
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2018

The Integration of Maintenance Decisions and Flow Shop The Integration of Maintenance Decisions and Flow Shop

Scheduling Scheduling

Javad Seif
University of Tennessee, jseif@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Seif, Javad, "The Integration of Maintenance Decisions and Flow Shop Scheduling. " PhD diss., University
of Tennessee, 2018.
https://trace.tennessee.edu/utk_graddiss/4965

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F4965&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Javad Seif entitled "The Integration of

Maintenance Decisions and Flow Shop Scheduling." I have examined the final electronic copy of

this dissertation for form and content and recommend that it be accepted in partial fulfillment

of the requirements for the degree of Doctor of Philosophy, with a major in Industrial

Engineering.

Andrew J. Yu, Major Professor

We have read this dissertation and recommend its acceptance:

Reza Abedi, Oleg Shylo, James L. Simonton

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

The Integration of Maintenance Decisions and Flow Shop
Scheduling

A Dissertation Presented for the

Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Javad Seif
May 2018

Copyright © 2018 by Javad Seif
All rights reserved.

ii

DEDICATION

To my mother

Touran Nemati

iii

ACKNOWLEDGEMENTS

I would like to thank the members of my dissertation committee for taking time to
review this work: Dr. Andrew Yu, Dr. James Simonton, Dr. Oleg Shylo, and Dr.
Reza Abedi. I would like to especially thank my advisor, Dr. Yu for his support
throughout my Ph.D. program. I would also like to thank Dr. Shylo for his
instructions in Stochastic Programming and Heuristic Methods in Optimization,
and his valuable comments and suggestions. Special thanks to Dr. Simonton for
his kind support, guidance, and valuable comments. Thanks to Dr. Reza Abedi
for his time, valuable comments, and friendship.

Many thanks to Dr. Mohammad Dehaghani for his contributions in the
problem definition, coding, and “Simulation-Optimization” of Chapter III. Fahimeh
Rahmanniya has also contributed in problem definition and “Bi-Objective
Formulation” in Chapter II.

I would like to express my gratitude and appreciation to all the faculty
members of the Tickle College of Engineering who instructed me during my
Ph.D. program. Special thanks to Dr. Jamie Coble, Assistant Professor in the
Department of Nuclear Engineering, as I learned a great deal about Reliability
and Maintainability Engineering from her classes.

I am thankful to Sarah Stone in the Graduate School for her time

reviewing this dissertation and improving its formatting. Also, thanks to the UT
Writing Center for helping me improve my writing skills.

I appreciate the financial support I received from the University of
Tennessee Knoxville (UTK) and Space Institute (UTSI) during my Ph.D. program.
I am grateful to all the staff of UTSI for being supportive and friendly, especially:
Charlotte Henley, Mark Cross, Clara Furgosen, Laura Horton, Kaycee Edwards,
Kanawful Massingille, Paula Morris, Robin Nee, and Dee Merriman.

I appreciate the support, love and encouragements I have received over
many years of my education from all of my kind family members, relatives, and
great friends. I am forever thankful to my parents: Reza Seif and Touran Nemati,
my brother: Mahdi Seif, my cousin: Mohsen Seif, my high school math teacher:
Dr. Farrokh Karroubi, and all of the teachers who directly or indirectly instructed
me.

Finally, I would like to thank anyone who made my Ph.D. life easy and
smooth. I am thankful to all of my UTSI friends. Special thanks to Brett Shields
for his great friendship, research collaborations, support, and encouragements.
Many thanks to Tullahoma local soccer players; playing soccer was one of the
highlights of my life here in Tennessee.

iv

ABSTRACT

In the conventional production and service scheduling problems, it is assumed
that the machines can continuously process the jobs and the information is
complete and certain. However, in practice the machines must stop for
preventive or corrective maintenance, and the information available to the
planners can be both incomplete and uncertain. In this dissertation, the
integration of maintenance decisions and production scheduling is studied in a
permutation flow shop setting. Several variations of the problem are modeled as
(stochastic) mixed-integer programs. In these models, some technical nuances
are considered that increase the practicality of the models: having various types
of maintenance, combining maintenance activities, and the impact of
maintenance on the processing times of the production jobs. The solution
methodologies involve studying the solution space of the problems, genetic
algorithms, stochastic optimization, multi-objective optimization, and extensive
computational experiments. The application of the problems and managerial
implications are demonstrated through a case study in the earthmoving
operations in construction projects.

v

PREFACE

My dissertation topic was motivated by a common problem I had encountered in
industry prior to my graduate studies. I designed and implemented computerized
maintenance information software (CMMS) for various companies. It has been
my observation in many cases that regardless of the complexity and
comprehensiveness of maintenance plans and maintenance management
software systems, preventive maintenance activities are very likely to be
deferred, or refrained from, due to production priorities. In my research, I strive to
solve this problem by integrating production scheduling and maintenance
decisions. The outcome is a schedule that simultaneously optimizes both
production and maintenance objectives.

In this dissertation, the integration of maintenance decisions and
production scheduling is studied in a permutation flow shop setting, where a
number of jobs (orders) are to be processed consecutively on a number of
machines in series. The machines should undergo various types of maintenance
after operating for certain number of hours. The objective is to minimize the
tardiness of the jobs with respect to their due times, and minimize the
maintenance costs. In the mathematical models and solution algorithms that are
presented, I consider the technical nuances that increase the practicality of these
models: having various types of maintenance activities, combining these
activities, and how maintenance affects the performance of the machines.

Through extensive computational experiments and case studies, it is

shown that the proposed models and solution methodologies are reliable, robust,
and independent from commercial solvers. This independence facilitates the
incorporation and automation of these solutions in the existing information
systems found in manufacturing and service industries. By implementing the
proposed solutions, manufacturing and service industries can 1) resolve potential
conflicts between production and maintenance, 2) minimize maintenance costs,
3) improve the health of their assets, 4) increase the readiness and performance
of the production lines, and 5) increase customer satisfaction through optimal
production scheduling and timely deliveries. All of these benefits can be attained
without reliance on commercial solvers that can be financially and
computationally expensive to use.

Javad Seif

Tullahoma, TN
April, 2018

vi

TABLE OF CONTENTS

INTRODUCTION .. 1

Background ... 1
Maintenance Planning ... 1
Flow Shop Scheduling ... 3

Integrating Maintenance Decisions into Flow Shop Scheduling 4
CHAPTER I Integrating multiple age-based maintenance activities into flow shop
scheduling ... 7

Abstract ... 8
1.1 Introduction .. 8
1.2 Problem Definition ... 13
1.3 Mathematical Formulation ... 15

1.4 Solution Approach ... 22

Complexity of the problem ... 22
Lower bounds .. 23

Lower-Bound-Based Genetic Algorithm (LBGA) .. 27
1.5 Computational Results .. 34

Test Problem Generation ... 34

Performance .. 38
Gap Analysis .. 38

1.6 Case Study (Earthmoving Operations) .. 44
1.7 Conclusion and Future Research .. 46

CHAPTER II Bi-objective optimization of the integrated flow shop and
maintenance scheduling problem ... 48

Abstract ... 49

2.1 Introduction .. 49
2.2 Mathematical Formulation ... 52

Bi-Objective Formulation ... 58
2.3 Solution Methodology .. 65

Confining the Solution Space... 66
Designing a search in the Solution Space ... 72

Global search by crossover ... 72
Local search by mutation ... 72
Setting the parameters .. 74

2.4 Computational Results .. 74
Test problems generation .. 75

Computational experiment ... 77
2.5 Case Study .. 81

2.6 Conclusion and Future Research .. 86
CHAPTER III Combinied maintenance activities in integrated flow shop and
maintenance scheduling under uncertainity .. 87

Abstract ... 88
3.1 Introduction .. 88

vii

3.2 Problem Definition and Mathematical Formulation 91

Combined Maintenance Activities .. 91
Prolonged Processing Times ... 95

The Stochastic Mixed-Integer Program (SMIP) ... 96
3.3 Simulation-Optimization .. 102
3.4 Computational Experiments .. 106

Test Problem Generation ... 106
Computational Experiments for the Population Size 107

Computational Experiment for Performance Evaluation 108
3.5 Case Study .. 118
3.6 Conclusion and Future Research .. 127

CONCLUSION .. 128
Unplanned Maintenance ... 129

Considering Risk ... 129

Fatigue and Degradation of Machines and Their Components 129

REFERENCES ... 130

APPENDICES ... 138
Appendix A: Related Published Works .. 139
Appendix B: OPL Models Used in CPLEX Optimization Studio 140

B.1: The Mixed-Integer Program in Chapter I .. 141
B.2: The Mixed-Integer Program in Chapter II ... 143

B.3: The Stochastic Mixed-Integer Program in Chapter III 146
Appendix C: MATLAB Codes Used in Chapter I ... 149

C.1: Test Problem Generator (CPLEX Data File Generator) 150

C.2: Objective Function (Fitness Function) .. 154
C.3: Mutation Function ... 156

C.4: Crossover Function .. 157

C.5: The Roulette Wheel Selection Function ... 158

C.6: The GA ... 159
Appendix D: MATLAB Codes Used in Chapter II .. 163

D.1: Test Problem Generator Function .. 164

D.2: Updating the Processing Times ... 165
D.3: Crossover Function .. 166

D.4: Mutation Function ... 167
D.5: Roulette Wheel Selection Function .. 168
D.6: Fitness Function ... 169

D.7: Function for Calculating the Coefficients of the iFMOLP 173
D.8: Algorithm 2 ... 174
D.9: The GAs ... 175
D.10: A Function for Writing CPLEX Data Files ... 191

D.11: Automation of the Computational Experiments 195
Appendix E: MATLAB Codes Used in Chapter III .. 197

E.1: Computational Experiments Main File .. 198
E.2: Test Problem Generator ... 200

viii

E.3: CPLEX Data File Writer .. 203

E.4: Crossover Function .. 209
E.5: Mutation Function ... 210

E.6: Roulette Wheel Selection Function .. 211
E.7: The GA and Related Functions .. 212

VITA .. 221

ix

LIST OF TABLES

Table 1. Experimental Design. .. 32

Table 2. Results of the experiment. .. 35
Table 3. Analysis of variance for the GA parameters. ... 36
Table 4. Generation method of test problems. .. 37
Table 5. Comparison between CPLEX and LBGA. ... 39

Table 6. Increasing both population size and problem size (𝑚 = 5, 𝑙 = 3).......... 41
Table 7. Maintenance intervals (hours) recommended by the equipment

manufacturer (Caterpillar Inc.). .. 44
Table 8. Operation requirements (days) x deterioration rates (hours), due dates

(days), and penalty for one day delay. ... 45

Table 9. The optimal solution for the case study. .. 46

Table 10. Membership function 𝑓𝑔 𝑧𝑔, 𝑔 = 1,2. ... 60
Table 11. Piecewise linear membership functions for the numerical example. ... 62
Table 12. Piecewise linear membership functions for the improved results. 63
Table 13. Solution comparison. .. 64

Table 14. Different membership values for (𝒛𝟏, 𝒇𝟏 (𝒛𝟏)) and (𝒛𝟐, 𝒇𝟐 (𝒛𝟐)). 64

Table 15. Objective function values for the optimal solutions. 65
Table 16. Generation method of test problems, adapted from Yu and Seif (2016).

 ... 75

Table 17. Piecewise linear membership functions for test problems................... 76
Table 18. Comparison of computation times (seconds) for problems with a

realistic size. .. 78
Table 19. Comparison of feasibility success (percentage) for problems with a

realistic size. .. 79

Table 20. Comparison of quality of objective function value (OFV, satisfaction
degree) for problems with a realistic size. .. 80

Table 21. Maintenance Intervals (hours) Recommended by the equipment
manufacturer (Caterpillar Inc.), reproduced from Yu and Seif (2016). 82

Table 22. Operation requirements (days) × deterioration rates (hours) and due
dates (days), reproduced from Yu and Seif (2016). 83

Table 23. Piecewise linear membership functions for the case study. 84

Table 24. Optimal solution for the case study. .. 85
Table 25. All possible combinations for three types of maintenance activities. ... 93
Table 26. The values for the GA parameters. ... 104
Table 27. An example for the solution represtaion of the GA. 104
Table 28. The impact of population size on the performance of the algorithm. . 107

Table 29. Comparing the simulation-optimization method with CPLEX for n=4.
 ... 111

Table 30. Comparing the simulation-optimization method with CPLEX when
problem size increases. ... 112

Table 31. Comparing the simulation-optimization method with CPLEX for n=10.
 ... 113

x

Table 32. Sensitivity of the gap to the input data, 𝑛 = 4. 114

Table 33. Sensitivity of the solution time to the input data, 𝑛 = 4. 115
Table 34. Analysis of variance for the gap sensitivity experiment. 116
Table 35. Analysis of variance for the experiment on solution time sensitivity. . 117
Table 36. Maintenance intervals (in hours) recommended by the equipment

manufacturer (Caterpillar, 2010a, 2010b, 2010c), reproduced from (Yu &
Seif, 2016). .. 119

Table 37. Processing times, due dates, and penalty costs for the jobs, adapted
from Yu and Seif (2016). .. 120

Table 38. Task list of each MA for the excavator (excerpts from Caterpillar
(2010c)). .. 121

Table 39. Two tasks with similar steps (excerpts from Caterpillar (2010c)). 122
Table 40. The optimal solution for the case study. .. 125
Table 41. The optimal solution, when the durations of the MAs do not change in

combinations. ... 126

xi

LIST OF FIGURES

Figure 1. Age-based maintenance in taxonomy of maintenance philosophies
(Kothamasu et al., 2006). .. 2

Figure 2. An example for a permutation flow shop scheduling problem, n=m=3. .. 3

Figure 3. Dissertation outline. ... 6
Figure 4. An illustrative example of the problem. .. 14
Figure 5. Lower-bound-based GA (LBGA). ... 33

Figure 6. The effect of increasing population size on the performance of the
algorithm. ... 43

Figure 7. The value of the two objectives and L against different membership
values. ... 65

Figure 8. Maintainability block diagram for combined maintenance activities. 92

Figure 9. Overview of the simulation-optimization method. 103

Figure 10. Chromosome representation using real numbers. 105
Figure 11. The impact of population size on the objective function. 109

Figure 12. The impact of population time on solution time. 110

1

INTRODUCTION

This dissertation is concerned with the integration of maintenance decisions in
flow shop scheduling problems. In Chapter I, I introduce the problem of
integrating multiple meter/age-based maintenance activities in flow shop
scheduling, and present a deterministic version of the problem. In Chapter II, a
fuzzy bi-objective version of the problem is modeled and solved. In Chapter III,
uncertainty in processing and maintenance times will be considered. All three
chapters show the application of the problem via a case study in operations and
maintenance scheduling of construction machinery.

Background

Maintenance Planning

Previously considered more as a cost center, maintenance in recent years is
being gradually understood as a profit generating function by industrial managers
(Alsyouf, 2007). Since 1940, with the growing advances in science and
technology, different maintenance techniques have been emerged as the true
value of better maintenance has been appreciated by the industry (Garg &
Deshmukh, 2006). As illustrated in Figure 1, maintenance philosophies can be
generally classified as reactive (or unplanned) maintenance and proactive (or
planned) maintenance (Kothamasu, Huang, & VerDuin, 2006).

When a failure occurs, unplanned maintenance types are conducted to
either restore the failed item to its original condition, namely corrective
maintenance, or to immediately perform a required action to avoid hazardous
situations, i.e. emergency maintenance (Veldman, Wortmann, & Klingenberg,
2011). The preventive types of planned maintenance are performed at a fixed
and predetermined interval to decrease the likelihood of failure or performance
degradation (Kothamasu et al., 2006). However, preventive maintenance (PM)
does not give insight about real time condition of the system and its components.
Reliability-centered maintenance (RCM) and condition-based maintenance
(CBM) are predictive types of planned maintenance. RCM benefits from reliability
estimates of a system to formulate its cost-effective maintenance schedule, but
CBM is a decision making strategy for maintenance execution based on the
condition of the system which is quantified by some parameters that are
constantly monitored (Kothamasu et al., 2006).

2

Figure 1. Age-based maintenance in taxonomy of maintenance philosophies (Kothamasu et al.,
2006).

Maintenance

Reactive or unplanned maintenance

Corrective
maintenance

Emergency
maintenance

Proactive or planned maintenance

Preventive
maintenance

Constant Interval
maintenance

Age based
maintenance

Imperfect
maintenance

Predictive
maintenance

Reliability Centered
Maintenance(RCM)

Condition Based
Maintenance (CBM)

3

Flow Shop Scheduling

Flow shop scheduling has been studied by many researchers after Johnson
(1954) introduced the problem for two machines. The main goal in flow shop

scheduling is to find a sequence for 𝑛 jobs that are to be processed by 𝑚
machines to optimize an objective function. Minimizing the completion time of the
very last job (the makespan), the overall completion time, and the tardiness of
the jobs are some examples for such an objective.

Figure 2 shows a schematic of a flow shop scheduling problem. The

sequence of jobs in the figure is (1,2,3), and the objective is to minimize the
makespan. Changing this sequence will yield another value for the objective
function, and the goal is to find the optimal sequence for processing the jobs. A
different sequence will change the waiting times of the jobs for machines, and the
idle times of the machines. In this figure, Job 2 has to wait for Machine 2, and
Machine 2 has a waiting time for Job 3. Machine 3 has waiting times for both Job
2 and Job 3. If the objective function changes to minimizing the tardiness of the
jobs (in which case a due date is given for every job), two solutions with the
same makespan may yield different tardiness values.

Figure 2. An example for a permutation flow shop scheduling problem, n=m=3.

When all the jobs are assumed to go through the same sequence of

machines, the problem is called a permutation flow shop, and otherwise, non-
permutation (flexible) flow shop. After a job is processed on a machine, and
before it proceeds with the next machine, if the next machine is busy with
another job, the job can wait in the buffer between the consecutive machines. If
the buffer has zero capacity the problem is called blocking flow shop in which
case when the next machine is busy the job has to be blocked on the current
machine (Abdollahpour & Rezaeian, 2015).

Scheduling falls into the optimization class of problems where the

objective function is to be minimized or maximized; for example, minimizing the
total completion time of all the jobs (makespan). From a computational

0

M2

Job 1

Job 1

Job 2

Job 2

Job 3

Job 3

M1

M3 Job 1 Job 2

Job 3

Machine

Time

Makespan

4

complexity point of view, it is proved that, even with two machines, flow shop
scheduling problem is NP-hard (Papadimitriou & Kanellakis, 1980). That is, the
growth of the time for solving the corresponding decision problem is not a
polynomial function of the size of the problem. As a result, when the number of
jobs is relatively high, the time for finding the exact optimal solution is not
justifiable. Most of the literature related to flow shop scheduling deals with
proposing new heuristic or meta-heuristic algorithms that can yield near-optimal
solutions in a relatively short amount of time. See for examples in (Abdollahpour
& Rezaeian, 2015), (Ronconi, 2004), (Ying, 2008), (Bryan A Norman, 1999),
(Smutnicki, 1998), (Nowicki, 1999), (Brucker, Heitmann, & Hurink, 2003), and
(Hsieh, You, & Liou, 2009).

Integrating Maintenance Decisions into Flow Shop Scheduling

In the conventional production scheduling problems, it is assumed that the

machines can continuously process the jobs (M. Pinedo, 2012) and the
information is complete and certain. However, in practice the machines must stop
for preventive or corrective maintenance, and the information available to the
planners can be both incomplete and uncertain in scheduling environments
(Berry, 1993). In addition, Maintenance costs cover a big percentage of the total
operating costs (Ángel-Bello, Álvarez, Pacheco, & Martínez, 2011; Yip, Fan, &
Chiang, 2014). Therefore, it is reasonable to include minimizing the maintenance
cost in the objective function.

The integration of maintenance and scheduling has appeared in the

literature in the last two decades (Xu, Wan, Liu, & Yang, 2015; Yu & Seif, 2016).
The goal of this integration is to mimic the manufacturing or service environments
as closely as possible. The more the technical nuances of the maintenance
management are considered, the higher the practicality of these models and
solutions is going to be; however, incorporating maintenance decisions into the
production scheduling problems, requires more sophisticated modeling
approaches. This could also make the computational effort larger, especially for
the large-scale problems. The issue becomes even more complex when
uncertainty is taken into account. In this dissertation, I fully address the
integration of age-based maintenance decisions in flow shop scheduling
problems.

I provide three types of models: a mixed-integer program (Chapter I), a bi-

objective fuzzy mixed-integer program (Chapter II), and a stochastic mixed-
integer program in which uncertainty of the input data is considered (Chapter III).
As for solution methodologies, solution space of the problem is studied in
Chapters I and II, and Genetic Algorithms are used as the solution method.
Chapter III employs simulation optimization. Three variations of a case study in

5

construction projects is solved in each chapter. Figure 3 shows how the three
chapters are connected.

6

Figure 3. Dissertation outline.

Age-Based Maintenance

Planning

Permutation Flow Shop

Scheduling

CHAPTER I

CHAPTER II CHAPTER III

+
 U

nc
er

ta
in

ty
 in

 p
ro

ce
ss

in
g

tim
es

 a
nd

m

ai
nt

en
an

ce
 d

ur
at

io
ns

;

+
 C

om
bi

ni
ng

 m
ai

nt
en

an
ce

 a
ct

iv
iti

es

+
 B

i-o
bj

ec
tiv

e
fu

zz
y

op
tim

iz
at

io
n

+ Integration

+ The impact of maintenance

on processing times

7

CHAPTER I
INTEGRATING MULTIPLE AGE-BASED MAINTENANCE

ACTIVITIES INTO FLOW SHOP SCHEDULING

8

 A version of this chapter was originally published by Javad Seif and
Andrew J. Yu:

 Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in
flow shop scheduling by a lower-bound-based GA. Computers & Industrial
Engineering, 97, 26-40. DOI: https://doi.org/10.1016/j.cie.2016.03.024

Based on my original idea of incorporating maintenance activities into
production scheduling, I originated and completed this research project and Dr.
Yu supervised my work.

Abstract

A permutation flow shop scheduling problem is reformulated as a mixed-integer
linear program after incorporating flexible and diverse maintenance activities for
minimizing total tardiness and maintenance costs. The terms “flexible” and
“diverse” mean that the maintenance activities are not required to perform
following fixed and predetermined time intervals, and there can be different types
of maintenance activities for each machine. The problem is proved to be NP-hard
and a lower bound for the problem is proposed. A lower-bound-based genetic
algorithm (LBGA) is presented, in which the algorithm parameters are first tested
through a factorial experiment to identify the statistically significant parameters.
The LBGA algorithm self-tunes these parameters for its performance
improvement based on the solution gap from the lower bound. While it is
experienced that only the population size is statistically significant in improving
the quality of solutions, through a computational experiment it is also shown that
an optimal population size for one problem size yields the same quality of
solutions for larger sizes of problems and increasing the population size beyond
the optimal size for larger sizes of problems will only negatively affects the
efficiency of the algorithm. Computational results that show efficiency and
effectiveness of the algorithm are also provided.

1.1 Introduction

In conventional machine scheduling problems, it is assumed that the machines
are continuously operating and available over the planning horizon (M. L. Pinedo,
2012) which cannot be the case in real world problems where equipment could
be unavailable due to breakdown and/or maintenance activities. Although
maintenance planning and production scheduling are often studied separately
such as in semiconductor manufacturing (Xiaodong, Fernandez-Gaucherand, Fu,
& Marcus, 2004), integration of machine maintenance and scheduling has also
appeared in many researches in the last two decades (Xu et al., 2015).

9

This integration has been proposed for different configurations of
manufacturing environments such as single machine, flow shop, parallel
machine, job shop, or flexible flow shop, and based on different objective
functions such as minimizing makespan, total (expected) completion time, total
workload of machines, total workload of critical machines, tardiness, or a
combination of them (S. Wang & Liu, 2014). In this paper, integration of
maintenance and operations scheduling in flow shop is presented where the
objective function is to minimize the total maintenance and tardiness costs. In
some industries such as heavy construction projects, the maintenance costs form
a significant portion of the overall costs (Yip et al., 2014). Therefore, it is
important to consider the maintenance cost in the objective function along with
conventional scheduling criteria such as tardiness.

Flow shop scheduling refers to the problem of determining the optimum

permutation of a series of independent jobs which are to be processed by a set
of machines. When all the jobs are assumed to go through the same sequence of
machines, the problem is called permutation flow shop, and otherwise, non-
permutation flow shop. After a job is processed on a machine, and before it
proceeds with the next machine, if the next machine is busy with another job, the
job can wait in the buffer between the consecutive machines. If the buffer has
zero capacity the problem is called blocking flow shop in which case when the
next machine is busy the job has to be blocked on the current machine
(Abdollahpour & Rezaeian, 2015).

Scheduling falls into the optimization class of problems where the

objective function is to be minimized or maximized; for example, minimizing the
total completion time of all the jobs (makespan). From a computational
complexity point of view, it is proved that, even with two machines, flow shop
scheduling problem is NP-hard (Papadimitriou & Kanellakis, 1980). That is, the
growth of the time for solving the corresponding decision problem is not a
polynomial function of the size of the problem. As a result, when the number of
jobs is relatively high, the time for finding the exact optimal solution is not
justifiable. Most of the literature related to flow shop scheduling deals with
proposing new heuristic or meta-heuristic algorithms that can yield near-optimal
solutions in a relatively short amount of time. See for examples in (Abdollahpour
& Rezaeian, 2015), (Ronconi, 2004), (Ying, 2008), (Bryan A Norman, 1999),
(Smutnicki, 1998), (Nowicki, 1999), (Brucker et al., 2003), and (Hsieh et al.,
2009).

The literature related to the integration of maintenance planning and

scheduling was classified differently by (Xu et al., 2015) and (Aramon Bajestani &
Beck, 2015). (Xu et al., 2015) considered the literature to fall into two categories
based on the maintenance duration. In the first category, the duration is prefixed.
These research works consider the maintenance times as availability constraints

10

(times at which the machine is not available). In the surveys by (Sanlaville &
Schmidt, 1998), (Schmidt, 2000), (Ma, Chu, & Zuo, 2010), and (Gordon,
Strusevich, & Dolgui, 2012), this kind of works are identified and further
categorized. In the second category, maintenance duration may change based
on some factors that are dependent on the scheduling. For example, if the
production schedule forces a maintenance activity to be performed at a later
time, it takes more time to perform. In short, the duration is a function of the start
time of the activity. (Xu et al., 2015) also discussed the subtle differences
between these functions as appeared in the works of (S. J. Yang & Yang, 2010),
(T. C. E. Cheng, Yang, & Yang, 2012), (Mor & Mosheiov, 2012), (Luo & Ji, 2015),
(Xu, Yin, & Li, 2010), (S. J. Yang, 2012), and (S.-J. Yang, 2013). In this paper,
we will consider prefixed duration for maintenance activities.

 Aramon Bajestani and Beck (2015) also divided the literature in two
categories. The first category was the same as the first category determined by
(Xu et al., 2015). The second category, however, is different and addresses
those research works which assume that the processing times of the jobs varies
based on the maintenance. In the models presented in these literatures, a rate,
which is dependent on maintenance activities, is applied to the processing times
of the jobs (C. Y. Lee & Leon, 2001). Since we do not have such assumption for
processing times, we will not further discuss the related works in the second
category.

In this paper we will model and optimize a flow shop scheduling problem
integrated with diverse and flexible maintenance activities. Most of the related
works consider a single machine. However, there are some works such as
(Allaoui & Artiba, 2004) in which the integration of maintenance planning and
production scheduling has been extended to flow shop setting. They considered
a hybrid (non-permutation) flow shop with different objective functions while also
considering setup, cleaning and transportation times. They proposed a
combination of simulation and one of the meta-heuristic algorithms (simulated
annealing) as the solution approach. Other meta-heuristic solution approaches
such as genetic algorithm and tabu search have been utilized by (Aggoune,
2004), (Ruiz, Carlos García-Díaz, & Maroto, 2007), and a detailed review of all
the approaches along with a variable neighborhood search was presented by
(Naderi, Zandieh, & Fatemi Ghomi, 2009).

What distinguishes this paper from the related works is flexibility and

diversity of maintenance activities. Flexibility means that we are not limited to
perform maintenance activities at fixed intervals. Diversity means that we have
different set of maintenance activities for a machine. One downside of fixed-
interval preventive maintenance (PM) activities is that we do not know if the oil or
bearing which are to be replaced, for example, have been fully utilized. Condition
based maintenance (CBM) involves monitoring equipment’s health and

11

replacements or other maintenance actions that are performed only when they
are necessary. The cost of conducting condition monitoring, however, is not
always justifiable and there are researches dedicated solely to cost-wise
justification of running a CBM program (Azadeh, Asadzadeh, & Seif, 2014).

Flexible maintenance activities try to imitate CBM without monitoring, that

is, by estimating the remaining useful life of a system based on the known
deterioration rate that each job incurs in the system. Job-dependent deterioration
of machine means that in environments analogous to manufacturing, when
different jobs are processed by a machine, we can expect the health of a
machine to be deteriorated with different rates when different jobs are processed.
Having these deterioration rates available, a more economic maintenance plan
can be achieved in which maintenance activities are not necessarily performed
with fixed intervals (in the literature, general, flexible, or noncyclical PMs are also
used with the same meaning).

 S. Bock, D. Briskorn, and A. Horbach (2012) tried to extend classic
machine scheduling problems by taking machine deterioration and maintenance
activities (MAs) into account. They described health of a single machine by a
bounded maintenance level (ML) which is deteriorated as jobs are processed.
They assumed that the deterioration is a linear function of the processing time of
the jobs and each job has its own coefficient (failure rate). They considered pure
scheduling objective functions such as minimization of completion times,
makespan, and tardiness. Majority of their work is dedicated to the determination
of computational complexity of the problems introduced in their paper.

Diversity of maintenance activities has not been observed in flow shop
literature. As for the objective function, the main focus of our model is on
minimizing the maintenance cost (unlike most of the discussed research works)
because in some flow shop settings such as in a petrochemical plant or a
construction project, the maintenance cost forms the main portion of the
expenses.

In many of the existing research works, the maintenance cost is usually

considered as a whole along with other production costs (Allaoui, Lamouri,
Artiba, & Aghezzaf, 2008). In addition, some practical considerations have never
been taken into account. One of such considerations is that a machine usually
has more than one type of MA. Because terms like “multi-maintenance activities”
and “multiple maintenance activities” appeared in the literature (Zarook,
Rezaeian, Tavakkoli-Moghaddam, Mahdavi, & Javadian, 2014), (Sun & Li, 2010),
and (Shi & Xu, 2014) do not refer to different types of maintenance activities, we
have adopted the term “diverse maintenance activities” in order to more
distinctively represent the problem.

12

Note that some works that integrated preventive maintenance planning
and production might not be comparable with this research as they are basically
focusing on production planning, not jobs scheduling. For example, (Aghezzaf,
Jamali, & Ait-Kadi, 2007) integrated maintenance, repair, and inventory in their
models. Their model was to find the best production quantity for different
products along with the optimum PM interval that minimizes total cost. Aghezzaf
et al. (2007) and a few other researchers have considered maintenance cost in
their works but unlike the presented research, they did not incorporate the
maintenance resource cost into the maintenance planning. Instead, they
considered the maintenance and repair cost as a fixed value multiplied by the
frequency of maintenance activities. In our proposed model, we break the
maintenance cost into various costs of resources and optimize the jobs schedule
in a way that minimum resource is used.

There are some researches that consider both corrective (and unplanned)

maintenance (CM) and PM. (Allaoui et al., 2008), also, tried to find the optimum
length for PM cycles with minimal repair at failure for different machines working
in a parallel setting with almost the same objective function as their previous
work. They also integrated maintenance with production planning and suggested
an approximation Lagrangian decomposition to solve their problem for both cyclic
and noncyclic (flexible) cases.

(Chen, 2008; Sun & Li, 2010; Xu et al., 2010) reduced the rigidity of fixed

interval PMs by assuming lower and upper bounds for the time between
successive maintenance activities. There can be other not-so-common
restrictions, too, such as limiting the number of times a specific maintenance
activity can be performed in (Mosheiov & Sarig, 2009). The proposed model in
this paper with flow shop setting and flexible and multiple (diverse) maintenance
activities can cover both single machine with multiple maintenance activities and,
with simple adjustments in the input parameters, parallel machines with single
maintenance activity for each machine.

The contribution of this paper is threefold. First, a practical problem is

introduced that extends mathematical formulation of the conventional flow shop
scheduling problem as a mixed integer linear program (MILP) by incorporating
flexible and diverse maintenance activities into it. Second, the lower bounds of
the problem are found using the proposed algorithms that convert the problem
into several small and easy-to-solve Knapsack problems. Finally, a new genetic
algorithm (GA) that can solve any realistic sizes of the problem effectively and
efficiently is introduced. The algorithm uses the lower-bounds and factorial
experiments to fine-tune its parameters, and is called lower-bound-based GA
(LBGA).

13

The rest of this chapter is organized as follows. In Section 1.2, the
problem is described along with a summary of assumptions, and in Section 1.3
the problem is mathematically formulated. Computational complexity discussion,
lower bounds of the problem, and a genetic algorithm that has been developed
based on the lower bounds are presented in Section 1.4. Computational results
that validate effectiveness and efficiency of the algorithm along with other
computational experiments are presented in Section 1.5. A case study in heavy
construction projects is presented in Section 1.6 to show the application of the
problem. Conclusions and possible future works as extensions of this paper are
discussed in Section 1.7.

1.2 Problem Definition

We try to minimize the total maintenance and customer dissatisfaction costs in a
flow shop setting. The jobs can have different processing times with respect to a
certain machine and each job can have different processing times on different
machines. A machine’s health condition could be expressed by the machine’s
diverse maintenance levels (MLs). ML was suggested first by (S. Bock et al.,
2012). Diversity means, for example, one ML may indicate the cleanliness of an
air filter and another one for quality of the engine’s oil. Each maintenance level
will be depleted from its maximum value as the jobs are processed. If an ML
value falls below zero, in theory it is equivalent to a failure, and in practice, it
indicates a high failure probability.

After a certain job is processed on a certain machine, each ML of the
machine is decreased by a certain amount because the job has a certain
deterioration rate with respect to each ML for each machine. When the remaining
useful life in terms of an ML is not enough for processing the next job, its
respective maintenance activity (MA) will be performed in order to restore the ML
to its maximum. We are looking for a sequence of jobs that requires minimum
number of MAs. Figure 4 shows an illustrative example of two machines, three
jobs, and two MLs for each machine. The example shows one feasible sequence
of jobs in which one and three MAs are performed on the first and the second
machine, respectively. Note that each MA has a different duration on each
machine and it only affects the respective ML. If the initial value of the ML (the
maximum) is set to infinity, it implies that this ML does not exist for the machine.
So, we consider the same set of MLs for all the machines. Also, it is possible that
a job does not affect a certain ML of a certain machine in which case the
deterioration rate is equal to zero.

Customer dissatisfaction occurs when the completion time of a job is

greater than its due date. However, the cost might be relatively lower than the

14

Figure 4. An illustrative example of the problem.

IME
0

M2

L2 of M1

J1

J1

J2

MA1

MA2

J2

MA1

MA2
A2

J3

J3

M: Machine – J: Job – L: Maintenance Level –MA: Maintenance Activity –
C: Completion Time

L1 of M1

L2 of M2

L1 of M2

0

0

0

0

M1

C1 C2

C3

Machine
s

Time

15

maintenance costs. For example, delay in production in a make-to-stock
production setting is often insignificant comparing with the maintenance cost as
long as the production efficiency is not affected and the delay is not prolonged.
Our approach to the solution of the problem focuses more on the maintenance
cost than the customer dissatisfaction cost. For modeling the customer
satisfaction, we use the conventional tardiness objective function. The following
is a summary of assumptions considered in the formulation of the problem.

1. By flow shop we mean permutation flow shop.

2. All the machines have the same set/types of MLs, and hence, the same set

of Mas.

3. There is no buffer between machines.

4. Duration of a specific MA for a specific machine is known and invariable.

The same MA can have a different duration on a different machine.

5. When a job is being processed, all the MLs are subject to deterioration

according to a linear function by 𝛿 ∙ 𝑝 where δ is the deterioration rate of ML

caused by a job after it is processed and p is processing time of the job.

6. Before processing the first job, all the MLs of all the machines are at their

maximum.

7. Sufficient/unlimited resources (maintenance spare parts, materials, and

workforces, operators, etc.) are available for processing the jobs and

performing the Mas.

8. Pre-emption is not allowed.

9. All the MAs are performed to completion.

10. The quantity 𝛿 ∙ 𝑝 is always less than the maximum of the corresponding

maintenance level. Otherwise, the problem will be infeasible.

11. Random failures are not considered.

1.3 Mathematical Formulation

Following is a list of sets, parameters, and variables used throughout the
mathematical formulation of the problem. Let m, n, and l be the number of
machines, jobs, and maintenance levels or their respective PMs (PM types),
respectively. Then we have the following indices, parameters and variables.

𝑖 Represents machines where i = 1,2,…,m

𝑗 Represents production jobs where j = 1,2,...,n

𝑞 Represents sequence of jobs (jobs positions) where q = 1,2,...,n

𝑘 represents MLs or their respective MAs where k = 1,2,…,l

𝑝𝑖𝑗 Processing time of job j on machine i

16

𝛿𝑖𝑗𝑘
Deterioration rate of maintenance level k (MA type k) of machine i when
job j is processed

𝑒𝑖𝑘 Duration of respective MA type k on machine i

𝑀𝐿𝑚𝑎𝑥
𝑘 Maximum of ML type k

𝑆𝑃𝑖𝑘 Cost of required spare parts and materials for MA type k on machine i

𝑊𝐹𝑘 Cost of skilled workforce per time unit for performing MA type k

𝑑𝑗 The time at which job j is due

𝜋𝑗 Penalty cost associated with each time unit delay in completion of job j

𝑀,𝑀′ Sufficiently large numbers

𝑧 Total cost

𝑥𝑗𝑞 Binary variable that takes the value 1 if job j is assigned to position q and
0 otherwise

𝑦𝑖𝑞𝑘 Binary variable that takes the value 1 when PM type k is performed on
machine i before processing the q-th job and 0 otherwise

𝑀𝐿𝑖𝑞
𝑘 Numerical representation of ML type k of machine i before processing the

q-th job

𝑐𝑞 Completion time of the job assigned to position q

𝑡𝑞 Tardiness of the job assigned to position q (amount of lateness in
completion of the job)

𝛱𝑗𝑞 Penalty associated with job j assuming that it is in position q

𝑣𝑖𝑞 Waiting time of the machine i for the q-th job (idle time)

𝑤𝑖𝑞 Waiting time of the q-th job for machine i

As it was discussed earlier, the objective function (OF) of the model is to

minimize the total cost which comprises the penalty cost incurred because of
lateness in completion of each job (tardiness) and cost of maintenance
resources, namely cost of spare parts and required workforces. Total penalty
costs can be expressed as in Equation (1).

𝑇𝑜𝑡𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑠𝑡 =∑∑𝜋𝑗𝑥𝑗𝑞(𝑚𝑎𝑥{0, 𝑐𝑞 − 𝑑𝑗})

𝑛

𝑞=1

𝑛

𝑗=1

 (1.1)

The term 𝑚𝑎𝑥{0, 𝑐𝑞 − 𝑑𝑗} in Equation (1) will only be meaningful when

𝑥𝑗𝑞 = 1, so the term is equivalent to 𝑚𝑎𝑥{0, 𝑐𝑞 − ∑ 𝑥𝑗𝑞𝑑𝑗
𝑛
𝑗=1 }. In order to linearize

Equation (1), we take the following steps. Firstly, we replace the term

𝑚𝑎𝑥{0, 𝑐𝑞 −∑ 𝑥𝑗𝑞𝑑𝑗
𝑛
𝑗=1 } with a new variable 𝑡𝑞 which is subject to the following

constraints

𝑡𝑞 ≥ 𝑐𝑞 −∑𝑥𝑗𝑞𝑑𝑗

𝑛

𝑗=1

 𝑞 = 1,2, … , 𝑛, (1.2)

17

𝑡𝑞 ≥ 0 𝑞 = 1,2, … , 𝑛. (1.3)

If the completion time becomes greater than the due time, the minimum

value for 𝑡𝑞 will be the difference between them, and zero otherwise. Since the

OF seeks the minimum value, the algorithm always chooses the minimum value
for 𝑡𝑞. Now we have ∑ ∑ 𝑥𝑗𝑞𝜋𝑗𝑡𝑞

𝑛
𝑞=1

𝑛
𝑗=1 instead of Equation (1) which is still

nonlinear (quadratic). In order to linearize it, we introduce a new variable 𝛱𝑗𝑞

which is the penalty associated with job j, if it is assigned to position q in the
sequence of the jobs. Namely,

𝛱𝑗𝑞 = {
𝜋𝑗𝑡𝑞 , 𝑥𝑗𝑞 = 1

0, 𝑥𝑗𝑞 = 0

𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … 𝑛.

(1.4)

The following four inequalities are proposed in order to express Equation

(4) in a linear manner.

𝛱𝑗𝑞 − 𝜋𝑗𝑡𝑞 ≥ −𝑀(1 − 𝑥𝑗𝑞)
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛,

(1.5)

𝛱𝑗𝑞 − 𝜋𝑗𝑡𝑞 ≤ 𝑀(1 − 𝑥𝑗𝑞)
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛,

(1.6)

𝛱𝑗𝑞 ≥ −𝑀(𝑥𝑗𝑞)
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛,

(1.7)

𝛱𝑗𝑞 ≤ 𝑀(𝑥𝑗𝑞)
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛.

(1.8)

Note that when 𝑥𝑗𝑞=0, the first pair inequalities, Equations (1.5) and (1.6),

are turned off (because of M which is a sufficiently big number and makes the
constraint feasible for any values of variables) and the second pair, Equations
(1.7) and (1.8), are turned on. Each pair forms an equation when it is turned on
and the right hand side of both inequalities becomes zero. The same reasoning
can be applied for the case when 𝑥𝑗𝑞=1 when Equations (1.5) and (1.6) are

turned on and Equations (1.7) and (1.8) are turned off.

We can now write the full OF as

𝑚𝑖𝑛 𝑧 =∑∑𝛱𝑗𝑞

𝑛

𝑞=1

𝑛

𝑗=1

+∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

, (1.9)

18

where 𝑦𝑖𝑞𝑘 is used in order to take into account only the cost of those MAs that

are decided to be performed. This OF is subject to Constraint sets (1.2-1.3 and
1.5-1.8), and the following constraints.

To make sure that each job has one and only one position in the
sequence of jobs, we use the following two sets of constraints

∑𝑥𝑗𝑞 = 1

𝑛

𝑞=1

 𝑗 = 1,2, … , 𝑛, (1.10)

∑𝑥𝑗𝑞 = 1

𝑛

𝑗=1

 𝑞 = 1,2, … , 𝑛. (1.11)

According to the flow shop literature (Selen, 1986), and before

incorporating flexible and diverse maintenance activities to the flow shop
problem, the waiting times of machines and jobs can be calculated through the
following set of equations:

[
𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

] + [
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓

𝑗𝑜𝑏 𝑞 + 1
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖

]

+ [

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞 + 1

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
]

= [

𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

]

+ [
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓

𝑗𝑜𝑏 𝑞
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1

]

+ [

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
]

𝑖 = 1,2, … ,𝑚 − 1,
 𝑞 = 1,2, … , 𝑛 − 1.

(1.12a)

The MAs could be performed before or after any job for each of the

machines in the shop. For the simplicity, we attach the maintenance time to the
job processing time at its beginning. The actual MAs for each machine will only
be scheduled when they are necessary which are determined by the model.
Thus, Equation (1.12a) can be extended to Equation (1.12b), after incorporating
the potentially necessary MAs in the job scheduling.

19

[

𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

] + ([
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓

𝑗𝑜𝑏 𝑞 + 1
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖

] +

[
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝑎𝑙𝑙 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑀𝐴𝑠
 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑗𝑜𝑏 𝑞 + 1

𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖

]) +

[

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞 + 1

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
] = [

𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

] +

([
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓

𝑗𝑜𝑏 𝑞
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1

] +

[
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝑎𝑙𝑙 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑀𝐴𝑠
 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑗𝑜𝑏 𝑞

𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1

]) +

[

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
]

𝑖 = 1,2, … ,𝑚 − 1,
𝑞 = 1,2, … , 𝑛 − 1,
𝑘 = 1,2, … , 𝑙.

(1.12b)

Throughout the model we will schedule the necessary MAs prior to a job

at an arbitrary position q. The final form of Equation (1.12b) can be expressed as
follows.

𝑣𝑖(𝑞+1) + (∑𝑦𝑖(𝑞+1)𝑘𝑒𝑖𝑘

𝑙

𝑘=1

+∑𝑥𝑗(𝑞+1)𝑝𝑖𝑗

𝑛

𝑗=1

)

+ 𝑤(𝑖+1)(𝑞+1)
= 𝑣(𝑖+1)(𝑞+1)

+ (∑𝑦(𝑖+1)𝑞𝑘𝑒(𝑖+1)𝑘

𝑙

𝑘=1

+∑𝑥𝑗𝑞𝑝(𝑖+1)𝑗

𝑛

𝑗=1

) + 𝑤(𝑖+1)𝑞

𝑖 = 1,2, … ,𝑚 − 1,
𝑞 = 1,2, … , 𝑛 − 1,
𝑘 = 1,2, … , 𝑙.

(1.12c)

According to Assumption (6), all the maintenance levels prior to the first

job are at their maximum and hence no MA is performed before processing the
first job. This can be expressed either by Equation (1.13a) or (1.13b). We use
Equation (1.13a).

𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘
𝑖 = 1,2, … ,𝑚 , 𝑘 =
1,2, … , 𝑙,

(1.13a)

20

or,

𝑦𝑖1𝑘 = 0
𝑖 = 1,2, … ,𝑚 , 𝑘 =
1,2, … , 𝑙.

