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ABSTRACT 
 
In the conventional production and service scheduling problems, it is assumed 
that the machines can continuously process the jobs and the information is 
complete and certain. However, in practice the machines must stop for 
preventive or corrective maintenance, and the information available to the 
planners can be both incomplete and uncertain. In this dissertation, the 
integration of maintenance decisions and production scheduling is studied in a 
permutation flow shop setting. Several variations of the problem are modeled as 
(stochastic) mixed-integer programs. In these models, some technical nuances 
are considered that increase the practicality of the models: having various types 
of maintenance, combining maintenance activities, and the impact of 
maintenance on the processing times of the production jobs. The solution 
methodologies involve studying the solution space of the problems, genetic 
algorithms, stochastic optimization, multi-objective optimization, and extensive 
computational experiments. The application of the problems and managerial 
implications are demonstrated through a case study in the earthmoving 
operations in construction projects. 
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PREFACE 
 
My dissertation topic was motivated by a common problem I had encountered in 
industry prior to my graduate studies. I designed and implemented computerized 
maintenance information software (CMMS) for various companies. It has been 
my observation in many cases that regardless of the complexity and 
comprehensiveness of maintenance plans and maintenance management 
software systems, preventive maintenance activities are very likely to be 
deferred, or refrained from, due to production priorities. In my research, I strive to 
solve this problem by integrating production scheduling and maintenance 
decisions. The outcome is a schedule that simultaneously optimizes both 
production and maintenance objectives. 
 

In this dissertation, the integration of maintenance decisions and 
production scheduling is studied in a permutation flow shop setting, where a 
number of jobs (orders) are to be processed consecutively on a number of 
machines in series. The machines should undergo various types of maintenance 
after operating for certain number of hours. The objective is to minimize the 
tardiness of the jobs with respect to their due times, and minimize the 
maintenance costs. In the mathematical models and solution algorithms that are 
presented, I consider the technical nuances that increase the practicality of these 
models: having various types of maintenance activities, combining these 
activities, and how maintenance affects the performance of the machines. 

 
Through extensive computational experiments and case studies, it is 

shown that the proposed models and solution methodologies are reliable, robust, 
and independent from commercial solvers. This independence facilitates the 
incorporation and automation of these solutions in the existing information 
systems found in manufacturing and service industries. By implementing the 
proposed solutions, manufacturing and service industries can 1) resolve potential 
conflicts between production and maintenance, 2) minimize maintenance costs, 
3) improve the health of their assets, 4) increase the readiness and performance 
of the production lines, and 5) increase customer satisfaction through optimal 
production scheduling and timely deliveries. All of these benefits can be attained 
without reliance on commercial solvers that can be financially and 
computationally expensive to use. 

 
Javad Seif 

Tullahoma, TN 
April, 2018  
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INTRODUCTION 
 
This dissertation is concerned with the integration of maintenance decisions in 
flow shop scheduling problems. In Chapter I, I introduce the problem of 
integrating multiple meter/age-based maintenance activities in flow shop 
scheduling, and present a deterministic version of the problem. In Chapter II, a 
fuzzy bi-objective version of the problem is modeled and solved. In Chapter III, 
uncertainty in processing and maintenance times will be considered. All three 
chapters show the application of the problem via a case study in operations and 
maintenance scheduling of construction machinery. 
 

Background 

 

Maintenance Planning 

Previously considered more as a cost center, maintenance in recent years is 
being gradually understood as a profit generating function by industrial managers 
(Alsyouf, 2007). Since 1940, with the growing advances in science and 
technology, different maintenance techniques have been emerged as the true 
value of better maintenance has been appreciated by the industry (Garg & 
Deshmukh, 2006). As illustrated in Figure 1, maintenance philosophies can be 
generally classified as reactive (or unplanned) maintenance and proactive (or 
planned) maintenance (Kothamasu, Huang, & VerDuin, 2006). 
 

When a failure occurs, unplanned maintenance types are conducted to 
either restore the failed item to its original condition, namely corrective 
maintenance, or to immediately perform a required action to avoid hazardous 
situations, i.e. emergency maintenance (Veldman, Wortmann, & Klingenberg, 
2011). The preventive types of planned maintenance are performed at a fixed 
and predetermined interval to decrease the likelihood of failure or performance 
degradation (Kothamasu et al., 2006).  However, preventive maintenance (PM) 
does not give insight about real time condition of the system and its components.  
Reliability-centered maintenance (RCM) and condition-based maintenance 
(CBM) are predictive types of planned maintenance. RCM benefits from reliability 
estimates of a system to formulate its cost-effective maintenance schedule, but 
CBM is a decision making strategy for maintenance execution based on the 
condition of the system which is quantified by some parameters that are 
constantly monitored (Kothamasu et al., 2006). 
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Figure 1. Age-based maintenance in taxonomy of maintenance philosophies (Kothamasu et al., 
2006). 
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Flow Shop Scheduling 

Flow shop scheduling has been studied by many researchers after Johnson 
(1954) introduced the problem for two machines. The main goal in flow shop 

scheduling is to find a sequence for 𝑛 jobs that are to be processed by 𝑚  
machines to optimize an objective function. Minimizing the completion time of the 
very last job (the makespan), the overall completion time, and the tardiness of 
the jobs are some examples for such an objective. 

 
Figure 2 shows a schematic of a flow shop scheduling problem. The 

sequence of jobs in the figure is (1,2,3), and the objective is to minimize the 
makespan. Changing this sequence will yield another value for the objective 
function, and the goal is to find the optimal sequence for processing the jobs. A 
different sequence will change the waiting times of the jobs for machines, and the 
idle times of the machines. In this figure, Job 2 has to wait for Machine 2, and 
Machine 2 has a waiting time for Job 3. Machine 3 has waiting times for both Job 
2 and Job 3. If the objective function changes to minimizing the tardiness of the 
jobs (in which case a due date is given for every job), two solutions with the 
same makespan may yield different tardiness values. 

 

 

Figure 2. An example for a permutation flow shop scheduling problem, n=m=3. 

 
When all the jobs are assumed to go through the same sequence of 

machines, the problem is called a permutation flow shop, and otherwise, non-
permutation (flexible) flow shop. After a job is processed on a machine, and 
before it proceeds with the next machine, if the next machine is busy with 
another job, the job can wait in the buffer between the consecutive machines. If 
the buffer has zero capacity the problem is called blocking flow shop in which 
case when the next machine is busy the job has to be blocked on the current 
machine (Abdollahpour & Rezaeian, 2015). 

 
Scheduling falls into the optimization class of problems where the 

objective function is to be minimized or maximized; for example, minimizing the 
total completion time of all the jobs (makespan). From a computational 
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complexity point of view, it is proved that, even with two machines, flow shop 
scheduling problem is NP-hard (Papadimitriou & Kanellakis, 1980). That is, the 
growth of the time for solving the corresponding decision problem is not a 
polynomial function of the size of the problem. As a result, when the number of 
jobs is relatively high, the time for finding the exact optimal solution is not 
justifiable. Most of the literature related to flow shop scheduling deals with 
proposing new heuristic or meta-heuristic algorithms that can yield near-optimal 
solutions in a relatively short amount of time. See for examples in (Abdollahpour 
& Rezaeian, 2015), (Ronconi, 2004), (Ying, 2008), (Bryan A Norman, 1999), 
(Smutnicki, 1998), (Nowicki, 1999), (Brucker, Heitmann, & Hurink, 2003), and 
(Hsieh, You, & Liou, 2009). 

 

Integrating Maintenance Decisions into Flow Shop Scheduling 

 
In the conventional production scheduling problems, it is assumed that the 

machines can continuously process the jobs (M. Pinedo, 2012) and the 
information is complete and certain. However, in practice the machines must stop 
for preventive or corrective maintenance, and the information available to the 
planners can be both incomplete and uncertain in scheduling environments 
(Berry, 1993). In addition, Maintenance costs cover a big percentage of the total 
operating costs (Ángel-Bello, Álvarez, Pacheco, & Martínez, 2011; Yip, Fan, & 
Chiang, 2014). Therefore, it is reasonable to include minimizing the maintenance 
cost in the objective function. 

 
The integration of maintenance and scheduling has appeared in the 

literature in the last two decades (Xu, Wan, Liu, & Yang, 2015; Yu & Seif, 2016). 
The goal of this integration is to mimic the manufacturing or service environments 
as closely as possible. The more the technical nuances of the maintenance 
management are considered, the higher the practicality of these models and 
solutions is going to be; however, incorporating maintenance decisions into the 
production scheduling problems, requires more sophisticated modeling 
approaches. This could also make the computational effort larger, especially for 
the large-scale problems. The issue becomes even more complex when 
uncertainty is taken into account. In this dissertation, I fully address the 
integration of age-based maintenance decisions in flow shop scheduling 
problems. 

 
I provide three types of models: a mixed-integer program (Chapter I), a bi-

objective fuzzy mixed-integer program (Chapter II), and a stochastic mixed-
integer program in which uncertainty of the input data is considered (Chapter III). 
As for solution methodologies, solution space of the problem is studied in 
Chapters I and II, and Genetic Algorithms are used as the solution method. 
Chapter III employs simulation optimization. Three variations of a case study in 
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construction projects is solved in each chapter. Figure 3 shows how the three 
chapters are connected. 
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Figure 3. Dissertation outline. 
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CHAPTER I 
INTEGRATING MULTIPLE AGE-BASED MAINTENANCE 

ACTIVITIES INTO FLOW SHOP SCHEDULING 
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 A version of this chapter was originally published by Javad Seif and 
Andrew J. Yu: 
 
 Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in 
flow shop scheduling by a lower-bound-based GA. Computers & Industrial 
Engineering, 97, 26-40. DOI: https://doi.org/10.1016/j.cie.2016.03.024 
 

Based on my original idea of incorporating maintenance activities into 
production scheduling, I originated and completed this research project and Dr. 
Yu supervised my work. 
 

Abstract  

 
A permutation flow shop scheduling problem is reformulated as a mixed-integer 
linear program after incorporating flexible and diverse maintenance activities for 
minimizing total tardiness and maintenance costs. The terms “flexible” and 
“diverse” mean that the maintenance activities are not required to perform 
following fixed and predetermined time intervals, and there can be different types 
of maintenance activities for each machine. The problem is proved to be NP-hard 
and a lower bound for the problem is proposed. A lower-bound-based genetic 
algorithm (LBGA) is presented, in which the algorithm parameters are first tested 
through a factorial experiment to identify the statistically significant parameters. 
The LBGA algorithm self-tunes these parameters for its performance 
improvement based on the solution gap from the lower bound. While it is 
experienced that only the population size is statistically significant in improving 
the quality of solutions, through a computational experiment it is also shown that 
an optimal population size for one problem size yields the same quality of 
solutions for larger sizes of problems and increasing the population size beyond 
the optimal size for larger sizes of problems will only negatively affects the 
efficiency of the algorithm. Computational results that show efficiency and 
effectiveness of the algorithm are also provided. 
 

1.1 Introduction 

 
In conventional machine scheduling problems, it is assumed that the machines 
are continuously operating and available over the planning horizon (M. L. Pinedo, 
2012) which cannot be the case in real world problems where equipment could 
be unavailable due to breakdown and/or maintenance activities. Although 
maintenance planning and production scheduling are often studied separately 
such as in semiconductor manufacturing (Xiaodong, Fernandez-Gaucherand, Fu, 
& Marcus, 2004), integration of machine maintenance and scheduling has also 
appeared in many researches in the last two decades (Xu et al., 2015). 
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This integration has been proposed for different configurations of 
manufacturing environments such as single machine, flow shop, parallel 
machine, job shop, or flexible flow shop, and based on different objective 
functions such as minimizing makespan, total (expected) completion time, total 
workload of machines, total workload of critical machines, tardiness, or a 
combination of them (S. Wang & Liu, 2014). In this paper, integration of 
maintenance and operations scheduling in flow shop is presented where the 
objective function is to minimize the total maintenance and tardiness costs. In 
some industries such as heavy construction projects, the maintenance costs form 
a significant portion of the overall costs (Yip et al., 2014). Therefore, it is 
important to consider the maintenance cost in the objective function along with 
conventional scheduling criteria such as tardiness.  

  
Flow shop scheduling refers to the problem of determining the optimum 

permutation of a series of independent jobs which are to be processed by a set 
of machines. When all the jobs are assumed to go through the same sequence of 
machines, the problem is called permutation flow shop, and otherwise, non-
permutation flow shop. After a job is processed on a machine, and before it 
proceeds with the next machine, if the next machine is busy with another job, the 
job can wait in the buffer between the consecutive machines. If the buffer has 
zero capacity the problem is called blocking flow shop in which case when the 
next machine is busy the job has to be blocked on the current machine 
(Abdollahpour & Rezaeian, 2015). 

 
Scheduling falls into the optimization class of problems where the 

objective function is to be minimized or maximized; for example, minimizing the 
total completion time of all the jobs (makespan). From a computational 
complexity point of view, it is proved that, even with two machines, flow shop 
scheduling problem is NP-hard (Papadimitriou & Kanellakis, 1980). That is, the 
growth of the time for solving the corresponding decision problem is not a 
polynomial function of the size of the problem. As a result, when the number of 
jobs is relatively high, the time for finding the exact optimal solution is not 
justifiable. Most of the literature related to flow shop scheduling deals with 
proposing new heuristic or meta-heuristic algorithms that can yield near-optimal 
solutions in a relatively short amount of time. See for examples in (Abdollahpour 
& Rezaeian, 2015), (Ronconi, 2004), (Ying, 2008), (Bryan A Norman, 1999), 
(Smutnicki, 1998), (Nowicki, 1999), (Brucker et al., 2003), and (Hsieh et al., 
2009). 

 
The literature related to the integration of maintenance planning and 

scheduling was classified differently by (Xu et al., 2015) and (Aramon Bajestani & 
Beck, 2015). (Xu et al., 2015) considered the literature to fall into two categories 
based on the maintenance duration. In the first category, the duration is prefixed. 
These research works consider the maintenance times as availability constraints 
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(times at which the machine is not available). In the surveys by (Sanlaville & 
Schmidt, 1998), (Schmidt, 2000), (Ma, Chu, & Zuo, 2010), and (Gordon, 
Strusevich, & Dolgui, 2012), this kind of works are identified and further 
categorized. In the second category, maintenance duration may change based 
on some factors that are dependent on the scheduling. For example, if the 
production schedule forces a maintenance activity to be performed at a later 
time, it takes more time to perform. In short, the duration is a function of the start 
time of the activity. (Xu et al., 2015) also discussed the subtle differences 
between these functions as appeared in the works of (S. J. Yang & Yang, 2010), 
(T. C. E. Cheng, Yang, & Yang, 2012), (Mor & Mosheiov, 2012), (Luo & Ji, 2015), 
(Xu, Yin, & Li, 2010), (S. J. Yang, 2012), and (S.-J. Yang, 2013). In this paper, 
we will consider prefixed duration for maintenance activities. 

 
 Aramon Bajestani and Beck (2015) also divided the literature in two 
categories. The first category was the same as the first category determined by 
(Xu et al., 2015). The second category, however, is different and addresses 
those research works which assume that the processing times of the jobs varies 
based on the maintenance. In the models presented in these literatures, a rate, 
which is dependent on maintenance activities, is applied to the processing times 
of the jobs (C. Y. Lee & Leon, 2001). Since we do not have such assumption for 
processing times, we will not further discuss the related works in the second 
category. 
 

In this paper we will model and optimize a flow shop scheduling problem 
integrated with diverse and flexible maintenance activities. Most of the related 
works consider a single machine. However, there are some works such as 
(Allaoui & Artiba, 2004) in which the integration of maintenance planning and 
production scheduling has been extended to flow shop setting. They considered 
a hybrid (non-permutation) flow shop with different objective functions while also 
considering setup, cleaning and transportation times. They proposed a 
combination of simulation and one of the meta-heuristic algorithms (simulated 
annealing) as the solution approach. Other meta-heuristic solution approaches 
such as genetic algorithm and tabu search have been utilized by (Aggoune, 
2004), (Ruiz, Carlos García-Díaz, & Maroto, 2007), and a detailed review of all 
the approaches along with a variable neighborhood search was presented by 
(Naderi, Zandieh, & Fatemi Ghomi, 2009). 

 
What distinguishes this paper from the related works is flexibility and 

diversity of maintenance activities. Flexibility means that we are not limited to 
perform maintenance activities at fixed intervals. Diversity means that we have 
different set of maintenance activities for a machine. One downside of fixed-
interval preventive maintenance (PM) activities is that we do not know if the oil or 
bearing which are to be replaced, for example, have been fully utilized. Condition 
based maintenance (CBM) involves monitoring equipment’s health and 
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replacements or other maintenance actions that are performed only when they 
are necessary. The cost of conducting condition monitoring, however, is not 
always justifiable and there are researches dedicated solely to cost-wise 
justification of running a CBM program (Azadeh, Asadzadeh, & Seif, 2014). 

 
Flexible maintenance activities try to imitate CBM without monitoring, that 

is, by estimating the remaining useful life of a system based on the known 
deterioration rate that each job incurs in the system. Job-dependent deterioration 
of machine means that in environments analogous to manufacturing, when 
different jobs are processed by a machine, we can expect the health of a 
machine to be deteriorated with different rates when different jobs are processed. 
Having these deterioration rates available, a more economic maintenance plan 
can be achieved in which  maintenance activities are not necessarily performed 
with fixed intervals (in the literature, general, flexible, or noncyclical PMs are also 
used with the same meaning). 
 
 S. Bock, D. Briskorn, and A. Horbach (2012) tried to extend classic 
machine scheduling problems by taking machine deterioration and maintenance 
activities (MAs) into account. They described health of a single machine by a 
bounded maintenance level (ML) which is deteriorated as jobs are processed. 
They assumed that the deterioration is a linear function of the processing time of 
the jobs and each job has its own coefficient (failure rate). They considered pure 
scheduling objective functions such as minimization of completion times, 
makespan, and tardiness. Majority of their work is dedicated to the determination 
of computational complexity of the problems introduced in their paper. 
 

Diversity of maintenance activities has not been observed in flow shop 
literature. As for the objective function, the main focus of our model is on 
minimizing the maintenance cost (unlike most of the discussed research works) 
because in some flow shop settings such as in a petrochemical plant or a 
construction project, the maintenance cost forms the main portion of the 
expenses. 

 
In many of the existing research works, the maintenance cost is usually 

considered as a whole along with other production costs (Allaoui, Lamouri, 
Artiba, & Aghezzaf, 2008). In addition, some practical considerations have never 
been taken into account. One of such considerations is that a machine usually 
has more than one type of MA. Because terms like “multi-maintenance activities” 
and “multiple maintenance activities” appeared in the literature (Zarook, 
Rezaeian, Tavakkoli-Moghaddam, Mahdavi, & Javadian, 2014), (Sun & Li, 2010), 
and (Shi & Xu, 2014) do not refer to different types of maintenance activities, we 
have adopted the term “diverse maintenance activities” in order to more 
distinctively represent the problem. 
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Note that some works that integrated preventive maintenance planning 
and production might not be comparable with this research as they are basically 
focusing on production planning, not jobs scheduling. For example, (Aghezzaf, 
Jamali, & Ait-Kadi, 2007) integrated maintenance, repair, and inventory in their 
models. Their model was to find the best production quantity for different 
products along with the optimum PM interval that minimizes total cost. Aghezzaf 
et al. (2007) and a few other researchers have considered maintenance cost in 
their works but unlike the presented research, they did not incorporate the 
maintenance resource cost into the maintenance planning. Instead, they 
considered the maintenance and repair cost as a fixed value multiplied by the 
frequency of maintenance activities. In our proposed model, we break the 
maintenance cost into various costs of resources and optimize the jobs schedule 
in a way that minimum resource is used. 

 
There are some researches that consider both corrective (and unplanned) 

maintenance (CM) and PM. (Allaoui et al., 2008), also, tried to find the optimum 
length for PM cycles with minimal repair at failure for different machines working 
in a parallel setting with almost the same objective function as their previous 
work. They also integrated maintenance with production planning and suggested 
an approximation Lagrangian decomposition to solve their problem for both cyclic 
and noncyclic (flexible) cases. 

 
(Chen, 2008; Sun & Li, 2010; Xu et al., 2010) reduced the rigidity of fixed 

interval PMs by assuming lower and upper bounds for the time between 
successive maintenance activities. There can be other not-so-common 
restrictions, too, such as limiting the number of times a specific maintenance 
activity can be performed in (Mosheiov & Sarig, 2009). The proposed model in 
this paper with flow shop setting and flexible and multiple (diverse) maintenance 
activities can cover both single machine with multiple maintenance activities and, 
with simple adjustments in the input parameters, parallel machines with single 
maintenance activity for each machine. 

 
The contribution of this paper is threefold. First, a practical problem is 

introduced that extends mathematical formulation of the conventional flow shop 
scheduling problem as a mixed integer linear program (MILP) by incorporating 
flexible and diverse maintenance activities into it. Second, the lower bounds of 
the problem are found using the proposed algorithms that convert the problem 
into several small and easy-to-solve Knapsack problems. Finally, a new genetic 
algorithm (GA) that can solve any realistic sizes of the problem effectively and 
efficiently is introduced. The algorithm uses the lower-bounds and factorial 
experiments to fine-tune its parameters, and is called lower-bound-based GA 
(LBGA). 
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The rest of this chapter is organized as follows. In Section 1.2, the 
problem is described along with a summary of assumptions, and in Section 1.3 
the problem is mathematically formulated. Computational complexity discussion, 
lower bounds of the problem, and a genetic algorithm that has been developed 
based on the lower bounds are presented in Section 1.4. Computational results 
that validate effectiveness and efficiency of the algorithm along with other 
computational experiments are presented in Section 1.5. A case study in heavy 
construction projects is presented in Section 1.6 to show the application of the 
problem. Conclusions and possible future works as extensions of this paper are 
discussed in Section 1.7. 

 

1.2 Problem Definition 

 
We try to minimize the total maintenance and customer dissatisfaction costs in a 
flow shop setting. The jobs can have different processing times with respect to a 
certain machine and each job can have different processing times on different 
machines. A machine’s health condition could be expressed by the machine’s 
diverse maintenance levels (MLs). ML was suggested first by (S. Bock et al., 
2012). Diversity means, for example, one ML may indicate the cleanliness of an 
air filter and another one for quality of the engine’s oil. Each maintenance level 
will be depleted from its maximum value as the jobs are processed. If an ML 
value falls below zero, in theory it is equivalent to a failure, and in practice, it 
indicates a high failure probability. 
 

After a certain job is processed on a certain machine, each ML of the 
machine is decreased by a certain amount because the job has a certain 
deterioration rate with respect to each ML for each machine. When the remaining 
useful life in terms of an ML is not enough for processing the next job, its 
respective maintenance activity (MA) will be performed in order to restore the ML 
to its maximum. We are looking for a sequence of jobs that requires minimum 
number of MAs. Figure 4 shows an illustrative example of two machines, three 
jobs, and two MLs for each machine. The example shows one feasible sequence 
of jobs in which one and three MAs are performed on the first and the second 
machine, respectively. Note that each MA has a different duration on each 
machine and it only affects the respective ML. If the initial value of the ML (the 
maximum) is set to infinity, it implies that this ML does not exist for the machine. 
So, we consider the same set of MLs for all the machines. Also, it is possible that 
a job does not affect a certain ML of a certain machine in which case the 
deterioration rate is equal to zero. 

 
Customer dissatisfaction occurs when the completion time of a job is 

greater than its due date. However, the cost might be relatively lower than the  
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Figure 4. An illustrative example of the problem. 
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maintenance costs. For example, delay in production in a make-to-stock 
production setting is often insignificant comparing with the maintenance cost as 
long as the production efficiency is not affected and the delay is not prolonged. 
Our approach to the solution of the problem focuses more on the maintenance 
cost than the customer dissatisfaction cost. For modeling the customer 
satisfaction, we use the conventional tardiness objective function. The following 
is a summary of assumptions considered in the formulation of the problem. 

1. By flow shop we mean permutation flow shop. 

2. All the machines have the same set/types of MLs, and hence, the same set 

of Mas. 

3. There is no buffer between machines. 

4. Duration of a specific MA for a specific machine is known and invariable. 

The same MA can have a different duration on a different machine. 

5. When a job is being processed, all the MLs are subject to deterioration 

according to a linear function by 𝛿 ∙ 𝑝 where δ is the deterioration rate of ML 

caused by a job after it is processed and p is processing time of the job.  

6. Before processing the first job, all the MLs of all the machines are at their 

maximum. 

7. Sufficient/unlimited resources (maintenance spare parts, materials, and 

workforces, operators, etc.) are available for processing the jobs and 

performing the Mas. 

8. Pre-emption is not allowed.  

9. All the MAs are performed to completion. 

10. The quantity 𝛿 ∙ 𝑝 is always less than the maximum of the corresponding 

maintenance level. Otherwise, the problem will be infeasible. 

11. Random failures are not considered. 

 

1.3 Mathematical Formulation 

 
Following is a list of sets, parameters, and variables used throughout the 
mathematical formulation of the problem. Let m, n, and l be the number of 
machines, jobs, and maintenance levels or their respective PMs (PM types), 
respectively. Then we have the following indices, parameters and variables. 
 
 

𝑖 Represents machines where i = 1,2,…,m 

𝑗 Represents production jobs where j = 1,2,...,n 

𝑞 Represents sequence of jobs (jobs positions) where q = 1,2,...,n 

𝑘 represents MLs or their respective MAs where k = 1,2,…,l 

𝑝𝑖𝑗 Processing time of job j on machine i 
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𝛿𝑖𝑗𝑘 
Deterioration rate of maintenance level k (MA type k) of machine i when 
job j is processed 

𝑒𝑖𝑘 Duration of respective MA type k on machine i 

𝑀𝐿𝑚𝑎𝑥
𝑘  Maximum of ML type k  

𝑆𝑃𝑖𝑘 Cost of required spare parts and materials for MA type k on machine i 

𝑊𝐹𝑘 Cost of skilled workforce per time unit for performing MA type k 

𝑑𝑗 The time at which job j is due 

𝜋𝑗 Penalty cost associated with each time unit delay in completion of job j  

𝑀,𝑀′ Sufficiently large numbers 

𝑧 Total cost  

𝑥𝑗𝑞 Binary  variable that takes the value 1 if job j is assigned to position q and 
0 otherwise 

𝑦𝑖𝑞𝑘 Binary variable that takes the value 1 when PM type k is performed on 
machine i before processing the q-th job and 0 otherwise 

𝑀𝐿𝑖𝑞
𝑘  Numerical representation of ML type k of machine i before processing the 

q-th job 

𝑐𝑞 Completion time of the job assigned to position q 

𝑡𝑞 Tardiness of the job assigned to position q (amount of lateness in 
completion of the job) 

𝛱𝑗𝑞 Penalty associated with job j assuming that it is in position q 

𝑣𝑖𝑞 Waiting time of the machine i for the q-th job (idle time) 

𝑤𝑖𝑞 Waiting time of the q-th job for machine i  

 
As it was discussed earlier, the objective function (OF) of the model is to 

minimize the total cost which comprises the penalty cost incurred because of 
lateness in completion of each job (tardiness) and cost of maintenance 
resources, namely cost of spare parts and required workforces. Total penalty 
costs can be expressed as in Equation (1).  

 
 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑠𝑡 =∑∑𝜋𝑗𝑥𝑗𝑞(𝑚𝑎𝑥{0, 𝑐𝑞 − 𝑑𝑗})

𝑛

𝑞=1

𝑛

𝑗=1

 (1.1) 

 

The term 𝑚𝑎𝑥{0, 𝑐𝑞 − 𝑑𝑗} in Equation (1) will only be meaningful when 

𝑥𝑗𝑞 = 1, so the term is equivalent to 𝑚𝑎𝑥{0, 𝑐𝑞 − ∑ 𝑥𝑗𝑞𝑑𝑗
𝑛
𝑗=1 }. In order to linearize 

Equation (1), we take the following steps. Firstly, we replace the term 

𝑚𝑎𝑥{0, 𝑐𝑞 −∑ 𝑥𝑗𝑞𝑑𝑗
𝑛
𝑗=1 } with a new variable 𝑡𝑞 which is subject to the following 

constraints 
 

𝑡𝑞 ≥ 𝑐𝑞 −∑𝑥𝑗𝑞𝑑𝑗

𝑛

𝑗=1

  𝑞 = 1,2, … , 𝑛, (1.2) 
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𝑡𝑞 ≥ 0 𝑞 = 1,2, … , 𝑛. (1.3) 

 
If the completion time becomes greater than the due time, the minimum 

value for 𝑡𝑞 will be the difference between them, and zero otherwise. Since the 

OF seeks the minimum value, the algorithm always chooses the minimum value 
for 𝑡𝑞. Now we have ∑ ∑ 𝑥𝑗𝑞𝜋𝑗𝑡𝑞

𝑛
𝑞=1

𝑛
𝑗=1  instead of Equation (1) which is still 

nonlinear (quadratic). In order to linearize it, we introduce a new variable 𝛱𝑗𝑞 

which is the penalty associated with job j, if it is assigned to position q in the 
sequence of the jobs. Namely, 

 

𝛱𝑗𝑞 = {
𝜋𝑗𝑡𝑞 , 𝑥𝑗𝑞 = 1

0, 𝑥𝑗𝑞 = 0
 

𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … 𝑛. 

(1.4) 

 
The following four inequalities are proposed in order to express Equation 

(4) in a linear manner. 
 

𝛱𝑗𝑞 − 𝜋𝑗𝑡𝑞 ≥ −𝑀(1 − 𝑥𝑗𝑞) 
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛, 

(1.5) 

𝛱𝑗𝑞 − 𝜋𝑗𝑡𝑞 ≤ 𝑀(1 − 𝑥𝑗𝑞) 
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛, 

(1.6) 

𝛱𝑗𝑞 ≥ −𝑀(𝑥𝑗𝑞) 
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛, 

(1.7) 

𝛱𝑗𝑞 ≤ 𝑀(𝑥𝑗𝑞) 
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, …𝑛. 

(1.8) 

 
Note that when 𝑥𝑗𝑞=0, the first pair inequalities, Equations (1.5) and (1.6), 

are turned off (because of M which is a sufficiently big number and makes the 
constraint feasible for any values of variables) and the second pair, Equations 
(1.7) and (1.8), are turned on. Each pair forms an equation when it is turned on 
and the right hand side of both inequalities becomes zero. The same reasoning 
can be applied for the case when 𝑥𝑗𝑞=1 when Equations (1.5) and (1.6) are 

turned on and Equations (1.7) and (1.8) are turned off. 
 
We can now write the full OF as 
 

𝑚𝑖𝑛  𝑧 =∑∑𝛱𝑗𝑞

𝑛

𝑞=1

𝑛

𝑗=1

+∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

, (1.9) 
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where 𝑦𝑖𝑞𝑘 is used in order to take into account only the cost of those MAs that 

are decided to be performed. This OF is subject to Constraint sets (1.2-1.3 and 
1.5-1.8), and the following constraints. 
 

To make sure that each job has one and only one position in the 
sequence of jobs, we use the following two sets of constraints 

 

∑𝑥𝑗𝑞 = 1

𝑛

𝑞=1

 𝑗 = 1,2, … , 𝑛, (1.10) 

∑𝑥𝑗𝑞 = 1

𝑛

𝑗=1

 𝑞 = 1,2, … , 𝑛. (1.11) 

 
According to the flow shop literature (Selen, 1986), and before 

incorporating flexible and diverse maintenance activities to the flow shop 
problem, the waiting times of machines and jobs can be calculated through the 
following set of equations: 

 

[
𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

] + [
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 

𝑗𝑜𝑏 𝑞 + 1
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖

]

+ [

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞 + 1

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
]

= [

𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

]

+ [
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 

𝑗𝑜𝑏 𝑞
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1

]

+ [

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
] 

𝑖 = 1,2, … ,𝑚 − 1, 
 𝑞 = 1,2, … , 𝑛 − 1. 

(1.12a) 

 
The MAs could be performed before or after any job for each of the 

machines in the shop. For the simplicity, we attach the maintenance time to the 
job processing time at its beginning. The actual MAs for each machine will only 
be scheduled when they are necessary which are determined by the model. 
Thus, Equation (1.12a) can be extended to Equation (1.12b), after incorporating 
the potentially necessary MAs in the job scheduling. 
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[

𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

] + ([
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 

𝑗𝑜𝑏 𝑞 + 1
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖

] +

[
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝑎𝑙𝑙 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑀𝐴𝑠 
 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑗𝑜𝑏 𝑞 + 1

𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖

]) +

[

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞 + 1

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
] = [

𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
𝑓𝑜𝑟 𝑗𝑜𝑏 𝑞 + 1

] +

([
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 

𝑗𝑜𝑏 𝑞
𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1

] +

[
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝑎𝑙𝑙 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑀𝐴𝑠 
 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑗𝑜𝑏 𝑞

𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1

]) +

[

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑗𝑜𝑏 𝑞

𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 + 1
]  

𝑖 = 1,2, … ,𝑚 − 1, 
𝑞 = 1,2, … , 𝑛 − 1, 
𝑘 = 1,2, … , 𝑙. 

(1.12b) 

 
Throughout the model we will schedule the necessary MAs prior to a job 

at an arbitrary position q. The final form of Equation (1.12b) can be expressed as 
follows. 

 

𝑣𝑖(𝑞+1) + (∑𝑦𝑖(𝑞+1)𝑘𝑒𝑖𝑘

𝑙

𝑘=1

+∑𝑥𝑗(𝑞+1)𝑝𝑖𝑗

𝑛

𝑗=1

)

+ 𝑤(𝑖+1)(𝑞+1)
= 𝑣(𝑖+1)(𝑞+1)

+ (∑𝑦(𝑖+1)𝑞𝑘𝑒(𝑖+1)𝑘

𝑙

𝑘=1

+∑𝑥𝑗𝑞𝑝(𝑖+1)𝑗

𝑛

𝑗=1

) + 𝑤(𝑖+1)𝑞 

𝑖 = 1,2, … ,𝑚 − 1, 
𝑞 = 1,2, … , 𝑛 − 1, 
𝑘 = 1,2, … , 𝑙. 

(1.12c) 

 
According to Assumption (6), all the maintenance levels prior to the first 

job are at their maximum and hence no MA is performed before processing the 
first job. This can be expressed either by Equation (1.13a) or (1.13b). We use 
Equation (1.13a). 

 

𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘  
𝑖 = 1,2, … ,𝑚 , 𝑘 =
1,2, … , 𝑙, 

(1.13a) 
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or, 
  

𝑦𝑖1𝑘 = 0 
𝑖 = 1,2, … ,𝑚 , 𝑘 =
1,2, … , 𝑙. 

