, 15x10 is illustrated 

in Figure 4.1 and 4.2. Table 4.4 illustrate that the results obtained by the proposed 

QPSO algorithm is superior than or equal to the cited algorithm from the literature. The 

computational results validate this algorithm‟s effectiveness. 

Table 4.4 Makespan of Kacem instances 

Problem 
size 

n x m 

Proposed 
PSO 

Proposed 
QPSO 

AL + CGA 
[117] 

PSO + SA 
[152] 

MGA 
[118] 

PVNS 
[125] 

hGA 
[122] 

8 x 8 14 14 15 15 15 14 14 

10 x 10 7 7 7 7 7 7 7 

15 x 10 11 11 24 12 NA 12 11 
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Figure 4.1 Gantt chart obtained by QPSO (Problem 10 x 10 from Kacem‟s instance) 
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Figure 4.2 Gantt chart obtained by QPSO (Problem 15 x 10 from Kacem‟s instance) 
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In Table 4.5, comparison of makespan obtained by proposed PSO and QPSO to the 

results of the GA [121], PVNS[125] , integrated genetic algorithm [200] and knowledge 

based ant colony optimization (KBACO) [123] on ten FJSP instances from Brandimarte 

data set is made. The first and second columns symbolize the name and size of the 

problem respectively. The third column indicates to the value of lower bound (LB) .The 

fourth and fifth column refers to the best makespan result from proposed PSO and 

QPSO algorithm. The sixth column up to the ninth one represent the best makespan 

resulted from GA, PVSN, integrated genetic algorithm and KB ACO respectively. 

Relative percentage deviation criterion is used to compare the results of the proposed 

PSO and QPSO with those of the above four mentioned algorithms.  

The results are represented in terms of percentage deviation (%PD) of the solution 

from the lower bound (LB) [Equation 3.18].  

Table 4.5 Results of the BR data instances 
 

Problem n x m LB 

Proposed 
PSO 

Proposed 
QPSO 

GA 
[121] 

PVNS 
[125] 

Integrated GA 
[200] 

KB ACO 
[123] 

     %PD       % PD      % PD      % PD      % PD      % PD 

Mk 01 10 x 6 36 39 8.33 37 2.78 40 11.11 40 11.11 40 11.11 39 8.33 

Mk 02 10 x 6 24 26 8.33 26 8.33 26 8.33 26 8.33 27 12.5 29 20.83 

Mk 03 15 x 8 204 204 0.00 204 0.0 204 0.00 204 0.00 204 0.00 204 0.00 

Mk 04 15 x 8 48 60 25.00 60 25 60 25.00 60 25.00 60 25 65 35.42 

Mk 05 15 x 4 168 173 2.98 173 2.98 173 2.98 173 2.98 173 2.97 173 2.98 

Mk 06 10x15 33 63 90.91 64 93.94 63 90.91 60 81.82 62 87.88 67 103.1 

Mk 07 20 x 5 133 139 4.51 139 4.51 139 4.51 141 6.02 139 4.51 144 8.27 

Mk 08 20x10 523 523 0.00 523 0.00 523 0.00 523 0.00 523 0.00 523 0.00 

Mk 09 20x10 299 307 2.68 307 2.68 311 4.01 307 2.68 309 3.34 311 4.01 

Mk 10 20x15 165 203 23.03 202 22.42 212 28.48 208 26.06 206 24.85 229 38.79 

 
It is observed from the Table 4.5 that most of the makespan values by the proposed 

PSO and QPSO algorithm have smaller PD over GA, PVNS, Integrated GA and KBACO. 

Again it is noticeable that proposed QPSO performs better than the proposed PSO 

algorithm. 

The APD [Equation 3.19] for proposed PSO, GA, PVNS, Integrated GA and KBACO 

are found to be 16.58, 17.53, 16.39, 17.22 and 22.16 respectively. APD for QPSO is 

obtained as 16.26 which happen to be superior as compared to other algorithms. The 

performance of KBACO is worst among all the algorithms. 
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The improvement rate for APD using QPSO is defined as follows: 

                 ( )  
(                                )

                 
              (4.13) 

The improvement rate in terms of APD is 1.889 % with respect to proposed PSO, 

7.534% with respect to GA, 0.825% with respect to parallel variable neighborhood 

search (PVNS) algorithm, 5.5366 % with respect to integrated genetic algorithm (IGA) 

and 26.63% with respect to knowledge based ant colony optimization (KBACO) for the 

Brandimarte data set. 

Table 4.6 illustrates the comparisons the computational results of Dauzere-peres 

data set. The first and second columns symbolize the name and size of the problem 

respectively. The third column indicates to the value of lower bound (LB) and upper 

bound (UB). The fourth and fifth column refers to the best makespan results from 

proposed PSO and QPSO algorithm. The sixthth to seventh column represents the best 

makespan results from TS [116], hybrid genetic algorithm (hGA) [122].Table 4.6 

indicates that TS produces better result than proposed QPSO in one case, hGA does 

not give better solution than proposed QPSO . It is identified from the Table 4.6 that 

most of the makespan values by the proposed PSO and QPSO algorithm have smaller 

PD over TS and hGA.  

The APD for the proposed PSO proposed QPSO, TS and hGA are found to be 

1.563, 1.44784, 2.01 and 2.124 respectively. For the Dauzere-peres data set, the 

proposed QPSO has an improvement rate (in APD) of 7.369 % with respect to proposed 

PSO, 27.936% with respect to TS, and 31.836 % with respect to hGA. 

The convergence curve is drawn for 11a of Dauzere-peres data set in Figure 4.3. 

Figure 4.3 illustrates the comparison of the random and chaotic numbers. It is 

conceivable to note that QPSO algorithm with chaotic numbers improves the makespan, 

and that the best makespan, equal to 2050, is reached after 41 iterations. It can be 

observed from Figure 4.3 that the solution converges towards the best value faster when 

the chaotic numbers are used. This is because of higher degree of disorderness of the 

chaotic numbers which facilitates high diversity in the particles and helps the algorithm to 

converge rapidly towards the solution.  
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Table 4.6 Results of the Dauzere-peres instances 

Problem n x m LB,UB 

Proposed 
PSO 

Proposed 
QPSO 

TS 
[116] 

hGA 
[122] 

       %PD         %PD         %PD         %PD  

1a 10x5 2,505 2505 0 2505 0 2518 0.519 2518 0.519 

2a 10x5 2,228 2230 0.090 2230 0.090 2231 0.135 2231 0.135 

3a 10x5 2,228 2229 0.045 2229 0.045 2229 0.045 2229 0.045 

4a 10x5 2,503 2506 0.120 2503 0.000 2503 0.000 2515 0.479 

5a 10x5 2,189 2210 0.959 2207 0.822 2216 1.233 2217 1.279 

6a 10x5 2,162 2174 0.555 2170 0.370 2203 1.896 2196 1.573 

7a 15x8 2,187 2271 3.841 2264 3.521 2283 4.390 2307 5.487 

8a 15x8 2,061 2073 0.582 2073 0.582 2069 0.388 2073 0.582 

9a 15x8 2,061 2066 0.243 2066 0.243 2066 0.243 2066 0.243 

10a 15x8 2,178 2207 1.331 2205 1.240 2291 5.188 2315 6.290 

11a 15x8 2,017 2064 2.330 2050 1.636 2063 2.281 2071 2.677 

12a 15x8 1,969 2021 2.641 2019 2.539 2034 3.301 2030 3.098 

13a 20x10 2,161 2253 4.257 2253 4.257 2260 4.581 2257 4.442 

14a 20x10 2,161 2167 0.278 2167 0.278 2167 0.278 2167 0.278 

15a 20x10 2,161 2165 0.185 2165 0.185 2167 0.278 2165 0.185 

16a 20x10 2,148 2258 5.121 2252 4.842 2255 4.981 2256 5.028 

17a 20x10 2,088 2136 2.299 2134 2.203 2141 2.538 2140 2.490 

18a 20x10 2,057 2124 3.257 2123 3.209 2137 3.889 2127 3.403 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 The convergence curve of the QPSO algorithm  

(Problem 11a from DP data set) 
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The comparison between the proposed QPSO algorithm and the results obtained by 

other algorithms is made in Tables 4.5 and Table 4.6. The proposed algorithm has 

outperformed almost all the benchmark instances. Therefore, it is concluded from the 

computational results that the proposed QPSO provides better performance than those 

testified by other algorithms. 

4.6 Conclusions 

In this charter, flexible job shop scheduling problem which is NP-hard was 

considered and an efficient PSO and QPSO to find near-optimal schedules has been 

used. The proposed QPSO approach is a found to be a good problem solving technique 

for scheduling problem. The algorithm is applied three sets of problem instances from 

Kacem et al. [117], Brandimarte [112] and Dauzere-peres [115]. It has been validated 

that the results obtained by proposed QPSO has an improvement rate of 7.369 % with 

respect to proposed PSO, 27.936% with respect to TS, 31.836 % with respect to hybrid 

genetic algorithm (hGA) for the DP data set in terms of APD. The improvement rate in 

terms of APD is 1.889 % with respect to proposed PSO, 7.534% with respect to GA, 

0.825% with respect to parallel variable neighborhood search (PVNS) algorithm, 5.5366 

% with respect to integrated genetic algorithm (IGA) and 26.63% with respect to 

knowledge based ant colony optimization (KBACO) for the Brandimarte data set. For the 

Dauzere-peres data set, the proposed QPSO has an improvement rate (in APD) of 

7.369 % with respect to proposed PSO, 27.936% with respect to TS, and 31.836 % with 

respect to hGA. The results indicate that QPSO produces either better solutions or same 

as compared to best known solutions in the literature. It has been demonstrated that 

QPSO outperforms other well-known algorithms at least for benchmark instances 

considered in the study. The study can be extended in future to consider more number 

of problems, proposed QPSO with local search techniques to reduce computational 

burden, and consider machine set up time. The next chapter addresses to produce a 

robust schedule for a flexible flow shop and job shop scheduling problem with random 

machine breakdown. Multi-objective framework based on particle swarm optimization 

(PSO) and quantum particle swarm optimization (QPSO) is proposed to generate the 

robust schedule by minimizing the makespan and the robust measures simultaneously.
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5.1 Introduction 

The research area of production scheduling has received extensive attention from 

both the academic and the industries over the last decade. However, most of the shop 

scheduling research assumes that scheduling parameters are known and deterministic. 

The real world manufacturing environments is quite dynamic in nature and schedules 

are subjected to various disruptions due to a wide range of stochastic uncertainties 

[132,133]. For example, resource shortages and machine breakdowns can delay a 

schedule‟s completion time. It is essentially important for the manufacturing firms to 

improve the performance of production scheduling systems that can address internal 

uncertainties such as machine breakdown, tool failure, and change in processing times. 

The schedules must meet the deadline committed to customers because failure to do so 

may result in a significant loss of goodwill. Also scheduling of activities should be 

efficient enough to use the available resources in an effective manner. To address these 

issues, shop scheduling has motivated the researchers in both academia and industry 

and a variety of scheduling problems have been acknowledged from real-world 

manufacturing environments [140,144]. FFSP and FJSP problems become much more 

difficult to solve if uncertainties are considered. The uncertainties in manufacturing 

context can be attributed due to resource and job [201,202]. The uncertainties due to 

resource may be listed as machine breakdown, unavailability or failure of tools, operator 

illness, loading limits, delay in the arrival or shortage of materials, defective material etc. 

Uncertainties due to job may be listed as rush jobs, due date changes, job cancellation, 

changes in job priority, early or late arrival of jobs, changes in job processing time etc. 

Among all the uncertain events, machine breakdown is one of the significant 

disruptions in shop scheduling problems. In this study, the flexible flow shop scheduling 

problem (FFSP) and flexible job shop scheduling problem (FJSP) is dealt considering 

stochastic machine breakdown as the uncertainty. In addition to normal performance 

measures such as makespan, flow time, and tardiness, two more measures known as 

robustness and stability are considered in the uncertain environments [203,204,205]. 

Uncertainty has two kinds of major negative impacts on initial schedules. First, it 

degrades schedule performance measured in terms of deviation of makespan between 

the realized schedule (with disruptions) and the predictive schedule (without 

disruptions)[]. This kind of effect is known as robustness. If the schedule performance 

does not deteriorate in disruptions situation then the schedule is termed as a robust one. 

Secondly, unexpected disruptions cause inconsistency. This kind of effect is known as 
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stability. The schedule which does not deviate the completion time of the unaffected 

operations from the original schedule in a disrupted situation then it is called stable 

[142].  

In this chapter, robustness of flexible flow shop and job shop scheduling under the 

stochastic machine breakdown is evaluated. The proposed PSO and QPSO which is 

described in section 3.7 and 3.8 is used to obtain a schedule that reduces the effect of 

machine breakdowns in the overall performance (makespan). Three popular robustness 

measures are tested in a multi objective framework. An experimental study and analysis 

of variance (ANOVA) is conducted to study the effect of different proposed robustness 

measures on the performance under uncertainty situation so that decision makers can 

determine trade-offs between makespan and robustness for their schedules Exhaustive 

experimental study is conducted to study the effect of different proposed robustness 

measures on the generated schedules using benchmark problems.  

5.2 Machine breakdown formulation  

The performance of a schedule is usually challenged with disturbances and 

unpredicted events. In real world manufacturing environment, a shop floor may be 

affected by various uncertain factors. Flexible flow shop environment with random 

machine breakdowns during schedule execution is considered here.  

5.2.1 Machine breakdown formulation for FFSP 

A shop floor may have number of machine breakdowns during a scheduling. 

Machine breakdown in flexible flow shop is commonly described in terms of (a) identify 

in which stage which machine to break down, (b) the repair time, and (c) the time of 

breakdown [146]. 

As the time of machine failure is not predictable, a probability distribution can identify on 

the basis of historical data. Assume the probability of the stage in which the machine 

break down occurs is subjected to the ratio between the individual stage busy times with 

the total busy time of all stages. 

   
    

        
                 (5.1) 

where     The probability of stage m to fail,         : the busy time of stage  m, and 

         : the total busy time of all stages.  

Assume the probability of machine break down is subjected to the ratio between the 

individual machine busy times with the total busy time of all machines.  

   
   

       
                             (5.2) 
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where      The probability of machine k to fail in stage   ,        : the busy time of 

machine k in stage   , and         : the total busy time of all machines in stage   . 

The machine breakdown level is categorized by two parameters: (i) two levels of 

machine breakdown duration (repair time) i.e. low level and high level and (ii) the interval 

of machine breakdown occurrence time i.e. early and late. The machine breakdown time 

and the breakdown duration (repair time) are generated by uniform distributions. 