(1.13b)

The job in the first position (q=1) does not wait in buffer for any of the

machines as it is processed first by all the machines. This can be expressed
using the following constraints

𝑤𝑖1 = 0 𝑖 = 1,2, … ,𝑚. (1.14)

The first machine in the flow shop also does not wait for any of the jobs,

𝑣1𝑞 = 0 𝑞 = 1,2, … , 𝑛. (1.15)

Idle times for machines 2 to m with respect to the first job (q=1) will be

𝑣𝑖1 =∑∑𝑥𝑗1𝑝𝑓𝑗

𝑖−1

𝑓=1

𝑛

𝑗=1

 𝑖 = 2,3, … ,𝑚. (1.16)

The first two summations in Equation (1.17) can be interpreted as a

search through all the jobs to see which one is assigned to the first position on
the machines prior to the machine i and then adding its processing times on the
previous machines to the idle time of machine i. The interpretation of summations
like these as a means for search can be used for the rest of the constraints with
analogous summations. Buffer time of the jobs scheduled after the first job,
before proceeding with the first machine, can be modeled as follows

𝑤1𝑞 =∑∑𝑥𝑗𝑟𝑝1𝑗

𝑛

𝑗=1

𝑞−1

𝑟=1

+∑∑𝑦1𝑟𝑘𝑒1𝑘

𝑙

𝑘=1

𝑞

𝑟=1

 𝑞 = 2,3, … , 𝑛. (1.17)

In order to make sure that maintenance levels do not fall below zero

during or after processing a job we use the following set of constraints

𝑀𝐿𝑖𝑞
𝑘 ≥∑𝑥𝑗𝑞𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(1.18)

Constraint (1.18) requires all maintenance levels of a machine to be equal

or greater than the amount of linear deterioration by which the ML drops so that
none of the levels fall below zero because when a maintenance level falls below
zero it implies machine breakdown. After processing a job, a maintenance level

21

is equal to its level before processing the previous job minus the corresponding
deterioration. If Constraint (1.18) does not hold, the respective MA will be
performed in order to restore the level to its maximum. This is expressed as

𝑀𝐿𝑖𝑞
𝑘 =

{

 𝑀𝐿𝑖(𝑞−1)
𝑘 −∑𝑥𝑗(𝑞−1)𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

, 𝑦𝑖𝑞𝑘 = 0

𝑀𝐿𝑚𝑎𝑥
𝑘 , 𝑦𝑖𝑞𝑘 = 1

𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙.

(1.19)

We reapply analogously the method that we used to convert Equation

(1.4) to Equations (5-8) in order to linearize Equation (1.19).

𝑀𝐿𝑖𝑞
𝑘 − (𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝑥𝑗(𝑞−1)𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

) ≥ −𝑀′(𝑦𝑖𝑞𝑘)
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(1.20)

𝑀𝐿𝑖𝑞
𝑘 − (𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝑥𝑗(𝑞−1)𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

) ≤ 𝑀′(𝑦𝑖𝑞𝑘)
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(1.21)

𝑀𝐿𝑖𝑞
𝑘 − 𝑀𝐿𝑚𝑎𝑥

𝑘 ≥ −𝑀′(1 − 𝑦𝑖𝑞𝑘)
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(1.22)

𝑀𝐿𝑖𝑗
𝑘 − 𝑀𝐿𝑚𝑎𝑥

𝑘 ≤ 𝑀′(1 − 𝑦𝑖𝑞𝑘)
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙.

(1.23)

Completion time of each job is equal to sum of its processing times and its

waiting times in the buffer. This yields the following set of constraints. Note that,
as stated earlier, we consider duration of required MAs, too, whenever we take
into account processing times.

Finally,

As explained above, we added new variables in order to be able to

linearize the model. Now we have a mixed integer linear model. The final model
comprises of the objective function in Equation (1.9) and constraints in Equations

𝑐𝑞 =∑(𝑤𝑖𝑞 +∑𝑥𝑗𝑞𝑝𝑖𝑗

𝑛

𝑗=1

+∑𝑦𝑖𝑞𝑘𝑒𝑖𝑘

𝑙

𝑘=1

)

𝑚

𝑖=1

 𝑞 = 1,2, … , 𝑛. (1.24)

𝑥𝑗𝑞 , 𝑦𝑖𝑞𝑘 ∈ {0,1},

𝑀𝐿𝑖𝑞
𝑘 , 𝑐𝑞 , 𝑡𝑞 , 𝛱𝑗𝑞 , 𝑣𝑖𝑞 , 𝑤𝑖𝑞 ≥ 0

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙.

(1.25)

22

(1.2-1.3, 1.5,1.8, 1.12c, 1.13a, 1.14-1.25). In the next section we will present the
algorithms developed and the methods for solving the model.

1.4 Solution Approach

In this section, first, we prove that the presented problem is NP-hard. Then, we
find a lower bound for the problem. Based on this lower bound, we design a
genetic algorithm (GA) whose parameters are set in such a way that the gap
between its best solutions and the lower bound does not increase with the size of
the problem. Computational results that verify efficiency and effectiveness of the
GA will be presented in the next section.

Complexity of the problem

Two variations of the modeled problem can be defined based on the number of
machines and MLs: a problem that involves only a single machine with only a
single maintenance level (m=n=1), MAINTFLOW-SINGLE, and a problem in which
the number of machines or maintenance levels is not limited, MAINTFLOW-FULL.
In order to show that an optimization problem is NP-Hard, we will show that its
corresponding decision problem is NP-Complete. In doing so, we will show that 1)
a solution for an instance of the problem can be verified for feasibility in polynomial
time, and 2) a problem which has already been proven to be NP-Complete can be
reduced to it. Although the problem of minimizing total tardiness of a set of jobs
which are to be scheduled on a single machine has already been proven to be NP-
hard (Du & Leung, 1990) and it can be easily reduced to the presented problem,
we present another proof as a contribution.

Theorem 1. MAINTFLOW-SINGLE is NP-hard.
Proof. Any sequence (permutation) of the jobs can be considered as a feasible
solution. If a sequence is given as a solution for an instance the problem, it is
only needed to check whether:

1. All the jobs exist in the sequence, and

2. No job has been repeated in the sequence.

Obviously, this can be done in polynomial time. Next, we reduce the KNAPSACK
problem to MAINTFLOW-SINGLE. Let the following, KS, be an instance of
KNAPSACK optimization problem.

𝑚𝑎𝑥 𝑧 =∑𝑣𝑜𝑈𝑜

𝑂

𝑜=1

 (1.26)

23

Subject to:

∑𝑤𝑜𝑈𝑜

𝑂

𝑜=1

≤ 𝑊 (1.27)

where 𝑈𝑜 ∈ {0,1}, 𝑜 = 1,… , 𝑂, are the decision variables, and 𝑊, 𝑤𝑜 and 𝑣𝑜 are
capacity of the knapsack, size and value of object o, respectively. The optimum
solution for this problem (the most valuable subset of objects whose total size
does not exceeds the capacity of the knapsack) can be obtained if we solve the
following instance of the problem modeled in Section 1.3.

 𝑚 = 1, 𝑛 = 𝑂, 𝑙 = 1,

 𝑖 = 1, 𝑗 = 𝑜, 𝑘 = 1,

 𝑀𝐿𝑚𝑎𝑥
𝑘 = 𝑊, 𝑝𝑖𝑗𝛿𝑖𝑗𝑘 = 𝑤𝑜, 𝜋𝑗 = −𝑣𝑜,

 𝑒𝑖𝑘 = 𝑐1, 𝑑𝑗 = 𝑐2, 𝑆𝑃𝑖𝑘 = 0,𝑊𝐹𝑘 = 0.

In this reduction, 𝑐1 and 𝑐2 are arbitrarily-selected constants.

Theorem 2. MAINTFLOW-FULL is NP-hard.

Proof. MAINTFLOW-SINGLE can be reduced to MAINTFLOW-FULL by setting
m=l=1 in MAINTFLOW-FULL.

Lower bounds

The objective function of the presented problem consists of two major costs
which were to be minimized: maintenance cost and tardiness cost. In order to
obtain a lower bound for the problem, we can find the lower bound for each of the
two costs and then sum them up. Because the use of this lower bound is to
control its gap from the GA solution, it is not a major concern to find the tightest
lower bound.

Lower bound for MAINTFLOW-SINGLE

Maintenance Cost. The least number of maintenance activities that are required
in order for the maintenance level not to fall below zero can be obtained by
grouping the jobs based on their sum of deterioration rates, that is, we try to find
groups of jobs that deteriorate the maintenance level (deplete the remaining
useful life) as completely as possible. Following the same notations that we used
for modeling the problem, the KNAPSACK problem can be remodeled as follows.

24

𝑚𝑎𝑥 𝑧 =∑𝑈𝑗𝑝𝑗𝛿𝑗

𝑛

𝑗=1

 (1.28)

Subject to:

∑𝑈𝑗𝑝𝑗𝛿𝑗

𝑛

𝑗=1

≤ 𝑀𝐿𝑚𝑎𝑥 (1.29)

where 𝑈𝑗 ∈ {0,1} is the decision variable which determines whether we select job

j (𝑈𝑗 = 1) or not (𝑈𝑗 = 0). Capacity of the knapsack is the maintenance level’s

maximum value, i.e. 𝑀𝐿𝑚𝑎𝑥 , weight and also value of each job (object) is how
much it can deteriorate the level, namely 𝑝𝑗𝛿𝑗. The optimal solution determines

which jobs consume the ML the most without MA between them. These jobs are
crossed out from the original list of jobs. The problem is solved again for the
remaining jobs and this process continues until no job is left. Number of required
MAs will be equal to the number of groups minus one since we require MAs
between the groups. Algorithm 1 was used for finding the maintenance cost
lower bound.

Tardiness Cost. Although there are some papers that have found the lower
bound for total tardiness in a single machine scheduling problem ((Tansel, Kara,
& Sabuncuoglu, 2001), (Della Croce, Grosso, & Paschos, 2004)), their result
cannot be directly used in our work as we are dealing with the cost of tardiness
not the tardiness itself. The tightness of the bound is not a main concern. What
follows is a proposed lower bound for total tardiness cost in MAINTFLOW-

Algorithm 1. Total Maintenance Cost Lower Bound for MAINTFLOW-SINGLE.

Input: 𝐽, set of all jobs; 𝑀 = 𝑆𝑃11 + 𝑒11 ×𝑊𝐹𝑘, cost of each maintenance
activity

Output: 𝐿, total maintenance cost
𝐺 ← ∅
𝑁 ← 0 //Number of required MAs
while 𝐽 ≠ ∅ do

 𝐺 ← KNAPSACK(𝐽)
 𝐽 ← 𝐽\𝐺
 𝐺 ← ∅

 𝑁 ← 𝑁 + 1
𝐿 ← (𝑁 − 1) × 𝑀

25

SINGLE problem. Following the same notations that we used in modeling the
problem, let 𝑑0 = max𝑑𝑗, 𝜋0 = min𝜋𝑗, and 𝑝10 = min𝑝1𝑗 where 𝑗 = 1,… , 𝑛.

Algorithm 2 yields a possible lower bound for the problem.

Algorithm 2. Total Tardiness Cost Lower Bound for MAINTFLOW-SINGLE.

𝐶 ← 0 //Completion Time

𝑇 ← 0 //Total Tardiness
for 𝑗 = 1 𝑡𝑜 𝑛 do
𝐶 ← 𝐶 + 𝑝10
if 𝑑0 < 𝐶 then

 𝑇 ← 𝑇 + 𝐶 − 𝑑0
𝐿 ← 𝑇 × 𝜋0 //Lower Bound

Lower bound for MAINTFLOW-FULL

Maintenance Cost. When the jobs are to be processed by more than one
machine and each machine has more than one ML, we can get the lower bound
for each ML of each machine using Algorithm 1 and then adding them together.
Algorithm 3 summarizes this.

Algorithm 3. Total Maintenance Cost Lower Bound for MAINTFLOW-FULL.

Input: 𝐽, set of all jobs; 𝑀𝑖𝑘 = 𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘 ×𝑊𝐹𝑘, cost of each maintenance
activity

Output: 𝐿, total maintenance cost

𝐿 ← 0
for 𝑖 = 1 𝑡𝑜 𝑚 do
 for 𝑘 = 1 𝑡𝑜 𝑙 do
 𝐺 ← ∅

 𝑁 ← 0 //Number of required MAs
 while 𝐽 ≠ ∅ do
 𝐺 ← KNAPSACK(𝐽)

𝐽 ← 𝐽\𝐺
 𝐺 ← ∅

𝑁 ← 𝑁 + 1
𝐿 ← 𝐿 + (𝑁 − 1) × 𝑀𝑖𝑘

Tardiness Cost. With some changes, Algorithm 2 can be enhanced to calculate

the lower bound for total tardiness cost where 𝑝𝑖0 = min 𝑝𝑖𝑗 ∀ 𝑖 = 1,… ,𝑚 and 𝑗 =

1, … , 𝑛. 𝑐𝑖𝑗, 𝑤𝑖𝑗 and 𝑒0are completion time of the job in position i with respect to

machine j, waiting time of job i for machine j, and minimum execution time of
maintenance activities, respectively. Algorithm 4 shows this.

26

Algorithm 4. Total Tardiness Cost Lower Bound for MAINTFLOW-FULL.

𝐶 ← 𝟎 //Completion Time: A matrix of size 𝑚 × 𝑛 that shows completion time of
each job on each machine

𝑊 ← 𝟎 //Waiting Time: A matrix with size 𝑚 × 𝑛 that shows waiting time of each
job for each machine

𝑇 ← 0 //Total Tardiness
for 𝑖 = 1 𝑡𝑜 𝑚 do

 𝑐𝑖1 ← ∑ 𝑝𝑖0
𝑖
𝑠=1

for 𝑗 = 2 𝑡𝑜 𝑛 do
 𝑐1𝑗 ← 𝑐1(𝑗−1) + 𝑝10

for 𝑖 = 2 𝑡𝑜 𝑚 do

 for 𝑗 = 2 𝑡𝑜 𝑛 do
 if 𝑐𝑖(𝑗−1) < 𝑐(𝑖−1)𝑗 then

 𝑤𝑖𝑗 ← 𝑐𝑖(𝑗−1) − 𝑐(𝑖−1)𝑗

 𝑐𝑖𝑗 = 𝑐(𝑖−1)𝑗 + 𝑤𝑖𝑗 + 𝑝𝑖0

for 𝑗 = 1 𝑡𝑜 𝑛 do
 if 𝑑0 < 𝑐𝑚𝑗 then

 𝑇 ← 𝑇 + 𝑐𝑚𝑗 − 𝑑0

𝑇 ← 𝑇 + (𝑁 − 1) × 𝑒0
𝐿 ← 𝑇 × 𝜋0 //Lower Bound

27

Lower-Bound-Based Genetic Algorithm (LBGA)

We showed that the presented problem is NP-hard. As will be shown in the next
section, only very small sizes of the problem can be solved in a reasonable and
predictable time for exact optimal solution using commercial solvers such as IBM
CPLEX. Complex structure of the problem also makes it difficult to come up with
an exact heuristic algorithm. This leads to the call for designing and
implementing a metaheuristic algorithm for the problem where it is ensured that
the whole feasible solution space can be searched through randomly-generated
solutions and each solution can be further improved by a local search. We
propose a genetic algorithm for the presented problem by using an experimental
design to identify the significant parameters of the algorithm and then tuning
those parameters based on the identified lower bounds. Figure 5 illustrated the
solution approach.

Genetic Algorithms

Genetic algorithms (GAs) are among the most widely-used and known search
heuristics. GAs have been applied to different research areas (Chambers, 1998)
including several applications in machine scheduling (B. A. Norman & Bean,
1999). In the works of (Sortrakul, Nachtmann, & Cassady, 2005) and (Sortrakul &
Cassady, 2007), GA has been used to solve the integrated scheduling of
production and maintenance for a single machine. A GA generally works by
keeping a population of candidate solutions represented as chromosomes whose
fitness is determined by their respective objective function value. The
chromosome is composed of a sequence of elements (numbers) each of which is
indicative of a feature of the solution. A fixed number of most fit chromosomes
are selected as the population of the current generation, on a percentage of
which the local search operators, crossover and mutation, are applied. Crossover
produces new offspring chromosomes from certain chromosomes of the current
generation which are selected as parents. Mutation is applied to certain
chromosomes of either current population or the offspring chromosomes
according to a specific mutation scheme in order to produce new chromosomes.
This process is iterated until a stopping condition is satisfied.

Like other types of meta-heuristic algorithms, a GA has a set of
parameters whose values affect performance and quality of the solutions of the
algorithm. This set of parameters includes population size (number of competing
chromosomes) in each iteration, percentage of solutions for crossover and
mutation, parameters for the specific method of crossover and mutation that are
used, and parameter of stopping condition (for example, the time at which the
algorithm stops). The interactions between GA parameters and respective
literature was reviewed and studied by (Deb & Agrawal, 1999). According to that
study, the most important parameters are population size (N), crossover
probability (pc), and mutation probability (pm). The optimal value for the mutation

28

probability and crossover probability are highly dependent on the chromosome
representation (Tate & Smith, 1993). As a result, for a specific chromosome
representation of a certain problem, it must be tested whether these parameters
affect solution quality or performance.

Design of the GA

Chromosome representation. Each individual chromosome (solution) is a
sequence of the jobs. Although in the MILP problem formulation we introduced
other decision variables, such as the binary variable that determines whether a
maintenance activity is placed before a job position (𝑦𝑖𝑞𝑘), the only independent

variable is the position of each job in the permutation (𝑥𝑖𝑗). When a sequence of

jobs is represented as a chromosome, random permutations provide access to
different areas of the solution space relatively fast and since the genes are jobs,
neighborhood of a solution can be searched relatively fast by crossover and
mutation operators which make the local search computationally simple, and
hence, fast. In addition, because the values of dependent variables can be easily
calculated for a given sequence, there is no need for feasibility check when
producing random solutions.

Crossover. A single point crossover operator has been used in order to produce
two offspring from two parent chromosomes. A sequence of jobs represents a
feasible chromosome (solution) if it satisfies the two conditions of a valid solution
discussed in proving Theorem 1. In a single point crossover, after the first left
sections of the chromosomes are exchanged, it is possible that the right sections
have duplicate genes. In that case, those genes are replaced by the genes of the
other chromosome that are in the same position. Algorithm 5 shows this.

Mutation. The mutation has been used as a local search that can further improve

the fitness of existing solutions. With probability 𝜇, two random genes are
selected and swapped. Otherwise, no change occurs to the chromosome. After
mutation, the chromosome will remain a feasible chromosome. Algorithm 6
shows the mutation scheme used in the proposed algorithm. We repeat the
mutation M-1 more times where M is 20% of the number of jobs. This is because
swapping only two jobs decreases effectiveness of this search when the number
of jobs increases in larger problems.

Selection. A Roulette Wheel Selection method (C. R. Reeves, 1995) has been
adapted, as is shown in Algorithm 7, for selecting either parents for crossover, or

29

 Algorithm 5. Crossover Operator.

Input: Two sequences of jobs (parents); 𝑥1 and 𝑥2.
Output: Two sequences of jobs (offspring chromosomes); 𝑥3 and 𝑥4.
Note: x(i) mean i-th element in x and x(i:j) means elements of x from i to j.

𝑐 ← a random integer between 1 and 𝑛 (number of jobs)
𝑥3 ← 𝑥1(1: 𝑐) + 𝑥2(𝑐 + 1: 𝑛)
𝑥4 ← 𝑥2(1: 𝑐) + 𝑥1(𝑐 + 1: 𝑛)
for 𝑖 ← 1 𝑡𝑜 𝑛 − 𝑐 do

 if 𝑥3(𝑐 + 𝑖) 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑥3(1: 𝑐 + 𝑖 − 1) do
 for 𝑗 ← 1 𝑡𝑜 𝑛 do
 if 𝑥4(𝑗) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑥3(1: 𝑐 + 𝑖 − 1)
 𝑥3(𝑐 + 𝑖) ← 𝑥4(𝑗)
 break

for 𝑖 ← 1 𝑡𝑜 𝑛 − 𝑐 do
 if 𝑥4(𝑐 + 𝑖) 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑥4(1: 𝑐 + 𝑖 − 1) do
 for 𝑗 ← 1 𝑡𝑜 𝑛 do
 if 𝑥3(𝑗) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑥4(1: 𝑐 + 𝑖 − 1)
 𝑥4(𝑐 + 𝑖) ← 𝑥3(𝑗)
 break

30

Algorithm 6. Mutation Operator.

Input: A single chromosome (a sequence of jobs), 𝑥, and mutation probability,
𝜇.

Output: A new chromosome, 𝑦.
Note: x(i) means i-th element in x.

𝑦 ← 𝑥
𝑟 ← a random value between 0 and 1
if 𝜇 < 𝑟 do
 𝑖 ← a random integer between 1 and 𝑛 (number of jobs)
 𝑗 ← a random integer between 1 and 𝑛 (number of jobs)
 𝑦(𝑖) ↔ 𝑦(𝑗)

31

Algorithm 7. Roulette Wheel Selection.

Input: Selection pressure, 0 ≤ 𝑠 ≤ 1, and a population of sorted chromosomes,
𝑃.

Output: A selected chromosome, 𝑦.
Note: 𝑃. 𝐶𝑜𝑠𝑡 represents a vector that has the cost of each chromosome in it
𝑤 ← man (𝑃. 𝐶𝑜𝑠𝑡) // cost of the worst solution

𝑝 ← 𝑒−
𝑠∙𝑃.𝐶𝑜𝑠𝑡
𝑤

𝑝 ←
𝑝

∑𝑝

𝑟 ← a random value between 0 and 1
𝑐 ← cummulative summation of 𝑝
𝑖 ← index of the first element in 𝑐 which is less than or equal to 𝑟
𝑦 ← 𝑃(𝑖)

32

single chromosomes for mutation, from the current population. A selection
pressure equal to 0.8 has been used.

Fitness function. The function used to evaluate fitness (objective function value)
of a chromosome (solution) calculates minimum cost of maintenance activities for
a given sequence by calculating the current maintenance level after processing
each job in the sequence, and adding a maintenance activity and its respective
cost only if the next job causes the maintenance level to fall below zero. It also
follows Algorithm 4 for calculation of tardiness cost with the only exception that it
considers actual processing times for jobs and actual durations for maintenance
activities as the MILP model does.

Stopping condition. Convergence has been used as the stopping condition,
which mean, when the respective cost of the best solution does not improve for a
certain number of iterations, I, the algorithm stops and the chromosome that has
the minimum cost in the last iteration (generation) is returned as the best
solution.

Setting the Parameters

In this study, a 33 factorial design with confidence interval of 0.95 is used to test
whether the quality of solutions significantly change for different settings of a
parameter. If so, the parameter will be incorporated to the main algorithm that is
shown in Figure 5. This algorithm re-adjusts the parameters and runs the GA
until a desired gap percentage between the GA and the lower bound is reached.
Table 1 shows what levels are used for each factor (parameter) of the GA. Based
on a report by (Colin R Reeves, 1997), many authors suggest that a population
size as small as 30 is sufficient for producing satisfactory results, we consider it
as the starting level. For the other two factors, obviously, possible values are
between zero and one.

Table 1. Experimental Design.

Parameter Level 1 Level 2 Level 3

Population size 30 100 200
Crossover probability 0.2 0.5 0.8
Mutation probability 0.2 0.5 0.8

33

Figure 5. Lower-bound-based GA (LBGA).

Set GA parameters

Generate a test

problem

Randomly generate initial

population for the 1st generation

Select a predetermined
percentage of population and

apply crossover

Select a predetermined
percentage of population and

apply mutation

Calculate fitness of new
chromosomes via fitness

function and sort

Convergence

Select top chromosomes
as new generation

according to population

size

Calculate lower bound; Record

time

 Desired level

Start

End

Yes

Yes

No

No

Calculate the average gap and

time

34

For the experiment, 27 combinations are possible and two replications
(Montgomery, 2008) are required which implies a total number of 54 trials are
run. The results are shown in Table 2 for a randomly-generated test problem of
size (m=5, n=7, l=3). Note that the response variable (cost) is the best cost
produced by the GA minus the exact minimum cost for the same test problem
from CPLEX. Analysis of variance for the results of the experiment is shown in
Table 3. From the results we see that only the population size is statistically
significant for the proposed problem. As a result, we will only incorporate the
population size to the LBGA. Using Minitab’s Factorial Optimization based on the
experiment, a probability of 0.5 for both crossover and mutation, and the
maximum possible value for population size minimizes the cost. Increasing these
probabilities will negatively affect the time-wise efficiency of the algorithm as
more operations are likely to be performed. Decreasing these probabilities, on
the other hand, limits the ability of the algorithm in searching the neighborhood.

Time to convergence and the gap between the best cost obtained by the
algorithm and the lower bound can be considered as efficiency and quality of the
solutions of the algorithm. As shown in Figure 5, the LBGA adjusts statistically
significant parameters of the designed GA (population size for this problem) in
such a way that a desired level of both measures that can be set by the user are
obtained.

1.5 Computational Results

Computational results of the proposed solution approach are presented in this
section. The NP-hardness of the presented problem is numerically experienced.
It is shown that solution times of the exact algorithms have an exponential
increase in CPU time for a linear increase in size of the problem. The results of
the proposed algorithm will also be compared with the exact solutions from IBM
CPLEX in order to validate efficiency and quality of the solutions of the algorithm.

Test Problem Generation

Table 4 shows how all the test problems used throughout this section are
generated. First and second columns show the parameters whose values are to
be randomly generated as input and the size of their respective matrices,
respectively. Third column shows the ranges within which the random values (of
a matrix) are generated and the last column shows considerations in generating
the values.

35

Table 2. Results of the experiment.

Trial # Population Size (A) Crossover Probability
(B)

Mutation Probability
(C)

Response (Cost)

1 30 0.2 0.2 3594
2 30 0.2 0.2 7825
3 30 0.2 0.5 17170
4 30 0.2 0.5 5440
5 30 0.2 0.8 3594
6 30 0.2 0.8 3594
7 30 0.5 0.2 3594
8 30 0.5 0.2 5480
9 30 0.5 0.5 3594
10 30 0.5 0.5 3594
11 30 0.5 0.8 3594
12 30 0.5 0.8 5480
13 30 0.8 0.2 3594
14 30 0.8 0.2 8028
15 30 0.8 0.5 5480
16 30 0.8 0.5 5440
17 30 0.8 0.8 3594
18 30 0.8 0.8 5480
19 100 0.2 0.2 0
20 100 0.2 0.2 5440
21 100 0.2 0.5 3594
22 100 0.2 0.5 3594
23 100 0.2 0.8 0
24 100 0.2 0.8 3594
25 100 0.5 0.2 11826
26 100 0.5 0.2 0
27 100 0.5 0.5 0
28 100 0.5 0.5 3594
29 100 0.5 0.8 0
30 100 0.5 0.8 3594
31 100 0.8 0.2 3594
32 100 0.8 0.2 3594
33 100 0.8 0.5 0
34 100 0.8 0.5 0
35 100 0.8 0.8 0
36 100 0.8 0.8 0
37 200 0.2 0.2 5480
38 200 0.2 0.2 0
39 200 0.2 0.5 3594
40 200 0.2 0.5 3594
41 200 0.2 0.8 3594
42 200 0.2 0.8 0
43 200 0.5 0.2 3594
44 200 0.5 0.2 0
45 200 0.5 0.5 0
46 200 0.5 0.5 0
47 200 0.5 0.8 0
48 200 0.5 0.8 0
49 200 0.8 0.2 0
50 200 0.8 0.2 0
51 200 0.8 0.5 0
52 200 0.8 0.5 0
53 200 0.8 0.8 0
54 200 0.8 0.8 0

36

Table 3. Analysis of variance for the GA parameters.

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean Square F0 P-Value

A 180550845 2 90275422 10.84 <0.0001
B 36384505 2 18192252 2.18 0.132
C 26472269 2 13236135 1.59 0.223
AB Interaction 22000726 4 5500182 0.66 0.625
AC Interaction 23585052 4 5896263 0.71 0.594
BC Interaction 44696386 4 11174097 1.34 0.280
ABC Interaction 22238943 8 2779868 0.33 0.945
Error 224944831 27 8331290
Total 580873557 53

37

Table 4. Generation method of test problems.

Parameter Size Range Generation Method

Processing times 𝑚 × 𝑛 [1,10] Random (integer, with Uniform distribution)

Duration of MAs 1 × 𝑙 [1,4] Random (integer, with Uniform distribution)

Deterioration rates
𝑚 × 𝑛
× 𝑙

[0,2] Random (fractional, with Uniform distribution)

Penalty costs 1 × 𝑛 [500,600] Random (integer, with Uniform distribution)

Due dates 1 × 𝑛 [10,30] Random (integer, with Uniform distribution)

Spare parts costs 𝑚× 𝑙 [1000,20000] Random (integer, with Uniform distribution)

Workforce costs 1 × 𝑙 [500,2000] Random (integer, with Uniform distribution)

Maximum of MLs 1 × 𝑙 NA
(Upper bound of processing times)×(Upper bound of
deterioration rates)

38

Performance

In order to evaluate the quality of the solutions of LBGA, we have solved several
test problems of different sizes. We have increased the size of the problems up
to a point when CPLEX could no longer solve the problem in a reasonable or
predictable time (in the table, “P.” in stands for Problem). As shown in Table 5,
the objective function value (OFV, the minimum total cost) of the designed LBGA
algorithm is either the same as the exact solution from CPLEX or considerably
close to it. The time to reach the best solution (in seconds), also, shows that the
algorithm is efficient. The CPLEX time, on the other hand, increases
exponentially as the size of the problem increases linearly.

Gap Analysis

In Section 1.4 we proposed a self-tuning lower-bound-based GA (LBGA) for
finding the optimal population size that satisfies predetermined levels of both
performance and solution quality. An optimal population size found by LBGA for
a certain problem size may not be optimal for larger sizes of the problem. This
seems to be obvious that the algorithm would consume much more time for
finding the optimal set of parameters as the size of the problem increases. In this
subsection, we introduce a computational experiment to see whether an optimal
set of GA parameters (an optimal population size in this case) for a certain size
of the problem can also be considered acceptable for all the remaining larger
sizes of the problem.

We want to investigate how an optimal population size for a certain
problem size will work for larger sizes of the problem. In Table 6, we generated a
test problem for each certain problem size, then we solved it by the GA twice;
first we solved it with a fixed population size of 200 which has been obtained by
LBGA for n = 10, then we solved it with a larger population size which linearly
increases with respect to the size of the problem.

Figure 6 summarizes Table 6: increasing the population size does not

significantly decrease the gap between the GA and the lower bound (quality of
solutions was not improved significantly) or the number of iterations before
convergence. However, it significantly increases the time to convergence which
implies the performance degradation. As a result, we conclude that, for the
problem discussed in this paper, if we find an optimal population size for a certain
problem size, we can use that population size for any problem size. The LBGA
does not need to go through excessive loops to experiment the population size
for different sizes of the problem. This finding lets us utilize the GA more
efficiently (in terms of time) and effectively (in terms of solution quality).

39

Table 5. Comparison between CPLEX and LBGA.

P.
Size LBGA CPLEX OFV

Gap m n l OFV Time OFV TIME

1 1 3 1 22212 7 22212 1 0.00%

2 1 5 1 28926 8 28926 1 0.00%

3 1 7 1 48757 9 48757 1 0.00%

4 1 9 1 75063 10 75063 3 0.00%

5 1 11 1 118438 12 118438 5 0.00%

6 1 12 1 119660 13 119660 14 0.00%

7 1 13 1 58674 12 58465 18 0.36%

8 1 14 1 302153 13 301221 17050 0.31%

9 2 6 1 53879 10 53879 1 0.00%

10 2 7 1 91500 11 91500 2 0.00%

11 2 8 1 83626 10 83626 2 0.00%

12 2 9 1 113672 12 113578 5 0.08%

13 2 10 1 163422 12 163302 271 0.07%

14 1 6 2 39158 9 39158 1 0.00%

15 1 7 2 54842 9 54842 1 0.00%

16 1 8 2 85318 10 85318 2 0.00%

17 1 9 2 105178 10 105106 10 0.07%

18 1 10 2 118578 11 118578 9 0.00%

19 1 11 2 195407 12 195407 60 0.00%

20 1 12 2 256657 13 256641 630 0.01%

21 3 6 1 91549 11 91549 1 0.00%

22 3 7 1 144724 12 142262 2 1.73%

23 3 8 1 106275 13 104559 6 1.64%

24 3 9 1 125309 15 124150 10 0.93%

25 3 10 1 222184 16 218316 2185 1.77%

26 3 4 2 92550 10 92550 1 0.00%

27 3 5 2 147751 11 147136 1 0.42%

28 3 6 2 113814 12 113113 1 0.62%

29 3 7 2 145661 13 145551 3 0.08%

30 3 8 2 273555 14 272648 27 0.33%

31 3 9 2 270579 15 266853 3490 1.40%

32 1 6 3 63887 10 63887 1 0.00%

33 1 7 3 80920 10 80920 2 0.00%

34 1 8 3 44858 10 44858 1 0.00%

35 1 9 3 197920 12 197920 351 0.00%

36 2 6 3 147016 11 147016 2 0.00%

37 2 7 3 131718 11 130270 2 1.11%

38 2 8 3 214500 13 214500 9 0.00%

40

Table 5. Continued.

P.
Size LBGA CPLEX OFV

Gap m n l OFV Time OFV TIME

39 2 9 3 235188 13 229921 332 2.29%

40 3 6 3 137579 13 137579 1 0.00%

41 3 7 3 264244 14 259636 23 1.77%

42 3 8 3 283053 16 283053 189 0.00%

43 7 10 5 1647512 38 1702766* 172800 NA

* Best feasible solution found after 48 hours.

41

Table 6. Increasing both population size and problem size (𝑚 = 5, 𝑙 = 3).

P.
Size
(n)

GA with a fixed population size (A) Lower
Bound

GA with increasing population size (B)

Cost Iterations Time Cost Iterations Time

1 10 1357822 38 3.413495 1034990 1369003 6 0.776334

2 10 1289404 27 2.739804 993260 1293785 28 1.419067

3 10 1103666 41 3.595149 850148 1113149 20 1.159057

4 20 3514750 37 6.331777 2529097 3481338 56 8.517733

5 20 3111348 51 7.833044 1974912 3142235 62 9.067386

6 20 3239546 66 9.319994 2252677 3287542 49 7.620991

7 30 6008532 88 17.30267 3858826 5985798 84 25.67928

8 30 5847222 84 17.12846 3614259 5721203 104 30.90619

9 30 6630725 71 15.27042 4197579 6665582 57 19.51996

10 40 8775033 117 29.60771 5389715 8717491 102 53.00777

11 40 9091908 73 20.26242 5547657 9048168 142 69.59584

12 40 9207676 98 25.85184 5733537 8960551 152 75.47809

13 50 12698574 131 40.9435 7479909 12433575 189 139.2959

14 50 13883341 155 48.09594 8412250 13603060 178 133.5371

15 50 11506884 147 45.01884 6489562 11541169 192 141.3605

16 60 16180271 235 80.67539 9112971 16016216 176 186.2603

17 60 17826556 256 88.75478 10207561 17597984 183 196.9761

18 60 16787968 90 36.53791 9466694 16384531 150 167.5249

19 70 23500984 148 63.53675 12610303 22968423 262 369.9774

20 70 22933999 172 72.06714 12242464 22506265 270 377.1611

21 70 21797249 220 91.40516 11796697 21214008 272 392.317

22 80 29336445 207 98.66956 15283399 28921857 402 716.7778

23 80 26752887 178 86.65114 14281013 26108861 281 524.6216

24 80 28608588 106 55.67532 15641739 27940407 175 341.1104

25 90 34116742 221 120.7167 17032171 33513125 314 732.3489

26 90 35636830 172 95.79678 18580421 35017974 286 681.2377

27 90 36721795 203 112.335 18403696 36418390 191 480.5361

28 100 44671803 225 134.331 22625879 44337511 261 796.222

29 100 40722246 285 169.049 20866059 40238496 208 652.4085

30 100 40461783 295 172.9161 20382082 40420367 178 572.7291

31 110 48304135 179 126.0298 26468086 47139627 326 1171.559

32 110 49434030 281 181.994 24718995 48796784 216 823.8144

33 110 51096605 263 171.1317 26367819 50639136 269 990.5269

34 120 60261706 192 148.7522 30345652 58175023 548 2281.366

35 120 59760090 394 273.6253 30531018 59110255 412 1712.454

36 120 57392427 436 295.0103 27164218 56861165 302 1290.498

37 130 61052962 297 226.4157 31624493 60296896 342 1725.214

42

Table 6. Continued.

P.
Size
(n)

GA with a fixed population size (A) Lower
Bound

GA with increasing population size
(B)

Cost Iterations Time Cost Iterations Time

38 130 64150827 181 149.4786 32151965 62769807 296 1520.949

39 130 68243101 261 204.4468 33991633 67814396 272 1434.061

40 140 69546643 445 355.842 35245794 68816417 253 1566.712

41 140 73025400 293 244.7684 35906152 70958910 318 1861.639

42 140 79112053 229 198.1027 37178822 78634672 277 1672.875

43 150 90118324 300 265.1772 42228222 88443419 404 2706.224

44 150 84518094 309 275.242 41435942 83861145 242 1730.565

45 150 84135462 280 254.4936 41988981 82189148 495 3275.692

46 160 95855660 298 287.9158 46359806 94701837 269 2196.804

47 160 99877898 174 177.5147 48788058 97021257 352 2714.185

48 160 97575368 362 339.2074 45673937 96227839 468 3519.544

49 170 1.16E+08 254 260.4629 54219150 1.13E+08 476 4076.364

50 170 97162793 195 207.859 49432663 93068701 529 4522.738

51 170 1.12E+08 226 238.4961 52248987 1.08E+08 374 3308.45

52 180 1.24E+08 367 400.517 55355808 1.21E+08 565 5411.51

53 180 1.17E+08 327 363.0825 56782729 1.16E+08 283 2961.246

54 180 1.17E+08 602 620.4908 56072705 1.15E+08 427 4246.796

43

Figure 6. The effect of increasing population size on the performance of the algorithm.

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0 50 100 150 200

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
e

Problem Size (n)

Gap

A Lower Bound B

44

1.6 Case Study (Earthmoving Operations)

In this section we will try to show the application of the presented model via a
case study. One of the main activities in the early stages of a heavy construction
project is earthmoving. This activity is highly dependent on earthmoving
machinery. The most commonly used equipment for earthworks are (wheel)
loaders, dozers, excavators, and haul trucks. A simplified version of the
earthmoving process described by Fu (2013) is as follows. The first step is
preparation which is done best by excavators which can dig natural form of
material from the earth. Next, in loading step, wheel loaders can load the
removed and prepared soil into haul trucks. Finally, in hauling step, haul trucks
transport earth to a deposit point by travelling through routes with different slopes
and ground conditions.

Typical (preventive) maintenance activities for construction machinery are

usually based on the service hours of the machinery. In Table 7, maintenance
intervals recommended by one of the manufacturers of heavy construction
equipment is listed for the machinery that are required for the simplified
earthmoving process (Caterpillar, 2010c) (Caterpillar, 2010b) (Caterpillar,

2010a). These intervals can be considered as 𝑀𝐿𝑚𝑎𝑥
𝑘 according to the presented

model. Different tasks are included in each maintenance activity. For example,
the tasks included in the 50-hour maintenance activity of excavators shown in the
table are lubrication of boom, stick and bucket linkage, drive shaft universal joint,
etc.

Table 7. Maintenance intervals (hours) recommended by the equipment manufacturer (Caterpillar
Inc.).

Machine 10 50 100 250 500 1000 2000 3000 4000 5000 6000

Excavators

Wheel
Loaders

(Haul) Trucks

In a project with four locations, in which earth moving operations need to be

done, there are three machines (one excavator, one wheel loader, and one
truck). Because of the significant distance between these locations, a machine
needs to work in one location at a time. In Table 8, the amount of operations in
each location is shown. Due dates are also shown along with the penalty for
each day of delay (GDOT, 2013). Note that the amount of work that a machine
can work in one location can be different from other locations due to the condition
of the location. As a result, operation requirements in Table 8 are expressed as
number of time periods (days) multiplied by the time a machine can work in each
time period (in hours) which can be considered as deterioration rates of MLs
because the MLs have been expressed in hours.

45

Table 8. Operation requirements (days) x deterioration rates (hours), due dates (days), and
penalty for one day delay.

Location (Jobs) Excavator Wheel Loader Tuck Due Date Penalty

A 20 × 5 20 × 3 40 × 3 90 $211

B 14 × 8 14 × 6 13 × 8 60 $118

C 20 × 4 21 × 5 20 × 5 90 $118

D 30 × 3 40 × 2 30 × 5 60 $346

46

Average cost of performing a preventive maintenance activity and a
responsive maintenance activity (after major failure) for a wheel loader is
approximately $234 and $15,652, respectively (Azadeh et al., 2014).We have
used these values to approximate the overall cost of each maintenance activity
for each machine, considering the risk of major failure due to missing an MA and

relative price of the machines (𝑆𝑃𝑖𝑘 = $234 ∀𝑖, 𝑘,𝑊𝐹1 = $800,𝑊𝐹2 =
$1600,𝑊𝐹3 = $3200). Because the first three MAs (10, 50, 100 hours) are
usually done in a fraction of an operational day and where the machine is
located, and because 2000 hours MAs and above are not going to be reached
they are not considered as MAs (we only consider 250, 500, and 1000).
Deterioration rate for ML 250 will be zero for the truck because it does not have
the respective MA. We will also consider one day for performing all the
maintenance activities. This case study has been solved by IBM ILOG CPLEX
Optimization Studio and the results are shown in Table 9. Total cost for this
solution is $38,030.00, with three maintenance activities.

Table 9. The optimal solution for the case study.

Location (Jobs) Sequence Completion Day Tardiness (days)

A 2 94 4
B 1 41 0
C 4 156 66
D 3 136 76

1.7 Conclusion and Future Research

In this paper, a new permutation flow shop scheduling problem was introduced in
which maintenance was incorporated where jobs deteriorate maintenance levels
of the machines. We assume that each machine can have different types of
maintenance activities corresponding to different maintenance levels and each
maintenance activity can be scheduled flexibly. The problem was formulated as a
mixed-integer linear program with the objective of minimizing the total cost of
tardiness and maintenance. Since the problem was proved to be NP-hard, a
special genetic algorithm has been developed. Parameters of the algorithm were
statistically tested through a factorial experiment and it was found that only the
population size can affect the quality of solutions significantly. Lower bounds
were found for two different variations of the problem. A self-tuning genetic
algorithm based on the lower bounds was introduced (LBGA). The efficiency and
effectiveness of the algorithm is due to its ability to find the best population size,
a significant GA parameter for the underlining problem. Through the
computational experiment and gap analysis it was found that the optimal
population size could be uniquely identified for certain set of problems. A case
study of construction machinery scheduling with maintenance considerations was
also presented to show one possible application of the problem.

47

Several assumptions were considered in Section 1.2. Potential extensions
of the presented problem, as future works, can be defined by relaxing or
changing these assumptions. The followings are other possible considerations in
future works:

 Changing the type of flow shop or incorporating the flexible and diverse

maintenance activities to other production settings such as parallel

machines scheduling.

 Using different meta-heuristics as solution approaches and comparing the

results with the presented algorithm.

 Incorporating the random failures into the problem and modeling the

problem with stochastic techniques.

The proposed LBGA and computational experiments in Sections 1.4 and
1.5 can be used for other different problems with analogous structures.

48

CHAPTER II
BI-OBJECTIVE OPTIMIZATION OF THE INTEGRATED FLOW

SHOP AND MAINTENANCE SCHEDULING PROBLEM

49

A version of this chapter was originally published by Javad Seif, Andrew J. Yu,
and Fahimeh Rahmanniya:

 Seif, J., Yu, A. J., & Rahmanniyay, F. (2017). Modelling and optimization

of a bi-objective flow shop scheduling with diverse maintenance
requirements. International Journal of Production Research,
DOI:10.1080/00207543.2017.1403660

In this work, I extend my original work that was presented in Chapter I.

Mrs. Rahmanniyay has had contributions in problem definition and in the sub-
section “Bi-Objective Formulation,” and Dr. Yu has supported this research.

Abstract

In real-world problems machines cannot continuously operate and have to stop
for maintenance before they fail. Lack of maintenance can also affect the
performance of machines in processing jobs. In this paper, a permutation flow
shop scheduling problem with multiple age-based maintenance requirements is
modeled as a novel mixed-integer linear program in which the objectives are
conflicting. In modeling the problem, we assume that infrequent maintenance can
prolong job processing times. One of the objectives is to minimize the total
maintenance cost by planning as few maintenance activities as possible to only
meet the minimum requirements, and the other objective tries to minimize the
total tardiness by sequencing the jobs and planning the maintenance activities in
such a way that the processing times are not prolonged and unnecessary
maintenance times are avoided. Because of this conflict, an interactive fuzzy-bi-
objective model is introduced. Application of the model is illustrated through a
case study for operations and maintenance scheduling of heavy construction
machinery. An effective and efficient solution methodology is developed based
on the structure of the problem and tested against commercial solvers and a
standard GA. Computational results have verified the efficiency of the proposed
solution methodology and show that unlike the proposed method, a generic
meta-heuristic that does not consider the unique structure of the problem can
become ineffective for real world problem sizes.

2.1 Introduction

Although maintenance planning and production scheduling are often studied
separately such as in semiconductor manufacturing (Xiaodong et al., 2004),
integration of machine maintenance and scheduling has appeared in many
researches in the last two decades (Xu et al., 2015). This integration has been
proposed for different configurations of manufacturing environments such as

50

single machine, flow shop, parallel machine, job shop, or flexible flow shop, and
for different objective functions such as minimizing makespan, total (expected)
completion time, total workload of machines, total workload of critical machines,
tardiness, or a combination of them (S. Wang & Liu, 2014). In this paper, we
model and optimize a permutation flow shop scheduling problem with
maintenance constraints for two conflicting objective functions, namely
maintenance cost and tardiness. This conflict stems from how production jobs
deteriorate machines and how deterioration of machines can affect the
processing times of the jobs. Then we introduce a solution methodology that
effectively and efficiently solves realistic instances of the problem by considering
the unique structure of the problem.