(1.13b) 

 
The job in the first position (q=1) does not wait in buffer for any of the 

machines as it is processed first by all the machines. This can be expressed 
using the following constraints 

 

𝑤𝑖1 = 0 𝑖 = 1,2, … ,𝑚. (1.14) 
 
The first machine in the flow shop also does not wait for any of the jobs, 
 

𝑣1𝑞 = 0 𝑞 = 1,2, … , 𝑛. (1.15) 

 
Idle times for machines 2 to m with respect to the first job (q=1) will be 
 

𝑣𝑖1 =∑∑𝑥𝑗1𝑝𝑓𝑗

𝑖−1

𝑓=1

𝑛

𝑗=1

 𝑖 = 2,3, … ,𝑚. (1.16) 

 
The first two summations in Equation (1.17) can be interpreted as a 

search through all the jobs to see which one is assigned to the first position on 
the machines prior to the machine i and then adding its processing times on the 
previous machines to the idle time of machine i. The interpretation of summations 
like these as a means for search can be used for the rest of the constraints with 
analogous summations. Buffer time of the jobs scheduled after the first job, 
before proceeding with the first machine, can be modeled as follows 

 

𝑤1𝑞 =∑∑𝑥𝑗𝑟𝑝1𝑗

𝑛

𝑗=1

𝑞−1

𝑟=1

+∑∑𝑦1𝑟𝑘𝑒1𝑘

𝑙

𝑘=1

𝑞

𝑟=1

 𝑞 = 2,3, … , 𝑛. (1.17) 

 
In order to make sure that maintenance levels do not fall below zero 

during or after processing a job we use the following set of constraints 
 

𝑀𝐿𝑖𝑞
𝑘 ≥∑𝑥𝑗𝑞𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

 
𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(1.18) 

 
Constraint (1.18) requires all maintenance levels of a machine to be equal 

or greater than the amount of linear deterioration by which the ML drops so that 
none of the levels fall below zero because when a maintenance level falls below 
zero it implies machine breakdown. After processing a job, a maintenance level 
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is equal to its level before processing the previous job minus the corresponding 
deterioration. If Constraint (1.18) does not hold, the respective MA will be 
performed in order to restore the level to its maximum. This is expressed as 

 

𝑀𝐿𝑖𝑞
𝑘 =

{
 

 𝑀𝐿𝑖(𝑞−1)
𝑘 −∑𝑥𝑗(𝑞−1)𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

, 𝑦𝑖𝑞𝑘 = 0

𝑀𝐿𝑚𝑎𝑥
𝑘 , 𝑦𝑖𝑞𝑘 = 1

 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙. 

(1.19) 

 
We reapply analogously the method that we used to convert Equation 

(1.4) to Equations (5-8) in order to linearize Equation (1.19). 
 

𝑀𝐿𝑖𝑞
𝑘 − (𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝑥𝑗(𝑞−1)𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

) ≥ −𝑀′(𝑦𝑖𝑞𝑘) 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(1.20) 

𝑀𝐿𝑖𝑞
𝑘 − (𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝑥𝑗(𝑞−1)𝑝𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

) ≤ 𝑀′(𝑦𝑖𝑞𝑘) 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(1.21) 

𝑀𝐿𝑖𝑞
𝑘 − 𝑀𝐿𝑚𝑎𝑥

𝑘 ≥ −𝑀′(1 − 𝑦𝑖𝑞𝑘) 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(1.22) 

𝑀𝐿𝑖𝑗
𝑘 − 𝑀𝐿𝑚𝑎𝑥

𝑘 ≤ 𝑀′(1 − 𝑦𝑖𝑞𝑘) 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙. 

(1.23) 

 
Completion time of each job is equal to sum of its processing times and its 

waiting times in the buffer. This yields the following set of constraints. Note that, 
as stated earlier, we consider duration of required MAs, too, whenever we take 
into account processing times. 

 

Finally, 

 
As explained above, we added new variables in order to be able to 

linearize the model. Now we have a mixed integer linear model. The final model 
comprises of the objective function in Equation (1.9) and constraints in Equations 

𝑐𝑞 =∑(𝑤𝑖𝑞 +∑𝑥𝑗𝑞𝑝𝑖𝑗

𝑛

𝑗=1

+∑𝑦𝑖𝑞𝑘𝑒𝑖𝑘

𝑙

𝑘=1

)

𝑚

𝑖=1

 𝑞 = 1,2, … , 𝑛. (1.24) 

𝑥𝑗𝑞 , 𝑦𝑖𝑞𝑘 ∈ {0,1},   

𝑀𝐿𝑖𝑞
𝑘 , 𝑐𝑞 , 𝑡𝑞 , 𝛱𝑗𝑞 , 𝑣𝑖𝑞 , 𝑤𝑖𝑞 ≥ 0 

𝑖 = 1,2, … ,𝑚, 
𝑗 = 1,2, … , 𝑛,
𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙. 

(1.25) 
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(1.2-1.3, 1.5,1.8, 1.12c, 1.13a, 1.14-1.25). In the next section we will present the 
algorithms developed and the methods for solving the model. 

 

1.4 Solution Approach 

 
In this section, first, we prove that the presented problem is NP-hard. Then, we 
find a lower bound for the problem. Based on this lower bound, we design a 
genetic algorithm (GA) whose parameters are set in such a way that the gap 
between its best solutions and the lower bound does not increase with the size of 
the problem. Computational results that verify efficiency and effectiveness of the 
GA will be presented in the next section. 
 

Complexity of the problem 

Two variations of the modeled problem can be defined based on the number of 
machines and MLs: a problem that involves only a single machine with only a 
single maintenance level (m=n=1), MAINTFLOW-SINGLE, and a problem in which 
the number of machines or maintenance levels is not limited, MAINTFLOW-FULL. 
In order to show that an optimization problem is NP-Hard, we will show that its 
corresponding decision problem is NP-Complete. In doing so, we will show that 1) 
a solution for an instance of the problem can be verified for feasibility in polynomial 
time, and 2) a problem which has already been proven to be NP-Complete can be 
reduced to it. Although the problem of minimizing total tardiness of a set of jobs 
which are to be scheduled on a single machine has already been proven to be NP-
hard (Du & Leung, 1990) and it can be easily reduced to the presented problem, 
we present another proof as a contribution. 
 
Theorem 1. MAINTFLOW-SINGLE is NP-hard. 
Proof. Any sequence (permutation) of the jobs can be considered as a feasible 
solution. If a sequence is given as a solution for an instance the problem, it is 
only needed to check whether: 

1. All the jobs exist in the sequence, and 

2. No job has been repeated in the sequence. 

Obviously, this can be done in polynomial time. Next, we reduce the KNAPSACK 
problem to MAINTFLOW-SINGLE. Let the following, KS, be an instance of 
KNAPSACK optimization problem. 
 

𝑚𝑎𝑥  𝑧 =∑𝑣𝑜𝑈𝑜

𝑂

𝑜=1

 (1.26) 
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Subject to: 
 

∑𝑤𝑜𝑈𝑜

𝑂

𝑜=1

≤ 𝑊 (1.27) 

 

where 𝑈𝑜 ∈ {0,1}, 𝑜 = 1,… , 𝑂, are the decision variables, and 𝑊, 𝑤𝑜 and 𝑣𝑜 are 
capacity of the knapsack, size and value of object o, respectively. The optimum 
solution for this problem (the most valuable subset of objects whose total size 
does not exceeds the capacity of the knapsack) can be obtained if we solve the 
following instance of the problem modeled in Section 1.3. 
 

 𝑚 = 1, 𝑛 = 𝑂, 𝑙 = 1,  

 𝑖 = 1, 𝑗 = 𝑜, 𝑘 = 1,  

 𝑀𝐿𝑚𝑎𝑥
𝑘 = 𝑊, 𝑝𝑖𝑗𝛿𝑖𝑗𝑘 = 𝑤𝑜, 𝜋𝑗 = −𝑣𝑜, 

 𝑒𝑖𝑘 = 𝑐1, 𝑑𝑗 = 𝑐2, 𝑆𝑃𝑖𝑘 = 0,𝑊𝐹𝑘 = 0.    

 

In this reduction, 𝑐1 and 𝑐2 are arbitrarily-selected constants. 
 

Theorem 2. MAINTFLOW-FULL is NP-hard. 
 
Proof. MAINTFLOW-SINGLE can be reduced to MAINTFLOW-FULL by setting 
m=l=1 in MAINTFLOW-FULL. 
 

Lower bounds 

The objective function of the presented problem consists of two major costs 
which were to be minimized: maintenance cost and tardiness cost. In order to 
obtain a lower bound for the problem, we can find the lower bound for each of the 
two costs and then sum them up. Because the use of this lower bound is to 
control its gap from the GA solution, it is not a major concern to find the tightest 
lower bound. 
 

Lower bound for MAINTFLOW-SINGLE 

Maintenance Cost. The least number of maintenance activities that are required 
in order for the maintenance level not to fall below zero can be obtained by 
grouping the jobs based on their sum of deterioration rates, that is, we try to find 
groups of jobs that deteriorate the maintenance level (deplete the remaining 
useful life) as completely as possible. Following the same notations that we used 
for modeling the problem, the KNAPSACK problem can be remodeled as follows. 
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𝑚𝑎𝑥  𝑧 =∑𝑈𝑗𝑝𝑗𝛿𝑗

𝑛

𝑗=1

 (1.28) 

 
Subject to: 
 

∑𝑈𝑗𝑝𝑗𝛿𝑗

𝑛

𝑗=1

≤ 𝑀𝐿𝑚𝑎𝑥 (1.29) 

 
where 𝑈𝑗 ∈ {0,1} is the decision variable which determines whether we select job 

j (𝑈𝑗 = 1) or not (𝑈𝑗 = 0). Capacity of the knapsack is the maintenance level’s 

maximum value, i.e. 𝑀𝐿𝑚𝑎𝑥 , weight and also value of each job (object) is how 
much it can deteriorate the level, namely 𝑝𝑗𝛿𝑗. The optimal solution determines 

which jobs consume the ML the most without MA between them. These jobs are 
crossed out from the original list of jobs. The problem is solved again for the 
remaining jobs and this process continues until no job is left. Number of required 
MAs will be equal to the number of groups minus one since we require MAs 
between the groups. Algorithm 1 was used for finding the maintenance cost 
lower bound. 
 
Tardiness Cost. Although there are some papers that have found the lower 
bound for total tardiness in a single machine scheduling problem ((Tansel, Kara, 
& Sabuncuoglu, 2001), (Della Croce, Grosso, & Paschos, 2004)), their result 
cannot be directly used in our work as we are dealing with the cost of tardiness 
not the tardiness itself. The tightness of the bound is not a main concern. What 
follows is a proposed lower bound for total tardiness cost in MAINTFLOW- 

Algorithm 1. Total Maintenance Cost Lower Bound for MAINTFLOW-SINGLE. 

Input: 𝐽, set of all jobs; 𝑀 = 𝑆𝑃11 + 𝑒11 ×𝑊𝐹𝑘, cost of each maintenance 
activity 

Output: 𝐿, total maintenance cost 
𝐺 ← ∅  
𝑁 ← 0 //Number of required MAs 
while 𝐽 ≠ ∅  do 

 𝐺 ← KNAPSACK(𝐽) 
 𝐽 ← 𝐽\𝐺 
 𝐺 ← ∅ 

 𝑁 ← 𝑁 + 1 
𝐿 ← (𝑁 − 1) × 𝑀 
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SINGLE problem. Following the same notations that we used in modeling the 
problem, let 𝑑0 = max𝑑𝑗, 𝜋0 = min𝜋𝑗, and 𝑝10 = min𝑝1𝑗 where 𝑗 = 1,… , 𝑛. 

Algorithm 2 yields a possible lower bound for the problem. 
 

Algorithm 2. Total Tardiness Cost Lower Bound for MAINTFLOW-SINGLE. 

𝐶 ← 0 //Completion Time 

𝑇 ← 0 //Total Tardiness 
for 𝑗 = 1 𝑡𝑜 𝑛 do 
𝐶 ← 𝐶 + 𝑝10  
if 𝑑0 < 𝐶 then 

  𝑇 ← 𝑇 + 𝐶 − 𝑑0   
𝐿 ← 𝑇 × 𝜋0 //Lower Bound 
 

 

Lower bound for MAINTFLOW-FULL 

Maintenance Cost. When the jobs are to be processed by more than one 
machine and each machine has more than one ML, we can get the lower bound 
for each ML of each machine using Algorithm 1 and then adding them together. 
Algorithm 3 summarizes this.  
 

Algorithm 3. Total Maintenance Cost Lower Bound for MAINTFLOW-FULL. 

Input: 𝐽, set of all jobs; 𝑀𝑖𝑘 = 𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘 ×𝑊𝐹𝑘, cost of each maintenance 
activity 

Output: 𝐿, total maintenance cost 

𝐿 ← 0 
for 𝑖 = 1 𝑡𝑜 𝑚 do 
 for 𝑘 = 1 𝑡𝑜 𝑙 do 
  𝐺 ← ∅  

  𝑁 ← 0 //Number of required MAs 
  while 𝐽 ≠ ∅  do 
   𝐺 ← KNAPSACK(𝐽) 

𝐽 ← 𝐽\𝐺 
   𝐺 ← ∅ 

𝑁 ← 𝑁 + 1 
𝐿 ← 𝐿 + (𝑁 − 1) × 𝑀𝑖𝑘 

 
Tardiness Cost. With some changes, Algorithm 2 can be enhanced to calculate 

the lower bound for total tardiness cost where 𝑝𝑖0 = min 𝑝𝑖𝑗  ∀ 𝑖 = 1,… ,𝑚 and 𝑗 =

1, … , 𝑛. 𝑐𝑖𝑗, 𝑤𝑖𝑗 and 𝑒0are completion time of the job in position i with respect to 

machine j, waiting time of job i for machine j, and minimum execution time of 
maintenance activities, respectively. Algorithm 4 shows this. 
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Algorithm 4. Total Tardiness Cost Lower Bound for MAINTFLOW-FULL. 

𝐶 ← 𝟎 //Completion Time: A matrix of size 𝑚 × 𝑛 that shows completion time of 
each job on each machine 

𝑊 ← 𝟎 //Waiting Time: A matrix with size 𝑚 × 𝑛 that shows waiting time of each 
job for each machine 

𝑇 ← 0 //Total Tardiness 
for 𝑖 = 1 𝑡𝑜 𝑚 do 

 𝑐𝑖1 ← ∑ 𝑝𝑖0
𝑖
𝑠=1  

for 𝑗 = 2 𝑡𝑜 𝑛 do 
 𝑐1𝑗 ← 𝑐1(𝑗−1) + 𝑝10 

for 𝑖 = 2 𝑡𝑜 𝑚 do 

 for 𝑗 = 2 𝑡𝑜 𝑛 do 
  if 𝑐𝑖(𝑗−1) < 𝑐(𝑖−1)𝑗  then 

   𝑤𝑖𝑗 ← 𝑐𝑖(𝑗−1) − 𝑐(𝑖−1)𝑗 

  𝑐𝑖𝑗 = 𝑐(𝑖−1)𝑗 + 𝑤𝑖𝑗 + 𝑝𝑖0 

for 𝑗 = 1 𝑡𝑜 𝑛 do 
 if 𝑑0 < 𝑐𝑚𝑗  then 

  𝑇 ← 𝑇 + 𝑐𝑚𝑗 − 𝑑0   

𝑇 ← 𝑇 + (𝑁 − 1) × 𝑒0 
𝐿 ← 𝑇 × 𝜋0 //Lower Bound 
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Lower-Bound-Based Genetic Algorithm (LBGA) 

We showed that the presented problem is NP-hard. As will be shown in the next 
section, only very small sizes of the problem can be solved in a reasonable and 
predictable time for exact optimal solution using commercial solvers such as IBM 
CPLEX. Complex structure of the problem also makes it difficult to come up with 
an exact heuristic algorithm. This leads to the call for designing and 
implementing a metaheuristic algorithm for the problem where it is ensured that 
the whole feasible solution space can be searched through randomly-generated 
solutions and each solution can be further improved by a local search. We 
propose a genetic algorithm for the presented problem by using an experimental 
design to identify the significant parameters of the algorithm and then tuning 
those parameters based on the identified lower bounds. Figure 5 illustrated the 
solution approach. 
 

Genetic Algorithms 

Genetic algorithms (GAs) are among the most widely-used and known search 
heuristics. GAs have been applied to different research areas (Chambers, 1998) 
including several applications in machine scheduling (B. A. Norman & Bean, 
1999). In the works of (Sortrakul, Nachtmann, & Cassady, 2005) and (Sortrakul & 
Cassady, 2007), GA has been used to solve the integrated scheduling of 
production and maintenance for a single machine. A GA generally works by 
keeping a population of candidate solutions represented as chromosomes whose 
fitness is determined by their respective objective function value. The 
chromosome is composed of a sequence of elements (numbers) each of which is 
indicative of a feature of the solution. A fixed number of most fit chromosomes 
are selected as the population of the current generation, on a percentage of 
which the local search operators, crossover and mutation, are applied. Crossover 
produces new offspring chromosomes from certain chromosomes of the current 
generation which are selected as parents. Mutation is applied to certain 
chromosomes of either current population or the offspring chromosomes 
according to a specific mutation scheme in order to produce new chromosomes. 
This process is iterated until a stopping condition is satisfied. 
 

Like other types of meta-heuristic algorithms, a GA has a set of 
parameters whose values affect performance and quality of the solutions of the 
algorithm. This set of parameters includes population size (number of competing 
chromosomes) in each iteration, percentage of solutions for crossover and 
mutation, parameters for the specific method of crossover and mutation that are 
used, and parameter of stopping condition (for example, the time at which the 
algorithm stops). The interactions between GA parameters and respective 
literature was reviewed and studied by (Deb & Agrawal, 1999). According to that 
study, the most important parameters are population size (N), crossover 
probability (pc), and mutation probability (pm). The optimal value for the mutation 
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probability and crossover probability are highly dependent on the chromosome 
representation (Tate & Smith, 1993). As a result, for a specific chromosome 
representation of a certain problem, it must be tested whether these parameters 
affect solution quality or performance. 

 

Design of the GA 

Chromosome representation. Each individual chromosome (solution) is a 
sequence of the jobs. Although in the MILP problem formulation we introduced 
other decision variables, such as the binary variable that determines whether a 
maintenance activity is placed before a job position (𝑦𝑖𝑞𝑘), the only independent 

variable is the position of each job in the permutation (𝑥𝑖𝑗). When a sequence of 

jobs is represented as a chromosome, random permutations provide access to 
different areas of the solution space relatively fast and since the genes are jobs, 
neighborhood of a solution can be searched relatively fast by crossover and 
mutation operators which make the local search computationally simple, and 
hence, fast. In addition, because the values of dependent variables can be easily 
calculated for a given sequence, there is no need for feasibility check when 
producing random solutions. 
 
Crossover. A single point crossover operator has been used in order to produce 
two offspring from two parent chromosomes. A sequence of jobs represents a 
feasible chromosome (solution) if it satisfies the two conditions of a valid solution 
discussed in proving Theorem 1. In a single point crossover, after the first left 
sections of the chromosomes are exchanged, it is possible that the right sections 
have duplicate genes. In that case, those genes are replaced by the genes of the 
other chromosome that are in the same position. Algorithm 5 shows this. 
 
Mutation. The mutation has been used as a local search that can further improve 

the fitness of existing solutions. With probability 𝜇, two random genes are 
selected and swapped. Otherwise, no change occurs to the chromosome. After 
mutation, the chromosome will remain a feasible chromosome. Algorithm 6 
shows the mutation scheme used in the proposed algorithm. We repeat the 
mutation M-1 more times where M is 20% of the number of jobs. This is because 
swapping only two jobs decreases effectiveness of this search when the number 
of jobs increases in larger problems. 
 
Selection. A Roulette Wheel Selection method (C. R. Reeves, 1995) has been 
adapted, as is shown in Algorithm 7, for selecting either parents for crossover, or  
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  Algorithm 5. Crossover Operator. 

Input: Two sequences of jobs (parents); 𝑥1 and 𝑥2.  
Output: Two sequences of jobs (offspring chromosomes); 𝑥3 and 𝑥4. 
Note: x(i) mean i-th element in x and x(i:j) means elements of x from i to j. 

𝑐 ← a random integer between 1 and 𝑛 (number of jobs) 
𝑥3 ← 𝑥1(1: 𝑐) + 𝑥2(𝑐 + 1: 𝑛) 
𝑥4 ← 𝑥2(1: 𝑐) + 𝑥1(𝑐 + 1: 𝑛) 
for 𝑖 ← 1 𝑡𝑜 𝑛 − 𝑐 do 

    if 𝑥3(𝑐 + 𝑖) 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑥3(1: 𝑐 + 𝑖 − 1) do 
        for 𝑗 ← 1 𝑡𝑜 𝑛 do 
            if 𝑥4(𝑗) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑥3(1: 𝑐 + 𝑖 − 1) 
                𝑥3(𝑐 + 𝑖) ← 𝑥4(𝑗) 
                break 

for 𝑖 ← 1 𝑡𝑜 𝑛 − 𝑐 do 
    if 𝑥4(𝑐 + 𝑖) 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑥4(1: 𝑐 + 𝑖 − 1) do 
        for 𝑗 ← 1 𝑡𝑜 𝑛 do 
            if 𝑥3(𝑗) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑥4(1: 𝑐 + 𝑖 − 1) 
                𝑥4(𝑐 + 𝑖) ← 𝑥3(𝑗) 
                break 
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Algorithm 6. Mutation Operator. 

Input: A single chromosome (a sequence of jobs), 𝑥, and mutation probability, 
𝜇.    

Output: A new chromosome, 𝑦. 
Note: x(i) means i-th element in x. 

𝑦 ← 𝑥  
𝑟 ← a random value between 0 and 1 
if 𝜇 < 𝑟 do 
 𝑖 ← a random integer between 1 and 𝑛 (number of jobs) 
 𝑗 ← a random integer between 1 and 𝑛 (number of jobs) 
 𝑦(𝑖) ↔ 𝑦(𝑗)   
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Algorithm 7. Roulette Wheel Selection. 

Input: Selection pressure, 0 ≤ 𝑠 ≤ 1, and a population of sorted chromosomes, 
𝑃.    

Output: A selected chromosome, 𝑦. 
Note: 𝑃. 𝐶𝑜𝑠𝑡 represents a vector that has the cost of each chromosome in it 
𝑤 ← man (𝑃. 𝐶𝑜𝑠𝑡) // cost of the worst solution 

𝑝 ← 𝑒−
𝑠∙𝑃.𝐶𝑜𝑠𝑡
𝑤  

𝑝 ←
𝑝

∑𝑝
 

𝑟 ← a random value between 0 and 1 
𝑐 ← cummulative summation of 𝑝 
𝑖 ← index of the first element in 𝑐 which is less than or equal to 𝑟 
𝑦 ← 𝑃(𝑖) 
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single chromosomes for mutation, from the current population. A selection 
pressure equal to 0.8 has been used.  
 
Fitness function. The function used to evaluate fitness (objective function value) 
of a chromosome (solution) calculates minimum cost of maintenance activities for 
a given sequence by calculating the current maintenance level after processing 
each job in the sequence, and adding a maintenance activity and its respective 
cost only if the next job causes the maintenance level to fall below zero. It also 
follows Algorithm 4 for calculation of tardiness cost with the only exception that it 
considers actual processing times for jobs and actual durations for maintenance 
activities as the MILP model does. 
 
Stopping condition. Convergence has been used as the stopping condition, 
which mean, when the respective cost of the best solution does not improve for a 
certain number of iterations, I, the algorithm stops and the chromosome that has 
the minimum cost in the last iteration (generation) is returned as the best 
solution. 
 

Setting the Parameters 

In this study, a 33 factorial design with confidence interval of 0.95 is used to test 
whether the quality of solutions significantly change for different settings of a 
parameter. If so, the parameter will be incorporated to the main algorithm that is 
shown in Figure 5. This algorithm re-adjusts the parameters and runs the GA 
until a desired gap percentage between the GA and the lower bound is reached. 
Table 1 shows what levels are used for each factor (parameter) of the GA. Based 
on a report by (Colin R Reeves, 1997), many authors suggest that a population 
size as small as 30 is sufficient for producing satisfactory results, we consider it 
as the starting level. For the other two factors, obviously, possible values are 
between zero and one. 
 

Table 1. Experimental Design. 

Parameter Level 1 Level 2 Level 3 

Population size 30 100 200 
Crossover probability 0.2 0.5 0.8 
Mutation probability 0.2 0.5 0.8 
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Figure 5. Lower-bound-based GA (LBGA). 
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For the experiment, 27 combinations are possible and two replications 
(Montgomery, 2008) are required which implies a total number of 54 trials are 
run. The results are shown in Table 2 for a randomly-generated test problem of 
size (m=5, n=7, l=3). Note that the response variable (cost) is the best cost 
produced by the GA minus the exact minimum cost for the same test problem 
from CPLEX. Analysis of variance for the results of the experiment is shown in 
Table 3. From the results we see that only the population size is statistically 
significant for the proposed problem. As a result, we will only incorporate the 
population size to the LBGA. Using Minitab’s Factorial Optimization based on the 
experiment, a probability of 0.5 for both crossover and mutation, and the 
maximum possible value for population size minimizes the cost. Increasing these 
probabilities will negatively affect the time-wise efficiency of the algorithm as 
more operations are likely to be performed. Decreasing these probabilities, on 
the other hand, limits the ability of the algorithm in searching the neighborhood. 
 

Time to convergence and the gap between the best cost obtained by the 
algorithm and the lower bound can be considered as efficiency and quality of the 
solutions of the algorithm. As shown in Figure 5, the LBGA adjusts statistically 
significant parameters of the designed GA (population size for this problem) in 
such a way that a desired level of both measures that can be set by the user are 
obtained. 

 

1.5 Computational Results 

 
Computational results of the proposed solution approach are presented in this 
section. The NP-hardness of the presented problem is numerically experienced. 
It is shown that solution times of the exact algorithms have an exponential 
increase in CPU time for a linear increase in size of the problem. The results of 
the proposed algorithm will also be compared with the exact solutions from IBM 
CPLEX in order to validate efficiency and quality of the solutions of the algorithm. 

 

Test Problem Generation 

Table 4 shows how all the test problems used throughout this section are 
generated. First and second columns show the parameters whose values are to 
be randomly generated as input and the size of their respective matrices, 
respectively. Third column shows the ranges within which the random values (of 
a matrix) are generated and the last column shows considerations in generating 
the values.  
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Table 2. Results of the experiment. 

Trial # Population Size (A) Crossover Probability 
(B) 

Mutation Probability 
(C) 

Response (Cost) 

1 30 0.2 0.2 3594 
2 30 0.2 0.2 7825 
3 30 0.2 0.5 17170 
4 30 0.2 0.5 5440 
5 30 0.2 0.8 3594 
6 30 0.2 0.8 3594 
7 30 0.5 0.2 3594 
8 30 0.5 0.2 5480 
9 30 0.5 0.5 3594 
10 30 0.5 0.5 3594 
11 30 0.5 0.8 3594 
12 30 0.5 0.8 5480 
13 30 0.8 0.2 3594 
14 30 0.8 0.2 8028 
15 30 0.8 0.5 5480 
16 30 0.8 0.5 5440 
17 30 0.8 0.8 3594 
18 30 0.8 0.8 5480 
19 100 0.2 0.2 0 
20 100 0.2 0.2 5440 
21 100 0.2 0.5 3594 
22 100 0.2 0.5 3594 
23 100 0.2 0.8 0 
24 100 0.2 0.8 3594 
25 100 0.5 0.2 11826 
26 100 0.5 0.2 0 
27 100 0.5 0.5 0 
28 100 0.5 0.5 3594 
29 100 0.5 0.8 0 
30 100 0.5 0.8 3594 
31 100 0.8 0.2 3594 
32 100 0.8 0.2 3594 
33 100 0.8 0.5 0 
34 100 0.8 0.5 0 
35 100 0.8 0.8 0 
36 100 0.8 0.8 0 
37 200 0.2 0.2 5480 
38 200 0.2 0.2 0 
39 200 0.2 0.5 3594 
40 200 0.2 0.5 3594 
41 200 0.2 0.8 3594 
42 200 0.2 0.8 0 
43 200 0.5 0.2 3594 
44 200 0.5 0.2 0 
45 200 0.5 0.5 0 
46 200 0.5 0.5 0 
47 200 0.5 0.8 0 
48 200 0.5 0.8 0 
49 200 0.8 0.2 0 
50 200 0.8 0.2 0 
51 200 0.8 0.5 0 
52 200 0.8 0.5 0 
53 200 0.8 0.8 0 
54 200 0.8 0.8 0 
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Table 3. Analysis of variance for the GA parameters. 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F0 P-Value 

A 180550845 2 90275422 10.84 <0.0001 
B 36384505 2 18192252 2.18 0.132 
C 26472269 2 13236135 1.59 0.223 
AB Interaction 22000726 4 5500182 0.66 0.625 
AC Interaction 23585052 4 5896263 0.71 0.594 
BC Interaction 44696386 4 11174097 1.34 0.280 
ABC Interaction 22238943 8 2779868 0.33 0.945 
Error 224944831 27 8331290   
Total 580873557 53    
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Table 4. Generation method of test problems. 

Parameter Size Range Generation Method 

Processing times 𝑚 × 𝑛 [1,10] Random (integer, with Uniform distribution) 

Duration of MAs 1 × 𝑙 [1,4] Random (integer, with Uniform distribution) 

Deterioration rates 
𝑚 × 𝑛
× 𝑙 

[0,2] Random (fractional, with Uniform distribution) 

Penalty costs 1 × 𝑛 [500,600] Random (integer, with Uniform distribution) 

Due dates 1 × 𝑛 [10,30] Random (integer, with Uniform distribution) 

Spare parts costs 𝑚× 𝑙 [1000,20000] Random (integer, with Uniform distribution) 

Workforce costs 1 × 𝑙 [500,2000] Random (integer, with Uniform distribution) 

Maximum of MLs 1 × 𝑙 NA 
(Upper bound of processing times)×(Upper bound of 
deterioration rates) 
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Performance 

In order to evaluate the quality of the solutions of LBGA, we have solved several 
test problems of different sizes. We have increased the size of the problems up 
to a point when CPLEX could no longer solve the problem in a reasonable or 
predictable time (in the table, “P.” in stands for Problem). As shown in Table 5, 
the objective function value (OFV, the minimum total cost) of the designed LBGA 
algorithm is either the same as the exact solution from CPLEX or considerably 
close to it. The time to reach the best solution (in seconds), also, shows that the 
algorithm is efficient. The CPLEX time, on the other hand, increases 
exponentially as the size of the problem increases linearly. 
 

Gap Analysis 

In Section 1.4 we proposed a self-tuning lower-bound-based GA (LBGA) for 
finding the optimal population size that satisfies predetermined levels of both 
performance and solution quality. An optimal population size found by LBGA for 
a certain problem size may not be optimal for larger sizes of the problem. This 
seems to be obvious that the algorithm would consume much more time for 
finding the optimal set of parameters as the size of the problem increases. In this 
subsection, we introduce a computational experiment to see whether an optimal 
set of GA parameters (an optimal population size in this case) for a certain size 
of the problem can also be considered acceptable for all the remaining larger 
sizes of the problem. 
 

We want to investigate how an optimal population size for a certain 
problem size will work for larger sizes of the problem. In Table 6, we generated a 
test problem for each certain problem size, then we solved it by the GA twice; 
first we solved it with a fixed population size of 200 which has been obtained by 
LBGA for n = 10, then we solved it with a larger population size which linearly 
increases with respect to the size of the problem.  

 
Figure 6 summarizes Table 6: increasing the population size does not 

significantly decrease the gap between the GA and the lower bound (quality of 
solutions was not improved significantly) or the number of iterations before 
convergence. However, it significantly increases the time to convergence which 
implies the performance degradation. As a result, we conclude that, for the 
problem discussed in this paper, if we find an optimal population size for a certain 
problem size, we can use that population size for any problem size. The LBGA 
does not need to go through excessive loops to experiment the population size 
for different sizes of the problem. This finding lets us utilize the GA more 
efficiently (in terms of time) and effectively (in terms of solution quality). 
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Table 5. Comparison between CPLEX and LBGA. 

P. 
Size LBGA CPLEX OFV 

Gap m n l OFV Time OFV TIME 

1 1 3 1 22212 7 22212 1 0.00% 

2 1 5 1 28926 8 28926 1 0.00% 

3 1 7 1 48757 9 48757 1 0.00% 

4 1 9 1 75063 10 75063 3 0.00% 

5 1 11 1 118438 12 118438 5 0.00% 

6 1 12 1 119660 13 119660 14 0.00% 

7 1 13 1 58674 12 58465 18 0.36% 

8 1 14 1 302153 13 301221 17050 0.31% 

9 2 6 1 53879 10 53879 1 0.00% 

10 2 7 1 91500 11 91500 2 0.00% 

11 2 8 1 83626 10 83626 2 0.00% 

12 2 9 1 113672 12 113578 5 0.08% 

13 2 10 1 163422 12 163302 271 0.07% 

14 1 6 2 39158 9 39158 1 0.00% 

15 1 7 2 54842 9 54842 1 0.00% 

16 1 8 2 85318 10 85318 2 0.00% 

17 1 9 2 105178 10 105106 10 0.07% 

18 1 10 2 118578 11 118578 9 0.00% 

19 1 11 2 195407 12 195407 60 0.00% 

20 1 12 2 256657 13 256641 630 0.01% 

21 3 6 1 91549 11 91549 1 0.00% 

22 3 7 1 144724 12 142262 2 1.73% 

23 3 8 1 106275 13 104559 6 1.64% 

24 3 9 1 125309 15 124150 10 0.93% 

25 3 10 1 222184 16 218316 2185 1.77% 

26 3 4 2 92550 10 92550 1 0.00% 

27 3 5 2 147751 11 147136 1 0.42% 

28 3 6 2 113814 12 113113 1 0.62% 

29 3 7 2 145661 13 145551 3 0.08% 

30 3 8 2 273555 14 272648 27 0.33% 

31 3 9 2 270579 15 266853 3490 1.40% 

32 1 6 3 63887 10 63887 1 0.00% 

33 1 7 3 80920 10 80920 2 0.00% 

34 1 8 3 44858 10 44858 1 0.00% 

35 1 9 3 197920 12 197920 351 0.00% 

36 2 6 3 147016 11 147016 2 0.00% 

37 2 7 3 131718 11 130270 2 1.11% 

38 2 8 3 214500 13 214500 9 0.00% 



40 
 

Table 5. Continued. 