    ,            -             (5.3) 

RTK: Machine breakdown duration (repair time), where           are disruption level 

coefficient between [0, 1]    

    ,            -             (5.4) 

BTK: Machine breakdown occurrence time, where            are coefficient between 

[0, 1] 

5.2.2 Machine breakdown formulation for FJSP 

As the breakdowns occur randomly, we have proposed robust schedule a simulator 

to simulate the situations that allow the machines to disrupt the operations due to the 

random breakdowns in flexible job shop scheduling problem. Machine breakdown in 

flexible job shop is commonly described in terms of (a) identify which machine to break 

down, (b) the repair time, and (c) the time of breakdown.  

   
   

       
                   (5.5) 

where      The probability of machine k to fail,        : the busy time of machine k, and 

        : the total busy time of all machines. 

The machine breakdown time and the breakdown duration (repair time) are generated 

by uniform distributions as per equation 5.3 and 5.4. 

In this work, we have generated two scenarios for machine breakdown i.e. low 

disruption level and high disruption level. The value of β between 0.1 and 0.15 create the 

disruption level to a relatively low level and these values between 0.35 and 0.4 raises 

the disruption level to be from 35% to 40% of the machine‟s busy time. Similarly, the 

values of α ensure that the breakdown occurrence time. If α is between 0 and 0.5, the 

breakdown occurs during the first half of the scheduling. While the values of α is 

between 0.5 and 1, the breakdown occurs during the second half of the scheduling. 

When sudden breakdown occurs during the process, it is required to re-optimize the 

affected operations from the time of machine breakdown. If any operation is incomplete 
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due to a machine breakdown, the incomplete operation is resumed after the repair is 

complete.  

5.3 Multi-objective optimization for robust schedule  

The scheduling problem becomes a multi-objective nature when makespan and 

robustness are simultaneously considered. In this article, makespan is considered as the 

primary objective for FFSP and FJSP with random breakdowns and the robustness 

measure as the secondary objective. These objectives are linearly combined 

(scalarization method) to form a bi-objective function.  

     (  )     (  )             (5.6) 

where,       is the weight co-efficient and   is the primary objective i.e. makespan and 

the    is the second objective i.e. the robust measure. 

Three types of robustness measures (RMs) are taken from the [142,146]. A 

comparison of performance of the robustness measure is performed within a multi 

objective optimization framework. 

       
 

 
∑  ,  ( )-   ( ) 

   

  ( )
                                            (5.7) 

where N is the sample size and  ,  ( )- is the expected makespan of a realized 

schedule „S‟ i.e. with a specific uncertainty condition and   ( ) is the makespan of a 

predictive schedule i.e. deterministic makespan of schedule S. 

     ,∑     (         -
 
                                   (5.8) 

RM2 is the expected realized total tardiness.     is the expected completion time of job i 

in the realized schedule.    is the is the due date of job i and n is total number of job. 

     ,∑     - 
                           (5.9) 

RM 3 is the expected realized total flow time.  

5.4 The proposed PSO algorithm and approach in machine breakdown 

The proposed PSO algorithm is used to obtain a schedule in an uncertainty 

condition. The procedure for implementing the PSO is given by the following steps 

Step 1. Initialize the parameters such as population size, maximum iteration, 

decrement factor, inertia weight, social and cognitive parameters.  

Step 2. Input number of jobs, number of stages, and number of machines at each 

stage, and processing times. 

Step 3. Generate the initial position values of the particle:    
       (         )  

 (   ) where xmin = 1.0, xmax = 1+Mj and N(0,1) is a chaotic number between 

0 and 1. Generate initial velocities of the particle    
       (         )  
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 (   ) where vmin = -4.0, vmax = 4.0 and N (0,1) is a chaotic number between 

0 and 1.where Mj is the number of machines in jth stage 

Step 4. Get the schedule using encoding scheme. 

 4.1. Decode the particles‟s position. 

 4.2. For all the operation of the jobs 

                (a) Assign operations to machine according to the particle position 

as described in section 3.4 for the flexible flow shop scheduling 

problem and section 4.2 for the flexible job shop. 

               (b) Run the breakdown disruption algorithm according section 5.2.1 

for the flexible flow shop scheduling problem and section 5.2.2 for the flexible 

job shop scheduling problem. 

Step 5. Evaluate each particle‟s fitness (makespan).  

Step 6. Find out the personal best (pbest) and global best (gbest).  

Step 7. If (t< (tmax * PMUT), then perform mutation on    
 .  

( tmax is the maximum number of iterations and PMUT is the probability of 

mutation)  

Step 8. Update velocity, position and inertia weight by using equations 3.7, 3.8 and 

3.9. All the random number used in equation 3.7 is replaced by chaotic 

number. 

Step 9. Terminate if maximum number of iterations is reached and store the gbest 

value. Otherwise, go to Step 3. 

Step 10. End 

5.5 The proposed QPSO algorithm and approach in machine breakdown 

The proposed QPSO algorithm is used to obtain a schedule in an uncertainty 

condition. The procedure for implementing the QPSO is given by the following. 

Step 1. Initialization of swarm positions: Generate the initial position values of the 

particle. 

Step 2. Input number of jobs, number of operation of each job, number of machines, 

and processing times. 

Step 3. Generate the k ,  ,   with chaotic number between 0 and 1. 

Step 4. Get the schedule using encoding scheme. 

 4.1. Decode the particles‟s position. 

 4.2. For all the operation of the jobs 
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                (a) Assign operations to machine according to the particle position 

as described in section 3.4 for the flexible flow shop scheduling 

problem and section 4.2 for the flexible job shop. 

               (b) Run the breakdown disruption algorithm according section 5.2.1 

for the flexible flow shop scheduling problem and section 5.2.2 for the flexible 

job shop scheduling problem. 

Step 5. Evaluate each particle‟s fitness (makespan).  

Step 6.  Comparison to pbest (personal best): Compare each particle‟s fitness with the 

particle‟s pbest. 

Step 7.  Comparison to gbest (global best): Compare the fitness with the population‟s 

overall previous best. 

Step 8. If (t< (tmax * PMUT), then perform mutation on    
 .  

Step 9.  Then calculate the mean value of the best position (Mbest) using Equation. 

3.13 and generate the Contraction-Expansion factor using Equation. 3.14. 

Step 10. Update the positions of all particles according to Equations. 3.10 and 3.11. 

Step 11. Repeat the cycle: loop to Step 4 till the stop criterion is met or terminate if 

maximum number of iterations is reached and store the gbest value. 

Step 12.     END 

5.6 Results and discussions 

The computational study aims to analyze the performance of proposed PSO and 

QPSO to minimize the makespan for the FFSP, FJSP problems and the analysis of 

variance (ANOVA) test is conducted to analyze robustness measures in terms of 

solution quality in a random machine breakdown environment. Multi objectives are 

linearly combined and tested by the proposed PSO and QPSO algorithm.  

5.6.1 Result analysis of FFSP in an uncertainty condition (Machine breakdown) 

To evaluate the performance of the schedule, a comparative study is made by using 

different robust measures with different disturbance scenario for the flexible flow shop 

scheduling problems. Usually, a scheduler requires a schedule that has a minimum 

makespan when released to the shop floor and if a disruption occurs, same schedule 

has the minimum realized makespan after rescheduling is implemented. 

In this section, performance of robustness measures within a multi objective 

framework is analyzed by implementing the proposed PSO and QPSO algorithms with 

different robustness measures. An experimental study is conducted to investigate the 

solution quality of algorithms with robustness measure. The four factors such as break 
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down (BD), robustness measure (RM), algorithm (ALGORITHM) and problem instances 

(TEST CASE) factors and their levels are illustrated in Table 5.1. A full factorial 

experiment design having thirty six experimental runs (2×3×2×3) has been selected to 

gather sufficient information on model behavior with less number of experiments. The 

test cases are taken from [196]. Each test case is subjected to the two different levels of 

the breakdown (high level and low level) and each time is solved using one of the three 

robustness measures. Schedule is subjected to four hundred random machine 

breakdowns in each test in order to draw more accurate responses. Under each 

treatment, multi objective performance measure (Z) is computed. Analysis of variance 

(ANOVA) is performed on the response, Z, using the commercial statistical software 

Minitab 14.  

Table 5.1 Factors and their levels for FFSP 

Factors Index of levels Levels 

BD 
1 Low level breakdown 

2 High level breakdown 

RM 
1 RM1 
2 RM2 
3 RM3 

ALGORITHM 
1 PSO 

2 QPSO 

TEST CASE 
1 j10c5a3 
2 j10c10a3 
3 j15c5a3 

 

Table 5.2 ANOVA table for FFSP 

Source DF Seq SS Adj SS Adj MS F P 

BD 1 0.0000381 0.0000508 0.0000508 0.6 0 

ALGORITHM 1 0.0009509 0.0012478 0.0012478 14.85 0.438 

RM 2 0.0442662 0.0398747 0.0199373 237.21 0 

TEST CASE 2 0.0802305 0.0828654 0.0414327 492.95 0 

BD*ALGORITHM 1 0.0003729 0.0000866 0.0000866 1.03 0.312 

BD*RM 2 0.0044058 0.0039122 0.0019561 23.27 0 

BD*TEST CASE 2 0.0014688 0.001214 0.000607 7.22 0.001 

ALGORITHM*RM 2 0.0012129 0.0017625 0.0008812 10.48 0 

ALGORITHM*TEST CASE 2 0.0011523 0.0012076 0.0006038 7.18 0.001 

RM*TEST CASE 4 0.0522343 0.0522343 0.0130586 155.36 0 

Error 137 0.011515 0.011515 0.0000841     

Total 156 0.1978477         
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The ANOVA shown in Table 5.2 is used for testing statistical significance of factors. 

It can be concluded that effect of the robustness measure, test case, break down type 

and the interaction of break down type and robustness measure are significant at 

significant level of 0.05. The Figures 5.1 and 5.2 illustrate that the breakdown type (BD) 

and robustness measure (RM) has a significant impact on the schedule in a multi-

objective framework. As indicated in Figure 5.2, better schedule is obtained with the RM 

3 and QPSO algorithm. 
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Figure 5.1 Main effects plot (data mean) for Response for FFSP 
 

 

Figure 5.2. Interaction Plot (data means) for Response for FFSP 
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The proposed PSO and QPSO algorithm is tested in a multi objective framework 

according to equation 5.6 i.e. the primary objective as makespan and the second 

objective as the robust measure (RM3) on two different breakdown scenarios in the 

flexible flow shop scheduling, is analyzed on benchmark problem instances from Carlier 

and Neron [196].Table 5.3 compares the results of the proposed QPSO with proposed 

PSO. The first column symbolizes the name of the problem. The second and third 

column represents the makespan results from proposed PSO and proposed QPSO 

during a low disruption level (BD1), fifth and sixth column represents the makespan 

results during a high disruption level (BD2). The fourth and seventh column represents 

the improvement rate. It is conceivable to note that QPSO algorithm improves the 

makespan over the PSO algorithm during the machine breakdown scenarios. 

                 ( )  
(                        )

           
                            (5.10) 

Table 5.3 Comparison results for FFSP at two different machine breakdown scenarios 

Problem 

BD 1 
Improvement 

rate (%) 

BD 2 
Improvement 

rate (%) Proposed 
PSO 

Proposed 
QPSO 

Proposed 
PSO 

Proposed 
QPSO 

j10c5a2 105 97 7.619 118 110 6.780 

j10c5a3 132 126 4.545 154 148 3.896 

j10c5a4 137 130 5.109 164 157 4.268 

j10c5a5 136 135 0.735 160 157 1.875 

j10c5a6 129 121 6.202 151 144 4.636 

j10c5b1 153 141 7.843 171 166 2.924 

j10c5b2 123 114 7.317 140 134 4.286 

j10c5b3 118 118 0.000 137 137 0.000 

j10c5b4 132 132 0.000 162 159 1.852 

j10c5b5 165 165 0.000 199 199 0.000 

j10c5b6 126 124 1.587 145 145 0.000 

j10c5c1 88 82 6.818 110 104 5.455 

j10c5c2 97 93 4.124 115 110 4.348 

j10c5c3 82 81 1.220 117 114 2.564 

j10c5c4 89 85 4.494 103 98 4.854 

j10c5c5 92 87 5.435 94 92 2.128 

j10c5c6 74 72 2.703 83 79 4.819 

j10c5d1 88 86 2.273 107 105 1.869 

j10c5d2 77 76 1.299 89 89 0.000 

j10c5d3 87 86 1.149 104 101 2.885 

j10c5d4 78 75 3.846 101 100 0.990 

j10c5d5 81 73 9.877 106 95 10.377 

j10c5d6 99 96 3.030 107 106 0.935 
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j10c10a1 177 176 0.565 189 189 0.000 

j10c10a2 175 170 2.857 195 192 1.538 

j10c10a3 164 157 4.268 181 181 0.000 

j10c10a4 181 180 0.552 197 197 0.000 

j10c10a5 162 157 3.086 188 184 2.128 

j10c10a6 182 180 1.099 199 197 1.005 

j10c10b1 165 162 1.818 193 193 0.000 

j10c10b2 184 184 0.000 202 200 0.990 

j10c10b3 172 170 1.163 210 204 2.857 

j10c10b4 171 171 0.000 198 196 1.010 

j10c10b5 182 180 1.099 207 204 1.449 

j10c10b6 179 179 0.000 205 204 0.488 

j10c10c1 134 133 0.746 159 159 0.000 

j10c10c2 146 143 2.055 192 187 2.604 

j10c10c3 104 101 2.885 119 117 1.681 

j10c10c4 118 117 0.847 129 126 2.326 

j10c10c5 131 129 1.527 167 162 2.994 

j10c10c6 121 120 0.826 149 148 0.671 

j15c5a1 198 194 2.020 234 222 5.128 

j15c5a2 185 181 2.162 218 215 1.376 

j15c5a3 142 141 0.704 169 168 0.592 

j15c5a4 172 172 0.000 207 204 1.449 

j15c5a5 178 178 0.000 213 213 0.000 

j15c5a6 194 194 0.000 234 234 0.000 

j15c5b1 201 195 2.985 220 217 1.364 

j15c5b2 189 187 1.058 231 229 0.866 

j15c5b3 177 173 2.260 207 207 0.000 

j15c5b4 164 160 2.439 193 190 1.554 

j15c5b5 197 197 0.000 225 220 2.222 

j5c5b6 214 212 0.935 239 235 1.674 

j15c5c1 89 88 1.124 101 98 2.970 

j15c5c2 112 109 2.679 119 117 1.681 

j15c5c3 96 96 0.000 118 115 2.542 

j15c5c4 105 101 3.810 131 128 2.290 

j15c5c5 95 95 0.000 113 111 1.770 

j15c5c6 111 106 4.505 129 126 2.326 

j15c5d1 211 210 0.474 244 240 1.639 

j15c5d2 101 100 0.990 127 124 2.362 

j15c5d3 99 95 4.040 118 114 3.390 

j15c5d4 69 65 5.797 86 85 1.163 

j15c5d5 80 75 6.25 101 94 6.931 

j15c5d6 81 81 0 114 110 3.509 

j15c10a1 248 244 1.613 266 261 1.880 
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j15c10a2 221 220 0.452 242 240 0.826 

j15c10a3 213 213 0.000 234 234 0.000 

j15c10a4 248 249 -0.403 267 266 0.375 

j15c10a5 212 209 1.415 224 221 1.339 

j15c10a6 228 228 0.000 238 237 0.420 

j15c10b1 234 230 1.709 250 246 1.600 

j15c10b2 252 252 0.000 304 301 0.987 

j15c10b3 248 245 1.210 291 290 0.344 

j15c10b4 234 233 0.427 267 265 0.749 

j15c10b5 277 275 0.722 299 295 1.338 

j15c10b6 245 241 1.633 278 278 0.000 

Average Improvement Rate 2.151    1.97 

 

On the Average Improvement Rate of QPSO with respect to PSO, an improvement 

of 2.151% in a low disruption level (BD1), 1.97 % in a high disruption level (BD2) has 

been achieved for the benchmark problems considered in the study.  