The literature related to the integration of maintenance planning and

scheduling has been classified by Xu et al. (2015) and Aramon Bajestani and
Beck (2015). Xu et al. (2015) classified the literature into two categories based
on the duration of maintenance activities. Aramon Bajestani and Beck (2015)
divided the literature into two categories. The first category is the same as the
first category determined by Xu et al. (2015). The second category, however, is
different and addresses those research works which assume that the processing
times of the jobs varies based on the maintenance. The interaction between
maintenance and production, i.e. how they affect each other, is an interesting
and important subject. For example, when considering nurses and doctors as
processors and patients as jobs, the time to perform a surgery increases if they
have not had a rest between consecutive surgeries. As another example,
performance of construction machinery can also degrade leading to longer
processing times in earthmoving operations (due to unplanned failures or
decreasing performance) if the machinery has not been serviced according to
their maintenance requirements. Xiang, Cassady, Jin, and Zhang (2014)
modeled deterioration of a manufacturing unit due to production with Markov
chains. S. Bock et al. (2012) studied the computational complexity of single
machine scheduling problems when there exists a maintenance level for the
machine and processing of the jobs deteriorates the maintenance level and a
maintenance activity increases it. Yu and Seif (2016) used the same concept and
proposed a mixed-integer programming model for flow shop scheduling problems
with diverse maintenance activities. C. Y. Lee and Leon (2001) applied a rate
which is dependent on maintenance activities to the processing times of the jobs.

In some industries such as heavy construction projects, maintenance
costs form a significant portion of the overall costs (Yip et al., 2014). Therefore, it
is important to consider the maintenance cost in the objective function along with
conventional scheduling criteria such as tardiness. Yu and Seif (2016)
considered minimizing maintenance cost as part of the objective function. Ideally,
an optimization problem has only one objective that is to be minimized or
maximized. However, in most of the real world problems, there more than one

51

objective is required to be optimized and the objectives are usually conflicting. In
order to find an optimal decision, the trade-offs between two or more conflicting
objectives should be considered via multi-objective optimization techniques. Also,
because some information is incomplete and the environmental coefficients are
typically uncertain, the objectives are fuzzy with imprecise aspiration levels.
Fuzzy set theory introduced by Zadeh (1965) has been found with extensive
applications in various fields, particularly with applications of linear programming
(Rommelfanger, 1996). Zimmermann (1978) for the first time proposed
application of fuzzy linear programming into conventional multi-objective linear
programming (MOLP) problems. Fuzzy multi-objective linear programming
(FMOLP) technique deals with problems that include multiple conflicting and
fuzzy objectives. As some examples, see Stanciulescu, Fortemps, Installé, and
Wertz (2003), R.-C. Wang and Liang (2004) and Liang (2006). Liang (2006)
proposed an interactive fuzzy multi-objective linear programming (i-FMOLP) for a
supply chain problem that provides a systematic framework for facilitating the
fuzzy decision-making process, enabling a decision maker (DM) to interactively
modify the fuzzy data and related parameters until a set of satisfactory solutions
is obtained. Liang (2009) applied i-FMOLP to project management.

In this paper, a complete interaction where maintenance and production
affect each other, is modeled. Jobs can deteriorate the maintenance levels with
different deterioration rates and when the average of the maintenance levels is
low, the processing times of the jobs can be prolonged. More maintenance
activities prevent the increase in processing times but is costly and adds to the
total completion times of the jobs and could lead to a greater tardiness. Less
maintenance activities can also increase tardiness by prolonging the processing
times. This leads to a very complex trade-off between maintenance cost and
tardiness. Adapting the thought process of R.-C. Wang and Liang (2004), the
solution of fuzzy multi-objective optimization problems benefit from considering
DM's imprecise judgments such as, ‘the objective function of total maintenance
costs should be substantially less than or equal to 100 thousands’, or ‘total
tardiness should be substantially less than or equal to 100 hours or days’. These
conflicting objectives are required to be optimized simultaneously by the DM in
the framework of fuzzy aspiration levels. An interactive fuzzy multi-objective
linear programming (i-FMOLP) method for solving the fuzzy multi objective
problems with piecewise linear membership function (PMLF) has been found to
be effective for the problem discussed in this paper and is used in solving the
problem.

The contributions and significance of this paper are as follows. A practical
problem introduced by (Yu & Seif, 2016) that extends mathematical formulation
of the conventional flow shop scheduling problem as a mixed integer linear
program (MILP) by incorporating age-based and diverse maintenance activities,
is further extended. The impact of maintenance levels (health) of a machine on

52

processing times, along with deterioration of maintenance levels by processing
the jobs, is considered. With an i-FMOLP both production and maintenance
objectives are considered simultaneously and optimized in a practical fashion. A
solution method is introduced that uses special properties of the presented model
and outperforms a standard GA in terms of effectiveness (quality of solutions)
and a commercial solver in terms of efficiency (solution time).

The rest of the paper is organized as follows. In Section 2.2, the problem
is formulated modeled as a mixed-integer linear program and a summary of
assumptions is presented. The interactive fuzzy multi-objective linear
programming (iFMOLP) technique used for this problem is introduced in Section
2.3 along with a numerical example. In Section 2.4, a solution methodology is
proposed that increases efficiency and effectiveness of a standard GA and
outperforms it by confining the solution space and intelligently searching through
the solution space. Section 2.5 shows the results of a computational experiment
for evaluation of the proposed solution method. A case study in construction
projects is introduced and solved in Section 2.6 that shows one of the
applications of this work. Conclusions and possible future works as extensions of
this paper are discussed in Section 2.7.

2.2 Mathematical Formulation

Yu and Seif (2016) incorporated diverse maintenance activities in permutation
flow shop scheduling (Chapter 1). An extension of their MIP model is introduced
in this section where two conflicting objectives are considered and the processing
time of the jobs can be prolonged. The following is a list of assumptions
considered in the formulation of the problem.

1. By flow shop we refer to the permutation flow shop without any buffers

(blocking flow shop).

2. All the machines have the same set/types of maintenance levels (MLs),

and hence, the same set of maintenance activities (MAs).

3. Duration of a specific MA on a specific machine is known and invariable.

However, these durations can vary on different machines.

4. When a job is being processed, all the MLs are subject to deterioration

according to a linear function by 𝛿 × 𝑝 where δ is the deterioration rate of

ML caused by a job after it is processed and p is processing time of the

job.

5. Before processing the first job, all the MLs of all the machines are at their

maximum.

53

6. Sufficient/unlimited resources (maintenance spare parts, materials, and

workforces, operators, etc.) are available for processing the jobs and

performing the MAs.

7. Pre-emption is not allowed.

8. All the MAs are performed to completion.

9. The quantity 𝛿 × 𝑝 should always be less than the maximum of the

respective maintenance level. Otherwise, the problem is infeasible.

10. Random failures are not considered.

11. As will be explained in Section 2.3, the parameters in the model are

considered as crisp while the objectives are fuzzy. Because the desired

value of maintenance cost and tardiness are vague and imprecise, the

objective functions are fuzzy with imprecise aspiration levels (Paksoy,

Pehlivan, & Özceylan, 2012).

12. Let 𝜖𝑘 be the current value of the 𝑘-th ML of a machine as a fraction of its

maximum value before a job is processed by the machine, 0 ≤ 𝜖𝑘 ≤ 1, ∀𝑘,

and 0 ≤ Ε ≤ 1 be the average of all 𝜖𝑘 representing the health state of the

machine. Prolonged processing time of the job, 𝜌, is assumed to be

defined as

𝜌 = {

𝛼𝑝, 𝑎 < Ε ≤ 1
𝛽𝑝, 𝑏 < Ε ≤ 𝑎
𝛾𝑝, 0 < Ε ≤ 𝑏

where 𝑝 is the nominal processing time of the job on that machine, 0 <
𝑏 < 𝑎 < 1 and 1 ≤ 𝛼 ≤ 𝛽 ≤ 𝛾, for the special case when the health of a
machine has only three states. A generalized form will be considered in
the mathematical model in the following section.

These assumptions are the basis for the following model. Assumptions (1)

and (7) state the scope of the problem regarding the literature of flow shop
scheduling. Assumptions (2-5), (9) and (11-12) describe the properties of the
problem that is to be modeled. See the case study in Section 2.6 that shows
these properties in an application in construction projects. Finally, Assumptions
(6), (8), and (10) highlight the limitations of the model. As is discussed in Section
2.7, the latter assumptions can be dealt with by adjusting the input parameters
and they can be addressed in further research works. Let m, n, and l be the
number of machines, jobs, and maintenance levels (activities), respectively.
Following is a list of indices, parameters, and variables used throughout the
mathematical formulation of the problem.

𝑖 Represents machines where 𝑖 = 1,2, … ,𝑚
𝑗 Represents production jobs where 𝑗 = 1,2, . . . , 𝑛
𝑞 Represents sequence of jobs (jobs positions) where 𝑞 = 1,2, . . . , 𝑛

54

𝑘 represents MLs or their respective MAs where 𝑘 = 1,2, … , 𝑙
ℎ represents health state of a machine ℎ = 1,2, … , 𝑠
𝑝𝑖𝑗 Processing time of job 𝑗 on machine 𝑖
𝜌𝑖𝑞 Processing time of the 𝑞-th job on machine 𝑖 (decision variable)

𝛿𝑖𝑗𝑘
Deterioration rate of maintenance level 𝑘 (MA type 𝑘) of machine 𝑖 when
job 𝑗 is processed

𝑒𝑖𝑘 Duration of MA type 𝑘 on machine 𝑖
𝑀𝐿𝑚𝑎𝑥

𝑘 Maximum of ML type 𝑘

𝑆𝑃𝑖𝑘 Cost of required spare parts and materials for MA type 𝑘 on machine 𝑖
𝑊𝐹𝑘 Cost of workforce per time unit for performing MA type 𝑘
𝑑𝑗 The time at which job 𝑗 is due

𝜆ℎ Coefficient with respect to state ℎ that is multiplied by nominal processing
times of the jobs to prolong them based on the health state of a machine
before the job is processed

𝑥𝑗𝑞 Binary variable that takes the value 1 if job 𝑗 is assigned to position 𝑞 in
the sequence of the jobs, and 0 otherwise

𝑦𝑖𝑞𝑘 Binary variable that takes the value 1 when PM type 𝑘 is performed on
machine 𝑖 before processing the 𝑞-th job, and 0 otherwise

𝑀𝐿𝑖𝑞
𝑘 Quantitative value of ML type 𝑘 of machine 𝑖 before processing the 𝑞-th

job
𝑐𝑞 Completion time of the job assigned to position 𝑞 (the 𝑞-th job)

𝑡𝑞 Tardiness of the job assigned to position 𝑞 (amount of lateness in
completion of the job)

𝑣𝑖𝑞 Waiting time of the machine 𝑖 for the 𝑞-th job (idle time)

𝑤𝑖𝑞 Waiting time of the 𝑞-th job for machine 𝑖 while the machine is busy
processing another job

Λ𝑖𝑞
ℎ Binary variables that takes the value 1 if machine 𝑖 after processing the 𝑞-

th job is in health state ℎ, and 0 otherwise

𝑧𝑖𝑗𝑞
ℎ Auxiliary binary variables

𝛾𝑖𝑗𝑞 Auxiliary variables

𝐾,𝐾′ Sufficiently large numbers

The mathematical model presented below has two objective functions

(𝑧1and 𝑧2) subject to the constraints that follow them.

𝑀𝑖𝑛 𝑧1 ≅ ∑𝑡𝑞

𝑛

𝑞=1

 (2.1)

𝑀𝑖𝑛 𝑧2 ≅ ∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

 (2.2)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

55

𝑡𝑞 ≥ 𝑐𝑞 −∑𝑥𝑗𝑞𝑑𝑗

𝑛

𝑗=1

, 𝑞 = 1,2, … , 𝑛, (2.3)

𝑡𝑞 ≥ 0, 𝑞 = 1,2, … , 𝑛, (2.4)

∑𝑥𝑗𝑞 = 1

𝑛

𝑞=1

 𝑗 = 1,2, … , 𝑛, (2.5)

∑𝑥𝑗𝑞 = 1

𝑛

𝑗=1

 𝑞 = 1,2, … , 𝑛, (2.6)

𝑣𝑖(𝑞+1) +∑𝑦𝑖(𝑞+1)𝑘𝑒𝑖𝑘

𝑙

𝑘=1

+ 𝜌𝑖(𝑞+1) +𝑤(𝑖+1)(𝑞+1)

= 𝑣(𝑖+1)(𝑞+1) +∑𝑦(𝑖+1)𝑞𝑘𝑒(𝑖+1)𝑘

𝑙

𝑘=1

+ 𝜌(𝑖+1)𝑞

+ 𝑤(𝑖+1)𝑞 ,

𝑖
= 1,2, … ,𝑚
− 1,
𝑞
= 1,2, … , 𝑛
− 1,
𝑘 = 1,2, … , 𝑙,

(2.7)

𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘 ,
𝑖 = 1,2, … ,𝑚,
𝑘 = 1,2, … , 𝑙,

(2.8)

𝑤𝑖1 = 0, 𝑖 = 1,2, … ,𝑚, (2.9)

𝑣1𝑞 = 0, 𝑞 = 1,2, … , 𝑛, (2.10)

𝑣𝑖1 =∑𝜌𝑓1

𝑖−1

𝑓=1

, 𝑖 = 2,3, … ,𝑚, (2.11)

𝑤1𝑞 =∑𝜌1𝑟

𝑞−1

𝑟=1

+∑∑𝑦1𝑟𝑘𝑒1𝑘

𝑙

𝑘=1

𝑞

𝑟=1

, 𝑞 = 2,3, … , 𝑛, (2.12)

𝑀𝐿𝑖𝑞
𝑘 −∑𝛾𝑖𝑗𝑞𝛿𝑖𝑗𝑘

𝑛

𝑗=1

≥ 0,
𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(2.13)

𝑀𝐿𝑖𝑞
𝑘 ≥ 𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝛾𝑖𝑗(𝑞−1)𝛿𝑖𝑗𝑘

𝑛

𝑗=1

− 𝑦𝑖𝑞𝑘𝐾,
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(2.14)

𝑀𝐿𝑖𝑞
𝑘 ≤ 𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝛾𝑖𝑗(𝑞−1)𝛿𝑖𝑗𝑘

𝑛

𝑗=1

+ 𝑦𝑖𝑞𝑘𝐾,
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(2.15)

𝑀𝐿𝑖𝑞
𝑘 ≥ 𝑀𝐿𝑚𝑎𝑥

𝑘 − 𝐾(1 − 𝑦𝑖𝑞𝑘),
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(2.16)

𝑀𝐿𝑖𝑞
𝑘 ≤ 𝑀𝐿𝑚𝑎𝑥

𝑘 + 𝐾(1 − 𝑦𝑖𝑞𝑘),
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙,

(2.17)

56

𝑐𝑞 =∑(𝑤𝑖𝑞 + 𝜌𝑖𝑞 +∑𝑦𝑖𝑞𝑘𝑒𝑖𝑘

𝑙

𝑘=1

)

𝑚

𝑖=1

, 𝑞 = 1,2, … , 𝑛, (2.18)

𝜌𝑖𝑞 =∑∑𝑢𝑖𝑗𝑞
ℎ 𝜆ℎ𝑝𝑖𝑗

𝑠

ℎ=1

𝑛

𝑗=1

,
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3,

(2.19)

𝑢𝑖𝑗𝑞
ℎ ≤ Λ𝑖𝑞

ℎ ,

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3,

(2.20)

𝑢𝑖𝑗𝑞
ℎ ≤ 𝑥𝑗q,

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3,

(2.21)

𝑢𝑖𝑗𝑞
ℎ ≥ 𝑥𝑗q + Λ𝑖𝑞

ℎ − 1,

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3,

(2.22)

∑ Λ𝑖𝑞
ℎ3

ℎ=1 = 1,
𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,

(2.23)

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≥ 0.66Λ𝑖𝑞
1 − 𝐾′(Λ𝑖𝑞

2 + Λ𝑖𝑞
3),

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,

(2.24)

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≤ 0.66Λ𝑖𝑞
2 + 𝐾′(Λ𝑖𝑞

1 + Λ𝑖𝑞
3),

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,

(2.25)

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≥ 0.33Λ𝑖𝑞
2 − 𝐾′(Λ𝑖𝑞

1 + Λ𝑖𝑞
3),

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,

(2.26)

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≤ 0.33Λ𝑖𝑞
3 + 𝐾′(Λ𝑖𝑞

1 + Λ𝑖𝑞
2),

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,

(2.27)

𝛾𝑖𝑗𝑞 ≤ 𝑥𝑗𝑞𝐾
′,

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,3, … , 𝑛,
𝑞 = 1,2, … , 𝑛,

(2.28)

𝛾𝑖𝑗𝑞 ≤ 𝜌𝑖𝑞 ,
𝑖 = 1,2, … ,𝑚,
𝑗 = 1,3, … , 𝑛,
𝑞 = 1,2, … , 𝑛,

(2.29)

𝛾𝑖𝑗𝑞 ≥ 𝜌𝑖𝑞 + (𝑥𝑗𝑞 − 1)𝐾′,
𝑖 = 1,2, … ,𝑚,
𝑗 = 1,3, … , 𝑛,
𝑞 = 1,2, … , 𝑛,

(2.30)

𝑥𝑗𝑞 , 𝑦𝑖𝑞𝑘, Λ𝑖𝑞
ℎ , 𝑢𝑖𝑗𝑞

ℎ ∈ {0,1},

𝑀𝐿𝑖𝑞
𝑘 , 𝑐𝑞 , 𝑡𝑞 , 𝑣𝑖𝑞 , 𝑤𝑖𝑞 ≥ 0,

𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, 𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙, ℎ = 1,2,3.

(2.31)

57

Equations (2.1) and (2.2) show the formulation of each objective function.

The symbol ‘≅’ is the fuzzy version of ‘=’ and refers to fuzzy aspiration levels.
For each objective function in the original fuzzy problem, it is assumed that the
DM has a fuzzy objective such as, ‘‘the objective function should be essentially

equal to some value” (Liang 2008). The first objective function 𝑧1 is equal to the
sum of the tardiness of all jobs. The tardiness is calculated for each job position
not for the actual jobs. Tardiness of each job is obtained from constraint in
Equation (2.3) and lower bound constraint on 𝑡𝑞 in Equation (2.31); these two

constraints together are the linearization form of 𝑡𝑞 = 𝑚𝑎𝑥{0, 𝑐𝑞 − 𝑑𝑗}. Total

maintenance cost (𝑧2) is obtained by multiplying the workforce and spare parts
cost of a potential maintenance activity before processing a job on a machine by
the binary variable 𝑦𝑖𝑞𝑘 that determines whether that potential maintenance

activity is realized by the solution. Equations (2.5) and (2.6) together ensure that
each job has one and only one position in the sequence of jobs.

Equation (2.7) maintains feasibility between machine and job idle-times. If

machine 𝑖 finishes processing the (𝑞 + 1)-th job before the next machine (𝑖 + 1)
finishes the previous job (𝑞), the job (𝑞 + 1) has to wait for the machine (𝑖 + 1).
Therefore, 𝑤(𝑖+1)(𝑞+1) is positive and 𝑣(𝑖+1)(𝑞+1) must be zero. On the other hand,

if machine 𝑖 finishes job (𝑞 + 1) after the next machine (𝑖 + 1) finishes job (𝑞),
the machine (𝑖 + 1) has to wait for the job (𝑞 + 1). Therefore, 𝑣(𝑖+1)(𝑞+1) is

positive and 𝑤(𝑖+1)(𝑞+1) is zero.

According to Assumption (2.6), all the maintenance levels prior to the first

job are at their maximum and hence no MA is performed before processing the
first job. This is expressed in Equation (2.8). The first job (q=1) does not wait in
buffer for any of the machines because it is processed first by all the machines,
as expressed in Equation (2.9). The first machine in the flow shop also does not
wait for any of the jobs as expressed in Equation (2.10). In Equation (2.11), the
idle times for machines 2 to m with respect to the first job (q=1) is equal to the
sum of the processing times of the job on the previous machines. Equation (2.12)
calculates the waiting time of the jobs for the first machine. Equation (2.13)
ensures that the maintenance levels do not fall below zero during or after
processing of the next job. The auxiliary variable 𝛾𝑖𝑗𝑞 substitutes the nonlinear

term 𝜌𝑖𝑞 ∙ 𝑥𝑗𝑞. To linearize these nonlinear terms, constraints in Equations (2.28-

2.30) are added. Equations (2.14-2.17) are the linearized form of the following
equation that calculates the values of the maintenance levels after processing

the jobs (∀𝑖, 𝑘, 𝑞 = 2…𝑛):

𝑀𝐿𝑖𝑞
𝑘 =

{

 𝑀𝐿𝑖(𝑞−1)
𝑘 −∑𝑥𝑗(𝑞−1)𝜌𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

, 𝑦𝑖𝑞𝑘 = 0

𝑀𝐿𝑚𝑎𝑥
𝑘 , 𝑦𝑖𝑞𝑘 = 1

.

58

Completion time of each sequenced job is equal to sum of its processing
times and its waiting times in the buffer. This is expressed in Equation (2.18). In
Equation (2.19), prolonged processing times are calculated. The original form of
this equation, when there are only three states for the health of a machine, is:

𝜌𝑖𝑞 =∑𝑝𝑖𝑗𝑥𝑗𝑞(𝛼Λ𝑖𝑞
1 + 𝛽Λ𝑖𝑞

2 + 𝛾Λ𝑖𝑞
3)

𝑛

𝑗=1

, ∀𝑖, 𝑞

where Λ𝑖𝑞
ℎ , ℎ = 1,2,3 is a binary variable that shows whether machine 𝑖 is in the

health state ℎ before processing the 𝑞-th job. The value within the parentheses

will be either 𝛼, 𝛽, or 𝛾. In Equation (2.19), 𝑢𝑖𝑗𝑞
ℎ substitutes the nonlinear term

𝑥𝑗𝑞Λ𝑖𝑞
ℎ . Constraints in Equations (2.20-2.22) are added for linearization of this

term. For simplicity, in this paper we have considered only three states for the
health of the machines. Constraints in Equation (2.23) ensure that only one of the
states of a machine is realized before processing a job. Constraints in Equations
(2.24-2.27) determine which state is realized based on the health of a machine
before a job is processed, in linear forms. Constraints in Equations (2.28-2.30)
linearize the term 𝛾𝑖𝑗𝑞 = 𝜌𝑖𝑞𝑥𝑗𝑞 that is used to get the correct processing time for

the job that occupies a certain position in the sequence; then, 𝛾𝑖𝑗𝑞 is used

throughout the model as the processing time of job j on machine i if it is assigned
to position q in the sequence of the jobs. Equation (2.31) ensures that all the
variables can take only the values that are within their boundaries.

Bi-Objective Formulation

In the proposed problem, a DM may have a vague and fuzzy idea about the
desired values of the objective functions based on the current maintenance
budget and criticality or priority of the current jobs (hence, the level of tardiness).
For example, the DM may specify that the tardiness should be “somewhat less
than” 100 hours and the maintenance cost “substantially less than” 100 thousand
dollars. A multi-objective technique that is suitable for the proposed problem
should have the following characteristics: it should be easy to understand and
interact with; it should capture the fuzzy nature of the DM’s ideas about the
values of the objective functions; and it should allow the DMs change these
values based on the changes that happen at operational levels.

 Liang (2006) proposes an interactive fuzzy multi-objective linear program
(i-FMOLP) for a supply chain problem that provides a systematic framework for
facilitating the fuzzy decision-making process in a problem where the aspiration
levels of the DMs with respect to the objectives are fuzzy. Interactive techniques
are more desirable in some applications because they yield a single preferred
solution (Hannan, 1981; Liang, 2006). i-FMOLP uses a membership function that

59

helps DMs quantify the degree of their fuzzy satisfaction for each objective
function. A membership function quantifies the vague and fuzzy statements of
the DMs. A scale between 0.0 and 1.0 is stablished with 0.0 representing the
worst value for the objective function with no degree of satisfaction and 1.0
representing the best value for the objective function with full satisfaction. In
order to form a membership function, the DM is asked to specify the degree of
satisfaction for several values of each objective based on current operational
limitations and requirements, or his or her preference, knowledge and
experience. The solution of i-FMOLP optimization problems benefit from
considering DM’s imprecise judgements (R.-C. Wang & Liang, 2004).

Among different multi-objective optimization methods, the i-FMOLP with
piecewise linear membership function (PLMF) has been found to be suitable for
the problem discussed in this paper. The main advantage of using PLMF is that,
by eliciting only a small finite number of values for the membership function from
the DM, we can approximate the intermediate points between the elicited points
in the membership function (Hannan, 1981). In this section, the i-FMOLP method
is introduced for formulation of the bi-objective problem incorporating both
objective functions. Next, a simple numerical example along with analysis of the
solution is presented.

i-FMOLP

The outline of the interactive solution procedure of the proposed i-FMOLP
method for solving fuzzy multi-objective problems is as follows (R.-C. Wang &
Liang, 2004):

Step 1: Formulate the MOLP (which is a MILP, to be precise)
Step 2: Solve the problem for each objective function and obtain the best
possible value for each OF.

Step 3: Specify the value of the membership functions 𝑓𝑔(𝑧𝑔), 𝑔 = 1,2 for several

values of each objective function 𝑍𝑔, to determine the satisfaction levels for each

objective function based on the DM’s preference, experience and knowledge. As
it is shown in Table 10, 𝑋𝑔,𝑖, 𝑖 = 0,… , 𝑝 + 1 show different values of each

objective function in order to cover the full range of the DM’s aspiration levels. 𝑃
is the number of points between the best values (𝑋1,𝑃+1, 𝑋2,𝑃+1) and the worse

values (𝑋1,0, 𝑋2,0) of the objective functions. The best values (lower bounds for

60

Table 10. Membership function 𝑓𝑔 (𝑧𝑔), 𝑔 = 1,2.

Parameters Values

𝑧1 > 𝑋10 𝑋10 𝑋11 𝑋12 … 𝑋1𝑃 𝑋1,𝑃+1 < 𝑋1,𝑃+1

𝑓1(𝑧1) 0 0 𝑞11 𝑞12 … 𝑞1𝑃 1.0 1.0

𝑧2 > 𝑋20 𝑋20 𝑋21 𝑋22 … 𝑋2𝑃 𝑋2,𝑃+1 < 𝑋2,𝑃+1

𝑓2(𝑧2) 0 0 𝑞21 𝑞22 … 𝑞2𝑃 1.0 1.0

Note: 0 ≤ 𝑞𝑖𝑗 ≤ 1, 𝑞𝑖𝑗 ≤ 𝑞𝑖,𝑗+1, 𝑖 = 1,2, 𝑗 = 1,2,… , 𝑃.

61

the objective function values) are obtained from Step 2. However, the worse
values (upper bounds) are determined by the DM; the range that is defined by
the best and the worse values should cover realistic values that the objective
functions can take. Also, it should be carefully taken into account by the DM that
any value greater than or equal to the worse value has a satisfaction degree of 0.

Step 4: For each pair (𝑧𝑔, 𝑓𝑔(𝑧𝑔)) , 𝑔 = 1,2 derive the formulation according to (R.-

C. Wang & Liang, 2004) and (Liang, 2008). Piecewise linear membership
functions are specified to represent the fuzzy sets involved. By introducing the

auxiliary variable 𝐿, the original fuzzy bi-objective problem can be converted into
an equivalent ordinary MILP model that can be solved efficiently using the
standard exact methods. The auxiliary variable 𝐿 (0 < 𝐿 < 1) represents overall
DM’s satisfaction with the determined objective values (Liang, 2008). If the

solution is 𝐿 = 1, then each objective is fully satisfied; if 0 < 𝐿 < 1, then all of
the objectives are satisfied at the level of 𝐿, and if 𝐿 = 0, then none of the
objectives are satisfied. A detailed explanation of this method can be found in
Liang (2006).

Step 5: Solve the following model:

𝑀𝑎𝑥 𝐿 (2.35)

Subject to:

𝐿 ≤ −(
𝑡𝑔2 + 𝑡𝑔1

2
) (𝑑𝑔1

− − 𝑑𝑔1
+) − (

𝑡𝑔3 + 𝑡𝑔2

2
) (𝑑𝑔2

− − 𝑑𝑔2
+) − ⋯

−(
𝑡𝑔(𝑃+1) + 𝑡𝑔𝑃

2
) (𝑑𝑔𝑃

− − 𝑑𝑔𝑃
+) + (

𝑡𝑔(𝑃+1) + 𝑡𝑔1

2
) 𝑧𝑔

+
𝑆𝑔(𝑃+1) + 𝑆𝑔1

2
 , 𝑔 = 1,2 (2.36)

𝑧𝑔 + 𝑑𝑔𝑒

− − 𝑑𝑔𝑒
+ = 𝑋𝑔𝑒, 𝑔 = 1,2, 𝑒 = 1,2, … , 𝑃

(2.37)

𝑑𝑔𝑒
+ , 𝑑𝑔𝑒

− ≥ 0, 𝑔 = 1,2, 𝑒 = 1,2, … , 𝑃

(2.38)

Equations (2.3) to (2.31).

where 𝑡𝑔𝑒 and 𝑆𝑔𝑒 are calculated according to Liang (2008).

Step 6: If the user is not satisfied with the results, and the objective function
values are not acceptable, go to Step 3.

62

Numerical Example

A small size of the problem, where number of machines 𝑚 = 3, number of
jobs 𝑛 = 6, and number of maintenance types 𝑙 = 2, is presented here as a
numerical example. The data used for this example are obtained from random
test problem generator as explained in Section 2.5.

The interactive solution procedure uses the proposed i-FMOLP method for
this problem. First, the initial solution for each of the objective functions using the

ordinary crisp MILP model is determined. The optimal value for tardiness (𝑧1) is

83 and optimal value for total maintenance cost (𝑧2) is 105. Then, we specify the
degree of membership 𝑓𝑔(𝑧𝑔) for 𝑔 = 1,2 regarding several values for each of the

objective functions. Table 11 shows the piecewise linear membership functions
for initial solutions.

Table 11. Piecewise linear membership functions for the numerical example.

Parameters Values

𝑧1 <83 83 88 98 110 >110

𝑓1(𝑧1) 1 1 0.8 0.5 0 0
𝑧2 <105 105 108 115 120 >120

𝑓2(𝑧2) 1 1 0.8 0.5 0 0

In functional situations, the ordinary single-objective MILP solution for

each of the fuzzy objective functions often produce a starting point for specifying
the piecewise linear membership function, and both intervals must cover the
MILP solution (Liang, 2006). Finally, we formulate the FMOLP model using the
initial solutions and the presented bi-objective MILP:

𝑀𝑎𝑥 𝐿

Subject to:

𝐿 ≤ −0.0036(𝑑11
− − 𝑑11

+) − 0.0114(𝑑12
− − 𝑑12

+) − 0.035(∑𝑡𝑞

𝑛

𝑞=1

) + 4.08

𝐿 ≤ −0.1063(𝑑21
− − 𝑑21

+) + 0.0012(𝑑21
− − 𝑑21

+)

− 0.1450∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘) + 17

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

∑𝑡𝑞

𝑛

𝑞=1

+ (𝑑11
− − 𝑑11

+) = 88

63

 ∑ 𝑡𝑞

𝑛

𝑞=1

+ (𝑑12
− − 𝑑12

+) = 98

∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘) +

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

(𝑑21
− − 𝑑21

+) = 108

∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘) +

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

(𝑑22
− − 𝑑22

+) = 115

Equations (2.3-2.31).

IBM ILOG CPLEX Optimization Studio has been used for solving the initial

models and the i-FMOLP. The optimal values are 𝑧1 = 87 and 𝑧2 = 105, and the
optimal DM’s satisfaction value, when the i-FMOLP is solved, is 𝐿 = 0.843. If the
solution is not satisfactory, the DM may attempt to improve the results
interactively by adjusting the related parameters to obtain a satisfactory solution.

Furthermore, the DM can change the membership functions for both fuzzy

objectives. Table 12 shows the new values for the membership functions.

Consequently, supposedly improved solutions are again 𝑧1 = 87 and 𝑧2 = 105,
but the overall degree of DM’s satisfaction increases sharply to 𝐿 = 0.92.
Therefore, changing the values of the membership functions does not
necessarily change the optimal value of the individual objectives, but it changes
the satisfaction degree based on the DM’s preference.

Table 12. Piecewise linear membership functions for the improved results.

Parameters Values

𝑧1 <83 83 93 100 110 >110
𝑓1(𝑧1) 1 1 0.8 0.5 0 0
𝑧2 <105 105 110 118 120 >120

𝑓2(𝑧2) 1 1 0.8 0.5 0 0

There are several significant management implications regarding the

application of the i-FMOLP method. The fuzzy goal programming method of
(Hannan, 1981) adopted in this work, which uses the piecewise linear
membership function and the minimum operator, yields efficient solutions to
fuzzy multi-objective programming problems. It follows that maximization of two
or more membership functions is best achieved by maximizing the minimum
membership grade. In addition, the coefficients and related parameters of this
problem such as processing time, deterioration rate and cost of spare parts
which affect the value of objectives are normally fuzzy or imprecise because of
some information being incomplete or unobtainable. This model gives a tool to

64

the DM typically to solve the problem by optimizing simultaneously two conflicting
objectives in the framework of imprecise aspiration levels (Liang, 2008). Table 13
compares the results obtained by the single objective MILPs and the i-FMOLP
model. The results show that by solving the i-FMOLP, instead of each one of the
single objective MILPs, we can simultaneously optimize both objectives with an
acceptable trade-off.

Table 13. Solution comparison.

 Problem 1 Problem 2 i-FMOLP

Objective Function Min. 𝑧1 Min. 𝑧2 Max. 𝐿
Value of 𝐿 100% 100% 92%
Value of 𝑧1 83 145 87
Value of 𝑧2 110 105 105

Different values for the degree of membership for each one of the

objectives (𝑧1, 𝑓1(𝑧1)) and (𝑧2, 𝑓2(𝑧2)) for the numerical example is shown in
Table 5 and the results are shown in Table 14. As the results show, the value of
memberships for each objective function affects the overall level of satisfaction
and the decision variables. This has significant implications. First, the most
important task of the DM is to carefully specify the degree of membership for
each objective function; second, the DM may flexibly revise the range of value of
the degree of membership to yield satisfactory solutions (R.-C. Wang & Liang,
2004).

Table 14. Different membership values for (𝒛𝟏, 𝒇𝟏 (𝒛𝟏)) and (𝒛𝟐, 𝒇𝟐 (𝒛𝟐)).

Run Parameters Values

1 𝑧1 <83 83 93 100 110 >110

1 𝑓1(𝑧1) 1 1 0.8 0.5 0 0

1 𝑧2 <105 105 110 118 120 >120

1 𝑓2(𝑧2) 1 1 0.8 0.5 0 0

2 𝒛𝟏 <83 83 85 88 90 >90

2 𝑓1(𝑧1) 1 1 0.8 0.5 0 0

2 𝑧2 <105 105 110 113 115 >115

2 𝑓2(𝑧2) 1 1 0.8 0.5 0 0

3 𝒛𝟏 <83 83 85 90 92 >92

3 𝑓1(𝑧1) 1 1 0.8 0.5 0 0

3 𝑧2 <105 105 108 110 115 >115

3 𝑓2(𝑧2) 1 1 0.8 0.5 0 0

4 𝒛𝟏 <83 83 88 98 110 >110

4 𝑓1(𝑧1) 1 1 0.8 0.5 0 0

4 𝑧2 <105 105 108 115 120 >120

4 𝑓2(𝑧2) 1 1 0.8 0.5 0 0

65

The change in the objective function values and satisfaction degrees are
depicted in Figure 7. Please note that in this numerical example, the values of
the second objective (maintenance) have been scaled down.

Table 15. Objective function values for the optimal solutions.

Objective Run1 Run2 Run3 Run4

𝐿 0.92 0.8 0.67 0.84

𝑧1 87 85 88.296 87

𝑧2 105 110 110 105

Figure 7. The value of the two objectives and L against different membership values.

2.3 Solution Methodology

As will be shown and discussed in the next section, commercial solvers, like
CPLEX, do not perform satisfactorily in terms of the computation time in finding
the optimal solution, specifically for realistic problems with relatively large number
of variables and constraints. On the other hand, meta-heuristic algorithms that
are usually used as an alternative, suffer from not guaranteeing optimality. In
both cases, the problem stems from not having insight to the structure of the
problem and the solution space. In this section, a solution algorithm is introduced
with the help of a few developed theorems that give insight into the unique
properties of the problem. This insight helps make the solution space significantly
smaller, and hence the search faster. A Genetic Algorithm is then used as a tool
for searching through the confined solution space to find optimal or near-optimal
solutions, efficiently.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

80

85

90

95

100

105

110

115

Run1 Run2 Run3 Run4

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue Tardiness

Maintenance
Cost

Satisfaction
Degree

S
at

is
fa

ct
io

n
D

gr
ee

66

Confining the Solution Space

The solution space of the presented problem in Section 2.2 is very large due to
having many variables. We will show that, by knowing the values of the variables
𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘, ∀𝑖, 𝑗, 𝑞, 𝑘, the values for other variables can be derived. In other

words, all the other variables depend on 𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘. The variables that can

determine the values of the objective functions are 𝑡𝑞 and 𝑦𝑖𝑞𝑘. Variable 𝑡𝑞 itself

can be determined if 𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘 are known. 𝑥𝑗𝑞 , ∀𝑗, 𝑞 represents the sequence of

the jobs and 𝑦𝑖𝑞𝑘 shows the position of maintenance activities (MAs). A pair (𝑺, 𝒚)

represents a solution in the confined solution space, where 𝑺 is a vector for the
sequence and y is a matrix whose elements are 𝑦𝑖𝑞𝑘. Algorithm 1 shows a

procedure that takes such a solution as input and calculates the optimal values of
other variables for the given solution, and then calculates the values of the two
objective functions that can be directly used for calculation of the satisfaction
degree of the solution. The outputs of the algorithm are the values of the
objective functions and feasibility status of the solution.

Feasibility-check of a solution as an output of the algorithm is trivial; if the

value of any of the variables 𝑀𝐿𝑖𝑞
𝑘 , ∀𝑘, 𝑖, 𝑞 calculated by Algorithm 1 turns out to

be negative, the solution is infeasible. Regarding the constrains of the model in
Section 2.3, the algorithm ensures that the values taken by the variables do not
violate any of the constraints. An overview of Algorithm 1 is as follows. First, all
the maintenance levels are set equal to their maximum before processing the
first job for each machine. Then, the levels are decreased by the deterioration
caused by the jobs that have been processed. If a maintenance activity takes
place, the level is reset to its maximum. Processing times of the jobs are
adjusted based on the average maintenance level of the machine, according to
Assumption 12 and the mathematical formulation of the problem in Section 2.3.

Next, the completion time of each job on each machine (𝐶𝑖𝑞 , ∀𝑖, 𝑞) is

calculated. This is done by first, calculating the completion time of the first job in

each machine (𝐶𝑖1, ∀𝑖), then, calculating the completion time of all the jobs on the
first machine (𝐶1𝑞 , ∀𝑞 = 2,… , 𝑛), and finally, calculating the completion times of all

the jobs except the first job on all the machines except the first machine
(𝐶1𝑞 , ∀𝑞 = 2,… , 𝑛, 𝑖 = 2,… ,𝑚). The waiting time of the jobs and the maintenance

times are considered in calculation of the completion times. Algorithm 1 ends by
calculating the value of each objective function.

By using Algorithm 1, we reduced a solution space defined by all the

variables to a solution space defined only by 𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘, ∀𝑖, 𝑗, 𝑞, 𝑘. Next we show

that the confined solution space can be further confined in a special case where
the processing times are not affected by the maintenance levels. The following
propositions are the basis in designing Algorithm 2. Algorithm 2 derives the
optimal values of 𝑦𝑖𝑞𝑘 , ∀𝑖, 𝑞, 𝑘 for a given sequence 𝑺 (𝑥𝑗𝑞 , ∀𝑖, 𝑞). Because

67

Algorithm 1. Obtaining the value of objective functions from only a sequence

(𝑆) and positions of maintenance activities (𝑦).

Inputs: 𝑺 and 𝒚

Outputs: 𝑧1, 𝑧2 and 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

for 𝑖 = 1,… ,𝑚 do

 𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘 , ∀𝑘

end for

for 𝑖 = 1,… ,𝑚 do
 for 𝑞 = 2,… , 𝑛 do
 𝑗 = 𝑆𝑞

 𝑗′ = 𝑆𝑞−1

 for 𝑘 = 1, … , 𝑙 do
 if 𝑦𝑖𝑞𝑘=1 do

 𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘

 else do

 𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑖(𝑞−1)

𝑘 − 𝑝𝑖𝑗′𝛿𝑖𝑗′𝑘

 end if
 end for

 𝜇 = ∑
𝑀𝐿𝑖𝑞

𝑘

𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙
𝑘=1 𝑙⁄

 if 𝜇 < 0.33 do
 𝑝𝑖𝑗 = 2 × 𝑝𝑖𝑗

 else if 0.33 ≤ 𝜇 < 0.66 do
 𝑝𝑖𝑗 = 1.5 × 𝑝𝑖𝑗

 end if
 end for
end for

for 𝑖 = 1,… ,𝑚 do

 𝐶𝑖1 = ∑ 𝑝𝑖′𝑆1
𝑖
𝑖′=1

end for

for 𝑞 = 2,… , 𝑛 do

 𝐶1𝑞 = 𝐶1(𝑞−1) + 𝑝1𝑆𝑞 +∑ 𝑒1𝑘𝑦1𝑞𝑘
𝑙
𝑘=1

end for

for 𝑖 = 2,… ,𝑚 do
 for 𝑞 = 2,… , 𝑛 do
 if 𝐶𝑖(𝑞−1) > 𝐶(𝑖−1)𝑞 do

 𝑤𝑖𝑞 = 𝐶𝑖(𝑞−1) − 𝐶(𝑖−1)𝑞

68

Algorithm 1. Continued.

 end if

 𝐶𝑖𝑞 = 𝐶(𝑖−1)𝑞 + 𝑤𝑖𝑞 + 𝑝𝑖𝑆𝑞 + ∑ 𝑒𝑖𝑘𝑦𝑖𝑞𝑘
𝑙
𝑘=1

 end for
end for

for 𝑞 = 1,… , 𝑛 do
 𝑡𝑞 = max{0, 𝐶𝑚𝑞 − 𝑑𝑆𝑞}

𝑧1 =∑𝑡𝑞

𝑛

𝑞=1

𝑧2 = ∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

if 𝑀𝐿𝑖𝑞
𝑘 ≥ 0, ∀𝑖, 𝑘, 𝑞 do

 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒
else do

 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐹𝑎𝑙𝑠𝑒

69

maintenance levels do affect the processing times in the presented problem, the
algorithm updates the processing times based on the maintenance levels. Also,
the local search discussed in the next subsection will improve the output of
Algorithm 2.

Proposition 1. For a fixed sequence, 𝑺0, and when the processing times of the
jobs are not dependent on the average of maintenance levels, by setting all the
positions in 𝒚 equal to 0 and resetting a specific maintenance position 𝑦𝑖0𝑞0𝑘0 to 1

only if otherwise 𝑀𝐿𝑖0(𝑞0+1)
𝑘0 becomes negative, the first objective function (𝑧1) will

be minimized.

Proof. Let 𝑠𝑜𝑙0 = (𝒚0, 𝑺0) be a feasible solution, using Algorithm 1. If there exists

another feasible solution 𝑠𝑜𝑙1 = (𝒚1, 𝑺0) in which 𝒚1 differs from 𝒚0 only in one

position, i.e. 𝑦𝑖0𝑞0𝑘0
1 = 1 and 𝑦𝑖0𝑞0𝑘0

0 = 0, because for a fixed sequence, the

maintenance activities that are placed between the jobs are the only variables that

can change the value of the first objective function (tardiness), ∴ 𝑧1
𝑠𝑜𝑙1 < 𝑧1

𝑠𝑜𝑙0.

Infeasibility happens only when 𝑀𝐿𝑖𝑞
𝑘 < 0, ∀𝑖, 𝑘, 𝑞. Therefore, the optimal solution

is the one in which 𝑦𝑖0𝑞0𝑘0
0 = 1 if and only if otherwise 𝑀𝐿𝑖0(𝑞0+1)

𝑘0 < 0.

∎

Proposition 2. For a fixed sequence, 𝑺0, and when the processing times of the
jobs are not dependent on the average of maintenance levels, by setting all the
positions in 𝒚 equal to 0 and resetting a specific maintenance position 𝑦𝑖0𝑞0𝑘0 to 1

only if otherwise 𝑀𝐿𝑖0(𝑞0+1)
𝑘0 becomes negative, the second objective function (𝑧2)

will be minimized.

Proof. Let 𝑠𝑜𝑙0 = (𝒚0, 𝑺0) be a feasible solution, using Algorithm 1. If there exists

another feasible solution 𝑠𝑜𝑙1 = (𝒚1, 𝑺0) in which 𝒚1 differs from 𝒚0 only in one

position, i.e. 𝑦𝑖0𝑞0𝑘0
1 = 1 and 𝑦𝑖0𝑞0𝑘0

0 = 0, because in the formulation of the second

objective function, 𝑧2 = ∑ ∑ ∑ 𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)
𝑙
𝑘=1

𝑛
𝑞=1

𝑚
𝑖=1 , the only variable is the

position of the maintenance activities, 𝑦𝑖𝑞𝑘 which is a binary variable, ∴ 𝑧2
𝑠𝑜𝑙1 <

𝑧2
𝑠𝑜𝑙0. Infeasibility happens only when 𝑀𝐿𝑖𝑞

𝑘 < 0, ∀𝑖, 𝑘, 𝑞. Therefore, the optimal

solution is the one in which 𝑦𝑖0𝑞0𝑘0
0 = 1 if and only if otherwise 𝑀𝐿𝑖0(𝑞0+1)

𝑘0 < 0.

∎

When the processing times are not prolonged (due to a low average

maintenance level), the total deterioration of the maintenance levels of a machines
caused by processing all the jobs is constant. Total deterioration for maintenance
type 𝑘0 of machine 𝑖0 is 𝑇𝐷𝑖0𝑘0 = ∑ 𝛿𝑖0𝑗𝑘0𝑝𝑖0𝑗

𝑛
𝑗=1 . The theoretical value for the

minimum number of maintenance activities of type 𝑘0 required on machine 𝑖0 can

70

be defined as 𝑀𝐴𝑖0𝑘0
𝑚𝑖𝑛 = ⌊

𝑇𝐷𝑖0𝑘0

𝑀𝐿𝑚𝑎𝑥
𝑘0
⌋; any number less that 𝑀𝐴𝑖0𝑘0

𝑚𝑖𝑛 leads to a negative

value for the maintenance level while processing the jobs.