P. 
Size LBGA CPLEX OFV 

Gap m n l OFV Time OFV TIME 

39 2 9 3 235188 13 229921 332 2.29% 

40 3 6 3 137579 13 137579 1 0.00% 

41 3 7 3 264244 14 259636 23 1.77% 

42 3 8 3 283053 16 283053 189 0.00% 

43 7 10 5 1647512 38 1702766* 172800 NA 

* Best feasible solution found after 48 hours. 
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Table 6. Increasing both population size and problem size (𝑚 = 5, 𝑙 = 3). 

P. 
Size 
(n) 

GA with a fixed population size (A) Lower 
Bound 

GA with increasing population size (B) 

Cost Iterations Time Cost Iterations Time 

1 10 1357822 38 3.413495 1034990 1369003 6 0.776334 

2 10 1289404 27 2.739804 993260 1293785 28 1.419067 

3 10 1103666 41 3.595149 850148 1113149 20 1.159057 

4 20 3514750 37 6.331777 2529097 3481338 56 8.517733 

5 20 3111348 51 7.833044 1974912 3142235 62 9.067386 

6 20 3239546 66 9.319994 2252677 3287542 49 7.620991 

7 30 6008532 88 17.30267 3858826 5985798 84 25.67928 

8 30 5847222 84 17.12846 3614259 5721203 104 30.90619 

9 30 6630725 71 15.27042 4197579 6665582 57 19.51996 

10 40 8775033 117 29.60771 5389715 8717491 102 53.00777 

11 40 9091908 73 20.26242 5547657 9048168 142 69.59584 

12 40 9207676 98 25.85184 5733537 8960551 152 75.47809 

13 50 12698574 131 40.9435 7479909 12433575 189 139.2959 

14 50 13883341 155 48.09594 8412250 13603060 178 133.5371 

15 50 11506884 147 45.01884 6489562 11541169 192 141.3605 

16 60 16180271 235 80.67539 9112971 16016216 176 186.2603 

17 60 17826556 256 88.75478 10207561 17597984 183 196.9761 

18 60 16787968 90 36.53791 9466694 16384531 150 167.5249 

19 70 23500984 148 63.53675 12610303 22968423 262 369.9774 

20 70 22933999 172 72.06714 12242464 22506265 270 377.1611 

21 70 21797249 220 91.40516 11796697 21214008 272 392.317 

22 80 29336445 207 98.66956 15283399 28921857 402 716.7778 

23 80 26752887 178 86.65114 14281013 26108861 281 524.6216 

24 80 28608588 106 55.67532 15641739 27940407 175 341.1104 

25 90 34116742 221 120.7167 17032171 33513125 314 732.3489 

26 90 35636830 172 95.79678 18580421 35017974 286 681.2377 

27 90 36721795 203 112.335 18403696 36418390 191 480.5361 

28 100 44671803 225 134.331 22625879 44337511 261 796.222 

29 100 40722246 285 169.049 20866059 40238496 208 652.4085 

30 100 40461783 295 172.9161 20382082 40420367 178 572.7291 

31 110 48304135 179 126.0298 26468086 47139627 326 1171.559 

32 110 49434030 281 181.994 24718995 48796784 216 823.8144 

33 110 51096605 263 171.1317 26367819 50639136 269 990.5269 

34 120 60261706 192 148.7522 30345652 58175023 548 2281.366 

35 120 59760090 394 273.6253 30531018 59110255 412 1712.454 

36 120 57392427 436 295.0103 27164218 56861165 302 1290.498 

37 130 61052962 297 226.4157 31624493 60296896 342 1725.214 
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Table 6. Continued. 

P. 
Size 
(n) 

GA with a fixed population size (A) Lower 
Bound 

GA with increasing population size 
(B) 

Cost Iterations Time Cost Iterations Time 

38 130 64150827 181 149.4786 32151965 62769807 296 1520.949 

39 130 68243101 261 204.4468 33991633 67814396 272 1434.061 

40 140 69546643 445 355.842 35245794 68816417 253 1566.712 

41 140 73025400 293 244.7684 35906152 70958910 318 1861.639 

42 140 79112053 229 198.1027 37178822 78634672 277 1672.875 

43 150 90118324 300 265.1772 42228222 88443419 404 2706.224 

44 150 84518094 309 275.242 41435942 83861145 242 1730.565 

45 150 84135462 280 254.4936 41988981 82189148 495 3275.692 

46 160 95855660 298 287.9158 46359806 94701837 269 2196.804 

47 160 99877898 174 177.5147 48788058 97021257 352 2714.185 

48 160 97575368 362 339.2074 45673937 96227839 468 3519.544 

49 170 1.16E+08 254 260.4629 54219150 1.13E+08 476 4076.364 

50 170 97162793 195 207.859 49432663 93068701 529 4522.738 

51 170 1.12E+08 226 238.4961 52248987 1.08E+08 374 3308.45 

52 180 1.24E+08 367 400.517 55355808 1.21E+08 565 5411.51 

53 180 1.17E+08 327 363.0825 56782729 1.16E+08 283 2961.246 

54 180 1.17E+08 602 620.4908 56072705 1.15E+08 427 4246.796 
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Figure 6. The effect of increasing population size on the performance of the algorithm. 
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1.6 Case Study (Earthmoving Operations) 

 
In this section we will try to show the application of the presented model via a 
case study. One of the main activities in the early stages of a heavy construction 
project is earthmoving. This activity is highly dependent on earthmoving 
machinery. The most commonly used equipment for earthworks are (wheel) 
loaders, dozers, excavators, and haul trucks. A simplified version of the 
earthmoving process described by Fu (2013) is as follows. The first step is 
preparation which is done best by excavators which can dig natural form of 
material from the earth. Next, in loading step, wheel loaders can load the 
removed and prepared soil into haul trucks. Finally, in hauling step, haul trucks 
transport earth to a deposit point by travelling through routes with different slopes 
and ground conditions. 

 
Typical (preventive) maintenance activities for construction machinery are 

usually based on the service hours of the machinery. In Table 7, maintenance 
intervals recommended by one of the manufacturers of heavy construction 
equipment is listed for the machinery that are required for the simplified 
earthmoving process (Caterpillar, 2010c) (Caterpillar, 2010b) (Caterpillar, 

2010a). These intervals can be considered as 𝑀𝐿𝑚𝑎𝑥
𝑘  according to the presented 

model. Different tasks are included in each maintenance activity. For example, 
the tasks included in the 50-hour maintenance activity of excavators shown in the 
table are lubrication of boom, stick and bucket linkage, drive shaft universal joint, 
etc. 

 

Table 7. Maintenance intervals (hours) recommended by the equipment manufacturer (Caterpillar 
Inc.). 

Machine 10 50 100 250 500 1000 2000 3000 4000 5000 6000 

Excavators           

Wheel 
Loaders 

          

(Haul) Trucks           

 
In a project with four locations, in which earth moving operations need to be 

done, there are three machines (one excavator, one wheel loader, and one 
truck). Because of the significant distance between these locations, a machine 
needs to work in one location at a time. In Table 8, the amount of operations in 
each location is shown. Due dates are also shown along with the penalty for 
each day of delay (GDOT, 2013). Note that the amount of work that a machine 
can work in one location can be different from other locations due to the condition 
of the location. As a result, operation requirements in Table 8 are expressed as 
number of time periods (days) multiplied by the time a machine can work in each 
time period (in hours) which can be considered as deterioration rates of MLs 
because the MLs have been expressed in hours. 
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Table 8. Operation requirements (days) x deterioration rates (hours), due dates (days), and 
penalty for one day delay. 

Location (Jobs) Excavator Wheel Loader Tuck Due Date Penalty 

A 20 × 5 20 × 3 40 × 3 90 $211 

B 14 × 8 14 × 6 13 × 8 60 $118 

C 20 × 4 21 × 5 20 × 5 90 $118 

D 30 × 3 40 × 2 30 × 5 60 $346 
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Average cost of performing a preventive maintenance activity and a 
responsive maintenance activity (after major failure) for a wheel loader is 
approximately $234 and $15,652, respectively (Azadeh et al., 2014).We have 
used these values to approximate the overall cost of each maintenance activity 
for each machine, considering the risk of major failure due to missing an MA and 

relative price of the machines (𝑆𝑃𝑖𝑘 = $234 ∀𝑖, 𝑘,𝑊𝐹1 = $800,𝑊𝐹2 =
$1600,𝑊𝐹3 = $3200). Because the first three MAs (10, 50, 100 hours) are 
usually done in a fraction of an operational day and where the machine is 
located, and because 2000 hours MAs and above are not going to be reached 
they are not considered as MAs (we only consider 250, 500, and 1000). 
Deterioration rate for ML 250 will be zero for the truck because it does not have 
the respective MA. We will also consider one day for performing all the 
maintenance activities. This case study has been solved by IBM ILOG CPLEX 
Optimization Studio and the results are shown in Table 9. Total cost for this 
solution is $38,030.00, with three maintenance activities. 
  

Table 9. The optimal solution for the case study. 

Location (Jobs) Sequence Completion Day Tardiness (days) 

A 2 94 4 
B 1 41 0 
C 4 156 66 
D 3 136 76 

 

1.7 Conclusion and Future Research 

 
In this paper, a new permutation flow shop scheduling problem was introduced in 
which maintenance was incorporated where jobs deteriorate maintenance levels 
of the machines. We assume that each machine can have different types of 
maintenance activities corresponding to different maintenance levels and each 
maintenance activity can be scheduled flexibly. The problem was formulated as a 
mixed-integer linear program with the objective of minimizing the total cost of 
tardiness and maintenance. Since the problem was proved to be NP-hard, a 
special genetic algorithm has been developed. Parameters of the algorithm were 
statistically tested through a factorial experiment and it was found that only the 
population size can affect the quality of solutions significantly. Lower bounds 
were found for two different variations of the problem. A self-tuning genetic 
algorithm based on the lower bounds was introduced (LBGA). The efficiency and 
effectiveness of the algorithm is due to its ability to find the best population size, 
a significant GA parameter for the underlining problem. Through the 
computational experiment and gap analysis it was found that the optimal 
population size could be uniquely identified for certain set of problems. A case 
study of construction machinery scheduling with maintenance considerations was 
also presented to show one possible application of the problem. 
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Several assumptions were considered in Section 1.2. Potential extensions 
of the presented problem, as future works, can be defined by relaxing or 
changing these assumptions. The followings are other possible considerations in 
future works: 

 Changing the type of flow shop or incorporating the flexible and diverse 

maintenance activities to other production settings such as parallel 

machines scheduling.  

 Using different meta-heuristics as solution approaches and comparing the 

results with the presented algorithm. 

 Incorporating the random failures into the problem and modeling the 

problem with stochastic techniques. 

The proposed LBGA and computational experiments in Sections 1.4 and 
1.5 can be used for other different problems with analogous structures. 
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CHAPTER II 
BI-OBJECTIVE OPTIMIZATION OF THE INTEGRATED FLOW 

SHOP AND MAINTENANCE SCHEDULING PROBLEM  
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Abstract 

 
In real-world problems machines cannot continuously operate and have to stop 
for maintenance before they fail. Lack of maintenance can also affect the 
performance of machines in processing jobs. In this paper, a permutation flow 
shop scheduling problem with multiple age-based maintenance requirements is 
modeled as a novel mixed-integer linear program in which the objectives are 
conflicting. In modeling the problem, we assume that infrequent maintenance can 
prolong job processing times. One of the objectives is to minimize the total 
maintenance cost by planning as few maintenance activities as possible to only 
meet the minimum requirements, and the other objective tries to minimize the 
total tardiness by sequencing the jobs and planning the maintenance activities in 
such a way that the processing times are not prolonged and unnecessary 
maintenance times are avoided. Because of this conflict, an interactive fuzzy-bi-
objective model is introduced. Application of the model is illustrated through a 
case study for operations and maintenance scheduling of heavy construction 
machinery. An effective and efficient solution methodology is developed based 
on the structure of the problem and tested against commercial solvers and a 
standard GA. Computational results have verified the efficiency of the proposed 
solution methodology and show that unlike the proposed method, a generic 
meta-heuristic that does not consider the unique structure of the problem can 
become ineffective for real world problem sizes. 
 

2.1 Introduction 

 
Although maintenance planning and production scheduling are often studied 
separately such as in semiconductor manufacturing (Xiaodong et al., 2004), 
integration of machine maintenance and scheduling has appeared in many 
researches in the last two decades (Xu et al., 2015). This integration has been 
proposed for different configurations of manufacturing environments such as 
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single machine, flow shop, parallel machine, job shop, or flexible flow shop, and 
for different objective functions such as minimizing makespan, total (expected) 
completion time, total workload of machines, total workload of critical machines, 
tardiness, or a combination of them (S. Wang & Liu, 2014). In this paper, we 
model and optimize a permutation flow shop scheduling problem with 
maintenance constraints for two conflicting objective functions, namely 
maintenance cost and tardiness. This conflict stems from how production jobs 
deteriorate machines and how deterioration of machines can affect the 
processing times of the jobs. Then we introduce a solution methodology that 
effectively and efficiently solves realistic instances of the problem by considering 
the unique structure of the problem. 

 
The literature related to the integration of maintenance planning and 

scheduling has been classified by Xu et al. (2015) and Aramon Bajestani and 
Beck (2015). Xu et al. (2015) classified the literature into two categories based 
on the duration of maintenance activities. Aramon Bajestani and Beck (2015) 
divided the literature into two categories. The first category is the same as the 
first category determined by Xu et al. (2015). The second category, however, is 
different and addresses those research works which assume that the processing 
times of the jobs varies based on the maintenance. The interaction between 
maintenance and production, i.e. how they affect each other, is an interesting 
and important subject. For example, when considering nurses and doctors as 
processors and patients as jobs, the time to perform a surgery increases if they 
have not had a rest between consecutive surgeries. As another example, 
performance of construction machinery can also degrade leading to longer 
processing times in earthmoving operations (due to unplanned failures or 
decreasing performance) if the machinery has not been serviced according to 
their maintenance requirements. Xiang, Cassady, Jin, and Zhang (2014) 
modeled deterioration of a manufacturing unit due to production with Markov 
chains. S. Bock et al. (2012) studied the computational complexity of single 
machine scheduling problems when there exists a maintenance level for the 
machine and processing of the jobs deteriorates the maintenance level and a 
maintenance activity increases it. Yu and Seif (2016) used the same concept and 
proposed a mixed-integer programming model for flow shop scheduling problems 
with diverse maintenance activities. C. Y. Lee and Leon (2001) applied a rate 
which is dependent on maintenance activities to the processing times of the jobs.  
 

In some industries such as heavy construction projects, maintenance 
costs form a significant portion of the overall costs (Yip et al., 2014). Therefore, it 
is important to consider the maintenance cost in the objective function along with 
conventional scheduling criteria such as tardiness.  Yu and Seif (2016) 
considered minimizing maintenance cost as part of the objective function. Ideally, 
an optimization problem has only one objective that is to be minimized or 
maximized. However, in most of the real world problems, there more than one 
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objective is required to be optimized and the objectives are usually conflicting. In 
order to find an optimal decision, the trade-offs between two or more conflicting 
objectives should be considered via multi-objective optimization techniques. Also, 
because some information is incomplete and the environmental coefficients are 
typically uncertain, the objectives are fuzzy with imprecise aspiration levels. 
Fuzzy set theory introduced by Zadeh (1965) has been found with extensive 
applications in various fields, particularly with applications of linear programming 
(Rommelfanger, 1996). Zimmermann (1978) for the first time proposed 
application of fuzzy linear programming into conventional multi-objective linear 
programming (MOLP) problems. Fuzzy multi-objective linear programming 
(FMOLP) technique deals with problems that include multiple conflicting and 
fuzzy objectives. As some examples, see Stanciulescu, Fortemps, Installé, and 
Wertz (2003), R.-C. Wang and Liang (2004) and Liang (2006). Liang (2006) 
proposed an interactive fuzzy multi-objective linear programming (i-FMOLP) for a 
supply chain problem that provides a systematic framework for facilitating the 
fuzzy decision-making process, enabling a decision maker (DM) to interactively 
modify the fuzzy data and related parameters until a set of satisfactory solutions 
is obtained. Liang (2009) applied i-FMOLP to project management. 
 

In this paper, a complete interaction where maintenance and production 
affect each other, is modeled. Jobs can deteriorate the maintenance levels with 
different deterioration rates and when the average of the maintenance levels is 
low, the processing times of the jobs can be prolonged. More maintenance 
activities prevent the increase in processing times but is costly and adds to the 
total completion times of the jobs and could lead to a greater tardiness. Less 
maintenance activities can also increase tardiness by prolonging the processing 
times. This leads to a very complex trade-off between maintenance cost and 
tardiness. Adapting the thought process of R.-C. Wang and Liang (2004), the 
solution of fuzzy multi-objective optimization problems benefit from considering 
DM's imprecise judgments such as, ‘the objective function of total maintenance 
costs should be substantially less than or equal to 100 thousands’, or ‘total 
tardiness should be substantially less than or equal to 100 hours or days’. These 
conflicting objectives are required to be optimized simultaneously by the DM in 
the framework of fuzzy aspiration levels. An interactive fuzzy multi-objective 
linear programming (i-FMOLP) method for solving the fuzzy multi objective 
problems with piecewise linear membership function (PMLF) has been found to 
be effective for the problem discussed in this paper and is used in solving the 
problem.  
 

The contributions and significance of this paper are as follows. A practical 
problem introduced by (Yu & Seif, 2016) that extends mathematical formulation 
of the conventional flow shop scheduling problem as a mixed integer linear 
program (MILP) by incorporating age-based and diverse maintenance activities, 
is further extended. The impact of maintenance levels (health) of a machine on 
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processing times, along with deterioration of maintenance levels by processing 
the jobs, is considered. With an i-FMOLP both production and maintenance 
objectives are considered simultaneously and optimized in a practical fashion. A 
solution method is introduced that uses special properties of the presented model 
and outperforms a standard GA in terms of effectiveness (quality of solutions) 
and a commercial solver in terms of efficiency (solution time).  
 

The rest of the paper is organized as follows. In Section 2.2, the problem 
is formulated modeled as a mixed-integer linear program and a summary of 
assumptions is presented. The interactive fuzzy multi-objective linear 
programming (iFMOLP) technique used for this problem is introduced in Section 
2.3 along with a numerical example. In Section 2.4, a solution methodology is 
proposed that increases efficiency and effectiveness of a standard GA and 
outperforms it by confining the solution space and intelligently searching through 
the solution space. Section 2.5 shows the results of a computational experiment 
for evaluation of the proposed solution method. A case study in construction 
projects is introduced and solved in Section 2.6 that shows one of the 
applications of this work. Conclusions and possible future works as extensions of 
this paper are discussed in Section 2.7. 
 

2.2 Mathematical Formulation 

 
Yu and Seif (2016) incorporated diverse maintenance activities in permutation 
flow shop scheduling (Chapter 1). An extension of their MIP model is introduced 
in this section where two conflicting objectives are considered and the processing 
time of the jobs can be prolonged. The following is a list of assumptions 
considered in the formulation of the problem. 

1. By flow shop we refer to the permutation flow shop without any buffers 

(blocking flow shop). 

2. All the machines have the same set/types of maintenance levels (MLs), 

and hence, the same set of maintenance activities (MAs). 

3. Duration of a specific MA on a specific machine is known and invariable. 

However, these durations can vary on different machines. 

4. When a job is being processed, all the MLs are subject to deterioration 

according to a linear function by 𝛿 × 𝑝 where δ is the deterioration rate of 

ML caused by a job after it is processed and p is processing time of the 

job.  

5. Before processing the first job, all the MLs of all the machines are at their 

maximum. 
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6. Sufficient/unlimited resources (maintenance spare parts, materials, and 

workforces, operators, etc.) are available for processing the jobs and 

performing the MAs. 

7. Pre-emption is not allowed.  

8. All the MAs are performed to completion. 

9. The quantity 𝛿 × 𝑝 should always be less than the maximum of the 

respective maintenance level. Otherwise, the problem is infeasible. 

10. Random failures are not considered. 

11. As will be explained in Section 2.3, the parameters in the model are 

considered as crisp while the objectives are fuzzy. Because the desired 

value of maintenance cost and tardiness are vague and imprecise, the 

objective functions are fuzzy with imprecise aspiration levels (Paksoy, 

Pehlivan, & Özceylan, 2012). 

12. Let 𝜖𝑘 be the current value of the 𝑘-th ML of a machine as a fraction of its 

maximum value before a job is processed by the machine, 0 ≤ 𝜖𝑘 ≤ 1, ∀𝑘, 

and 0 ≤ Ε ≤ 1 be the average of all 𝜖𝑘 representing the health state of the 

machine. Prolonged processing time of the job, 𝜌, is assumed to be 

defined as 

𝜌 = {

𝛼𝑝, 𝑎 < Ε ≤ 1
𝛽𝑝, 𝑏 < Ε ≤ 𝑎
𝛾𝑝, 0 < Ε ≤ 𝑏

 

 

where 𝑝 is the nominal processing time of the job on that machine, 0 <
𝑏 < 𝑎 < 1 and 1 ≤ 𝛼 ≤ 𝛽 ≤ 𝛾, for the special case when the health of a 
machine has only three states. A generalized form will be considered in 
the mathematical model in the following section. 
 
These assumptions are the basis for the following model. Assumptions (1) 

and (7) state the scope of the problem regarding the literature of flow shop 
scheduling. Assumptions (2-5), (9) and (11-12) describe the properties of the 
problem that is to be modeled. See the case study in Section 2.6 that shows 
these properties in an application in construction projects. Finally, Assumptions 
(6), (8), and (10) highlight the limitations of the model. As is discussed in Section 
2.7, the latter assumptions can be dealt with by adjusting the input parameters 
and they can be addressed in further research works. Let m, n, and l be the 
number of machines, jobs, and maintenance levels (activities), respectively. 
Following is a list of indices, parameters, and variables used throughout the 
mathematical formulation of the problem. 

 

𝑖 Represents machines where 𝑖 =  1,2, … ,𝑚 
𝑗 Represents production jobs where 𝑗 =  1,2, . . . , 𝑛 
𝑞 Represents sequence of jobs (jobs positions) where 𝑞 =  1,2, . . . , 𝑛 
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𝑘 represents MLs or their respective MAs where 𝑘 =  1,2, … , 𝑙 
ℎ represents health state of a machine ℎ =  1,2, … , 𝑠 
𝑝𝑖𝑗 Processing time of job 𝑗 on machine 𝑖 
𝜌𝑖𝑞 Processing time of the 𝑞-th job on machine 𝑖 (decision variable) 

𝛿𝑖𝑗𝑘 
Deterioration rate of maintenance level 𝑘 (MA type 𝑘) of machine 𝑖 when 
job 𝑗 is processed 

𝑒𝑖𝑘 Duration of MA type 𝑘 on machine 𝑖 
𝑀𝐿𝑚𝑎𝑥

𝑘  Maximum of ML type 𝑘  

𝑆𝑃𝑖𝑘 Cost of required spare parts and materials for MA type 𝑘 on machine 𝑖 
𝑊𝐹𝑘 Cost of workforce per time unit for performing MA type 𝑘 
𝑑𝑗 The time at which job 𝑗 is due 

𝜆ℎ Coefficient with respect to state ℎ that is multiplied by nominal processing 
times of the jobs to prolong them based on the health state of a machine 
before the job is processed   

𝑥𝑗𝑞 Binary  variable that takes the value 1 if job 𝑗 is assigned to position 𝑞 in 
the sequence of the jobs, and 0 otherwise 

𝑦𝑖𝑞𝑘 Binary variable that takes the value 1 when PM type 𝑘 is performed on 
machine 𝑖 before processing the 𝑞-th job, and 0 otherwise 

𝑀𝐿𝑖𝑞
𝑘  Quantitative value of ML type 𝑘 of machine 𝑖 before processing the 𝑞-th 

job 
𝑐𝑞 Completion time of the job assigned to position 𝑞 (the 𝑞-th job) 

𝑡𝑞 Tardiness of the job assigned to position 𝑞 (amount of lateness in 
completion of the job) 

𝑣𝑖𝑞 Waiting time of the machine 𝑖 for the 𝑞-th job (idle time) 

𝑤𝑖𝑞 Waiting time of the 𝑞-th job for machine 𝑖 while the machine is busy 
processing another job 

Λ𝑖𝑞
ℎ  Binary variables that takes the value 1 if machine 𝑖 after processing the 𝑞-

th job is in health state ℎ, and 0 otherwise  

𝑧𝑖𝑗𝑞
ℎ  Auxiliary binary variables 

𝛾𝑖𝑗𝑞 Auxiliary variables 

𝐾,𝐾′ Sufficiently large numbers 
 

The mathematical model presented below has two objective functions 

(𝑧1and 𝑧2) subject to the constraints that follow them. 
 

𝑀𝑖𝑛 𝑧1 ≅ ∑𝑡𝑞

𝑛

𝑞=1

 (2.1) 

𝑀𝑖𝑛 𝑧2 ≅ ∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

 (2.2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
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𝑡𝑞 ≥ 𝑐𝑞 −∑𝑥𝑗𝑞𝑑𝑗

𝑛

𝑗=1

, 𝑞 = 1,2, … , 𝑛, (2.3) 

𝑡𝑞 ≥ 0, 𝑞 = 1,2, … , 𝑛, (2.4) 

∑𝑥𝑗𝑞 = 1

𝑛

𝑞=1

 𝑗 = 1,2, … , 𝑛, (2.5) 

∑𝑥𝑗𝑞 = 1

𝑛

𝑗=1

 𝑞 = 1,2, … , 𝑛, (2.6) 

𝑣𝑖(𝑞+1) +∑𝑦𝑖(𝑞+1)𝑘𝑒𝑖𝑘

𝑙

𝑘=1

+ 𝜌𝑖(𝑞+1) +𝑤(𝑖+1)(𝑞+1)

= 𝑣(𝑖+1)(𝑞+1) +∑𝑦(𝑖+1)𝑞𝑘𝑒(𝑖+1)𝑘

𝑙

𝑘=1

+ 𝜌(𝑖+1)𝑞

+ 𝑤(𝑖+1)𝑞 , 

𝑖
= 1,2, … ,𝑚
− 1, 
𝑞
= 1,2, … , 𝑛
− 1, 
𝑘 = 1,2, … , 𝑙, 

(2.7) 

𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘 , 
𝑖 = 1,2, … ,𝑚, 
𝑘 = 1,2, … , 𝑙, 

(2.8) 

𝑤𝑖1 = 0, 𝑖 = 1,2, … ,𝑚, (2.9) 

𝑣1𝑞 = 0, 𝑞 = 1,2, … , 𝑛, (2.10) 

𝑣𝑖1 =∑𝜌𝑓1

𝑖−1

𝑓=1

, 𝑖 = 2,3, … ,𝑚, (2.11) 

𝑤1𝑞 =∑𝜌1𝑟

𝑞−1

𝑟=1

+∑∑𝑦1𝑟𝑘𝑒1𝑘

𝑙

𝑘=1

𝑞

𝑟=1

, 𝑞 = 2,3, … , 𝑛, (2.12) 

𝑀𝐿𝑖𝑞
𝑘 −∑𝛾𝑖𝑗𝑞𝛿𝑖𝑗𝑘

𝑛

𝑗=1

≥ 0, 
𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(2.13) 

𝑀𝐿𝑖𝑞
𝑘 ≥ 𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝛾𝑖𝑗(𝑞−1)𝛿𝑖𝑗𝑘

𝑛

𝑗=1

− 𝑦𝑖𝑞𝑘𝐾, 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(2.14) 

𝑀𝐿𝑖𝑞
𝑘 ≤ 𝑀𝐿𝑖(𝑞−1)

𝑘 −∑𝛾𝑖𝑗(𝑞−1)𝛿𝑖𝑗𝑘

𝑛

𝑗=1

+ 𝑦𝑖𝑞𝑘𝐾, 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(2.15) 

𝑀𝐿𝑖𝑞
𝑘  ≥ 𝑀𝐿𝑚𝑎𝑥

𝑘 − 𝐾(1 − 𝑦𝑖𝑞𝑘), 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(2.16) 

𝑀𝐿𝑖𝑞
𝑘  ≤ 𝑀𝐿𝑚𝑎𝑥

𝑘 + 𝐾(1 − 𝑦𝑖𝑞𝑘), 
𝑖 = 1,2, … ,𝑚,
𝑞 = 2,3, … , 𝑛,
𝑘 = 1,2, … , 𝑙, 

(2.17) 
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𝑐𝑞 =∑(𝑤𝑖𝑞 + 𝜌𝑖𝑞 +∑𝑦𝑖𝑞𝑘𝑒𝑖𝑘

𝑙

𝑘=1

)

𝑚

𝑖=1

, 𝑞 = 1,2, … , 𝑛, (2.18) 

𝜌𝑖𝑞 =∑∑𝑢𝑖𝑗𝑞
ℎ 𝜆ℎ𝑝𝑖𝑗

𝑠

ℎ=1

𝑛

𝑗=1

, 
𝑗 = 1,2, … , 𝑛, 
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3, 

(2.19) 

𝑢𝑖𝑗𝑞
ℎ ≤ Λ𝑖𝑞

ℎ ,  

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,2, … , 𝑛, 
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3, 

(2.20) 

𝑢𝑖𝑗𝑞
ℎ ≤ 𝑥𝑗q, 

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,2, … , 𝑛, 
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3, 

(2.21) 

𝑢𝑖𝑗𝑞
ℎ ≥ 𝑥𝑗q + Λ𝑖𝑞

ℎ − 1, 

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,2, … , 𝑛, 
𝑞 = 1,2, … , 𝑛,
ℎ = 1,2,3, 

(2.22) 

∑ Λ𝑖𝑞
ℎ3

ℎ=1 = 1, 
𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛, 

(2.23) 

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≥ 0.66Λ𝑖𝑞
1 − 𝐾′(Λ𝑖𝑞

2 + Λ𝑖𝑞
3 ), 

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛, 

(2.24) 

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≤ 0.66Λ𝑖𝑞
2 + 𝐾′(Λ𝑖𝑞

1 + Λ𝑖𝑞
3 ), 

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛, 

(2.25) 

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≥ 0.33Λ𝑖𝑞
2 − 𝐾′(Λ𝑖𝑞

1 + Λ𝑖𝑞
3 ), 

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛, 

(2.26) 

∑
𝑀𝐿𝑖𝑞

𝑘

𝑙 ∙ 𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙

𝑘=1

≤ 0.33Λ𝑖𝑞
3 + 𝐾′(Λ𝑖𝑞

1 + Λ𝑖𝑞
2 ), 

𝑖 = 1,2, … ,𝑚,
𝑞 = 1,2, … , 𝑛, 

(2.27) 

𝛾𝑖𝑗𝑞 ≤ 𝑥𝑗𝑞𝐾
′, 

𝑖 = 1,2, … ,𝑚,
𝑗 = 1,3, … , 𝑛,
𝑞 = 1,2, … , 𝑛, 

(2.28) 

𝛾𝑖𝑗𝑞 ≤ 𝜌𝑖𝑞 , 
𝑖 = 1,2, … ,𝑚,
𝑗 = 1,3, … , 𝑛,
𝑞 = 1,2, … , 𝑛, 

(2.29) 

𝛾𝑖𝑗𝑞 ≥ 𝜌𝑖𝑞 + (𝑥𝑗𝑞 − 1)𝐾′, 
𝑖 = 1,2, … ,𝑚,
𝑗 = 1,3, … , 𝑛,
𝑞 = 1,2, … , 𝑛, 

(2.30) 

𝑥𝑗𝑞 , 𝑦𝑖𝑞𝑘, Λ𝑖𝑞
ℎ , 𝑢𝑖𝑗𝑞

ℎ ∈ {0,1},   

𝑀𝐿𝑖𝑞
𝑘 , 𝑐𝑞 , 𝑡𝑞 , 𝑣𝑖𝑞 , 𝑤𝑖𝑞 ≥ 0, 

𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, 𝑞 = 1,2, … , 𝑛,
𝑘 = 1,2, … , 𝑙, ℎ = 1,2,3. 

(2.31) 
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Equations (2.1) and (2.2) show the formulation of each objective function. 

The symbol ‘≅’ is the fuzzy version of ‘=’ and refers to fuzzy aspiration levels. 
For each objective function in the original fuzzy problem, it is assumed that the 
DM has a fuzzy objective such as, ‘‘the objective function should be essentially 

equal to some value” (Liang 2008). The first objective function 𝑧1 is equal to the 
sum of the tardiness of all jobs. The tardiness is calculated for each job position 
not for the actual jobs. Tardiness of each job is obtained from constraint in 
Equation (2.3) and lower bound constraint on 𝑡𝑞 in Equation (2.31); these two 

constraints together are the linearization form of 𝑡𝑞 = 𝑚𝑎𝑥{0, 𝑐𝑞 − 𝑑𝑗}. Total 

maintenance cost (𝑧2) is obtained by multiplying the workforce and spare parts 
cost of a potential maintenance activity before processing a job on a machine by 
the binary variable 𝑦𝑖𝑞𝑘 that determines whether that potential maintenance 

activity is realized by the solution. Equations (2.5) and (2.6) together ensure that 
each job has one and only one position in the sequence of jobs. 

  
Equation (2.7) maintains feasibility between machine and job idle-times. If 

machine 𝑖 finishes processing the (𝑞 +  1)-th job before the next machine (𝑖 + 1) 
finishes the previous job (𝑞), the job (𝑞 +  1) has to wait for the machine (𝑖 + 1). 
Therefore, 𝑤(𝑖+1)(𝑞+1) is positive and 𝑣(𝑖+1)(𝑞+1) must be zero. On the other hand, 

if machine 𝑖 finishes job (𝑞 + 1) after the next machine (𝑖 + 1) finishes job (𝑞), 
the machine (𝑖 + 1) has to wait for the job (𝑞 + 1). Therefore, 𝑣(𝑖+1)(𝑞+1) is 

positive and 𝑤(𝑖+1)(𝑞+1) is zero. 