5.6.2 Result analysis of FJSP in an uncertainty condition (Machine breakdown) 

A comparative study is made to evaluate the performance of the schedule obtained 

using different robust measures with different disturbance scenario. In this section, 

performance of robustness measures within a multi objective framework is analyzed by 

implementing the proposed PSO and QPSO algorithms with different robustness 

measures for flexible job shop scheduling problem. An experimental study is conducted 

to investigate the solution quality of algorithms with robustness measure. The four 

factors such as break down (BD), robustness measure (RM), algorithm (ALGORITHM) 

and problem instances (TEST CASE) factors and their levels are illustrated in Table 5.4. 

A full factorial experiment design having thirty six experimental runs (2×3×2×3) has been 

selected to gather sufficient information on model behavior with less number of 

experiments. The test cases are taken from BR data set according to different problem 

size. Each test case is subjected to the two different levels of the breakdown (high level 

and low level) and each time is solved using one of the three robustness measures. 

Schedule is subjected to four hundred random machine breakdowns in each test in order 

to draw more accurate responses. Under each treatment, multi objective performance 

measure (Z) is computed. Analysis of variance (ANOVA) is performed on the response, 

Z, using the commercial statistical software Minitab 14.  
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Table 5.4 Factors and their levels for FJSP 
 

Factors Index of levels Levels 

BD 
1 Low level breakdown 
2 High level breakdown 

RM 
1 RM1 
2 RM2 
3 RM3 

ALGORITHM 
1 PSO 
2 QPSO 

TEST CASE 
1 Mk 01 
2 Mk 03 
3 Mk 06 

 

Table 5.5 ANOVA table for FJSP 
 

Source DF Seq SS Adj SS Adj MS F P 

 BD 1 0.031809 0.031809 0.031809 29.41 0.000 
ALGORITHM 1 0.000143 0.000143 0.000143 0.13 0.720 
RM 2 0.069648 0.069648 0.034824 32.19 0.000 
TEST CASE 2 0.142155 0.142155 0.071077 65.71 0.000 
BD* ALGORITHM 1 0.000000 0.000000 0.000000 0.00 0.994 
BD*RM 2 0.052590 0.052590 0.026295 24.31 0.000 
ALGORITHM *RM 2 0.000018 0.000018 0.000009 0.01 0.992 
Error 24 0.025961 0.025961 0.001082   
Total 35 0.322323     

 

The ANOVA shown in Table 5.5 is used for testing statistical significance of factors. 

It can be concluded that effect of the robustness measure, test case, break down type 

and the interaction of break down type and robustness measure are significant at 

significant level of 0.05. The Figures 5.3 and 5.4 illustrate that the breakdown type (BD) 

and robustness measure (RM) has a significant impact on the schedule in a multi-

objective framework. As indicated in Figure 5.4, better schedule is obtained at BD1 i.e. 

low breakdown scenario with the RM 3 (the expected realized total flow time) and QPSO 

algorithm. 

 

 



85 
 

21

0.20

0.15

0.10

0.05

21

321

0.20

0.15

0.10

0.05

321

BD

M
e

a
n

Algorithm

RM TEST CASE

Main Effects Plot for Response
Data Means

 

Figure 5.3 Main effects plot (data mean) for Response for FJSP 
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Figure 5.4 Interaction Plot (data means) for Response for FJSP 
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The proposed PSO and QPSO algorithm is tested in a multi objective framework 

according to equation 5.6 i.e. the primary objective as makespan and the second 

objective as the robust measure RM3 (the expected realized total flow time) on two 

different breakdown scenarios, is analyzed on three sets of problem instances from 

Kacem et al. [117], Brandimarte [112] and Dauzere-peres and paulli [115] (DP data). 

Table 5.6-5.8 compares the results of the proposed PSO and QPSO. The first and 

second columns symbolize the name and size of the problem respectively in 

which n stands for the number of jobs and m symbolize the number of given machines in 

the problem. The third and fourth column represents the makespan results from PSO 

and QPSO during a low disruption level (BD1) and sixth and seventh column represents 

the makespan results during a high disruption level (BD2). The fifth and eighth column 

represents the improvement rate. It is conceivable to note that QPSO algorithm 

improves the makespan over the PSO algorithm during the machine breakdown 

scenarios. The improvement rate for makespan in breakdown scenarios using QPSO 

over PSO is defined as follows: 

Table 5.6 Results of the Kacem instances at two different machine breakdown scenarios 

Problem n × m 
BD 1 Improv-

ement 
rate (%) 

BD 2 Improv-
ement 
 rate (%) 

Proposed 
PSO 

Proposed 
QPSO 

Proposed 
PSO 

Proposed 
QPSO 

1 8 × 8 15 15 0 16 16 0 

2 10×10 8 8 0 8 8 0 

3 15 ×10 13 12 7.692 15 14 6.667 

Average Improvement Rate 2.56  2.22 

 
Table 5.7 Results of the BR data instances at two different machine breakdown scenarios 

Problem n×m 
BD 1 Improv-

ement rate 
(%) 

BD 2 Improv-
ement rate 
(%) 

Proposed 
PSO 

Proposed 
QPSO 

Proposed 
PSO 

Proposed 
QPSO 

Mk 01 10×6 55 52 5.455 66 66 0.000 

Mk 02 10× 6 43 41 4.651 49 45 8.163 

Mk 03 15× 8 292 288 1.370 301 301 0.000 

Mk 04 15× 8 76 76 0.000 90 88 2.222 

Mk 05 15× 4 202 202 0.000 255 253 0.784 

Mk 06 10×15 81 79 2.469 97 97 0.000 

Mk 07 20× 5 188 185 1.596 211 209 0.948 

Mk 08 20×10 615 615 0.000 687 679 1.164 

Mk 09 20×10 361 342 5.263 425 421 0.941 

Mk 10 20×15 269 265 1.487 302 298 1.325 

Average Improvement Rate 2.23   1.55 
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Table 5.8 Results of the Dauzere-peres instances at two different machine breakdown 

scenarios 

Problem n×m 

BD 1 
Improvement 

rate (%) 

BD 2 
Improvement  
rate (%) Proposed 

PSO 
Proposed 

QPSO 
Proposed 

PSO 
Proposed 

QPSO 

1a 10×5 4637 4607 0.647 5069 4967 2.012 

2a 10×5 3809 3685 3.255 3858 3814 1.140 

3a 10×5 3792 3660 3.481 4239 4056 4.317 

4a 10×5 4467 4467 0.000 5359 5324 0.653 

5a 10×5 3698 3687 0.297 3780 3813 -0.873 

6a 10×5 3781 3790 -0.238 3822 3777 1.177 

7a 15×8 4135 3994 3.410 4149 4062 2.097 

8a 15×8 3750 3724 0.693 4023 4010 0.323 

9a 15×8 3627 3580 1.296 4084 3927 3.844 

10a 15×8 4130 4038 2.228 4250 4205 1.059 

11a 15×8 3697 3683 0.379 3896 3896 0.000 

12a 15×8 3512 3509 0.085 3675 3668 0.190 

13a 20×10 4295 4221 1.723 4675 4527 3.166 

14a 20×10 3861 3810 1.321 4253 4201 1.223 

15a 20×10 3719 3694 0.672 4180 4123 1.364 

16a 20×10 3645 3629 0.439 4022 3991 0.771 

17a 20×10 3886 3847 1.004 4179 4014 3.948 

18a 20×10 3831 3774 1.488 4146 3991 3.739 

Average Improvement Rate 1.24   1.67 

 

On the average Improvement Rate of QPSO with respect to PSO, an improvement of 

2.56%, 2.23%, 1.24% in a low disruption level (BD1), 2.22%,1.55%,1.67% in a high 

disruption level (BD2) for Kacem, BR and DP data set, has been achieved for the 

benchmark problems considered in the study. 

The effect of robust measure is demonstrated in the Figure 5.5 and Figure 5.6. Gantt 

chart is obtained from the schedule of the problem 10×10 of Kacem data is illustrated 

in Figure 5.5 by using QPSO algorithm. The obtained schedule in Figure 5.5a results a 

makespan of 7 without machine breakdown. The machine 6 and machine 9 is the 

busiest machine so the probability of machine breakdown in machine 6 and machine 9 is 

more. As the break down occurs at machine 6 between 3 and 4 , it can observed from 

Figure 5.5b that makespan is 8 after the breakdown and the 6 numbers of operations are 

affected that means the completion time of O4,3 , O5,3, O9,3, O10,1 ,O10,2 O10,3 is deviated 

from the initial schedule due to machine breakdown. Gantt chart in Figure 5.6 represents 
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the performance of the multi-objective robustness measure. Multi-objective framework is 

implemented as per equation 5.6 with the robustness measure RM3. The Figure 5.6a 

illustrates the performance of a schedule obtained from multi-objective robustness 

measure without machine breakdown and Figure 5.6b illustrates the performance of a 

schedule with machine breakdown. When the break down occurs, it is observed that 

only one operation i.e. O5,3 is deviated from the initial schedule. In the both the 

schedules, the makespan in 7 without any disturbance and makespan after breakdown 

is 8. The schedule obtained by the robustness measure is most robust and stable as the 

deviation of operation completion times between the realized schedule and the 

predictive schedule is minimum. 

 
 

Figure 5.5a Gantt chart obtained by QPSO without machine breakdown 
(Problem 10 x 10 from Kacem instance) 
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Figure 5.5b Gantt chart obtained by QPSO with machine breakdown. 

   (Problem 10 x 10 from Kacem instance) 
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Figure 5.6a Gantt chart obtained by robustness measure without machine breakdown 

(Problem 10 x 10 from Kacem instance) 
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Figure 5.6b Gantt chart obtained by robustness measure machine breakdown 

 (Problem 10 x 10 from Kacem instance) 

5.7 Conclusions 

In this chapter, a study is made on scheduling of flexible flow shop and job shop 

scheduling problem under uncertainty situation (i.e. random machine breakdowns) and 

an efficient quantum particle swarm optimization is proposed to find near-optimal 

schedules in a disturbance scenario. A multi-objective with robustness measure has 

been proposed to obtain a robust schedule that minimizes the effect of machine 

breakdowns in the overall performance such that the makespan is preserved and 

increases the schedule stability with respect to the deviations of operation completion 

times between the realized schedule and the predictive schedule. Analysis of variance is 

conducted to find out significant factors influencing the schedule. ANOVA results 

revealed that the robustness measure RM3 (the expected realized total flow time) can 

significantly improve the quality of the schedule in both FFSP and FJSP. The proposed 

QPSO approach is found to be a good problem solving technique for scheduling 

problem. The algorithm is applied to seventy seven problem instances of FFSP and 

thirty three problem instances of FJSP. The obtained results are encouraging in that the 

proposed QPSO algorithm produces better solutions as compared to proposed PSO in 

an uncertainty situation. The improvement rate of the proposed QPSO is found to be 
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2.151% in a low disruption level (BD1) and 1.97% in a high disruption level (BD2) for the 

FFSP benchmark problems. Similarly, QPSO results an improvement of 2.56%, 2.23% 

and 1.24% in a low disruption level (BD1), 2.22%, 1.55% and 1.67% in a high disruption 

level (BD2) for Kacem, BR and DP data set respectively over proposed PSO for FJSP 

benchmark problems. Therefore, it is concluded that the proposed QPSO algorithm is 

quite effective in reducing makespan in an uncertainty condition.  

In the next chapter, a novel multi-objective particle swarm optimization (MOPSO) 

technique is proposed and implemented for solving the flexible flow shop scheduling 

problem (FFSP) and flexible job shop scheduling problem (FJSP) with an objective to 

minimize makespan, mean flow time and mean tardiness with the goal of finding 

approximations of the optimal Pareto front and is compared with non-dominated sorting 

genetic algorithm II (NSGA-II) in terms of four performance metrics. 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 6 

 

 

 

 

 

MULTI-OBJECTIVE 

FLEXIBLE FLOWSHOP AND 

JOBSHOP SCHEDULING 

PROBLEM 

 

 

 

 



92 
 

6.1 Introduction 

Due to intense competition in the market place in terms of shorter product life cycles, 

customized products and changing demand pattern, effective scheduling has now 

become an important issue for the growth and survival of manufacturing firms. To 

sustain in the current competitive environment, it is essential for the manufacturing firms 

to improve the schedule based on simultaneous optimization of performance measures 

such as makespan, flow time and tardiness. Minimizing the makespan ensures 

maximization of the processor utilization, an important criterion from the managerial 

point of view. Mean flow time criterion bears significance from the operators‟ point of 

view as it minimizes maximum in-process time in the shop floor. Tardiness of a job 

equals to the amount of time required to complete after its due date. Tardiness is 

important from business perspective as tardy jobs may cause loss of customers and 

damage reputation. Since all the scheduling criteria are important from business 

operation point of view, it is vital to optimize all the objectives simultaneously instead of a 

single objective. According to the shop environments, the shop scheduling can be 

classified as flow shop, flexible flow shop, job shop, and flexible job shop scheduling. 

Most existing research addressed these problems with the mono-objective. 