For a set of jobs, when trying to perform as few maintenance activities as

possible according to the above prepositions, different sequences can lead to
different number of MAs. For example, consider four jobs with the following
deteriorations (processing time multiplied by deterioration rate), a given machine

𝑖0 and a given maintenance level 𝑘0; deteriorations for the four jobs are 𝐷1 =

0.65, 𝐷2 = 0.40, 𝐷3 = 0.50, 𝐷4 = 0.35, and 𝑀𝐿𝑚𝑎𝑥
𝑘0 = 1.00. The theoretical minimum

number of MAs is 𝑀𝐴𝑖0𝑘0
𝑚𝑖𝑛 = ⌊

0.65+0.40+0.50+0.35

1.00
⌋ = ⌊1.9⌋ = 1, and the minimum

number of MAs with respect to sequences 𝑺1 = [1,4,3,2] and 𝑺2 = [1,2,3,4] are 1
and 2, respectively. The positions of MAs for 𝑺1 and 𝑺2 are [1,4,𝑀𝐴, 3,2] and
[1,𝑀𝐴, 2,3,𝑀𝐴, 4], respectively. Removing any of these MAs from these sequences
leads to a negative value for the maintenance level while processing the job that
is placed after the removed MA. For a set of jobs that is to be processed by

machine 𝑖0, and when only considering maintenance level 𝑘0, there exist a set of

sequence 𝑺∗ whose minimum number of MAs is the closest to 𝑀𝐴𝑖0𝑘0
𝑚𝑖𝑛 . In this

example, 𝑀𝐴𝑖0𝑘0
𝑺1 = 𝑀𝐴𝑖0𝑘0

𝑚𝑖𝑛 .

For a given sequence, we can use a procedure to find the minimum

number of MAs. Algorithm 2 finds the minimum number of MAs while considering
all the machines and all the maintenance levels/activities. It also updates the
processing times for a case when the jobs can be prolonged. When the jobs can
be prolonged, there is no guarantee that this procedure gives the minimum
number of MAs. This is because when the processing times of the jobs are
prolonged due to low average maintenance levels, the amount of deterioration
also increases since the amount of deterioration is equal to deterioration rate
multiplied by the processing time. This can lead to more MAs.

Unnecessary maintenance activities can be added before processing jobs
in order to prevent the increase in processing times, and hence prevent the
increase in deteriorations. For the first objective function (tardiness), this does
not guarantee the improvement in the objective; although the processing times
will not be prolonged, the duration of maintenance activities adds to the total
tardiness. The only way to guarantee that processing times will not be prolonged
is by adding a MA before each job for each ML of each machine. This will
significantly increase the number of MAs and completion times, and worsen the
value of both objective functions. For the second objective function (maintenance
cost), unnecessary MAs should not be added in the first place because adding
them contradicts the goal of doing so; the goal of adding unnecessary MAs is to
make sure that the processing times are not prolonged, and hence deterioration
is not increased and eventually less MAs are expected to be needed.

71

Algorithm 2. Finding the minimum number of maintenance activities for a given
sequence.

Input: A sequence, 𝑺, and other input parameters.
Output: Positions of maintenance activities, 𝒚, 𝑴𝑨, and 𝑴𝑳.

for 𝑖 = 1,… ,𝑚 do
 𝑀𝐴𝑖𝑘 = 0, ∀𝑘

 𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘 , ∀𝑘

 for 𝑞 = 2,… , 𝑛 do
 for 𝑘 = 1,… , 𝑙 do

 𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑖(𝑞−1)

𝑘 − 𝑝𝑖𝑆𝑞−1𝛿𝑖𝑆𝑞−1𝑘

 end for

 𝜇 = ∑
𝑀𝐿𝑖(𝑞−1)

𝑘

𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙
𝑘=1 𝑙⁄

 update processing time of job 𝑆𝑞 on machine 𝑖 (𝑝𝑖𝑆𝑞) according to

Assumption 12, using 𝜇
 for 𝑘 = 1,… , 𝑙 do

 if 𝑀𝐿𝑖𝑞
𝑘 − 𝑝𝑖𝑆𝑞𝛿𝑖𝑆𝑞𝑘 < 0 do

 𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘

 𝑀𝐴𝑖𝑘 = 𝑀𝐴𝑖𝑘 + 1
 𝑦𝑖𝑞𝑘 = 1

 else do
 𝑦𝑖𝑞𝑘 = 0

 end if
 end for
 end for
end for

72

The presented algorithms and the discussion that followed them give an insight
into the confined solution space that helps making the search more efficient and
effective.

Designing a search in the Solution Space

It was shown that the pair (𝑺, 𝒚) can represent the solution space. 𝑺 is the

sequence of 𝑛 jobs and there are 𝑛! different realizations for it. For a given
sequence, the value of optimal 𝒚 with respect to the second objective can be

found using Algorithm 2. Let (𝑺0, 𝒚0) be a solution for which Algorithm 2 has

determined 𝒚0 based on 𝑺0. Therefore, the number of MAs is minimal. In order to
search the neighborhood of this solution for finding solutions that can improve
tardiness (the first objective), random MAs can be added to positions where the
sum of maintenance duration and nominal processing time is less than the
prolonged processing time. Based on the structure of the solution and the type of
search that was described, a Genetic Algorithm is designed for efficiently
searching through the solution space and converging to a near-optimal solution.

The crossover operator is applied to a sequence of jobs, in order to escape
from local optimality and search everywhere in the solution space. The mutation

operator serves as a local search for a given sequence and is applied to the 𝒚-
section of the chromosome. In the following subsections, these operators and
other settings of the GA are introduced in detail.

Global search by crossover

When using a binary representation for jobs and their sequence, the crossover
operator can produce “illegal” or “bad” solutions that mean infeasible solutions
and there are a few methods for handling this issue (Bierwirth, 1995; Yamada &
Nakano, 1997). These methods make the algorithms computationally more
expensive. Because the goal here is only to search different sequences, a single-
point crossover operator is used to produce two offspring from two parent

chromosomes. In a single point crossover applied to a sequence 𝑺, after the first
left sections of the chromosomes are exchanged, it is possible that the right
sections have duplicate genes (a job can be seen more than once in the
sequence). In that case, those genes are replaced by the genes of the other
chromosome that are in the same position. This method is implemented as
shown in Algorithm 3.

Local search by mutation

The mutation operator has been used as a local search on 𝒚 for a given

sequence 𝑺0 that can further improve the fitness of existing solutions. As was
explained in the previous subsection, Algorithm 2 determines the positions of

73

Algorithm 3. Finding new sequences from existing sequences using a
crossover operator.

Input: Two sequences of jobs (parents), 𝑺1 and 𝑺2.
Output: Two new sequences of jobs (offspring chromosomes), 𝑺3 and 𝑺4.
Note: 𝑆𝑖

𝑎 means i-th element in 𝑺𝑎 and 𝑆𝑖:𝑗
𝑎 means elements of 𝑺𝑎 from i to j.

𝑐 ← a random integer between 1 and 𝑛 (number of jobs)
𝑺3 ← 𝑆1:𝑐

1 + 𝑆𝑐+1:𝑛
2

𝑺4 ← 𝑆1:𝑐
2 + 𝑆𝑐+1:𝑛

1

for 𝑖 = 1,… , 𝑛 − 𝑐 do

 if 𝑆𝑐+𝑖
3 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑆1:𝑐+𝑖−1

3 do

 for 𝑗 = 1,… , 𝑛 do

 if 𝑆𝑗
4 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑆1:𝑐+𝑖−1

3

 𝑆𝑐+𝑖
3 ← 𝑆𝑗

4

 break
 end if
 end for
 end if
end for

for 𝑖 = 1,… , 𝑛 − 𝑐 do

 if 𝑆𝑐+𝑖
4 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑆1:𝑐+𝑖−1

4 do

 for 𝑗 = 1,… , 𝑛 do

 if 𝑆𝑗
3 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑆1:𝑐+𝑖−1

4

 𝑆𝑐+𝑖
4 ← 𝑆𝑗

3

 break
 end if
 end for
 end if
end for

74

maintenance activities for a given sequence in such a way that it minimizes the
second objective function. Here, a position that is a Possible Improvement Point
(PIP) is located and with a probability 𝜇1, a MA is placed in that position. A PIP is
one in which the nominal processing time of the job that is placed after the point
(𝑖, 𝑞, 𝑘) plus duration of the respective maintenance activity is less than the
prolonged processing time of the job, if the job has been prolonged due to low
average maintenance level of the machine.

Setting the parameters

The Roulette Wheel Selection method by C. R. Reeves (1995) has been adapted
for selecting parents for crossover, or a single chromosome for mutation, from
the current population. The output of Algorithm 1 is used for evaluating fitness
(satisfaction degree) of a chromosome and for checking the feasibility of a
chromosome. Convergence has been used as the stopping condition; when the
satisfaction degree of the fittest chromosome does not improve for a certain
number of iterations, I, the GA stops and the chromosome that has the maximum
satisfaction degree in the last iteration (generation) is returned as the best
solution. The values used for the parameters of a GA that works best for this
problem, are chosen as follows: 20 for the maximum number of iterations; 500 for
population size; 30% of chromosomes were chosen for crossover; 30% of the
chromosomes were chosen for mutation; and each the maintenance positions in
each chromosome were mutated with the probability of 0.05. The methodology
introduced by Yu and Seif (2016) was used in determining the values of these
parameters. In the next section a computational experiment for performance
evaluation of the presented solution methodology is presented.

2.4 Computational Results

In this section, performance of the proposed solution methodology is evaluated
through analyzing the results of a set of computational experiments. A series of
random test problems with different sizes are generated which are used for
evaluation of the efficiency and effectiveness of the presented solution
methodology (which will be referred to as ALG). Time-to-convergence and quality
of solutions of ALG will be tested against those from the commercial solver, IBM
CPLEX. In addition, performance of ALG will be compared with a standard GA. In
the standard GA (denoted by GA) the algorithms introduced in Section 2.3 will
not be used. The premise of the comparison between ALG and GA is to show
how the solution methodology that was introduced in Section 2.3 can improve a
meta-heuristic that blindly searches through the solution space. In ALG, only the
sequence of the jobs is generated randomly. The positions of the MAs are
derived from a given sequence using Algorithms 1 and 2. However, in the GA,
not only the sequence is generated randomly, the positions of maintenance

75

activities are also generated randomly. In short, ALG is an improved GA that
considers the unique features of the solution space and benefits from the
algorithms that were introduced in Section 2.3. The same values for the
parameters of GA and ALG were used in the computational experiments.

Test problems generation

Table 16 and Table 17 explain how the input data for each problem in the
computational experiments is generated. Table 16, adapted from Yu and Seif
(2016) similar to Table 4, shows the dimensions (size) of each parameter, the
range within which the values of the elements of each parameter are generated,
and the type of random distribution used in generating these values. As the last
four rows of Table 16 show, another input for each test problem is the table of
membership function. Each problem is solved twice with a standard GA; once

with 𝑧1 as the objective function and once 𝑧2 as the objective function. Because
both objectives are in the form of minimization and GA’s solution is not
guaranteed to be optimal, a large fraction of the output of GA is considered as
the first point in forming the table.

Table 17 shows how the membership function table is formed. The values

[0.00, 0.50, 0.75, 1.00] were chosen arbitrarily for 𝑓𝑔(𝑧𝑔), 𝑔 = 1,2. As was

explained in Section 2.2, in practice the values of the membership functions are
determined by decision makers and there is no “best” value for these values in
the membership function tables. What matters in the computational experiment is
to have an estimate of the range of values that each objective take, and then
using the same table in a test problem that is to be solved by the all three
solvers. The method shown in Table 7 provides us with such an estimate. How

many points are considered for 𝑓𝑔(𝑧𝑔), 𝑔 = 1,2 and how good are the values of

𝑧𝑔, 𝑔 = 1,2, also should not matter in the computational experiment as long as the

same values are used as a basis for comparison. It should be re-emphasized
that the same membership function table were used in each test problem by all
three solution methods, namely CPLEX, GA and ALG.

Table 16. Generation method of test problems, adapted from Yu and Seif (2016).

Parameter Size Range Generation Method

Processing times 𝑚 × 𝑛 [1,10] Random (integer, Uniform distribution)

Duration of MAs 1 × 𝑙 [1,4] Random (integer, Uniform distribution)

Deterioration rates 𝑚 × 𝑛 × 𝑙 [0,2] Random (fractional, Uniform distribution)

Penalty costs 1 × 𝑛 [500,600] Random (integer, Uniform distribution)

Due dates 1 × 𝑛 [10,30] Random (integer, Uniform distribution)

Spare parts costs 𝑚× 𝑙 [1000,20000] Random (integer, Uniform distribution)

Workforce costs 1 × 𝑙 [500,2000] Random (integer, Uniform distribution)
Maximum of MLs 1 × 𝑙 (U.B. of Processing times)×(U.B. of Deterioration rates)

𝑧1
𝐺𝐴 1 × 4 Solving a GA with 𝑧1 as the only objective (fitness) function

𝑧2
𝐺𝐴 1 × 4 Solving a GA with 𝑧2 as the only objective (fitness) function

76

Table 17. Piecewise linear membership functions for test problems.

Parameters Values

z1 <0.75 × 𝑧1
𝐺𝐴 0.75 × 𝑧1

𝐺𝐴 1.25 × 𝑧1
𝐺𝐴 1.75 × 𝑧1

𝐺𝐴 2.00 × 𝑧1
𝐺𝐴 >2.00 × 𝑧1

𝐺𝐴

f1(z1) 1.00 1.00 0.75 0.50 0.00 0.00

z2 <0.75 × 𝑧𝟐
𝐺𝐴 0.75 × 𝑧𝟐

𝐺𝐴 𝟏. 𝟐𝟓 × 𝑧𝟐
𝐺𝐴 𝟏. 𝟕𝟓 × 𝑧𝟐

𝐺𝐴 𝟐. 𝟎𝟎 × 𝑧𝟐
𝐺𝐴 >𝟐. 𝟎𝟎 × 𝑧𝟐

𝐺𝐴

f2(z2) 1.00 1.00 0.75 0.50 0.00 0.00

77

Computational experiment

The proposed solution algorithm and a standard GA were implemented in
MATLAB and the performance was compared against that of CPLEX 12.5
(2012). Our computational experiments were performed on an i7-3770 @ 3.40
gigahertz Intel processor with 8.00 gigabytes system memory. In order to
evaluate the quality of the solutions obtained from ALG, we have solved
numerous test problems with different sizes. The size of the problem is defined

based on the number of machines (𝑚), number of jobs (𝑛), and number of
maintenance levels (𝑙). 27 different problem sizes can be defined by all possible
combinations of 𝑚 = {1,2,5}, 𝑛 = {6,10,15}, and 𝑙 = {1,2,3}. These ranges for the

size of the problem were considered mainly based on the values that (𝑚, 𝑛, 𝑙) can
take in real world problems, and also in such a way that a portion of them can be
solved by CPLEX so the performance of the proposed solution method can be
evaluated. For each of these sizes, 30 random problem instances were solved.

Table 18 compares the computational times of three solution methods, in
seconds, for realistic problem sizes. Both GA and ALG were set to stop if the
solution does not improve for 20 iterations. Table 9 also shows the number of
iterations of GA and ALG before the 20 iterations (convergence). The number of
iterations reported in Table 18 should be added to 20 to get the actual number of
iterations. For example, when the number of iterations before the final 20
iterations is 158, it means that the actual number of iterations were 158+20=178,
but the objective function value had not improved in iterations 159 to 178 and
hence the algorithm stopped. The blank entries for CPLEX columns show that
CPLEX could not find the optimal solution in 300 seconds. This time limit was
chosen because it was observed that when a problem cannot be solved within
300 seconds, solution time can vary from a few minutes to several hours.
Usually, if it takes several hours to solve the problem, the software stops due to
memory related issues, and can disrupt the computational experiment. As the
results suggest, ALG is faster than a standard GA. Also, unlike CPLEX, the
average time of ALG does not grow exponentially when the problem size
increases. The results also imply that the main contributor to the computational
complexity of the problem is the number of jobs.

Although the computation time of the standard GA was reported in Table 18
for comparison purposes, as shown in Table 19, the standard GA is not always
able to find a feasible solution. This is mainly because the probability of
generating a feasible solution for a very large solution space decreases when the
size of the problem increases. On the other hand, according to the results, ALG
always finds a feasible solution. Table 20 compares the results of ALG with those
of the standard GA and CPLEX. For CPLEX, the solver has been run for a few
hours for test problems for which the value of OFV could be converged. As can
be inferred from Table 20, while the gap between the value of other objective

functions (𝑧1, 𝑧2) can be very high or low, ALG has an average of 7 percent gap

78

Table 18. Comparison of computation times (seconds) for problems with a realistic size.

Problem CPLEX Standard GA Proposed Solution Method (ALG)

Class Time Time Iterations Time Iterations

(𝑚, 𝑛, 𝑙) Avg. Max./Min Avg. Max. Avg. Max. Avg. Max. Avg. Max.

(1,6,1) 0.98 1.52/0.00 16.08 25.31 8.00 20 14.39 29.28 4.37 21

(1,6,2) 1.18 1.58/0.00 23.75 42.60 19.43 48 19.32 38.91 11.57 36

(1,6,3) 1.42 2.09/1.01 30.05 56.31 26.47 55 22.02 41.66 15.07 50

(1,10,1) 8.69 21.39/2.09 33.56 61.33 38.70 71 28.93 46.81 30.07 63

(1,10,2) /6.83 49.01 77.98 55.53 99 37.99 81.67 41.10 118

(1,10,3)
 /24.95 64.93

113.7
6 77.00 139 41.63 87.79 41.30 108

(1,15,1) /16.22 55.56 89.49 67.60 125 44.12 91.07 55.37 137

(1,15,2)
 77.89

157.4
8 87.03 186 43.56 134.70 41.00 158

(1,15,3)
 87.93

158.1
7 86.43 175 40.62 140.00 32.30 160

(2,6,1) 1.17 1.93/0.00 23.00 41.03 17.03 50 17.23 34.58 8.80 28
(2,6,2) 1.82 4.47/1.00 42.99 85.99 45.53 101 31.32 61.63 29.30 74

(2,6,3) 2.75 9.21/1.01 59.08 95.87 61.70 116 26.08 60.88 16.93 61

(2,10,1) /23.77 49.54 90.02 55.30 122 34.09 94.18 35.83 129

(2,10,2)
 /76.45 72.86

138.7
9 78.17 170 26.77 85.09 17.57 101

(2,10,3)
 /244.42 92.35

181.2
7 83.60 191 21.35 50.29 6.10 44

(2,15,1)
 87.09

142.8
6 92.20 168 37.96 132.74 34.67 174

(2,15,2)
 99.61

258.3
4 86.10 251 26.20 64.81 9.77 59

(2,15,3)
 /299.97 47.84

283.3
3 27.27 248 23.73 39.40 3.43 20

(5,6,1)
4.19 15.42/1.38 54.74

106.3
6 54.47 123 18.01 37.87 5.63 26

(5,6,2)
21.24 66.82/3.44 71.61

134.2
8 57.47 113 23.34 50.18 5.70 35

(5,6,3)
 /4.18 73.00

209.4
8 52.90 195 22.51 25.72 2.00 2

(5,10,1)
 74.10

157.4
9 65.87 161 19.95 34.03 4.33 22

(5,10,2)
 31.66

250.4
9 12.20 201 23.32 26.60 2.00 2

(5,10,3) 25.73 29.13 2.00 2 26.91 31.05 2.00 2

(5,15,1)
 37.32

216.6
4 18.97 187 21.37 23.99 2.00 2

(5,15,2) 26.33 30.08 2.00 2 28.18 31.41 2.00 2

(5,15,3) 32.91 36.89 2.00 2 34.72 38.05 2.00 2

Average - - 53.35
121.1

4
 47.44 123.00 27.98 59.79 17.12 60.59

79

Table 19. Comparison of feasibility success (percentage) for problems with a realistic size.

Problem Class
(𝑚, 𝑛, 𝑙)

 Standard GA Proposed Solution Method (ALG)

(1,6,1) 100% 100%

(1,6,2) 100% 100%
(1,6,3) 100% 100%
(1,10,1) 100% 100%
(1,10,2) 100% 100%
(1,10,3) 100% 100%
(1,15,1) 100% 100%
(1,15,2) 97% 100%
(1,15,3) 97% 100%

(2,6,1) 100% 100%

(2,6,2) 100% 100%
(2,6,3) 100% 100%
(2,10,1) 100% 100%
(2,10,2) 100% 100%
(2,10,3) 83% 100%
(2,15,1) 100% 100%
(2,15,2) 80% 100%
(2,15,3) 33% 100%
(5,6,1) 100% 100%
(5,6,2) 97% 100%
(5,6,3) 87% 100%
(5,10,1) 87% 100%
(5,10,2) 27% 100%

(5,10,3) 0% 100%
(5,15,1) 23% 100%
(5,15,2) 0% 100%

(5,15,3) 0% 100%

80

Table 20. Comparison of quality of objective function value (OFV, satisfaction degree) for problems with a realistic size.

Proble
m

Class

(𝑚, 𝑛, 𝑙)

CPLEX
OFV

Standard GA Proposed Solution Method (ALG)

OFV Gap OFV Gap

Avg. Min. Max. Avg. Min. Max. OFV 𝑧1 𝑧2 Avg. Min. Max. OFV 𝑧1 𝑧2

(1,6,1) 0.90 0.82 0.97 0.88 0.69 0.97 2% -6% 0% 0.89 0.82 0.97 0% -8% 0%

(1,6,2) 0.94 0.89 1.09 0.93 0.86 1.09 1% -18% 0% 0.93 0.89 1.09 1% -4% 0%

(1,6,3) 0.95 0.89 1.03 0.94 0.87 1.02 1% -4% 0% 0.94 0.89 1.03 1% 3% 0%

(1,10,1) 0.90 0.88 0.93 0.87 0.63 0.92 3% 2% 50% 0.87 0.39 0.93 3% 4% 50%

(1,10,2) 0.93 0.89 0.97 0.89 0.79 0.96 4% 11% 0% 0.89 0.79 0.95 4% 15% 15%

(1,10,3) 0.95 0.89 1.00 0.88 0.77 0.97 7% 16% 10% 0.88 0.78 0.96 7% 29% 21%

(1,15,1) 0.90 0.89 0.93 0.87 0.79 0.92 4% 9% 20% 0.86 0.75 0.92 5% 8% -20%

(1,15,2) 0.94 0.89 0.97 0.83 0.00 0.93 12% 11% 26% 0.86 0.79 0.93 9% 35% 55%

(1,15,3) 0.95 0.94 0.97 0.77 0.00 0.94 20% 57% 64% 0.83 0.76 0.92 13% 38% 48%

(2,6,1) 0.89 0.76 0.95 0.89 0.76 0.95 0% 0% 0% 0.89 0.76 0.95 0% 0% 0%

(2,6,2) 0.94 0.89 0.98 0.91 0.84 0.98 4% 12% 0% 0.91 0.84 0.96 3% -1% 0%

(2,6,3) 0.96 0.89 1.08 0.90 0.73 1.00 6% 8% 10% 0.90 0.81 0.99 7% 15% 12%

(2,10,1) 0.90 0.87 0.93 0.84 0.71 0.90 6% 4% 0% 0.84 0.74 0.92 6% 12% 16%

(2,10,2) 0.94 0.90 0.97 0.84 0.75 0.91 11% 30% 28% 0.83 0.78 0.89 12% 35% 40%

(2,10,3) 0.96 0.93 1.00 0.70 0.00 0.94 27% 19% 17% 0.82 0.78 0.89 15% 43% 36%

(2,15,1) 0.90 0.84 0.93 0.83 0.78 0.88 8% 21% 37% 0.82 0.72 0.90 9% 19% 41%

(2,15,2) 0.93 0.90 0.95 0.59 0.00 0.87 37% 8534% -77% 0.80 0.76 0.84 14% 30% 41%

(2,15,3) 0.95 0.93 0.98 0.18 0.00 0.84 81% 10487% -80% 0.81 0.78 0.84 15% 48% 43%

(5,6,1) 0.90 0.85 0.94 0.85 0.77 0.94 5% 10% 8% 0.86 0.81 0.90 4% 6% 8%

(5,6,2) 0.94 0.91 0.97 0.78 0.00 0.91 17% 28% 34% 0.87 0.84 0.89 8% 14% 23%

(5,6,3) 0.96 0.92 1.00 0.60 0.00 0.88 37% 69% 59% 0.86 0.83 0.88 10% 30% 32%

(5,10,1) 0.89 0.85 0.91 0.65 0.00 0.86 27% 48% 49% 0.82 0.79 0.86 7% 13% 12%

(5,10,2) 0.93 0.91 0.96 0.10 0.00 0.80 89% 13440% -84% 0.83 0.80 0.86 11% 20% 30%

(5,10,3) 0.96 0.94 0.98 0.84 0.80 0.86 12% 27% 34%

(5,15,1) 0.86 0.79 0.89 0.81 0.77 0.84 6% 4% 11%

(5,15,2) 0.91 0.88 0.93 0.82 0.79 0.84 9% 17% 29%

(𝟓, 𝟏𝟓, 𝟑) 0.93 0.90 0.97 0.83 0.81 0.86 11% 26% 31%

Avg. 0.93 0.88 0.97 0.65 0.40 0.82 29% 2284% -7% 0.86 0.78 0.91 7% 18% 23%

81

with CPLEX’s converged solution which seems acceptable. This gap can be
further improved if the number of iterations before convergence is set to a higher
number. ALG shows that it can provide a satisfactory solution for any problem
size within a minute.

2.5 Case Study

In this section we present a case study to show an application for the presented
problem. The input data and description of this case study are reproduced (with
slight changes) from the case study by Yu and Seif (2016) (as presented in
Chapter I) who solve the problem for a single objective function. After
presentation of the data and describing the case study, we will present the
solution and managerial implications for the bi-objective problem discussed in
this paper.

One of the main activities in the early stages of a heavy construction

project is earthmoving. This activity is highly dependent on earthmoving
machinery. The most commonly used equipment for earthworks are (wheel)
loaders, dozers, excavators, and haul trucks. A simplified version of the
earthmoving process described by Fu (2013) is as follows. The first step is
preparation which is done best by excavators which can dig natural form of
material from the earth. Next, in loading step, wheel loaders can load the
removed and prepared soil into haul trucks. Finally, in hauling step, haul trucks
transport earth to a deposit point by travelling through routes with different slopes
and ground conditions.

Typical (preventive) maintenance activities for construction machinery are
usually based on the service hours of the machinery. In Table 21, maintenance
intervals recommended by one of the manufacturers of heavy construction
equipment is listed for the machinery that are required for the simplified
earthmoving process (Caterpillar, 2010c); (Caterpillar, 2010b) (Caterpillar,

2010a). These intervals can be considered as 𝑀𝐿𝑚𝑎𝑥
𝑘 according to the presented

model. Different tasks are included in each maintenance activity. For example,
the tasks included in the 50-hour maintenance activity of excavators shown in the
table are lubrication of boom, stick and bucket linkage, drive shaft universal joint,
etc.

In a project with four locations, in which earth moving operations need to be
done, there are three machines (one excavator, one-wheel loader, and one
truck). Because of the significant distance between these locations, a machine
needs to work in one location at a time. In Table 22, the operation requirements
in each location are shown. Due dates are also shown along with the penalty for
each day of delay (GDOT, 2013). Note that the amount of work that a machine

82

Table 21. Maintenance Intervals (hours) Recommended by the equipment manufacturer
(Caterpillar Inc.), reproduced from Yu and Seif (2016).

Machine 10 50 100 250 500 1000

Excavators

Wheel Loaders

(Haul) Trucks

83

can work in one location can be different from other locations due to the condition
of the location. As a result, operation requirements in Table 22 are expressed as
number of time periods (days) multiplied by the time a machine can work in each

time period (in hours) which can be considered as deterioration rates of 𝑀𝐿s
because the 𝑀𝐿s have been expressed in hours.

Table 22. Operation requirements (days) × deterioration rates (hours) and due dates (days),
reproduced from Yu and Seif (2016).

Location/Work
zone (Jobs)

Excavator Wheel Loader Tuck Due Date

A 20 × 5 20 × 3 40 × 3 90

B 14 × 8 14 × 6 13 × 8 60

C 20 × 4 21 × 5 20 × 5 90

D 30 × 3 40 × 2 30 × 5 60

Average cost of performing a preventive maintenance activity and a

responsive maintenance activity (after a major failure) for a wheel loader is
approximately $234 and $15,652, respectively (Azadeh et al., 2014). We have
used these values to approximate the overall cost of each maintenance activity
for each machine, while also considering the risk of major failure due to missing
an MA and relative price of the machines. Because the first three MAs (10, 50,
100 hours) are usually done in a fraction of an operational day and usually by the
operators, where the machine is located, and because 2000 hours MAs and
above are not going to be reached they are not considered as MAs. Deterioration
rate for ML 100000 will be zero for the truck because it does not have the
respective MA. We will also consider one day for performing all the maintenance
activities which is usually the case.

This case study was solved by the IBM ILOG CPLEX. The initial solution of

𝑧1 and 𝑧2 are 125 and 4136 respectively. The piecewise linear membership
function and optimum solution for the case study are shown in Table 23 and
Table 24, respectively. It should be noted that there is no relationship between
the two objectives and they are conflicting. Therefore, a solution that decreases
tardiness (𝑧1) at the expense of slightly increasing the maintenance cost (𝑧2)
seems intuitive, yet such a solution might not exist. There might be a solution that
decreases the tardiness yet increases the maintenance cost so much (higher
than 5000) that the total satisfaction becomes lower than the optimal satisfaction
degree (0.675). In fact, there is no solution in this case that decreases the
tardiness without lowering the total satisfaction degree. If desired, changing the

values for 𝑧2and 𝑓2(𝑧2) in Table 23 such that the range of the thresholds for the
maintenance cost is higher can yield a better value for tardiness. Therefore, it is
up to the DM to update the values of the table based on the maintenance budget
and the criticality of the deadlines for each location.

84

Table 23. Piecewise linear membership functions for the case study.

Parameters Values

𝑧1 <125 125 133 140 145 >145
𝑓1(𝑧1) 1 1 0.8 0.5 0 0
𝑧2 <4100 4100 4500 4800 5000 >5000

𝑓2(𝑧2) 1 1 0.8 0.5 0 0

85

Table 24. Optimal solution for the case study.

Variable Value in the Optimal Solution

1st location to process B
2nd location to process C
3rd location to process A
4th location to process D
Tardiness (𝑧1) 138

Maintenance cost (𝑧2) 4136

Satisfaction degree (𝐿) 0.675

86

2.6 Conclusion and Future Research

In this paper we introduced a new extension for the classic formulation of flow
shop scheduling by incorporating the machines’ requirements for age-based and
diverse maintenance activities. The model is general enough to cover a wide
range of applications with any number of machines, jobs, or maintenance
activities. In modeling the problem, we considered the effect of maintenance and
health of the machine on the processing times of the production jobs. This led to
a conflict between the two objectives of the problem, namely minimizing total
maintenance cost and minimizing total tardiness of the production. We used i-
FMOLP to capture the fuzzy aspiration level of the decision maker and
simultaneously optimize the two objectives. A solution methodology was
developed based on the unique structure of the solution space. The results
showed that because the solution space can become extremely large for realistic
instances of the problem, a metaheuristic algorithm such as a standard genetic
algorithm that randomly produces solutions can get stuck in infeasibility.

Commercial solvers also can be very inefficient from a computational time
standpoint for larger sizes of the problem where many machines, jobs or
maintenance activities are involved. The proposed solution methodology,
however, demonstrated satisfactory performance. As was shown in the case
study, some real world problems are small enough to be solved by commercial
solvers such as CPLEX. Because the presented problem deals with decisions at
an operational level, the solution time is very important. The use of the presented
solution methodology is recommended only when the commercial solvers are too
expensive to obtain or their solution time is not satisfactory.

Although it was assumed in the model that sufficient resources (workforce,
spare parts, etc.) are available for the maintenance activities, the two parameters
used in the second objective function capture the cost of these resources and the
users can adjust these parameters to incorporate the resource limitations into the
model. The presented model does not consider random failures. Therefore, some
applications in which random failures are common call for a stochastic extension
of this model, where the unplanned failures are incorporated into the model.
However, random failures can be taken into account by adjusting the duration of
maintenance activities in the current model so they cover the average time of
unplanned maintenance activities. Also, unplanned failures that disrupt the
implementation of a solution obtained from the model can be dealt with just like
any other disruptive and unplanned event. In this case the users can reset the
parameters and solve the problem again after a disruption. Another opportunity
for future research is modeling the same problem under different production
settings such as parallel machine scheduling, instead of flow shop scheduling.

87

CHAPTER III
COMBINIED MAINTENANCE ACTIVITIES IN INTEGRATED FLOW

SHOP AND MAINTENANCE SCHEDULING UNDER
UNCERTAINITY

88

A version of this chapter is submitted to the European Journal of
Operational Research by Javad Seif, Mohammad Dehghanimohammadabadi,
and Andrew J. Yu, and is currently under the second round of review.

In this chapter, I extended my original works that were presented in
Chapters I and II. Dr. Dehghani has had contributions in problem definition and
simulation-optimization, and Dr. Yu has supported this research. In this chapter,
a fixed deterioration rate of 1 is considered and maintenance levels are reworded
as residual operating times.

Abstract

This article is concerned with incorporating the concept of combined
maintenance activities in modeling and optimization of a stochastic permutation
flow shop scheduling problem. The objective is to minimize the total expected
cost of performing maintenance activities (MAs), and lateness penalties. The
processing times of production jobs, as well as the duration of MAs are uncertain
and follow certain probability distributions. We formulate the problem as a two-
stage stochastic mixed-integer program and develop a simulation-optimization
solution approach for large-scale instances of the problem. We present extensive
computational experiments for performance measurement of the solution and
managerial implications. In addition, we demonstrated the application of the
problem through a case study in the construction industry.

3.1 Introduction

In the conventional scheduling problems, it is assumed that the machines can
continuously process the jobs (M. Pinedo, 2012) and the information is complete
and certain. However, in practice the machines must stop for preventive or
corrective maintenance, and the information available to the planners can be
both incomplete and uncertain in scheduling environments (Berry, 1993). The
integration of maintenance and scheduling has appeared in the literature in the
last two decades (Xu et al., 2015; Yu & Seif, 2016). The goal of this integration is
to mimic the manufacturing or service environments as closely as possible. The
more the technical nuances of the maintenance management are considered, the
higher the practicality of these models and solutions is going to be; however,
incorporating maintenance decisions into the production scheduling problems,
requires more sophisticated modeling approaches. This could also make the
computational effort larger, especially for the large-scale problems. The issue
becomes even more complex when uncertainty is taken into account. This paper
provides a stochastic mixed integer program to properly include maintenance
decisions into the production scheduling when uncertainty exists. Using two

89

solution approaches, namely stochastic programming and Simulation-
Optimization (SO), this paper presents practical insights to dealing with
computational limitations.

Flow shop scheduling has been studied by many researchers after
Johnson introduced the problem for two machines in 1954 (Johnson, 1954). The

main goal in flow shop scheduling is to find a sequence for 𝑛 jobs that are to be
processed by 𝑚 machines to optimize an objective function. Minimizing the
completion time of the very last job (the makespan), the overall completion time,
the tardiness of the jobs are some examples of such an objective. Maintenance
costs cover a big percentage of the total operating costs (Ángel-Bello et al.,
2011; Yip et al., 2014). Therefore, it is reasonable to include minimizing the
maintenance cost in the objective function. In this paper, we integrate tardiness
cost of the jobs and maintenance cost to define the objective function.

Yoo and Lee (2016) classify scheduling problems with MAs incorporated,

as fixed and coordinated. The first class of problems, scheduling with machine
availability constraints, considers maintenance as a constraint not a decision. For
instance, Choi, Lee, Leung, and Pinedo (2010) consider a number of
maintenance periods in ordered and proportionate flow shop. They assume that
these maintenance periods have been scheduled in advance with known start
and finish times. Therefore, the maintenance schedule is incorporated to their
model as a constraint not a decision. Other researchers use the same approach
to model machine unavailability in a two-machine flow shop scheduling (T. C.
Edwin Cheng & Wang, 2000; T. E. Cheng & Wang, 1999; Kubiak, Błażewicz,
Formanowicz, Breit, & Schmidt, 2002; Kubzin, Potts, & Strusevich, 2009; C.-Y.
Lee, 1997, 1999).

In the second class of problems, scheduling of maintenance and job

processing are considered simultaneously. Aggoune (2004) is one of the few
papers that studies the coordinated variant of flow shop scheduling, while
allowing a decision for performing maintenance within a time window. Performing
maintenance in a time window has been modeled in different types of scheduling
problems, yet they are not precise in timing of MAs. Stefan Bock, Dirk Briskorn,
and Andrei Horbach (2012) study the computational complexity of single machine
scheduling problems where each machine has a maintenance level and
processing of the jobs deteriorates it. Maintenance needs to be performed in
order to restore or increase the maintenance level before the level becomes
negative. Seif et al. (2017) and Yu and Seif (2016) adapt the concept of
maintenance levels in flow shop scheduling when multiple types of maintenance
levels are involved (Chapters I and II). In this paper, we formulate and solve a
permutation flow shop scheduling problem under uncertainty, and incorporate the
concept of combining different types of MAs in the problem.

90

Knezevic (1997) classifies maintenance tasks as simultaneous,
sequential, and combined. A simultaneous task is composed of activities that are
mutually independent, yet can be performed concurrently. A sequential task
includes mutually independent activities that are performed in a predetermined
order. A combined task includes some activities that can be performed
simultaneously, and some activities that are sequential. Therefore, a combined
maintenance task is a generalization of the other two types. To prevent any
confusion, by MA, we refer to a set of tasks that have a common usage-based
periodic interval. MAs may have some similar tasks, so the combination of two or
more MAs could prevent the repetition of the common tasks. We model the
concept of combined maintenance activities in scheduling problems for the first
time. In doing so, we cover all of the possible scenarios. The case study in
Section 3.5 shows a practical example for better understanding of the problem.

Over the last few years, the importance of considering uncertainty in the

scheduling problems has been highlighted by researchers and industrial
practitioners; however, the methods used to deal with uncertainty do not seem to
be very effective (Zheng, Lian, Fu, & Mesghouni, 2015). Gourgand, Grangeon,
and Norre (2000) and González-Neira, Montoya-Torres, and Barrera (2017)
conduct comprehensive reviews of research papers that involve flow shop
scheduling under uncertainty. The latter review found that most of the papers in
the literature consider processing times as a stochastic parameter, but
maintenance has never been included as a stochastic process; while Mean Time
to Repair (MTTR) is a well-known term in the maintenance and reliability
literature (Ben-Daya, Ait-Kadi, Duffuaa, Knezevic, & Raouf, 2009; Hastings,
2009) and is based on the assumption of the uncertain durations of MAs.

González-Neira et al. (2017) report the superiority of the stochastic

optimization approach in modeling the uncertainty. They also mention stochastic
programming and simulation-optimization as the most promising methods in
stochastic flow shop scheduling. In this paper for the first time we consider two
stochastic parameters to capture the uncertainties: (i) the processing times of
production jobs, and (ii) the durations of MAs. To cross-validate the performance
of solution approaches, we apply both stochastic programming and simulation-
optimization to model and solve the problem. The use of both methods facilitates
their performance evaluation in computational experiments.

In this paper, we deal with the uncertainties of the problem via stochastic

programming and simulation optimization, and we use Monte-Carlo simulation for
scenario generation. This simulation allows us to generate a number of scenarios
that sufficiently represent all the possibilities. The problem is then handled as
deterministic via these two solution approaches. The contributions of this paper
are:

91

 the concept of combined MAs is introduced and formulated,

 the conventional permutation flow shop scheduling problems are extended

by incorporating maintenance decisions,

 uncertainty is considered for both processing times and the durations of

MAs,

 two approaches, namely stochastic programming and simulation-

optimization, are employed for modeling, cross-validation, and solving the

problem,

 extensive computational experiments are conducted to evaluate both

approaches, and drive conclusions for industrial practitioners, and

 the application of this research is demonstrated through a case study in

earthmoving operations.

The rest of this chapter is laid out as follows. First, we formulate the problem

as a two-stage Stochastic Mixed-Integer Program (SMIP) in Section 3.2. In
Section 3.3, we present a SO algorithm as an alternative approach for modeling
and solving the problem, which allows the validation of the SMIP. In Section 3.4,
we will evaluate and report in details the performance of the SO in comparison
with one of the commercial solvers through extensive computational
experiments. In Section 3.5, the case study is presented. Conclusions and
remarks along with directions for future research are discussed in Section 3.6.

3.2 Problem Definition and Mathematical Formulation

In this section, we define mixed-integer stochastic program to define the problem.
To do this, first, we define and formulate the concepts of combining maintenance
activities, and discuss the prolonged processing times. The SMIP model is
presented at the end of this section.

Combined Maintenance Activities

When two or more maintenance activities are scheduled consecutively (in a row),
it is likely that the total duration of these combined activities becomes less than
the sum of the durations of the individual activities when they are performed
separately. This is due to the fact that, the activities can share one or more tasks.
Figure 8 illustrates an example in which Activities 1 and 2 share Tasks A and C.
When these two activities are combined, each of the shared tasks is performed
only once, which shortens the total duration of performing maintenance.

The individual maintenance activities are considered independently in the
scheduling process. The MAs are combined only when they are scheduled back-

92

Figure 8. Maintainability block diagram for combined maintenance activities.

93

to-back. For 𝑙 maintenance activities, there exists 𝑜 = ∑ (𝑙
𝑘
)𝑙

𝑘=1 = 2𝑙 combinations

of maintenance activities. The binary variables 𝑦𝑘, 𝑘 = 1,… , 𝑙 determines whether
a maintenance activity is scheduled at a certain position on the timeline between

production jobs. The binary variable 𝜙𝑟 , 𝑟 = 1,… , 𝑜 determines whether
combination 𝑟 is forming in that position, and is a function of 𝑦𝑘, 𝑘 = 1, … , 𝑙. Table
25 lists all of the possible combinations for three types of maintenance activities

(𝑙 = 3). The parameter 𝑒𝑘 denotes the duration of maintenance type 𝑘, while 𝑒𝑟
′

denotes the duration of maintenance combination r.

Table 25. All possible combinations for three types of maintenance activities.

Combination 𝑦1 𝑦2 𝑦3 Number of MAs Nominal Duration Actual Duration

1 0 0 0 0 0 𝑒1
′ = 0

2 1 0 0 1 𝑒1 𝑒2
′ = 𝑒1

3 0 1 0 1 𝑒2 𝑒3
′ = 𝑒2

4 0 0 1 1 𝑒3 𝑒4
′ = 𝑒3

5 1 1 0 2 𝑒1 + 𝑒2 𝑒5
′ = 0.85(𝑒1 + 𝑒2)

6 1 0 1 2 𝑒1 + 𝑒3 𝑒6
′ = 0.85(𝑒1 + 𝑒3)

7 0 1 1 2 𝑒2 + 𝑒3 𝑒7
′ = 0.85(𝑒2 + 𝑒3)

8 1 1 1 3 𝑒1 + 𝑒2 + 𝑒3 𝑒8
′ = 0.75(𝑒1 + 𝑒2 + 𝑒3)

In this example we assumed when two or more maintenance activities are
combined, the total duration of combined MAs is less than the sum of the
individual durations. For instance, as provided in Table 25, in combination type 8
where three MAs are combined (𝑦1 = 𝑦2 = 𝑦3 = 1), the total duration of
performing all three MAs is 25% less than the sum of the individual durations. In
practice, the duration of these combinations can be different based on the
application and the actual conditions. One might break down the MAs into the
tasks that comprise them, and then take into account the common tasks in a
combination only once, similar to the example in Table 25. Regardless of the
method for calculating the duration of maintenance activities in a combined form,

new durations (𝑒𝑟
′ , 𝑟 = 1, . . . , 2𝑙) will be used as input parameters in the SMIP.

Equation (3.1) maps the decisions for performing the maintenance

activities (on the right-hand side) to the decision for choosing/performing one of

the combinations. The values of the coefficients 𝑎𝑘, 𝑘 = 1, . . . , 𝑙 and 𝑏𝑟 , 𝑟 =
1, . . . , 2𝑙 − 1 must be chosen such that only one of the combinations in the left-
hand side gets chosen. This means that none, one, or more than one of the
variables on the right-hand side can take the value 1, but at most only one of the
variables on the left-hand side must take the value 1.

∑ 𝑏𝑟𝜙𝑟
𝑜=2𝑙−1

𝑟=1
=∑𝑎𝑘𝑦𝑘

𝑙

𝑘=1

, 𝜙𝑟 , 𝑦𝑘 ∈ {0,1}, ∀𝑘 = 1, . . . , 𝑙 (3.1)

94

Next, we introduce a method for choosing the coefficients such that, at
most only one combinations is selected. In the example provided in Table 1, for
instance, the selection of only Maintenance Activities 1 and 2 is equal to the

selection of only Combination 5. Note that the number of combinations is 2𝑙 − 1;
the first combination that corresponds to the case where none of the
maintenance activities is performed has been removed from the set of
combinations because that combination is realized when none of the other
combinations is selected. Next we introduce a method for choosing the
coefficients in (1) such that at most only one combination, the right one, is
selected.

Consider the set 𝒂 = {𝑎1, 𝑎2, … , 𝑎𝑙}, ∀𝑘 = 1,… , 𝑙, 𝑎𝑘 ∈ ℝ. 𝑺 =
{𝒔𝟏, 𝒔𝟐, … , 𝒔(𝟐𝒍−𝟏)} is the set of all the possible subsets of 𝒂 that are not null, and

𝒃 = {𝑏1, 𝑏2, … , 𝑏(2𝑙−1)} ∋ 𝑏𝑟 = ∑ 𝑎′𝑎′∈𝒔𝒓 , ∀𝑟 = 1,… , 2𝑙 − 1. We want to find the

elements of 𝒂 such that the elements of 𝒃 are unique. For example, for 𝒂𝟏 =
{1,2,3}, 𝑙 = 3, 𝑺𝟏 = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} ∴ 𝒃𝟏 = {1,2,3,3,4,5,6},

where the members of 𝒃𝟏 are not unique. But for 𝒂𝟐 = {1.1,1.2,1.3}, 𝑙 = 3,𝑺𝟐 =
{{1.1}, {1.2}, {1.3}, {1.1,1.2}, {1.1,1.3}, {1.2,1.3}, {1.1,1.2,1.3}} ∴ 𝒃𝟐 =

{1.1,1.2,1.3,2.3,2.4,2.5,3.6}, where the members of 𝒃𝟐 are unique.