 
According to Assumption (2.6), all the maintenance levels prior to the first 

job are at their maximum and hence no MA is performed before processing the 
first job. This is expressed in Equation (2.8). The first job (q=1)  does not wait in 
buffer for any of the machines because it is processed first by all the machines, 
as expressed in Equation (2.9). The first machine in the flow shop also does not 
wait for any of the jobs as expressed in Equation (2.10). In Equation (2.11), the 
idle times for machines 2 to m with respect to the first job (q=1) is equal to the 
sum of the processing times of the job on the previous machines. Equation (2.12) 
calculates the waiting time of the jobs for the first machine. Equation (2.13) 
ensures that the maintenance levels do not fall below zero during or after 
processing of the next job. The auxiliary variable 𝛾𝑖𝑗𝑞 substitutes the nonlinear 

term 𝜌𝑖𝑞 ∙ 𝑥𝑗𝑞. To linearize these nonlinear terms, constraints in Equations (2.28-

2.30) are added. Equations (2.14-2.17) are the linearized form of the following 
equation that calculates the values of the maintenance levels after processing 

the jobs (∀𝑖, 𝑘, 𝑞 = 2…𝑛): 

   

𝑀𝐿𝑖𝑞
𝑘 =

{
 

 𝑀𝐿𝑖(𝑞−1)
𝑘 −∑𝑥𝑗(𝑞−1)𝜌𝑖𝑗𝛿𝑖𝑗𝑘

𝑛

𝑗=1

, 𝑦𝑖𝑞𝑘 = 0

𝑀𝐿𝑚𝑎𝑥
𝑘 , 𝑦𝑖𝑞𝑘 = 1

. 
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Completion time of each sequenced job is equal to sum of its processing 
times and its waiting times in the buffer. This is expressed in Equation (2.18). In 
Equation (2.19), prolonged processing times are calculated. The original form of 
this equation, when there are only three states for the health of a machine, is: 

  

𝜌𝑖𝑞 =∑𝑝𝑖𝑗𝑥𝑗𝑞(𝛼Λ𝑖𝑞
1 + 𝛽Λ𝑖𝑞

2 + 𝛾Λ𝑖𝑞
3 )

𝑛

𝑗=1

, ∀𝑖, 𝑞 

 

where Λ𝑖𝑞
ℎ , ℎ = 1,2,3 is a binary variable that shows whether machine 𝑖 is in the 

health state ℎ before processing the 𝑞-th job. The value within the parentheses 

will be either 𝛼, 𝛽, or 𝛾. In Equation (2.19), 𝑢𝑖𝑗𝑞
ℎ  substitutes the nonlinear term 

𝑥𝑗𝑞Λ𝑖𝑞
ℎ .  Constraints in Equations (2.20-2.22) are added for linearization of this 

term. For simplicity, in this paper we have considered only three states for the 
health of the machines. Constraints in Equation (2.23) ensure that only one of the 
states of a machine is realized before processing a job. Constraints in Equations 
(2.24-2.27) determine which state is realized based on the health of a machine 
before a job is processed, in linear forms. Constraints in Equations (2.28-2.30) 
linearize the term 𝛾𝑖𝑗𝑞 = 𝜌𝑖𝑞𝑥𝑗𝑞 that is used to get the correct processing time for 

the job that occupies a certain position in the sequence; then, 𝛾𝑖𝑗𝑞 is used 

throughout the model as the processing time of job j on machine i if it is assigned 
to position q in the sequence of the jobs.  Equation (2.31) ensures that all the 
variables can take only the values that are within their boundaries. 
 

Bi-Objective Formulation 

In the proposed problem, a DM may have a vague and fuzzy idea about the 
desired values of the objective functions based on the current maintenance 
budget and criticality or priority of the current jobs (hence, the level of tardiness). 
For example, the DM may specify that the tardiness should be “somewhat less 
than” 100 hours and the maintenance cost “substantially less than” 100 thousand 
dollars. A multi-objective technique that is suitable for the proposed problem 
should have the following characteristics: it should be easy to understand and 
interact with; it should capture the fuzzy nature of the DM’s ideas about the 
values of the objective functions; and it should allow the DMs change these 
values based on the changes that happen at operational levels. 
 
 Liang (2006) proposes an interactive fuzzy multi-objective linear program 
(i-FMOLP) for a supply chain problem that provides a systematic framework for 
facilitating the fuzzy decision-making process in a problem where the aspiration 
levels of the DMs with respect to the objectives are fuzzy. Interactive techniques 
are more desirable in some applications because they yield a single preferred 
solution (Hannan, 1981; Liang, 2006). i-FMOLP uses a membership function that 
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helps DMs quantify the degree of their fuzzy satisfaction for each objective 
function. A membership function quantifies the vague and fuzzy statements of 
the DMs. A scale between 0.0 and 1.0 is stablished with 0.0 representing the 
worst value for the objective function with no degree of satisfaction and 1.0 
representing the best value for the objective function with full satisfaction. In 
order to form a membership function, the DM is asked to specify the degree of 
satisfaction for several values of each objective based on current operational 
limitations and requirements, or his or her preference, knowledge and 
experience. The solution of i-FMOLP  optimization problems benefit from 
considering DM’s imprecise judgements (R.-C. Wang & Liang, 2004). 
 

Among different multi-objective optimization methods, the i-FMOLP with 
piecewise linear membership function (PLMF) has been found to be suitable for 
the problem discussed in this paper. The main advantage of using PLMF is that, 
by eliciting only a small finite number of values for the membership function from 
the DM, we can approximate the intermediate points between the elicited points 
in the membership function (Hannan, 1981). In this section, the i-FMOLP method 
is introduced for formulation of the bi-objective problem incorporating both 
objective functions. Next, a simple numerical example along with analysis of the 
solution is presented. 

i-FMOLP 

The outline of the interactive solution procedure of the proposed i-FMOLP 
method for solving fuzzy multi-objective problems is as follows (R.-C. Wang & 
Liang, 2004): 
 
Step 1: Formulate the MOLP (which is a MILP, to be precise) 
Step 2: Solve the problem for each objective function and obtain the best 
possible value for each OF.  
 
Step 3: Specify the value of the membership functions 𝑓𝑔(𝑧𝑔), 𝑔 = 1,2 for several 

values of each objective function 𝑍𝑔, to determine the satisfaction levels for each 

objective function based on the DM’s preference, experience and knowledge. As 
it is shown in Table 10, 𝑋𝑔,𝑖, 𝑖 = 0,… , 𝑝 + 1  show different values of each 

objective function in order to cover the full range of the DM’s aspiration levels. 𝑃 
is the number of points between the best values (𝑋1,𝑃+1, 𝑋2,𝑃+1) and the worse 

values (𝑋1,0, 𝑋2,0) of the objective functions. The best values (lower bounds for  
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Table 10. Membership function 𝑓𝑔 (𝑧𝑔), 𝑔 = 1,2. 

Parameters Values 

𝑧1 > 𝑋10 𝑋10 𝑋11 𝑋12     … 𝑋1𝑃 𝑋1,𝑃+1 < 𝑋1,𝑃+1 

𝑓1(𝑧1) 0 0 𝑞11 𝑞12     … 𝑞1𝑃  1.0 1.0 

𝑧2 > 𝑋20 𝑋20 𝑋21 𝑋22     … 𝑋2𝑃  𝑋2,𝑃+1 < 𝑋2,𝑃+1 

𝑓2(𝑧2) 0 0 𝑞21 𝑞22     … 𝑞2𝑃  1.0 1.0 

Note: 0 ≤ 𝑞𝑖𝑗 ≤ 1, 𝑞𝑖𝑗 ≤ 𝑞𝑖,𝑗+1, 𝑖 = 1,2, 𝑗 = 1,2,… , 𝑃. 
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the objective function values) are obtained from Step 2. However, the worse 
values (upper bounds) are determined by the DM; the range that is defined by 
the best and the worse values should cover realistic values that the objective 
functions can take. Also, it should be carefully taken into account by the DM that 
any value greater than or equal to the worse value has a satisfaction degree of 0. 
 

Step 4: For each pair (𝑧𝑔, 𝑓𝑔(𝑧𝑔)) , 𝑔 = 1,2 derive the formulation according to (R.-

C. Wang & Liang, 2004) and (Liang, 2008). Piecewise linear membership 
functions are specified to represent the fuzzy sets involved. By introducing the 

auxiliary variable 𝐿, the original fuzzy bi-objective problem can be converted into 
an equivalent ordinary MILP model that can be solved efficiently using the 
standard exact methods. The auxiliary variable 𝐿 (0 < 𝐿 < 1) represents overall 
DM’s satisfaction with the determined objective values (Liang, 2008). If the 

solution is 𝐿 =  1, then each objective is fully satisfied; if 0 <  𝐿 <  1, then all of 
the objectives are satisfied at the level of 𝐿, and if 𝐿 =  0, then none of the 
objectives are satisfied. A detailed explanation of this method can be found in 
Liang (2006). 
 
Step 5: Solve the following model: 
 

𝑀𝑎𝑥 𝐿 (2.35) 

 
Subject to: 
 

𝐿 ≤ −(
𝑡𝑔2 + 𝑡𝑔1

2
) (𝑑𝑔1

− − 𝑑𝑔1
+ ) − (

𝑡𝑔3 + 𝑡𝑔2

2
) (𝑑𝑔2

− − 𝑑𝑔2
+ ) − ⋯  

−(
𝑡𝑔(𝑃+1) + 𝑡𝑔𝑃

2
) (𝑑𝑔𝑃

− − 𝑑𝑔𝑃
+ ) + (

𝑡𝑔(𝑃+1) + 𝑡𝑔1

2
) 𝑧𝑔  

+
𝑆𝑔(𝑃+1) + 𝑆𝑔1

2
  , 𝑔 = 1,2 (2.36) 

 
𝑧𝑔 + 𝑑𝑔𝑒

− − 𝑑𝑔𝑒
+ = 𝑋𝑔𝑒, 𝑔 = 1,2, 𝑒 = 1,2, … , 𝑃 

 
(2.37) 

𝑑𝑔𝑒
+ , 𝑑𝑔𝑒

− ≥ 0, 𝑔 = 1,2, 𝑒 = 1,2, … , 𝑃  

 
(2.38) 

Equations (2.3) to (2.31). 
 

where 𝑡𝑔𝑒 and 𝑆𝑔𝑒 are calculated according to Liang (2008). 

 
Step 6: If the user is not satisfied with the results, and the objective function 
values are not acceptable, go to Step 3. 
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Numerical Example 

A small size of the problem, where number of machines 𝑚 = 3, number of 
jobs 𝑛 = 6, and number of maintenance types 𝑙 = 2, is presented here as a 
numerical example. The data used for this example are obtained from random 
test problem generator as explained in Section 2.5. 
 

The interactive solution procedure uses the proposed i-FMOLP method for 
this problem. First, the initial solution for each of the objective functions using the 

ordinary crisp MILP model is determined. The optimal value for tardiness (𝑧1) is 

83 and optimal value for total maintenance cost (𝑧2) is 105. Then, we specify the 
degree of membership 𝑓𝑔(𝑧𝑔) for 𝑔 = 1,2 regarding several values for each of the 

objective functions. Table 11 shows the piecewise linear membership functions 
for initial solutions. 

  

Table 11. Piecewise linear membership functions for the numerical example. 

Parameters Values 

𝑧1 <83 83 88 98 110 >110 

𝑓1(𝑧1) 1 1 0.8 0.5 0 0 
𝑧2 <105 105 108 115 120 >120 

𝑓2(𝑧2) 1 1 0.8 0.5 0 0 

 
In functional situations, the ordinary single-objective MILP solution for 

each of the fuzzy objective functions often produce a starting point for specifying 
the piecewise linear membership function, and both intervals must cover the 
MILP solution (Liang, 2006). Finally, we formulate the FMOLP model using the 
initial solutions and the presented bi-objective MILP: 
 

𝑀𝑎𝑥 𝐿 
 
Subject to: 

𝐿 ≤ −0.0036(𝑑11
− − 𝑑11

+ ) − 0.0114(𝑑12
− − 𝑑12

+ ) − 0.035(∑𝑡𝑞

𝑛

𝑞=1

 ) + 4.08 

 

𝐿 ≤ −0.1063(𝑑21
− − 𝑑21

+ ) + 0.0012(𝑑21
− − 𝑑21

+ )

− 0.1450∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘) + 17

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

 

 

∑𝑡𝑞

𝑛

𝑞=1

+ (𝑑11
− − 𝑑11

+ ) = 88 
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 ∑ 𝑡𝑞

𝑛

𝑞=1

+ (𝑑12
− − 𝑑12

+ ) = 98 

 

∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘) +

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

(𝑑21
− − 𝑑21

+ ) = 108 

 

∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘) +

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

(𝑑22
− − 𝑑22

+ ) = 115 

 
Equations (2.3-2.31). 
 

IBM ILOG CPLEX Optimization Studio has been used for solving the initial 

models and the i-FMOLP. The optimal values are 𝑧1 =  87 and 𝑧2 = 105, and the 
optimal DM’s satisfaction value, when the i-FMOLP is solved, is 𝐿 = 0.843. If the 
solution is not satisfactory, the DM may attempt to improve the results 
interactively by adjusting the related parameters to obtain a satisfactory solution.  

 
Furthermore, the DM can change the membership functions for both fuzzy 

objectives. Table 12 shows the new values for the membership functions. 

Consequently, supposedly improved solutions are again 𝑧1 =  87 and 𝑧2 = 105, 
but the overall degree of DM’s satisfaction increases sharply to 𝐿 = 0.92. 
Therefore, changing the values of the membership functions does not 
necessarily change the optimal value of the individual objectives, but it changes 
the satisfaction degree based on the DM’s preference. 

 

Table 12. Piecewise linear membership functions for the improved results. 

Parameters Values 

𝑧1 <83 83 93 100 110 >110 
𝑓1(𝑧1) 1 1 0.8 0.5 0 0 
𝑧2 <105 105 110 118 120 >120 

𝑓2(𝑧2) 1 1 0.8 0.5 0 0 

 
There are several significant management implications regarding the 

application of the i-FMOLP method. The fuzzy goal programming method of 
(Hannan, 1981) adopted in this work, which uses the piecewise linear 
membership function and the minimum operator, yields efficient solutions to 
fuzzy multi-objective programming problems. It follows that maximization of two 
or more membership functions is best achieved by maximizing the minimum 
membership grade. In addition, the coefficients and related parameters of this 
problem such as processing time, deterioration rate and cost of spare parts 
which affect the value of objectives are normally fuzzy or imprecise because of 
some information being incomplete or unobtainable. This model gives a tool to 
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the DM typically to solve the problem by optimizing simultaneously two conflicting 
objectives in the framework of imprecise aspiration levels (Liang, 2008). Table 13 
compares the results obtained by the single objective MILPs and the i-FMOLP 
model. The results show that by solving the i-FMOLP, instead of each one of the 
single objective MILPs, we can simultaneously optimize both objectives with an 
acceptable trade-off. 

 

Table 13. Solution comparison. 

 Problem 1 Problem 2 i-FMOLP 

Objective Function Min. 𝑧1 Min. 𝑧2 Max. 𝐿 
Value of 𝐿 100% 100% 92% 
Value of 𝑧1 83 145 87 
Value of 𝑧2 110 105 105 

 
Different values for the degree of membership for each one of the 

objectives (𝑧1, 𝑓1(𝑧1)) and (𝑧2, 𝑓2(𝑧2)) for the numerical example is shown in 
Table 5 and the results are shown in Table 14. As the results show, the value of 
memberships for each objective function affects the overall level of satisfaction 
and the decision variables. This has significant implications. First, the most 
important task of the DM is to carefully specify the degree of membership for 
each objective function; second, the DM may flexibly revise the range of value of 
the degree of membership to yield satisfactory solutions (R.-C. Wang & Liang, 
2004). 

 

Table 14. Different membership values for (𝒛𝟏, 𝒇𝟏 (𝒛𝟏)) and (𝒛𝟐, 𝒇𝟐 (𝒛𝟐)). 

Run Parameters Values 

1 𝑧1 <83 83 93 100 110 >110 

1 𝑓1(𝑧1) 1 1 0.8 0.5 0 0 

1 𝑧2 <105 105 110 118 120 >120 

1 𝑓2(𝑧2) 1 1 0.8 0.5 0 0 

2 𝒛𝟏 <83 83 85 88 90 >90 

2 𝑓1(𝑧1) 1 1 0.8 0.5 0 0 

2 𝑧2 <105 105 110 113 115 >115 

2 𝑓2(𝑧2) 1 1 0.8 0.5 0 0 

3 𝒛𝟏 <83 83 85 90 92 >92 

3 𝑓1(𝑧1) 1 1 0.8 0.5 0 0 

3 𝑧2 <105 105 108 110 115 >115 

3 𝑓2(𝑧2) 1 1 0.8 0.5 0 0 

4 𝒛𝟏 <83 83 88 98 110 >110 

4 𝑓1(𝑧1) 1 1 0.8 0.5 0 0 

4 𝑧2 <105 105 108 115 120 >120 

4 𝑓2(𝑧2) 1 1 0.8 0.5 0 0 
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The change in the objective function values and satisfaction degrees are 
depicted in Figure 7. Please note that in this numerical example, the values of 
the second objective (maintenance) have been scaled down. 

 

Table 15. Objective function values for the optimal solutions. 

Objective Run1 Run2 Run3 Run4 

𝐿 0.92 0.8 0.67 0.84 

𝑧1 87 85 88.296 87 

𝑧2 105 110 110 105 

 

 

Figure 7. The value of the two objectives and L against different membership values. 

 

2.3 Solution Methodology 

 
As will be shown and discussed in the next section, commercial solvers, like 
CPLEX, do not perform satisfactorily in terms of the computation time in finding 
the optimal solution, specifically for realistic problems with relatively large number 
of variables and constraints. On the other hand, meta-heuristic algorithms that 
are usually used as an alternative, suffer from not guaranteeing optimality. In 
both cases, the problem stems from not having insight to the structure of the 
problem and the solution space. In this section, a solution algorithm is introduced 
with the help of a few developed theorems that give insight into the unique 
properties of the problem. This insight helps make the solution space significantly 
smaller, and hence the search faster. A Genetic Algorithm is then used as a tool 
for searching through the confined solution space to find optimal or near-optimal 
solutions, efficiently.       
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Confining the Solution Space  

The solution space of the presented problem in Section 2.2 is very large due to 
having many variables. We will show that, by knowing the values of the variables 
𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘, ∀𝑖, 𝑗, 𝑞, 𝑘, the values for other variables can be derived. In other 

words, all the other variables depend on 𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘. The variables that can 

determine the values of the objective functions are 𝑡𝑞 and 𝑦𝑖𝑞𝑘. Variable 𝑡𝑞 itself 

can be determined if 𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘 are known. 𝑥𝑗𝑞 , ∀𝑗, 𝑞 represents the sequence of 

the jobs and 𝑦𝑖𝑞𝑘 shows the position of maintenance activities (MAs). A pair (𝑺, 𝒚) 

represents a solution in the confined solution space, where 𝑺 is a vector for the 
sequence and y is a matrix whose elements are 𝑦𝑖𝑞𝑘. Algorithm 1 shows a 

procedure that takes such a solution as input and calculates the optimal values of 
other variables for the given solution, and then calculates the values of the two 
objective functions that can be directly used for calculation of the satisfaction 
degree of the solution. The outputs of the algorithm are the values of the 
objective functions and feasibility status of the solution. 
 

Feasibility-check of a solution as an output of the algorithm is trivial; if the 

value of any of the variables 𝑀𝐿𝑖𝑞
𝑘 , ∀𝑘, 𝑖, 𝑞 calculated by Algorithm 1 turns out to 

be negative, the solution is infeasible. Regarding the constrains of the model in 
Section 2.3, the algorithm ensures that the values taken by the variables do not 
violate any of the constraints. An overview of Algorithm 1 is as follows. First, all 
the maintenance levels are set equal to their maximum before processing the 
first job for each machine. Then, the levels are decreased by the deterioration 
caused by the jobs that have been processed. If a maintenance activity takes 
place, the level is reset to its maximum. Processing times of the jobs are 
adjusted based on the average maintenance level of the machine, according to 
Assumption 12 and the mathematical formulation of the problem in Section 2.3.  
 

Next, the completion time of each job on each machine (𝐶𝑖𝑞 , ∀𝑖, 𝑞) is 

calculated. This is done by first, calculating the completion time of the first job in 

each machine (𝐶𝑖1, ∀𝑖), then, calculating the completion time of all the jobs on the 
first machine (𝐶1𝑞 , ∀𝑞 = 2,… , 𝑛), and finally, calculating the completion times of all 

the jobs except the first job on all the machines except the first machine 
(𝐶1𝑞 , ∀𝑞 = 2,… , 𝑛, 𝑖 = 2,… ,𝑚). The waiting time of the jobs and the maintenance 

times are considered in calculation of the completion times. Algorithm 1 ends by 
calculating the value of each objective function.  

 
By using Algorithm 1, we reduced a solution space defined by all the 

variables to a solution space defined only by 𝑥𝑗𝑞 and 𝑦𝑖𝑞𝑘, ∀𝑖, 𝑗, 𝑞, 𝑘. Next we show 

that the confined solution space can be further confined in a special case where 
the processing times are not affected by the maintenance levels. The following 
propositions are the basis in designing Algorithm 2. Algorithm 2 derives the 
optimal values of 𝑦𝑖𝑞𝑘 , ∀𝑖, 𝑞, 𝑘 for a given sequence 𝑺 (𝑥𝑗𝑞 , ∀𝑖, 𝑞). Because  
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Algorithm 1. Obtaining the value of objective functions from only a sequence 

(𝑆) and positions of maintenance activities (𝑦). 

Inputs: 𝑺 and 𝒚 

Outputs: 𝑧1, 𝑧2 and 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 
 

for 𝑖 = 1,… ,𝑚 do 

    𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘 , ∀𝑘 

end for 
 

for 𝑖 = 1,… ,𝑚 do 
    for 𝑞 = 2,… , 𝑛 do 
        𝑗 = 𝑆𝑞 

        𝑗′ = 𝑆𝑞−1 

        for 𝑘 = 1, … , 𝑙 do 
            if 𝑦𝑖𝑞𝑘=1 do 

      𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘  

            else do 

      𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑖(𝑞−1)

𝑘 − 𝑝𝑖𝑗′𝛿𝑖𝑗′𝑘 

            end if 
        end for 

        𝜇 = ∑
𝑀𝐿𝑖𝑞

𝑘

𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙
𝑘=1 𝑙⁄  

        if 𝜇 < 0.33 do 
            𝑝𝑖𝑗 = 2 × 𝑝𝑖𝑗 

        else if 0.33 ≤ 𝜇 < 0.66 do 
            𝑝𝑖𝑗 = 1.5 × 𝑝𝑖𝑗 

        end if 
    end for 
end for 
 

for 𝑖 = 1,… ,𝑚 do 

    𝐶𝑖1 = ∑ 𝑝𝑖′𝑆1
𝑖
𝑖′=1  

end for 
 

for 𝑞 = 2,… , 𝑛 do 

    𝐶1𝑞 = 𝐶1(𝑞−1) + 𝑝1𝑆𝑞 +∑ 𝑒1𝑘𝑦1𝑞𝑘
𝑙
𝑘=1  

end for 
 

for 𝑖 = 2,… ,𝑚 do 
    for 𝑞 = 2,… , 𝑛 do 
        if 𝐶𝑖(𝑞−1) > 𝐶(𝑖−1)𝑞 do 

            𝑤𝑖𝑞 = 𝐶𝑖(𝑞−1) − 𝐶(𝑖−1)𝑞 
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Algorithm 1. Continued. 

        end if 

       𝐶𝑖𝑞 = 𝐶(𝑖−1)𝑞 + 𝑤𝑖𝑞 + 𝑝𝑖𝑆𝑞 + ∑ 𝑒𝑖𝑘𝑦𝑖𝑞𝑘
𝑙
𝑘=1  

    end for 
end for 
 

for 𝑞 = 1,… , 𝑛 do 
    𝑡𝑞 = max{0, 𝐶𝑚𝑞 − 𝑑𝑆𝑞}  

 

𝑧1 =∑𝑡𝑞

𝑛

𝑞=1

 

𝑧2 = ∑∑∑𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)

𝑙

𝑘=1

𝑛

𝑞=1

𝑚

𝑖=1

 

if 𝑀𝐿𝑖𝑞
𝑘 ≥ 0, ∀𝑖, 𝑘, 𝑞 do 

    𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 
else do 

    𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐹𝑎𝑙𝑠𝑒 
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maintenance levels do affect the processing times in the presented problem, the 
algorithm updates the processing times based on the maintenance levels. Also, 
the local search discussed in the next subsection will improve the output of 
Algorithm 2.  

 

Proposition 1. For a fixed sequence, 𝑺0, and when the processing times of the 
jobs are not dependent on the average of maintenance levels, by setting all the 
positions in 𝒚 equal to 0 and resetting a specific maintenance position 𝑦𝑖0𝑞0𝑘0 to 1 

only if otherwise 𝑀𝐿𝑖0(𝑞0+1)
𝑘0  becomes negative, the first objective function (𝑧1) will 

be minimized. 

 

Proof. Let 𝑠𝑜𝑙0 = (𝒚0, 𝑺0) be a feasible solution, using Algorithm 1. If there exists 

another feasible solution 𝑠𝑜𝑙1 = (𝒚1, 𝑺0) in which 𝒚1 differs from 𝒚0 only in one 

position, i.e. 𝑦𝑖0𝑞0𝑘0
1 = 1 and 𝑦𝑖0𝑞0𝑘0

0 = 0, because for a fixed sequence, the 

maintenance activities that are placed between the jobs are the only variables that 

can change the value of the first objective function (tardiness), ∴ 𝑧1
𝑠𝑜𝑙1 < 𝑧1

𝑠𝑜𝑙0. 

Infeasibility happens only when 𝑀𝐿𝑖𝑞
𝑘 < 0, ∀𝑖, 𝑘, 𝑞. Therefore, the optimal solution 

is the one in which 𝑦𝑖0𝑞0𝑘0
0 = 1 if and only if otherwise 𝑀𝐿𝑖0(𝑞0+1)

𝑘0 < 0.  

∎ 

Proposition 2. For a fixed sequence, 𝑺0, and when the processing times of the 
jobs are not dependent on the average of maintenance levels, by setting all the 
positions in 𝒚 equal to 0 and resetting a specific maintenance position 𝑦𝑖0𝑞0𝑘0 to 1 

only if otherwise 𝑀𝐿𝑖0(𝑞0+1)
𝑘0  becomes negative, the second objective function (𝑧2) 

will be minimized. 

 

Proof. Let 𝑠𝑜𝑙0 = (𝒚0, 𝑺0) be a feasible solution, using Algorithm 1. If there exists 

another feasible solution 𝑠𝑜𝑙1 = (𝒚1, 𝑺0) in which 𝒚1 differs from 𝒚0 only in one 

position, i.e. 𝑦𝑖0𝑞0𝑘0
1 = 1 and 𝑦𝑖0𝑞0𝑘0

0 = 0, because in the formulation of the second 

objective function, 𝑧2 = ∑ ∑ ∑ 𝑦𝑖𝑞𝑘(𝑆𝑃𝑖𝑘 + 𝑒𝑖𝑘𝑊𝐹𝑘)
𝑙
𝑘=1

𝑛
𝑞=1

𝑚
𝑖=1 , the only variable is the 

position of the maintenance activities, 𝑦𝑖𝑞𝑘 which is a binary variable, ∴ 𝑧2
𝑠𝑜𝑙1 <

𝑧2
𝑠𝑜𝑙0. Infeasibility happens only when 𝑀𝐿𝑖𝑞

𝑘 < 0, ∀𝑖, 𝑘, 𝑞. Therefore, the optimal 

solution is the one in which 𝑦𝑖0𝑞0𝑘0
0 = 1 if and only if otherwise 𝑀𝐿𝑖0(𝑞0+1)

𝑘0 < 0.  

∎ 
 
When the processing times are not prolonged (due to a low average 

maintenance level), the total deterioration of the maintenance levels of a machines 
caused by processing all the jobs is constant. Total deterioration for maintenance 
type 𝑘0 of machine 𝑖0 is 𝑇𝐷𝑖0𝑘0 = ∑ 𝛿𝑖0𝑗𝑘0𝑝𝑖0𝑗

𝑛
𝑗=1 . The theoretical value for the 

minimum number of maintenance activities of type 𝑘0 required on machine 𝑖0 can 
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be defined as 𝑀𝐴𝑖0𝑘0
𝑚𝑖𝑛 = ⌊

𝑇𝐷𝑖0𝑘0

𝑀𝐿𝑚𝑎𝑥
𝑘0
⌋; any number less that 𝑀𝐴𝑖0𝑘0

𝑚𝑖𝑛  leads to a negative 

value for the maintenance level while processing the jobs.  
 
For a set of jobs, when trying to perform as few maintenance activities as 

possible according to the above prepositions, different sequences can lead to 
different number of MAs. For example, consider four jobs with the following 
deteriorations (processing time multiplied by deterioration rate), a given machine 

𝑖0 and a given maintenance level 𝑘0; deteriorations for the four jobs are 𝐷1 =

0.65, 𝐷2 = 0.40, 𝐷3 = 0.50, 𝐷4 = 0.35, and 𝑀𝐿𝑚𝑎𝑥
𝑘0 = 1.00. The theoretical minimum 

number of MAs is 𝑀𝐴𝑖0𝑘0
𝑚𝑖𝑛 = ⌊

0.65+0.40+0.50+0.35

1.00
⌋ = ⌊1.9⌋ = 1, and the minimum 

number of MAs with respect to sequences 𝑺1 = [1,4,3,2] and 𝑺2 = [1,2,3,4] are 1 
and 2, respectively. The positions of MAs for 𝑺1 and 𝑺2 are [1,4,𝑀𝐴, 3,2] and 
[1,𝑀𝐴, 2,3,𝑀𝐴, 4], respectively. Removing any of these MAs from these sequences 
leads to a negative value for the maintenance level while processing the job that 
is placed after the removed MA. For a set of jobs that is to be processed by 

machine 𝑖0, and when only considering maintenance level 𝑘0, there exist a set of 

sequence 𝑺∗ whose minimum number of MAs is the closest to 𝑀𝐴𝑖0𝑘0
𝑚𝑖𝑛 . In this 

example, 𝑀𝐴𝑖0𝑘0
𝑺1 = 𝑀𝐴𝑖0𝑘0

𝑚𝑖𝑛 . 

 
For a given sequence, we can use a procedure to find the minimum 

number of MAs. Algorithm 2 finds the minimum number of MAs while considering 
all the machines and all the maintenance levels/activities. It also updates the 
processing times for a case when the jobs can be prolonged. When the jobs can 
be prolonged, there is no guarantee that this procedure gives the minimum 
number of MAs. This is because when the processing times of the jobs are 
prolonged due to low average maintenance levels, the amount of deterioration 
also increases since the amount of deterioration is equal to deterioration rate 
multiplied by the processing time. This can lead to more MAs. 
 

Unnecessary maintenance activities can be added before processing jobs 
in order to prevent the increase in processing times, and hence prevent the 
increase in deteriorations. For the first objective function (tardiness), this does 
not guarantee the improvement in the objective; although the processing times 
will not be prolonged, the duration of maintenance activities adds to the total 
tardiness. The only way to guarantee that processing times will not be prolonged 
is by adding a MA before each job for each ML of each machine. This will 
significantly increase the number of MAs and completion times, and worsen the 
value of both objective functions. For the second objective function (maintenance 
cost), unnecessary MAs should not be added in the first place because adding 
them contradicts the goal of doing so; the goal of adding unnecessary MAs is to 
make sure that the processing times are not prolonged, and hence deterioration 
is not increased and eventually less MAs are expected to be needed.  
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Algorithm 2. Finding the minimum number of maintenance activities for a given 
sequence. 

Input: A sequence, 𝑺, and other input parameters. 
Output: Positions of maintenance activities, 𝒚, 𝑴𝑨, and 𝑴𝑳. 
 

for 𝑖 = 1,… ,𝑚 do 
    𝑀𝐴𝑖𝑘 = 0, ∀𝑘 

    𝑀𝐿𝑖1
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘 , ∀𝑘 

    for 𝑞 = 2,… , 𝑛 do 
        for 𝑘 = 1,… , 𝑙 do 

            𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑖(𝑞−1)

𝑘 − 𝑝𝑖𝑆𝑞−1𝛿𝑖𝑆𝑞−1𝑘 

        end for 

        𝜇 = ∑
𝑀𝐿𝑖(𝑞−1)

𝑘

𝑀𝐿𝑚𝑎𝑥
𝑘

𝑙
𝑘=1 𝑙⁄  

        update processing time of job 𝑆𝑞 on machine 𝑖 (𝑝𝑖𝑆𝑞) according to 

Assumption 12, using 𝜇 
        for 𝑘 = 1,… , 𝑙 do 

            if 𝑀𝐿𝑖𝑞
𝑘 − 𝑝𝑖𝑆𝑞𝛿𝑖𝑆𝑞𝑘 < 0 do 

                𝑀𝐿𝑖𝑞
𝑘 = 𝑀𝐿𝑚𝑎𝑥

𝑘  

                𝑀𝐴𝑖𝑘 = 𝑀𝐴𝑖𝑘 + 1 
                𝑦𝑖𝑞𝑘 = 1 

            else do 
                𝑦𝑖𝑞𝑘 = 0 

            end if 
        end for 
    end for 
end for 
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The presented algorithms and the discussion that followed them give an insight 
into the confined solution space that helps making the search more efficient and 
effective. 
 

Designing a search in the Solution Space 

It was shown that the pair (𝑺, 𝒚) can represent the solution space. 𝑺 is the 

sequence of 𝑛 jobs and there are 𝑛! different realizations for it. For a given 
sequence, the value of optimal 𝒚 with respect to the second objective can be 

found using Algorithm 2. Let (𝑺0, 𝒚0) be a solution for which Algorithm 2 has 

determined 𝒚0 based on 𝑺0. Therefore, the number of MAs is minimal. In order to 
search the neighborhood of this solution for finding solutions that can improve 
tardiness (the first objective), random MAs can be added to positions where the 
sum of maintenance duration and nominal processing time is less than the 
prolonged processing time. Based on the structure of the solution and the type of 
search that was described, a Genetic Algorithm is designed for efficiently 
searching through the solution space and converging to a near-optimal solution. 
 

The crossover operator is applied to a sequence of jobs, in order to escape 
from local optimality and search everywhere in the solution space. The mutation 

operator serves as a local search for a given sequence and is applied to the 𝒚-
section of the chromosome. In the following subsections, these operators and 
other settings of the GA are introduced in detail. 

 

Global search by crossover 

When using a binary representation for jobs and their sequence, the crossover 
operator can produce “illegal” or “bad” solutions that mean infeasible solutions 
and there are a few methods for handling this issue (Bierwirth, 1995; Yamada & 
Nakano, 1997). These methods make the algorithms computationally more 
expensive. Because the goal here is only to search different sequences, a single-
point crossover operator is used to produce two offspring from two parent 

chromosomes. In a single point crossover applied to a sequence 𝑺, after the first 
left sections of the chromosomes are exchanged, it is possible that the right 
sections have duplicate genes (a job can be seen more than once in the 
sequence). In that case, those genes are replaced by the genes of the other 
chromosome that are in the same position. This method is implemented as 
shown in Algorithm 3. 
 