The solution strategy for multi-objective scheduling problem (MOSP) is roughly 

classified into two types such as weighting approach and Pareto-based approach. The 

weighting approach usually solves by transforming the multi-objective problem into a 

single-objective problem through assigning a different weight for each objective. The 

common combination function is known as linear weighted function. However, linear 

weighted function might not always be able to represent the trade-off relationship 

between the objectives because determination of weights for objectives is a difficult task. 

[152, 157, 206] have proposed various algorithms to solve FFSP and FJSP using 

weighting approach. The Pareto approach on the other hand provides an alternative 

approach for multi-objective optimization. In Pareto approach, the solutions are 

compared based on the Pareto dominance relation. Solution „A‟ dominates solution „B‟, if 

„A‟ is not worse than „B‟ for all objectives or is better than „B‟ for at least one objective. 

Solution „A‟ is Pareto optimal if it is not dominated by any other solution. The Pareto 

approach produces a set of Pareto optimal solutions which represent the trade-off 

between objectives through the distribution of obtained solutions. The user can select 

the favorite solution directly from the number of Pareto optimal solutions. Multi-objective 

flexible flow and job shop scheduling problem has been solved incorporating Pareto-
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optimal criteria in various algorithms like particle swarm optimization and genetic 

algorithm [117,161,207,208,209, 210,211].  

In this chapter, a novel multi-objective particle swarm optimization (MOPSO) 

technique is proposed for solving flexible flow shop scheduling problem (FFSP) and 

flexible job shop scheduling problem (FJSP) with an objective to minimize makespan, 

mean flow time and mean tardiness with the goal of finding approximations of the 

optimal Pareto front. In multi-objective optimization problems, convergence and diversity 

are two important issues. The former specifies the algorithm‟s capability to find the true 

Pareto optimal solutions and the latter imitates the algorithm‟s ability to find as much as 

possible different Pareto optimal solutions. In order to improve diversity, mutation, a 

popular operator in genetic algorithm, is embedded in the standard MOPSO algorithm to 

escape from local optima. However, MOPSO results in a large number of non-dominated 

solutions. Therefore, maximum deviation theory proposed by Wang [212] has been 

adopted for ranking the solution to ease the decision making process of choosing the 

best solution.  

6.2 Multi-objective optimization 

Multi-objective optimization (MOO) is defined as the problem of finding a vector of 

decision variables that satisfies all constraints and simultaneously optimizes a vector 

function whose elements represent the objective functions. Mathematically, the multi-

objective optimization problem can be formulized as follows: 

           (              )  ( )  {  ( )   ( )      ( )} 

                  ( )         ( )      

A MOP solutions minimizes (or maximizes) the components of a vector  ( ) where   

is a n-dimensional decision variable vector   (             ) and   ( )         ( )  

  are set of constraints that determine the feasible solution area in minimizing (or 

maximizing)  ( ) with „q‟ objective functions. In this study, the following objectives of 

FFSP and FJSP are to be minimized: 

Objective 1(  ) : The first objective is to minimize the makespan (    ) i.e, the 

completion time of all jobs in the last stage. 

         *  +                (6.1) 

where     is the completion time of job i at last stage  

Objective 2(  ): The second objective is to minimize the mean tardiness ( ̅) i.e, the 

amount of time by which the completion time of job i differs from the due date. 
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∑      *  (     )+

 
                            (6.2) 

where     is the due date of job i 

Objective 3 (  ): The third objective is to minimize the mean Flow time ( ̅) i.e, the 

amount of time spent by job in the shop.  

  ̅  
 

 
 ∑ (     )

 
                             (6.3) 

where    is the release date. 

6.3 Multi-objective particle swarm optimization (MOPSO) 

Multi-objective optimization (MOO) has been an active area of research in last two 

decades. Such problems arise in many applications where two or more objective 

functions have to be optimized simultaneously. PSO has been extended for solving the 

MOO problems, which is generally known as the multi-objective particle swarm 

optimization (MOPSO). The main difference between a basic PSO (single-objective) and 

MOPSO is the distribution of gbest. In MOPSO algorithm, gbest must be redefined in order 

to obtain a set of non-dominated solutions (Pareto front). In single-objective problems, 

there is only one gbest exists. In MOO problems, more than one conflicting objectives will 

be optimized simultaneously. There are multiple numbers of non-dominated solutions 

which are located on or near the Pareto front. Therefore, each non-dominated solution 

can be the gbest. Extending PSO to handle multi-objectives have been proposed by 

Mostaghim and Teich [213] and Wang and Singh [214]. Coello et al.[151] have proposed 

a MOPSO algorithm which adopts an external repository and mutation operator for 

finding out Pareto-optimal set of solutions. 

6.3.1 Proposed MOPSO algorithm 

Real world problems involve simultaneous optimization of numerous contradistinctive 

and conflicting nature objectives. When all objectives are considered, these solutions are 

optimum in the sense that none of the other solutions in the search area are 

exceptionally good to another solution. These solutions are called as Pareto-optimal 

solutions. The image of the efficient set in the objective space is named as non-

dominated set as each solution dominates the other solution. To identify the non-

dominance, each solution is compared with every single solution and checked for 

satisfying the rules given below for the solution under consideration.  

     , -       , -          , -        , -           (6.4) 

     , -       , -          , -        , -             (6.5) 



95 
 

where   and   correspond to solution number in the population.       and       are two 

objective function values. 

The multi-objective optimization aims at two objectives: 

(a) Converging to the Pareto-optimal solution set;  

(b) Maintaining diversity and distribution in solutions. 

While solving single-objective optimization problems, the gbest that each particle uses 

to update its position is completely determined once a neighborhood topology is 

established. However, in the case of multi-objective optimizations problems, each 

particle might have a set of gbest from which just one can be selected in order to update 

its position. Such set of gbest is usually stored in a different place from the swarm known 

as external archive „  ‟.This is a repository in which the non-dominated solutions found 

so far are stored. The MOPSO maintains an external archive „  ‟of non-dominated 

solutions of the population which is updated after every iteration. The global archive 

„  ‟is empty in the beginning and can store a user-specified maximum number of non-

dominated solutions. In case the number of non-dominated solutions exceeds the 

maximum size of the archive, some individuals are cropped. There are several methods 

of controlling the external archive such as maximin fitness based size control [211], 

epsilon-dominance based size control [213] and crowding distance based size control 

[215]. Archive size control is critical because the number of non-dominated solutions can 

grow very fast although there are studies where archive size is unconstrained [216].   

Crowding distance technique has been extensively applied in evolutionary multi-

objective algorithms to promote diversity. The use of crowding distance measure in 

MOPSO for gbest selection was first made in Raquel and Naval [215]. The approach is 

quite capable in converging towards the Pareto front and generating a well-distributed 

set of non-dominated solutions. In this study, crowding distance approach has only been 

applied to make gbest selection. Crowding distance factor is defined to show how much a 

non-dominated solution is crowded with other solutions. The crowding distance (CD) 

factor of a solution provides an estimate of the density of solutions surrounding that 

solution [217,218]. Figure.6.1 shows the calculation of the crowding distance of point   

which is an estimate of the size of the largest cuboid enclosing   without including any 

other point. CD factor of boundary solutions which have the lowest and highest objective 

function values (fmax and fmin respectively) are given an infinite crowding distance values. 

For other solutions, CD factor for the solution k is calculated by following relation. 
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(         )

(          )
                                                                                                            (6.6) 

Finally, the overall crowding factor is computed by adding the entire individual crowding 

distance values in each objective function. 

 

 

 

 

 

 

  

 

 

 

Figure 6.1 The crowding distance 

 

The non-dominated solutions in „  ‟are sorted in descending crowding distance values 

and top 10% of them are randomly used as gbest guides 

 Particle swarm optimization typically converges relatively rapidly at the beginning of 

the search and then slows down or stagnates due to loss of diversity in the population 

[195]. To overcome this drawback, mutation, a widely used operator in genetic algorithm, 

is used to introduce diversity in the search procedure. When the change of the whole 

archive tends to decrease, the mutation process will begin. If the number of iteration is 

less than the product of maximum number of iteration and probability of mutation then 

only the mutation is performed on the position of the particle. Given a particle, a 

randomly chosen variable, say   , is mutated to assume a value   
  as given by 

following equation.  

  
  { 

    (       )                      

    (       )                      
          (6.7) 

when flip denotes the random event of returning 0 or 1. UB and LB denote the upper and 

lower bound of the variable    respectively. The function  (   ) returns a value in the 

range (   ) such that the probability of  (   ) being close to 0 increases as t increases. 

 (   )     (   
.  

 

    
/
 

)                                                               (6.8) 

where r is the random number generated in the range [0, 1], MAXT is the maximum 

number of iterations and t is the number of iteration. The parameter b determines the 

degree of dependence of mutation on the iteration number.  
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To summarize, the main difference between a basic PSO (single-objective) and 

MOPSO is the distribution of gbest. In single-objective problems, there is only one gbest 

exists. In MOPSO algorithm, gbest must be redefined in order to obtain a set of non-

dominated solutions (Pareto front). Therefore, multiple numbers of non-dominated 

solutions are located on or near the Pareto front. Each non-dominated solution can be a 

gbest. The important feature of MOPSO is that the individuals also maintain a personal 

archive which is known as pbest archive with a maximum size. The pbest archive contains 

the most recent non-dominated positions a particle has encountered in the past. In every 

iteration t, each particle i is allocated with two guides pbest and gbest from its pbest archive 

and swarms global archive „  ‟. After the guide selection, positions and velocities of 

particles are updated according to the equation 6.9 and equation 6.10 where    
  

represents velocity and    
  is the position value of the ith particle with respect to jth 

dimension. Maximum number of generations is set as termination criterion. The 

complete algorithm for MOPSO is shown as follows: 

MOPSO Algorithm 

1. For i= 1 to M (M is the population size)  

a. Initialize position of the particles randomly  

b. Initialize    
 = 0 (v is the velocity of each particle)  

c. Evaluate each particle‟s fitness  

d. Compare each particle‟s fitness with the particle‟s pbest. Compare the fitness 

with the population‟s overall previous best  

e. Find out the personal best (pbest) and global best (gbest). 

2. End For  

3.  Initialize the iteration counter t= 0  

4.  Store the non-dominated vectors found into archive „  ‟ 

(„  ‟is the external archive that stores non-dominated solutions found)  

5. Repeat  

a. Compute the crowding distance values of each non-dominated solution in the      

archive „  ‟ 

b. Sort the non-dominated solutions in „  ‟in descending crowding distance 

values  

c. For i= 1 to M 
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i. Randomly select the global best guide from a specified top 10% of the 

sorted archive „  ‟ and store its position to gbest.  

ii. Compute the new velocity:  

   
         

        (   
       

   )      ((  )  
       

   )                   (6.9) 

               ((  )  
    is the global best guide for each nondominated solution)  

iii. Calculate the new position of         
     

       
                                (6.10)   

iv. If (t< (tmax * PMUT), then perform mutation on    
 .  

(tmax is the maximum number of iterations and PMUT is the 

probability of mutation)  

v. Evaluate    
  

d. End For  

e. Insert all new non-dominated solution into archive „  ‟ if they are not 

dominated by any of the stored solutions. All dominated solutions in the archive 

are removed by the new solution from the archive. If the archive is reached its 

maximum, the solution to be substituted is determined by the following steps:  

i. Compute the crowding distance values of each non-dominated solution 

in the archive „  ‟ 

ii. Sort the non-dominated solutions in archive „  ‟in descending crowding 

distance values  

iii. Randomly select a particle from a specified bottom 10% of the sorted 

archive „  ‟ and replace it with the new solution  

f. Update the personal best solution of each particle. If the current pbest dominates 

the position in the memory, the particle position is updated. 

g. Increment iteration counter t 

6. Until maximum number of iterations is reached. 

6.3.2 Solution ranking by maximum deviation theory 

Since MOPSO results in a large number of non-dominated solutions, choosing a best 

solution depends on decision maker‟s judgment and intuition. Usually, multi-attribute 

decision making (MADM) approaches are adopted to obtain scores for the solutions and 

the solution exhibiting maximum score is selected as the best one. However, the weights 

assigned in multi-attribute decision making process for converting multiple objectives 

into a single equivalent objective score are reasonably subjective in nature and affect the 

decision of ranking the alternative solutions considerably. In order to avoid uncertainty of 

subjective assigning of weights from the experts and extract the accurate information 
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from the available data, maximum deviation theory (MDT) suggested by Wang [212] is 

adopted in this work. The basic idea of MDT rests on smaller weight should be assigned 

to the attribute having similar values in comparison to the attribute having larger 

deviations. 

The non-dominated solutions obtained in MOPSO solutions are used as the decision 

matrix. Every element of the decision matrix denotes the value of jth attribute for ith 

alternative where i=1, 2 ...n, and j=1, 2...m. Normalization of each attribute is carried out 

to transform different scales and units among various attributes into a common 

measurable scale. The normalization of the attribute depends on its type such as “higher 

the better” and “lower the better”. The following equations are used for normalization of 

attributes. 

   
  

    {   }    

    {   }     {   }
 , for lower the better attributes                                                   (6.11) 

   
  

 
       {   }

    {   }     {   }
 , for higher the better attributes                                                 (6.12) 

The difference of performance values for each alternative is computed. For the 

attribute {Aj j=1, 2…m}, the deviation value of the alternative {Si| i = 1, 2 ….n} from all 

the other alternatives can be computed by the following equation 

   (  )  ∑  ( ̃    ̃  )  
 
                                                                                                                    (    )

  
 
                                                                                                       

where wj is the weight of the attributes to be calculated and Dij(wj) is the deviation value 

of the alternatives.  

The total deviation values of all alternatives with respect to other alternatives for the 

attribute {Aj| j =1, 2… m} can be computed by the following relation. 

  (  )  ∑    (  )  ∑ ∑  ( ̃    ̃  )
 
   

 
   

 
                                                                  (6.14)

 
where Dj(wj) is the total deviation value of all the alternatives. 

  The deviation of all the attributes along all the alternatives can be calculated by the 

relation 

 (  )  ∑   (  )  ∑ ∑ ∑  ( ̃    ̃  )
 
   

 
   

 
   

 
                                                            (6.15) 

where D(wj) is deviation of all the attributes along all the alternatives. 

A linear programming model is constructed for finding out the weight vector w to 

maximize all deviation values for all the attributes and is given by 

{
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A Lagrange function is constructed for solving the above model  
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where,
  

is the Lagrange multiplier. The partial derivative of L (wj,) with respect to wj 

and    are 
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Further, wj and    values are calculated from equation 6.17 and 6.18 
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The normalized attribute weights can be further determined by the following relation 
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The non-dominated solutions obtained through MOPSO algorithm are ranked by 

estimating the composite score of each solution by addition of the weighted performance 

of all attributes. Considering the ranking of the solutions, the tool engineer may choose 

suitable parametric setting from the top ranking solutions to justify the objectives set by 

the industry.  