Proposition. If 𝒂 = {1.1,1.01,… ,1. 00…0⏟
𝑙−1

1} , |𝒂| = 𝑙, the uniqueness of the

elements in 𝒃 is guaranteed.

Proof. For 𝒂 = {1.1,1.01,… ,1. 00…0⏟
𝑙−1

1} , |𝒂| = 𝑙:

𝑺 = {{1.1}, {1.01}, … , {1. 00…0⏟
𝑙−1

1} , {1.1,1.2}, … , {1.1,1.01,… ,1. 00…0⏟
𝑙−1

1}} , |𝑺|

= 2𝑙 − 1 ∴ 𝒃 = {1.1,1.01,… ,1. 00…0⏟
𝑙−1

1,2.11,2.101,… , 𝑙. 11…1⏟
𝑙

} , |𝒃|

= 2𝑙 − 1.

Assume ∃𝑏𝑖, 𝑏𝑗 ∈ 𝒃 𝑎𝑛𝑑 𝒔𝒊, 𝒔𝒋 ∈ 𝑺 ∋ 𝑏𝑖 = 𝑏𝑗 𝑎𝑛𝑑 𝒔𝒊 ≠ 𝒔𝒋. Because 𝑏𝑖 = 𝑏𝑗, the

integer and decimal parts of the two numbers are equal. Because the integer

parts of all of the elements in 𝒂 are the same (1), the integer part of 𝑏𝑖 and
𝑏𝑗 indicate the number of elements in their respective subsets, i.e. 𝒔𝒊 and 𝒔𝒋.

Because all elements in each subset have 1 as their integer part and each
element has a unique number of zeros in the decimal part, the elements have to
be equal for 𝑏𝑖 and 𝑏𝑗 to be equal. If the elements of 𝒔𝒊 and 𝒔𝒋 are identical, 𝒔𝒊 =

95

𝒔𝒋 which contradicts the assumption. Therefore, for 𝒂 =

{1.1,1.01,… ,1. 00…0⏟
𝑙−1

1} , |𝒂| = 𝑙 the elements of 𝒃 are unique.

∎

Prolonged Processing Times

An age-based maintenance activity allows a machine to operate only for certain
number of hours, called maintenance interval. As soon as the machine’s
cumulative operating times equals the maintenance interval, it must be stopped

for performing the maintenance activity. Let 𝑟𝑘 and 𝑅𝑘 be the residual operating
time and the age-based interval of the 𝑘-th maintenance activity of a machine,

respectively. The variable 𝑟𝑘 equals 𝑅𝑘 after the maintenance activity type 𝑘 is
performed on the machine and it approaches 0 as the machine processes
production jobs. We expect that in practice the processing time of a job prolongs
as the residual operating times approach 0. This is because: 1) the performance
of the machine might degrade as the machine gets closer to its maintenance
requirements, which can lead to a slower processing, and 2) when both tardiness
and maintenance costs exist in a minimization objective function, it motivates the
solution algorithms to schedule maintenance activities as early as possible to
reduce the risk of failures, but not too early that causes excessive tardiness and
maintenance costs. Next, we try to adapt the model proposed in [5] for prolonged
processing times.

The value 𝑓𝑘 = 𝑟𝑘 𝑅𝑘⁄ represents the remaining/residual operating time as
a fraction of the respective maintenance interval. Obviously, 0 ≤ 𝑓𝑘 ≤ 1, ∀𝑘 =
1, … , 𝑙, and 0 ≤ 𝐹 ≤ 1 where 𝐹 = ∑ 𝑓𝑘

𝑙
𝑘=1 𝑙⁄ is the average of fractional residual

operating times and represents the machine’s health. The prolonged processing

time of a job, 𝜌, is defined as

where 𝑝 is the nominal processing time of the job. If the machine’s health, 𝐹, falls
between the constant 𝐴 and 1, the nominal processing time is multiplied by the

coefficient 𝜆1 which can be greater than or equal to 1 with the potential to prolong
the processing time. If the machine’s health is between 𝐴 and 𝐵, processing time

is multiplied by the coefficient 𝜆2 which can be greater than 𝜆1, and prolong the

processing time, and if it is between 0 and 𝐵, multiplied by 𝜆3 which can be

greater than 𝜆2 prolonging the processing time even more. Here we are
considering a special case in which the health of a machine has only three
states. The generalized form will be considered in the SMIP formulation.

𝜌 = {

𝜆1𝑝, 𝐴 < F ≤ 1

𝜆2𝑝, 𝐵 < F ≤ 𝐴

𝜆3𝑝, 0 < F ≤ 𝐵

, 0 ≤ 𝐵 ≤ 𝐴 ≤ 1 ≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆3 (3.2)

96

The Stochastic Mixed-Integer Program (SMIP)

We model a permutation flow shop scheduling problem in which a number of jobs
will be processed by a series of machines in the same order. All machines have
a number of age-based maintenance activities. The MAs take place only after a
machine completes processing of a job and before starts processing the next job
(preemption is not allowed). The residual operating time of a machine with
respect to any of the MAs linearly decreases as the machine processes the jobs.
The residual operating times cannot be negative. Therefore, an MA must be
performed before processing a job, if the respective residual operating time is
going to become negative while processing the job. The durations of MAs and
the processing times of jobs are all uncertain and follow certain probability
distributions. There are several scenarios in each of which the MA durations and
processing times are sampled from respective distributions. Under each
scenario, the maintenance durations can change if the MAs are combined.

Notations

Let m, n, l, and S be the number of machines, jobs, maintenance activities, and
scenarios, respectively. The following indices, parameters, and variables are
used in the formulation of the problem.

Indices

𝑖 Represents machines where 𝑖 = 1, . . . , 𝑚.

𝑗 Represents jobs where 𝑗 = 1, . . . , 𝑛.

𝑞 Represents job positions in a sequence where 𝑞 = 1, . . . , 𝑛.

𝑘 Represents maintenance activities where 𝑘 = 1, . . . , 𝑙.
ℎ Represents the health state of a machine ℎ = 1, . . . , 𝐻.

𝑟 Represents maintenance combinations where r = 1,2,…,o.

𝑠 Represents a specific scenario where 𝑠 = 1, . . . , 𝑆.

Parameters (Input Data)

𝑝𝑖𝑗
𝑠 Nominal processing time of job 𝑗 on machine 𝑖 under scenario 𝑠.

𝑒𝑖𝑘
𝑠 Nominal duration of MA type 𝑘 on machine 𝑖 under scenario 𝑠.
𝑒𝑖𝑟
′𝑠 Duration of MA combination type 𝑟 on machine 𝑖 under scenario 𝑠.
𝑅𝑖,𝑘 Time interval for maintenance activity type 𝑘 for machine 𝑖.
𝑆𝑃𝑖𝑘 Cost of required spare parts and materials for MA type 𝑘 on machine 𝑖.

𝑆𝑃𝑖𝑘
′

Cost of required spare parts and materials for MA combination type 𝑟 on
machine 𝑖.

𝑊𝐹
Cost of skilled workforce per time unit for performing maintenance
activities.

𝑑𝑗 The due date of job 𝑗.
𝜋𝑗 Penalty cost associated with each time unit delay in completion of job 𝑗.

𝜆ℎ The coefficient which is multiplied by the nominal processing times of the

jobs to prolong them, when the machine is in the health state ℎ.

97

Pr(𝑠) Probability of scenario 𝑠 being realized.
𝐾 A sufficiently large number.

Decision Variables

𝑍𝑠 Total cost, the value of the objective function under scenario 𝑠.
𝑥𝑗𝑞 First-stage decision variable that takes the value 1 if job j is processed as

the q-th job, and 0 otherwise.

𝑦𝑖𝑞𝑘 First-stage binary decision variable that takes the value 1 if MA type k is
performed on machine i before processing the q-th job, and 0 otherwise.

𝜙𝑖𝑞𝑟 First-stage binary decision variable that takes the value 1 if MA
combination type r is performed on machine i before processing the q-th
job, and 0 otherwise.

𝑟𝑖𝑞
𝑘𝑠 Residual operating time with respect to the MA type 𝑘 of machine i before

processing the q-th job, under scenario s.

𝑆𝑇𝑖𝑞
𝑠 Start time of the q-th job on machine 𝑖, under scenario s.

𝐹𝑇𝑖𝑞
𝑠 Finish time of the q-th job on machine 𝑖, under scenario s.

𝑡𝑞
𝑠 Tardiness of the q-th job, under scenario s.

𝜌𝑖𝑞
𝑠 Processing time of the 𝑞-th job on machine 𝑖, under scenario s.

𝛾𝑖𝑗𝑞
𝑠

Processing time of job j on machine 𝑖 when it is processed as the 𝑞-th
job, under scenario s.

𝛱𝑗𝑞
𝑠 Penalty cost associated with job j if it is processed as the q-th job, under

scenario s

Λ𝑖𝑞
ℎ𝑠 1 if machine 𝑖 is in the health state ℎ before processing the 𝑞-th job,

under scenario 𝑠, and 0 otherwise.

𝑢𝑖𝑗𝑞
ℎ𝑠 1 if machine 𝑖 is in the health state ℎ before processing job j when it is

processed as the 𝑞-th job, under scenario 𝑠, and 0 otherwise.

The Model

The objective function (OF) of the model is to minimize the total expected cost,
which comprises the penalty cost incurred because of lateness in completion of
the jobs (tardiness), and the maintenance cost (spare parts and required
workforces).

minimize 𝐸[𝑍𝑠]

=∑Pr(𝑠)

𝑆

𝑠=1

[∑∑𝛱𝑗𝑞
𝑠

𝑛

𝑞=1

𝑛

𝑗=1

+∑∑ ∑ 𝜙𝑖𝑞𝑟(𝑆𝑃𝑖𝑟
′ + 𝑒𝑖𝑟

′𝑠𝑊𝐹)

𝑜=2𝑙−1

𝑟=1

𝑛

𝑞=1

𝑚

𝑖=1

],
(3.3)

Subject to:

98

∑𝑥𝑗𝑞 = 1

𝑛

𝑞=1

, 𝑗 = 1, . . . , 𝑛 (3.4)

∑𝑥𝑗𝑞 = 1

𝑛

𝑗=1

, 𝑞 = 1, . . . , 𝑛 (3.5)

𝑆𝑇11
𝑠 = 0, 𝑠 = 1, . . . , 𝑆 (3.6)

𝑆𝑇𝑖1
𝑠 = ∑ 𝜌𝑖′1

𝑠

𝑖−1

𝑖′=1

, 𝑖 = 2,… ,𝑚, 𝑠 = 1, . . . , 𝑆 (3.7)

𝑆𝑇1𝑞
𝑠 = 𝐹𝑇1(𝑞−1)

𝑠

+∑𝜙1𝑞𝑟𝑒1𝑟
′𝑠

𝑜

𝑟=1

,
𝑞 = 2, … , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.8)

𝑆𝑇𝑖𝑞
𝑠 ≥ 𝐹𝑇𝑖(𝑞−1)

𝑠

+∑𝜙𝑖𝑞𝑟𝑒1𝑟
′𝑠

𝑜

𝑟=1

,
𝑖 = 2,… ,𝑚, 𝑞 = 2, … , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.9)

𝑆𝑇𝑖𝑞
𝑠 ≥ 𝐹𝑇(𝑖−1)𝑞

𝑠 , 𝑖 = 2, . . . , 𝑚, 𝑞 = 2, . . . , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.10)

𝐹𝑇𝑖𝑞
𝑠 = 𝑆𝑇𝑖𝑞

𝑠 + 𝜌𝑖𝑞
𝑠 , 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.11)

𝑟𝑖1
𝑘𝑠 = 𝑅𝑖,𝑘, 𝑖 = 1, . . . , 𝑚 , 𝑠 = 1, . . . , 𝑆, 𝑘 = 1, . . . , 𝑙 (3.12)

𝑟𝑖𝑞
𝑘𝑠 ≥∑𝛾𝑖𝑗𝑞

𝑠

𝑛

𝑗=1

, 𝑠 = 1,… , 𝑆, 𝑖 = 1, … ,𝑚, 𝑞 = 1,… , 𝑛, 𝑘
= 1, . . . , 𝑙

(3.13)

𝑟𝑖𝑞
𝑘𝑠 ≥ 𝑟𝑖(𝑞−1)

𝑘𝑠 −∑𝛾𝑖𝑗(𝑞−1)
𝑠

𝑛

𝑗=1

− 𝑦𝑖𝑞𝑘𝐾,

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙

(3.14)

𝑟𝑖𝑞
𝑘𝑠 ≤ 𝑟𝑖(𝑞−1)

𝑘𝑠 −∑𝛾𝑖𝑗(𝑞−1)
𝑠

𝑛

𝑗=1

+ 𝑦𝑖𝑞𝑘𝐾,

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙

(3.15)

𝑟𝑖𝑞
𝑘𝑠 ≥ 𝑅𝑖,𝑘 − 𝐾(1 − 𝑦𝑖𝑞𝑘),

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙

(3.16)

𝑟𝑖𝑞
𝑘𝑠 ≤ 𝑅𝑖,𝑘 + 𝐾(1 − 𝑦𝑖𝑞𝑘),

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙

(3.17)

𝑡𝑞
s ≥ 𝐹𝑇𝑚𝑞

𝑠 −∑𝑥𝑗𝑞𝑑𝑗

𝑛

𝑗=1

, 𝑠 = 1, . . . , 𝑆, 𝑞 = 1, . . . , 𝑛 (3.18)

99

𝛱𝑗𝑞
𝑠 − 𝜋𝑗𝑡𝑞

s ≥ −𝐾(1 −

𝑥𝑗𝑞),
𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.19)

𝛱𝑗𝑞
s − 𝜋𝑗𝑡𝑞

s ≤ 𝐾(1

− 𝑥𝑗𝑞),
𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.20)

𝛱𝑗𝑞
s ≥ −𝐾𝑥𝑗𝑞 , 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.21)

𝛱𝑗𝑞
s ≤ 𝐾𝑥𝑗𝑞 , 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.22)

𝜌𝑖𝑞
𝑠 =∑∑𝑢𝑖𝑗𝑞

ℎ𝑠 𝜆ℎ𝑝𝑖𝑗

𝐻

ℎ=1

𝑛

𝑗=1

, 𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 (3.23)

𝑢𝑖𝑗𝑞
ℎ𝑠 ≤ Λ𝑖𝑞

ℎ𝑠,
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1, … , 𝑛, 𝑞 = 1, … , 𝑛,

ℎ = 1, . . . , 𝐻
(3.24)

𝑢𝑖𝑗𝑞
ℎ𝑠 ≤ 𝑥𝑗𝑞 ,

𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1, … , 𝑛, 𝑞 = 1, … , 𝑛,
ℎ = 1, . . . , 𝐻

(3.25)

𝑢𝑖𝑗𝑞
ℎ𝑠 ≥ 𝑥𝑗q + Λ𝑖𝑞

ℎ𝑠 − 1,
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1, … , 𝑛, 𝑞 = 1, … , 𝑛,

ℎ = 1, . . . , 𝐻
(3.26)

∑Λ𝑖𝑞
ℎ𝑠

𝐻

ℎ=1

= 1, 𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 (3.27)

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

>
𝐻 − 1

𝑙
Λ𝑖𝑞
1𝑠 −𝐾∑Λ𝑖𝑞

ℎ𝑠

𝐻

ℎ=2

,
𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞

= 1, . . . , 𝑛
(3.28)

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

≤
ℎ

𝑙
Λ𝑖𝑞
ℎ𝑠 + 𝐾 (∑ Λ𝑖𝑞

ℎ′𝑠

𝐻

ℎ′=1

− Λ𝑖𝑞
ℎ𝑠),

ℎ = 2,… ,𝐻 − 1, 𝑠 = 1,… , 𝑆,
𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛

(3.29)

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

≥
ℎ − 1

𝑙
Λ𝑖𝑞
ℎ𝑠

− 𝐾(∑ Λ𝑖𝑞
ℎ′𝑠

𝐻

ℎ′=1

− Λ𝑖𝑞
ℎ𝑠),

ℎ = 2,… ,𝐻 − 1, 𝑠 = 1,… , 𝑆,
𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛

(3.30)

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

<
1

𝑙
Λ𝑖𝑞
𝐻𝑠 + 𝐾∑ Λ𝑖𝑞

ℎ𝑠

𝐻−1

ℎ=1

,
𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞

= 1, . . . , 𝑛
(3.31)

𝛾𝑖𝑗𝑞
𝑠 ≤ 𝑥𝑗𝑞𝐾,

𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 𝑞
= 1, . . . , 𝑛

(3.32)

𝛾𝑖𝑗𝑞
𝑠 ≤ 𝜌𝑖𝑞

𝑠 ,
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 𝑞

= 1, . . . , 𝑛
(3.33)

𝛾𝑖𝑗𝑞
𝑠 ≥ 𝜌𝑖𝑞

𝑠 + (𝑥𝑗𝑞 − 1)𝐾,
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 𝑞

= 1, . . . , 𝑛
(3.34)

100

The OF in Equation (3.3) is comprised of two parts; the penalty cost, and

the maintenance cost. The penalty cost for each job is presented as a variable

that has two indices, 𝑗 and 𝑞. For each job 𝑗, the variable is set equal to 0 in

Constraints (3.21) and (3.22) if it does not occupy the position 𝑞 in the sequence
of the jobs. Otherwise, it is set equal to the penalty cost for job 𝑗 times the
tardiness value, as expressed in Constraints (3.19) and (3.20). The maintenance
cost itself is comprised of two parts; the cost of spare parts and the cost of the
cost of workforce. The binary variable 𝜙𝑖𝑞𝑟 determines whether maintenance

combination 𝑟 is scheduled before processing the 𝑞-th job on machine 𝑖. It is
multiplied by the cost of spare part for that combination plus the unit cost of
workforce times the duration of that combination. The MAs are considered
individually in the scheduling process. Constraint (3.35), which is a generalization
of Equation (3.1), chooses the combination that correctly represents the
scheduled MAs.

Constraints (3.5) and (3.6) ensure that each job is assigned to only one

position in the sequence of the jobs, and each position is filled by only one job.
These two constraint sets are only concerned with the first stage variables.
However, the rest of the constraints involve at least one second-stage variable

with 𝑠 in their superscripts. Therefore, the rest of the constraints must be feasible
for every scenario, otherwise the solution is infeasible.

Constraints (3.6-3.11) together determine the start and finish time of the

jobs on every machine. The Start Time (ST) and Finish Time (FT) variables are
first calculated for the first job in the sequence and the first machine in the flow
shop, and then they will be calculated for the rest of the jobs and machines.
Constraint (3.6) sets 0 as the ST of the first job on the first machine. Constraint
(3.7) sets the ST of the first job on each machine equal to the sum of its
processing times on the previous machines. Constraint (3.8) sets the ST of each
job on the first machine equal to the finish time of the previous job on the first
machine, plus the duration of MAs. As was already explained, instead of nominal
durations of the individual MAs, the duration of maintenance combinations is

∑ 𝑏𝑟𝜙𝑖𝑞𝑟
𝑜

𝑟=1
=∑𝑎𝑘𝑦𝑖𝑞𝑘

𝑙

𝑘=1

, 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 (3.35)

𝑥𝑗𝑞 , 𝑦𝑖𝑞𝑘, Λ𝑖𝑞
ℎ , 𝑢𝑖𝑗𝑞

ℎ𝑠 , 𝜙𝑖𝑞𝑟 ∈ {0,1},
𝑠 = 1,… , 𝑆, 𝑗 = 1,… , 𝑛, 𝑞 = 1,… , 𝑛, 𝑖

= 1,… ,𝑚,
ℎ = 1, . . . , 𝐻

(3.36)

𝑟𝑖𝑞
𝑘𝑠, 𝑡𝑞

𝑠 , 𝛱𝑗𝑞
𝑠 , 𝑆𝑇𝑖𝑞

𝑠 , 𝐹𝑇𝑖𝑞
s , 𝜌𝑖𝑞

𝑠 , 𝛾𝑖𝑗𝑞
𝑠 ≥ 0,

𝑠 = 1, … , 𝑆, 𝑗 = 1,… , 𝑛, 𝑞 = 1,… , 𝑛, 𝑖
= 1,… ,𝑚,

ℎ = 1, . . . , 𝐻

(3.37)

101

considered in timings. Constraints (3.9) and (3.10) are the linear form of 𝑆𝑇𝑖𝑞
𝑠 =

max(𝐹𝑇𝑖(𝑞−1)
𝑠 + ∑ 𝜙𝑖𝑞𝑟𝑒1𝑟

′𝑠𝑜
𝑟=1 , 𝐹𝑇(𝑖−1)𝑞

𝑠); the ST of every job on a machine is equal

to the maximum of its FT on the previous machine plus the maintenance time,
and the FT of the previous job on the machine. Constraint (3.11) sets the FT of
all jobs on every machine equal to the respective ST plus the processing time of
the job.

Constraint (3.12) sets the residual operating times of all machines equal to

the maintenance interval, before processing the first job. Constraint (3.13) sets

the residual operating time of machine 𝑖 before processing the 𝑞-th job to be
greater than or equal to the time it takes to process the job. This constraint
ensures that the machines do not operate while their maintenance requirements
are overdue. Constraints (3.14-3.17) are the linearizes form of the following
equation.

𝑟𝑖𝑞
𝑘𝑠 = {

𝑟𝑖(𝑞−1)
𝑘𝑠 −∑𝛾𝑖𝑗(𝑞−1)

𝑠

𝑛

𝑗=1

, 𝑦𝑖𝑞𝑘 = 0

𝑅𝑖,𝑘, 𝑦𝑖𝑞𝑘 = 1

, ∀𝑠, 𝑖, 𝑞, 𝑘 (3.38)

The residual operating time of a machine before processing a job with

respect to MA 𝑘 is equal to the respective maintenance interval, if the MA is
performed, and otherwise it is equal to its value before processing the previous
job minus the processing time of the previous job. Tardiness for each job in the
sequence is calculated in Constraint (3.18). The prolonged processing times of
the jobs are calculated as expressed in Constraint (3.23); the nominal processing

time of job 𝑗 on machine 𝑖 times the coefficient of state ℎ, times the binary

variable 𝑢𝑖𝑗𝑞
ℎ𝑠 that takes the value 1 if machine 𝑖 is in state ℎ before processing the

𝑞-th job and if the 𝑞-th job is job 𝑗, and 0 oherwise. Constraints (3.24-3.26) are

the linearization form of 𝑢𝑖𝑗𝑞
ℎ𝑠 = Λ𝑖𝑞

ℎ𝑠𝑥𝑗𝑞.

Constraint (3.27) ensures that machine 𝑖 is in only in one of the predefined

health states before processing the 𝑞-th job. Constraints (3.28-3.31) are the
generalized and linearized form of the following equations when the machines

have only three states (𝐻 = 3).

Λ𝑖𝑞
1𝑠 = {

1, ∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

> 0.66

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑠, 𝑖, 𝑞 (3.39)

102

Constraints (3.32-3.34) are the linearized form of 𝛾𝑖𝑗𝑞

𝑠 = 𝑥𝑗𝑞𝜌𝑖𝑞
𝑠 for

obtaining the actual processing time of job 𝑗 on machine 𝑖, if it is scheduled as
the 𝑞-th job. Constraint (3.35) ensures that the correct maintenance combination
is chosen based on the scheduling of MAs. The one that corresponds to the set
of maintenance activities that are decided to be performed. This is a
generalization of Equation (3.1) for flow shop scheduling with multiple types of
MAs. Constraints (3.36-3.37) ensure that all the decision variables are within
their bounds.

3.3 Simulation-Optimization

Simulation-Optimization (SO) is a promising avenue of research to tackle
stochastic problems with uncertain parameters (Dehghanimohammadabadi,
2016; Dehghanimohammadabadi, Keyser, & Cheraghi, 2017). We applied
Simulation-Based Optimization (SBO), in which an optimization module explores
the solution space to obtain the best configuration for the stochastic problem
created by the simulation module. In this approach, the Monte-Carlo simulation is
used to generate a number of possible scenarios based on the probability
distributions of the stochastic parameters. The scenarios are inputs to the
optimization module. Although each one of these scenarios represents a
deterministic instance of the problem, in which the value of the stochastic
parameters is certain, they collectively represent the stochastic nature of the
problem.

As depicted in Figure 9, after the scenarios are generated via the Monte-

Carlo simulation, the optimization module generates a solution (𝑋), recursively,
and the objective function value is calculated for each scenario (𝑌𝑠). The
expected value (average) will determine the ultimate value of the solution. The
new solution is generated based on the internal operators and search methods of
the specific meta-heuristic method that is being used. This cycle repeats until the
optimization module satisfies some stopping criteria. Depending on the user’s
preferences, these criteria could be running model for a certain number of
iterations or achieving a desirable performance measure (such as time).

Λ𝑖𝑞
2𝑠 = {

1, 0.33 ≤ ∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

≤ 0.66

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑠, 𝑖, 𝑞 (3.40)

Λ𝑖𝑞
3𝑠 = {

1, ∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

< 0.33

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑠, 𝑖, 𝑞 (3.41)

103

Figure 9. Overview of the simulation-optimization method.

104

We use the Genetic Algorithm (GA), as the meta-heuristic technique. GA
is an algorithm inspired by the basic mechanism of natural evolution, introduced
by Holland (1975). The GA procedure initializes from a randomly generated
population of solutions, and evolves good local solutions by mimicking the
process of natural selection using mechanisms such as mutation to generate
variants and crossover to improve combinations (Trevino & Falciani, 2006). GA is
a population-based algorithm and employs random choices to have a highly
exploitative search, keeping a balance between exploration of the feasible
domain and exploitation of good solutions. In this works, the parameters of GA
are tuned properly by running several experiments with different values for those
parameters to ensure the quality of solutions. The ultimate values of the GA
parameters are listed in Table 26.

Table 26. The values for the GA parameters.

Parameters Value

Initial population size 200
Crossover percentage 0.8
Mutation percentage 0.8
Mutation rate 0.03

In this study, a new strategy is used to represent solutions generated by

GA. This solution representation determines (i) the sequence of jobs in the flow
shop system, and (ii) the number of MAs needed to be performed on each
machine prior to each job by choosing one of combination. Table 27 shows the
solution representation for a flow shop system with 4 jobs, 3 machines, and 3
MAs. The second row in the solution matrix indicates the sequence of jobs that
go through processes in all machines (permutation flow shop). The numbers
provided in the 3rd to the 5th rows indicate the combination of MAs that needs to
be performed on each machine before processing each job. Table 25 showed
what MAs are included in each combination. For instance, Combination 4, which
includes MAs 1 and 2, should be performed on Machine 1 before processing Job
3.

Table 27. An example for the solution represtaion of the GA.

Parameters Values

Jobs 1 2 3 4

Jobs Sequence 4 1 3 2

The Required
Combination of

MAs on:

Machine 1 7 0∗ 4 0

Machine 2 0 0∗ 6 3

Machine 3 2 0∗ 0 5

∗ It is assumed that no MA is needed before the first job in the sequence.

105

The number of variables used to represent a solution for a given problem
with 𝑚 machines, 𝑛 jobs, and 𝑙 MAs is (𝑛 + 𝑛𝑚), which is independent of 𝑙. This
is another advantage of using the concept of combined MAs. We use real
numbers for chromosome representation, as shown in Figure 10. The
chromosomes are then parsed to obtain the sequence of the jobs, and the
required combination of MAs before processing each job on each machine. In
Figure 10, for 4 jobs, 3 machines, and 3 MAs, each chromosome is coded as an

array of (4 + (4 − 1) × 3 = 13) real numbers. The rank position of the first four
numbers indicate the sequence of the jobs. The rest of the numbers are

converted to an integer value (1,2,… ,8) to determine the combination of MAs that
are required before processing each job on each machines, according to Table
25. For instance, the generated real number for the MA policy of the 3rd job in the
sequence (Job 3) on Machine 2 is 0.701. By mapping this number to the range of
1-8, combination 6 is obtained.

Figure 10. Chromosome representation using real numbers.

This solution representation, compared to the ones presented in Chapters

I and II, considerably improves the performance of the GA for the presented
problem. In the chromosome representations proposed by Seif et al. (2017) and

Yu and Seif (2016) (Chapters I and II), the chromosomes are presented via 𝑛 +
𝑛𝑚𝑙 integer variables. This representation, unlike the ones proposed in this
paper, grows as the number of maintenance activities increases. Because the
variables are integer, their representation also requires additional computational
efforts for feasibility checks within/after crossover and mutation operations.

106

3.4 Computational Experiments

In this section, we present the computational experiments that we designed to
tune the SO algorithm, and to evaluate the performances of the algorithm in
comparison with a commercial solver. First, we introduce the methods used to
generate test problems for the experiments. Then, we discuss tuning of the
algorithm. Finally, we present the main experiments that evaluate the SO
algorithm by comparing its performance against a commercial solver. We coded
the algorithm in MATLAB and used IBM ILOG CPLEX Optimization Studio
(Version: 12.5.1.0) to solve the problem formulated in Equations (3.3-3.37) in
Section 3.2. All algorithms and the CPLEX solver were run on an i7-3770 @ 3.40
gigahertz Intel processor with 8.00 gigabytes of system memory. Throughout the
experiments, we solve 30 test problems with various settings. Solving 30 test
problems allows us to draw reliable inferences about the performance of the
solution methods. Each test problem includes 30 scenarios. These scenarios are
generated via Monte-Carlo simulation. The comparison is between two different
solution approaches, namely the exact solution methods built in the commercial
solver and a metaheuristic method, which is the proposed GA. Both the solver
and the GA check the feasibility of a solution against all of the constraints defined
in the stochastic program that was presented in Section 3.2.

Test Problem Generation

A test problem must contain the values of all the parameters introduced in
Section 3.2. We used a test problem generator, which is a function with the

following arguments: number of jobs (𝑛), Due Date Tightness Factor (𝐷𝐷𝑇𝐹), and
Maintenance Interval Factor (𝑀𝐼𝐹). The values of the parameter in each test
problem are generated as follows. Number of machines, 𝑚 = 3, number of MAs,

𝑙 = 3, the health states of the machines, 𝐻 = 3, number of scenarios, 𝑆 = 30,
maintenance intervals, 𝑅1 = 4 ×𝑀𝐼𝐹, 𝑅2 = 5 ×𝑀𝐼𝐹, 𝑅3 = 6 ×𝑀𝐼𝐹, spare part
costs, 𝑆𝑃𝑖𝑘~𝑈($150, $450), the workforce cost, 𝑊𝐹 = $20/ℎ𝑜𝑢𝑟, the due dates,

𝑑𝑗~𝑈 (240, ⌊
240𝑛

𝐷𝐷𝐹𝑇
⌋), penalty costs, 𝜋𝑗~𝑈(10,20), the probability of scenarios,

Pr(𝑠) = 1/𝑆, the coefficients for prolonging the processing times, 𝜆1 = 1.0, 𝜆1 =
1.5, 𝜆1 = 2.0, nominal processing times, 𝑝𝑖𝑗

𝑠 ~𝑇𝑅𝐼(20,35,70), and the nominal

duration of MAs, 𝑒𝑖𝑘
𝑠 ~𝑇𝑅𝐼(5,15,25), where ~𝑈(𝑎, 𝑏) denotes a random value that

follows the Uniform distribution in the range [𝑎, 𝑏], and ~𝑇𝑅𝐼(𝑎, 𝑏, 𝑐) denotes a

random value that follows the Triangular distribution with 𝑎, 𝑏, and 𝑐 as the
minimum, most likely, and the maximum values that the random variable can
take, respectively. All the test problems (as CPLEX files) can be retrieved online
at this link:
https://www.dropbox.com/sh/wn7u776g4fwzrcn/AADC0LdeITjWuF9WWTZDUmd
Ma?dl=0.

https://www.dropbox.com/sh/wn7u776g4fwzrcn/AADC0LdeITjWuF9WWTZDUmdMa?dl=0

107

Although these might be close to the values used in some of applications,
the sole purpose of generating them within the presented bounds is to form test
problems that are both feasible and challenging to solve. We will present a case
study in Section 3.5 in which the values are chosen such that they represent an
application that is similar to one of the real world problems. We keep the number
of machines, types of MAs, and the health state of the machines constant in all of
the test problems, but we will increase the number of jobs in order to test the
performance of the algorithm in dealing with large-scale instances of the
problem. In practice and for a particular application, the values that are fixed do
not usually change significantly yet the number of jobs is usually subject to
change and will increase. Therefore, we decided to only increase the number of
jobs in the forthcoming experiments.

Computational Experiments for the Population Size

Yu and Seif (2016) (Chapter I) use a GA for solving a flow shop scheduling
problem with diverse maintenance activities, and showed that only the population
size is statistically significant in improving the quality of solutions. They also
showed that increasing the population size up to a certain point increases the
quality of solutions. After that point, the quality does not improve significantly, yet
the solution time keeps increasing. Table 28 shows the results of the experiment
we performed in order to find an appropriate population size for the problem
presented in this paper. First, we generated a test problem, solved it with the GA,
and then recorded the objective function value (OFV) and the solution while the
population size was 25. We used these values as the baseline. Then, we solved
the same problem with the same settings, yet with a larger population size, and
recorded the improvement in the OFV and increase in the solution time. We
repeated this experiment three times for three different problem sizes. The
average improvements and increases are reported in Table 28.

Table 28. The impact of population size on the performance of the algorithm.

Number of
Jobs (𝑛)

Population Size
Average Improvement in the

OFV (Cost)
Average Increase in the

Solution Time

4 25 0% 0%
4 50 7% 77%
4 100 15% 255%
4 200 22% 546%
4 400 27% 1215%
6 25 0% 0%
6 50 6% 104%
6 100 18% 399%
6 200 22% 756%
6 400 17% 1394%
8 25 0% 0%
8 50 10% 131%
8 100 17% 359%
8 200 22% 764%
8 400 23% 1720%

108

Figure 11 summarizes the results of Table 28, by plotting the total average
of improvements and increases against the population size. Increasing the
population size beyond 200 does not lead to any improvement in the OFV, yet
the solution time keeps increasing, as Figure 12 shows. This result agrees with
the findings of Yu and Seif (2016), which is the published verion of Chapter I.

Computational Experiment for Performance Evaluation

In this section, we present computational experiments that evaluate the
performance of the presented Simulation-Optimization (SO) method compared
with CPLEX as a commercial solver that uses exact solution algorithms for the
presented SMIP formulation. In all of the experiments, we use the following
stopping conditions for the SO algorithm and CPLEX. The algorithm will stop and

return the best solution after 𝐼 number of iterations, or after the OFV does not

improve for ⌊0.2 × 𝐼⌋ iterations. We chose 𝐼 = 100, but it can take any positive
integer value. Obviously, a higher value of 𝐼 is more likely to result in a lower
OFV and higher solution time, and depends on user’s preference.. For CPLEX,
we observed that when the optimal solution cannot be find within an hour, there
is a possibility that it cannot be found even within several hours. Therefore, we
set a time limit of 3000 seconds for CPLEX. However, if the solution time of the
algorithm becomes greater than 3000 seconds, we use a time limit greater than
the solution time of the algorithm, as the CPLEX time limit. We generated a
randomized test problem and solved it with both algorithms, SO and CPLEX
solver, to ensure these algorithms are consistent and accurate.

Table 29 shows the results of solving 30 test problems solved once via
CPLEX and once via SO. The number of jobs (𝑛) is 4 in all of these test problem
and the number of scenarios is 30 in each problem. These problem are
considered as small-scale problems. In some of the test problems (bold-faced
and underlined) the SO method finds the global optimal solution, and in some
problems (bold-faced) the gap between the two methods is less than 1.00% for
the OFV. However, the solution time of the SO is considerably larger than that of
CPLEX. Next, we want to see how the results of the comparison changes when
the problem size (number of jobs) increases.

At the bottom of Table 29, the results are summarized by reporting the
average, minimum, and maximum values of each column. Table 30 summarizes
the results for the average of 30 test problems for different number of jobs. A
negative gap means that the SO algorithm has performed better than CPLEX.
One observation is that, as the number of jobs (problem size) increases, the
quality of CPLEX solutions decreases under a limited solution time. Also, the gap
between the SO algorithm and CPLEX decreases with respect to both OFV and
solution time. The maximum gaps in the 7th and the 10th columns show the worse

109

Figure 11. The impact of population size on the objective function.

0%

8%

17%

22% 22%

0%

5%

10%

15%

20%

25%

25 50 100 200 400

T
ot

al
 a

ve
ra

ge
 im

pr
ov

em
en

t i
n

th
e

O
F

V

Population size

110

Figure 12. The impact of population time on solution time.

0%
104%

338%

689%

1443%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

25 50 100 200 400
T

ot
al

 a
ve

ra
ge

 in
cr

ea
se

 in
 th

e
so

lu
tio

n
tim

e

Population size

111

Table 29. Comparing the simulation-optimization method with CPLEX for n=4.

Test
Problem

CPLEX (SMIP) Simulation-Optimization (SO) Gap

OFV
Time
(sec.)

OFV
Time
(sec.)

Iterations OFV Time

1 6210.44 96 6263.10 414 45 0.85% 332.04%
2 6534.53 111 6938.77 443 47 6.19% 298.53%
3 5556.52 121 5577.18 504 55 0.37% 315.17%
4 6598.37 98 7166.55 450 48 8.61% 357.97%
5 5710.22 113 5710.27 455 49 0.00% 302.32%
6 5211.41 89 5360.73 550 60 2.87% 521.18%
7 5604.63 136 5604.68 332 36 0.00% 144.24%
8 7235.49 114 7288.27 751 84 0.73% 559.98%
9 6993.4 85 7932.77 417 45 13.43% 388.73%

10 5470.29 86 5728.43 389 42 4.72% 353.86%
11 6325.52 138 6740.75 451 48 6.56% 226.21%
12 5700.31 113 6338.80 450 49 11.20% 298.14%
13 7250.16 86 7616.83 429 46 5.06% 396.56%
14 5425.85 171 5427.85 525 58 0.04% 207.04%
15 5291.15 179 6153.85 596 65 16.30% 232.12%
16 6798.6 143 6814.17 561 60 0.23% 291.54%
17 5243.63 103 6486.17 390 41 23.70% 279.57%
18 7035.76 114 7074.84 416 45 0.56% 265.91%
19 6048.12 112 6092.67 426 46 0.74% 279.50%
20 7329.23 144 7771.63 555 60 6.04% 286.41%
21 6832.7 132 7229.67 541 58 5.81% 308.26%
22 5176.95 114 5177.00 531 58 0.00% 365.59%
23 5388.92 96 6005.27 526 56 11.44% 446.69%
24 5831.19 153 6687.63 389 41 14.69% 153.71%
25 7286.2 94 7527.65 582 64 3.31% 519.06%
26 5079.85 180 5079.90 430 47 0.00% 138.78%
27 6122.64 103 6664.98 411 44 8.86% 300.46%
28 5452.83 124 5452.88 586 64 0.00% 374.55%
29 7393.03 145 7734.09 441 48 4.61% 203.53%
30 6329.74 117 6329.80 601 67 0.00% 412.40%

Average 6148.92 120 6465.91 485 52 5.23% 318.67%
Minimum 5079.85 85 5079.90 332 36 0.00% 138.78%
Maximum 7393.03 180 7932.77 751 84 23.70% 559.98%

112

performance of the SO algorithm compared to CPLEX. When the gap for
the worst case scenario is negative, it means that the SO algorithm has
consistently performed better than CPLEX within a time limit. These values are
indicated in boldfaced. As a result, it can be concluded that under a limited
solution time, the proposed SO algorithm outperforms a commercial solver as the
problem size increases. In Table 30 we increased the number of jobs up to a
point where all 30 test problems can be solved with CPLEX. Table 31 shows the

results for 𝑛 = 10. We increased the solution time limit to 5000 seconds which is
considerably higher than the average solution time of the SO algorithm. For the
bold-faced test problems, CPLEX was unable to find any feasible solution for the
problem. Again, even in the worst-case scenario, the SO algorithm finds a better
solution with a lower OFV than CPLEX.

Table 30. Comparing the simulation-optimization method with CPLEX when problem size
increases.

N. of
Jobs
(𝑛)

CPLEX
Avg.
Time

SO
Avg.
Time

Avg. N
of Iter.

Gap in the Solution Time Gap in the OFV

Avg. Min. Max. Avg. Min. Max.

4 120 485 52 318.67% 138.78% 559.98% 5.23% 0.00% 23.70%
5 2383 777 68 -63.78% -79.81% -21.89% 9.43% 0.00% 32.46%
6 3002 1091 79 -63.66% -78.43% -53.80% 0.99% -15.18% 21.19%
7 3001 1430 88 -52.34% -73.58% -44.63% -10.57% -34.84% 17.08%
8 3001 1828 98 -39.09% -52.89% -35.11% -23.38% -43.39% -6.48%
9 3000 2081 98 -30.63% -44.06% -25.03% -26.64% -42.29% -8.22%

As the last part of the experiments, we want to make sure that the quality

of solutions of the algorithm (as measured by the gap in OFV), as well as the
time to find a solution, are not dependent on how we generate the input data of
the test problems. In other words, we want to examine the impact of the input
data on the performance of the proposed algorithm. We changed the arguments

(𝐷𝐷𝑇𝐹 and 𝑀𝐼𝐹) of the test problem generator function introduced in Section 3.4
and solved 30 test problems for each setting. Table 32 shows a summary of the
results. Table 33 provides the average, minimum, and maximum solution times in
CPLEX and the SO algorithm, for each setting. Table 33 provides the average,
minimum, and maximum solution times in CPLEX and the SO algorithm, for each
setting. In order to examine whether the gap or solution time are significantly
affected by the input data we performed analysis of variance (ANOVA) on
samples drawn from the data used for Table 32 and Table 33. Table 34 and

Table 35 are the ANOVA tables in which five treatments (𝑎 = 5, the way test
problems are generated, the settings), a sample size of seven (𝑛 = 7), and a
confidence interval of 𝛼 = 0.01 is used.

As the results suggest, the input data has no statistical significance in the

solution time or the quality of the solutions (the gaps). This is intuitive when

113

Table 31. Comparing the simulation-optimization method with CPLEX for n=10.

Test
Problem

CPLEX (SMIP) Simulation Optimization Gap

OFV
Time
(sec.)

OFV
Time
(sec.)

Iterations OFV Time

1 46517.1 5001 4934 31969.8 100 -31.27% -1.33%
2 46070.3 5000 4862 34726.5 100 -24.62% -2.76%
3 48594 5001 4840 36507.0 100 -24.87% -3.21%
4 4999 4778 32680.8 100
5 53894.7 5000 4878 35050.7 100 -34.96% -2.44%
6 42035.5 5000 4796 32312.5 100 -23.13% -4.09%
7 46760 5000 4852 32919.7 100 -29.60% -2.95%
8 48287.1 5000 5011 35255.7 100 -26.99% 0.22%
9 5000 4882 30531.8 100
10 37772.4 5000 4907 25120.3 100 -33.50% -1.86%
11 49068.5 5002 4998 35048.1 100 -28.57% -0.08%
12 5000 4996 40068.8 100
13 47049.4 5001 4988 32131.5 100 -31.71% -0.26%
14 41246.2 5000 4864 23863.0 100 -42.15% -2.72%
15 43165.8 5001 4842 34974.3 100 -18.98% -3.18%
16 40944.7 5001 4946 27929.2 100 -31.79% -1.10%
17 47965.9 4999 4819 35923.4 100 -25.11% -3.59%
18 46645 5001 4857 39589.5 100 -15.13% -2.88%
19 42654.6 5000 4900 23057.4 100 -45.94% -2.00%
20 47003.6 5000 4928 39221.8 100 -16.56% -1.46%
21 41515.4 5000 4917 34909.3 100 -15.91% -1.66%
22 44415.9 5000 4878 32601.5 100 -26.60% -2.45%
23 50445 5000 4866 31690.7 100 -37.18% -2.70%
24 37282.9 4999 4825 31712.7 100 -14.94% -3.47%
25 33822.2 5000 4838 30608.1 100 -9.50% -3.25%
26 5000 4827 34578.4 100
27 36036.3 5000 4824 33809.9 100 -6.18% -3.52%
28 51582.1 5000 4877 32966.8 100 -36.09% -2.47%
29 44263.5 5000 4764 32498.6 100 -26.58% -4.72%
30 49271 5002 4812 35931.3 100 -27.07% -3.79%

Average 44781.1 5000 32781.9 4878 100 -26.34% -2.45%
Minimum 33822.2 4999 23057.4 4764 100 -45.94% -4.72%
Maximum 53894.7 5002 39589.5 5011 100 -6.18% 0.22%

114

Table 32. Sensitivity of the gap to the input data, 𝑛 = 4.

Setting 𝐷𝐷𝑇𝐹 𝑀𝐼𝐹 No. of Problems Solved
Gap in the OFV

Avg. Min. Max.

1 3 50 30 10.42% 0.00% 26.63%
2 4 50 30 9.41% 0.00% 32.29%
3 5 50 30 11.82% 0.29% 30.77%
4 4 40 30 15.39% 0.49% 32.40%
5 4 60 30 11.92% 0.00% 37.32%

115

Table 33. Sensitivity of the solution time to the input data, 𝑛 = 4.

Setting 𝐷𝐷𝑇𝐹 𝑀𝐼𝐹

The solution time of CPLEX The solution time of the SO algorithm

Avg. (sec.)
Min.
(sec.)

Max. (sec.) Variance Avg. (sec.) Min. (sec.) Max. (sec.) Variance

1 4 40 74.20 5.58 259.03 4,358.92 576.47 316.50 1,013.11 26,187.84
2 4 50 198.48 42.80 418.69 8,263.82 551.35 323.34 759.26 11,789.68
3 4 60 203.72 96.48 426.07 5,990.88 510.35 228.56 670.08 7,919.88
4 3 40 300.70 42.40 1,179.03 54,610.11 565.92 361.50 831.70 12,494.47
5 5 40 199.73 48.13 464.04 9,319.93 524.53 352.58 722.45 8,576.37

116

Table 34. Analysis of variance for the gap sensitivity experiment.