Local search by mutation 

The mutation operator has been used as a local search on 𝒚 for a given 

sequence 𝑺0 that can further improve the fitness of existing solutions. As was 
explained in the previous subsection, Algorithm 2 determines the positions of  
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Algorithm 3. Finding new sequences from existing sequences using a 
crossover operator. 

Input: Two sequences of jobs (parents), 𝑺1 and 𝑺2. 
Output: Two new sequences of jobs (offspring chromosomes), 𝑺3 and 𝑺4. 
Note: 𝑆𝑖

𝑎 means i-th element in 𝑺𝑎 and 𝑆𝑖:𝑗
𝑎  means elements of 𝑺𝑎 from i to j. 

𝑐 ← a random integer between 1 and 𝑛 (number of jobs) 
𝑺3 ← 𝑆1:𝑐

1 + 𝑆𝑐+1:𝑛
2  

𝑺4 ← 𝑆1:𝑐
2 + 𝑆𝑐+1:𝑛

1  

for 𝑖 = 1,… , 𝑛 − 𝑐 do 

    if 𝑆𝑐+𝑖
3  𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑆1:𝑐+𝑖−1

3  do 

        for 𝑗 = 1,… , 𝑛 do 

            if 𝑆𝑗
4 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑆1:𝑐+𝑖−1

3  

                𝑆𝑐+𝑖
3 ← 𝑆𝑗

4 

                break 
            end if 
        end for 
    end if 
end for 

for 𝑖 = 1,… , 𝑛 − 𝑐 do 

    if 𝑆𝑐+𝑖
4  𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑆1:𝑐+𝑖−1

4  do 

        for 𝑗 = 1,… , 𝑛  do 

            if 𝑆𝑗
3 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑆1:𝑐+𝑖−1

4  

                𝑆𝑐+𝑖
4 ← 𝑆𝑗

3 

                break 
            end if 
        end for 
    end if 
end for 

   



74 
 

maintenance activities for a given sequence in such a way that it minimizes the 
second objective function. Here, a position that is a Possible Improvement Point 
(PIP) is located and with a probability 𝜇1, a MA is placed in that position. A PIP is 
one in which the nominal processing time of the job that is placed after the point 
(𝑖, 𝑞, 𝑘) plus duration of the respective maintenance activity is less than the 
prolonged processing time of the job, if the job has been prolonged due to low 
average maintenance level of the machine. 
 

Setting the parameters 

The Roulette Wheel Selection method by C. R. Reeves (1995) has been adapted 
for selecting parents for crossover, or a single chromosome for mutation, from 
the current population. The output of Algorithm 1 is used for evaluating fitness 
(satisfaction degree) of a chromosome and for checking the feasibility of a 
chromosome. Convergence has been used as the stopping condition; when the 
satisfaction degree of the fittest chromosome does not improve for a certain 
number of iterations, I, the GA stops and the chromosome that has the maximum 
satisfaction degree in the last iteration (generation) is returned as the best 
solution. The values used for the parameters of a GA that works best for this 
problem, are chosen as follows: 20 for the maximum number of iterations; 500 for 
population size; 30% of chromosomes were chosen for crossover; 30% of the 
chromosomes were chosen for mutation; and each the maintenance positions in 
each chromosome were mutated with the probability of 0.05. The methodology 
introduced by Yu and Seif (2016) was used in determining the values of these 
parameters. In the next section a computational experiment for performance 
evaluation of the presented solution methodology is presented. 
 

2.4 Computational Results 

 
In this section, performance of the proposed solution methodology is evaluated 
through analyzing the results of a set of computational experiments. A series of 
random test problems with different sizes are generated which are used for 
evaluation of the efficiency and effectiveness of the presented solution 
methodology (which will be referred to as ALG). Time-to-convergence and quality 
of solutions of ALG will be tested against those from the commercial solver, IBM 
CPLEX. In addition, performance of ALG will be compared with a standard GA. In 
the standard GA (denoted by GA) the algorithms introduced in Section 2.3 will 
not be used. The premise of the comparison between ALG and GA is to show 
how the solution methodology that was introduced in Section 2.3 can improve a 
meta-heuristic that blindly searches through the solution space. In ALG, only the 
sequence of the jobs is generated randomly. The positions of the MAs are 
derived from a given sequence using Algorithms 1 and 2. However, in the GA, 
not only the sequence is generated randomly, the positions of maintenance 
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activities are also generated randomly. In short, ALG is an improved GA that 
considers the unique features of the solution space and benefits from the 
algorithms that were introduced in Section 2.3. The same values for the 
parameters of GA and ALG were used in the computational experiments. 
 

Test problems generation 

Table 16 and Table 17 explain how the input data for each problem in the 
computational experiments is generated. Table 16, adapted from Yu and Seif 
(2016) similar to Table 4, shows the dimensions (size) of each parameter, the 
range within which the values of the elements of each parameter are generated, 
and the type of random distribution used in generating these values. As the last 
four rows of Table 16 show, another input for each test problem is the table of 
membership function. Each problem is solved twice with a standard GA; once 

with 𝑧1 as the objective function and once 𝑧2 as the objective function. Because 
both objectives are in the form of minimization and GA’s solution is not 
guaranteed to be optimal, a large fraction of the output of GA is considered as 
the first point in forming the table. 
 

Table 17 shows how the membership function table is formed. The values 

[0.00, 0.50, 0.75, 1.00] were chosen arbitrarily for 𝑓𝑔(𝑧𝑔), 𝑔 = 1,2. As was 

explained in Section 2.2, in practice the values of the membership functions are 
determined by decision makers and there is no “best” value for these values in 
the membership function tables. What matters in the computational experiment is 
to have an estimate of the range of values that each objective take, and then 
using the same table in a test problem that is to be solved by the all three 
solvers. The method shown in Table 7 provides us with such an estimate. How 

many points are considered for 𝑓𝑔(𝑧𝑔), 𝑔 = 1,2 and how good are the values of 

𝑧𝑔, 𝑔 = 1,2, also should not matter in the computational experiment as long as the 

same values are used as a basis for comparison. It should be re-emphasized 
that the same membership function table were used in each test problem by all 
three solution methods, namely CPLEX, GA and ALG.   

 

Table 16. Generation method of test problems, adapted from Yu and Seif (2016). 

Parameter Size Range Generation Method 

Processing times 𝑚 × 𝑛 [1,10] Random (integer, Uniform distribution) 

Duration of MAs 1 × 𝑙 [1,4] Random (integer, Uniform distribution) 

Deterioration rates 𝑚 × 𝑛 × 𝑙 [0,2] Random (fractional, Uniform distribution) 

Penalty costs 1 × 𝑛 [500,600] Random (integer, Uniform distribution) 

Due dates 1 × 𝑛 [10,30] Random (integer, Uniform distribution) 

Spare parts costs 𝑚× 𝑙 [1000,20000] Random (integer, Uniform distribution) 

Workforce costs 1 × 𝑙 [500,2000] Random (integer, Uniform distribution) 
Maximum of MLs 1 × 𝑙  (U.B. of Processing times)×(U.B. of Deterioration rates) 

𝑧1
𝐺𝐴 1 × 4  Solving a GA with 𝑧1 as the only objective (fitness) function 

𝑧2
𝐺𝐴 1 × 4  Solving a GA with 𝑧2 as the only objective (fitness) function 
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Table 17. Piecewise linear membership functions for test problems. 

Parameters Values 

z1 <0.75 × 𝑧1
𝐺𝐴 0.75 × 𝑧1

𝐺𝐴 1.25 × 𝑧1
𝐺𝐴 1.75 × 𝑧1

𝐺𝐴 2.00 × 𝑧1
𝐺𝐴 >2.00 × 𝑧1

𝐺𝐴 

f1(z1) 1.00 1.00 0.75 0.50 0.00 0.00 

z2 <0.75 × 𝑧𝟐
𝐺𝐴 0.75 × 𝑧𝟐

𝐺𝐴 𝟏. 𝟐𝟓 × 𝑧𝟐
𝐺𝐴 𝟏. 𝟕𝟓 × 𝑧𝟐

𝐺𝐴 𝟐. 𝟎𝟎 × 𝑧𝟐
𝐺𝐴 >𝟐. 𝟎𝟎 × 𝑧𝟐

𝐺𝐴 

f2(z2) 1.00 1.00 0.75 0.50 0.00 0.00 
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Computational experiment 

The proposed solution algorithm and a standard GA were implemented in 
MATLAB and the performance was compared against that of CPLEX 12.5 
(2012). Our computational experiments were performed on an i7-3770 @ 3.40 
gigahertz Intel processor with 8.00 gigabytes system memory. In order to 
evaluate the quality of the solutions obtained from ALG, we have solved 
numerous test problems with different sizes. The size of the problem is defined 

based on the number of machines (𝑚), number of jobs (𝑛), and number of 
maintenance levels (𝑙). 27 different problem sizes can be defined by all possible 
combinations of 𝑚 = {1,2,5}, 𝑛 = {6,10,15}, and 𝑙 = {1,2,3}. These ranges for the 

size of the problem were considered mainly based on the values that (𝑚, 𝑛, 𝑙) can 
take in real world problems, and also in such a way that a portion of them can be 
solved by CPLEX so the performance of the proposed solution method can be 
evaluated. For each of these sizes, 30 random problem instances were solved.  
 

Table 18 compares the computational times of three solution methods, in 
seconds, for realistic problem sizes. Both GA and ALG were set to stop if the 
solution does not improve for 20 iterations. Table 9 also shows the number of 
iterations of GA and ALG before the 20 iterations (convergence). The number of 
iterations reported in Table 18 should be added to 20 to get the actual number of 
iterations. For example, when the number of iterations before the final 20 
iterations is 158, it means that the actual number of iterations were 158+20=178, 
but the objective function value had not improved in iterations 159 to 178 and 
hence the algorithm stopped. The blank entries for CPLEX columns show that 
CPLEX could not find the optimal solution in 300 seconds. This time limit was 
chosen because it was observed that when a problem cannot be solved within 
300 seconds, solution time can vary from a few minutes to several hours. 
Usually, if it takes several hours to solve the problem, the software stops due to 
memory related issues, and can disrupt the computational experiment. As the 
results suggest, ALG is faster than a standard GA. Also, unlike CPLEX, the 
average time of ALG does not grow exponentially when the problem size 
increases. The results also imply that the main contributor to the computational 
complexity of the problem is the number of jobs.  

 

Although the computation time of the standard GA was reported in Table 18 
for comparison purposes, as shown in Table 19, the standard GA is not always 
able to find a feasible solution. This is mainly because the probability of 
generating a feasible solution for a very large solution space decreases when the 
size of the problem increases. On the other hand, according to the results, ALG 
always finds a feasible solution. Table 20 compares the results of ALG with those 
of the standard GA and CPLEX. For CPLEX, the solver has been run for a few 
hours for test problems for which the value of OFV could be converged. As can 
be inferred from Table 20, while the gap between the value of other objective 

functions (𝑧1, 𝑧2) can be very high or low, ALG has an average of 7 percent gap  
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Table 18. Comparison of computation times (seconds) for problems with a realistic size. 

Problem CPLEX  Standard GA  Proposed Solution Method (ALG) 

Class Time  Time  Iterations  Time  Iterations 

(𝑚, 𝑛, 𝑙) Avg. Max./Min  Avg. Max.  Avg. Max.  Avg. Max.  Avg. Max. 

(1,6,1) 0.98 1.52/0.00  16.08 25.31  8.00 20  14.39 29.28  4.37 21 

(1,6,2) 1.18 1.58/0.00  23.75 42.60  19.43 48  19.32 38.91  11.57 36 

(1,6,3) 1.42 2.09/1.01  30.05 56.31  26.47 55  22.02 41.66  15.07 50 

(1,10,1) 8.69 21.39/2.09  33.56 61.33  38.70 71  28.93 46.81  30.07 63 

(1,10,2)  /6.83  49.01 77.98  55.53 99  37.99 81.67  41.10 118 

(1,10,3) 
 /24.95  64.93 

113.7
6  77.00 139  41.63 87.79  41.30 108 

(1,15,1)  /16.22  55.56 89.49  67.60 125  44.12 91.07  55.37 137 

(1,15,2) 
   77.89 

157.4
8  87.03 186  43.56 134.70  41.00 158 

(1,15,3) 
   87.93 

158.1
7  86.43 175  40.62 140.00  32.30 160 

(2,6,1) 1.17 1.93/0.00  23.00 41.03  17.03 50  17.23 34.58  8.80 28 
(2,6,2) 1.82 4.47/1.00  42.99 85.99  45.53 101  31.32 61.63  29.30 74 

(2,6,3) 2.75 9.21/1.01  59.08 95.87  61.70 116  26.08 60.88  16.93 61 

(2,10,1)  /23.77  49.54 90.02  55.30 122  34.09 94.18  35.83 129 

(2,10,2) 
 /76.45  72.86 

138.7
9  78.17 170  26.77 85.09  17.57 101 

(2,10,3) 
 /244.42  92.35 

181.2
7  83.60 191  21.35 50.29  6.10 44 

(2,15,1) 
   87.09 

142.8
6  92.20 168  37.96 132.74  34.67 174 

(2,15,2) 
   99.61 

258.3
4  86.10 251  26.20 64.81  9.77 59 

(2,15,3) 
 /299.97  47.84 

283.3
3  27.27 248  23.73 39.40  3.43 20 

(5,6,1) 
4.19 15.42/1.38  54.74 

106.3
6  54.47 123  18.01 37.87  5.63 26 

(5,6,2) 
21.24 66.82/3.44  71.61 

134.2
8  57.47 113  23.34 50.18  5.70 35 

(5,6,3) 
 /4.18  73.00 

209.4
8  52.90 195  22.51 25.72  2.00 2 

(5,10,1) 
   74.10 

157.4
9  65.87 161  19.95 34.03  4.33 22 

(5,10,2) 
   31.66 

250.4
9  12.20 201  23.32 26.60  2.00 2 

(5,10,3)    25.73 29.13  2.00 2  26.91 31.05  2.00 2 

(5,15,1) 
   37.32 

216.6
4  18.97 187  21.37 23.99  2.00 2 

(5,15,2)    26.33 30.08  2.00 2  28.18 31.41  2.00 2 

(5,15,3)    32.91 36.89  2.00 2  34.72 38.05  2.00 2 

Average - -  53.35 
121.1

4 
 47.44 123.00  27.98 59.79  17.12 60.59 
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Table 19. Comparison of feasibility success (percentage) for problems with a realistic size. 

Problem Class 
(𝑚, 𝑛, 𝑙) 

 Standard GA  Proposed Solution Method (ALG) 

(1,6,1)  100%  100% 

(1,6,2)  100%  100% 
(1,6,3)  100%  100% 
(1,10,1)  100%  100% 
(1,10,2)  100%  100% 
(1,10,3)  100%  100% 
(1,15,1)  100%  100% 
(1,15,2)  97%  100% 
(1,15,3)  97%  100% 

(2,6,1)  100%  100% 

(2,6,2)  100%  100% 
(2,6,3)  100%  100% 
(2,10,1)  100%  100% 
(2,10,2)  100%  100% 
(2,10,3)  83%  100% 
(2,15,1)  100%  100% 
(2,15,2)  80%  100% 
(2,15,3)  33%  100% 
(5,6,1)  100%  100% 
(5,6,2)  97%  100% 
(5,6,3)  87%  100% 
(5,10,1)  87%  100% 
(5,10,2)  27%  100% 

(5,10,3)  0%  100% 
(5,15,1)  23%  100% 
(5,15,2)  0%  100% 

(5,15,3)  0%  100% 
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Table 20. Comparison of quality of objective function value (OFV, satisfaction degree) for problems with a realistic size. 

Proble
m 

Class 

(𝑚, 𝑛, 𝑙) 

CPLEX 
OFV 

Standard GA Proposed Solution Method (ALG) 

OFV Gap OFV Gap 

Avg. Min. Max. Avg. Min. Max. OFV 𝑧1 𝑧2 Avg. Min. Max. OFV 𝑧1 𝑧2 

(1,6,1) 0.90 0.82 0.97 0.88 0.69 0.97 2% -6% 0% 0.89 0.82 0.97 0% -8% 0% 

(1,6,2) 0.94 0.89 1.09 0.93 0.86 1.09 1% -18% 0% 0.93 0.89 1.09 1% -4% 0% 

(1,6,3) 0.95 0.89 1.03 0.94 0.87 1.02 1% -4% 0% 0.94 0.89 1.03 1% 3% 0% 

(1,10,1) 0.90 0.88 0.93 0.87 0.63 0.92 3% 2% 50% 0.87 0.39 0.93 3% 4% 50% 

(1,10,2) 0.93 0.89 0.97 0.89 0.79 0.96 4% 11% 0% 0.89 0.79 0.95 4% 15% 15% 

(1,10,3) 0.95 0.89 1.00 0.88 0.77 0.97 7% 16% 10% 0.88 0.78 0.96 7% 29% 21% 

(1,15,1) 0.90 0.89 0.93 0.87 0.79 0.92 4% 9% 20% 0.86 0.75 0.92 5% 8% -20% 

(1,15,2) 0.94 0.89 0.97 0.83 0.00 0.93 12% 11% 26% 0.86 0.79 0.93 9% 35% 55% 

(1,15,3) 0.95 0.94 0.97 0.77 0.00 0.94 20% 57% 64% 0.83 0.76 0.92 13% 38% 48% 

(2,6,1) 0.89 0.76 0.95 0.89 0.76 0.95 0% 0% 0% 0.89 0.76 0.95 0% 0% 0% 

(2,6,2) 0.94 0.89 0.98 0.91 0.84 0.98 4% 12% 0% 0.91 0.84 0.96 3% -1% 0% 

(2,6,3) 0.96 0.89 1.08 0.90 0.73 1.00 6% 8% 10% 0.90 0.81 0.99 7% 15% 12% 

(2,10,1) 0.90 0.87 0.93 0.84 0.71 0.90 6% 4% 0% 0.84 0.74 0.92 6% 12% 16% 

(2,10,2) 0.94 0.90 0.97 0.84 0.75 0.91 11% 30% 28% 0.83 0.78 0.89 12% 35% 40% 

(2,10,3) 0.96 0.93 1.00 0.70 0.00 0.94 27% 19% 17% 0.82 0.78 0.89 15% 43% 36% 

(2,15,1) 0.90 0.84 0.93 0.83 0.78 0.88 8% 21% 37% 0.82 0.72 0.90 9% 19% 41% 

(2,15,2) 0.93 0.90 0.95 0.59 0.00 0.87 37% 8534% -77% 0.80 0.76 0.84 14% 30% 41% 

(2,15,3) 0.95 0.93 0.98 0.18 0.00 0.84 81% 10487% -80% 0.81 0.78 0.84 15% 48% 43% 

(5,6,1) 0.90 0.85 0.94 0.85 0.77 0.94 5% 10% 8% 0.86 0.81 0.90 4% 6% 8% 

(5,6,2) 0.94 0.91 0.97 0.78 0.00 0.91 17% 28% 34% 0.87 0.84 0.89 8% 14% 23% 

(5,6,3) 0.96 0.92 1.00 0.60 0.00 0.88 37% 69% 59% 0.86 0.83 0.88 10% 30% 32% 

(5,10,1) 0.89 0.85 0.91 0.65 0.00 0.86 27% 48% 49% 0.82 0.79 0.86 7% 13% 12% 

(5,10,2) 0.93 0.91 0.96 0.10 0.00 0.80 89% 13440% -84% 0.83 0.80 0.86 11% 20% 30% 

(5,10,3) 0.96 0.94 0.98       0.84 0.80 0.86 12% 27% 34% 

(5,15,1) 0.86 0.79 0.89       0.81 0.77 0.84 6% 4% 11% 

(5,15,2) 0.91 0.88 0.93       0.82 0.79 0.84 9% 17% 29% 

(𝟓, 𝟏𝟓, 𝟑) 0.93 0.90 0.97       0.83 0.81 0.86 11% 26% 31% 

Avg. 0.93 0.88 0.97 0.65 0.40 0.82 29% 2284% -7% 0.86 0.78 0.91 7% 18% 23% 
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with CPLEX’s converged solution which seems acceptable. This gap can be 
further improved if the number of iterations before convergence is set to a higher 
number. ALG shows that it can provide a satisfactory solution for any problem 
size within a minute. 
 

2.5 Case Study 

 
In this section we present a case study to show an application for the presented 
problem. The input data and description of this case study are reproduced (with 
slight changes) from the case study by Yu and Seif (2016) (as presented in 
Chapter I) who solve the problem for a single objective function. After 
presentation of the data and describing the case study, we will present the 
solution and managerial implications for the bi-objective problem discussed in 
this paper. 

 
One of the main activities in the early stages of a heavy construction 

project is earthmoving. This activity is highly dependent on earthmoving 
machinery. The most commonly used equipment for earthworks are (wheel) 
loaders, dozers, excavators, and haul trucks. A simplified version of the 
earthmoving process described by Fu (2013) is as follows. The first step is 
preparation which is done best by excavators which can dig natural form of 
material from the earth. Next, in loading step, wheel loaders can load the 
removed and prepared soil into haul trucks. Finally, in hauling step, haul trucks 
transport earth to a deposit point by travelling through routes with different slopes 
and ground conditions. 
 

Typical (preventive) maintenance activities for construction machinery are 
usually based on the service hours of the machinery. In Table 21, maintenance 
intervals recommended by one of the manufacturers of heavy construction 
equipment is listed for the machinery that are required for the simplified 
earthmoving process (Caterpillar, 2010c); (Caterpillar, 2010b) (Caterpillar, 

2010a). These intervals can be considered as 𝑀𝐿𝑚𝑎𝑥
𝑘  according to the presented 

model. Different tasks are included in each maintenance activity. For example, 
the tasks included in the 50-hour maintenance activity of excavators shown in the 
table are lubrication of boom, stick and bucket linkage, drive shaft universal joint, 
etc. 

 

In a project with four locations, in which earth moving operations need to be 
done, there are three machines (one excavator, one-wheel loader, and one 
truck). Because of the significant distance between these locations, a machine 
needs to work in one location at a time. In Table 22, the operation requirements 
in each location are shown. Due dates are also shown along with the penalty for 
each day of delay (GDOT, 2013). Note that the amount of work that a machine  
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Table 21. Maintenance Intervals (hours) Recommended by the equipment manufacturer 
(Caterpillar Inc.), reproduced from Yu and Seif (2016). 

Machine 10 50 100 250 500 1000 

Excavators      

Wheel Loaders      

(Haul) Trucks      
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can work in one location can be different from other locations due to the condition 
of the location. As a result, operation requirements in Table 22 are expressed as 
number of time periods (days) multiplied by the time a machine can work in each 

time period (in hours) which can be considered as deterioration rates of 𝑀𝐿s 
because the 𝑀𝐿s have been expressed in hours.  
 

Table 22. Operation requirements (days) × deterioration rates (hours) and due dates (days), 
reproduced from Yu and Seif (2016). 

Location/Work 
zone (Jobs) 

Excavator Wheel Loader Tuck Due Date 

A 20 × 5 20 × 3 40 × 3 90 

B 14 × 8 14 × 6 13 × 8 60 

C 20 × 4 21 × 5 20 × 5 90 

D 30 × 3 40 × 2 30 × 5 60 

 
Average cost of performing a preventive maintenance activity and a 

responsive maintenance activity (after a major failure) for a wheel loader is 
approximately $234 and $15,652, respectively (Azadeh et al., 2014). We have 
used these values to approximate the overall cost of each maintenance activity 
for each machine, while also considering the risk of major failure due to missing 
an MA and relative price of the machines. Because the first three MAs (10, 50, 
100 hours) are usually done in a fraction of an operational day and usually by the 
operators, where the machine is located, and because 2000 hours MAs and 
above are not going to be reached they are not considered as MAs. Deterioration 
rate for ML 100000 will be zero for the truck because it does not have the 
respective MA. We will also consider one day for performing all the maintenance 
activities which is usually the case. 

 
This case study was solved by the IBM ILOG CPLEX. The initial solution of 

𝑧1 and 𝑧2 are 125 and 4136 respectively. The piecewise linear membership 
function and optimum solution for the case study are shown in Table 23 and 
Table 24, respectively. It should be noted that there is no relationship between 
the two objectives and they are conflicting. Therefore, a solution that decreases 
tardiness (𝑧1) at the expense of slightly increasing the maintenance cost (𝑧2) 
seems intuitive, yet such a solution might not exist. There might be a solution that 
decreases the tardiness yet increases the maintenance cost so much (higher 
than 5000) that the total satisfaction becomes lower than the optimal satisfaction 
degree (0.675). In fact, there is no solution in this case that decreases the 
tardiness without lowering the total satisfaction degree. If desired, changing the 

values for 𝑧2and 𝑓2(𝑧2) in Table 23 such that the range of the thresholds for the 
maintenance cost is higher can yield a better value for tardiness. Therefore, it is 
up to the DM to update the values of the table based on the maintenance budget 
and the criticality of the deadlines for each location. 
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Table 23. Piecewise linear membership functions for the case study. 

Parameters Values 

𝑧1 <125 125 133 140            145 >145 
𝑓1(𝑧1) 1 1 0.8 0.5 0 0 
𝑧2 <4100 4100 4500 4800 5000 >5000 

𝑓2(𝑧2) 1 1 0.8 0.5 0 0 
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Table 24. Optimal solution for the case study. 

Variable Value in the Optimal Solution 

1st location to process B 
2nd location to process C 
3rd location to process A 
4th location to process D 
Tardiness (𝑧1) 138 

Maintenance cost (𝑧2) 4136 

Satisfaction degree (𝐿) 0.675 
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2.6 Conclusion and Future Research 

 
In this paper we introduced a new extension for the classic formulation of flow 
shop scheduling by incorporating the machines’ requirements for age-based and 
diverse maintenance activities. The model is general enough to cover a wide 
range of applications with any number of machines, jobs, or maintenance 
activities. In modeling the problem, we considered the effect of maintenance and 
health of the machine on the processing times of the production jobs. This led to 
a conflict between the two objectives of the problem, namely minimizing total 
maintenance cost and minimizing total tardiness of the production. We used i-
FMOLP to capture the fuzzy aspiration level of the decision maker and 
simultaneously optimize the two objectives. A solution methodology was 
developed based on the unique structure of the solution space. The results 
showed that because the solution space can become extremely large for realistic 
instances of the problem, a metaheuristic algorithm such as a standard genetic 
algorithm that randomly produces solutions can get stuck in infeasibility.  
 

Commercial solvers also can be very inefficient from a computational time 
standpoint for larger sizes of the problem where many machines, jobs or 
maintenance activities are involved. The proposed solution methodology, 
however, demonstrated satisfactory performance. As was shown in the case 
study, some real world problems are small enough to be solved by commercial 
solvers such as CPLEX. Because the presented problem deals with decisions at 
an operational level, the solution time is very important. The use of the presented 
solution methodology is recommended only when the commercial solvers are too 
expensive to obtain or their solution time is not satisfactory.  
 

Although it was assumed in the model that sufficient resources (workforce, 
spare parts, etc.) are available for the maintenance activities, the two parameters 
used in the second objective function capture the cost of these resources and the 
users can adjust these parameters to incorporate the resource limitations into the 
model. The presented model does not consider random failures. Therefore, some 
applications in which random failures are common call for a stochastic extension 
of this model, where the unplanned failures are incorporated into the model. 
However, random failures can be taken into account by adjusting the duration of 
maintenance activities in the current model so they cover the average time of 
unplanned maintenance activities. Also, unplanned failures that disrupt the 
implementation of a solution obtained from the model can be dealt with just like 
any other disruptive and unplanned event. In this case the users can reset the 
parameters and solve the problem again after a disruption. Another opportunity 
for future research is modeling the same problem under different production 
settings such as parallel machine scheduling, instead of flow shop scheduling. 
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CHAPTER III 
COMBINIED MAINTENANCE ACTIVITIES IN INTEGRATED FLOW 

SHOP AND MAINTENANCE SCHEDULING UNDER 
UNCERTAINITY 
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A version of this chapter is submitted to the European Journal of 
Operational Research by Javad Seif, Mohammad Dehghanimohammadabadi, 
and Andrew J. Yu, and is currently under the second round of review. 
 

In this chapter, I extended my original works that were presented in 
Chapters I and II. Dr. Dehghani has had contributions in problem definition and 
simulation-optimization, and Dr. Yu has supported this research. In this chapter, 
a fixed deterioration rate of 1 is considered and maintenance levels are reworded 
as residual operating times. 

 

Abstract 

 
This article is concerned with incorporating the concept of combined 
maintenance activities in modeling and optimization of a stochastic permutation 
flow shop scheduling problem. The objective is to minimize the total expected 
cost of performing maintenance activities (MAs), and lateness penalties. The 
processing times of production jobs, as well as the duration of MAs are uncertain 
and follow certain probability distributions. We formulate the problem as a two-
stage stochastic mixed-integer program and develop a simulation-optimization 
solution approach for large-scale instances of the problem. We present extensive 
computational experiments for performance measurement of the solution and 
managerial implications. In addition, we demonstrated the application of the 
problem through a case study in the construction industry. 
 

3.1 Introduction 

 
In the conventional scheduling problems, it is assumed that the machines can 
continuously process the jobs (M. Pinedo, 2012) and the information is complete 
and certain. However, in practice the machines must stop for preventive or 
corrective maintenance, and the information available to the planners can be 
both incomplete and uncertain in scheduling environments (Berry, 1993). The 
integration of maintenance and scheduling has appeared in the literature in the 
last two decades (Xu et al., 2015; Yu & Seif, 2016). The goal of this integration is 
to mimic the manufacturing or service environments as closely as possible. The 
more the technical nuances of the maintenance management are considered, the 
higher the practicality of these models and solutions is going to be; however, 
incorporating maintenance decisions into the production scheduling problems, 
requires more sophisticated modeling approaches. This could also make the 
computational effort larger, especially for the large-scale problems. The issue 
becomes even more complex when uncertainty is taken into account. This paper 
provides a stochastic mixed integer program to properly include maintenance 
decisions into the production scheduling when uncertainty exists. Using two 
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solution approaches, namely stochastic programming and Simulation-
Optimization (SO), this paper presents practical insights to dealing with 
computational limitations. 
 

Flow shop scheduling has been studied by many researchers after 
Johnson introduced the problem for two machines in 1954 (Johnson, 1954). The 

main goal in flow shop scheduling is to find a sequence for 𝑛 jobs that are to be 
processed by 𝑚 machines to optimize an objective function. Minimizing the 
completion time of the very last job (the makespan), the overall completion time, 
the tardiness of the jobs are some examples of such an objective. Maintenance 
costs cover a big percentage of the total operating costs (Ángel-Bello et al., 
2011; Yip et al., 2014). Therefore, it is reasonable to include minimizing the 
maintenance cost in the objective function. In this paper, we integrate tardiness 
cost of the jobs and maintenance cost to define the objective function. 

 
Yoo and Lee (2016) classify scheduling problems with MAs incorporated, 

as fixed and coordinated. The first class of problems, scheduling with machine 
availability constraints, considers maintenance as a constraint not a decision. For 
instance, Choi, Lee, Leung, and Pinedo (2010) consider a number of 
maintenance periods in ordered and proportionate flow shop. They assume that 
these maintenance periods have been scheduled in advance with known start 
and finish times. Therefore, the maintenance schedule is incorporated to their 
model as a constraint not a decision. Other researchers use the same approach 
to model machine unavailability in a two-machine flow shop scheduling (T. C. 
Edwin Cheng & Wang, 2000; T. E. Cheng & Wang, 1999; Kubiak, Błażewicz, 
Formanowicz, Breit, & Schmidt, 2002; Kubzin, Potts, & Strusevich, 2009; C.-Y. 
Lee, 1997, 1999).  

 
In the second class of problems, scheduling of maintenance and job 

processing are considered simultaneously. Aggoune (2004) is one of the few 
papers that studies the coordinated variant of flow shop scheduling, while 
allowing a decision for performing maintenance within a time window. Performing 
maintenance in a time window has been modeled in different types of scheduling 
problems, yet they are not precise in timing of MAs. Stefan Bock, Dirk Briskorn, 
and Andrei Horbach (2012) study the computational complexity of single machine 
scheduling problems where each machine has a maintenance level and 
processing of the jobs deteriorates it. Maintenance needs to be performed in 
order to restore or increase the maintenance level before the level becomes 
negative. Seif et al. (2017) and Yu and Seif (2016) adapt the concept of 
maintenance levels in flow shop scheduling when multiple types of maintenance 
levels are involved (Chapters I and II). In this paper, we formulate and solve a 
permutation flow shop scheduling problem under uncertainty, and incorporate the 
concept of combining different types of MAs in the problem. 
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Knezevic (1997) classifies maintenance tasks as simultaneous, 
sequential, and combined. A simultaneous task is composed of activities that are 
mutually independent, yet can be performed concurrently. A sequential task 
includes mutually independent activities that are performed in a predetermined 
order. A combined task includes some activities that can be performed 
simultaneously, and some activities that are sequential. Therefore, a combined 
maintenance task is a generalization of the other two types. To prevent any 
confusion, by MA, we refer to a set of tasks that have a common usage-based 
periodic interval. MAs may have some similar tasks, so the combination of two or 
more MAs could prevent the repetition of the common tasks. We model the 
concept of combined maintenance activities in scheduling problems for the first 
time. In doing so, we cover all of the possible scenarios. The case study in 
Section 3.5 shows a practical example for better understanding of the problem. 

 
Over the last few years, the importance of considering uncertainty in the 

scheduling problems has been highlighted by researchers and industrial 
practitioners; however, the methods used to deal with uncertainty do not seem to 
be very effective (Zheng, Lian, Fu, & Mesghouni, 2015). Gourgand, Grangeon, 
and Norre (2000) and González-Neira, Montoya-Torres, and Barrera (2017) 
conduct comprehensive reviews of research papers that involve flow shop 
scheduling under uncertainty. The latter review found that most of the papers in 
the literature consider processing times as a stochastic parameter, but 
maintenance has never been included as a stochastic process; while Mean Time 
to Repair (MTTR) is a well-known term in the maintenance and reliability 
literature (Ben-Daya, Ait-Kadi, Duffuaa, Knezevic, & Raouf, 2009; Hastings, 
2009) and is based on the assumption of the uncertain durations of MAs.  

 
González-Neira et al. (2017) report the superiority of the stochastic 

optimization approach in modeling the uncertainty. They also mention stochastic 
programming and simulation-optimization as the most promising methods in 
stochastic flow shop scheduling. In this paper for the first time we consider two 
stochastic parameters to capture the uncertainties: (i) the processing times of 
production jobs, and (ii) the durations of MAs. To cross-validate the performance 
of solution approaches, we apply both stochastic programming and simulation-
optimization to model and solve the problem. The use of both methods facilitates 
their performance evaluation in computational experiments.  