6.4 Results and discussions 

The most widely used scalarization method for multiobjective optimization is the 

weighted sum method. This method combines multiple objectives into an aggregated 

scalar objective function by multiplying each objective function by a weighting factor and 

summing up all terms as it has been described in session 5.4. In many real-life decisions 

making process for the multiobjective problems it is not possible to know in advance the 

relevance of each objective. Even though the decision maker has this information, 

sometimes it is difficult to decide that what weights should be assigned to the objectives 

for a better performance. In such situations for a MOP, a Pareto optimality is prescribed 
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to find solutions (Pareto optimal) that cannot be improved in one objective without 

deteriorating other‟s performance. As the Pareto optimality approach provides a set of 

non-dominated solutions and the knowledge of all these optimal solutions allow the 

decision maker to be more conscious of the trade-offs among the different objectives 

while taking their decisions. To illustrate the effectiveness, we have compared with the 

linearly combined (scalarization method) with pareto optimality approach which is solved 

by MOPSO technique to find non dominated solutions and MDT as a decision maker to 

find out the best solution from the non-dominated solutions. Table 6.1 illustrates the 

comparison of Ten Problem of FFSP with machine breakdown has taken from the 

previous chapter (Chapter 5).  

The first and second columns symbolize the name and lower bound of the problem 

respectively. The third column represents the best makespan obtained by the 

scalarization method from proposed QPSO algorithm. The fifth column represents the 

makespan results from proposed MOPSO and maximum deviation theory during a low 

disruption level (BD1) and seven and ninth column represents the makespan results 

during a high disruption level (BD2). The fourth, sixth, eighth and tenth column 

represents the percentage deviation from the lower bound of the problem according to 

equation 3.18. 

Table 6.1 Comparison between scalarization method and MOPSO for FFSP at two 

different machine breakdown scenarios 

Problem 

LB  
of 
Makes-
pan 

BD 1 BD 2 

Best Cmax 
by 
Scalariz-
ation  
Method 

%PD 
From 
 LB  

MOPSO 
%PD  
from  
LB 

Best Cmax 
by scalar-
zation 
method 

%PD 
 From 
 LB 

MOPSO 
%PD 
from LB 

j10c5a2 88 97 10.23 94 6.82 110 25.00 102 15.91 

j10c5a3 117 126 7.69 119 1.71 148 26.50 132 12.82 

j10c5c1 68 82 20.59 75 10.29 104 52.94 97 42.65 

j10c5c2 74 93 25.68 88 18.92 110 48.65 102 37.84 

j10c10a1 139 176 26.62 151 8.63 189 35.97 180 29.50 

j10c10a2 158 170 7.59 169 6.96 192 21.52 187 18.35 

j15c5a1 178 194 8.99 182 2.25 222 24.72 209 17.42 

j15c5a2 165 181 9.70 170 3.03 215 30.30 192 16.36 

j15c10a2 200 220 10.00 208 4.00 240 20.00 221 10.50 

j15c10a3 198 213 7.58 204 3.03 234 18.18 219 10.61 

Average percentage deviation 13.467  6.564  30.378  21.196 
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Table 6.1 illustrate that most of the makespan values obtained by the MOPSO in a 

machine breakdown scenario have smaller PD from lower bound over the scalarization 

method. The average percentage deviation is 13.67 for scalarization method and 6.564 

for MOPSO in low level disturbance and 30.378, 21.196 for scalarization method and 

MOPSO in high level disturbance respectively. 

In the present work, multi-objective particle swarm optimization (MOPSO) has been 

developed for solving the flexible flow shop scheduling problem (FFSP) and the flexible 

job shop scheduling problem (FJSP) with bi-objective criteria i.e. minimize makespan as 

primary objective and mean flow time and mean tardiness as secondary objective with 

the goal of finding approximations of the optimal Pareto front. In the proposed MOPSO 

algorithm, problem representation presented in section 3 is used to solve the FJSP. The 

algorithm is implemented in Matlab 7 on a Pentium IV running at 2 GHz on the Windows 

XP operating system. 

6.4.1 Result analysis for multi-objective FFSP 

The proposed algorithm is tested on seventy seven instances of FFSP from Carlier 

and Neron‟s [196]. The effectiveness of the proposed MOPSO algorithm is compared 

with another popular multi-objective algorithm known as non-dominated sorting genetic 

algorithm II (NSGA-II) which was first introduced by Deb et al. [217] and successfully 

applied in many multi-objective problems [219, 220, 221].The NSGA-II is coded in 

Matlab 7 as per the FFSP problem represented in section 3.4. 

Based on exhaustive experimentation, Figure 6.2 to 6.9 are drawn to show the 

Pareto front between makespan and mean flow time and makespan and mean tardiness 

for eight benchmark instances of FFSP. The pareto fronts reveal that a small decrease 

of makespan can cause a large increase in the other conflicting objective. The results 

convey two messages: (1) Focusing on optimizing a single objective may result in bad 

performance of the other objective (2) The trade-off relationship between the objectives 

is not always easy to predict. 

.
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Figure 6.2 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J10c5a2 
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Figure 6.3 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J10c5a3 
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 Figure 6.4 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J10c10a2 
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        Figure 6.5 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J10c10a3 
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Figure 6.6 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J15c5a1 
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Figure 6.7 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J15c5a3 
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Figure 6.8 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J15c10a1 
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Figure 6.9 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance J15c10a2 
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There are two goals in a multi-objective optimization: (i) convergence to the Pareto-

optimal set (ii) maintenance of diversity in solutions of the Pareto-optimal set. These two 

tasks cannot be measured adequately with one performance metric. Many performance 

metrics have been suggested to evaluate the non-dominated solutions [217, 222]. To 

evaluate comprehensively the non-dominated solutions obtained by the MOPSO and 

NSGA-II algorithm, four performance metrics are considered in this work. The following 

performance measures are used to compare the results of non-dominated solutions 

obtained by multi-objective algorithms. 

Mean ideal distance (MID): The MID measurement presents the proximity between 

non-dominated solutions and ideal point (0, 0). Algorithm A is considered to have more 

opportunity to reach the Pareto frontier than algorithm B if A has the lower value of MID 

than B. MID of algorithm can be obtained by the following formulation. 

    
∑   

 
   

 
               (6.21) 

where n is the number of non-dominated solutions and    √   
     

  

f1i and f2i are the objective function values for solution i. The performance of the 

algorithm will be better if the value of MID is lower. 

The rate of achievement to two objectives simultaneously (RAS): The value of this 

measure is calculated from the following relation. Smaller value of this criterion indicates 

a higher quality solution. 

    
∑ |      

    | 
    |      

    |

 
                         (6.22) 

  
          

     are the best solutions in the non-dominated sets for objectives 1 and 2. 

Spread of non-dominance solutions (SNS): The spacing metric aims at assessing the 

spread (distribution) of vectors throughout the set of non-dominated solutions. This 

criterion, which is known as an indicator of diversity, is calculated from the following 

relation: 

    √
∑ (      )

  
   

   
            (6.23) 

Diversification matrix (DM): This performance measure gives an indication of the 

diversity of solutions obtained from a given algorithm. 

   √(           )
  (           )

          (6.24) 

where                 is the maximum objective functions value of the of non-

dominated solutions and                 is the minimum objective functions value of 
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the of non-dominated solutions. Larger values of SNS and DM are indicative of higher 

quality solutions. 

The effectiveness of the algorithms is tested by solving seventy seven different 

benchmark problems of Carlier and Neron‟s data set [196]. The results obtained by the 

proposed algorithms are compared in terms of the performance metrics with the NSGA-

II. Table 6.2 and Table 6.3 Illustrate the comparative results of two algorithms with 

respect to four performance measures. From Table 6.2 and Table 6.3, it can be 

concluded that MOPSO outweighs the NSGA-II algorithms in all metrics in terms of the 

number of optimum results out of twenty eight test problems. It is observed from that 

Table 6.2 that the proposed MOPSO superior to the NSGA-II in 61, 54, 55 and 55 out of 

77 test problems with respect to MID, RAS, SNS and DM performance measures 

respectively for the objectives of makespan and mean flow time. Table 6.3 indicates that 

MOPSO performs superior to NSGA-II in 58, 51, 57 and 64 out of 77 test problems in 

MID, RAS, SNS and DM performance measures respectively for the objective of 

makespan and mean tardiness. 

Table 6.2 Performance metrics of Pareto front obtained by the objective of makespan 
and mean flow time 

Problem 
MID RAS SNS Diversity (DM) 

MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II 

j10c5a2 114.647 116.272 8.157 5.866 2.908 1.493 15.435 9.941 

j10c5a3 140.991 141.165 3.6 3.828 1.5084 1.3961 6.3568 6.4621 

j10c5a4 152.812 153.429 8.691 9.6 3.798 4.584 17.664 18.821 

j10c5a5 153.591 153.264 4.91 3.48 0.832 0.9909 8.345 5.936 

j10c5a6 140.019 142.015 6.273 5.443 1.899 0.8084 10.925 8.345 

j10c5b1 154.428 153.29 4.25 2.833 0.511 1.1081 5.656 4.472 

j10c5b2 122.853 123.346 3.075 4.925 0.7031 0.4527 7.2953 5.0803 

j10c5b3 131.302 131.888 3.365 3.699 0.3408 0.8729 7.1929 7.584 

j10c5b4 137.453 137.831 5.825 5.614 2.1593 1.897 7.74661 5.6568 

j10c5b5 115.875 113.214 6.791 7.67 4.33 3.74 8.109 7.277 

j10c5b6 146.24 148.912 16.602 16.923 7.537 8.459 11.37 10.2061 

j10c5c1 139.922 141.039 2.944 4.88 0.8728 1.079 7.56 4.77 

j10c5c2 151.889 152.719 6.05 5.966 3.409 3.320 13.201 12.182 

j10c5c3 135.733 134.272 7.585 6.0691 2.058 1.6099 10.284 11.095 

j10c5c4 110.519 112.185 7.477 7.677 1.901 2.8232 12.389 14.038 

j10c5c5 110.641 113.18 5.623 9.687 1.7351 2.6728 5.063 14.0459 

j10c5c6 111.747 110.302 2.4 4.92 0.5208 0.4281 3.5510 6.3253 

j10c5d1 107.962 108.134 5.04 10.471 3.657 2.811 18.236 11.403 

j10c5d2 125.16 127.49 4.775 5.21 0.3813 0.2746 7.6321 7.1727 
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j10c5d3 97.951 99.637 5.8014 7.05 3.2707 2.5326 11.1628 10.25 

j10c5d4 109.844 113.808 6.375 6.12 3.9137 3.773 13.388 10.0841 

j10c5d5 114.932 115.26 9.075 10.133 4.7376 3.996 17.535 18.629 

j10c5d6 98.803 100.285 4.98 3.475 1.797 1.311 7.102 5.5461 

j10c10a1 194.815 196.419 9.93 10.67 2.7477 2.012 17.9175 13.313 

j10c10a2 222.837 225.517 16.1 15.483 4.2508 2.498 28.801 24.022 

j10c10a3 204.042 204.318 14.418 13.77 3.0585 1.1655 27.6204 22.177 

j10c10a4 204.076 205.065 3.25 5.16 1.0635 1.027 6.3488 5.6356 

j10c10a5 204.64 203.83 4.903 4.641 1.169 1.382 6.025 6.356 

j10c10a6 197.180 198.768 8.556 9.0714 6.1863 4.359 18.56 19.201 

j10c10b1 189.903 191.78 5.849 7.025 1.837 0.876 8.534 6.832 

j10c10b2 232.462 234.201 5.29 6.281 3.414 6.277 6.043 6.862 

j10c10b3 196.029 200.572 6.328 7.514 2.8987 1.8438 13.2774 12.7263 

j10c10b4 227.104 230.546 11.114 10.27 3.712 2.119 18.2002 15.367 

j10c10b5 223.239 221.463 5.74 2.982 1.0545 0.761 5.281 2.492 

j10c10b6 209.365 211.607 4.21 5.84 8.137 6.462 17.198 14.852 

j10c10c1 218.419 220. 810 5.166 6.294 6.0963 4.752 3.201 2.641 

j10c10c2 206.117 207.456 8.667 9.237 5.507 4.958 4.2792 3.483 

j10c10c3 214.976 216.192 4.416 5.25 0.497 0.2817 7.211 7.971 

j10c10c4 227.167 226.74 10.827 10.229 7.463 6.662 11.3792 10.346 

j10c10c5 214.21 216.96 8.075 8.823 12.37 10.81 17.236 18.559 

j10c10c6 210.571 209.127 6.441 7.156 10.568 9.722 14.279 13.046 

j15c5a1 210.196 210.434 7.324 7.055 1.853 1.5091 12.1324 11.7346 

j15c5a2 174.618 175.532 9.645 10.232 1.427 1.375 15.652 13.213 

j15c5a3 160.604 161.157 5.566 5.991 2.323 2.9769 10.440 10.499 

j15c5a4 154.639 153.233 4.911 5.107 2.895 3.719 13.892 12.751 

j15c5a5 196.087 198.156 8.506 6.854 4.979 3.194 14.391 13.238 

j15c5a6 174.378 176.028 6.327 7.198 3.492 4.675 15.494 15.187 

j15c5b1 152.846 153.727 5.412 6.183 4.8214 4.591 10.417 8.7345 

j15c5b2 148.245 149.773 4.819 5.014 7.419 6.2471 12.408 13.619 

j15c5b3 167.924 166.406 8.56 8.173 10.371 9.281 14.209 13.443 

j15c5b4 173.707 174.765 2.5 3.412 1.1416 1.9721 13.905 12.272 

j15c5b5 180.204 181.075 6.173 7.863 6.702 5.0192 11.492 10.7136 

j5c5b6 152.704 155.686 4.346 5.7865 3.3795 2.9887 8.483 7.78 

j15c5c1 179.215 180.626 2.625 3.2951 2.519 3.3977 4.2426 5.637 

j15c5c2 197.906 199.406 5.811 6.2795 2.494 1.745 10.394 9.287 

j15c5c3 169.941 171.763 2.763 2.8817 6.9426 5.523 14.2258 12.4927 

j15c5c4 202.873 203.59 10.317 9.831 1.7016 1.186 16.505 14.372 

j15c5c5 134.127 134.456 4.066 5.25 1.661 1.822 8.814 9.7388 

j15c5c6 157.763 155.178 1.916 1.6512 7.9232 6.746 11.165 12.3981 

j15c5d1 157.102 158.803 8.2291 9.318 3.0253 2.9707 14.402 13.753 
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* The best obtained values are marked in bold letter  