Source of
Variation

Sum of
Squares

Degree of
Freedom

Mean
Square

F0 P-Value

Setting 0.0558 4 0.0140 2.6731 0.0510
Error 0.1567 30 0.0052
Total 0.2126 34

117

Table 35. Analysis of variance for the experiment on solution time sensitivity.

Source of
Variation

Sum of
Squares

Degree of
Freedom

Mean
Square

F0 P-Value

Setting 19196.26013 4 4799.0650 0.4119 0.7986
Error 349524.7108 30 11650.8237
Total 368720.9709 34

118

looking at the results in Table 32 and Table 33. This finding implies that the
results that were shown previously are independent of the problem instances and
the conclusions about the performance of the SO method are robust.

3.5 Case Study

In this section we show one of the applications of the presented problem and
solution method. The input data and description of this case study are adapted
from the case study by Yu and Seif (2016) (a published version of Chapter I) that
is designed for a deterministic flow shop scheduling with multiple MAs in which
combining the MAs was not considered and processing times were fixed
regardless of the machines’ health state. After presentation of the data and
describing the case study, we will discuss the solution and draw managerial
implications.

One of the main activities in the early stages of a heavy construction
project is earthmoving. A simplified version of the earthmoving process described
by Fu (2013) is as follows. The first step is called preparation. Excavators are
used in this step; they dig natural form of material from the earth. Next, in the
loading step, wheel loaders can load the removed and prepared soil into haul
trucks. Finally, in the hauling step, haul trucks transport earth to a deposit point
by travelling through routes.

Typical (preventive) maintenance activities for construction machinery are usually
based on the operating hours of the machinery. In Table 36, maintenance

intervals (𝑅𝑘 , 𝑘 = 1, . . . ,6) recommended by one of the manufacturers of heavy
construction equipment is listed for the machinery that are required for the
simplified earthmoving process (Caterpillar, 2010a, 2010b, 2010c). Different
tasks are included in each MA. For example, the tasks included in the 50-hour
MA of excavators shown are lubrication of boom, stick and bucket linkage, drive
shaft universal joint, etc.

Table 38 shows the task lists of the 250-hour, 500-hour, and 1000-hour
MAs for the excavator. Tasks Numbers 1-4 for the 500-hour MA are shared in the
1000-hour MA, as shown in boldfaced. When combined, the total duration of
these two MAs should be approximately 75% of the sum of the durations of the
two MAs because 25% of the tasks listed under the two MAs will be redundant
when they are combined (assuming that the tasks have the same duration).
Although the 250-hour MA does not share any tasks with the other two MAs,
after checking the details of some of the tasks we noticed that their share certain
steps within their tasks. Table 39 shows the steps for performing Task Number
11 of the 250-hour MA and Task Number 4 of the 500-hour MA. Steps 1,

119

Table 36. Maintenance intervals (in hours) recommended by the equipment manufacturer
(Caterpillar, 2010a, 2010b, 2010c), reproduced from (Yu & Seif, 2016).

Machine 10 50 100 250 500 1000

Excavators

Wheel Loaders

(Haul) Trucks

120

Table 37. Processing times, due dates, and penalty costs for the jobs, adapted from Yu and Seif
(2016).

Location
(Jobs)

 Processing Times (no. of days × hours/day) Due
Date

(days)

Penalt
y/

Day
 Excavator Wheel Loader Truck

𝐿1 ~TRI(20, 22, 25) × 8 ~TRI(25, 28, 30) × 8 ~TRI(5, 7,9) × 16 90 $211
𝐿2 ~TRI(15, 20, 25) × 8 ~TRI(20, 25, 30) × 8 ~TRI(7, 10, 14) × 16 100 $118
𝐿3 ~TRI(10, 15, 20) × 8 ~TRI(15, 20, 25) × 8 ~TRI(3, 9, 14) × 16 80 $118
𝐿4 ~TRI(18, 23, 28) × 8 ~TRI(15, 20, 25) × 8 ~TRI(9, 11, 13) × 16 70 $346

121

Table 38. Task list of each MA for the excavator (excerpts from Caterpillar (2010c)).

Task No.
Maintenance Activity Interval (hours)

250-hour maintenance 500-hour maintenance 1000-hour maintenance

1 Air Conditioner - Test Axle Oil (Front) - Change Axle Oil (Front) - Change
2 Axle Bearings (Front) - Lubricate Axle Oil (Rear) - Change Axle Oil (Rear) - Change
3 Axle Oil Level (Front) - Check Final Drive Oil - Change Battery Hold-Down - Tighten
4 Axle Oil Level (Rear) - Check Transmission Oil - Change Drum Brakes - Inspect
5 Braking System - Test Drive Shaft Support Bearing Lubricant - Check Final Drive Oil - Change
6 Condenser (Refrigerant) - Clean Fuel System Priming Pump - Operate Overhead Guard - Inspect
7 Cooling System Hoses - Inspect Fuel System Secondary Filter - Replace Transmission Oil - Change
8 Engine Oil and Filter - Change Fuel Tank Cap and Strainer - Clean
9 Final Drive Oil Level - Check Fuel System Primary Filter/Water Separator-
10 Swing Bearing - Lubricate Element - Replace
11 Transmission Oil Level - Check
12 V-Belts - Inspect/Adjust/Replace

122

Table 39. Two tasks with similar steps (excerpts from Caterpillar (2010c)).

Task Steps

Transmission Oil Level - Check

1. Remove filler plug (1).
2. Check the lubricant level. The lubricant level should be at the bottom of the opening for filler plug (1).
3. If necessary, fill the gearbox with lubricant to the bottom of the opening for filler plug (1).
4. Clean filler plug (1).
5. Inspect the O-ring seal. If damage or wear is noticed on the O-ring seal, replace the seal.
6. Install filler plug (1).

Transmission Oil - Change

1. Remove the dirt that is around filler plug (1) and around drain plug (2).

2. Remove drain plug (2). Drain the lubricant into a suitable container.

3. Clean drain plug (2).

4. Inspect the O-ring seal. If damage or wear is noticed on the O-ring seal, replace the seal.

5. Install drain plug (2).

6. Remove filler plug (1).

7. Fill the gearbox with lubricant to the bottom of the filler plug opening.

8. Clean filler plug (1).

9. Inspect the O-ring seal. If damage or wear is noticed on the O-ring seal, replace the seal.

10. Install filler plug (1).

123

4, 5, and 6 of the first task are the same as Steps 6, 8, 9, and 10 of the second
task. We assumed the duration of the combined tasks to be 60% of the sum of
the three durations. In practice, these values can be calculated precisely after a
time study is conducted on the MAs.

We consider a project with four locations, in which earth moving
operations need to be done. There are three machines allocated for earthmoving
operations of these locations; one excavator, one-wheel loader, and one truck.
The locations are too far from each other for the machines to be able to
simultaneously work in more than one location. In Table 37, the operation
requirements in each location are shown. Table 37 shows the processing times
as the number of days a machine is expected to work in a location multiplied by
the number of hours worked per day. The due date and penalty costs for
completing a job after the due date are also presented in this table. We assumed
a 10-hours shift for the working days in the last two columns.

Average cost of performing a preventive maintenance activity on a wheel
loader is approximately $234 (Azadeh et al., 2014). We have used this value to
approximate the overall cost of each MA’s spare part cost, i.e. ~𝑈($200, $300).
We consider $25/hour as the workforce cost. Because the first three MAs (10,
50, 100 hours) are usually done in a fraction of an operational day, and usually
by the operators, where the machine is operating, and because 2000 hours MAs
and above are not going to be reached within the scheduling process for this
case study, we have considered only the 250-hour, 500-hour, and 1000-hour
MAs. Because the trucks do not have the 250-hour MA, we set its maintenance
interval equal to infinity, 𝑅3,1 = +∞, in order to nullify it. Although these MAs can

be performed ideally in one day, we consider the triangular distribution
~𝑇𝑅𝐼(1,2,5) for the maintenance durations because in practice the machines
might wait in the maintenance station for a few days due to spare part
unavailability, no empty spot being available in the maintenance stations, etc.

The optimal solution is presented in Table 40. This solution provides a

schedule for routing of the machines between the construction locations and a
maintenance station, as well as the maintenance plan. For example, the truck

goes to 𝐿1 first, then goes to 𝐿4, then to the maintenance station because
Maintenance Combination 2 is scheduled before processing the third job (𝐿1).
Maintenance Combination 2 means performing only the 500-hour MA. Note that

the truck does not need the 250-hour MA. After maintenance, it goes to 𝐿1, and

then to 𝐿2. The excavator and loader need to go to stop for maintenance before
operating in any of the locations (except for the first location). Maintenance
Combinations 1, 4, and 7 correspond to performing only the 250-hour MA, the
250-hour and the 500-hour MAs in a row, and all three MAs in a row,
respectively.

124

We solved the problem again after changing the input data for the
durations of the MAs. This time we used the sum of MAs for combinations,
instead of a portion (75% or 60%) of the sum. Table 41 shows the solution for the
new problem. The only changes in the optimal schedule are the MAs of the

loader before going to 𝐿4 and 𝐿1. With the new data, Combination 5 which
includes the 500-hour and the 1000-hour MAs is prescribed before 𝐿4, and
Combination 4 which includes the 250-hour and the 500-hour MAs is prescribed

before operating in 𝐿1. This means performing an excessive 500-hour MA
compared to the original solution. The reason is that in the new data performing
the MAs takes longer which leads to an increase in tardiness. The solver tries to
compensate for this increase in the duration of the MAs by performing more MAs
so that the processing times of the jobs do not get prolonged due to the poor
health of the machine. However, the value of the objective function is still worse
than the original problem.

125

Table 40. The optimal solution for the case study.

Variable Optimal Value

1st location to process 𝐿3
2nd location to process 𝐿4
3rd location to process 𝐿1
4th location to process 𝐿2
Maintenance combination for the exacavator before processing the 1st job 0
Maintenance combination for the exacavator before processing the 2nd job 1
Maintenance combination for the exacavator before processing the 3rd job 4
Maintenance combination for the exacavator before processing the 4th job 1
Maintenance combination for the loader before processing the 1st job 0
Maintenance combination for the loader before processing the 2nd job 1
Maintenance combination for the loader before processing the 3rd job 7
Maintenance combination for the loader before processing the 4th job 1
Maintenance combination for the truck before processing the 1st job 0
Maintenance combination for the truck before processing the 2nd job 0
Maintenance combination for the truck before processing the 3rd job 2
Maintenance combination for the truck before processing the 4th job 0
Total Expected Cost $4,078
Expected Maintenance Cost $3,076
Expected Penalty Cost $1,002

126

Table 41. The optimal solution, when the durations of the MAs do not change in combinations.

Variable Optimal Value

1st location to process 𝐿3
2nd location to process 𝐿4
3rd location to process 𝐿1
4th location to process 𝐿2
Maintenance combination for the exacavator before processing the 1st job 0
Maintenance combination for the exacavator before processing the 2nd job 1
Maintenance combination for the exacavator before processing the 3rd job 4
Maintenance combination for the exacavator before processing the 4th job 1
Maintenance combination for the loader before processing the 1st job 0
Maintenance combination for the loader before processing the 2nd job 5
Maintenance combination for the loader before processing the 3rd job 4
Maintenance combination for the loader before processing the 4th job 1
Maintenance combination for the truck before processing the 1st job 0
Maintenance combination for the truck before processing the 2nd job 0
Maintenance combination for the truck before processing the 3rd job 2
Maintenance combination for the truck before processing the 4th job 0
Total Expected Cost $4,188
Expected Maintenance Cost $3,170
Expected Penalty Cost $1,018

127

3.6 Conclusion and Future Research

In this chapter, a new extension of the flow shop scheduling problem was
introduced. We incorporated the concept of combined maintenance activities in
the permutation flow shop, and considered the impact of the health of machines
on the processing times of jobs. The objective was to minimize the total cost of
maintenance activities and lateness penalties. We formulated the problem as a
two-stage stochastic mixed-integer program in which the first-stage decision
variables determined both the sequence of the jobs and a combination of
maintenance activities. Because the commercial solvers were not able to solve
large-scale instances of the problem in a reasonable time, we developed a
simulation-optimization solution method that can efficiently solve these instances.
We designed a series of computational experiments in order to tune the
algorithm, evaluate its performance in comparison with CPLEX, and assess the
sensitivity of its performance to the input data. We concluded that:

 an increase in the population size in the algorithm improves the quality of

the solutions only up to a certain point, after which only the solution time

increases,

 although for small-sized instances of the problem we recommend the use

of commercial/exact solvers, for medium to large-scale instances and under

a limited time frame, the presented solution method outperforms these

computationally and financially expensive solvers, and

 the quality of the solutions and solution time of the presented simulation-

optimization method is not sensitive to the input data under a limited solution

time, which alludes to the robustness of the method.

We demonstrated an application of the presented problem through a case

study in construction projects. The results of the case study showed that
considering the decrease maintenance time, when the activities are combined,
leads to savings and improvement in the objective function value. Taking random
failures into the consideration is highly desirable and can be studied as an
extension of this paper. Also, the concept of combined maintenance activities
can be applied to other production settings such as flexible flow shop and job
shop scheduling.

128

CONCLUSION

This dissertation was an attempt to integrate maintenance decisions into
production scheduling. Permutation flow shop scheduling was considered as the
production environment, and preventive maintenance activities were incorporated
with the scheduling process. In Chapter I, I introduced a new mixed-integer
program for flow shop scheduling that could handle scheduling of multiple age-
based maintenance activities. The objective was to minimize the overall cost of
tardiness (penalty costs) and maintenance. In Chapter II, tardiness and
maintenance cost were divided into two separate objectives and the problem was
reformulated as a bi-objective optimization problem. The effect of machine’s
health on processing times was also modeled in Chapter II. In Chapter III, the
unified objective in Chapter I was used again, but the processing times, as well
as maintenance time were treated as random variables. In addition, the
possibility of combining maintenance activities was incorporated into the model.
The problem was modeled as a stochastic program in Chapter III, and Monte-
Carlo simulation was used for scenario generation. The model in Chapter III was
slightly different from the ones presented in the earlier chapters; instead of using
waiting and buffer times, start/finish times were used for modeling the timeline of
each job with respect to various machines.

The problem was shown to be NP-hard in Chapter I. A Genetic Algorithm
(GA) was designed and presented as the solution method because the existing
generic exact solution methods would be inefficient in solving large sizes of the
problem. After performing an ANOVA experiment, the population size of the GA
was determined to be the only significant factor in improving the quality of the
solutions of the algorithm. Then, a lower bound was formulated for the problem,
and the GA would set the population size automatically based on the lower
bound and desired performance defined by the user. The GA was improved in
Chapter II by confining the solution space. A new design for the GA was
presented in Chapter III. The new design improved and algorithm by simplifying
its searching procedure.

Extensive computational experiments were conducted in Chapters I-III

through which the reliability, efficiency, and effectiveness of the solution methods
were demonstrated. In Chapter I, a case study was presented that showed the
application of the problem in construction projects. The same case study was
used in Chapters II and III. Although the main application of flow shop scheduling
is in manufacturing industries, this case study showed how broad the
applications of this work can be. The jobs were earthmoving locations, and the
machines were construction machinery (loaders, trucks, and excavators).

129

Unplanned Maintenance

Unplanned maintenance activities (caused by emergencies, random failures,
etc.) were not directly addressed in this dissertation. However, there are two
ways to manage them. Because the solution method is relatively fast, after each
interruption in the schedule, a new problem defined by the new data can be
solved. In applications where unplanned maintenance activities are common, the
model that was presented in Chapter III can be used to handle those cases. The
duration of maintenance activities were modeled as random variables (input
parameters), and the model can handle multiple types of maintenance activities.
Therefore, various failure modes can be treated as maintenance activities.

Considering Risk

An alternative objective function for maintenance is minimizing the risk
associated with delaying the maintenance activities. In some organizations,
reducing risk is more important than reducing maintenance costs. The main
constraint in such cases is on the maintenance budget and maintenance
workforce. This dissertation can be extended by considering a risk factor for each
type of maintenance, and multiplying this factor by the amount of tardiness in
completing the maintenance activities in the objective function (similar to the
penalty and tardiness for processing the jobs, in Chapters I and III).

Fatigue and Degradation of Machines and Their Components

The combination of maximum maintenance levels and deterioration rates that
were introduced in Chapter I allows the user of these models to take the
degradation of machines and remaining useful life of their components into
account. Because the processing times of the jobs are relatively small (compared
to the remaining useful life of components) deterioration rates can be used to
model the non-linear degradation functions as piece-wise linear. In addition,
becase we allow multiple ML’s, the degradation values of of multiple components
(or multiple degaradation parameters) of a machine, or critical component, can
be taken into account. This allows using the output of prognostic models as
inputs for the models presented in this dissertation. This work can be extended
by changing the maximum maintenance levels to the current values of
degradation parameters. The stochastic models also allow taking into account
the uncertainity associated with the outputs of prognostic models.

130

REFERENCES

131

Abdollahpour, S., & Rezaeian, J. (2015). Minimizing makespan for flow shop
scheduling problem with intermediate buffers by using hybrid approach of
artificial immune system. Applied Soft Computing, 28(0), 44-56.
doi:http://dx.doi.org/10.1016/j.asoc.2014.11.022

Aggoune, R. (2004). Minimizing the makespan for the flow shop scheduling
problem with availability constraints. European Journal of Operational
Research, 153(3), 534-543. doi:http://dx.doi.org/10.1016/S0377-
2217(03)00261-3

Aghezzaf, E. H., Jamali, M. A., & Ait-Kadi, D. (2007). An integrated production
and preventive maintenance planning model. European Journal of
Operational Research, 181(2), 679-685.
doi:http://dx.doi.org/10.1016/j.ejor.2006.06.032

Allaoui, H., & Artiba, A. (2004). Integrating simulation and optimization to
schedule a hybrid flow shop with maintenance constraints. Computers &
Industrial Engineering, 47(4), 431-450.
doi:http://dx.doi.org/10.1016/j.cie.2004.09.002

Allaoui, H., Lamouri, S., Artiba, A., & Aghezzaf, E. (2008). Simultaneously
scheduling n jobs and the preventive maintenance on the two-machine
flow shop to minimize the makespan. International Journal of Production
Economics, 112(1), 161-167.

Alsyouf, I. (2007). The role of maintenance in improving companies’ productivity
and profitability. International Journal of Production Economics, 105(1),
70-78.

Ángel-Bello, F., Álvarez, A., Pacheco, J., & Martínez, I. (2011). A single machine
scheduling problem with availability constraints and sequence-dependent
setup costs. Applied Mathematical Modelling, 35(4), 2041-2050.
doi:https://doi.org/10.1016/j.apm.2010.11.017

Aramon Bajestani, M., & Beck, J. C. (2015). A two-stage coupled algorithm for an
integrated maintenance planning and flowshop scheduling problem with
deteriorating machines. Journal of Scheduling, 1-16. doi:10.1007/s10951-
015-0416-2

Azadeh, A., Asadzadeh, S. M., & Seif, J. (2014). An integrated simulation-
analysis of variance methodology for effective analysis of CBM
alternatives. International Journal of Computer Integrated Manufacturing,
27(7), 624-637.

Ben-Daya, M., Ait-Kadi, D., Duffuaa, S. O., Knezevic, J., & Raouf, A. (2009).
Handbook of maintenance management and engineering (Vol. 7):
Springer.

Berry, P. M. (1993). Uncertainty in scheduling: probability, problem reduction,
abstractions and the user. Paper presented at the Advanced Software
Technologies for Scheduling, IEE Colloquium on.

Bierwirth, C. (1995). A generalized permutation approach to job shop scheduling
with genetic algorithms. Operations-Research-Spektrum, 17(2-3), 87-92.

http://dx.doi.org/10.1016/j.asoc.2014.11.022
http://dx.doi.org/10.1016/S0377-2217(03)00261-3
http://dx.doi.org/10.1016/S0377-2217(03)00261-3
http://dx.doi.org/10.1016/j.ejor.2006.06.032
http://dx.doi.org/10.1016/j.cie.2004.09.002
https://doi.org/10.1016/j.apm.2010.11.017

132

Bock, S., Briskorn, D., & Horbach, A. (2012). Scheduling flexible maintenance
activities subject to job-dependent machine deterioration. Journal of
Scheduling, 1-14.

Bock, S., Briskorn, D., & Horbach, A. (2012). Scheduling flexible maintenance
activities subject to job-dependent machine deterioration. Journal of
Scheduling, 15(5), 565-578.

Brucker, P., Heitmann, S., & Hurink, J. (2003). Flow-shop problems with
intermediate buffers. OR Spectrum, 25(4), 549-574.

Caterpillar. (2010a). 725 and 730 OEM Articulated Trucks - Maintenance
Intervals Operation & Maintenance Manual Excerpt Retrieved from
https://safety.cat.com

Caterpillar. (2010b). 988 Wheel Loader - Maintenance Intervals Operation &
Maintenance Manual Excerpt Retrieved from https://safety.cat.com

Caterpillar. (2010c). M312 and M315 Excavators - Maintenance Intervals
Operation & Maintenance Manual Excerpt Retrieved from
https://safety.cat.com

Chambers, L. D. (1998). Practical handbook of genetic algorithms: complex
coding systems (Vol. 3): CRC press.

Chen, J. S. (2008). Scheduling of nonresumable jobs and flexible maintenance
activities on a single machine to minimize makespan. European Journal of
Operational Research, 190(1), 90-102.

Cheng, T. C. E., & Wang, G. (2000). An improved heuristic for two-machine
flowshop scheduling with an availability constraint. Operations Research
Letters, 26(5), 223-229. doi:https://doi.org/10.1016/S0167-6377(00)00033-
X

Cheng, T. C. E., Yang, S. J., & Yang, D. L. (2012). Common due-window
assignment and scheduling of linear time-dependent deteriorating jobs
and a deteriorating maintenance activity. International Journal of
Production Economics, 135(1), 154-161. doi:10.1016/j.ijpe.2010.10.005

Cheng, T. E., & Wang, G. (1999). Two-machine flowshop scheduling with
consecutive availability constraints. Information Processing Letters, 71(2),
49-54.

Choi, B.-C., Lee, K., Leung, J. Y. T., & Pinedo, M. L. (2010). Flow shops with
machine maintenance: Ordered and proportionate cases. European
Journal of Operational Research, 207(1), 97-104.
doi:https://doi.org/10.1016/j.ejor.2010.04.018

Deb, K., & Agrawal, S. (1999). Understanding interactions among genetic
algorithm parameters. Foundations of Genetic Algorithms, 265-286.

Dehghanimohammadabadi, M. (2016). Iterative Optimization-based Simulation
(IOS) with Predictable and Unpredictable Trigger Events in Simulated
Time. Western New England University.

Dehghanimohammadabadi, M., Keyser, T. K., & Cheraghi, S. H. (2017). A novel
Iterative Optimization-based Simulation (IOS) framework: An effective tool

https://safety.cat.com/
https://safety.cat.com/
https://safety.cat.com/
https://doi.org/10.1016/S0167-6377(00)00033-X
https://doi.org/10.1016/S0167-6377(00)00033-X
https://doi.org/10.1016/j.ejor.2010.04.018

133

to optimize system’s performance. Computers & Industrial Engineering,
111(Supplement C), 1-17. doi:https://doi.org/10.1016/j.cie.2017.06.037

Della Croce, F., Grosso, A., & Paschos, V. T. (2004). Lower bounds on the
approximation ratios of leading heuristics for the single-machine total
tardiness problem. Journal of Scheduling, 7(1), 85-91.
doi:10.1023/B:JOSH.0000013056.09936.fd

Du, J., & Leung, J. Y.-T. (1990). Minimizing total tardiness on one machine is
NP-hard. Mathematics of operations research, 15(3), 483-495.

Fu, J. (2013). Logistics of Earthmoving Operations: Simulation and Optimization.
KTH Royal Institute of Technology, Stockholm, Sweden.

Garg, A., & Deshmukh, S. (2006). Maintenance management: literature review
and directions. Journal of Quality in Maintenance Engineering, 12(3), 205-
238.

GDOT. (2013). Standard Specifications Construction of Transportation Systems
Retrieved from
http://www.dot.ga.gov/PartnerSmart/Business/Source/specs/DOT2013.pdf

González-Neira, E., Montoya-Torres, J., & Barrera, D. (2017). Flow-shop
scheduling problem under uncertainties: Review and trends. International
Journal of Industrial Engineering Computations, 8(4), 399-426.

Gordon, V., Strusevich, V., & Dolgui, A. (2012). Scheduling with due date
assignment under special conditions on job processing. Journal of
Scheduling, 15(4), 447-456. doi:10.1007/s10951-011-0240-2

Gourgand, M., Grangeon, N., & Norre, S. (2000). A review of the static stochastic
flow-shop scheduling problem. Journal of decision systems, 9(2), 1-31.

Hannan, E. L. (1981). Linear programming with multiple fuzzy goals. Fuzzy sets
and systems, 6(3), 235-248.

Hastings, N. A. J. (2009). Physical asset management: Springer Science &
Business Media.

Holland, J. (1975). Adaption in natural and artificial systems. Ann Arbor MI: The
University of Michigan Press.

Hsieh, Y. C., You, P. S., & Liou, C. D. (2009). A note of using effective immune
based approach for the flow shop scheduling with buffers. Applied
Mathematics and Computation, 215(5), 1984-1989.
doi:http://dx.doi.org/10.1016/j.amc.2009.07.033

Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with
setup times included. Naval Research Logistics (NRL), 1(1), 61-68.

Knezevic, J. (1997). Systems Maintainability (Vol. 1): Springer Science &
Business Media.

Kothamasu, R., Huang, S. H., & VerDuin, W. H. (2006). System health
monitoring and prognostics—a review of current paradigms and practices.
The International Journal of Advanced Manufacturing Technology, 28(9-
10), 1012-1024.

Kubiak, W., Błażewicz, J., Formanowicz, P., Breit, J., & Schmidt, G. (2002). Two-
machine flow shops with limited machine availability. European Journal of

https://doi.org/10.1016/j.cie.2017.06.037
http://www.dot.ga.gov/PartnerSmart/Business/Source/specs/DOT2013.pdf
http://dx.doi.org/10.1016/j.amc.2009.07.033

134

Operational Research, 136(3), 528-540.
doi:https://doi.org/10.1016/S0377-2217(01)00083-2

Kubzin, M. A., Potts, C. N., & Strusevich, V. A. (2009). Approximation results for
flow shop scheduling problems with machine availability constraints.
Computers & Operations Research, 36(2), 379-390.
doi:https://doi.org/10.1016/j.cor.2007.10.013

Lee, C.-Y. (1997). Minimizing the makespan in the two-machine flowshop
scheduling problem with an availability constraint. Operations Research
Letters, 20(3), 129-139. doi:https://doi.org/10.1016/S0167-6377(96)00041-
7

Lee, C.-Y. (1999). Two-machine flowshop scheduling with availability constraints.
European Journal of Operational Research, 114(2), 420-429.
doi:https://doi.org/10.1016/S0377-2217(97)00452-9

Lee, C. Y., & Leon, V. J. (2001). Machine scheduling with a rate-modifying
activity1. European Journal of Operational Research, 128(1), 119-128.
doi:http://dx.doi.org/10.1016/S0377-2217(99)00066-1

Liang, T.-F. (2006). Distribution planning decisions using interactive fuzzy multi-
objective linear programming. Fuzzy sets and systems, 157(10), 1303-
1316.

Liang, T.-F. (2008). Fuzzy multi-objective production/distribution planning
decisions with multi-product and multi-time period in a supply chain.
Computers & Industrial Engineering, 55(3), 676-694.
doi:http://dx.doi.org/10.1016/j.cie.2008.02.008

Liang, T.-F. (2009). Fuzzy multi-objective project management decisions using
two-phase fuzzy goal programming approach. Computers & Industrial
Engineering, 57(4), 1407-1416.

Luo, W., & Ji, M. (2015). Scheduling a variable maintenance and linear
deteriorating jobs on a single machine. Information Processing Letters,
115(1), 33-39. doi:10.1016/j.ipl.2014.08.011

Ma, Y., Chu, C., & Zuo, C. (2010). A survey of scheduling with deterministic
machine availability constraints. Computers and Industrial Engineering,
58(2), 199-211. doi:10.1016/j.cie.2009.04.014

Montgomery, D. C. (2008). Design and analysis of experiments: John Wiley &
Sons.

Mor, B., & Mosheiov, G. (2012). Scheduling a maintenance activity and due-
window assignment based on common flow allowance. International
Journal of Production Economics, 135(1), 222-230.
doi:10.1016/j.ijpe.2011.07.013

Mosheiov, G., & Sarig, A. (2009). Scheduling a maintenance activity and due-
window assignment on a single machine. Computers and Operations
Research, 36(9), 2541-2545.

Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2009). A study on integrating
sequence dependent setup time flexible flow lines and preventive

https://doi.org/10.1016/S0377-2217(01)00083-2
https://doi.org/10.1016/j.cor.2007.10.013
https://doi.org/10.1016/S0167-6377(96)00041-7
https://doi.org/10.1016/S0167-6377(96)00041-7
https://doi.org/10.1016/S0377-2217(97)00452-9
http://dx.doi.org/10.1016/S0377-2217(99)00066-1
http://dx.doi.org/10.1016/j.cie.2008.02.008

135

maintenance scheduling. Journal of Intelligent Manufacturing, 20(6), 683-
694. doi:10.1007/s10845-008-0157-6

Norman, B. A. (1999). Scheduling flowshops with finite buffers and sequence-
dependent setup times. Computers & Industrial Engineering, 36(1), 163-
177.

Norman, B. A., & Bean, J. C. (1999). A Genetic Algorithm Methodology for
Complex Scheduling Problems. Naval Research Logistics, 46(2), 199-211.

Nowicki, E. (1999). The permutation flow shop with buffers: A tabu search
approach. European Journal of Operational Research, 116(1), 205-219.
doi:http://dx.doi.org/10.1016/S0377-2217(98)00017-4

Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Application of fuzzy
optimization to a supply chain network design: A case study of an edible
vegetable oils manufacturer. Applied Mathematical Modelling, 36(6), 2762-
2776. doi:http://dx.doi.org/10.1016/j.apm.2011.09.060

Papadimitriou, C. H., & Kanellakis, P. C. (1980). Flowshop scheduling with
limited temporary storage. Journal of the ACM (JACM), 27(3), 533-549.

Pinedo, M. (2012). Scheduling: Springer.
Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems: Springer.
Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers

and Operations Research, 22(1), 5-13. doi:10.1016/0305-0548(93)E0014-
K

Reeves, C. R. (1997). Feature Article-Genetic Algorithms for the Operations
Researcher. INFORMS journal on computing, 9(3), 231-250.

Rommelfanger, H. (1996). Fuzzy linear programming and applications. European
journal of operational research, 92(3), 512-527.

Ronconi, D. P. (2004). A note on constructive heuristics for the flowshop problem
with blocking. International Journal of Production Economics, 87(1), 39-48.
doi:http://dx.doi.org/10.1016/S0925-5273(03)00065-3

Ruiz, R., Carlos García-Díaz, J., & Maroto, C. (2007). Considering scheduling
and preventive maintenance in the flowshop sequencing problem.
Computers & Operations Research, 34(11), 3314-3330.
doi:http://dx.doi.org/10.1016/j.cor.2005.12.007

Sanlaville, E., & Schmidt, G. (1998). Machine scheduling with availability
constraints. Acta Informatica, 35(9), 795-811.

Schmidt, G. (2000). Scheduling with limited machine availability. European
Journal of Operational Research, 121(1), 1-15. doi:10.1016/S0377-
2217(98)00367-1

Seif, J., Yu, A. J., & Rahmanniyay, F. (2017). Modelling and optimization of a bi-
objective flow shop scheduling with diverse maintenance requirements.
International Journal of Production Research, 1-22.
doi:10.1080/00207543.2017.1403660

Shi, X., & Xu, D. (2014). Best possible approximation algorithms for single
machine scheduling with increasing linear maintenance durations. The
Scientific World Journal, 2014.

http://dx.doi.org/10.1016/S0377-2217(98)00017-4
http://dx.doi.org/10.1016/j.apm.2011.09.060
http://dx.doi.org/10.1016/S0925-5273(03)00065-3
http://dx.doi.org/10.1016/j.cor.2005.12.007

136

Smutnicki, C. (1998). A two-machine permutation flow shop scheduling problem
with buffers. Operations-Research-Spektrum, 20(4), 229-235.

Sortrakul, N., & Cassady, C. R. (2007). Genetic algorithms for total weighted
expected tardiness integrated preventive maintenance planning and
production scheduling for a single machine. Journal of Quality in
Maintenance Engineering, 13(1), 49-61. doi:10.1108/13552510710735113

Sortrakul, N., Nachtmann, H. L., & Cassady, C. R. (2005). Genetic algorithms for
integrated preventive maintenance planning and production scheduling for
a single machine. Computers in Industry, 56(2), 161-168.
doi:10.1016/j.compind.2004.06.005

Stanciulescu, C. v., Fortemps, P., Installé, M., & Wertz, V. (2003). Multiobjective
fuzzy linear programming problems with fuzzy decision variables.
European journal of operational research, 149(3), 654-675.

Sun, K., & Li, H. (2010). Scheduling problems with multiple maintenance
activities and non-preemptive jobs on two identical parallel machines.
International Journal of Production Economics, 124(1), 151-158.
doi:http://dx.doi.org/10.1016/j.ijpe.2009.10.018

Tansel, B. Ç., Kara, B. Y., & Sabuncuoglu, I. (2001). An efficient algorithm for the
single machine total tardiness problem. IIE Transactions, 33(8), 661-674.
doi:10.1080/07408170108936862

Tate, D. M., & Smith, A. E. (1993). Expected Allele Coverage and the Role of
Mutation in Genetic Algorithms. Paper presented at the ICGA.

Trevino, V., & Falciani, F. (2006). GALGO: an R package for multivariate variable
selection using genetic algorithms. Bioinformatics, 22(9), 1154-1156.
doi:10.1093/bioinformatics/btl074

Veldman, J., Wortmann, H., & Klingenberg, W. (2011). Typology of condition
based maintenance. Journal of Quality in Maintenance Engineering, 17(2),
183-202.

Wang, R.-C., & Liang, T.-F. (2004). Application of fuzzy multi-objective linear
programming to aggregate production planning. Computers & Industrial
Engineering, 46(1), 17-41. doi:http://dx.doi.org/10.1016/j.cie.2003.09.009

Wang, S., & Liu, M. (2014). Two-machine flow shop scheduling integrated with
preventive maintenance planning. International Journal of Systems
Science, 1-19. doi:10.1080/00207721.2014.900137

Xiang, Y., Cassady, C. R., Jin, T., & Zhang, C. W. (2014). Joint production and
maintenance planning with machine deterioration and random yield.
International Journal of Production Research, 52(6), 1644-1657.

Xiaodong, Y., Fernandez-Gaucherand, E., Fu, M. C., & Marcus, S. I. (2004).
Optimal preventive maintenance scheduling in semiconductor
manufacturing. Semiconductor Manufacturing, IEEE Transactions on,
17(3), 345-356. doi:10.1109/TSM.2004.831948

Xu, D., Wan, L., Liu, A., & Yang, D. L. (2015). Single machine total completion
time scheduling problem with workload-dependent maintenance duration.
Omega (United Kingdom), 52, 101-106. doi:10.1016/j.omega.2014.11.002

http://dx.doi.org/10.1016/j.ijpe.2009.10.018
http://dx.doi.org/10.1016/j.cie.2003.09.009

137

Xu, D., Yin, Y., & Li, H. (2010). Scheduling jobs under increasing linear machine
maintenance time. Journal of Scheduling, 13(4), 443-449.
doi:10.1007/s10951-010-0182-0

Yamada, T., & Nakano, R. (1997). Job shop scheduling. IEE control Engineering
series, 134-134.

Yang, S.-J. (2013). Unrelated parallel-machine scheduling with deterioration
effects and deteriorating multi-maintenance activities for minimizing the
total completion time. Applied Mathematical Modelling, 37(5), 2995-3005.
doi:http://dx.doi.org/10.1016/j.apm.2012.07.029

Yang, S. J. (2012). Single-machine scheduling problems simultaneously with
deterioration and learning effects under deteriorating multi-maintenance
activities consideration. Computers and Industrial Engineering, 62(1), 271-
275. doi:10.1016/j.cie.2011.09.014

Yang, S. J., & Yang, D. L. (2010). Minimizing the makespan on single-machine
scheduling with aging effect and variable maintenance activities. Omega,
38(6), 528-533. doi:10.1016/j.omega.2010.01.003

Ying, K. C. (2008). Solving non-permutation flowshop scheduling problems by an
effective iterated greedy heuristic. International Journal of Advanced
Manufacturing Technology, 38(3-4), 348-354. doi:10.1007/s00170-007-
1104-y

Yip, H.-l., Fan, H., & Chiang, Y.-h. (2014). Predicting the maintenance cost of
construction equipment: Comparison between general regression neural
network and Box–Jenkins time series models. Automation in Construction,
38(0), 30-38. doi:http://dx.doi.org/10.1016/j.autcon.2013.10.024

Yoo, J., & Lee, I. S. (2016). Parallel machine scheduling with maintenance
activities. Computers & Industrial Engineering, 101(Supplement C), 361-
371. doi:https://doi.org/10.1016/j.cie.2016.09.020

Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in flow
shop scheduling by a lower-bound-based GA. Computers & Industrial
Engineering, 97, 26-40.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zarook, Y., Rezaeian, J., Tavakkoli-Moghaddam, R., Mahdavi, I., & Javadian, N.

(2014). Minimization of makespan for the single batch-processing machine
scheduling problem with considering aging effect and multi-maintenance
activities. The International Journal of Advanced Manufacturing
Technology, 1-14. doi:10.1007/s00170-014-6342-1

Zheng, Y., Lian, L., Fu, Z., & Mesghouni, K. (2015). Evolutional algorithm in
solving flexible job shop scheduling problem with uncertainties LISS 2013
(pp. 1009-1015): Springer.

Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with
several objective functions. Fuzzy sets and systems, 1(1), 45-55.

http://dx.doi.org/10.1016/j.apm.2012.07.029
http://dx.doi.org/10.1016/j.autcon.2013.10.024
https://doi.org/10.1016/j.cie.2016.09.020

138

APPENDICES

139

Appendix A: Related Published Works

Seif, J., Dehghanimohammadabadi, M., & Yu, A. J. (2018). Incorporating
combined maintenance activities in flow shop scheduling: Applying stochastic
programming and simulation optimization. Submitted to European Journal of
Operational Research for publication.

Seif, J., & Yu, A. J. (2018). The Integration of Operations, Maintenance and
Workforce Planning. INFORMS International Conference, Taipei, Taiwan.

Seif, J., & Yu, A. J. (2018). An extensive operations and maintenance
planning problem with an efficient solution method. Computers and Operations
Research.
DOI: 10.1016/j.cor.2018.03.010

Seif, J., Yu, A. J., & Rahmanniyay, F. (2017). Modelling and optimization of a bi-
objective flow shop scheduling with diverse maintenance requirements.
International Journal of Production Research.
DOI: 10.1080/00207543.2017.1403660

Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in flow
shop scheduling by a lower-bound-based GA. Computers & Industrial
Engineering.
DOI: 10.1016/j.cie.2016.03.024

140

Appendix B: OPL Models Used in CPLEX Optimization Studio

141

B.1: The Mixed-Integer Program in Chapter I

/*sets*/

int m=...; /*number of machines*/

int n=...; /*number of jobs*/

int l=...; /*number of maintenance levels or activities*/

float M1=...; /*the big M*/

float M2=...;

/*input parameters*/

float prcsTime[1..m][1..n]=...;

float dtrRate[1..m][1..n][1..l]=...;

float execTime[1..m][1..l]=...;

float MLmax[1..l]=...;

float spCost[1..m][1..l]=...;

float wfCost[1..l]=...;

float dueDate[1..n]=...;

float pnltCost[1..n]=...;

/*variables*/

dvar boolean x[1..n][1..n];

dvar boolean y[1..m][1..n][1..l];

dvar float ML[1..m][1..n][1..l];

dvar float+ completionTotal[1..n];

dvar float+ tardiness[1..n];

dvar float+ waitMachine[1..m][1..n];

dvar float+ waitJob[1..m][1..n];

dvar float+ PLT[1..n][1..n];

dvar int+ nbMA;

dvar int+ seq[1..n];

/*OF*/

minimize sum(i,j in 1..n) PLT[i][j] + sum(i in 1..m,j in 1..n, k in

1..l) y[i][j][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]);

/*constraints*/

subject to {

 forall(i in 1..n) sum(j in 1..n) x[i][j]==1;

 forall(j in 1..n) sum(i in 1..n) x[i][j]==1;

 forall(i in 1..m) waitJob[i][1]==0;

 forall(j in 1..n) waitMachine[1][j] == 0;

 forall(i in 1..m,k in 1..l) ML[i][1][k]==MLmax[k];

 forall(i in 2..m) waitMachine[i][1]==sum(j in 1..n,k in 1..i-1)

x[j][1]*prcsTime[k][j]+sum(g in 1..l,k in 1..i-1)

y[k][1][g]*execTime[k][g];

 forall(i in 1..m-1,j in 1..n-1) waitMachine[i][j+1]+sum(k in

1..l) y[i][j+1][k]*execTime[i][k]+sum(jj in 1..n)

x[jj][j+1]*prcsTime[i][jj]+waitJob[i+1][j+1]

142

 == waitJob[i+1][j]+sum(k in 1..l)

y[i+1][j][k]*execTime[i+1][k]+sum(jj in 1..n)

x[jj][j]*prcsTime[i+1][jj]+waitMachine[i+1][j+1];

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-MLmax[k] >= -

M1*(1-y[i][j][k]);

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-MLmax[k] <=

M1*(1-y[i][j][k]);

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-(ML[i][j-1][k]-

sum(jj in 1..n)x[jj][j-1]*prcsTime[i][jj]*dtrRate[i][jj][k]) >= -

M1*(y[i][j][k]);

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-(ML[i][j-1][k]-

sum(jj in 1..n)x[jj][j-1]*prcsTime[i][jj]*dtrRate[i][jj][k]) <=

M1*(y[i][j][k]);

 forall(i in 1..m,j in 1..n,k in 1..l) ML[i][j][k] >= sum(jj in

1..n) x[jj][j]*prcsTime[i][jj]*dtrRate[i][jj][k];

 forall(j in 2..n) waitJob[1][j]==sum(r in 1..j-1,jj in

1..n)x[jj][r]*prcsTime[1][jj]+sum(r in 1..j-1,k in

1..l)y[1][r][k]*execTime[1][k];

 forall(j,k in 1..n) PLT[j][k]-pnltCost[j]*tardiness[k] >= -M2*(1-

x[j][k]);

 forall(j,k in 1..n) PLT[j][k]-pnltCost[j]*tardiness[k] <= M2*(1-

x[j][k]);

 forall(j,k in 1..n) PLT[j][k] >= -M2*x[j][k];

 forall(j,k in 1..n) PLT[j][k] <= M2*x[j][k];

 forall(j in 1..n) completionTotal[j]==sum(i in 1..m)

(waitJob[i][j]+sum(jj in 1..n)x[jj][j]*prcsTime[i][jj]+sum(k in 1..l)

y[i][j][k]*execTime[i][k]);

 forall(j in 1..n) tardiness[j] >= completionTotal[j]-sum(jj in

1..n) dueDate[jj]*x[jj][j];

 nbMA==sum(i in 1..m,j in 1..n,k in 1..l) y[i][j][k];

 forall (i in 1..n) seq[i]==sum(j in 1..n) x[j,i]*j;

}

143

B.2: The Mixed-Integer Program in Chapter II

/*sets*/

int m=...; /*number of machines*/

int n=...; /*number of jobs*/

int l=...; /*number of maintenance levels or activities*/

/*input parameters*/

float prcsTime[1..m][1..n]=...;

float dtrRate[1..m][1..n][1..l]=...;

float execTime[1..m][1..l]=...;

float MLmax[1..l]=...;

float spCost[1..m][1..l]=...;

float wfCost[1..l]=...;

float dueDate[1..n]=...;

float alpha11=...;

float alpha12=...;

float betta1=...;

float gamma1=...;

float alpha21=...;

float alpha22=...;

float betta2=...;

float gamma2=...;

float mem12=...;

float mem13=...;

float mem22=...;

float mem23=...;

float temp;

float M1=...; /*the big M*/

float M2=...;

/*variables*/

dvar boolean x[1..n][1..n];

dvar boolean y[1..m][1..n][1..l];

dvar float ML[1..m][1..n][1..l];

dvar float+ completionTotal[1..n];

dvar float+ tardiness[1..n];

dvar float+ waitMachine[1..m][1..n];

dvar float+ waitJob[1..m][1..n];

dvar float+ Rho[1..m][1..n];

dvar boolean L[1..m][1..n][1..3];

dvar boolean Z[1..m][1..n][1..n][1..3];

dvar float+ Gamma[1..m][1..n][1..n];

dvar int+ nbMA;

dvar float+ Tardiness;

dvar float+ MaintCost;

dvar int+ seq[1..n];

dvar float+ d11;

dvar float+ d12;

dvar float+ d21;

dvar float+ d22;

dvar float+ e11;

dvar float+ e12;

144

dvar float+ e21;

dvar float+ e22;

dvar float+ S;

/*OF*/

maximize S;

/*Constraints*/

subject to {

 S<=-(alpha11)*(e11-d11)-(alpha12)*(e12-d12)+(betta1)*(sum(q in

1..n)tardiness[q])+(gamma1);

 S<=-(alpha21)*(e21-d21)-(alpha22)*(e22-d22)+(betta2)*(sum(i in

1..m,q in 1..n,k in

1..l)y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+(gamma2);

 sum(q in 1..n) tardiness[q]+e11-d11==mem12;

 sum(q in 1..n) tardiness[q]+e12-d12==mem13;

 (sum(i in 1..m,q in 1..n,k in 1..l)

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e21-

d21==mem22;

 (sum(i in 1..m,q in 1..n,k in 1..l)

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e22-

d22==mem23;

 ct03: forall(q in 1..n) tardiness[q] >= completionTotal[q]-sum(j

in 1..n) dueDate[j]*x[j][q];

 ct05: forall(i in 1..n) sum(j in 1..n) x[i][j]==1;

 ct06: forall(j in 1..n) sum(i in 1..n) x[i][j]==1;

 ct07: forall(i in 1..m-1,q in 1..n-1) waitMachine[i][q+1]+sum(k

in 1..l) y[i][q+1][k]*execTime[i][k]+Rho[i][q+1]+waitJob[i+1][q+1]