 
In this paper, we deal with the uncertainties of the problem via stochastic 

programming and simulation optimization, and we use Monte-Carlo simulation for 
scenario generation. This simulation allows us to generate a number of scenarios 
that sufficiently represent all the possibilities. The problem is then handled as 
deterministic via these two solution approaches. The contributions of this paper 
are: 
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 the concept of combined MAs is introduced and formulated, 

 the conventional permutation flow shop scheduling problems are extended 

by incorporating maintenance decisions, 

 uncertainty is considered for both processing times and the durations of 

MAs, 

 two approaches, namely stochastic programming and simulation-

optimization, are employed for modeling, cross-validation, and solving the 

problem, 

 extensive computational experiments are conducted to evaluate both 

approaches, and drive conclusions for industrial practitioners, and 

 the application of this research is demonstrated through a case study in 

earthmoving operations. 

 
The rest of this chapter is laid out as follows. First, we formulate the problem 

as a two-stage Stochastic Mixed-Integer Program (SMIP) in Section 3.2. In 
Section 3.3, we present a SO algorithm as an alternative approach for modeling 
and solving the problem, which allows the validation of the SMIP. In Section 3.4, 
we will evaluate and report in details the performance of the SO in comparison 
with one of the commercial solvers through extensive computational 
experiments. In Section 3.5, the case study is presented. Conclusions and 
remarks along with directions for future research are discussed in Section 3.6. 
 

3.2 Problem Definition and Mathematical Formulation 

 
In this section, we define mixed-integer stochastic program to define the problem. 
To do this, first, we define and formulate the concepts of combining maintenance 
activities, and discuss the prolonged processing times. The SMIP model is 
presented at the end of this section. 
 

Combined Maintenance Activities 

When two or more maintenance activities are scheduled consecutively (in a row), 
it is likely that the total duration of these combined activities becomes less than 
the sum of the durations of the individual activities when they are performed 
separately. This is due to the fact that, the activities can share one or more tasks. 
Figure 8 illustrates an example in which Activities 1 and 2 share Tasks A and C. 
When these two activities are combined, each of the shared tasks is performed 
only once, which shortens the total duration of performing maintenance. 
 

The individual maintenance activities are considered independently in the 
scheduling process. The MAs are combined only when they are scheduled back- 
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Figure 8. Maintainability block diagram for combined maintenance activities. 
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to-back. For 𝑙 maintenance activities, there exists 𝑜 = ∑ ( 𝑙
𝑘
)𝑙

𝑘=1 = 2𝑙 combinations 

of maintenance activities. The binary variables 𝑦𝑘, 𝑘 = 1,… , 𝑙 determines whether 
a maintenance activity is scheduled at a certain position on the timeline between 

production jobs. The binary variable 𝜙𝑟 , 𝑟 = 1,… , 𝑜 determines whether 
combination 𝑟 is forming in that position, and is a function of 𝑦𝑘, 𝑘 = 1, … , 𝑙. Table 
25 lists all of the possible combinations for three types of maintenance activities 

(𝑙 = 3). The parameter 𝑒𝑘 denotes the duration of maintenance type 𝑘, while 𝑒𝑟
′  

denotes the duration of maintenance combination r. 
 

Table 25. All possible combinations for three types of maintenance activities. 

Combination 𝑦1 𝑦2 𝑦3 Number of MAs Nominal Duration Actual Duration 

1 0 0 0 0 0 𝑒1
′ = 0 

2 1 0 0 1 𝑒1 𝑒2
′ = 𝑒1 

3 0 1 0 1 𝑒2 𝑒3
′ = 𝑒2 

4 0 0 1 1 𝑒3 𝑒4
′ = 𝑒3 

5 1 1 0 2 𝑒1 + 𝑒2 𝑒5
′ = 0.85(𝑒1 + 𝑒2) 

6 1 0 1 2 𝑒1 + 𝑒3 𝑒6
′ = 0.85(𝑒1 + 𝑒3) 

7 0 1 1 2 𝑒2 + 𝑒3 𝑒7
′ = 0.85(𝑒2 + 𝑒3) 

8 1 1 1 3 𝑒1 + 𝑒2 + 𝑒3 𝑒8
′ = 0.75(𝑒1 + 𝑒2 + 𝑒3) 

 

In this example we assumed when two or more maintenance activities are 
combined, the total duration of combined MAs is less than the sum of the 
individual durations. For instance, as provided in Table 25, in combination type 8 
where three MAs are combined (𝑦1 = 𝑦2 = 𝑦3 = 1), the total duration of 
performing all three MAs is 25% less than the sum of the individual durations. In 
practice, the duration of these combinations can be different based on the 
application and the actual conditions. One might break down the MAs into the 
tasks that comprise them, and then take into account the common tasks in a 
combination only once, similar to the example in Table 25. Regardless of the 
method for calculating the duration of maintenance activities in a combined form, 

new durations (𝑒𝑟
′ , 𝑟 = 1, . . . , 2𝑙) will be used as input parameters in the SMIP. 

 
Equation (3.1) maps the decisions for performing the maintenance 

activities (on the right-hand side) to the decision for choosing/performing one of 

the combinations. The values of the coefficients 𝑎𝑘, 𝑘 = 1, . . . , 𝑙 and 𝑏𝑟 , 𝑟 =
1, . . . , 2𝑙 − 1 must be chosen such that only one of the combinations in the left-
hand side gets chosen. This means that none, one, or more than one of the 
variables on the right-hand side can take the value 1, but at most only one of the 
variables on the left-hand side must take the value 1. 

 

 

∑ 𝑏𝑟𝜙𝑟
𝑜=2𝑙−1

𝑟=1
=∑𝑎𝑘𝑦𝑘 

𝑙

𝑘=1

, 𝜙𝑟 , 𝑦𝑘 ∈ {0,1}, ∀𝑘 = 1, . . . , 𝑙 (3.1) 
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Next, we introduce a method for choosing the coefficients such that, at 
most only one combinations is selected. In the example provided in Table 1, for 
instance, the selection of only Maintenance Activities 1 and 2 is equal to the 

selection of only Combination 5. Note that the number of combinations is 2𝑙 − 1; 
the first combination that corresponds to the case where none of the 
maintenance activities is performed has been removed from the set of 
combinations because that combination is realized when none of the other 
combinations is selected. Next we introduce a method for choosing the 
coefficients in (1) such that at most only one combination, the right one, is 
selected. 
 

Consider the set 𝒂 = {𝑎1, 𝑎2, … , 𝑎𝑙}, ∀𝑘 = 1,… , 𝑙,  𝑎𝑘 ∈ ℝ. 𝑺 =
{𝒔𝟏, 𝒔𝟐, … , 𝒔(𝟐𝒍−𝟏)} is the set of all the possible subsets of 𝒂 that are not null, and 

𝒃 = {𝑏1, 𝑏2, … , 𝑏(2𝑙−1)}  ∋  𝑏𝑟 = ∑ 𝑎′𝑎′∈𝒔𝒓 , ∀𝑟 = 1,… , 2𝑙 − 1. We want to find the 

elements of 𝒂 such that the elements of 𝒃 are unique. For example, for 𝒂𝟏 =
{1,2,3}, 𝑙 = 3, 𝑺𝟏 = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}  ∴  𝒃𝟏 = {1,2,3,3,4,5,6}, 

where the members of 𝒃𝟏 are not unique. But for 𝒂𝟐 = {1.1,1.2,1.3}, 𝑙 = 3,𝑺𝟐 =
{{1.1}, {1.2}, {1.3}, {1.1,1.2}, {1.1,1.3}, {1.2,1.3}, {1.1,1.2,1.3}}  ∴ 𝒃𝟐 =

{1.1,1.2,1.3,2.3,2.4,2.5,3.6}, where the members of 𝒃𝟐 are unique. 
 

Proposition. If 𝒂 = {1.1,1.01,… ,1. 00…0⏟  
𝑙−1

1} , |𝒂| = 𝑙, the uniqueness of the 

elements in 𝒃 is guaranteed. 

Proof. For 𝒂 = {1.1,1.01,… ,1. 00…0⏟  
𝑙−1

1} , |𝒂| = 𝑙: 

𝑺 = {{1.1}, {1.01}, … , {1. 00…0⏟  
𝑙−1

1} , {1.1,1.2}, … , {1.1,1.01,… ,1. 00…0⏟  
𝑙−1

1}} , |𝑺|

= 2𝑙 − 1 ∴ 𝒃 = {1.1,1.01,… ,1. 00…0⏟  
𝑙−1

1,2.11,2.101,… , 𝑙. 11…1⏟  
𝑙

} , |𝒃|

= 2𝑙 − 1. 
 
Assume ∃𝑏𝑖, 𝑏𝑗 ∈ 𝒃 𝑎𝑛𝑑 𝒔𝒊, 𝒔𝒋 ∈ 𝑺 ∋ 𝑏𝑖 = 𝑏𝑗 𝑎𝑛𝑑 𝒔𝒊 ≠ 𝒔𝒋. Because 𝑏𝑖 = 𝑏𝑗, the 

integer and decimal parts of the two numbers are equal. Because the integer 

parts of all of the elements in 𝒂 are the same (1), the integer part of 𝑏𝑖 and 
𝑏𝑗  indicate the number of elements in their respective subsets, i.e. 𝒔𝒊 and 𝒔𝒋. 

Because all elements in each subset have 1 as their integer part and each 
element has a unique number of zeros in the decimal part, the elements have to 
be equal for 𝑏𝑖 and 𝑏𝑗 to be equal. If the elements of 𝒔𝒊 and 𝒔𝒋 are identical, 𝒔𝒊 =
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𝒔𝒋 which contradicts the assumption. Therefore, for 𝒂 =

{1.1,1.01,… ,1. 00…0⏟  
𝑙−1

1} , |𝒂| = 𝑙 the elements of 𝒃 are unique. 

∎ 
 

Prolonged Processing Times 

An age-based maintenance activity allows a machine to operate only for certain 
number of hours, called maintenance interval. As soon as the machine’s 
cumulative operating times equals the maintenance interval, it must be stopped 

for performing the maintenance activity. Let 𝑟𝑘 and 𝑅𝑘 be the residual operating 
time and the age-based interval of the 𝑘-th maintenance activity of a machine, 

respectively. The variable 𝑟𝑘 equals 𝑅𝑘 after the maintenance activity type 𝑘 is 
performed on the machine and it approaches 0 as the machine processes 
production jobs. We expect that in practice the processing time of a job prolongs 
as the residual operating times approach 0. This is because: 1) the performance 
of the machine might degrade as the machine gets closer to its maintenance 
requirements, which can lead to a slower processing, and 2) when both tardiness 
and maintenance costs exist in a minimization objective function, it motivates the 
solution algorithms to schedule maintenance activities as early as possible to 
reduce the risk of failures, but not too early that causes excessive tardiness and 
maintenance costs. Next, we try to adapt the model proposed in [5] for prolonged 
processing times. 
 

The value 𝑓𝑘 = 𝑟𝑘 𝑅𝑘⁄  represents the remaining/residual operating time as 
a fraction of the respective maintenance interval. Obviously, 0 ≤ 𝑓𝑘 ≤ 1, ∀𝑘 =
1, … , 𝑙, and 0 ≤ 𝐹 ≤ 1 where 𝐹 = ∑ 𝑓𝑘

𝑙
𝑘=1 𝑙⁄  is the average of fractional residual 

operating times and represents the machine’s health. The prolonged processing 

time of a job, 𝜌, is defined as 
 

 

where 𝑝 is the nominal processing time of the job. If the machine’s health, 𝐹, falls 
between the constant 𝐴 and 1, the nominal processing time is multiplied by the 

coefficient 𝜆1 which can be greater than or equal to 1 with the potential to prolong 
the processing time. If the machine’s health is between 𝐴 and 𝐵, processing time 

is multiplied by the coefficient 𝜆2 which can be greater than 𝜆1, and prolong the 

processing time, and if it is between 0 and 𝐵, multiplied by 𝜆3 which can be 

greater than  𝜆2 prolonging the processing time even more. Here we are 
considering a special case in which the health of a machine has only three 
states. The generalized form will be considered in the SMIP formulation. 

𝜌 = {

𝜆1𝑝,     𝐴 < F ≤ 1

𝜆2𝑝,      𝐵 < F ≤ 𝐴 

𝜆3𝑝,      0 < F ≤ 𝐵

, 0 ≤ 𝐵 ≤ 𝐴 ≤ 1 ≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆3  (3.2) 
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The Stochastic Mixed-Integer Program (SMIP) 

We model a permutation flow shop scheduling problem in which a number of jobs 
will be processed by a series of machines in the same order. All machines have 
a number of age-based maintenance activities. The MAs take place only after a 
machine completes processing of a job and before starts processing the next job 
(preemption is not allowed). The residual operating time of a machine with 
respect to any of the MAs linearly decreases as the machine processes the jobs. 
The residual operating times cannot be negative. Therefore, an MA must be 
performed before processing a job, if the respective residual operating time is 
going to become negative while processing the job. The durations of MAs and 
the processing times of jobs are all uncertain and follow certain probability 
distributions. There are several scenarios in each of which the MA durations and 
processing times are sampled from respective distributions. Under each 
scenario, the maintenance durations can change if the MAs are combined. 

Notations 

Let m, n, l, and S be the number of machines, jobs, maintenance activities, and 
scenarios, respectively. The following indices, parameters, and variables are 
used in the formulation of the problem. 
 

Indices  

𝑖 Represents machines where 𝑖 =  1, . . . , 𝑚. 

𝑗 Represents jobs where 𝑗 =  1, . . . , 𝑛. 

𝑞 Represents job positions in a sequence where 𝑞 =  1, . . . , 𝑛. 

𝑘 Represents maintenance activities where 𝑘 =  1, . . . , 𝑙. 
ℎ Represents the health state of a machine ℎ =  1, . . . , 𝐻. 

𝑟 Represents maintenance combinations where r = 1,2,…,o. 

𝑠 Represents a specific scenario where 𝑠 =  1, . . . , 𝑆. 
 
Parameters (Input Data) 

 

𝑝𝑖𝑗
𝑠  Nominal processing time of job 𝑗 on machine 𝑖 under scenario 𝑠. 

𝑒𝑖𝑘
𝑠  Nominal duration of MA type 𝑘 on machine 𝑖 under scenario 𝑠. 
𝑒𝑖𝑟
′𝑠 Duration of MA combination type 𝑟 on machine 𝑖 under scenario 𝑠. 
𝑅𝑖,𝑘 Time interval for maintenance activity type 𝑘 for machine 𝑖. 
𝑆𝑃𝑖𝑘 Cost of required spare parts and materials for MA type 𝑘 on machine 𝑖. 

𝑆𝑃𝑖𝑘
′  

Cost of required spare parts and materials for MA combination type 𝑟 on 
machine 𝑖. 

𝑊𝐹 
Cost of skilled workforce per time unit for performing maintenance 
activities. 

𝑑𝑗 The due date of job 𝑗. 
𝜋𝑗 Penalty cost associated with each time unit delay in completion of job 𝑗. 

𝜆ℎ The coefficient which is multiplied by the nominal processing times of the 

jobs to prolong them, when the machine is in the health state ℎ. 
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Pr(𝑠) Probability of scenario 𝑠 being realized. 
𝐾 A sufficiently large number. 
 
Decision Variables 

𝑍𝑠 Total cost, the value of the objective function under scenario 𝑠. 
𝑥𝑗𝑞 First-stage decision variable that takes the value 1 if job j is processed as 

the q-th job, and 0 otherwise. 

𝑦𝑖𝑞𝑘 First-stage binary decision variable that takes the value 1 if MA type k is 
performed on machine i before processing the q-th job, and 0 otherwise. 

𝜙𝑖𝑞𝑟 First-stage binary decision variable that takes the value 1 if MA 
combination type r is performed on machine i before processing the q-th 
job, and 0 otherwise. 

𝑟𝑖𝑞
𝑘𝑠 Residual operating time with respect to the MA type 𝑘 of machine i before 

processing the q-th job, under scenario s. 

𝑆𝑇𝑖𝑞
𝑠  Start time of the q-th job on machine 𝑖, under scenario s. 

𝐹𝑇𝑖𝑞
𝑠  Finish time of the q-th job on machine 𝑖, under scenario s. 

𝑡𝑞
𝑠  Tardiness of the q-th job, under scenario s. 

𝜌𝑖𝑞
𝑠  Processing time of the 𝑞-th job on machine 𝑖, under scenario s. 

𝛾𝑖𝑗𝑞
𝑠  

Processing time of job j on machine 𝑖 when it is processed as the 𝑞-th 
job, under scenario s. 

𝛱𝑗𝑞
𝑠  Penalty cost associated with job j if it is processed as the q-th job, under 

scenario s 

Λ𝑖𝑞
ℎ𝑠 1 if machine 𝑖 is in the health state ℎ before processing the 𝑞-th job, 

under scenario 𝑠, and 0 otherwise.  

𝑢𝑖𝑗𝑞
ℎ𝑠  1 if machine 𝑖 is in the health state ℎ before processing job j when it is 

processed as the 𝑞-th job, under scenario 𝑠, and 0 otherwise. 

 

The Model 

The objective function (OF) of the model is to minimize the total expected cost, 
which comprises the penalty cost incurred because of lateness in completion of 
the jobs (tardiness), and the maintenance cost (spare parts and required 
workforces). 
  

minimize  𝐸[𝑍𝑠]

=∑Pr(𝑠)

𝑆

𝑠=1

[∑∑𝛱𝑗𝑞
𝑠

𝑛

𝑞=1

𝑛

𝑗=1

+∑∑ ∑ 𝜙𝑖𝑞𝑟(𝑆𝑃𝑖𝑟
′ + 𝑒𝑖𝑟

′𝑠𝑊𝐹)

𝑜=2𝑙−1

𝑟=1

𝑛

𝑞=1

𝑚

𝑖=1

], 
(3.3) 

  
Subject to: 
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∑𝑥𝑗𝑞 = 1

𝑛

𝑞=1

, 𝑗 = 1, . . . , 𝑛 (3.4) 

∑𝑥𝑗𝑞 = 1

𝑛

𝑗=1

, 𝑞 = 1, . . . , 𝑛 (3.5) 

𝑆𝑇11
𝑠 = 0, 𝑠 = 1, . . . , 𝑆 (3.6) 

𝑆𝑇𝑖1
𝑠 = ∑ 𝜌𝑖′1

𝑠

𝑖−1

𝑖′=1

, 𝑖 = 2,… ,𝑚, 𝑠 = 1, . . . , 𝑆 (3.7) 

𝑆𝑇1𝑞
𝑠 = 𝐹𝑇1(𝑞−1)

𝑠

+∑𝜙1𝑞𝑟𝑒1𝑟
′𝑠

𝑜

𝑟=1

, 
𝑞 = 2, … , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.8) 

𝑆𝑇𝑖𝑞
𝑠 ≥ 𝐹𝑇𝑖(𝑞−1)

𝑠

+∑𝜙𝑖𝑞𝑟𝑒1𝑟
′𝑠

𝑜

𝑟=1

, 
𝑖 = 2,… ,𝑚, 𝑞 = 2, … , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.9) 

𝑆𝑇𝑖𝑞
𝑠 ≥ 𝐹𝑇(𝑖−1)𝑞

𝑠 , 𝑖 = 2, . . . , 𝑚, 𝑞 = 2, . . . , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.10) 

𝐹𝑇𝑖𝑞
𝑠 = 𝑆𝑇𝑖𝑞

𝑠 + 𝜌𝑖𝑞
𝑠 , 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛, 𝑠 = 1, . . . , 𝑆 (3.11) 

𝑟𝑖1
𝑘𝑠 = 𝑅𝑖,𝑘, 𝑖 = 1, . . . , 𝑚 , 𝑠 = 1, . . . , 𝑆, 𝑘 = 1, . . . , 𝑙 (3.12) 

   

𝑟𝑖𝑞
𝑘𝑠 ≥∑𝛾𝑖𝑗𝑞

𝑠

𝑛

𝑗=1

, 𝑠 = 1,… , 𝑆, 𝑖 = 1, … ,𝑚, 𝑞 = 1,… , 𝑛, 𝑘
= 1, . . . , 𝑙 

(3.13) 

   

𝑟𝑖𝑞
𝑘𝑠 ≥ 𝑟𝑖(𝑞−1)

𝑘𝑠 −∑𝛾𝑖𝑗(𝑞−1)
𝑠

𝑛

𝑗=1

− 𝑦𝑖𝑞𝑘𝐾, 

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙 

(3.14) 

𝑟𝑖𝑞
𝑘𝑠 ≤ 𝑟𝑖(𝑞−1)

𝑘𝑠 −∑𝛾𝑖𝑗(𝑞−1)
𝑠

𝑛

𝑗=1

+ 𝑦𝑖𝑞𝑘𝐾, 

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙 

(3.15) 

𝑟𝑖𝑞
𝑘𝑠  ≥ 𝑅𝑖,𝑘 − 𝐾(1 − 𝑦𝑖𝑞𝑘), 

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙 

(3.16) 

𝑟𝑖𝑞
𝑘𝑠  ≤ 𝑅𝑖,𝑘 + 𝐾(1 − 𝑦𝑖𝑞𝑘), 

𝑠 = 1,… , 𝑆, 𝑖 = 1,… ,𝑚, 𝑞 = 2,… , 𝑛, 𝑘
= 1, . . . , 𝑙 

(3.17) 

𝑡𝑞
s ≥ 𝐹𝑇𝑚𝑞

𝑠 −∑𝑥𝑗𝑞𝑑𝑗

𝑛

𝑗=1

,  𝑠 = 1, . . . , 𝑆, 𝑞 = 1, . . . , 𝑛 (3.18) 
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𝛱𝑗𝑞
𝑠 − 𝜋𝑗𝑡𝑞

s ≥ −𝐾(1 −

𝑥𝑗𝑞), 
𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.19) 

𝛱𝑗𝑞
s − 𝜋𝑗𝑡𝑞

s ≤ 𝐾(1

− 𝑥𝑗𝑞), 
𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.20) 

𝛱𝑗𝑞
s ≥ −𝐾𝑥𝑗𝑞 , 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.21) 

𝛱𝑗𝑞
s ≤ 𝐾𝑥𝑗𝑞 , 𝑠 = 1, . . . , 𝑆, 𝑗 = 1, . . . , 𝑛, 𝑞 = 1, . . . , 𝑛 (3.22) 

𝜌𝑖𝑞
𝑠 =∑∑𝑢𝑖𝑗𝑞

ℎ𝑠 𝜆ℎ𝑝𝑖𝑗

𝐻

ℎ=1

𝑛

𝑗=1

, 𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 (3.23) 

𝑢𝑖𝑗𝑞
ℎ𝑠 ≤ Λ𝑖𝑞

ℎ𝑠, 
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1, … , 𝑛, 𝑞 = 1, … , 𝑛, 

ℎ = 1, . . . , 𝐻 
(3.24) 

𝑢𝑖𝑗𝑞
ℎ𝑠 ≤ 𝑥𝑗𝑞 , 

𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1, … , 𝑛, 𝑞 = 1, … , 𝑛, 
ℎ = 1, . . . , 𝐻 

(3.25) 

𝑢𝑖𝑗𝑞
ℎ𝑠 ≥ 𝑥𝑗q + Λ𝑖𝑞

ℎ𝑠 − 1, 
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1, … , 𝑛, 𝑞 = 1, … , 𝑛, 

ℎ = 1, . . . , 𝐻 
(3.26) 

∑Λ𝑖𝑞
ℎ𝑠

𝐻

ℎ=1

= 1, 𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 (3.27) 

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

>
𝐻 − 1

𝑙
Λ𝑖𝑞
1𝑠 −𝐾∑Λ𝑖𝑞

ℎ𝑠

𝐻

ℎ=2

, 
𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞

= 1, . . . , 𝑛 
(3.28) 

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

≤
ℎ

𝑙
Λ𝑖𝑞
ℎ𝑠 + 𝐾 (∑ Λ𝑖𝑞

ℎ′𝑠

𝐻

ℎ′=1

− Λ𝑖𝑞
ℎ𝑠), 

ℎ = 2,… ,𝐻 − 1, 𝑠 = 1,… , 𝑆, 
𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 

(3.29) 

   

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

≥
ℎ − 1

𝑙
Λ𝑖𝑞
ℎ𝑠

− 𝐾(∑ Λ𝑖𝑞
ℎ′𝑠

𝐻

ℎ′=1

− Λ𝑖𝑞
ℎ𝑠), 

ℎ = 2,… ,𝐻 − 1, 𝑠 = 1,… , 𝑆, 
𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 

(3.30) 

∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

<
1

𝑙
Λ𝑖𝑞
𝐻𝑠 + 𝐾∑ Λ𝑖𝑞

ℎ𝑠

𝐻−1

ℎ=1

, 
𝑠 = 1, . . . , 𝑆, 𝑖 = 1, . . . , 𝑚, 𝑞

= 1, . . . , 𝑛 
(3.31) 

   

𝛾𝑖𝑗𝑞
𝑠 ≤ 𝑥𝑗𝑞𝐾, 

𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 𝑞
= 1, . . . , 𝑛 

(3.32) 

𝛾𝑖𝑗𝑞
𝑠 ≤ 𝜌𝑖𝑞

𝑠 , 
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 𝑞

= 1, . . . , 𝑛 
(3.33) 

𝛾𝑖𝑗𝑞
𝑠 ≥ 𝜌𝑖𝑞

𝑠 + (𝑥𝑗𝑞 − 1)𝐾, 
𝑠 = 1, … , 𝑆, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 𝑞

= 1, . . . , 𝑛 
(3.34) 
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The OF in Equation (3.3) is comprised of two parts; the penalty cost, and 

the maintenance cost. The penalty cost for each job is presented as a variable 

that has two indices, 𝑗 and 𝑞. For each job 𝑗, the variable is set equal to 0 in 

Constraints (3.21) and (3.22) if it does not occupy the position 𝑞 in the sequence 
of the jobs. Otherwise, it is set equal to the penalty cost for job 𝑗 times the 
tardiness value, as expressed in Constraints (3.19) and (3.20). The maintenance 
cost itself is comprised of two parts; the cost of spare parts and the cost of the 
cost of workforce. The binary variable 𝜙𝑖𝑞𝑟 determines whether maintenance 

combination 𝑟 is scheduled before processing the 𝑞-th job on machine 𝑖. It is 
multiplied by the cost of spare part for that combination plus the unit cost of 
workforce times the duration of that combination. The MAs are considered 
individually in the scheduling process. Constraint (3.35), which is a generalization 
of Equation (3.1), chooses the combination that correctly represents the 
scheduled MAs.  

 
Constraints (3.5) and (3.6) ensure that each job is assigned to only one 

position in the sequence of the jobs, and each position is filled by only one job. 
These two constraint sets are only concerned with the first stage variables. 
However, the rest of the constraints involve at least one second-stage variable 

with 𝑠 in their superscripts. Therefore, the rest of the constraints must be feasible 
for every scenario, otherwise the solution is infeasible. 

 
Constraints (3.6-3.11) together determine the start and finish time of the 

jobs on every machine. The Start Time (ST) and Finish Time (FT) variables are 
first calculated for the first job in the sequence and the first machine in the flow 
shop, and then they will be calculated for the rest of the jobs and machines. 
Constraint (3.6) sets 0 as the ST of the first job on the first machine. Constraint 
(3.7) sets the ST of the first job on each machine equal to the sum of its 
processing times on the previous machines. Constraint (3.8) sets the ST of each 
job on the first machine equal to the finish time of the previous job on the first 
machine, plus the duration of MAs. As was already explained, instead of nominal 
durations of the individual MAs, the duration of maintenance combinations is 

∑ 𝑏𝑟𝜙𝑖𝑞𝑟
𝑜

𝑟=1
=∑𝑎𝑘𝑦𝑖𝑞𝑘 

𝑙

𝑘=1

, 𝑖 = 1, . . . , 𝑚, 𝑞 = 1, . . . , 𝑛 (3.35) 

   

𝑥𝑗𝑞 , 𝑦𝑖𝑞𝑘, Λ𝑖𝑞
ℎ , 𝑢𝑖𝑗𝑞

ℎ𝑠 , 𝜙𝑖𝑞𝑟 ∈ {0,1}, 
𝑠 = 1,… , 𝑆, 𝑗 = 1,… , 𝑛, 𝑞 = 1,… , 𝑛, 𝑖

= 1,… ,𝑚, 
ℎ = 1, . . . , 𝐻 

(3.36) 

𝑟𝑖𝑞
𝑘𝑠, 𝑡𝑞

𝑠 , 𝛱𝑗𝑞
𝑠 , 𝑆𝑇𝑖𝑞

𝑠 , 𝐹𝑇𝑖𝑞
s , 𝜌𝑖𝑞

𝑠 , 𝛾𝑖𝑗𝑞
𝑠 ≥ 0, 

𝑠 = 1, … , 𝑆, 𝑗 = 1,… , 𝑛, 𝑞 = 1,… , 𝑛, 𝑖
= 1,… ,𝑚, 

ℎ = 1, . . . , 𝐻 

(3.37) 
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considered in timings. Constraints (3.9) and (3.10) are the linear form of 𝑆𝑇𝑖𝑞
𝑠 =

max(𝐹𝑇𝑖(𝑞−1)
𝑠 + ∑ 𝜙𝑖𝑞𝑟𝑒1𝑟

′𝑠𝑜
𝑟=1 , 𝐹𝑇(𝑖−1)𝑞

𝑠 ); the ST of every job on a machine is equal 

to the maximum of its FT on the previous machine plus the maintenance time, 
and the FT of the previous job on the machine. Constraint (3.11) sets the FT of 
all jobs on every machine equal to the respective ST plus the processing time of 
the job. 

 
Constraint (3.12) sets the residual operating times of all machines equal to 

the maintenance interval, before processing the first job. Constraint (3.13) sets 

the residual operating time of machine 𝑖 before processing the 𝑞-th job to be 
greater than or equal to the time it takes to process the job. This constraint 
ensures that the machines do not operate while their maintenance requirements 
are overdue. Constraints (3.14-3.17) are the linearizes form of the following 
equation. 
 

𝑟𝑖𝑞
𝑘𝑠 = {

𝑟𝑖(𝑞−1)
𝑘𝑠 −∑𝛾𝑖𝑗(𝑞−1)

𝑠

𝑛

𝑗=1

, 𝑦𝑖𝑞𝑘 = 0

𝑅𝑖,𝑘, 𝑦𝑖𝑞𝑘 = 1

, ∀𝑠, 𝑖, 𝑞, 𝑘 (3.38) 

 
The residual operating time of a machine before processing a job with 

respect to MA 𝑘 is equal to the respective maintenance interval, if the MA is 
performed, and otherwise it is equal to its value before processing the previous 
job minus the processing time of the previous job. Tardiness for each job in the 
sequence is calculated in Constraint (3.18). The prolonged processing times of 
the jobs are calculated as expressed in Constraint (3.23); the nominal processing 

time of job 𝑗 on machine 𝑖 times the coefficient of state ℎ, times the binary 

variable 𝑢𝑖𝑗𝑞
ℎ𝑠  that takes the value 1 if machine 𝑖 is in state ℎ before processing the 

𝑞-th job and if the 𝑞-th job is job 𝑗, and 0 oherwise. Constraints (3.24-3.26) are 

the linearization form of 𝑢𝑖𝑗𝑞
ℎ𝑠 = Λ𝑖𝑞

ℎ𝑠𝑥𝑗𝑞. 

 

Constraint (3.27) ensures that machine 𝑖 is in only in one of the predefined 

health states before processing the 𝑞-th job. Constraints (3.28-3.31) are the 
generalized and linearized form of the following equations when the machines 

have only three states (𝐻 = 3). 
 

Λ𝑖𝑞
1𝑠 = {

1, ∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

> 0.66

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑠, 𝑖, 𝑞 (3.39) 
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Constraints (3.32-3.34) are the linearized form of 𝛾𝑖𝑗𝑞

𝑠 = 𝑥𝑗𝑞𝜌𝑖𝑞
𝑠  for 

obtaining the actual processing time of job 𝑗 on machine 𝑖, if it is scheduled as 
the 𝑞-th job. Constraint (3.35) ensures that the correct maintenance combination 
is chosen based on the scheduling of MAs. The one that corresponds to the set 
of maintenance activities that are decided to be performed. This is a 
generalization of Equation (3.1) for flow shop scheduling with multiple types of 
MAs. Constraints (3.36-3.37) ensure that all the decision variables are within 
their bounds. 
 

3.3 Simulation-Optimization 

 
Simulation-Optimization (SO) is a promising avenue of research to tackle 
stochastic problems with uncertain parameters (Dehghanimohammadabadi, 
2016; Dehghanimohammadabadi, Keyser, & Cheraghi, 2017). We applied 
Simulation-Based Optimization (SBO), in which an optimization module explores 
the solution space to obtain the best configuration for the stochastic problem 
created by the simulation module. In this approach, the Monte-Carlo simulation is 
used to generate a number of possible scenarios based on the probability 
distributions of the stochastic parameters. The scenarios are inputs to the 
optimization module. Although each one of these scenarios represents a 
deterministic instance of the problem, in which the value of the stochastic 
parameters is certain, they collectively represent the stochastic nature of the 
problem. 
 

As depicted in Figure 9, after the scenarios are generated via the Monte-

Carlo simulation, the optimization module generates a solution (𝑋), recursively, 
and the objective function value is calculated for each scenario (𝑌𝑠). The 
expected value (average) will determine the ultimate value of the solution. The 
new solution is generated based on the internal operators and search methods of 
the specific meta-heuristic method that is being used. This cycle repeats until the 
optimization module satisfies some stopping criteria. Depending on the user’s 
preferences, these criteria could be running model for a certain number of 
iterations or achieving a desirable performance measure (such as time). 

 

Λ𝑖𝑞
2𝑠 = {

1, 0.33 ≤ ∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

≤ 0.66

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  ∀𝑠, 𝑖, 𝑞 (3.40) 

Λ𝑖𝑞
3𝑠 = {

1, ∑
𝑟𝑖𝑞
𝑘𝑠

𝑙 ∙ 𝑅𝑖,𝑘

𝑙

𝑘=1

< 0.33

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑠, 𝑖, 𝑞 (3.41) 
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Figure 9. Overview of the simulation-optimization method. 
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We use the Genetic Algorithm (GA), as the meta-heuristic technique. GA 
is an algorithm inspired by the basic mechanism of natural evolution, introduced 
by Holland (1975). The GA procedure initializes from a randomly generated 
population of solutions, and evolves good local solutions by mimicking the 
process of natural selection using mechanisms such as mutation to generate 
variants and crossover to improve combinations (Trevino & Falciani, 2006). GA is 
a population-based algorithm and employs random choices to have a highly 
exploitative search, keeping a balance between exploration of the feasible 
domain and exploitation of good solutions. In this works, the parameters of GA 
are tuned properly by running several experiments with different values for those 
parameters to ensure the quality of solutions. The ultimate values of the GA 
parameters are listed in Table 26. 