 

Table 6.3 Performance metrics of Pareto front obtained by the objective of makespan 

and mean tardiness 

Problem 
MID RAS SNS Diversity (DM) 

MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II 

j10c5a2 95.6504 95.876 7.773 6.543 2.246 1.77 13.254 12.4192 

j10c5a3 123.759 123.432 5.33 4.8912 2.4092 2.1185 9.0494 8.07718 

j10c5a4 129.22 132.584 7.76 10.197 4.13 7.7696 12.247 18.144 

j10c5a5 152.306 152.492 4.825 4.94 1.6694 1.146 8.66 7.5604 

j10c5a6 119.882 120.186 4.1008 4.237 1.932 1.819 6.821 6.167 

j10c5b1 138.745 141.42 12.861 14.11 1.298 0.8744 6.2154 4.7845 

j10c5b2 146.23 148.67 2.55 2.645 0.4262 0.3955 3.976 4.242 

j10c5b3 132.473 131.638 6.4875 4.2375 2.6122 1.222 9.13 6.655 

j10c5b4 127.055 129.597 11.212 6.201 4.902 3.1372 16.697 13.934 

j10c5b5 109.027 105.387 6.607 9.44 3.073 1.89 10.174 6.306 

j10c5b6 122.15 126.204 12.875 13.623 10.7047 8.917 12.461 9.293 

j10c5c1 118.491 119.905 4.167 4.5067 1.9103 1.819 6.27408 6.0325 

j10c5c2 130.68 130.14 10.797 11.155 2.6064 1.643 13.907 15.181 

j10c5c3 110.463 110.615 5.552 4.857 2.9035 4.013 9.7779 8.94 

j10c5c4 105.28 104.504 9.0754 7.23 4.025 3.239 15.764 12.5481 

j10c5c5 93.6161 92.051 11.321 8.785 7.476 6.029 19.776 15.925 

j10c5c6 90.611 93.55 7.95 8.75 2.4108 1.668 22.61 15.297 

j15c5d2 167.545 169.323 3.485 4.4217 2.493 1.0911 8.4644 7.529 

j15c5d3 166.342 166.410 10.354 11.071 6.6824 5.7765 17.1251 16.6873 

j15c5d4 165.223 167.046 3.412 4.5613 1.4763 1.1873 6.1987 5.9808 

j15c5d5 167.156 168.252 11.053 10.752 3.9241 3.169 17.684 14.2893 

j15c5d6 163.560 164.273 8.452 6.520 2.667 3.4315 13.513 11.7124 

j15c10a1 308.126 307.508 8.782 8.141 3.3631 3.0013 14.866 12.887 

j15c10a2 285.453 285.981 5.683 6.46 1.3375 1.698 9.8812 11.1606 

j15c10a3 294.108 295.652 7.4794 8.3152 3.2982 2.5213 13.0146 12.968 

j15c10a4 300.731 298.763 6.4564 6.9345 4.0748 3.8743 15.4038 13.2571 

j15c10a5 273.554 275.043 4.5917 3.3841 7.5283 6.4025 13.8509 12.1513 

j15c10a6 308.875 309.584 3.9412 4.5784 8.1547 9.0521 14.7881 13.6701 

j15c10b1 327.432 328.570 6.7731 7.8019 3.4365 2.9918 11.6097 10.0839 

j15c10b2 321.608 320.931 10.1953 11.728 7.4607 6.9913 16.5853 17.3217 

j15c10b3 348.036 350.458 3.0341 4.3672 6.297 5.075 12.510 10.2119 

j15c10b4 334.412 334.895 7.5456 6.2897 5.4789 4.5287 10.1882 9.1482 

j15c10b5 354.318 353.425 6.2674 6.9049 9.2581 10.032 16.1239 17.5748 

j15c10b6 318.678 320.679 2.1237 2.9823 6.4778 7.626 10.0835 9.6787 
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j10c5d1 108.134 111.178 5.04 10.1 5.6047 3.8112 17.075 12.44 

j10c5d2 91.281 93.547 10.65 9.857 3.26 2.514 20.462 17.709 

j10c5d3 80.310 84.8535 7.435 10.115 4.301 6.591 16.18 12.967 

j10c5d4 93.294 91.241 9.358 11.632 5.619 5.4102 17.783 16.8885 

j10c5d5 85.8672 86.412 7.494 7.632 2.9102 3.195 11.9315 11.005 

j10c5d6 79.823 79.7817 4.809 5.5366 4.0455 2.2713 8.0435 8.7988 

j10c10a1 162.427 161.705 8.885 7.3625 5.584 2.795 17.214 11.205 

j10c10a2 175.181 175.058 16.0533 16.088 3.805 3.567 30.042 26.9436 

j10c10a3 163.306 165.468 10.165 14.486 6.1077 4.1017 23.6008 15.986 

j10c10a4 165.763 166.21 9.656 11.75 8.89 8.44 17.541 17.608 

j10c10a5 162.38 161.685 5.733 6.329 3.931 5.329 12.804 12.215 

j10c10a6 160.2382 161.252 11.5 12.829 5.0976 4.1982 18.968 17.0293 

j10c10b1 197.6307 201.28 6.122 8.375 5.448 2.5135 12.804 11.346 

j10c10b2 189.903 194.436 5.849 7.8493 4.053 1.8375 8.5346 12.048 

j10c10b3 160.611 160.0244 7.215 7.865 5.8705 3.8458 11.3265 15.126 

j10c10b4 184.47 187.235 9.4375 8.25 3.543 3.2822 13.268 11.40175 

j10c10b5 172.679 170.552 12.378 12.089 5.173 6.627 11.61 12.49 

j10c10b6 165.459 168.406 13.243 13.845 8.281 6.554 12.723 10.151 

j10c10c1 171. 481 171. 785 10.275 11.452 6.814 7.658 16.0262 17.525 

j10c10c2 162.349 163.0547 7.104 7.843 4.732 5.624 8.512 7.231 

j10c10c3 175.617 177.821 12.557 13.142 6.157 5.608 19.893 18.456 

j10c10c4 189.532 190.757 14.965 14.0245 7.854 6.527 13.145 12.987 

j10c10c5 163.845 165.377 12.884 13.743 3.558 3.006 9.279 7.663 

j10c10c6 175.617 174.214 12.557 13.142 6.157 5.289 19.893 17.651 

j15c5a1 186.751 186.817 8.160 7.79125 2.5345 2.894 13.770 14.015 

j15c5a2 194.761 195.561 4.02 4.64 1.729 1.478 6.264 5.621 

j15c5a3 141.415 141.5705 4.2833 4.375 1.4041 1.465 6.931 6.594 

j15c5a4 139.661 140.204 9.496 8.345 4.767 2.188 9.424 7.257 

j15c5a5 177.057 177.6754 10.425 9.93 6.1942 7.299 20.69 19.506 

j15c5a6 135.704 137.0417 9.054 10.545 2.229 1.417 11.7663 9.9102 

j15c5b1 125.942 126.5805 8.6349 9.8445 1.1614 1.053 12.1907 11.05982 

j15c5b2 119.6675 121.4949 3.5847 4.863 5.863 4.1632 14.6752 12.7748 

j15c5b3 132.9352 133.6216 2.0476 3.339 8.613 7.6752 13.8964 12.4785 

j15c5b4 139.3355 138.141 4.718 5.051 6.7623 5.1513 9.538 9.2775 

j15c5b5 128.876 130.464 3.1062 4.433 7.246 6.0636 10.927 9.5606 

j5c5b6 115.6059 117.3896 5.0904 5.4216 11.7082 12.2141 15.5896 14.5478 

j15c5c1 157.656 161.352 5.02 5.82 1.574 1.2895 8.360 8.993 

j15c5c2 175.370 176.0719 12.501 10.76 3.594 3.5519 14.732 13.0941 

j15c5c3 164.5367 166.547 5.751 6.2126 8.6397 8.0205 11.3176 10.4492 

j15c5c4 178.912 179.661 7.582 9.1 4.085 4.228 15.439 13.892 

j15c5c5 117.782 117.618 6.386 8.455 2.9870 6.057 13.025 10.77 
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j15c5c6 135.1804 137.283 3.4921 4.285 6.6273 6.7559 11.9508 10.768 

j15c5d1 134.520 134.771 10.12 9.897 4.2032 5.048 15.9452 14.8112 

j15c5d2 148.212 151.163 14.086 13.35 7.876 8.329 26.963 24.144 

j15c5d3 140.6320 141.743 9.4553 11.303 5.6958 4.362 15.5769 15.02156 

j15c5d4 140.0923 140.7862 6.1756 7.4103 1.7791 1.0245 8.8079 7.4596 

j15c5d5 142.2092 143.847 12.4338 13.6152 2.7419 2.2357 18.1046 16.3782 

j15c5d6 138.355 140.0734 8.2917 8.8364 9.1075 10.546 12.331 10.894 

j15c10a1 264.0627 264.4576 10.66111 10.4762 3.173 2.9276 19.5364 19.347 

j15c10a2 236.1089 236.6064 10.42 13.6032 2.1626 2.317 16.745 15.291 

j15c10a3 247.2432 248.827 7.1507 7.3962 4.5736 3.1914 10.175 8.4179 

j15c10a4 257.724 256.0263 2.7039 1.3126 7.389 6.188 15.9857 14.7902 

j15c10a5 239.1892 241.2065 5.8772 4.6531 2.2587 3.6599 11.6807 10.4051 

j15c10a6 261.4218 260.2784 7.3204 6.2154 7.5947 6.1203 17.6245 16.4887 

j15c10b1 288.5172 286.7642 3.741 4.574 6.2254 7.827 10.2085 8.7214 

j15c10b2 302.1359 305.8405 4.6092 5.8942 8.7087 7.1773 13.3719 12.1065 

j15c10b3 319.2841 320.036 6.3714 4.4620 3.184 2.2907 9.412 8.704 

j15c10b4 305.6367 307.2287 7.917 6.2867 4.5597 3.4283 8.1987 6.9154 

j15c10b5 315.78 316.2417 2.0965 3.1324 7.147 6.6254 10.1974 9.3012 

j15c10b6 297.972 299.4037 3.5752 2.163 4.5087 3.8179 12.435 13.5387 

* The best obtained result is marked in bold letter  

In the present investigation, application of MOPSO results in large number of non-

dominated solutions for optimization of objectives. The Pareto-optimal solutions obtained 

through MOPSO have been ranked by the composite scores obtained through maximum 

deviation theory (MDT) to choose the best solution. The decision matrix is normalized 

using the equations 6.11 and equation 6.12. The objective weights are determined for 

the normalized values of objectives by applying maximum deviation method using 

equation 6.13-6.20. The weighted objective values are estimated by multiplying the 

normalized objective values and the objective weights. The best solution is selected 

depending upon the composite scores obtained by addition of the all the weighted 

objective function values for each alternative. The objectives with highest composite 

score are chosen as the best solution. The solution ranking of the optimal solution set of 

problem j10c10a3 for makespan and mean tardiness has been given in Table 6.4.  
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Table 6.4 Solution ranking obtained through maximum deviation theory for the problem 
j10c10a3  

 

Run 
order 

Objective function 
values 

Normalized 
objective function 
values 

Weighted 
objective function 
values 

Composite 
Score 

Solution 
ranking 

Makespan  
     

mean 
tardiness  

( ̅) 
        ̅           ̅ 

 

1 156 20 1.0000 0 0.5206 0 0.5206 10 

2 157 18.25 0.9474 0.1250 0.4932 0.0599 0.5531 7 

3 158 15.74 0.8947 0.3043 0.4658 0.1459 0.6117 3 

4 160 13.75 0.7895 0.4464 0.4110 0.2140 0.6250 2 

5 162 11.9 0.6842 0.5786 0.3562 0.2774 0.6336 1 

6 165 10.24 0.5263 0.6971 0.2740 0.3342 0.6082 4 

7 166 9.67 0.4737 0.7379 0.2466 0.3537 0.6003 5 

8 167 9.15 0.4211 0.7750 0.2192 0.3715 0.5907 6 

9 170 8.21 0.2632 0.8421 0.1370 0.4037 0.5407 8 

10 171 7.73 0.2105 0.8764 0.1096 0.4202 0.5298 9 

11 173 7.2 0.1053 0.9143 0.0548 0.4383 0.4931 11 

12 175 6 0 1.0000 0 0.4794 0.4794 12 

* The best obtained result is marked in bold letter  

Table 6.5 represents the best makespan value obtained by maximum deviation 

theory based on the of highest composite score and the percentage deviation (%PD) of 

the makespan from the lower bound (LB) [108]. Percentage Deviation (%PD) is defined 

in the equation 3.18.  