 == waitJob[i+1][q]+sum(k in 1..l)

y[i+1][q][k]*execTime[i+1][k]+Rho[i+1][q]+waitMachine[i+1][q+1];

 ct08: forall(i in 1..m,k in 1..l) ML[i][1][k]==MLmax[k];

 ct09: forall(i in 1..m) waitJob[i][1]==0;

 ct10: forall(j in 1..n) waitMachine[1][j] == 0;

 ct11: forall(i in 2..m) waitMachine[i][1]==sum(k in 1..i-1)

Rho[k][1];

 ct12: forall(q in 2..n) waitJob[1][q]==sum(r in 1..q-

1)Rho[1][r]+sum(r in 1..q,k in 1..l)y[1][r][k]*execTime[1][k];

 ct13: forall(i in 1..m,q in 1..n,k in 1..l) ML[i][q][k] >= sum(j

in 1..n) Gamma[i][j][q]*dtrRate[i][j][k];

 ct14: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-ML[i][q-

1][k]+sum(j in 1..n)Gamma[i][j][q-1]*dtrRate[i][j][k] >= -

M1*(y[i][q][k]);

 ct15: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-ML[i][q-

1][k]+sum(j in 1..n)Gamma[i][j][q-1]*dtrRate[i][j][k] <=

M1*(y[i][q][k]);

 ct16: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-MLmax[k]

>= -M1*(1-y[i][q][k]);

 ct17: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-MLmax[k]

<= M1*(1-y[i][q][k]);

 ct18: forall(i in 1..m,j,q in 1..n) Gamma[i][j][q]<=x[j][q]*M2;

 ct19: forall(i in 1..m,j,q in 1..n) Gamma[i][j][q]<=Rho[i][q];

145

 ct20: forall(i in 1..m,j,q in 1..n)

Gamma[i][j][q]>=Rho[i][q]+(x[j][q]-1)*M2;

 ct21: forall(q in 1..n) completionTotal[q]==sum(i in 1..m)

(waitJob[i][q]+Rho[i][q]+sum(k in 1..l) y[i][q][k]*execTime[i][k]);

 ct22: forall (i in 1..m,q in 1..n) Rho[i][q]==sum(j in

1..n)prcsTime[i][j]*((1.0*Z[i][j][q][1])+(1.5*Z[i][j][q][2])+(2.0*Z[i][

j][q][3]));

 ct23: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3)

Z[i][j][q][h]<=x[j][q];

 ct24: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3)

Z[i][j][q][h]<=L[i][q][h];

 ct25: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3)

Z[i][j][q][h]>=x[j][q]+L[i][q][h]-1;

 ct26: forall(i in 1..m, q in 1..n)

L[i][q][1]+L[i][q][2]+L[i][q][3]==1;

 ct27: forall(i in 1..m, q in 1..n) sum(k in

1..l)(ML[i][q][k]/(l*MLmax[k]))>=0.66*L[i][q][1]-

M2*(L[i][q][2]+L[i][q][3]);

 ct28: forall(i in 1..m, q in 1..n) sum(k in

1..l)(ML[i][q][k]/(l*MLmax[k]))<=0.66*L[i][q][2]+M2*(L[i][q][1]+L[i][q]

[3]);

 ct29: forall(i in 1..m, q in 1..n) sum(k in

1..l)(ML[i][q][k]/(l*MLmax[k]))>=0.33*L[i][q][2]-

M2*(L[i][q][1]+L[i][q][3]);

 ct30: forall(i in 1..m, q in 1..n) sum(k in

1..l)(ML[i][q][k]/(l*MLmax[k]))<=0.33*L[i][q][3]+M2*(L[i][q][1]+L[i][q]

[2]);

 nbMA==sum(i in 1..m,j in 1..n,k in 1..l) y[i][j][k];

 forall (i in 1..n) seq[i]==sum(j in 1..n) x[j,i]*j;

 Tardiness==sum(j in 1..n)tardiness[j];

 MaintCost==sum(i in 1..m,q in 1..n,k in 1..l)

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]);

}

146

B.3: The Stochastic Mixed-Integer Program in Chapter III

/*sets*/

int m=...; /*number of machines*/

int n=...; /*number of jobs*/

int l=...; /*number of maintenance levels or activities*/

int S=...; /*number of scenarios*/

int o=...; /*number of maintenance combinations*/

/*input parameters*/

float K=...; /*the big M*/

float probability[1..S]=...;

float p[1..m][1..n][1..S]=...;

float epsilon[1..m][1..o][1..S]=...; /*total executionTime for

each maintenance combination*/

float MLmax[1..m][1..l]=...;

float SPprime[1..m][1..o]=...; /*total of SpCost for each

maintenance combination*/

float WF=...;

float d[1..n]=...;

float pi[1..n]=...;

float a[1..l]=...;

float b[1..o]=...;

/*variables*/

dvar boolean x[1..n][1..n];

dvar boolean y[1..m][1..n][1..l];

dvar boolean PHI[1..m][1..n][1..o];

dvar float ML[1..m][1..n][1..l][1..S];

dvar float+ t[1..n][1..S];

dvar float+ Rho[1..m][1..n][1..S];

dvar boolean L[1..m][1..n][1..3][1..S];

dvar boolean u[1..m][1..n][1..n][1..3][1..S];

dvar float+ Gamma[1..m][1..n][1..n][1..S];

dvar float+ PI[1..n][1..n][1..S];

dvar int+ seq[1..n];

dvar int+ maintPos[1..m][1..n];

dvar float+ expectedTardiness;

dvar float+ expectedTardinessCost;

dvar float+ expectedMaintCost;

dvar float+ expectedTotalCost;

dvar float+ ST[1..m][1..n][1..S];

dvar float+ FT[1..m][1..n][1..S];

/*OF*/

minimize sum(s in 1..S)probability[s]*(sum(i,j in 1..n) PI[i][j][s] +

sum(i in 1..m,q in 1..n, r in 1..o)

PHI[i][q][r]*(SPprime[i][r]+epsilon[i][r][s]*WF));

/*constraints*/

subject to {

 ct04: forall(j in 1..n) sum(q in 1..n) x[j][q] == 1;

 ct05: forall(q in 1..n) sum(j in 1..n) x[j][q] == 1;

147

 /*start times of the first jobs*/

 ct06: forall(s in 1..S)

 ST[1][1][s] == 0;

 ct07: forall(i in 2..m,s in 1..S) ST[i][1][s]

== sum(ii in 1..i-1)Rho[ii][1][s];

 /*start times of the other jobs on the first machine*/

 ct08: forall(q in 2..n,s in 1..S) ST[1][q][s]

== FT[1][q-1][s]+sum(r in 1..o)PHI[1][q][r]*epsilon[1][r][s];

 /*start time of the other jobs on the other machines*/

 ct09: forall(i in 2..m,q in 2..n,s in 1..S) ST[i][q][s]

>= FT[i][q-1][s] + sum(r in 1..o) PHI[i][q][r]*epsilon[i][r][s];

 ct10: forall(i in 2..m,q in 2..n,s in 1..S) ST[i][q][s]

>= FT[i-1][q][s];

 /*finish times*/

 ct11: forall (s in 1..S,q in 1..n,i in 1..m) FT[i][q][s] ==

ST[i][q][s] + Rho[i][q][s];

 ct12: forall(i in 1..m,k in 1..l,s in 1..S) ML[i][1][k][s] ==

MLmax[i][k];

 ct13: forall(i in 1..m,q in 1..n,k in 1..l,s in 1..S)

ML[i][q][k][s] >= sum(j in 1..n) Gamma[i][j][q][s];

 ct14: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S)

ML[i][q][k][s]-ML[i][q-1][k][s]+sum(j in 1..n)Gamma[i][j][q-1][s] >= -

K*(y[i][q][k]);

 ct15: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S)

ML[i][q][k][s]-ML[i][q-1][k][s]+sum(j in 1..n)Gamma[i][j][q-1][s] <=

K*(y[i][q][k]);

 ct16: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S)

ML[i][q][k][s]-MLmax[i][k] >= -K*(1-y[i][q][k]);

 ct17: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S)

ML[i][q][k][s]-MLmax[i][k] <= K*(1-y[i][q][k]);

 ct18: forall(q in 1..n,s in 1..S) t[q][s] >= FT[m][q][s]-sum(j in

1..n) d[j]*x[j][q];

 ct19: forall(j,q in 1..n,s in 1..S) PI[j][q][s]-pi[j]*t[q][s] >=

-K*(1-x[j][q]);

 ct20: forall(j,q in 1..n,s in 1..S) PI[j][q][s]-pi[j]*t[q][s] <=

K*(1-x[j][q]);

 ct21: forall(j,q in 1..n,s in 1..S) PI[j][q][s] >= -K*x[j][q];

 ct22: forall(j,q in 1..n,s in 1..S) PI[j][q][s] <= K*x[j][q];

 ct23: forall(i in 1..m,q in 1..n,s in 1..S) Rho[i][q][s]==sum(j

in 1..n)

p[i][j][s]*(1.0*u[i][j][q][1][s]+1.5*u[i][j][q][2][s]+2.0*u[i][j][q][3]

[s]);

 ct24: forall(i in 1..m, j in 1..n, q in 1..n, h in 1..3,s in

1..S) u[i][j][q][h][s]<=L[i][q][h][s];

 ct25: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3,s in

1..S) u[i][j][q][h][s]<=x[j][q];

 ct26: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3,s in

1..S) u[i][j][q][h][s]>=x[j][q]+L[i][q][h][s]-1;

 ct27: forall(i in 1..m, q in 1..n,s in 1..S)

L[i][q][1][s]+L[i][q][2][s]+L[i][q][3][s]==1;

 ct28: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))>=0.66*L[i][q][1][s]-

K*(L[i][q][2][s]+L[i][q][3][s]);

148

 ct29: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))<=0.66*L[i][q][2][s]+K*(L[i][q][1]

[s]+L[i][q][3][s]);

 ct30: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))>=0.33*L[i][q][2][s]-

K*(L[i][q][1][s]+L[i][q][3][s]);

 ct31: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))<=0.33*L[i][q][3][s]+K*(L[i][q][1]

[s]+L[i][q][2][s]);

 ct32: forall(i in 1..m,j,q in 1..n,s in 1..S)

Gamma[i][j][q][s]<=x[j][q]*K;

 ct33: forall(i in 1..m,j,q in 1..n,s in 1..S)

Gamma[i][j][q][s]<=Rho[i][q][s];

 ct34: forall(i in 1..m,j,q in 1..n,s in 1..S)

Gamma[i][j][q][s]>=Rho[i][q][s]+(x[j][q]-1)*K;

 ct35: forall(i in 1..m,q in 1..n,s in 1..S) sum(r in 1..o)

PHI[i][q][r] <= 1;

 ct36: forall(i in 1..m,q in 1..n,s in 1..S) sum(r in 1..o)

b[r]*PHI[i][q][r] == sum(k in 1..l) a[k]*y[i][q][k];

 /*sequence*/

 ct37: forall (q in 1..n) seq[q]==sum(j in 1..n) x[j,q]*j;

 /*maintenance positions*/

 ct38: forall (i in 1..m,q in 1..n) maintPos[i][q]==sum(r in 1..o)

PHI[i][q][r]*r;

 /*tardiness*/

 ct39: expectedTardiness == sum(j in 1..n,s in

1..S)t[j][s]*probability[s];

 /*costs*/

 ct40: expectedTardinessCost == sum(i,j in 1..n,s in 1..S)

PI[i][j][s]*probability[s];

 ct41: expectedMaintCost == sum(i in 1..m,q in 1..n,r in 1..o,s in

1..S)PHI[i][q][r]*(SPprime[i][r]+epsilon[i][r][s]*WF)*probability[s];

 ct42: expectedTotalCost == expectedTardinessCost +

expectedMaintCost;

}

149

Appendix C: MATLAB Codes Used in Chapter I

150

C.1: Test Problem Generator (CPLEX Data File Generator)

function [

MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost] =

TPG(m,n,l)

close all;
clc;

%% Settings for Random Values
% processing times
PRmin=1;
PRmax=10;

% degradation rates
DGmin=0;
DGmax=2;

% spare parts costs
SPmin=1000;
SPmax=20000;

% workforce hojrly costs
WFmin=500;
WFmax=2000;

% penalty costs
PNmin=500;
PNmax=600;

% maintenance activity execution times
EXmin=1;
EXmax=4;

%% Matrices and Scalars Definition
MLmax=zeros(1,l);
M1=100000;
M2=100000;
prcsTime=zeros(m,n);
dtrRate=zeros(m,n,l);
execTime=zeros(m,l);
spCost=zeros(m,l);
wfCost=zeros(1,l);
dueDate=zeros(1,n);
pnltCost=zeros(1,n);

%% Generation of Matrices and Scalars
for i=1:m
 for j=1:n
 prcsTime(i,j)=randi([PRmin,PRmax],1,1);
 end
end

151

for j=1:n
 dueDate(1,j)=randi([10,30],1,1);
 pnltCost(1,j)=randi([PNmin,PNmax],1,1);
end

for i=1:m
 for j=1:n
 for k=1:l
 dtrRate(i,j,k)= DGmin+(DGmax-DGmin)*rand;
 end
 end
end

% dtrRate=randi([0,3],m,n,l);
%[DTR,R]=max(prcsTime);[DTR2,C]=max(DTR);%find maximum processing time
prcMax=max(max(prcsTime));
for k=1:l
 MLmax(1,k)= DGmax*prcMax;%1000;
 wfCost(1,k)=randi([WFmin,WFmax],1,1);
 for i=1:m
 execTime(i,k)=randi([EXmin,EXmax],1,1);
 spCost(i,k)=randi([SPmin,SPmax],1,1);
 end
end

M1=M1*max(max(MLmax));
M2=M2*PRmax+EXmax*l*m*n;

%% Write into data file (CPLEX OPL .dat file)
fid=fopen(['CPLEX_DataFile_' num2str(m) '-' num2str(n) '-' num2str(l)

'__' datestr(now,'yyyy-mm-dd_HH-MM-SS') '.dat'],'w');
 fprintf(fid,['m=' num2str(m) ';' '\r\n']);
 fprintf(fid,['n=' num2str(n) ';' '\r\n']);
 fprintf(fid,['l=' num2str(l) ';' '\r\n']);
 fprintf(fid,['M1=' num2str(M1) ';' '\r\n']);
 fprintf(fid,['M2=' num2str(M2) ';' '\r\n']);

 STR='MLmax=';
 STR=[STR '[' num2str(MLmax(1,1))];
 for k=2:l
 STR=[STR ',' num2str(MLmax(1,k))];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

 STR='wfCost=';
 STR=[STR '[' num2str(wfCost(1,1))];
 for k=2:l
 STR=[STR ',' num2str(wfCost(1,k))];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

152

 STR='dueDate=';
 STR=[STR '[' num2str(dueDate(1,1))];
 for j=2:n
 STR=[STR ',' num2str(dueDate(1,j))];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

 STR='pnltCost=';
 STR=[STR '[' num2str(pnltCost(1,1))];
 for j=2:n
 STR=[STR ',' num2str(pnltCost(1,j))];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

 % prcsTime
 STR='prcsTime=[';
 for i=1:m
 STR=[STR '[' num2str(prcsTime(i,1))];
 for j=2:n
 STR=[STR ',' num2str(prcsTime(i,j))];
 end
 STR=[STR '],' '\r\n'];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

 % execTime
 STR='execTime=[';
 for i=1:m
 STR=[STR '[' num2str(execTime(i,1))];
 for k=2:l
 STR=[STR ',' num2str(execTime(i,k))];
 end
 STR=[STR '],' '\r\n'];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

 % spCost
 STR='spCost=[';
 for i=1:m
 STR=[STR '[' num2str(spCost(i,1))];
 for k=2:l
 STR=[STR ',' num2str(spCost(i,k))];
 end
 STR=[STR '],' '\r\n'];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

153

 % dtrRate
 STR='dtrRate=[';
 for i=1:m
 STR=[STR '['];
 for j=1:n
 STR=[STR '[' num2str(dtrRate(i,j,1))];
 for k=2:l
 STR=[STR ',' num2str(dtrRate(i,j,k))];
 end
 STR=[STR '],' '\r\n'];
 end
 STR=[STR '],' '\r\n'];
 end
 STR=[STR '];' '\r\n'];
 fprintf(fid,STR);

fprintf(fid,' \r\n');
fclose('all');

154

C.2: Objective Function (Fitness Function)

function [y,z] = SolnCalc(n,m,l,mlx,prc,dtr,exc,spc,wfc,due,plt,seq)

completion=zeros(m,n); % completion time after processing by a machine
tardiness=zeros(1,n);
y=zeros(m,n,l); % MA Positions
ML=zeros(m,n,l);
waitJob=zeros(m,n);

% start calculations.
% IMPORTANT NOTE: I do not set zero values because I already set them

through "zeros" method!

% MLs are at their maximum level at the beginning
for k=1:l
 ML(:,1,k)=mlx(1,k);
end

% ML after first job
for i=1:m
 for j=2:n
 for k=1:l
 ML(i,j,k)=ML(i,j-1,k)-prc(i,seq(1,j-1))*dtr(i,seq(1,j-1),k);
 if ML(i,j,k)<prc(i,seq(1,j))*dtr(i,seq(1,j),k)
 ML(i,j,k)=mlx(1,k);
 y(i,j,k)=1;
 end
 end
 end
end
% display(ML);

% completion times of first job
for i=1:m
 completion(i,1)=sum(prc(1:i,seq(1,1)));
end

for j=2:n
 completion(1,j)=completion(1,j-1)+prc(1,seq(1,j));
 for k=1:l
 completion(1,j)=completion(1,j)+exc(1,k)*y(1,j,k);
 end
end

% all completion times for n>2, m>2
for i=2:m
 for j=2:n
 if completion(i,j-1)>completion(i-1,j)
 waitJob(i,j)=completion(i,j-1)-completion(i-1,j);
 end
 completion(i,j)=completion(i-1,j)+waitJob(i,j)+prc(i,seq(1,j));
 for k=1:l

155

 completion(i,j)=completion(i,j)+exc(i,k)*y(i,j,k);
 end
 end
end

% tardiness calculation
for j=1:n
 if completion(m,j)>due(1,seq(1,j))
 tardiness(1,j)=completion(m,j)-due(1,seq(1,j));
 end
end

% calculation of total cost
z=0;
 % penalty
 for j=1:n
 z=z+tardiness(1,j)*plt(1,seq(1,j));
 end
 % maintenance costs
 for i=1:m
 for j=1:n
 for k=1:l
 z=z+y(i,j,k)*(wfc(1,k)*exc(i,k)+spc(i,k));
 end
 end
 end
N=sum(y);
end

156

C.3: Mutation Function

function z=GAMutate(x,mu,n)

p=ceil(n/5);
y=x;
for k=1:p
 r=rand;
 h=y;
 if mu<r
 j=randsample(n,1); % Selected Points to be Mutated
 i=randsample(n,1);
 h(1,i)=y(1,j);
 h(1,j)=y(1,i);
 end
 y=h;
end

z=h;

end

157

C.4: Crossover Function

function [y1,y2]=GACrossover(x1,x2)

% Single-Point Crossover
n=numel(x1);

c=randi([1 n-1]);

y1=[x1(1:c) x2(c+1:end)];
y2=[x2(1:c) x1(c+1:end)];

% corrections
for i=1:n-c
 if isempty(find(y1(1:c+i-1)==y1(c+i)))==0
 for j=1:n
 if isempty(find(y1(1:c+i-1)==x2(j)))==1
 y1(c+i)=x2(j);
 break
 end
 end
 end
end

for i=1:n-c
 if isempty(find(y2(1:c+i-1)==y2(c+i)))==0
 for j=1:n
 if isempty(find(y2(1:c+i-1)==x1(j)))==1
 y2(c+i)=x1(j);
 break
 end
 end
 end
end

end

158

C.5: The Roulette Wheel Selection Function

function i=GARouletteWheelSelction(p)

 r=rand;

 c=cumsum(p);

 i=find(r<=c,1,'first');

end

159

C.6: The GA

clc;
clear;
close all;

%% Problem Definition

m=7; % no. of machines
n=10; % no. of jobs
l=5; % no. of MLs

ctrl=200; % interations before convergence

VarSize=n; % Decision Variables Matrix Size
ML=zeros(m,n,l);
[MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost] =

TPG(m,n,l);

PreviousBest=-inf;
Counter=0;

%% GA Parameters

MaxIt=100; % Maximum Number of Iterations

nPop=200; % Population Size

pCrossover=0.8; % Crossover Percentage

nCrossover=round(pCrossover*nPop/2)*2; % Number of Parents (Offsprings)

pMutation=0.8; % Mutation Percentage

nMutation=round(pMutation*nPop); % Number of Mutants

mu=0.8; % Mutation rate/prob

SelectionPressure=8; % Selection Pressure

pause(0.01);

%% Initialization

tic

empty_individual.Sequence=[];
empty_individual.Cost=[];
empty_individual.MA=[];

160

pop=repmat(empty_individual,nPop,1);

% First Generation
for i=1:nPop

 % Create Random Solution
 pop(i).Sequence=randperm(n);

 % Evalute Newly Created Solution
 [pop(i).MA,pop(i).Cost]=SolnCalc(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

(i).Sequence);

end

% Sort Population
Costs=[pop.Cost];
[Costs, SortOrder]=sort(Costs);
pop=pop(SortOrder);

% Store Best Solution
BestSol=pop(1);

% Update Worst Cost
WorstCost=max(Costs);

% Array To Hold Best Cost Values
BestCost=zeros(MaxIt,1);

%% GA Main Loop

it=1;

while Counter<ctrl

 % Calculate Selection Probabilities
 p=exp(-SelectionPressure*Costs/WorstCost);
 p=p/sum(p);

 % Crossover
 popc=repmat(empty_individual,nCrossover/2,2);
 for k=1:nCrossover/2
 i1=GARouletteWheelSelction(p);
 i2=GARouletteWheelSelction(p);

 p1=pop(i1);
 p2=pop(i2);

 [popc(k,1).Sequence,

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence);

161

 % Evaluatioan of children
 [popc(k,1).MA,popc(k,1).Cost]=SolnCalc(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

c(k,1).Sequence);
 [popc(k,2).MA,popc(k,2).Cost]=SolnCalc(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

c(k,2).Sequence);

 end

 popc=popc(:);

 % Mutation
 popm=repmat(empty_individual,nMutation,1);
 for k=1: nMutation
 i=GARouletteWheelSelction(p);
 pp=pop(i);

 popm(k).Sequence=GAMutate(pp.Sequence,mu,n);

 % Pst-mutation evaluation
 [popc(k).MA,popm(k).Cost]=SolnCalc(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

c(k).Sequence);

 end

 % Merge
 pop=[pop
 popc
 popm]; %#ok

 % Sort Population
 Costs=[pop.Cost];
 [Costs,SortOrder]=sort(Costs);
 pop=pop(SortOrder);

 % Delete Extra Individuals
 pop=pop(1:nPop);
 Costs=Costs(1:nPop);

 % Store Best Solution
 BestSol=pop(1);
 display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);

 % Update Worst Cost
 WorstCost=max(WorstCost,max(Costs));

 % Store Best Cost
 BestCost(it)=BestSol.Cost;

 % Display Iteration Information

162

 disp(['Iteration ' num2str(it) ': Best Cost = '

num2str(BestCost(it))]);

 % Stoping Condition
 CurrentBest=BestCost(it);
 if CurrentBest==PreviousBest
 Counter=Counter+1;
 end
 if CurrentBest<PreviousBest
 Counter=0;
 end
 if Counter==ctrl
 disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);
 end
 PreviousBest=CurrentBest;
 it=it+1;
end

%% Results

figure;
plot(BestCost,'LineWidth',2);
toc

iteration=it-ctrl;
cost=CurrentBest;

% end

163

Appendix D: MATLAB Codes Used in Chapter II

164

D.1: Test Problem Generator Function

function [

MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost] =

TPG(m,n,l,tp)

close all;
clc;

%% Settings for Random Values
% processing times
PRmin=1;
PRmax=10;

% degradation rates
DGmin=0;
DGmax=2;

% spare parts costs
SPmin=1000;
SPmax=20000;

% workforce hojrly costs
WFmin=500;
WFmax=2000;

% penalty costs
PNmin=500;
PNmax=600;

% maintenance activity execution times
EXmin=1;
EXmax=4;

%% Matrices and Scalars Definition
MLmax=zeros(1,l);
M1=100000;
M2=100000;
prcsTime=zeros(m,n);
dtrRate=zeros(m,n,l);
execTime=zeros(m,l);
spCost=zeros(m,l);
wfCost=zeros(1,l);
dueDate=zeros(1,n);
pnltCost=zeros(1,n);

%% Generation of Matrices and Scalars
for i=1:m
 for j=1:n
 prcsTime(i,j)=randi([PRmin,PRmax],1,1);
 end
end

165

 for j=1:n
 dueDate(1,j)=randi([10,30],1,1);
 pnltCost(1,j)=randi([PNmin,PNmax],1,1);
end

for i=1:m
 for j=1:n
 for k=1:l
 dtrRate(i,j,k)= DGmin+(DGmax-DGmin)*rand;
 end
 end
end

prcMax=max(max(prcsTime));
for k=1:l
 MLmax(1,k)= DGmax*prcMax;%1000;
 wfCost(1,k)=randi([WFmin,WFmax],1,1);
 for i=1:m
 execTime(i,k)=randi([EXmin,EXmax],1,1);
 spCost(i,k)=randi([SPmin,SPmax],1,1);
 end
end

M1=M1*max(max(MLmax));
M2=M2*PRmax+EXmax*l*m*n;

D.2: Updating the Processing Times

function [prc] = updateProcTime(prc,ml)
%
 if ml>=0.66
 prc=prc*1.0;
 end
 if ml<0.66 && ml>=0.33
 prc=prc*1.5;
 end
 if ml<0.33
 prc=prc*2.0;
 end

end

166

D.3: Crossover Function

function [y1,y2]=GACrossover(x1,x2)

% Single-Point Crossover
display(x1);display(x2);
n=numel(x1);

c=randi([1 n-1]);

y1=[x1(1:c) x2(c+1:end)];
y2=[x2(1:c) x1(c+1:end)];

% corrections
for i=1:n-c
 if isempty(find(y1(1:c+i-1)==y1(c+i)))==0
 for j=1:n
 if isempty(find(y1(1:c+i-1)==x2(j)))==1
 y1(c+i)=x2(j);
 break
 end
 end
 end
end

for i=1:n-c
 if isempty(find(y2(1:c+i-1)==y2(c+i)))==0
 for j=1:n
 if isempty(find(y2(1:c+i-1)==x1(j)))==1
 y2(c+i)=x1(j);
 break
 end
 end
 end
end

end

167

D.4: Mutation Function

function x=GAMutate2(x,mu,n)

p=ceil(n/5);
for k=1:p
 r=rand;
 el=randi(n);
 if mu<r
 x(el)=1-x(el);
 end
end

end

Mutation Function of ALG

function x=ALGMutate(x,ML,mu,n,i,kk,l,mlx,prc,seq,exc)
for q=1:n-1
 r=rand;
 if mu<r && x(q)==0
 if 1>0
 x(q)=1;
 end
 end
end

end

168

D.5: Roulette Wheel Selection Function

function i=GARouletteWheelSelction(p)
 display(p);
 r=rand;

 c=cumsum(p);

 i=find(r<=c,1,'first');

end

169

D.6: Fitness Function

function [minL,Tardiness,MaintCost,isFeas,ML] = evalSol(

n,m,l,mlx,prc,dtr,exc,spc,wfc,due,seq,MA,Mem)

% Note: Here we use MA instead of y
display('=====');
display(MA);
completion=zeros(m,n); % completion time after processing by a machine
tardiness=zeros(1,n);
ML=zeros(m,n,l);
waitJob=zeros(m,n);
waitMac=zeros(m,n);
javad=prc;

% start calculations.
% IMPORTANT NOTE: I do not set zero values because I already set them

through "zeros" method!

% MLs are at their maximum level at the beginning
for k=1:l
 ML(:,1,k)=mlx(1,k);
end

% ML after first job
ml=0;
isFeas=1;
for i=1:m
 if isFeas==1
 for q=2:n
 j=seq(1,q);
 jj=seq(1,q-1);
 for k=1:l
 if MA(i,q,k)==1
 ML(i,q,k)=mlx(1,k);
 else
 ML(i,q,k)=ML(i,q-1,k)-prc(i,jj)*dtr(i,jj,k);
 end
 end
 %display(q);display(ML);
 % update MLs
 if nnz(ML<0)==0
 for k=1:l
 ml=ml+(ML(i,q,k)/mlx(1,k))/l;
 end
 % update processing times
 prc(i,j)=updateProcTime(javad(i,j),ml);
 ml=0;
 if nnz(ML(i,q,:)<prc(i,j)*dtr(i,j,:))>0
 isFeas=0;
 break
 end
 else

170

 isFeas=0;
 break
 end
 end
 end
end
% display(ML);
if isFeas==1
 % completion times of first job
 for i=1:m
 completion(i,1)=sum(prc(1:i,seq(1,1)));
 end
 % waitJob for the first machine
 for q=2:n
 for r=2:q
 for k=1:l
 waitJob(1,q)=waitJob(1,q)+exc(1,k)*MA(1,r,k);
 end
 end
 for r=1:q-1
 waitJob(1,q)=waitJob(1,q)+prc(1,seq(1,r));
 end
 end
 % waitMac
 for i=2:m
 waitMac(i,1)=sum(prc(1:i-1,seq(1,1)));
 end
 % completion times of the other jobs after the first machine
 for q=2:n
 completion(1,q)=waitJob(1,q)+prc(1,seq(1,q));
 end
 % all completion times for n>2, m>2
 for i=2:m
 for q=2:n
 if completion(i,q-1)>completion(i-1,q)
 waitJob(i,q)=completion(i,q-1)-completion(i-1,q);
 elseif completion(i-1,q)>completion(i,q-1)
 waitMac(i,q)=completion(i-1,q)-completion(i,q-1);
 end
 completion(i,q)=completion(i-

1,q)+waitJob(i,q)+prc(i,seq(1,q));
 for k=1:l
 completion(i,q)=completion(i,q)+exc(i,k)*MA(i,q,k);
 end
 end
 end
 % new completion time
 CompTime=zeros(1,n);
 for q=1:n
 CompTime(q)=sum(waitJob(:,q))+sum(prc(:,seq(1,q)));
 for k=1:l
 for i=1:m
 CompTime(q)=CompTime(q)+MA(i,q,k)*exc(i,k);
 end

171

 end
 end
 % tardiness calculation
 for q=1:n
 if CompTime(q)>due(1,seq(1,q))
 tardiness(1,q)=CompTime(q)-due(1,seq(1,q));
 end
 end

 % total tardiness (OFV1)
 Tardiness=sum(tardiness);

 %total cost of maintenance (OFV2)
 MaintCost=0;
 for i=1:m
 for q=1:n
 for k=1:l

MaintCost=MaintCost+MA(i,q,k)*(wfc(1,k)*exc(i,k)+spc(i,k));
 end
 end
 end

 %% Satisfaction
 n=size(Mem(1,:,1),2);
 if n>1
 [alpha11,alpha12,betta1,gamma1,alpha21,alpha22,betta2,gamma2] =

getCoef(Mem);
 D=zeros(2,2);
 OFV=[Tardiness MaintCost/1000];
 for g=1:2
 for e=1:2
 D(g,e)=abs(Mem(g,e+1,1)-OFV(g));
 end
 end
 L=zeros(1,2);
 L(1)=-alpha11*D(1,1)-alpha12*D(1,2)+betta1*OFV(1)+gamma1;
 L(2)=-alpha21*D(2,1)-alpha22*D(2,2)+betta2*OFV(2)+gamma2;
 %display(L);

 if nnz(L<0)>0
 minL=-0.0001/sum(OFV);
 else
 minL=-min(L);
 end

 end
else
 minL=0;
 Tardiness=inf;

172

 MaintCost=inf;
end
end

173

D.7: Function for Calculating the Coefficients of the iFMOLP

function [Q11,Q12,l1,s,Q21,Q22,u2,s2]=getCoef(M)
n=size(M(1,:,1),2);
% input: membership matrix
q=zeros(1,n-2);
Z1=M(1,:,1);%example: [90,85,80,76]
g1=M(1,:,2);%example: [0,0.5,0.8,1]
t=zeros(1,n-1);
for i=1:n-1
 t(i)=(g1(i+1)-g1(i))/(Z1(i+1)-Z1(i));
end

for j=1:n-2
 q(j)=(t(j+1)-t(j))/2;
end
l1=(t(3)+t(1))/2;
%%%for bn##
m=(1-g1(n-1))/(Z1(n)-Z1(n-1));
bn=g1(n)-Z1(n)*m;

%%%for b1%%%
m2=(g1(2)-0)/(Z1(2)-Z1(1));

b1=-m2*Z1(1);

s=(b1+bn)/2;
Q11=q(1);
Q12=q(2);

%%%%For the 2nd obj%%%%%%%%%%%%%%%%%%%
Z2=M(2,:,1);%[120,118,110,105]
g2=M(2,:,2);%[0,0.5,0.8,1]
t2=zeros(1,n-1);
for i=1:n-1
 t2(i)=(g2(i+1)-g2(i))/(Z2(i+1)-Z2(i));
end

for i=1:n-2
 q2(i)=(t2(i+1)-t2(i))/2;
end
u2=(t2(3)+t2(1))/2;
%%%for bn##
L=(1-g2(n-1))/(Z2(n)-Z2(n-1));
pn=g2(n)-Z2(n)*L;

%%%for b1%%%
L2=(g2(2)-0)/(Z2(2)-Z2(1));
p1=-L2*Z2(1);
s2=(p1+pn)/2;
Q21=q2(1);
Q22=q2(2);
end

174

D.8: Algorithm 2

function [MA] = getMinMA(n,m,l,mlx,prc,dtr,exc,spc,wfc,due,seq)

MA = zeros(m,n,l);
ML = zeros(m,n,l);
javad = prc;

for k=1:l
 ML(:,1,k)=mlx(1,k);
end

ml=0;
for i=1:m
 for q=2:n
 j = seq(1,q);
 jj = seq(1,q-1);
 for k=1:l
 ML(i,q,k) = ML(i,q-1,k) - prc(i,jj)*dtr(i,jj,k);
 end
 for k=1:l
 ml=ml+(ML(i,q,k)/mlx(1,k))/l;
 end
 % update processing times
 prc(i,j)=updateProcTime(javad(i,j),ml);
 ml=0;
 for k=1:l
 if ML(i,q,k) - prc(i,j)*dtr(i,j,k)<0
 ML(i,q,k)=mlx(1,k);
 MA(i,q,k)=1;
 else
 MA(i,q,k)=0;
 end
 end
 end
end

end

175

D.9: The GAs

Standard GA

function [GA_OFV,GA_Time,GA_Iter,bestTard,bestMaint] = solveGA(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem)

%% Initiate
VarSize=n; % Decision Variables Matrix Size
ctrl=20; % interations for convergence
PreviousBest=-inf;
Counter=0;
%% GA Parameters

MaxIt=100; % Maximum Number of Iterations

nPop=500; % Population Size

pCrossover=0.3; % Crossover Percentage

nCrossover=round(pCrossover*nPop/2)*2; % Number of Parents (Offsprings)

pMutation=0.3; % Mutation Percentage

nMutation=round(pMutation*nPop); % Number of Mutants

mu=0.5; % Mutation rate/prob
mu2=0.5; % Mutation rate/prob for MAs

SelectionPressure=8; % Selection Pressure

pause(0.01);

%% Initialization

tic

empty_individual.Sequence=[];
empty_individual.Cost=[];
empty_individual.MA=zeros(m,n,l);
empty_individual.ML=zeros(m,n,l);
empty_individual.Tardiness=[];
empty_individual.MaintCost=[];
empty_individual.isFeas=0;

pop=repmat(empty_individual,nPop,1);

% First Generation

176

% the randomly generated sequences should be unique!
poppy = randperm(factorial(n),nPop);
for i=1:nPop
 % Create Random Solution
 perm = perms_m(n,poppy(i)-1);
 pop(i).Sequence = perm';
% pop(i).Sequence=randperm(n);
 pop(i).MA(:,2:n,:)=randi([0,1],m,n-1,l);

 % Evalute Newly Created Solution

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem);
 display(i);
end

% Sort Population
Costs=[pop.Cost];
[Costs, SortOrder]=sort(Costs);
pop=pop(SortOrder);

% Store Best Solution
BestSol=pop(1);

% Update Worst Cost
WorstCost=max(Costs);

% Array To Hold Best Cost Values
BestCost=zeros(MaxIt,1);

%% GA Main Loop

it=1;

while Counter<ctrl

 % Calculate Selection Probabilities
 p=-Costs+1;%exp(-SelectionPressure*Costs/WorstCost);
 p=p/sum(p);

 % Crossover
 popc=repmat(empty_individual,nCrossover/2,2);
 for k=1:nCrossover/2
 i1=GARouletteWheelSelction(p);
 i2=GARouletteWheelSelction(p);
% i2=randi(nPop);

 p1=pop(i1);
 p2=pop(i2);

177

 [popc(k,1).Sequence,

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence);
 for i=1:m
 for j=1:l
 [popc(k,1).MA(i,:,j),

popc(k,2).MA(i,:,j)]=GACrossover(p1.MA(i,:,j),p2.MA(i,:,j));
 end
 end

 % Evaluatioan of children

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem);

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem);

 end

 popc=popc(:);

 % Mutation
 popm=repmat(empty_individual,nMutation,1);
 for k=1: nMutation
 i=GARouletteWheelSelction(p);
 pp=pop(i);

 popm(k).Sequence=pp.Sequence;
 for i=1:m
 for j=1:l
 popm(k).MA(i,2:n,j)=GAMutate2(pp.MA(i,2:n,j),mu2,n-1);
 end
 end

 % Pst-mutation evaluation

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,pop(i).isFeas,popc(k,1

).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem);

 end

 % Merge
 pop=[pop
 popc
 popm];

178

 % Sort Population
 Costs=[pop.Cost];
 [Costs,SortOrder]=sort(Costs);
 pop=pop(SortOrder);

 % Delete Extra Individuals
 pop=pop(1:nPop);
 Costs=Costs(1:nPop);

 % Store Best Solution
 BestSol=pop(1);

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost);

 % Update Worst Cost
 WorstCost=max(WorstCost,max(Costs));

 % Store Best Cost
 BestCost(it)=BestSol.Cost;
 bestTard = BestSol.Tardiness;
 bestMaint = BestSol.MaintCost;

 % Display Iteration Information
 disp(['Iteration ' num2str(it) ': Best Cost = '

num2str(BestCost(it))]);

 % Stoping Condition
 CurrentBest=BestCost(it);
 if CurrentBest==PreviousBest
 Counter=Counter+1;
 end
 if CurrentBest<PreviousBest
 Counter=0;
 end
 if Counter==ctrl
 disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);
 end
 PreviousBest=CurrentBest;
 it=it+1;
end

%% Results

% figure;
% plot(BestCost,'LineWidth',2);

GA_Time = toc;
GA_Iter = it-ctrl;
GA_OFV = CurrentBest;
end

179

Lower Bound for Z1

function [GA_OFV,GA_Time,GA_Iter] = solveLBZ1(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem)
% this GA favors Z1; has ALG structure
% are blindly applied to S and y.