 

Table 26. The values for the GA parameters. 

Parameters Value 

Initial population size 200 
Crossover percentage 0.8 
Mutation percentage 0.8 
Mutation rate 0.03 

 
In this study, a new strategy is used to represent solutions generated by 

GA. This solution representation determines (i) the sequence of jobs in the flow 
shop system, and (ii) the number of MAs needed to be performed on each 
machine prior to each job by choosing one of combination. Table 27 shows the 
solution representation for a flow shop system with 4 jobs, 3 machines, and 3 
MAs. The second row in the solution matrix indicates the sequence of jobs that 
go through processes in all machines (permutation flow shop). The numbers 
provided in the 3rd to the 5th rows indicate the combination of MAs that needs to 
be performed on each machine before processing each job. Table 25 showed 
what MAs are included in each combination. For instance, Combination 4, which 
includes MAs 1 and 2, should be performed on Machine 1 before processing Job 
3. 

 

Table 27. An example for the solution represtaion of the GA. 

Parameters Values 

Jobs 1 2 3 4 

Jobs Sequence 4 1 3 2 

The Required 
Combination of 

MAs on: 

Machine 1 7 0∗ 4 0 

Machine 2 0 0∗ 6 3 

Machine 3 2 0∗ 0 5 

∗ It is assumed that no MA is needed before the first job in the sequence. 
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The number of variables used to represent a solution for a given problem 
with 𝑚 machines, 𝑛 jobs, and 𝑙 MAs is (𝑛 + 𝑛𝑚), which is independent of 𝑙. This 
is another advantage of using the concept of combined MAs. We use real 
numbers for chromosome representation, as shown in Figure 10. The 
chromosomes are then parsed to obtain the sequence of the jobs, and the 
required combination of MAs before processing each job on each machine. In 
Figure 10, for 4 jobs, 3 machines, and 3 MAs, each chromosome is coded as an 

array of (4 + (4 − 1) × 3 = 13) real numbers. The rank position of the first four 
numbers indicate the sequence of the jobs. The rest of the numbers are 

converted to an integer value (1,2,… ,8) to determine the combination of MAs that 
are required before processing each job on each machines, according to Table 
25. For instance, the generated real number for the MA policy of the 3rd job in the 
sequence (Job 3) on Machine 2 is 0.701. By mapping this number to the range of 
1-8, combination 6 is obtained. 

 

 

Figure 10. Chromosome representation using real numbers. 

 
This solution representation, compared to the ones presented in Chapters 

I and II, considerably improves the performance of the GA for the presented 
problem. In the chromosome representations proposed by Seif et al. (2017) and 

Yu and Seif (2016) (Chapters I and II), the chromosomes are presented via 𝑛 +
𝑛𝑚𝑙 integer variables. This representation, unlike the ones proposed in this 
paper, grows as the number of maintenance activities increases. Because the 
variables are integer, their representation also requires additional computational 
efforts for feasibility checks within/after crossover and mutation operations. 
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3.4 Computational Experiments 

 
In this section, we present the computational experiments that we designed to 
tune the SO algorithm, and to evaluate the performances of the algorithm in 
comparison with a commercial solver. First, we introduce the methods used to 
generate test problems for the experiments. Then, we discuss tuning of the 
algorithm. Finally, we present the main experiments that evaluate the SO 
algorithm by comparing its performance against a commercial solver. We coded 
the algorithm in MATLAB and used IBM ILOG CPLEX Optimization Studio 
(Version: 12.5.1.0) to solve the problem formulated in Equations (3.3-3.37) in 
Section 3.2. All algorithms and the CPLEX solver were run on an i7-3770 @ 3.40 
gigahertz Intel processor with 8.00 gigabytes of system memory. Throughout the 
experiments, we solve 30 test problems with various settings. Solving 30 test 
problems allows us to draw reliable inferences about the performance of the 
solution methods. Each test problem includes 30 scenarios. These scenarios are 
generated via Monte-Carlo simulation. The comparison is between two different 
solution approaches, namely the exact solution methods built in the commercial 
solver and a metaheuristic method, which is the proposed GA. Both the solver 
and the GA check the feasibility of a solution against all of the constraints defined 
in the stochastic program that was presented in Section 3.2. 
 

Test Problem Generation 

A test problem must contain the values of all the parameters introduced in 
Section 3.2. We used a test problem generator, which is a function with the 

following arguments: number of jobs (𝑛), Due Date Tightness Factor (𝐷𝐷𝑇𝐹), and 
Maintenance Interval Factor (𝑀𝐼𝐹). The values of the parameter in each test 
problem are generated as follows. Number of machines, 𝑚 = 3, number of MAs, 

𝑙 = 3, the health states of the machines, 𝐻 = 3, number of scenarios, 𝑆 = 30, 
maintenance intervals, 𝑅1 = 4 ×𝑀𝐼𝐹, 𝑅2 = 5 ×𝑀𝐼𝐹, 𝑅3 = 6 ×𝑀𝐼𝐹, spare part 
costs, 𝑆𝑃𝑖𝑘~𝑈($150, $450), the workforce cost, 𝑊𝐹 = $20/ℎ𝑜𝑢𝑟, the due dates, 

𝑑𝑗~𝑈 (240, ⌊
240𝑛

𝐷𝐷𝐹𝑇
⌋), penalty costs, 𝜋𝑗~𝑈(10,20), the probability of scenarios, 

Pr(𝑠) = 1/𝑆, the coefficients for prolonging the processing times, 𝜆1 = 1.0, 𝜆1 =
1.5, 𝜆1 = 2.0, nominal processing times, 𝑝𝑖𝑗

𝑠 ~𝑇𝑅𝐼(20,35,70), and the nominal 

duration of MAs, 𝑒𝑖𝑘
𝑠 ~𝑇𝑅𝐼(5,15,25), where ~𝑈(𝑎, 𝑏) denotes a random value that 

follows the Uniform distribution in the range [𝑎, 𝑏], and ~𝑇𝑅𝐼(𝑎, 𝑏, 𝑐) denotes a 

random value that follows the Triangular distribution with 𝑎, 𝑏, and 𝑐 as the 
minimum, most likely, and the maximum values that the random variable can 
take, respectively. All the test problems (as CPLEX files) can be retrieved online 
at this link: 
https://www.dropbox.com/sh/wn7u776g4fwzrcn/AADC0LdeITjWuF9WWTZDUmd
Ma?dl=0. 

 

https://www.dropbox.com/sh/wn7u776g4fwzrcn/AADC0LdeITjWuF9WWTZDUmdMa?dl=0
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Although these might be close to the values used in some of applications, 
the sole purpose of generating them within the presented bounds is to form test 
problems that are both feasible and challenging to solve. We will present a case 
study in Section 3.5 in which the values are chosen such that they represent an 
application that is similar to one of the real world problems. We keep the number 
of machines, types of MAs, and the health state of the machines constant in all of 
the test problems, but we will increase the number of jobs in order to test the 
performance of the algorithm in dealing with large-scale instances of the 
problem. In practice and for a particular application, the values that are fixed do 
not usually change significantly yet the number of jobs is usually subject to 
change and will increase. Therefore, we decided to only increase the number of 
jobs in the forthcoming experiments. 
 

Computational Experiments for the Population Size 

Yu and Seif (2016) (Chapter I) use a GA for solving a flow shop scheduling 
problem with diverse maintenance activities, and showed that only the population 
size is statistically significant in improving the quality of solutions. They also 
showed that increasing the population size up to a certain point increases the 
quality of solutions. After that point, the quality does not improve significantly, yet 
the solution time keeps increasing. Table 28 shows the results of the experiment 
we performed in order to find an appropriate population size for the problem 
presented in this paper. First, we generated a test problem, solved it with the GA, 
and then recorded the objective function value (OFV) and the solution while the 
population size was 25. We used these values as the baseline. Then, we solved 
the same problem with the same settings, yet with a larger population size, and 
recorded the improvement in the OFV and increase in the solution time. We 
repeated this experiment three times for three different problem sizes. The 
average improvements and increases are reported in Table 28. 
 

Table 28. The impact of population size on the performance of the algorithm. 

Number of 
Jobs (𝑛) 

Population Size 
Average Improvement in the 

OFV (Cost) 
Average Increase in the 

Solution Time 

4 25 0% 0% 
4 50 7% 77% 
4 100 15% 255% 
4 200 22% 546% 
4 400 27% 1215% 
6 25 0% 0% 
6 50 6% 104% 
6 100 18% 399% 
6 200 22% 756% 
6 400 17% 1394% 
8 25 0% 0% 
8 50 10% 131% 
8 100 17% 359% 
8 200 22% 764% 
8 400 23% 1720% 
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Figure 11 summarizes the results of Table 28, by plotting the total average 
of improvements and increases against the population size. Increasing the 
population size beyond 200 does not lead to any improvement in the OFV, yet 
the solution time keeps increasing, as Figure 12 shows. This result agrees with 
the findings of Yu and Seif (2016), which is the published verion of Chapter I.  
 

Computational Experiment for Performance Evaluation 

In this section, we present computational experiments that evaluate the 
performance of the presented Simulation-Optimization (SO) method compared 
with CPLEX as a commercial solver that uses exact solution algorithms for the 
presented SMIP formulation. In all of the experiments, we use the following 
stopping conditions for the SO algorithm and CPLEX. The algorithm will stop and 

return the best solution after 𝐼 number of iterations, or after the OFV does not 

improve for ⌊0.2 × 𝐼⌋ iterations. We chose 𝐼 = 100, but it can take any positive 
integer value. Obviously, a higher value of 𝐼 is more likely to result in a lower 
OFV and higher solution time, and depends on user’s preference.. For CPLEX, 
we observed that when the optimal solution cannot be find within an hour, there 
is a possibility that it cannot be found even within several hours. Therefore, we 
set a time limit of 3000 seconds for CPLEX. However, if the solution time of the 
algorithm becomes greater than 3000 seconds, we use a time limit greater than 
the solution time of the algorithm, as the CPLEX time limit. We generated a 
randomized test problem and solved it with both algorithms, SO and CPLEX 
solver, to ensure these algorithms are consistent and accurate.  
 

Table 29 shows the results of solving 30 test problems solved once via 
CPLEX and once via SO. The number of jobs (𝑛) is 4 in all of these test problem 
and the number of scenarios is 30 in each problem. These problem are 
considered as small-scale problems. In some of the test problems (bold-faced 
and underlined) the SO method finds the global optimal solution, and in some 
problems (bold-faced) the gap between the two methods is less than 1.00% for 
the OFV. However, the solution time of the SO is considerably larger than that of 
CPLEX. Next, we want to see how the results of the comparison changes when 
the problem size (number of jobs) increases. 
   

At the bottom of Table 29, the results are summarized by reporting the 
average, minimum, and maximum values of each column. Table 30 summarizes 
the results for the average of 30 test problems for different number of jobs. A 
negative gap means that the SO algorithm has performed better than CPLEX. 
One observation is that, as the number of jobs (problem size) increases, the 
quality of CPLEX solutions decreases under a limited solution time. Also, the gap 
between the SO algorithm and CPLEX decreases with respect to both OFV and 
solution time. The maximum gaps in the 7th and the 10th columns show the worse  
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Figure 11. The impact of population size on the objective function. 
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Figure 12. The impact of population time on solution time. 
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Table 29. Comparing the simulation-optimization method with CPLEX for n=4. 

Test 
Problem 

CPLEX (SMIP) Simulation-Optimization (SO) Gap 

OFV 
Time 
(sec.) 

OFV 
Time 
(sec.) 

Iterations OFV Time 

1 6210.44 96 6263.10 414 45 0.85% 332.04% 
2 6534.53 111 6938.77 443 47 6.19% 298.53% 
3 5556.52 121 5577.18 504 55 0.37% 315.17% 
4 6598.37 98 7166.55 450 48 8.61% 357.97% 
5 5710.22 113 5710.27 455 49 0.00% 302.32% 
6 5211.41 89 5360.73 550 60 2.87% 521.18% 
7 5604.63 136 5604.68 332 36 0.00% 144.24% 
8 7235.49 114 7288.27 751 84 0.73% 559.98% 
9 6993.4 85 7932.77 417 45 13.43% 388.73% 

10 5470.29 86 5728.43 389 42 4.72% 353.86% 
11 6325.52 138 6740.75 451 48 6.56% 226.21% 
12 5700.31 113 6338.80 450 49 11.20% 298.14% 
13 7250.16 86 7616.83 429 46 5.06% 396.56% 
14 5425.85 171 5427.85 525 58 0.04% 207.04% 
15 5291.15 179 6153.85 596 65 16.30% 232.12% 
16 6798.6 143 6814.17 561 60 0.23% 291.54% 
17 5243.63 103 6486.17 390 41 23.70% 279.57% 
18 7035.76 114 7074.84 416 45 0.56% 265.91% 
19 6048.12 112 6092.67 426 46 0.74% 279.50% 
20 7329.23 144 7771.63 555 60 6.04% 286.41% 
21 6832.7 132 7229.67 541 58 5.81% 308.26% 
22 5176.95 114 5177.00 531 58 0.00% 365.59% 
23 5388.92 96 6005.27 526 56 11.44% 446.69% 
24 5831.19 153 6687.63 389 41 14.69% 153.71% 
25 7286.2 94 7527.65 582 64 3.31% 519.06% 
26 5079.85 180 5079.90 430 47 0.00% 138.78% 
27 6122.64 103 6664.98 411 44 8.86% 300.46% 
28 5452.83 124 5452.88 586 64 0.00% 374.55% 
29 7393.03 145 7734.09 441 48 4.61% 203.53% 
30 6329.74 117 6329.80 601 67 0.00% 412.40% 

Average 6148.92 120 6465.91 485 52 5.23% 318.67% 
Minimum 5079.85 85 5079.90 332 36 0.00% 138.78% 
Maximum 7393.03 180 7932.77 751 84 23.70% 559.98% 
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performance of the SO algorithm compared to CPLEX. When the gap for 
the worst case scenario is negative, it means that the SO algorithm has 
consistently performed better than CPLEX within a time limit. These values are 
indicated in boldfaced. As a result, it can be concluded that under a limited 
solution time, the proposed SO algorithm outperforms a commercial solver as the 
problem size increases. In Table 30 we increased the number of jobs up to a 
point where all 30 test problems can be solved with CPLEX. Table 31 shows the 

results for 𝑛 = 10. We increased the solution time limit to 5000 seconds which is 
considerably higher than the average solution time of the SO algorithm. For the 
bold-faced test problems, CPLEX was unable to find any feasible solution for the 
problem. Again, even in the worst-case scenario, the SO algorithm finds a better 
solution with a lower OFV than CPLEX.  
 

Table 30. Comparing the simulation-optimization method with CPLEX when problem size 
increases. 

N. of 
Jobs 
(𝑛) 

CPLEX 
Avg. 
Time 

SO 
Avg. 
Time 

Avg. N 
of Iter. 

Gap in the Solution Time Gap in the OFV 

Avg. Min. Max. Avg. Min. Max. 

4 120 485 52 318.67% 138.78% 559.98% 5.23% 0.00% 23.70% 
5 2383 777 68 -63.78% -79.81% -21.89% 9.43% 0.00% 32.46% 
6 3002 1091 79 -63.66% -78.43% -53.80% 0.99% -15.18% 21.19% 
7 3001 1430 88 -52.34% -73.58% -44.63% -10.57% -34.84% 17.08% 
8 3001 1828 98 -39.09% -52.89% -35.11% -23.38% -43.39% -6.48% 
9 3000 2081 98 -30.63% -44.06% -25.03% -26.64% -42.29% -8.22% 

 
As the last part of the experiments, we want to make sure that the quality 

of solutions of the algorithm (as measured by the gap in OFV), as well as the 
time to find a solution, are not dependent on how we generate the input data of 
the test problems. In other words, we want to examine the impact of the input 
data on the performance of the proposed algorithm. We changed the arguments 

(𝐷𝐷𝑇𝐹 and 𝑀𝐼𝐹) of the test problem generator function introduced in Section 3.4 
and solved 30 test problems for each setting. Table 32 shows a summary of the 
results. Table 33 provides the average, minimum, and maximum solution times in 
CPLEX and the SO algorithm, for each setting.  Table 33 provides the average, 
minimum, and maximum solution times in CPLEX and the SO algorithm, for each 
setting. In order to examine whether the gap or solution time are significantly 
affected by the input data we performed analysis of variance (ANOVA) on 
samples drawn from the data used for Table 32 and Table 33. Table 34 and 

Table 35 are the ANOVA tables in which five treatments (𝑎 = 5, the way test 
problems are generated, the settings), a sample size of seven (𝑛 = 7), and a 
confidence interval of 𝛼 = 0.01 is used. 

 
As the results suggest, the input data has no statistical significance in the 

solution time or the quality of the solutions (the gaps). This is intuitive when 
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Table 31. Comparing the simulation-optimization method with CPLEX for n=10. 

Test 
Problem 

CPLEX (SMIP) Simulation Optimization Gap 

OFV 
Time 
(sec.) 

OFV 
Time 
(sec.) 

Iterations OFV Time 

1 46517.1 5001 4934 31969.8 100 -31.27% -1.33% 
2 46070.3 5000 4862 34726.5 100 -24.62% -2.76% 
3 48594 5001 4840 36507.0 100 -24.87% -3.21% 
4  4999 4778 32680.8 100   
5 53894.7 5000 4878 35050.7 100 -34.96% -2.44% 
6 42035.5 5000 4796 32312.5 100 -23.13% -4.09% 
7 46760 5000 4852 32919.7 100 -29.60% -2.95% 
8 48287.1 5000 5011 35255.7 100 -26.99% 0.22% 
9  5000 4882 30531.8 100   
10 37772.4 5000 4907 25120.3 100 -33.50% -1.86% 
11 49068.5 5002 4998 35048.1 100 -28.57% -0.08% 
12  5000 4996 40068.8 100   
13 47049.4 5001 4988 32131.5 100 -31.71% -0.26% 
14 41246.2 5000 4864 23863.0 100 -42.15% -2.72% 
15 43165.8 5001 4842 34974.3 100 -18.98% -3.18% 
16 40944.7 5001 4946 27929.2 100 -31.79% -1.10% 
17 47965.9 4999 4819 35923.4 100 -25.11% -3.59% 
18 46645 5001 4857 39589.5 100 -15.13% -2.88% 
19 42654.6 5000 4900 23057.4 100 -45.94% -2.00% 
20 47003.6 5000 4928 39221.8 100 -16.56% -1.46% 
21 41515.4 5000 4917 34909.3 100 -15.91% -1.66% 
22 44415.9 5000 4878 32601.5 100 -26.60% -2.45% 
23 50445 5000 4866 31690.7 100 -37.18% -2.70% 
24 37282.9 4999 4825 31712.7 100 -14.94% -3.47% 
25 33822.2 5000 4838 30608.1 100 -9.50% -3.25% 
26  5000 4827 34578.4 100   
27 36036.3 5000 4824 33809.9 100 -6.18% -3.52% 
28 51582.1 5000 4877 32966.8 100 -36.09% -2.47% 
29 44263.5 5000 4764 32498.6 100 -26.58% -4.72% 
30 49271 5002 4812 35931.3 100 -27.07% -3.79% 

Average 44781.1 5000 32781.9 4878 100 -26.34% -2.45% 
Minimum 33822.2 4999 23057.4 4764 100 -45.94% -4.72% 
Maximum 53894.7 5002 39589.5 5011 100 -6.18% 0.22% 
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Table 32. Sensitivity of the gap to the input data, 𝑛 = 4. 

Setting 𝐷𝐷𝑇𝐹 𝑀𝐼𝐹 No. of Problems Solved 
Gap in the OFV 

Avg. Min. Max. 

1 3 50 30 10.42% 0.00% 26.63% 
2 4 50 30 9.41% 0.00% 32.29% 
3 5 50 30 11.82% 0.29% 30.77% 
4 4 40 30 15.39% 0.49% 32.40% 
5 4 60 30 11.92% 0.00% 37.32% 

 
  



115 
 

 
 

Table 33. Sensitivity of the solution time to the input data, 𝑛 = 4. 

Setting 𝐷𝐷𝑇𝐹 𝑀𝐼𝐹 

The solution time of CPLEX  The solution time of the SO algorithm 

Avg. (sec.) 
Min. 
(sec.) 

Max. (sec.) Variance  Avg. (sec.) Min. (sec.) Max. (sec.) Variance 

1 4 40 74.20 5.58 259.03 4,358.92  576.47 316.50 1,013.11 26,187.84 
2 4 50 198.48 42.80 418.69 8,263.82  551.35 323.34 759.26 11,789.68 
3 4 60 203.72 96.48 426.07 5,990.88  510.35 228.56 670.08 7,919.88 
4 3 40 300.70 42.40 1,179.03 54,610.11  565.92 361.50 831.70 12,494.47 
5 5 40 199.73 48.13 464.04 9,319.93  524.53 352.58 722.45 8,576.37 
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Table 34. Analysis of variance for the gap sensitivity experiment. 

Source of 
Variation 

Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F0 P-Value 

Setting 0.0558 4 0.0140 2.6731 0.0510 
Error 0.1567 30 0.0052   
Total 0.2126 34    
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Table 35. Analysis of variance for the experiment on solution time sensitivity. 

Source of 
Variation 

Sum of 
Squares 

Degree of 
Freedom 

Mean  
Square 

F0 P-Value 

Setting 19196.26013 4 4799.0650 0.4119 0.7986 
Error 349524.7108 30 11650.8237   
Total 368720.9709 34    
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looking at the results in Table 32 and Table 33. This finding implies that the 
results that were shown previously are independent of the problem instances and 
the conclusions about the performance of the SO method are robust. 

 

3.5 Case Study 

 
In this section we show one of the applications of the presented problem and 
solution method. The input data and description of this case study are adapted 
from the case study by Yu and Seif (2016) (a published version of Chapter I) that 
is designed for a deterministic flow shop scheduling with multiple MAs in which 
combining the MAs was not considered and processing times were fixed 
regardless of the machines’ health state. After presentation of the data and 
describing the case study, we will discuss the solution and draw managerial 
implications. 
 

One of the main activities in the early stages of a heavy construction 
project is earthmoving. A simplified version of the earthmoving process described 
by Fu (2013) is as follows. The first step is called preparation. Excavators are 
used in this step; they dig natural form of material from the earth. Next, in the 
loading step, wheel loaders can load the removed and prepared soil into haul 
trucks. Finally, in the hauling step, haul trucks transport earth to a deposit point 
by travelling through routes. 

 
Typical (preventive) maintenance activities for construction machinery are usually 
based on the operating hours of the machinery. In Table 36, maintenance 

intervals (𝑅𝑘 , 𝑘 = 1, . . . ,6) recommended by one of the manufacturers of heavy 
construction equipment is listed for the machinery that are required for the 
simplified earthmoving process (Caterpillar, 2010a, 2010b, 2010c). Different 
tasks are included in each MA. For example, the tasks included in the 50-hour 
MA of excavators shown are lubrication of boom, stick and bucket linkage, drive 
shaft universal joint, etc.  
 

Table 38 shows the task lists of the 250-hour, 500-hour, and 1000-hour 
MAs for the excavator. Tasks Numbers 1-4 for the 500-hour MA are shared in the 
1000-hour MA, as shown in boldfaced. When combined, the total duration of 
these two MAs should be approximately 75% of the sum of the durations of the 
two MAs because 25% of the tasks listed under the two MAs will be redundant 
when they are combined (assuming that the tasks have the same duration). 
Although the 250-hour MA does not share any tasks with the other two MAs, 
after checking the details of some of the tasks we noticed that their share certain 
steps within their tasks. Table 39 shows the steps for performing Task Number 
11 of the 250-hour MA and Task Number 4 of the 500-hour MA. Steps 1,  
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Table 36. Maintenance intervals (in hours) recommended by the equipment manufacturer 
(Caterpillar, 2010a, 2010b, 2010c), reproduced from (Yu & Seif, 2016). 

Machine 10 50 100 250 500 1000 

Excavators       

Wheel Loaders       

(Haul) Trucks       

 
  



120 
 

Table 37. Processing times, due dates, and penalty costs for the jobs, adapted from Yu and Seif 
(2016). 

Location 
(Jobs) 

 Processing Times (no. of days × hours/day)  Due 
Date 

(days) 

Penalt
y/ 

Day 
 Excavator Wheel Loader Truck  

𝐿1  ~TRI(20, 22, 25) × 8 ~TRI(25, 28, 30) × 8 ~TRI(5, 7,9) × 16  90 $211 
𝐿2  ~TRI(15, 20, 25) × 8 ~TRI(20, 25, 30) × 8 ~TRI(7, 10, 14) × 16  100 $118 
𝐿3  ~TRI(10, 15, 20) × 8 ~TRI(15, 20, 25) × 8 ~TRI(3, 9, 14) × 16  80 $118 
𝐿4  ~TRI(18, 23, 28) × 8 ~TRI(15, 20, 25) × 8 ~TRI(9, 11, 13) × 16  70 $346 
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Table 38. Task list of each MA for the excavator (excerpts from Caterpillar (2010c)). 

Task No. 
Maintenance Activity Interval (hours) 

250-hour maintenance 500-hour maintenance 1000-hour maintenance 

1 Air Conditioner - Test Axle Oil (Front) - Change Axle Oil (Front) - Change 
2 Axle Bearings (Front) - Lubricate Axle Oil (Rear) - Change Axle Oil (Rear) - Change 
3 Axle Oil Level (Front) - Check Final Drive Oil - Change Battery Hold-Down - Tighten 
4 Axle Oil Level (Rear) - Check Transmission Oil - Change Drum Brakes - Inspect 
5 Braking System - Test Drive Shaft Support Bearing Lubricant - Check Final Drive Oil - Change 
6 Condenser (Refrigerant) - Clean Fuel System Priming Pump - Operate Overhead Guard - Inspect 
7 Cooling System Hoses - Inspect Fuel System Secondary Filter - Replace Transmission Oil - Change 
8 Engine Oil and Filter - Change Fuel Tank Cap and Strainer - Clean  
9 Final Drive Oil Level - Check Fuel System Primary Filter/Water Separator-  
10 Swing Bearing - Lubricate Element - Replace  
11 Transmission Oil Level - Check   
12 V-Belts - Inspect/Adjust/Replace   
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Table 39. Two tasks with similar steps (excerpts from Caterpillar (2010c)). 

Task Steps 

Transmission Oil Level - Check 

1. Remove filler plug (1). 
2. Check the lubricant level. The lubricant level should be at the bottom of the opening for filler plug (1). 
3. If necessary, fill the gearbox with lubricant to the bottom of the opening for filler plug (1). 
4. Clean filler plug (1). 
5. Inspect the O-ring seal. If damage or wear is noticed on the O-ring seal, replace the seal. 
6. Install filler plug (1). 

Transmission Oil - Change 

1. Remove the dirt that is around filler plug (1) and around drain plug (2). 

2. Remove drain plug (2). Drain the lubricant into a suitable container. 

3. Clean drain plug (2). 

4. Inspect the O-ring seal. If damage or wear is noticed on the O-ring seal, replace the seal. 

5. Install drain plug (2). 

6. Remove filler plug (1). 

7. Fill the gearbox with lubricant to the bottom of the filler plug opening. 

8. Clean filler plug (1). 

9. Inspect the O-ring seal. If damage or wear is noticed on the O-ring seal, replace the seal. 

10. Install filler plug (1). 
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4, 5, and 6 of the first task are the same as Steps 6, 8, 9, and 10 of the second 
task. We assumed the duration of the combined tasks to be 60% of the sum of 
the three durations. In practice, these values can be calculated precisely after a 
time study is conducted on the MAs. 
 

We consider a project with four locations, in which earth moving 
operations need to be done. There are three machines allocated for earthmoving 
operations of these locations; one excavator, one-wheel loader, and one truck. 
The locations are too far from each other for the machines to be able to 
simultaneously work in more than one location. In Table 37, the operation 
requirements in each location are shown. Table 37 shows the processing times 
as the number of days a machine is expected to work in a location multiplied by 
the number of hours worked per day. The due date and penalty costs for 
completing a job after the due date are also presented in this table. We assumed 
a 10-hours shift for the working days in the last two columns. 

   

Average cost of performing a preventive maintenance activity on a wheel 
loader is approximately $234 (Azadeh et al., 2014). We have used this value to 
approximate the overall cost of each MA’s spare part cost, i.e. ~𝑈($200, $300). 
We consider $25/hour as the workforce cost. Because the first three MAs (10, 
50, 100 hours) are usually done in a fraction of an operational day, and usually 
by the operators, where the machine is operating, and because 2000 hours MAs 
and above are not going to be reached within the scheduling process for this 
case study, we have considered only the 250-hour, 500-hour, and 1000-hour 
MAs. Because the trucks do not have the 250-hour MA, we set its maintenance 
interval equal to infinity, 𝑅3,1 = +∞, in order to nullify it. Although these MAs can 

be performed ideally in one day, we consider the triangular distribution 
~𝑇𝑅𝐼(1,2,5) for the maintenance durations because in practice the machines 
might wait in the maintenance station for a few days due to spare part 
unavailability, no empty spot being available in the maintenance stations, etc. 

 
The optimal solution is presented in Table 40. This solution provides a 

schedule for routing of the machines between the construction locations and a 
maintenance station, as well as the maintenance plan. For example, the truck 

goes to 𝐿1 first, then goes to 𝐿4, then to the maintenance station because 
Maintenance Combination 2 is scheduled before processing the third job (𝐿1). 
Maintenance Combination 2 means performing only the 500-hour MA. Note that 

the truck does not need the 250-hour MA. After maintenance, it goes to 𝐿1, and 

then to 𝐿2. The excavator and loader need to go to stop for maintenance before 
operating in any of the locations (except for the first location). Maintenance 
Combinations 1, 4, and 7 correspond to performing only the 250-hour MA, the 
250-hour and the 500-hour MAs in a row, and all three MAs in a row, 
respectively. 
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We solved the problem again after changing the input data for the 
durations of the MAs. This time we used the sum of MAs for combinations, 
instead of a portion (75% or 60%) of the sum. Table 41 shows the solution for the 
new problem. The only changes in the optimal schedule are the MAs of the 

loader before going to 𝐿4 and 𝐿1. With the new data, Combination 5 which 
includes the 500-hour and the 1000-hour MAs is prescribed before 𝐿4, and 
Combination 4 which includes the 250-hour and the 500-hour MAs is prescribed 

before operating in 𝐿1. This means performing an excessive 500-hour MA 
compared to the original solution. The reason is that in the new data performing 
the MAs takes longer which leads to an increase in tardiness. The solver tries to 
compensate for this increase in the duration of the MAs by performing more MAs 
so that the processing times of the jobs do not get prolonged due to the poor 
health of the machine. However, the value of the objective function is still worse 
than the original problem. 
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Table 40. The optimal solution for the case study. 

Variable Optimal Value 

1st location to process 𝐿3 
2nd location to process 𝐿4 
3rd location to process 𝐿1 
4th location to process 𝐿2 
Maintenance combination for the exacavator before processing the 1st job  0 
Maintenance combination for the exacavator before processing the 2nd job 1 
Maintenance combination for the exacavator before processing the 3rd job 4 
Maintenance combination for the exacavator before processing the 4th job 1 
Maintenance combination for the loader before processing the 1st job  0 
Maintenance combination for the loader before processing the 2nd job 1 
Maintenance combination for the loader before processing the 3rd job 7 
Maintenance combination for the loader before processing the 4th job 1 
Maintenance combination for the truck before processing the 1st job  0 
Maintenance combination for the truck before processing the 2nd job 0 
Maintenance combination for the truck before processing the 3rd job 2 
Maintenance combination for the truck before processing the 4th job 0 
Total Expected Cost $4,078 
Expected Maintenance Cost $3,076 
Expected Penalty Cost $1,002 
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Table 41. The optimal solution, when the durations of the MAs do not change in combinations. 

Variable Optimal Value 

1st location to process 𝐿3 
2nd location to process 𝐿4 
3rd location to process 𝐿1 
4th location to process 𝐿2 
Maintenance combination for the exacavator before processing the 1st job  0 
Maintenance combination for the exacavator before processing the 2nd job 1 
Maintenance combination for the exacavator before processing the 3rd job 4 
Maintenance combination for the exacavator before processing the 4th job 1 
Maintenance combination for the loader before processing the 1st job  0 
Maintenance combination for the loader before processing the 2nd job 5 
Maintenance combination for the loader before processing the 3rd job 4 
Maintenance combination for the loader before processing the 4th job 1 
Maintenance combination for the truck before processing the 1st job  0 
Maintenance combination for the truck before processing the 2nd job 0 
Maintenance combination for the truck before processing the 3rd job 2 
Maintenance combination for the truck before processing the 4th job 0 
Total Expected Cost $4,188 
Expected Maintenance Cost $3,170 
Expected Penalty Cost $1,018 
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3.6 Conclusion and Future Research 

 
In this chapter, a new extension of the flow shop scheduling problem was 
introduced. We incorporated the concept of combined maintenance activities in 
the permutation flow shop, and considered the impact of the health of machines 
on the processing times of jobs. The objective was to minimize the total cost of 
maintenance activities and lateness penalties. We formulated the problem as a 
two-stage stochastic mixed-integer program in which the first-stage decision 
variables determined both the sequence of the jobs and a combination of 
maintenance activities. Because the commercial solvers were not able to solve 
large-scale instances of the problem in a reasonable time, we developed a 
simulation-optimization solution method that can efficiently solve these instances. 
We designed a series of computational experiments in order to tune the 
algorithm, evaluate its performance in comparison with CPLEX, and assess the 
sensitivity of its performance to the input data. We concluded that: 
 

 an increase in the population size in the algorithm improves the quality of 

the solutions only up to a certain point, after which only the solution time 

increases, 

 although for small-sized instances of the problem we recommend the use 

of commercial/exact solvers, for medium to large-scale instances and under 

a limited time frame, the presented solution method outperforms these 

computationally and financially expensive solvers, and 

 the quality of the solutions and solution time of the presented simulation-

optimization method is not sensitive to the input data under a limited solution 

time, which alludes to the robustness of the method. 