Table 6.5 The computational results of maximum deviation theory 
 

Problem LB 

Objectives: Makespan and mean flow time Objectives: Makespan and mean tardiness 

MOPSO NSGA-II MOPSO NSGA-II 

            

       
%PD 

            

       
%PD 

            

       
%PD 

            

       
%PD 

j10c5a2 88 92 4.545 94 6.818 93 5.682 94 6.818 

j10c5a3 117 119 1.709 120 2.564 119 1.709 119 1.709 

j10c5a4 121 125 3.306 129 6.612 128 5.785 129 6.612 

j10c5a5 122 127 4.098 127 4.098 128 4.918 127 4.098 

j10c5a6 110 116 5.455 117 6.364 115 4.545 117 6.364 

j10c5b1 130 142 9.231 143 10.000 142 9.231 142 9.231 

j10c5b2 107 117 9.346 119 11.215 117 9.346 118 10.280 

j10c5b3 109 125 14.679 127 16.514 123 12.844 126 15.596 

j10c5b4 122 130 6.557 134 9.836 130 6.557 133 9.016 

j10c5b5 153 173 13.072 176 15.033 170 11.111 176 15.033 

j10c5b6 115 134 16.522 137 19.130 132 14.783 135 17.391 
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j10c5c1 68 119 75.000 120 76.471 119 75.000 121 77.941 

j10c5c2 74 126 70.270 126 70.270 124 67.568 129 74.324 

j10c5c3 71 107 50.704 108 52.113 103 45.070 107 50.704 

j10c5c4 66 90 36.364 92 39.394 98 48.485 103 56.061 

j10c5c5 78 89 14.103 93 19.231 84 7.692 90 15.385 

j10c5c6 69 88 27.536 90 30.435 89 28.986 92 33.333 

j10c5d1 66 86 30.303 89 34.848 84 27.273 87 31.818 

j10c5d2 73 100 36.986 98 34.247 95 30.137 99 35.616 

j10c5d3 64 77 20.313 80 25.000 75 17.188 80 25.000 

j10c5d4 70 87 24.286 94 34.286 87 24.286 89 27.143 

j10c5d5 66 89 34.848 95 43.939 86 30.303 90 36.364 

j10c5d6 62 78 25.806 82 32.258 75 20.968 81 30.645 

j10c10a1 139 152 9.353 155 11.511 157 12.950 159 14.388 

j10c10a2 158 180 13.924 178 12.658 171 8.228 171 8.228 

j10c10a3 148 163 10.135 164 10.811 158 6.757 162 9.459 

j10c10a4 149 160 7.383 166 11.409 160 7.383 164 10.067 

j10c10a5 148 162 9.459 162 9.459 158 6.757 161 8.784 

j10c10a6 146 158 8.219 160 9.589 156 6.849 155 6.164 

j10c10b1 163 199 22.086 207 26.994 196 20.245 201 23.313 

j10c10b2 157 186 18.471 190 21.019 179 14.013 186 18.471 

j10c10b3 169 172 1.775 179 5.917 175 3.550 181 7.101 

j10c10b4 159 176 10.692 181 13.836 176 10.692 179 12.579 

j10c10b5 165 180 9.091 184 11.515 178 7.879 183 10.909 

j10c10b6 165 177 7.273 181 9.697 177 7.273 178 7.879 

j10c10c1 113 154 36.283 173 53.097 154 36.283 170 50.442 

j10c10c2 116 161 38.793 167 43.966 158 36.207 164 41.379 

j10c10c3 98 129 31.633 133 35.714 126 28.571 130 32.653 

j10c10c4 103 146 41.748 146 41.748 141 36.893 145 40.777 

j10c10c5 121 168 38.843 165 36.364 163 34.711 165 36.364 

j10c10c6 97 142 46.392 148 52.577 140 44.330 146 50.515 

j15c5a1 178 183 2.809 187 5.056 183 2.809 184 3.371 

j15c5a2 165 170 3.030 174 5.455 169 2.424 173 4.848 

j15c5a3 130 136 4.615 139 6.923 136 4.615 137 5.385 

j15c5a4 156 171 9.615 175 12.179 167 7.051 170 8.974 

j15c5a5 164 182 10.976 181 10.366 180 9.756 180 9.756 

j15c5a6 178 195 9.551 198 11.236 192 7.865 194 8.989 

j15c5b1 170 191 12.353 193 13.529 188 10.588 192 12.941 

j15c5b2 152 177 16.447 179 17.763 174 14.474 179 17.763 

j15c5b3 157 172 9.554 173 10.191 168 7.006 172 9.554 

j15c5b4 147 168 14.286 174 18.367 169 14.966 173 17.687 

j15c5b5 166 192 15.663 195 17.470 190 14.458 194 16.867 
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J15c5b6 175 203 16.000 204 16.571 200 14.286 203 16.000 

j15c5c1 85 145 70.588 151 77.647 142 67.059 148 74.118 

j15c5c2 90 183 103.333 187 107.778 180 100.000 183 103.333 

j15c5c3 87 170 95.402 173 98.851 169 94.253 172 97.701 

j15c5c4 89 168 88.764 173 94.382 168 88.764 173 94.382 

j15c5c5 73 111 52.055 114 56.164 113 54.795 113 54.795 

j15c5c6 91 152 67.033 155 70.330 157 72.527 158 73.626 

j15c5d1 167 205 22.754 209 25.150 204 22.156 209 25.150 

j15c5d2 82 139 69.512 142 73.171 137 67.073 140 70.732 

j15c5d3 77 137 77.922 138 79.221 134 74.026 137 77.922 

j15c5d4 61 122 100.000 126 106.557 125 104.918 126 106.557 

j15c5d5 67 131 95.522 134 100.000 129 92.537 132 97.015 

j15c5d6 79 147 86.076 147 86.076 142 79.747 147 86.076 

j15c10a1 236 258 9.322 262 11.017 259 9.746 260 10.169 

j15c10a2 200 230 15.000 232 16.000 232 16.000 234 17.000 

j15c10a3 198 245 23.737 247 24.747 244 23.232 248 25.253 

j15c10a4 225 264 17.333 269 19.556 265 17.778 267 18.667 

j15c10a5 182 227 24.725 232 27.473 228 25.275 230 26.374 

j15c10a6 200 250 25.000 254 27.000 250 25.000 256 28.000 

j15c10b1 222 271 22.072 273 22.973 268 20.721 272 22.523 

j15c10b2 187 238 27.273 241 28.877 239 27.807 241 28.877 

j15c10b3 222 254 14.414 259 16.667 254 14.414 257 15.766 

j15c10b4 221 282 27.602 286 29.412 284 28.507 287 29.864 

j15c10b5 200 242 21.000 246 23.000 245 22.500 245 22.500 

j15c10b6 219 275 25.571 278 26.941 277 26.484 278 26.941 

Average Percentage Deviation 28.617 
 

31.33  27.593  30.538 

 

It is observed from the Table 6.5 that most of the best makespan values obtained by 

MDT from the non-dominated solutions of MOPSO have smaller %PD than the NSGA-II. 

Average percentage deviation (APD) of makespan by the proposed MOPSO and NSGA-

II are 28.617 and 31.33 respectively for objectives of makespan and mean flow time. 

Similarly, the average percentage deviation (APD) of makespan by the proposed 

MOPSO and NSGA-II are 27.593 and 30.538 respectively for objectives of makespan 

and mean tardiness.  

The improvement rate of APD using MOPSO is defined as follows: 

                 ( )  
(                   )

          
       (6.25) 
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The improvement rate of APD is found to be 8.66 % for the objectives makespan and 

mean flow time and 9.62 % for the objectives makespan and mean tardiness. 

6.4.2 Result analysis for multi-objective FJSP 

In this section, proposed multi-objective particle swarm optimization (MOPSO) is 

used for solving the flexible job shop scheduling problem (FJSP). Based on thorough 

analysis, Figure 6.10-6.17 are drawn to show the Pareto front between makespan and 

mean flow time and makespan and mean tardiness for four benchmark instances of 

FJSP. The efficiency of the proposed MOPSO algorithm is compared with another 

popular multi-objective algorithm known as non-dominated sorting genetic algorithm II 

(NSGA-II).Based on thorough testing, Figure 6.10 to 6.17 are drawn to show the Pareto 

front between makespan and mean flow time and makespan and mean tardiness for 

eight benchmark instances of FJSP. 

The MOPSO is tested by solving twenty eight different benchmark problems of 

Brandimarte [112] and Dauzere-peres data set [115]. The results obtained by the 

proposed algorithms are compared in terms of the performance metrics with the NSGA-

II. Table 6.6 and Table 6.7 illustrate the comparative results of two algorithms with 

respect to four performance measures. From Table 6.6 and Table 6.7, it can be 

concluded that MOPSO outweighs the NSGA-II algorithms in all metrics in terms of the 

number of optimum results out of twenty eight test problems. It is observed from that 

Table 6.6 that the proposed MOPSO superior to the NSGA-II in 21, 18, 20 and 20 out of 

28 test problems with respect to MID, RAS, SNS and DM performance measures 

respectively for the objectives of makespan and mean flow time. Table 6.7 indicates that 

MOPSO performs superior to NSGA-II in 23, 20, 19 and 22 out of 28 test problems in 

MID, RAS, SNS and DM performance measures respectively for the objective of 

makespan and mean tardiness. 
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Figure 6.10 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance 1a 
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Figure 6.11 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance 3a 
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Figure 6.12 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance 5a 
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Figure 6.13 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance 10a 
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Figure 6.14 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance 11a 
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Figure 6.15 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance Mk 01 
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Figure 6.16 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance Mk 05 
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Figure 6.17 Pareto front obtained by the proposed MOPSO and NSGA-II for the instance Mk 07 
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Table 6.6 Performance metrics of Pareto front obtained by the objective of makespan 
and mean flow time 

 

Problem n x m 
MID RAS SNS Diversity (DM) 

MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II 

Mk 01 10 x 6 56.119 50.93 10.71 12.137 10.57 8.269 32.44 29.17 

Mk 02 10 x 6 43.805 46.625 8.977 8.471 3.926 3.688 17.88 17.1918 

Mk 03 15 x 8 257.273 288.285 40.51 62.709 19.381 25.324 87.531 108.847 

Mk 04 15 x 8 104.0892 103.9267 22.0708 21.352 10.0842 13.052 37.824 44.8517 

Mk 05 15 x 4 236.83 249.59 18.081 35.55 16.78 14.53 30.27 67.61 

Mk 06 10x15 151.58 155.12 15.21 19.37 2.266 1.46 23.34 21.34 

Mk 07 20 x 5 222.77 229.75 38.49 43.45 18.605 13.37 74.92 67.73 

Mk 08 20x10 644.825 645.094 36.101 35.988 6.9437 5.5701 49.8 48.2801 

Mk 09 20x10 752.87 755.23 66.75 66.87 23.64 22.78 36.67 37.12 

Mk 10 20x15 1677.72 1672.1 347.56 354.3 122.45 122.1 267.69 264.22 

1a 10x5 3214.13 3244.062 85.71 57 31.45 31.001 129.76 122.054 

2a 10x5 3097.135 3157.46 371.75 266.908 90.293 58.711 658.67 428.78 

3a 10x5 3494.793 3620.75 836.5 897.275 419.971 308.3 2194.8 1571.38 

4a 10x5 3141.27 3095.47 207.99 136.56 79.81 48.47 412.36 225.51 

5a 10x5 3027.77 3015.9 214.904 262.67 30.563 36.16 389.8 406.253 

6a 10x5 2951.502 3041.99 372.48 429.75 185.605 141.98 626.06 825.412 

7a 15x8 3023.466 3038.891 139.01 87.5 29.588 22.894 220.99 175.513 

8a 15x8 3057.918 3134.15 471.034 573.98 265.033 215.541 1362 1047.23 

9a 15x8 3061.157 3176.37 469.39 492.52 202.92 201.47 1068.2 967.12 

10a 15x8 3031.89 3081.275 156.47 167.6 35.25 67.8 355.9 322.939 

11a 15x8 2841.59 2908.101 359.58 347.66 66.8 97.25 637.96 584.041 

12a 15x8 3098.43 3154.67 345.21 346.79 172.34 175.22 867.79 867.45 

13a 20x10 3329.32 3364.32 262.27 311.29 74.311 57.81 385.31 308.62 

14a 20x10 3619.43 3846.77 525.37 556.65 176.97 154.88 924.13 894.68 

15a 20x10 3087.86 3197.5 367.56 413.46 286.48 267.72 346.76 335.41 

16a 20x10 3438.78 3475.25 481.38 490.11 312.98 284.77 189.4 175.5 

17a 20x10 3310.2 3346.841 679.53 678.87 148.83 164.7 415.62 417.23 

18a 20x10 3864.58 3749.15 784.29 776.71 229.46 227.69 523.84 521.92 

* The best obtained values are marked in bold letter  
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Table 6.7 Performance metrics results of Pareto front obtained by the objective of 

makespan and mean tardiness 

Problem n x m 
MID RAS SNS Diversity (DM) 

MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II MOPSO NSGA-II 

Mk 01 10 x 6 48.26 49.6 11.64 10.37 7.42 7.4063 27.99 26.91 

Mk 02 10 x 6 34.1 43.59 5.15 8.741 82.55 84.37 28.65 21.013 

Mk 03 15 x 8 234.9 259.68 32.0726 37.66 16.486 15.52 52.0522 59.55 

Mk 04 15 x 8 85.46 108.75 11.79 16.6 11.62 6.17 27.982 12.6 

Mk 05 15 x 4 207.8 217.201 21.96 24.64 9.406 10.23 44.391 43.75 

Mk 06 10x15 128.96 131.97 6.0175 5.979 2.153 1.274 6.562 10.598 

Mk 07 20 x 5 193.196 212.9 30.09 34.74 22.65 23.74 68.78 69.77 

Mk 08 20x10 585.142 572.823 6.64 17.94 4.624 5.158 9.18 7.7846 

Mk 09 20x10 426.732 378.553 54.01 31.918 34.360 31.107 94.66 89.18 

Mk 10 20x15 941.95 1016.71 512.16 304.73 302.92 300.25 432.55 409.43 

1a 10x5 2569.941 2566.48 36.1 39.45 28.513 23.7870 65.397 68.216 

2a 10x5 2427.752 2358.34 263.23 349.18 128.801 125.165 495.1 430.6 

3a 10x5 2540.038 2781.75 344.798 381.75 237.84 235.678 840.107 824.4 

4a 10x5 2550.6519 2496.806 107.73 108.03 62.82 73.2 257.068 234.362 

5a 10x5 2368.582 2478.792 174.801 280.5 126.849 165.92 386.09 557.396 

6a 10x5 2312.461 2338.38 140.594 154.11 69.876 61.56 266.430 242.667 

7a 15x8 2446.998 2483.246 100.6 124.73 59.655 73.91 173.53 149.5 

8a 15x8 2319.009 2416.21 100.454 113.51 48.775 38.146 179.895 165.25 

9a 15x8 2206.967 2215.49 117.54 127.974 113.0686 104.72 378.748 331.66 

10a 15x8 2458.58 2478.9424 93.285 81.55 51.95 53.768 176.418 162.435 

11a 15x8 2182.0226 2257.72 141.42 112.32 100.30 68.0005 346.93 212.62 

12a 15x8 2164.65 2458.46 264.19 292.63 107.11 94.74 256.41 217.72 

13a 20x10 3323.468 3375.571 219.22 306 71.80629 67.090 362.095 374.108 

14a 20x10 3172.51 3211.188 376.417 391.62 526.51 504.348 817.54 809.316 

15a 20x10 3249.22 3512.75 457.15 485.72 317.02 305.44 241.37 218.71 

16a 20x10 3002.78 3643.46 413.71 457.18 277.49 304.27 224.33 204.24 

17a 20x10 3011.3 3126.245 247.29 257.94 269.2 244.78 514.75 498.38 

18a 20x10 3261.75 3456.68 527.17 612.35 129.81 108.3 421.74 413.56 

* The best obtained values are marked in bold letter  

Table 6.8 represents the best makespan value obtained by maximum deviation 

theory based on the of highest composite score and the percentage deviation (%PD) 