%% Initiate
VarSize=n; % Decision Variables Matrix Size
ctrl=20; % interations for convergence
PreviousBest=Inf;
Counter=0;
%% GA Parameters

MaxIt=100; % Maximum Number of Iterations

nPop=500; % Population Size

pCrossover=0.3; % Crossover Percentage

nCrossover=round(pCrossover*nPop/2)*2; % Number of Parents (Offsprings)

pMutation=0.3; % Mutation Percentage

nMutation=round(pMutation*nPop); % Number of Mutants

mu=0.5; % Mutation rate/prob
mu2=0.1; % Mutation rate/prob for MAs

SelectionPressure=8; % Selection Pressure

pause(0.01);

%% Initialization

tic

empty_individual.Sequence=[];
empty_individual.Cost=[];
empty_individual.MA=zeros(m,n,l);
empty_individual.ML=zeros(m,n,l);
empty_individual.Tardiness=[];
empty_individual.MaintCost=[];
empty_individual.isFeas=0;

pop=repmat(empty_individual,nPop,1);

% First Generation
for i=1:nPop
 % Create Random Solution

180

 pop(i).Sequence=randperm(n);
 display('------');
 display(pop(i).Sequence);
 pop(i).MA=getMinMA(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce);
 display(pop(i).MA);
 % Evalute Newly Created Solution

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem);
 display(pop(i).isFeas);
 display(pop(i).ML);
 display(i);
end

% Sort Population
Costs=[pop.Tardiness];
[Costs, SortOrder]=sort(Costs);
pop=pop(SortOrder);
display(Costs);

% Store Best Solution
BestSol=pop(1);

% Update Worst Cost
WorstCost=max(Costs);
if WorstCost==Inf
 WorstCost = Costs(find(Costs==Inf,1)-1);
end

% Array To Hold Best Cost Values
BestCost=zeros(MaxIt,1);

%% GA Main Loop

it=1;

while Counter<ctrl
 % Calculate Selection Probabilities
 p=exp(-SelectionPressure*Costs/WorstCost);%/WorstCost);
 display(p);
 p=p/sum(p);

 % Crossover
 popc=repmat(empty_individual,nCrossover/2,2);
 for k=1:nCrossover/2
 i1=GARouletteWheelSelction(p);
 i2=GARouletteWheelSelction(p);
% i2=randi(nPop);
 display(['i1 is ' num2str(i1) 'i2 is ' num2str(i2)]);

181

 p1=pop(i1);
 p2=pop(i2);

 [popc(k,1).Sequence,

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence);
 popc(k,1).MA=getMinMA(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence);
 popc(k,2).MA=getMinMA(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence);

 % Evaluatioan of children

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem);

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,2).isFeas

,popc(k,2).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem);

 end

 popc=popc(:);

 % Mutation
 popm=repmat(empty_individual,nMutation,1);
 for k=1: nMutation
 i=GARouletteWheelSelction(p);
 pp=pop(i);

 popm(k).Sequence=pp.Sequence;
 for i=1:m
 for j=1:l

popm(k).MA(i,2:n,j)=ALGMutate(pp.MA(i,2:n,j),pp.ML,mu2,n,i,j,l,MLmax,prc

sTime,pp.Sequence,execTime);
 end
 end

 % Pst-mutation evaluation

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,popm(k).isFeas,popm(k)

.ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem);
 end

 % Merge
 pop=[pop

182

 popc
 popm]; %#ok

 % Sort Population
 Costs=[pop.Tardiness];
 [Costs,SortOrder]=sort(Costs);
 pop=pop(SortOrder);

 % Delete Extra Individuals
 pop=pop(1:nPop);
 Costs=Costs(1:nPop);

 % Store Best Solution
 BestSol=pop(1);

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost);

 % Update Worst Cost
 WorstCost=max(WorstCost,max(Costs));

 % Store Best Cost
 BestCost(it)=BestSol.Tardiness;

 % Display Iteration Information
 disp(['Iteration ' num2str(it) ': Best Cost = '

num2str(BestCost(it))]);

 % Stoping Condition
 CurrentBest=BestCost(it);
 if CurrentBest==PreviousBest
 Counter=Counter+1;
 end
 if CurrentBest<PreviousBest
 Counter=0;
 end
 if Counter==ctrl
 disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);
 end
 PreviousBest=CurrentBest;
 it=it+1;
end

%% Results
 % figure;
% plot(BestCost,'LineWidth',2);

GA_Time = toc;
GA_Iter = it-ctrl;
GA_OFV = CurrentBest;
end

183

Lower Bound for Z2

function [GA_OFV,GA_Time,GA_Iter] = solveLBZ2(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem)

%% Initiate
VarSize=n; % Decision Variables Matrix Size
ctrl=20; % interations for convergence
PreviousBest=inf;
Counter=0;
%% GA Parameters

MaxIt=100; % Maximum Number of Iterations

nPop=500; % Population Size

pCrossover=0.3; % Crossover Percentage

nCrossover=round(pCrossover*nPop/2)*2; % Number of Parents (Offsprings)

pMutation=0.3; % Mutation Percentage

nMutation=round(pMutation*nPop); % Number of Mutants

mu=0.5; % Mutation rate/prob
mu2=0.1; % Mutation rate/prob for MAs

SelectionPressure=8; % Selection Pressure

pause(0.01);

%% Initialization

tic

empty_individual.Sequence=[];
empty_individual.Cost=[];
empty_individual.MA=zeros(m,n,l);
empty_individual.ML=zeros(m,n,l);
empty_individual.Tardiness=[];
empty_individual.MaintCost=[];
empty_individual.isFeas=0;

pop=repmat(empty_individual,nPop,1);

% First Generation
for i=1:nPop
 % Create Random Solution
 pop(i).Sequence=randperm(n);

184

 pop(i).MA=getMinMA(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce);

 % Evalute Newly Created Solution

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem);
 display(i);
end

% Sort Population
Costs=[pop.MaintCost];
[Costs, SortOrder]=sort(Costs);
pop=pop(SortOrder);

% Store Best Solution
BestSol=pop(1);

% Update Worst Cost
WorstCost=max(Costs);
if WorstCost==Inf
 WorstCost = Costs(find(Costs==Inf,1)-1);
end

% Array To Hold Best Cost Values
BestCost=zeros(MaxIt,1);

%% GA Main Loop

it=1;

while Counter<ctrl

 % Calculate Selection Probabilities
 p=exp(-SelectionPressure*Costs/WorstCost);%/WorstCost);
 p=p/sum(p);

 % Crossover
 popc=repmat(empty_individual,nCrossover/2,2);
 for k=1:nCrossover/2
 i1=GARouletteWheelSelction(p);
 i2=GARouletteWheelSelction(p);
% i2=randi(nPop);

 p1=pop(i1);
 p2=pop(i2);

 [popc(k,1).Sequence,

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence);

185

 popc(k,1).MA=getMinMA(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence);
 popc(k,2).MA=getMinMA(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence);

 % Evaluatioan of children

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem);

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,2).isFeas

,popc(k,2).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem);

 end

 popc=popc(:);

 % Mutation
 popm=repmat(empty_individual,nMutation,1);
 for k=1: nMutation
 i=GARouletteWheelSelction(p);
 pp=pop(i);

 popm(k).Sequence=pp.Sequence;
 for i=1:m
 for j=1:l

popm(k).MA(i,2:n,j)=ALGMutate(pp.MA(i,2:n,j),pp.ML,mu2,n,i,j,l,MLmax,prc

sTime,pp.Sequence,execTime);
 end
 end

 % Pst-mutation evaluation

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,popm(k).isFeas,popm(k)

.ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem);

 end

 % Merge
 pop=[pop
 popc
 popm]; %#ok

186

 % Sort Population
 Costs=[pop.MaintCost];
 [Costs,SortOrder]=sort(Costs);
 pop=pop(SortOrder);

 % Delete Extra Individuals
 pop=pop(1:nPop);
 Costs=Costs(1:nPop);

 % Store Best Solution
 BestSol=pop(1);

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost);

 % Update Worst Cost
 WorstCost=max(WorstCost,max(Costs));

 % Store Best Cost
 BestCost(it)=BestSol.MaintCost;

 % Display Iteration Information
 disp(['Iteration ' num2str(it) ': Best Cost = '

num2str(BestCost(it))]);

 % Stoping Condition
 CurrentBest=BestCost(it);
 if CurrentBest==PreviousBest
 Counter=Counter+1;
 end
 if CurrentBest<PreviousBest
 Counter=0;
 end
 if Counter==ctrl
 disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);
 end
 PreviousBest=CurrentBest;
 it=it+1;
end

%% Results

% figure;
% plot(BestCost,'LineWidth',2);

GA_Time = toc;
GA_Iter = it-ctrl;
GA_OFV = CurrentBest;
end

187

The ALG

function [GA_OFV,GA_Time,GA_Iter,bestTard,bestMaint] = solveGA(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem)

%% Initiate
VarSize=n; % Decision Variables Matrix Size
ctrl=20; % interations for convergence
PreviousBest=-inf;
Counter=0;
%% GA Parameters

MaxIt=100; % Maximum Number of Iterations

nPop=500; % Population Size

pCrossover=0.3; % Crossover Percentage

nCrossover=round(pCrossover*nPop/2)*2; % Number of Parents (Offsprings)

pMutation=0.3; % Mutation Percentage

nMutation=round(pMutation*nPop); % Number of Mutants

mu=0.3; % Mutation rate/prob
mu2=0.3; % Mutation rate/prob for MAs

SelectionPressure=8; % Selection Pressure

pause(0.01);

%% Initialization

tic

empty_individual.Sequence=[];
empty_individual.Cost=[];
empty_individual.MA=zeros(m,n,l);
empty_individual.ML=zeros(m,n,l);
empty_individual.Tardiness=[];
empty_individual.MaintCost=[];
empty_individual.isFeas=0;

pop=repmat(empty_individual,nPop,1);

poppy = randperm(factorial(n),nPop);
for i=1:nPop
 % Create Random Solution
 perm = perms_m(n,poppy(i)-1);
 pop(i).Sequence = perm';

188

% pop(i).Sequence=randperm(n);
 pop(i).MA=getMinMA(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce);

 % Evalute Newly Created Solution

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem);
 display(i);
end

% Sort Population
Costs=[pop.Cost];
[Costs, SortOrder]=sort(Costs);
pop=pop(SortOrder);

% Store Best Solution
BestSol=pop(1);

% Update Worst Cost
WorstCost=max(Costs);
if WorstCost==0
 WorstCost = Costs(find(Costs==0,1)-1);
end

% Array To Hold Best Cost Values
BestCost=zeros(MaxIt,1);

%% GA Main Loop

it=1;

while Counter<ctrl

 % Calculate Selection Probabilities
 p=-Costs+1;
%
 p=p/sum(p);

 % Crossover
 popc=repmat(empty_individual,nCrossover/2,2);
 for k=1:nCrossover/2
 i1=GARouletteWheelSelction(p);
 i2=GARouletteWheelSelction(p);
% i2=randi(nPop);

 p1=pop(i1);
 p2=pop(i2);

189

 [popc(k,1).Sequence,

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence);
 for i=1:m
 for j=1:l
 [popc(k,1).MA(i,:,j),

popc(k,2).MA(i,:,j)]=GACrossover(p1.MA(i,:,j),p2.MA(i,:,j));
 end
 end

 % Evaluatioan of children

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem);

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,2).isFeas

,popc(k,2).ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem);

 end

 popc=popc(:);

 % Mutation
 popm=repmat(empty_individual,nMutation,1);
 for k=1: nMutation
 i=GARouletteWheelSelction(p);
 pp=pop(i);

 popm(k).Sequence=pp.Sequence;
 for i=1:m
 for j=1:l
 popm(k).MA(i,2:n,j)=GAMutate2(pp.MA(i,2:n,j),mu2,n-1);
 end
 end

 % Pst-mutation evaluation

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,popm(k).isFeas,popm(k)

.ML]=evalSol(

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem);

 end

 % Merge
 pop=[pop
 popc
 popm];

190

 % Sort Population
 Costs=[pop.Cost];
 [Costs,SortOrder]=sort(Costs);
 pop=pop(SortOrder);

 % Delete Extra Individuals
 pop=pop(1:nPop);
 Costs=Costs(1:nPop);

 % Store Best Solution
 BestSol=pop(1);

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost);

 % Update Worst Cost
 WorstCost=max(WorstCost,max(Costs));

 % Store Best Cost
 BestCost(it)=BestSol.Cost;
 bestTard = BestSol.Tardiness;
 bestMaint = BestSol.MaintCost;

 % Display Iteration Information
 disp(['Iteration ' num2str(it) ': Best Cost = '

num2str(BestCost(it))]);

 % Stoping Condition
 CurrentBest=BestCost(it);
 if CurrentBest==PreviousBest
 Counter=Counter+1;
 end
 if CurrentBest<PreviousBest
 Counter=0;
 end
 if Counter==ctrl
 disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);
 end
 PreviousBest=CurrentBest;
 it=it+1;
end

%% Results
%
% figure;
% plot(BestCost,'LineWidth',2);

GA_Time = toc;
GA_Iter = it-ctrl;
GA_OFV = CurrentBest;
end

191

D.10: A Function for Writing CPLEX Data Files

function writeCPLEX(

m,n,l,tp,MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnl

tCost,Mem)
fid=fopen(['CPLEX_16A_DataFile_' num2str(m) '-' num2str(n) '-'

num2str(l) '_tp' num2str(tp) '.dat'],'w');
fprintf(fid,['m=' num2str(m) ';' '\r\n']);
fprintf(fid,['n=' num2str(n) ';' '\r\n']);
fprintf(fid,['l=' num2str(l) ';' '\r\n']);
fprintf(fid,['M1=' num2str(M1) ';' '\r\n']);
fprintf(fid,['M2=' num2str(M2) ';' '\r\n']);

STR='MLmax=';
STR=[STR '[' num2str(MLmax(1,1))];
for k=2:l
 STR=[STR ',' num2str(MLmax(1,k))];
end
STR=[STR '];' '\r\n'];
fprintf(fid,STR);

STR='wfCost=';
STR=[STR '[' num2str(wfCost(1,1))];
for k=2:l
 STR=[STR ',' num2str(wfCost(1,k))];
end
STR=[STR '];' '\r\n'];
fprintf(fid,STR);

STR='dueDate=';
STR=[STR '[' num2str(dueDate(1,1))];
for j=2:n
 STR=[STR ',' num2str(dueDate(1,j))];
end
STR=[STR '];' '\r\n'];
fprintf(fid,STR);

% prcsTime
STR='prcsTime=[';
for i=1:m
 STR=[STR '[' num2str(prcsTime(i,1))];
 for j=2:n
 STR=[STR ',' num2str(prcsTime(i,j))];
 end
 STR=[STR '],' '\r\n'];
end
trimPoint = numel(STR)-5;
STR=[STR(1:trimPoint) '\r\n' '];' '\r\n'];
fprintf(fid,STR);

% execTime
STR='execTime=[';
for i=1:m

192

 STR=[STR '[' num2str(execTime(i,1))];
 for k=2:l
 STR=[STR ',' num2str(execTime(i,k))];
 end
 STR=[STR '],' '\r\n'];
end
trimPoint = numel(STR)-5;
STR=[STR(1:trimPoint) '\r\n' '];' '\r\n'];
fprintf(fid,STR);

% spCost
STR='spCost=[';
for i=1:m
 STR=[STR '[' num2str(spCost(i,1))];
 for k=2:l
 STR=[STR ',' num2str(spCost(i,k))];
 end
 STR=[STR '],' '\r\n'];
end
trimPoint = numel(STR)-5;
STR=[STR(1:trimPoint) '\r\n' '];' '\r\n'];
fprintf(fid,STR);

% dtrRate
STR='dtrRate=[';
for i=1:m
 STR=[STR '['];
 for j=1:n
 STR=[STR '[' num2str(dtrRate(i,j,1))];
 for k=2:l
 STR=[STR ',' num2str(dtrRate(i,j,k))];
 end
 STR=[STR '],' '\r\n'];
 end
 trimPoint = numel(STR)-5;
 STR=[STR(1:trimPoint) '],' '\r\n'];
end
trimPoint = numel(STR)-5;
STR=[STR(1:trimPoint) '];' '\r\n'];
fprintf(fid,STR);

fprintf(fid,' \r\n');
%% iFMOLP parameters
% get the coefficients
[alpha11,alpha12,betta1,gamma1,alpha21,alpha22,betta2,gamma2] = getCoef(

Mem);

%write
STR = ['alpha11=' num2str(alpha11) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['alpha12=' num2str(alpha12) ';'];

193

fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['betta1=' num2str(betta1) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['gamma1=' num2str(gamma1) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['alpha21=' num2str(alpha21) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['alpha22=' num2str(alpha22) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['betta2=' num2str(betta2) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['gamma2=' num2str(gamma2) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['mem12=' num2str(Mem(1,2,1)) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['mem13=' num2str(Mem(1,3,1)) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['mem22=' num2str(Mem(2,2,1)) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['mem23=' num2str(Mem(2,3,1)) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

%% iFMOLP Model
fprintf(fid,'/************i-FMOLP model');
fprintf(fid,' \r\n');
% write
STR = ['S<=-(' num2str(alpha11) ')*(e11-d11)-(' num2str(alpha12)

')*(e12-d12)+(' num2str(betta1) ')*(sum(q in 1..n)tardiness[q])+('

num2str(gamma1) ');'];
fprintf(fid,STR);

194

fprintf(fid,' \r\n');

STR = ['S<=-(' num2str(alpha21) ')*(e21-d21)-(' num2str(alpha22)

')*(e22-d22)+(' num2str(betta2) ')*(sum(i in 1..m,q in 1..n,k in

1..l)y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+('

num2str(gamma2) ');'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['sum(q in 1..n) tardiness[q]+e11-d11==' num2str(Mem(1,2,1))

';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['sum(q in 1..n) tardiness[q]+e12-d12==' num2str(Mem(1,3,1))

';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['(sum(i in 1..m,q in 1..n,k in 1..l)

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e21-d21=='

num2str(Mem(2,2,1)) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

STR = ['(sum(i in 1..m,q in 1..n,k in 1..l)

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e22-d22=='

num2str(Mem(2,3,1)) ';'];
fprintf(fid,STR);
fprintf(fid,' \r\n');

fprintf(fid,' \r\n');
fprintf(fid,'************/');
fclose('all');

end

195

D.11: Automation of the Computational Experiments

clc;
clear;
close all;

%determining the size
for m=2:2
 for n=15:15%[6,10,15]
 for l=3:3%[1,2,3]
 filename = ['16A-Results-' num2str(m) '-' num2str(n) '-'

num2str(l) '.xlsx'];
 A = [];
 sheet = 'Sheet1';
 row = 2;
 xlRange = ['A' num2str(row)];
 for tp=1:30
 try
 % generate test problem
 [

MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost] =

TPG(m,n,l,tp);
 % calculate the membership function (Mem)
 Mem = zeros(2,4,2);

 % calculate the lower bound of z1; a GA just for

tardiness
 [LBZ1_OFV,LBZ1_Time,LBZ1_Iter] = solveLBZ1(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem);
 % calculate the lower bound of z2; a GA just for

MaintCost
 [LBZ2_OFV,LBZ2_Time,LBZ2_Iter] = solveLBZ2(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem);
 LBZ2_OFV = LBZ2_OFV/1000;
 % form the table
 Mem(1,4,1)=3*LBZ1_OFV/4;
 Mem(2,4,1)=3*LBZ2_OFV/4;
 for me=1:3
 me2=4-me;
 Mem(1,me2,1)=LBZ1_OFV+me*(1*LBZ1_OFV/3);
 Mem(2,me2,1)=LBZ2_OFV+me*(1*LBZ2_OFV/3);
 end
 Mem(1,:,2)=[0.0 0.5 0.75 1.0];
 Mem(2,:,2)=[0.0 0.5 0.75 1.0];
 % CPLEX: write data file and iFMOLP-part of the

model

writeCPLEX(m,n,l,tp,MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,

dueDate,pnltCost,Mem);

 % solve with GA

196

 [GA_OFV,GA_Time,GA_Iter,GA_z1,GA_z2] = solveGA(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem);
 % solve with ALG
 [ALG_OFV,ALG_Time,ALG_Iter,ALG_z1,ALG_z2] =

solveALG(

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem);
 % save the results
 tt=[m n l tp LBZ1_OFV LBZ2_OFV GA_OFV GA_Time

GA_Iter GA_z1 GA_z2 ALG_OFV ALG_Time ALG_Iter ALG_z1 ALG_z2 0 0 0 0];
 A=[A;tt];

 catch
 tt=[m n l tp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
 A=[A;tt];
 end
 end
 % print the results in Excel
 xlswrite(filename,A,sheet,xlRange);
 end
 end
end

197

Appendix E: MATLAB Codes Used in Chapter III

198

E.1: Computational Experiments Main File

clc;
clear;
%% Experiment Iniital setting
filename='Experiments.xlsx';

phase=4;
nTP=30; % Number of Test Problems

sheet=strcat('phase', num2str(phase));

switch phase
 case 0
 N=[4,6,8];
 DDTF=4;
 maxML=50;
 POP=[25,50,100,200,400];

 case 1
 N=4;
 DDTF=4;
 maxML=50;
 POP=400;
 case 2
 N=5:9;
 DDTF=4;
 maxML=50;
 POP=200;
 case 3
 N=4;
 DDTF=3:4;
 maxML=50;
 POP=200;
 case 4
 N=4;
 DDTF=4;
 maxML=[40 50 60];
 POP=200;
end

gaParameter.MaxIt=100; % Max Iteration of

GA
gaParameter.MaxStall=floor(0.20*gaParameter.MaxIt); % Stall Counter

ROWs=size(POP,1)*size(N,1)*size(maxML,1)*size(DDTF,1)*nTP;

data=zeros(ROWs,10); % matrix to store

resutls
xlswrite(filename,data(:,1:2),sheet,'A3')

199

xlswrite(filename,data(:,3:end),sheet,'H3')
%% Run Experiment
row=0;
for n=N
 for k=maxML
 experiment.maxML=k;
 experiment.N=n;
 experiment.phase=phase;
 for q=DDTF
 experiment.DDTF=q;
 for TP=1:nTP
 experiment.TP=TP;
 model=CreateModel(experiment); % Create

Model
 for popSize=POP
 disp(['Test Problem ', num2str(TP), ' for

N=',num2str(n),', maxML=',num2str(k),', DDTF=',num2str(q),', and

PopSize=',num2str(popSize),' initilized ...'])
 gaParameter.nPop=popSize; %

Population size of GA
 row=row+1;
 tStart = tic; % model

start time
 BestSol = ga(model,gaParameter); % Call

GA
 tElapsed = toc(tStart);

%Calculating Computation time

 % Store data
 z=BestSol.Sol.TotalCost;
 z1=BestSol.Sol.AvgMAcost;
 z2=BestSol.Sol.AvgTardinessCost;
 it=BestSol.it;

 data(row,:)=[popSize, n, q, k, TP, tElapsed, z, z1,

z2, it];
 xlswrite(filename,data(row,1:5),sheet,['A'

num2str(2+row)])
 xlswrite(filename,data(row,6:end),sheet,['J'

num2str(2+row)])
 disp('*** Test problem completed.')
 end
 end
 end
 end
end
save('data');

200

E.2: Test Problem Generator

function model=CreateModel(experiment)
% clear;
%% Initial Parameters
N=experiment.N;
TP=experiment.TP;
DDTF=experiment.DDTF; % Due Date Tightness Factor vals=(3 4 5)
maxML=experiment.maxML; % Max Maintanace Level for each MA
M=3; % Number of Machines
L=3; % Number of Maintanance Activities
R=30; % Number of simulation replications
nVar=N+(N-1)*M; % Number of Decision Variables
%% Stochastic Data Distributions

% 1- Jobs TRI parameters
 JobsTRI_Parameters=zeros(N,3); % Triangular Dist

Matrix (Holds min,mLikely, max for each job processing time
 for j=1:N
 parameters=randsample(20:120,3); % Picking 3 numbers

b/w 20 and 120 for TRI parameters
 JobsTRI_Parameters(j,:)=sort(parameters);
 end

% 2- MAs TRI parameters
 MAsTRI_Parameters=zeros(L,3); % Triangular Dist

Matrix (Holds min,mLikely, max for each MAs Duration
 for k=1:L
 parameters=randsample(8:30,3); % Picking 3 numbers

b/w 8 and 30 for TRI parameters
 MAsTRI_Parameters(k,:)=sort(parameters);
 end

 % Jobs Due Date Info
 eCmax=N*(max(JobsTRI_Parameters(:))+max(JobsTRI_Parameters(:)));

% Estimated Cmax

jobsDD=[max(JobsTRI_Parameters(:))+max(JobsTRI_Parameters(:)),round(2*eC

max/DDTF)]; % UNIF(a b)

 jobsPC=[10 20]; % Jobs

Penalty Cost: UNIF(a b)
 MAspc=[150 450]; % MA

spare part cost: UNIF(a b)
 MAwfc=20; % MA

work force cost
 maxLevels=[4*maxML 5*maxML 6*maxML]; % MA Max

Levels: Fixed

 MA_Types=[0 0 0; 1 0 0; 0 1 0; 0 0 1; 1 1 0; 1 0 1; 0 1 1; 1 1 1];
 MADUDR=[1, 0.85, 0.75];

%Maitanace Activity Duration Discount Rate

201

 PTIR=[1 1; 0.66 1.5; 0.33 2;-5.00 2];

%Maitanace Activity Duration Discount Rate

%% Population based data
 %1-Jobs
 empty_job.ST=zeros(1,M); % Start Time of job on machine m
 empty_job.FT=zeros(1,M); % Finish Time of job on machine m
 empty_job.Dd=0; % Due Date of job j
 empty_job.LateP=0; % Lateliness Penalty cost of job j

per time unit
 empty_job.TDcost=0; % Tardiness COst of Job j
 empty_job.Du=zeros(R,M); % Duration of job on machine m
 empty_job.MADu=zeros(R,M); % Maintanance Activity Duration of

before starting job
 empty_job.MACost=zeros(R,M); % Maintanance Activity Duration of

before starting job
 empty_job.MA=zeros(L,M); % Maitanance Activity type (0-7)/

Check the excel table
 empty_job.TRI=zeros(1,3); % Triangular Dist. Parameters used

to genereate the processing time for the job

 Job=repmat(empty_job,1,N); % Create the population of jobs

 %% Generating Jobs Info
 for j=1:N
 for i=1:M
 for rep=1:R
 Job(j).Du(rep,i)=round(randDist('TRIA',

JobsTRI_Parameters(j,1),

JobsTRI_Parameters(j,2),JobsTRI_Parameters(j,3)));
 end
 end
 Job(j).Dd=round(randDist('UNI', jobsDD(1), jobsDD(2)));
 Job(j).LateP=round(randDist('UNI', jobsPC(1), jobsPC(2)));
 Job(j).TRI=JobsTRI_Parameters(j,:);
 end

%% Generating MAs Info
 empty_MA.MaxLevel=0; % Max level of MAs
 empty_MA.wf=0; % Workforce Cost of MA l per

time unit
 empty_MA.Level=zeros(1,M); % Initial Maitanace Level of

part l on machine m
 empty_MA.count=zeros(1,M); % Number of replacement of

part l
 empty_MA.sp=zeros(1,M); % Spare Part cost of MA l on

machine m
 empty_MA.TRI=zeros(1,3); % TRI dist parameters to

generate MAs Duration
 empty_MA.Du=zeros(R,M); % Duration time to replace

part l on machine m
 empty_MA.timeLevel=zeros(R,M,2,N*2); % Status of Maitanance Level

of each part on each machine before and after each job

202

 MA=repmat(empty_MA,1,L);

 % Define Duration of maintanace on each machine

 for k=1:L
 for i=1:M
 for rep=1:R
 MA(k).Du(rep,i)=round(randDist('TRIA',

MAsTRI_Parameters(k,1),MAsTRI_Parameters(k,2),MAsTRI_Parameters(k,2)));
 end
 MA(k).sp(1,i)=round(randDist('UNI',MAspc(1),MAspc(2)));
 end
 MA(k).MaxLevel=maxLevels(k);
 MA(k).wf=MAwfc;
 MA(k).Level(1,:)=maxLevels(k);
 MA(k).TRI=MAsTRI_Parameters(k,:);
 end

%% Capsulate Model
 model.N=N;
 model.M=M;
 model.L=L;
 model.R=R;
 model.Job=Job;
 model.MA=MA;
 model.nVar=nVar;
 model.MA_Types=MA_Types;
 model.MADUDR=MADUDR;
 model.PTIR=PTIR;
 model.TP=TP;
 model.phase=experiment.phase;
 model.DDTF=DDTF;
 model.maxML=experiment.maxML;
 save('model');
%% Create CPLEX File
 CreateCPLEXFile(model);

203

E.3: CPLEX Data File Writer

function CreateCPLEXFile(model)

%% Extract Info from model
TP=model.TP;
N=model.N;
M=model.M;
L=model.L;
R=model.R;
Job=model.Job;
MA=model.MA;
DDTF=model.DDTF;
maxML=model.maxML;
phase = model.phase;
%% Initiliziation
 O=2^L-1; %number of combinations

 fid=fopen(['17D_CPLEX_N' num2str(N) '-DDTF' num2str(DDTF) '-maxML'

num2str(maxML) '-TP' num2str(TP) '-Phase' num2str(phase) '.dat'],'w');
 fprintf(fid,['/* Project 17D */' '\r\n' '/*Date: '

datestr(now,'yyyy-mm-dd_HH-MM-SS') '*/' '\r\n']);
 fprintf(fid,['/*=====================================*/' '\r\n']);
 fprintf(fid,['m=' num2str(M) ';' '\r\n']);
 fprintf(fid,['n=' num2str(N) ';' '\r\n']);
 fprintf(fid,['l=' num2str(L) ';' '\r\n']);
 fprintf(fid,['S=' num2str(R) ';' '\r\n']);
 fprintf(fid,['o=' num2str(O) ';' '\r\n']);

 fprintf(fid,['K=' num2str(100000) ';' '\r\n']);

 %probabilities
 str = 'probability =';
 prob = 1/R;
 str = [str '[' num2str(prob)];
 for s=2:R
 str = [str ',' num2str(prob)];
 end
 str = [str '];' '\r\n'];
 fprintf(fid,str);

 %processing times
 str = 'p = [';
 for i=1:M-1
 str=[str '['];
 for j=1:N-1
 str=[str '[' num2str(Job(j).Du(1,i))];
 for s=2:R
 str=[str ',' num2str(Job(j).Du(s,i))];
 end
 str=[str '],'];
 end
 str=[str '[' num2str(Job(N).Du(1,i))];

204

 for s=2:R
 str=[str ',' num2str(Job(N).Du(s,i))];
 end
 str=[str ']'];
 str=[str '],'];
 end
 str=[str '['];
 for j=1:N-1
 str=[str '[' num2str(Job(j).Du(1,M))];
 for s=2:R
 str=[str ',' num2str(Job(j).Du(s,M))];
 end
 str=[str '],'];
 end
 str=[str '[' num2str(Job(N).Du(1,M))];
 for s=2:R
 str=[str ',' num2str(Job(N).Du(s,M))];
 end
 str=[str ']]];' '\r\n'];
 fprintf(fid,str);

 %maintenance durations (combinations)
 str = ['epsilon = [' '\r\n'];
 for i=1:M-1
 str=[str '['];
 for o=1:O-1
 if o<4
 str = [str '[' num2str(MA(o).Du(1,i))];
 elseif o==4
 str = [str '['

num2str(0.75*(MA(1).Du(1,i)+MA(2).Du(1,i)))];
 elseif o==5
 str = [str '['

num2str(0.75*(MA(1).Du(1,i)+MA(3).Du(1,i)))];
 elseif o==6
 str = [str '['

num2str(0.75*(MA(2).Du(1,i)+MA(3).Du(1,i)))];
 elseif o==7
 str = [str '['

num2str(0.60*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i)))];
 end
 for s=2:R
 if o<4
 str = [str ',' num2str(MA(o).Du(s,i))];
 elseif o==4
 str = [str ','

num2str(0.75*(MA(1).Du(s,i)+MA(2).Du(s,i)))];
 elseif o==5
 str = [str ','

num2str(0.75*(MA(1).Du(s,i)+MA(3).Du(s,i)))];
 elseif o==6
 str = [str ','

num2str(0.75*(MA(2).Du(s,i)+MA(3).Du(s,i)))];
 elseif o==7

205

 str = [str ','

num2str(0.60*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))];
 end
 end
 str=[str '],' '\r\n'];
 end
 str = [str '['

num2str(0.60*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i)))];
 for s=2:R
 str = [str ','

num2str(0.60*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))];
 end
 str = [str ']],' '\r\n'];
 end
 str=[str '['];
 for o=1:O-1
 if o<4
 str = [str '[' num2str(MA(o).Du(1,M))];
 elseif o==4
 str = [str '[' num2str(0.75*(MA(1).Du(1,M)+MA(2).Du(1,M)))];
 elseif o==5
 str = [str '[' num2str(0.75*(MA(1).Du(1,M)+MA(3).Du(1,M)))];
 elseif o==6
 str = [str '[' num2str(0.75*(MA(2).Du(1,M)+MA(3).Du(1,M)))];
 elseif o==7
 str = [str '['

num2str(0.60*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,i)))];
 end
 for s=2:R
 if o<4
 str = [str ',' num2str(MA(o).Du(s,M))];
 elseif o==4
 str = [str ','

num2str(0.75*(MA(1).Du(s,M)+MA(2).Du(s,M)))];
 elseif o==5
 str = [str ','

num2str(0.75*(MA(1).Du(s,M)+MA(3).Du(s,M)))];
 elseif o==6
 str = [str ','

num2str(0.75*(MA(2).Du(s,M)+MA(3).Du(s,M)))];
 elseif o==7
 str = [str ','

num2str(0.60*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))];
 end
 end
 str=[str '],' '\r\n'];
 end
 str = [str '['

num2str(0.60*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,M)))];
 for s=2:R
 str = [str ','

num2str(0.60*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))];
 end
 str = [str ']]];' '\r\n'];

206

 fprintf(fid,str);

 %maintenance durations (original)
 str = ['epsilon2 = [' '\r\n'];
 for i=1:M-1
 str=[str '['];
 for o=1:O-1
 if o<4
 str = [str '[' num2str(MA(o).Du(1,i))];
 elseif o==4
 str = [str '['

num2str(1.0*(MA(1).Du(1,i)+MA(2).Du(1,i)))];
 elseif o==5
 str = [str '['

num2str(1.0*(MA(1).Du(1,i)+MA(3).Du(1,i)))];
 elseif o==6
 str = [str '['

num2str(1.0*(MA(2).Du(1,i)+MA(3).Du(1,i)))];
 elseif o==7
 str = [str '['

num2str(1.0*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i)))];
 end
 for s=2:R
 if o<4
 str = [str ',' num2str(MA(o).Du(s,i))];
 elseif o==4
 str = [str ','

num2str(1.0*(MA(1).Du(s,i)+MA(2).Du(s,i)))];
 elseif o==5
 str = [str ','

num2str(1.0*(MA(1).Du(s,i)+MA(3).Du(s,i)))];
 elseif o==6
 str = [str ','

num2str(1.0*(MA(2).Du(s,i)+MA(3).Du(s,i)))];
 elseif o==7
 str = [str ','

num2str(1.0*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))];
 end
 end
 str=[str '],' '\r\n'];
 end
 str = [str '['

num2str(1.0*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i)))];
 for s=2:R
 str = [str ','

num2str(1.0*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))];
 end
 str = [str ']],' '\r\n'];
 end
 str=[str '['];
 for o=1:O-1
 if o<4

207

 str = [str '[' num2str(MA(o).Du(1,M))];
 elseif o==4
 str = [str '[' num2str(1.0*(MA(1).Du(1,M)+MA(2).Du(1,M)))];
 elseif o==5
 str = [str '[' num2str(1.0*(MA(1).Du(1,M)+MA(3).Du(1,M)))];
 elseif o==6
 str = [str '[' num2str(1.0*(MA(2).Du(1,M)+MA(3).Du(1,M)))];
 elseif o==7
 str = [str '['

num2str(1.0*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,i)))];
 end
 for s=2:R
 if o<4
 str = [str ',' num2str(MA(o).Du(s,M))];
 elseif o==4
 str = [str ','

num2str(1.0*(MA(1).Du(s,M)+MA(2).Du(s,M)))];
 elseif o==5
 str = [str ','

num2str(1.0*(MA(1).Du(s,M)+MA(3).Du(s,M)))];
 elseif o==6
 str = [str ','

num2str(1.0*(MA(2).Du(s,M)+MA(3).Du(s,M)))];
 elseif o==7
 str = [str ','

num2str(1.0*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))];
 end
 end
 str=[str '],' '\r\n'];
 end
 str = [str '['

num2str(1.0*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,M)))];
 for s=2:R
 str = [str ','

num2str(1.0*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))];
 end
 str = [str ']]];' '\r\n'];
 fprintf(fid,str);

 %ML_max
 str = ['MLmax = [' num2str(MA(1).MaxLevel) ','

num2str(MA(2).MaxLevel) ',' num2str(MA(3).MaxLevel) '];' '\r\n'];
 fprintf(fid,str);

 %Spare part cost for MA combinations
 str =['SPprime = [' '\r\n'];
 for i=1:M-1
 str = [str '[' num2str(MA(1).sp(i))];
 str = [str ',' num2str(MA(2).sp(i))];
 str = [str ',' num2str(MA(3).sp(i))];
 str = [str ',' num2str(MA(1).sp(i) + MA(2).sp(i))];
 str = [str ',' num2str(MA(1).sp(i) + MA(3).sp(i))];
 str = [str ',' num2str(MA(2).sp(i) + MA(3).sp(i))];

208

 str = [str ',' num2str(MA(1).sp(i) + MA(2).sp(i) +

MA(3).sp(i))];
 str = [str '],' '\r\n'];
 end
 str = [str '[' num2str(MA(1).sp(M))];
 str = [str ',' num2str(MA(2).sp(M))];
 str = [str ',' num2str(MA(3).sp(M))];
 str = [str ',' num2str(MA(1).sp(M) + MA(2).sp(M))];
 str = [str ',' num2str(MA(1).sp(M) + MA(3).sp(M))];
 str = [str ',' num2str(MA(2).sp(M) + MA(3).sp(M))];
 str = [str ',' num2str(MA(1).sp(M) + MA(2).sp(M) + MA(3).sp(M))

']];' '\r\n'];

 fprintf(fid,str);

 %Work Force Unit Cost
 str = ['WF = 20;' '\r\n'];
 fprintf(fid,str);

 %due dates
 str = ['d = [' num2str(Job(1).Dd)];
 for j=2:N
 str = [str ',' num2str(Job(j).Dd)];
 end
 str = [str '];' '\r\n'];
 fprintf(fid,str);

 %penaltis
 str = ['pi = [' num2str(Job(1).LateP)];
 for j=2:N
 str = [str ',' num2str(Job(j).LateP)];
 end
 str = [str '];' '\r\n'];
 fprintf(fid,str);

 fprintf(fid,['a = [1.1,1.2,1.3];' '\r\n']);
 fprintf(fid,['b = [1.1,1.2,1.3,2.3,2.4,2.5,3.6];' '\r\n']);

 %the end of the CPLEX data file

end

209

E.4: Crossover Function

function [y1 y2]=Crossover(x1,x2,gamma,VarMin,VarMax)

 alpha=unifrnd(-gamma,1+gamma,size(x1));

 y1=alpha.*x1+(1-alpha).*x2;
 y2=alpha.*x2+(1-alpha).*x1;

 y1=max(y1,VarMin);
 y1=min(y1,VarMax);

 y2=max(y2,VarMin);
 y2=min(y2,VarMax);

end

210

E.5: Mutation Function

function y=Mutate(x,mu,VarMin,VarMax)

 nVar=numel(x);

 nmu=ceil(mu*nVar);

 j=randsample(nVar,nmu);

 sigma=0.1*(VarMax-VarMin);

 y=x;
 y(j)=x(j)+sigma*randn(size(j))';

 y=max(y,VarMin);
 y=min(y,VarMax);

end

211

E.6: Roulette Wheel Selection Function

function i=RouletteWheelSelection(P)

 r=rand;

 c=cumsum(P);

 i=find(r<=c,1,'first');

end

212

E.7: The GA and Related Functions

function BestSol = ga(model,gaParameter)
clearvars -except model gaParameter

 global NFE;
 NFE=0;

 CostFunction=@(q) MyCost(q,model); % Cost Function

 nVar=model.nVar; % Number of Decision

Variables
 VarSize=[1 nVar]; % Size of Decision Variables

Matrix

 VarMin=0; % Lower Bound of Variables
 VarMax=1; % Upper Bound of Variables
%% GA Parameters
 MaxIt=gaParameter.MaxIt; % Maximum Number of

Iterations
 nPop=gaParameter.nPop; % Population Size

 pc=0.8; % Crossover Percentage
 nc=2*round(pc*nPop/2); % Number of Offsprings

(Parnets)

 pm=0.8; % Mutation Percentage
 nm=round(pm*nPop); % Number of Mutants

 gamma=0.05; % Normal Dist Mutation

Factor
 mu=0.03; % Mutation Rate

 % Roulette Wheel Selection Parameters
 beta=8; % Selection Pressure

 % Stall Parameter
 StallCounter=0; % Stall Counter
 MaxStall=gaParameter.MaxStall; % Max number of Stalls
 BestSol.Cost=10^6; % big M

%% Initialization

 empty_individual.Position=[];
 empty_individual.Cost=[];

 pop=repmat(empty_individual,nPop,1);

 for i=1:nPop
 % Initialize Position
 pop(i).Position=unifrnd(VarMin,VarMax,VarSize);

213

 % Evaluation
 [pop(i).Cost, pop(i).Sol]=CostFunction(pop(i).Position);
 end

 % Sort Population
 Costs=[pop.Cost];
 [Costs, SortOrder]=sort(Costs);
 pop=pop(SortOrder);

 % Array to Hold Best Cost Values
 BestCost=zeros(MaxIt,1);

 % Store Cost
 WorstCost=pop(end).Cost;

 % Array to Hold Number of Function Evaluations
 nfe=zeros(MaxIt,1);

%% Main Loop

 for it=1:MaxIt

 % Calculate Selection Probabilities
 P=exp(-beta*Costs/WorstCost);
 P=P/sum(P);

 % Crossover
 popc=repmat(empty_individual,nc/2,2);
 for k=1:nc/2
 % Select Parents Indices
 i1=RouletteWheelSelection(P);
 i2=RouletteWheelSelection(P);

 % Select Parents
 p1=pop(i1);
 p2=pop(i2);

 % Apply Crossover
 [popc(k,1).Position , popc(k,2).Position]=...
 Crossover(p1.Position,p2.Position,gamma,VarMin,VarMax);

 % Evaluate Offsprings
 [popc(k,1).Cost,

popc(k,1).Sol]=CostFunction(popc(k,1).Position);
 [popc(k,2).Cost,

popc(k,2).Sol]=CostFunction(popc(k,2).Position);
 end
 popc=popc(:);

214

 % Mutation
 popm=repmat(empty_individual,nm,1);
 for k=1:nm
 % Select Parent
 i=randi([1 nPop]);
 p=pop(i);

 % Apply Mutation
 popm(k).Position=Mutate(p.Position,mu,VarMin,VarMax);

 % Evaluate Mutant
 [popm(k).Cost, popm(k).Sol]=CostFunction(popm(k).Position);
 end

 % Create Merged Population
 pop=[pop
 popc
 popm];

 % Sort Population
 Costs=[pop.Cost];
 [Costs, SortOrder]=sort(Costs);
 pop=pop(SortOrder);

 % Update Worst Cost
 WorstCost=max(WorstCost,pop(end).Cost);

 % Truncation
 pop=pop(1:nPop);
 Costs=Costs(1:nPop);

 % Store Best Solution
 lastBestCost=BestSol.Cost; % Storing last Besto

sol for checking stall condition
 BestSol=pop(1);
 BestSol.it=MaxIt;
 BestSol.Stall='False';

 % Checking model Stallation
 if lastBestCost==BestSol.Cost
 StallCounter=StallCounter+1;
 else
 StallCounter=0;
 end

 % Store Best Cost Ever Found
 BestCost(it)=BestSol.Cost;

 % Store NFE
 nfe(it)=NFE;

 if StallCounter>MaxStall

215

 BestSol.Stall='true';
 BestSol.it=it;
 break;
 end
 end
 save('BestSol');

CreateNeighbor()

function qnew=CreateNeighbor(q)

 m=randi([1 3]);

 switch m
 case 1
 % Do Swap
 qnew=Swap(q);

 case 2
 % Do Reversion
 qnew=Reversion(q);

 case 3
 % Do Insertion
 qnew=Insertion(q);
 end

end

CreateRandomSolution()

function q=CreateRandomSolution(model)

 nVar=model.nVar;

 q=randperm(nVar);

end

MyCost()

function [z ,SimSol]=MyCost(q,model)

216

 global NFE;
 NFE=NFE+1;
 R=model.R;
 w1=1;
 w2=1;
 w3=10^6;

 Z=zeros(1,R);
 z1=zeros(1,R);
 z2=zeros(1,R);
 z3=zeros(1,R);
 sol=[];
 for rep=1:R
 sol=ParseSolution(q,model,rep);
 z1(rep)=sol.TotalMAcost;
 z2(rep)=sol.TotalTardinessCost;
 z3(rep)=sol.InfeasibilityCounter;
 end

 % Objective Function
 z=mean(w1*z1+w2*z2+w3*z3);

 % Capsulate important info in SimSol
 SimSol.AvgMAcost=mean(z1);
 SimSol.AvgTardinessCost=mean(z2);
 SimSol.TotalCost=z;
 SimSol.newQ=sol.newQ;
 SimSol.model=sol.model;
end

ParseSolution()

function sol=ParseSolution(q,model,rep)
 InfeasibilityCounter=0;
 %% Convert q to newQ by adding 0 for the first job in each

machine(no Maintanance is required)
 N=model.N;
 M=model.M;
 L=model.L;

 % Create newQ matrix
 [~ ,newQ]=sort(q(1:N));
 for k=1:L
 newQ=[newQ 0 q(N+(k-1)*(N-1)+1:N+k*(N-1))];
 end

 nmodel=UpadeModel(newQ,model,rep); %Update model by finding MAs

duration and cost

 Job=nmodel.Job;
 MA=nmodel.MA;

217

 PTIR=nmodel.PTIR;
 % Retreiving jobs sequence
 JobSequence=newQ(1:N);

%% Parse Solution
 for i=1:M
 jobcounter=0;
 for j=JobSequence
 jobcounter=jobcounter+1;
 % calacualte the avg health level of machine parts
 AvgLevel=0;
 for k=1:L

 if Job(j).MA(k,i)==1
 MA(k).Level(1,i)=MA(k).MaxLevel;
 end

 AvgLevel=AvgLevel+MA(k).Level(1,i)/MA(k).MaxLevel;
 end
 AvgLevel=AvgLevel/L;

 rate=PTIR(find(PTIR(:,1)<AvgLevel,1,'first')-1,2);
 JobDu=Job(j).Du(rep,i)*rate;

 if find(JobSequence==j)==1
 if i==1 % The first jobs start at time 0 on first

Machine
 Job(j).ST(1,i)=0;
 Job(j).FT(1,i)=Job(j).ST(1,i)+Job(j).Du(rep,i);
 else
 Job(j).ST(1,i)=Job(j).FT(1,i-1);
 Job(j).FT(1,i)=Job(j).ST(1,i)+Job(j).Du(rep,i);
 end
 else
 previous_job=JobSequence(jobcounter-1);

 if i==1

Job(j).ST(1,i)=Job(previous_job).FT(1,i)+Job(j).MADu(rep,i);
 Job(j).FT(1,i)=Job(j).ST(1,i)+JobDu;
 else
 Job(j).ST(1,i)=max(Job(j).FT(1,i-

1),Job(previous_job).FT(1,i)+Job(j).MADu(rep,i));
 Job(j).FT(1,i)=Job(j).ST(1,i)+JobDu;
 end
 end
 % Update the level of MAs to Max level in case of

Maintanance
 for k=1:L
 % Deteriorate MAs
 MA(k).Level(1,i)=MA(k).Level(1,i)-JobDu;
 if MA(k).Level(1,i)<=0
 InfeasibilityCounter=InfeasibilityCounter+1;

218

 end
 end
 end
 end

 TotalMAcost=0;
 TotalTardinessCost=0;
 for j=1:N
 TotalMAcost=TotalMAcost+sum(Job(j).MACost(rep,:));
 Job(j).TDcost=max(Job(j).FT(1,M)-Job(j).Dd,0)*Job(j).LateP;
 TotalTardinessCost=TotalTardinessCost+Job(j).TDcost;
 end

 %Update Job and MAs
 nmodel.Job=Job;
 nmodel.MA=MA;

 % Capsulate Sol
 sol.InfeasibilityCounter=InfeasibilityCounter;
 sol.TotalMAcost=TotalMAcost;
 sol.TotalTardinessCost=TotalTardinessCost;
 sol.newQ=newQ;
 sol.model=nmodel;
end

RandDist()

function rnd=randDist(Dist, p1, p2,p3)

switch Dist
 case 'NORM'
 pd=makedist('Normal',p1,p2);
 rnd=random(pd);
 case 'TRIA'
 pd=makedist('Triangular',p1,p2,p3);
 rnd=random(pd);
 case 'UNI'
 rnd=p1+rand*abs((p2-p1));
end
end

UpdateModel()

function nmodel=UpadeModel(q,model,rep)
 nmodel=model;
 M=nmodel.M; % Number of Machines
 N=nmodel.N; % Numbner of Jobs
 L=nmodel.L; % Number of MAs

219

 Job=nmodel.Job; % Jobs
 MA=nmodel.MA; % Maintanance Activities
 MA_Types=nmodel.MA_Types; % Table of Maintanance combination

(0-7)
 JobsSequence=q(1:N); % Get the sequence of jobs
 MADUDR=nmodel.MADUDR; %Maitanace Activity Duration

Discount Rate
 for i=1:M
 for j=JobsSequence
 JobOrder=find(JobsSequence==j,1,'first'); % obtain the

order of job
 typenumber=q(N+(i-1)*N+JobOrder); % this is a rand

number that indicates MAs combination type
 MAtype=min(floor(typenumber*8),7); %There are 7

different MA combination type
 row=MAtype+1; % row number

related to the type of Maintanance combination

 %% Set Job Maintanance Duration and Cost
 du=0;
 sp=0;
 wf=0;
 flag=0;
 rate=1;

 NumberOfCombinesMAs=sum(MA_Types(row,:)); % Total number

of MAs concurretly implemented
 if NumberOfCombinesMAs>0
 rate=MADUDR(NumberOfCombinesMAs); % Obtain the

discount rate of MAs duration
 end

 Job(j).MA(:,i)=MA_Types(row,:); % Assign

MA type to its struct

 % Retreive Data from MAs
 for k=1:L
 flag=MA_Types(row,k);
 if flag==1
 du=MA(k).Du(rep,i);
 sp=MA(k).sp(1,i);
 wf=MA(k).wf;
 MA(k).Level(1,i)=MA(k).MaxLevel;
 MA(k).count(1,i)=MA(k).count(1,i)+1;

 Job(j).MADu(rep,i)=Job(j).MADu(rep,i)+du*rate;

Job(j).MACost(rep,i)=Job(j).MACost(rep,i)+du*rate*wf+sp;
 end
 end
 end
 end

220

 nmodel.Job=Job;
 nmodel.MA=MA;
end

221

VITA

Javad Seif was born on July 29, 1984 in Tehran, Iran. He graduated from the
University of Tabriz in 2008 with a Bachelor of Science degree in Industrial
Engineering (Manufacturing Concentration). Then he worked in industry for a few
years. In his industry experiences he developed software engineering skills and
designed and implemented industrial information systems, such as maintenance
management and material requirements planning systems. In 2011, he attended
the University of Tehran and started working on various problems in maintenance
optimization, while he continued working in industry. His research work in the
University of Tehran led to three journal publications, and in August 2013, he
received a Master of Science degree in Industrial Engineering.

In August 2014 he moved to the U.S. and started his Ph.D. program in
Industrial Engineering in the University of Tennessee, Knoxville (his third UT
school!). At the same time, he started working as a Graduate Research Assistant
in the University of Tennessee Space Institute (UTSI) in Tullahoma where he
spent most of his time on research. During his work at UTSI, he led and
completed eight research projects independently, and collaborated in three
research projects led by his colleagues. These research projects are currently
published or under-review in the conference proceedings and scientific journals
of industrial engineering. He has received a number of awards, including the Best
Student Paper award in Construction Division at 2017 IISE Annual Conference.
He has also obtained a Graduate Certificate in Reliability and Maintainability
Engineering for which he has had additional training in data-centric analytics.

	The Integration of Maintenance Decisions and Flow Shop Scheduling
	Recommended Citation

	tmp.1543871590.pdf.Jymc2