[Equation 3.18] of the makespan from the lower bound (LB) [121,129].  
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Table 6.8 The computational results of maximum deviation theory 
 

Problem 

n x m 
 LB 

Objectives: Makespan and mean 
flow time 

Objectives: Makespan and mean 
tardiness 

MOPSO NSGA-II  MOPSO NSGA-II 

            

       
%PD 

            

       
%PD 

            

       
%PD 

            

       
%PD 

Mk 01 10 x 6 36 50 38.89  52 44.44  49 36.11  52 44.44  

Mk 02 10 x 6 24 37 54.17  39 62.50 30 25.00 45 87.50 

Mk 03 15 x 8 204 236 15.69 258 26.47 220 7.84 235 15.2 

Mk 04 15 x 8 48 84 75.00  87 81.25  75 56.25  79 64.58  

Mk 05 15 x 4 168 199 18.45  206 22.62  199 18.45  204 21.43  

Mk 06 10x15 33 125 
278.7
9  

128 
287.8
8  

130 293.94  132 
300.0
0  

Mk 07 20 x 5 133 210 57.89  188 41.35  171 28.57  182 36.84  

Mk 08 20x10 523 564 7.84  542 3.63  533 1.91  551 5.35  

Mk 09 20x10 299 371 24.08  384 28.43  374 25.08  382 27.76  

Mk 10 20x15 165 220 33.33  235 42.42  195 18.18  211 27.88  

1a 10x5 2,505 2522 0.68  2578 2.91  2522 0.68  2535 1.20  

2a 10x5 2,228 2421 8.66  2541 14.05  2527 13.42  2599 16.65  

3a 10x5 2,228 2934 31.69  3242 45.51  2540 14.00  2793 25.36  

4a 10x5 2,503 2533 1.20  2616 4.51  2561 2.32  2524 0.84  

5a 10x5 2,189 2421 10.60  2464 12.56  2373 8.41  2418 10.46 

6a 10x5 2,162 2409 11.42  2606 20.54  2279 5.41  2291 5.97  

7a 15x8 2,187 2535 15.91  2437 11.43  2443 11.71  2513 14.91  

8a 15x8 2,061 2811 36.39 2867 39.11 2793 35.52  2845 38.04  

9a 15x8 2,061 2827 37.17 2814 36.54 2641 28.14  2771 34.45  

10a 15x8 2,178 2462 13.04 2564 17.72 2402 10.28  2517 15.56  

11a 15x8 2,017 2294 13.73 2374 17.70 2192 8.68  2249 11.50  

12a 15x8 1,969 2208 12.14 2410 22.40 2145 8.94  2182 10.82  

13a 20x10 2,161 2297 6.29 2384 10.32 2637 22.03  2512 16.24  

14a 20x10 2,161 2178 0.79 2477 14.62 2291 6.02  2298 6.34  

15a 20x10 2,161 2209 2.22 2381 10.18 2265 4.81  2310 6.89  

16a 20x10 2,148 2249 4.70 2392 11.36 2183 1.63  2271 5.73  

17a 20x10 2,088 2140 2.49 2267 8.57 2252 7.85  2319 11.06  

18a 20x10 2,057 2355 14.49 2496 21.34 2354 14.44  2401 16.72  

Average Percentage Deviation 29.56  34.37  25.56  31.42 

 

It is observed from the Table 6.8 that most of the best makespan values obtained by 

MDT from the non-dominated solutions of MOPSO have smaller %PD than the NSGA-II. 

Average percentage deviation (APD) of makespan by the proposed MOPSO and NSGA-

II are 29.56 and 34.37 respectively for objectives of makespan and mean flow time. 
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Similarly, the average percentage deviation (APD) of makespan by the proposed 

MOPSO and NSGA-II are 25.56 and 31.42 respectively for objectives of makespan and 

mean tardiness. The improvement rate of APD is found to be 13.99 % for the objectives 

makespan and mean flow time and 18.65 % for the objectives makespan and mean 

tardiness. 

6.5 Conclusions 

In this chapter, benchmark instances from literature for flexible flow shop and flexible 

job shop scheduling problem are solved by an efficient multi-objective particle swarm 

optimization to find near-optimal schedules. The mutation operator generally used in 

genetic algorithm is embedded in MOPSO to avoid premature convergence and improve 

solution diversity. Further, maximum deviation theory (MDT) is used to determine the 

weights of the attributes to develop a composite score to ease the decision maker for 

selecting the best solution from a large set of Pareto solutions. The composite score for 

all the non-dominated solutions is obtained through summing the weighted objective 

values. The best solution is selected from all the non-dominated solution considering the 

highest composite score to avoid subjectiveness and impreciseness in the decision 

making for the managers. This work offers an effective guideline to select optimum 

schedule for achieving the desired different objective simultaneously. From the 

comparative analysis, it can be concluded that the MOPSO algorithm is superior to 

NSGA-II for different performance measures. The improvement rate of APD of MOPSO 

is found to be 8.66 % for the objectives makespan and mean flow time and 9.62 % for 

the objectives makespan and mean tardiness over NSGA-II for FFSP benchmark 

problems and an improvement of 13.99 % for APD of MOPSO with respect to NSGA-II 

for the objectives makespan and mean flow time is reported. Similarly, an improvement 

of 18.65 % for APD of MOPSO with respect to for the objectives makespan and mean 

tardiness is obtained for the instances of FJSP. The next chapter presents the summary 

of the results, recommendations and scope for future work in the direction of job 

scheduling. 
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7.1 Introduction  

In this thesis, flexible flow shop and job shop scheduling problem considered as NP-

hard problems are dealt in detail using efficient algorithms such as PSO and QPSO. A 

mutation operator commonly used in genetic algorithm is embedded in PSO and QPSO 

to avoid premature convergence and improve solution diversity. Solution diversity is also 

improved through the use of chaotic numbers (Logistic map) instead of random numbers 

to improve the diversity so that exploration capability of the algorithms can be enhanced. 

Thus, computational efforts can be reduced to a large extent. Generally, swarm 

optimization is used for a continuous optimization problem but the scheduling is a 

combinatorial optimization problem. Section 3.4 and section 4.2 illustrate mapping 

mechanism for combinatorial problem in a continuous domain applied to flexible flow and 

job shop scheduling problems respectively. Single and multiple objective frameworks 

have been proposed for solving such problems. In addition, scheduling in an uncertain 

environment where machine breakdown occurs has been demonstrated.  

7.2 Summary of findings 

An extensive computational study has been carried out on a set of seventy seven 

benchmark instances taken from Carlier and Nerons [196] by the help of efficient PSO 

and QPSO algorithm. Simulation tests of benchmark instances demonstrates that 

proposed PSO and QPSO algorithm are capable of solving FFSP effectively and 

efficiently due to the balance of global exploration and local exploitation capability. 

Comparison of simulation results with the existing results of several algorithms like GA, 

AIS, ACO, TS, AIS and B&B in terms of percentage deviation leads to the conclusion 

that proposed algorithms results in less percentage deviation from the lower bound. The 

improvement rate of average percentage deviation (APD) of proposed QPSO is found to 

be 26.08112 % with respect to proposed PSO, 37.73% with respect to GA, 38.95% with 

respect to AIS, 29.946% with respect to ACO and 72.18 % with respect to branch and 

bound (B&B) for seventy seven benchmark problems considered in the study. Simulation 

for FJSP was conducted on three sets of problem instances from Kacem et al., [117], 

Brandimarte [112] and Dauzere-peres [115] (DP data). It has been observed that the 

results obtained by proposed QPSO has an improvement rate of 7.369 % with respect to 

proposed PSO, 27.936% with respect to tabu search (TS), 31.836 % with respect to 

hybrid genetic algorithm (hGA) for the DP data set in terms of APD. The improvement 

rate in terms of APD is 1.889 % with respect to proposed PSO, 7.534% with respect to 

GA, 0.825% with respect to parallel variable neighborhood search (PVNS) algorithm, 
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5.5366 % with respect to Integrated genetic algorithm (IGA) and 26.63% with respect to 

knowledge based ant colony optimization (KBACO) for the Brandimarte data set. For the 

Dauzere-peres data set, the proposed QPSO has an improvement rate (in APD) of 

7.369 % with respect to proposed PSO, 27.936% with respect to TS, and 31.836 % with 

respect to hGA. It is conceivable to note that the algorithm with chaotic numbers 

improves the makespan and converges towards the best value faster. This is because of 

higher degree of disorderness of the chaotic numbers which facilitates high diversity in 

the particles and helps the algorithm to converge rapidly towards the solution. The 

convergence curves represent that the proposed algorithms (embedding the mutation 

operator in the proposed PSO and proposed QPSO) helps to improve the solution 

diversity and avoid premature convergence. 

A multi-objective framework is analyzed by implementing the proposed PSO and 

QPSO algorithms with different robustness measures for FFSP and FJSP considering 

machine breakdown. An experimental study is conducted to investigate the solution 

quality of algorithms with robustness measure. Four factors such as breakdown (BD), 

robustness measure (RM), algorithm (ALGORITHM) and problem instances (TEST 

CASE) at different levels are considered. A full factorial experiment design having thirty 

six experimental runs (2×3×2×3) has been conducted to gather sufficient information on 

model behavior with less number of experiments. Under each experiment, multi-

objective performance measure (Z) is computed. Analysis of variance (ANOVA) is 

performed on the response to find out significant factors influencing the FFSP and FJSP 

under uncertainty situation (i.e. random machine breakdowns). ANOVA results reveal 

that the robustness measure RM3 (the expected realized total flow time) can significantly 

improve the quality of the schedule in both FFSP and FJSP. Simulation for FFSP and 

FJSP in a machine breakdown condition is conducted for two disruption levels i.e low 

disruption level (BD1) and high disruption level (BD2). The improvement rate of the 

proposed QPSO is found to be 2.151% in a low disruption level (BD1) and 1.97% in a 

high disruption level (BD2) for the FFSP benchmark problems. Similarly, QPSO results 

an improvement of 2.56%, 2.23% and 1.24% in a low disruption level (BD1), 2.22%, 

1.55% and 1.67% in a high disruption level (BD2) for Kacem, BR and DP data set 

respectively over proposed PSO for FJSP benchmark problems. Therefore, it is 

concluded that the proposed QPSO algorithm is quite effective to produce robust 

schedule in an uncertainty condition.  
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A multi-objective framework is investigated to compare scalarization method and 

pareto optimality approach using multi-objective particle swarm optimization (MOPSO) 

technique. MOPSO happens to be superior to scalarization method because the 

MOPSO provides smaller APD from lower bound. An efficient multi-objective particle 

swarm optimization has been proposed and compared with another popular multi-

objective algorithm known as NSGA-II. The improvement rate of APD in MOPSO is 

found to be 8.66 % for the objectives makespan and mean flow time and 9.62 % for the 

objectives makespan and mean tardiness over NSGA-II for FFSP benchmark problems. 

Similarly, an improvement of 13.99 % in terms of APD using MOPSO for the objectives 

as makespan and mean flow time is obtained for FJSP over NSGA-II. An improvement 

of 18.65 % in APD using MOPSO with respect to NSGA-II for the objectives as 

makespan and mean tardiness is obtained.  

7.3 Contribution of the research work  

PSO has an inherent drawback of getting trapped at local optimum due to large 

reduction in velocity values as iteration proceeds and poses difficulty in reaching at best 

solution. A new variant of PSO, called quantum-behaved particle swarm 

optimization (QPSO), has been proposed in order to improve the global search ability of 

the original PSO. The application of chaotic sequences based on chaotic logistic 

mapping instead of random sequences in PSO and QPSO happens to be a powerful 

strategy to diversify the initial population and improve the algorithm‟s performance by 

preventing the premature convergence to local minima of the algorithm. The mutation 

operator is introduced to improve the solution diversity and accelerate the convergence 

rate. The search mechanism of the proposed PSO and proposed QPSO is explored to 

solve FFSP and FJSP. 

A multi-objective (scalarization method) with robustness measure has been 

proposed to obtain a robust schedule that minimizes the effect of machine breakdowns 

in the overall performance such that the makespan is preserved and decreases the 

deviations of operation completion times between the realized schedule and the 

predictive schedule. A novel multi-objective particle swarm optimization (MOPSO) 

technique is proposed for FFSP and FJSP with an objective to minimize makespan, 

mean flow time and mean tardiness with the goal of finding approximations of the 

optimal Pareto front. Maximum deviation theory has been proposed for ranking the non-
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dominated solutions obtained from MOPSO to ease the decision making process of 

choosing the best solution from the non-dominated solution set. 

7.4 Limitations of the study  

In spite of advantages obtained through proposed study, few limitations exist in the 

study because they have not been addressed. The benchmark problems considered in 

this study are static scheduling problems but the real industrial environment is dynamic 

in nature i.e jobs to be processed continuously change over time. The dynamic nature of 

scheduling approach has not been considered in the study. Re-entrant jobs, buffer 

capacity and setup times, normally observed in real manufacturing environment, have 

not been not considered in this study because consideration of these real manufacturing 

factors increases the complexity of problem formulation. 

Moreover, the work has been restricted to only three performance measures such as 

makespan, flow time and tardiness. Other performance measures of scheduling like 

lateness and number of tardy jobs can be considered to study the behavior of the 

proposed approach.  Similarly, machine breakdown is considered as an uncertain event. 

However, many uncertainties in terms of processing time, operator absenteeism, job 

arrival, tool slots, availability of jigs and fixtures may exist in real manufacturing 

environment. 

7.5 Scope of future research  

As mentioned in section 7.4, the limitations of the study may be accounted for 

formulating the flexible flow and job shop problems to obtain schedules for real 

manufacturing environment. Particularly, the study may be extended to dynamic 

stochastic shop scheduling where the jobs arrive continuously in time and test the 

performance of proposed algorithms. Scope exists to extend the study for finding 

optimum schedules in flexible flow and job shop environment considering work load on 

critical machine and machine loading capacity. In many real manufacturing 

environments, the nature of the job and machine is probabilistic in nature so stochastic 

processing time may be considered for the enhancement of the study.  In certain 

applications, setup times cannot be ignored or integrated into the processing times 

particularly when setup times is sequence-dependent (setup time depends on the 

previous and next operation performed on the machine). The study can be extended 

integrating set up time as a critical parameter in the scheduling problem.  
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More robust measures should be analyzed to obtain a better robust schedule in an 

uncertain scenario. Other uncertain events like rush jobs, due date changes, job 

cancellation, changes in job priority, early or late arrival of jobs, changes in job 

processing time and preventive maintenance (PM) many be considered in the future 

work. Similarly, buffer capacities between machines may be considered in the 

scheduling problem in future.  
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