 
We demonstrated an application of the presented problem through a case 

study in construction projects. The results of the case study showed that 
considering the decrease maintenance time, when the activities are combined, 
leads to savings and improvement in the objective function value. Taking random 
failures into the consideration is highly desirable and can be studied as an 
extension of this paper. Also, the concept of combined maintenance activities 
can be applied to other production settings such as flexible flow shop and job 
shop scheduling.  
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CONCLUSION 
 
This dissertation was an attempt to integrate maintenance decisions into 
production scheduling. Permutation flow shop scheduling was considered as the 
production environment, and preventive maintenance activities were incorporated 
with the scheduling process. In Chapter I, I introduced a new mixed-integer 
program for flow shop scheduling that could handle scheduling of multiple age-
based maintenance activities. The objective was to minimize the overall cost of 
tardiness (penalty costs) and maintenance. In Chapter II, tardiness and 
maintenance cost were divided into two separate objectives and the problem was 
reformulated as a bi-objective optimization problem. The effect of machine’s 
health on processing times was also modeled in Chapter II. In Chapter III, the 
unified objective in Chapter I was used again, but the processing times, as well 
as maintenance time were treated as random variables. In addition, the 
possibility of combining maintenance activities was incorporated into the model. 
The problem was modeled as a stochastic program in Chapter III, and Monte-
Carlo simulation was used for scenario generation. The model in Chapter III was 
slightly different from the ones presented in the earlier chapters; instead of using 
waiting and buffer times, start/finish times were used for modeling the timeline of 
each job with respect to various machines. 
 

The problem was shown to be NP-hard in Chapter I. A Genetic Algorithm 
(GA) was designed and presented as the solution method because the existing 
generic exact solution methods would be inefficient in solving large sizes of the 
problem. After performing an ANOVA experiment, the population size of the GA 
was determined to be the only significant factor in improving the quality of the 
solutions of the algorithm. Then, a lower bound was formulated for the problem, 
and the GA would set the population size automatically based on the lower 
bound and desired performance defined by the user. The GA was improved in 
Chapter II by confining the solution space. A new design for the GA was 
presented in Chapter III. The new design improved and algorithm by simplifying 
its searching procedure. 

 
Extensive computational experiments were conducted in Chapters I-III 

through which the reliability, efficiency, and effectiveness of the solution methods 
were demonstrated. In Chapter I, a case study was presented that showed the 
application of the problem in construction projects. The same case study was 
used in Chapters II and III. Although the main application of flow shop scheduling 
is in manufacturing industries, this case study showed how broad the 
applications of this work can be. The jobs were earthmoving locations, and the 
machines were construction machinery (loaders, trucks, and excavators). 
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Unplanned Maintenance 

 
Unplanned maintenance activities (caused by emergencies, random failures, 
etc.) were not directly addressed in this dissertation. However, there are two 
ways to manage them. Because the solution method is relatively fast, after each 
interruption in the schedule, a new problem defined by the new data can be 
solved. In applications where unplanned maintenance activities are common, the 
model that was presented in Chapter III can be used to handle those cases. The 
duration of maintenance activities were modeled as random variables (input 
parameters), and the model can handle multiple types of maintenance activities. 
Therefore, various failure modes can be treated as maintenance activities. 
  

Considering Risk 

 
An alternative objective function for maintenance is minimizing the risk 
associated with delaying the maintenance activities. In some organizations, 
reducing risk is more important than reducing maintenance costs. The main 
constraint in such cases is on the maintenance budget and maintenance 
workforce. This dissertation can be extended by considering a risk factor for each 
type of maintenance, and multiplying this factor by the amount of tardiness in 
completing the maintenance activities in the objective function (similar to the 
penalty and tardiness for processing the jobs, in Chapters I and III).  
 

Fatigue and Degradation of Machines and Their Components 

 
The combination of maximum maintenance levels and deterioration rates that 
were introduced in Chapter I allows the user of these models to take the 
degradation of machines and remaining useful life of their components into 
account. Because the processing times of the jobs are relatively small (compared 
to the remaining useful life of components) deterioration rates can be used to 
model the non-linear degradation functions as piece-wise linear. In addition, 
becase we allow multiple ML’s, the degradation values of of multiple components 
(or multiple degaradation parameters) of a machine, or critical component, can 
be taken into account. This allows using the output of prognostic models as 
inputs for the models presented in this dissertation. This work can be extended 
by changing the maximum maintenance levels to the current values of 
degradation parameters. The stochastic models also allow taking into account 
the uncertainity associated with the outputs of prognostic models. 
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B.1: The Mixed-Integer Program in Chapter I 

 
/*sets*/ 

int m=...; /*number of machines*/ 

int n=...; /*number of jobs*/ 

int l=...; /*number of maintenance levels or activities*/ 

float M1=...; /*the big M*/ 

float M2=...; 

 

/*input parameters*/ 

float prcsTime[1..m][1..n]=...; 

float dtrRate[1..m][1..n][1..l]=...; 

float execTime[1..m][1..l]=...; 

float MLmax[1..l]=...; 

float spCost[1..m][1..l]=...; 

float wfCost[1..l]=...; 

float dueDate[1..n]=...; 

float pnltCost[1..n]=...; 

 

/*variables*/ 

dvar boolean x[1..n][1..n]; 

dvar boolean y[1..m][1..n][1..l]; 

dvar float ML[1..m][1..n][1..l]; 

dvar float+ completionTotal[1..n]; 

dvar float+ tardiness[1..n]; 

dvar float+ waitMachine[1..m][1..n]; 

dvar float+ waitJob[1..m][1..n]; 

dvar float+ PLT[1..n][1..n]; 

dvar int+ nbMA; 

dvar int+ seq[1..n]; 

 

/*OF*/ 

minimize sum(i,j in 1..n) PLT[i][j] + sum(i in 1..m,j in 1..n, k in 

1..l) y[i][j][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]); 

 

/*constraints*/ 

subject to {  

 forall(i in 1..n) sum(j in 1..n) x[i][j]==1; 

 forall(j in 1..n) sum(i in 1..n) x[i][j]==1; 

  

 forall(i in 1..m) waitJob[i][1]==0; 

 forall(j in 1..n) waitMachine[1][j] == 0; 

  

 forall(i in 1..m,k in 1..l) ML[i][1][k]==MLmax[k]; 

  

 forall(i in 2..m) waitMachine[i][1]==sum(j in 1..n,k in 1..i-1) 

x[j][1]*prcsTime[k][j]+sum(g in 1..l,k in 1..i-1) 

y[k][1][g]*execTime[k][g]; 

  

 forall(i in 1..m-1,j in 1..n-1) waitMachine[i][j+1]+sum(k in 

1..l) y[i][j+1][k]*execTime[i][k]+sum(jj in 1..n) 

x[jj][j+1]*prcsTime[i][jj]+waitJob[i+1][j+1] 
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  == waitJob[i+1][j]+sum(k in 1..l) 

y[i+1][j][k]*execTime[i+1][k]+sum(jj in 1..n) 

x[jj][j]*prcsTime[i+1][jj]+waitMachine[i+1][j+1]; 

   

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-MLmax[k] >= -

M1*(1-y[i][j][k]); 

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-MLmax[k] <= 

M1*(1-y[i][j][k]); 

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-(ML[i][j-1][k]-

sum(jj in 1..n)x[jj][j-1]*prcsTime[i][jj]*dtrRate[i][jj][k]) >= -

M1*(y[i][j][k]); 

 forall(i in 1..m,j in 2..n,k in 1..l) ML[i][j][k]-(ML[i][j-1][k]-

sum(jj in 1..n)x[jj][j-1]*prcsTime[i][jj]*dtrRate[i][jj][k]) <= 

M1*(y[i][j][k]); 

  

 forall(i in 1..m,j in 1..n,k in 1..l) ML[i][j][k] >= sum(jj in 

1..n) x[jj][j]*prcsTime[i][jj]*dtrRate[i][jj][k]; 

 

 forall(j in 2..n) waitJob[1][j]==sum(r in 1..j-1,jj in 

1..n)x[jj][r]*prcsTime[1][jj]+sum(r in 1..j-1,k in 

1..l)y[1][r][k]*execTime[1][k]; 

  

 forall(j,k in 1..n) PLT[j][k]-pnltCost[j]*tardiness[k] >= -M2*(1-

x[j][k]); 

 forall(j,k in 1..n) PLT[j][k]-pnltCost[j]*tardiness[k] <= M2*(1-

x[j][k]); 

 forall(j,k in 1..n) PLT[j][k] >= -M2*x[j][k]; 

 forall(j,k in 1..n) PLT[j][k] <= M2*x[j][k]; 

  

 forall(j in 1..n) completionTotal[j]==sum(i in 1..m) 

(waitJob[i][j]+sum(jj in 1..n)x[jj][j]*prcsTime[i][jj]+sum(k in 1..l) 

y[i][j][k]*execTime[i][k]); 

  

 forall(j in 1..n) tardiness[j] >= completionTotal[j]-sum(jj in 

1..n) dueDate[jj]*x[jj][j]; 

  

 nbMA==sum(i in 1..m,j in 1..n,k in 1..l) y[i][j][k]; 

 forall (i in 1..n) seq[i]==sum(j in 1..n) x[j,i]*j; 

} 

  



143 
 

B.2: The Mixed-Integer Program in Chapter II 

 
/*sets*/ 

int m=...; /*number of machines*/ 

int n=...; /*number of jobs*/ 

int l=...; /*number of maintenance levels or activities*/ 

 

 

/*input parameters*/ 

float prcsTime[1..m][1..n]=...; 

float dtrRate[1..m][1..n][1..l]=...; 

float execTime[1..m][1..l]=...; 

float MLmax[1..l]=...; 

float spCost[1..m][1..l]=...; 

float wfCost[1..l]=...; 

float dueDate[1..n]=...; 

float alpha11=...; 

float alpha12=...; 

float betta1=...; 

float gamma1=...; 

float alpha21=...; 

float alpha22=...; 

float betta2=...; 

float gamma2=...; 

float mem12=...; 

float mem13=...; 

float mem22=...; 

float mem23=...; 

float temp; 

float M1=...; /*the big M*/ 

float M2=...; 

 

/*variables*/ 

dvar boolean x[1..n][1..n]; 

dvar boolean y[1..m][1..n][1..l]; 

dvar float ML[1..m][1..n][1..l]; 

dvar float+ completionTotal[1..n]; 

dvar float+ tardiness[1..n]; 

dvar float+ waitMachine[1..m][1..n]; 

dvar float+ waitJob[1..m][1..n]; 

dvar float+  Rho[1..m][1..n]; 

dvar boolean L[1..m][1..n][1..3]; 

dvar boolean Z[1..m][1..n][1..n][1..3]; 

dvar float+ Gamma[1..m][1..n][1..n]; 

dvar int+ nbMA; 

dvar float+ Tardiness; 

dvar float+ MaintCost; 

dvar int+ seq[1..n]; 

dvar float+ d11; 

dvar float+ d12; 

dvar float+ d21; 

dvar float+ d22; 

dvar float+ e11; 

dvar float+ e12; 
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dvar float+ e21; 

dvar float+ e22; 

dvar float+ S; 

 

/*OF*/ 

maximize S; 

 

/*Constraints*/ 

subject to { 

 S<=-(alpha11)*(e11-d11)-(alpha12)*(e12-d12)+(betta1)*(sum( q in 

1..n)tardiness[q])+(gamma1);  

 S<=-(alpha21)*(e21-d21)-(alpha22)*(e22-d22)+(betta2)*(sum( i in 

1..m,q in 1..n,k in 

1..l)y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+(gamma2);  

 sum( q in 1..n) tardiness[q]+e11-d11==mem12;  

 sum( q in 1..n) tardiness[q]+e12-d12==mem13;  

 (sum( i in 1..m,q in 1..n,k in 1..l) 

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e21-

d21==mem22;  

 (sum( i in 1..m,q in 1..n,k in 1..l) 

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e22-

d22==mem23;  

  

 ct03: forall(q in 1..n) tardiness[q] >= completionTotal[q]-sum(j 

in 1..n) dueDate[j]*x[j][q]; 

 ct05: forall(i in 1..n) sum(j in 1..n) x[i][j]==1; 

 ct06: forall(j in 1..n) sum(i in 1..n) x[i][j]==1; 

 ct07: forall(i in 1..m-1,q in 1..n-1) waitMachine[i][q+1]+sum(k 

in 1..l) y[i][q+1][k]*execTime[i][k]+Rho[i][q+1]+waitJob[i+1][q+1] 

  == waitJob[i+1][q]+sum(k in 1..l) 

y[i+1][q][k]*execTime[i+1][k]+Rho[i+1][q]+waitMachine[i+1][q+1]; 

 ct08: forall(i in 1..m,k in 1..l) ML[i][1][k]==MLmax[k]; 

 ct09: forall(i in 1..m) waitJob[i][1]==0; 

 ct10: forall(j in 1..n) waitMachine[1][j] == 0;   

 

 ct11: forall(i in 2..m) waitMachine[i][1]==sum(k in 1..i-1) 

Rho[k][1]; 

 ct12: forall(q in 2..n) waitJob[1][q]==sum(r in 1..q-

1)Rho[1][r]+sum(r in 1..q,k in 1..l)y[1][r][k]*execTime[1][k]; 

 ct13: forall(i in 1..m,q in 1..n,k in 1..l) ML[i][q][k] >= sum(j 

in 1..n) Gamma[i][j][q]*dtrRate[i][j][k];  

 ct14: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-ML[i][q-

1][k]+sum(j in 1..n)Gamma[i][j][q-1]*dtrRate[i][j][k] >= -

M1*(y[i][q][k]); 

 ct15: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-ML[i][q-

1][k]+sum(j in 1..n)Gamma[i][j][q-1]*dtrRate[i][j][k] <= 

M1*(y[i][q][k]); 

 ct16: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-MLmax[k] 

>= -M1*(1-y[i][q][k]); 

 ct17: forall(i in 1..m,q in 2..n,k in 1..l) ML[i][q][k]-MLmax[k] 

<= M1*(1-y[i][q][k]); 

 ct18: forall(i in 1..m,j,q in 1..n) Gamma[i][j][q]<=x[j][q]*M2; 

 ct19: forall(i in 1..m,j,q in 1..n) Gamma[i][j][q]<=Rho[i][q]; 
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 ct20: forall(i in 1..m,j,q in 1..n) 

Gamma[i][j][q]>=Rho[i][q]+(x[j][q]-1)*M2; 

 ct21: forall(q in 1..n) completionTotal[q]==sum(i in 1..m) 

(waitJob[i][q]+Rho[i][q]+sum(k in 1..l) y[i][q][k]*execTime[i][k]); 

 ct22: forall (i in 1..m,q in 1..n) Rho[i][q]==sum(j in 

1..n)prcsTime[i][j]*((1.0*Z[i][j][q][1])+(1.5*Z[i][j][q][2])+(2.0*Z[i][

j][q][3]));  

 ct23: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3) 

Z[i][j][q][h]<=x[j][q]; 

 ct24: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3) 

Z[i][j][q][h]<=L[i][q][h]; 

 ct25: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3) 

Z[i][j][q][h]>=x[j][q]+L[i][q][h]-1; 

 ct26: forall(i in 1..m, q in 1..n)  

L[i][q][1]+L[i][q][2]+L[i][q][3]==1; 

 ct27: forall(i in 1..m, q in 1..n)  sum(k in 

1..l)(ML[i][q][k]/(l*MLmax[k]))>=0.66*L[i][q][1]-

M2*(L[i][q][2]+L[i][q][3]); 

 ct28: forall(i in 1..m, q in 1..n)  sum(k in 

1..l)(ML[i][q][k]/(l*MLmax[k]))<=0.66*L[i][q][2]+M2*(L[i][q][1]+L[i][q]

[3]); 

 ct29: forall(i in 1..m, q in 1..n)  sum(k in 

1..l)(ML[i][q][k]/(l*MLmax[k]))>=0.33*L[i][q][2]-

M2*(L[i][q][1]+L[i][q][3]); 

 ct30: forall(i in 1..m, q in 1..n)  sum(k in 

1..l)(ML[i][q][k]/(l*MLmax[k]))<=0.33*L[i][q][3]+M2*(L[i][q][1]+L[i][q]

[2]); 

  

 nbMA==sum(i in 1..m,j in 1..n,k in 1..l) y[i][j][k]; 

 forall (i in 1..n) seq[i]==sum(j in 1..n) x[j,i]*j; 

 Tardiness==sum(j in 1..n)tardiness[j]; 

 MaintCost==sum( i in 1..m,q in 1..n,k in 1..l) 

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]); 

   

} 
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B.3: The Stochastic Mixed-Integer Program in Chapter III 

 
/*sets*/ 

int m=...; /*number of machines*/ 

int n=...; /*number of jobs*/ 

int l=...; /*number of maintenance levels or activities*/ 

int S=...; /*number of scenarios*/ 

int o=...; /*number of maintenance combinations*/ 

 

/*input parameters*/ 

float K=...; /*the big M*/ 

float probability[1..S]=...; 

float p[1..m][1..n][1..S]=...; 

float epsilon[1..m][1..o][1..S]=...; /*total executionTime for 

each maintenance combination*/ 

float MLmax[1..m][1..l]=...; 

float SPprime[1..m][1..o]=...; /*total of SpCost for each 

maintenance combination*/ 

float WF=...; 

float d[1..n]=...; 

float pi[1..n]=...; 

float a[1..l]=...; 

float b[1..o]=...; 

 

/*variables*/ 

dvar boolean x[1..n][1..n]; 

dvar boolean y[1..m][1..n][1..l]; 

dvar boolean PHI[1..m][1..n][1..o]; 

dvar float ML[1..m][1..n][1..l][1..S]; 

dvar float+ t[1..n][1..S]; 

dvar float+  Rho[1..m][1..n][1..S]; 

dvar boolean L[1..m][1..n][1..3][1..S]; 

dvar boolean u[1..m][1..n][1..n][1..3][1..S]; 

dvar float+ Gamma[1..m][1..n][1..n][1..S]; 

dvar float+ PI[1..n][1..n][1..S]; 

dvar int+ seq[1..n]; 

dvar int+ maintPos[1..m][1..n]; 

dvar float+ expectedTardiness; 

dvar float+ expectedTardinessCost; 

dvar float+ expectedMaintCost; 

dvar float+ expectedTotalCost; 

dvar float+ ST[1..m][1..n][1..S]; 

dvar float+ FT[1..m][1..n][1..S]; 

 

/*OF*/ 

minimize sum(s in 1..S)probability[s]*(sum(i,j in 1..n) PI[i][j][s] + 

sum(i in 1..m,q in 1..n, r in 1..o) 

PHI[i][q][r]*(SPprime[i][r]+epsilon[i][r][s]*WF)); 

 

/*constraints*/ 

subject to { 

 ct04: forall(j in 1..n) sum(q in 1..n) x[j][q] == 1; 

 ct05: forall(q in 1..n) sum(j in 1..n) x[j][q] == 1; 
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 /*start times of the first jobs*/ 

 ct06: forall(s in 1..S)      

 ST[1][1][s] == 0; 

 ct07: forall(i in 2..m,s in 1..S)    ST[i][1][s] 

== sum(ii in 1..i-1)Rho[ii][1][s]; 

 /*start times of the other jobs on the first machine*/ 

 ct08: forall(q in 2..n,s in 1..S)    ST[1][q][s] 

== FT[1][q-1][s]+sum(r in 1..o)PHI[1][q][r]*epsilon[1][r][s]; 

 /*start time of the other jobs on the other machines*/ 

 ct09: forall(i in 2..m,q in 2..n,s in 1..S)  ST[i][q][s] 

>= FT[i][q-1][s] + sum(r in 1..o) PHI[i][q][r]*epsilon[i][r][s]; 

 ct10: forall(i in 2..m,q in 2..n,s in 1..S)  ST[i][q][s] 

>= FT[i-1][q][s]; 

 /*finish times*/ 

 ct11: forall (s in 1..S,q in 1..n,i in 1..m) FT[i][q][s] == 

ST[i][q][s] + Rho[i][q][s]; 

  

 ct12: forall(i in 1..m,k in 1..l,s in 1..S) ML[i][1][k][s] == 

MLmax[i][k]; 

 ct13: forall(i in 1..m,q in 1..n,k in 1..l,s in 1..S) 

ML[i][q][k][s] >= sum(j in 1..n) Gamma[i][j][q][s]; 

 ct14: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S) 

ML[i][q][k][s]-ML[i][q-1][k][s]+sum(j in 1..n)Gamma[i][j][q-1][s] >= -

K*(y[i][q][k]); 

 ct15: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S) 

ML[i][q][k][s]-ML[i][q-1][k][s]+sum(j in 1..n)Gamma[i][j][q-1][s] <= 

K*(y[i][q][k]); 

 ct16: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S) 

ML[i][q][k][s]-MLmax[i][k] >= -K*(1-y[i][q][k]); 

 ct17: forall(i in 1..m,q in 2..n,k in 1..l,s in 1..S) 

ML[i][q][k][s]-MLmax[i][k] <= K*(1-y[i][q][k]); 

 ct18: forall(q in 1..n,s in 1..S) t[q][s] >= FT[m][q][s]-sum(j in 

1..n) d[j]*x[j][q]; 

 ct19: forall(j,q in 1..n,s in 1..S) PI[j][q][s]-pi[j]*t[q][s] >= 

-K*(1-x[j][q]); 

 ct20: forall(j,q in 1..n,s in 1..S) PI[j][q][s]-pi[j]*t[q][s] <= 

K*(1-x[j][q]); 

 ct21: forall(j,q in 1..n,s in 1..S) PI[j][q][s] >= -K*x[j][q]; 

 ct22: forall(j,q in 1..n,s in 1..S) PI[j][q][s] <= K*x[j][q]; 

 ct23: forall(i in 1..m,q in 1..n,s in 1..S) Rho[i][q][s]==sum(j 

in 1..n) 

p[i][j][s]*(1.0*u[i][j][q][1][s]+1.5*u[i][j][q][2][s]+2.0*u[i][j][q][3]

[s]);  

 ct24: forall(i in 1..m, j in 1..n, q in 1..n, h in 1..3,s in 

1..S) u[i][j][q][h][s]<=L[i][q][h][s]; 

 ct25: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3,s in 

1..S) u[i][j][q][h][s]<=x[j][q]; 

 ct26: forall (i in 1..m, j in 1..n, q in 1..n, h in 1..3,s in 

1..S) u[i][j][q][h][s]>=x[j][q]+L[i][q][h][s]-1; 

 ct27: forall(i in 1..m, q in 1..n,s in 1..S) 

L[i][q][1][s]+L[i][q][2][s]+L[i][q][3][s]==1; 

 ct28: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in 

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))>=0.66*L[i][q][1][s]-

K*(L[i][q][2][s]+L[i][q][3][s]); 
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 ct29: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in 

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))<=0.66*L[i][q][2][s]+K*(L[i][q][1]

[s]+L[i][q][3][s]); 

 ct30: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in 

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))>=0.33*L[i][q][2][s]-

K*(L[i][q][1][s]+L[i][q][3][s]); 

 ct31: forall(i in 1..m, q in 1..n,s in 1..S) sum(k in 

1..l)(ML[i][q][k][s]/(l*MLmax[i][k]))<=0.33*L[i][q][3][s]+K*(L[i][q][1]

[s]+L[i][q][2][s]); 

 ct32: forall(i in 1..m,j,q in 1..n,s in 1..S) 

Gamma[i][j][q][s]<=x[j][q]*K; 

 ct33: forall(i in 1..m,j,q in 1..n,s in 1..S) 

Gamma[i][j][q][s]<=Rho[i][q][s]; 

 ct34: forall(i in 1..m,j,q in 1..n,s in 1..S) 

Gamma[i][j][q][s]>=Rho[i][q][s]+(x[j][q]-1)*K; 

 ct35: forall(i in 1..m,q in 1..n,s in 1..S) sum(r in 1..o) 

PHI[i][q][r] <= 1; 

 ct36: forall(i in 1..m,q in 1..n,s in 1..S) sum(r in 1..o) 

b[r]*PHI[i][q][r] == sum(k in 1..l) a[k]*y[i][q][k]; 

  

 /*sequence*/ 

 ct37: forall (q in 1..n) seq[q]==sum(j in 1..n) x[j,q]*j; 

  

 /*maintenance positions*/ 

 ct38: forall (i in 1..m,q in 1..n) maintPos[i][q]==sum(r in 1..o) 

PHI[i][q][r]*r; 

  

 /*tardiness*/ 

 ct39: expectedTardiness == sum(j in 1..n,s in 

1..S)t[j][s]*probability[s]; 

  

 /*costs*/ 

 ct40: expectedTardinessCost == sum(i,j in 1..n,s in 1..S) 

PI[i][j][s]*probability[s]; 

 ct41: expectedMaintCost == sum(i in 1..m,q in 1..n,r in 1..o,s in 

1..S)PHI[i][q][r]*(SPprime[i][r]+epsilon[i][r][s]*WF)*probability[s]; 

 ct42: expectedTotalCost == expectedTardinessCost + 

expectedMaintCost; 

} 
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Appendix C: MATLAB Codes Used in Chapter I 

  



150 
 

C.1: Test Problem Generator (CPLEX Data File Generator) 

 

function [ 

MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost ] = 

TPG( m,n,l ) 
 

close all; 
clc; 

  
%% Settings for Random Values 
% processing times 
PRmin=1; 
PRmax=10; 

  
% degradation rates 
DGmin=0; 
DGmax=2; 

  
% spare parts costs 
SPmin=1000; 
SPmax=20000; 

  
% workforce hojrly costs 
WFmin=500; 
WFmax=2000; 

  
% penalty costs 
PNmin=500; 
PNmax=600; 

  
% maintenance activity execution times 
EXmin=1; 
EXmax=4; 

  
%% Matrices and Scalars Definition 
MLmax=zeros(1,l); 
M1=100000; 
M2=100000; 
prcsTime=zeros(m,n); 
dtrRate=zeros(m,n,l); 
execTime=zeros(m,l); 
spCost=zeros(m,l); 
wfCost=zeros(1,l); 
dueDate=zeros(1,n); 
pnltCost=zeros(1,n); 

  
%% Generation of Matrices and Scalars 
for i=1:m 
    for j=1:n 
        prcsTime(i,j)=randi([PRmin,PRmax],1,1); 
    end 
end 
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for j=1:n 
    dueDate(1,j)=randi([10,30],1,1); 
    pnltCost(1,j)=randi([PNmin,PNmax],1,1); 
end 

  
for i=1:m 
    for j=1:n 
        for k=1:l 
            dtrRate(i,j,k)= DGmin+(DGmax-DGmin)*rand; 
        end 
    end 
end 

  
% dtrRate=randi([0,3],m,n,l); 
%[DTR,R]=max(prcsTime);[DTR2,C]=max(DTR);%find maximum processing time 
prcMax=max(max(prcsTime)); 
for k=1:l 
    MLmax(1,k)= DGmax*prcMax;%1000; 
    wfCost(1,k)=randi([WFmin,WFmax],1,1); 
    for i=1:m 
        execTime(i,k)=randi([EXmin,EXmax],1,1); 
        spCost(i,k)=randi([SPmin,SPmax],1,1); 
    end 
end 

  
M1=M1*max(max(MLmax)); 
M2=M2*PRmax+EXmax*l*m*n; 

         
%% Write into data file (CPLEX OPL .dat file) 
fid=fopen(['CPLEX_DataFile_' num2str(m) '-' num2str(n) '-' num2str(l) 

'__' datestr(now,'yyyy-mm-dd_HH-MM-SS') '.dat'],'w' ); 
    fprintf(fid,['m=' num2str(m) ';' '\r\n']); 
    fprintf(fid,['n=' num2str(n) ';' '\r\n']); 
    fprintf(fid,['l=' num2str(l) ';' '\r\n']); 
    fprintf(fid,['M1=' num2str(M1) ';' '\r\n']); 
    fprintf(fid,['M2=' num2str(M2) ';' '\r\n']);     

     
    STR='MLmax='; 
    STR=[STR '[' num2str(MLmax(1,1))]; 
    for k=2:l 
        STR=[STR ',' num2str(MLmax(1,k))]; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 

  
    STR='wfCost='; 
    STR=[STR '[' num2str(wfCost(1,1))]; 
    for k=2:l 
        STR=[STR ',' num2str(wfCost(1,k))]; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 
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    STR='dueDate='; 
    STR=[STR '[' num2str(dueDate(1,1))]; 
    for j=2:n 
        STR=[STR ',' num2str(dueDate(1,j))]; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 

     
    STR='pnltCost='; 
    STR=[STR '[' num2str(pnltCost(1,1))]; 
    for j=2:n 
        STR=[STR ',' num2str(pnltCost(1,j))]; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 

     
    % prcsTime 
    STR='prcsTime=['; 
    for i=1:m 
    STR=[STR '[' num2str(prcsTime(i,1))]; 
    for j=2:n 
        STR=[STR ',' num2str(prcsTime(i,j))]; 
    end 
    STR=[STR '],' '\r\n']; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 

     
    % execTime 
    STR='execTime=['; 
    for i=1:m 
    STR=[STR '[' num2str(execTime(i,1))]; 
    for k=2:l 
        STR=[STR ',' num2str(execTime(i,k))]; 
    end 
    STR=[STR '],' '\r\n']; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 

     
    % spCost 
    STR='spCost=['; 
    for i=1:m 
    STR=[STR '[' num2str(spCost(i,1))]; 
    for k=2:l 
        STR=[STR ',' num2str(spCost(i,k))]; 
    end 
    STR=[STR '],' '\r\n']; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 
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    % dtrRate 
    STR='dtrRate=['; 
    for i=1:m 
    STR=[STR '[']; 
    for j=1:n 
    STR=[STR '[' num2str(dtrRate(i,j,1))]; 
    for k=2:l 
        STR=[STR ',' num2str(dtrRate(i,j,k))]; 
    end 
    STR=[STR '],' '\r\n']; 
    end 
    STR=[STR '],' '\r\n']; 
    end 
    STR=[STR '];' '\r\n']; 
    fprintf(fid,STR); 

     
fprintf(fid,' \r\n'); 
fclose('all'); 
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C.2: Objective Function (Fitness Function) 

 

function [ y,z ] = SolnCalc( n,m,l,mlx,prc,dtr,exc,spc,wfc,due,plt,seq ) 
 

completion=zeros(m,n); % completion time after processing by a machine 
tardiness=zeros(1,n); 
y=zeros(m,n,l); % MA Positions 
ML=zeros(m,n,l); 
waitJob=zeros(m,n); 

  
% start calculations. 
% IMPORTANT NOTE: I do not set zero values because I already set them 

through "zeros" method! 

  
% MLs are at their maximum level at the beginning 
for k=1:l 
    ML(:,1,k)=mlx(1,k); 
end 

  
% ML after first job 
for i=1:m 
    for j=2:n 
        for k=1:l 
            ML(i,j,k)=ML(i,j-1,k)-prc(i,seq(1,j-1))*dtr(i,seq(1,j-1),k); 
            if ML(i,j,k)<prc(i,seq(1,j))*dtr(i,seq(1,j),k) 
                   ML(i,j,k)=mlx(1,k); 
                   y(i,j,k)=1; 
            end 
        end 
    end 
end 
% display(ML); 

  
% completion times of first job 
for i=1:m 
    completion(i,1)=sum(prc(1:i,seq(1,1))); 
end 

  
for j=2:n 
    completion(1,j)=completion(1,j-1)+prc(1,seq(1,j)); 
    for k=1:l 
        completion(1,j)=completion(1,j)+exc(1,k)*y(1,j,k); 
    end 
end 

  
% all completion times for n>2, m>2 
for i=2:m 
    for j=2:n 
        if completion(i,j-1)>completion(i-1,j) 
            waitJob(i,j)=completion(i,j-1)-completion(i-1,j); 
        end 
        completion(i,j)=completion(i-1,j)+waitJob(i,j)+prc(i,seq(1,j)); 
        for k=1:l 
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            completion(i,j)=completion(i,j)+exc(i,k)*y(i,j,k); 
        end 
    end 
end 

  
% tardiness calculation 
for j=1:n 
    if completion(m,j)>due(1,seq(1,j)) 
        tardiness(1,j)=completion(m,j)-due(1,seq(1,j)); 
    end 
end 

 
% calculation of total cost 
z=0; 
    % penalty 
    for j=1:n 
        z=z+tardiness(1,j)*plt(1,seq(1,j)); 
    end 
    % maintenance costs 
    for i=1:m 
        for j=1:n 
            for k=1:l 
                z=z+y(i,j,k)*(wfc(1,k)*exc(i,k)+spc(i,k)); 
            end 
        end 
    end 
N=sum(y); 
end 
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C.3: Mutation Function 

 

function z=GAMutate(x,mu,n) 

  
p=ceil(n/5); 
y=x; 
for k=1:p 
    r=rand; 
    h=y; 
    if mu<r 
        j=randsample(n,1);     % Selected Points to be Mutated 
        i=randsample(n,1); 
        h(1,i)=y(1,j); 
        h(1,j)=y(1,i); 
    end 
    y=h; 
end 

  
z=h; 

  
end 
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C.4: Crossover Function 

 
function [y1,y2]=GACrossover(x1,x2) 

  
% Single-Point Crossover 
n=numel(x1); 

  
c=randi([1 n-1]); 

  
y1=[x1(1:c) x2(c+1:end)]; 
y2=[x2(1:c) x1(c+1:end)]; 

  
% corrections 
for i=1:n-c 
    if isempty(find(y1(1:c+i-1)==y1(c+i)))==0 
        for j=1:n 
            if isempty(find(y1(1:c+i-1)==x2(j)))==1 
                y1(c+i)=x2(j); 
                break 
            end 
        end 
    end 
end 

  
for i=1:n-c 
    if isempty(find(y2(1:c+i-1)==y2(c+i)))==0 
        for j=1:n 
            if isempty(find(y2(1:c+i-1)==x1(j)))==1 
                y2(c+i)=x1(j); 
                break 
            end 
        end 
    end 
end 

  
end 
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C.5: The Roulette Wheel Selection Function 

 
function i=GARouletteWheelSelction(p) 

  
    r=rand; 

     
    c=cumsum(p); 

     
    i=find(r<=c,1,'first'); 

  
end 
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C.6: The GA 

 
clc; 
clear; 
close all; 

  
%% Problem Definition 

  
m=7;    % no. of machines 
n=10;    % no. of jobs 
l=5;    % no. of MLs 

  
ctrl=200;    % interations before convergence 

  
VarSize=n;   % Decision Variables Matrix Size 
ML=zeros(m,n,l); 
[ MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost ] = 

TPG( m,n,l ); 

  
PreviousBest=-inf; 
Counter=0; 

  
%% GA Parameters 

  
MaxIt=100;  % Maximum Number of Iterations 

  
nPop=200;   % Population Size 

  
pCrossover=0.8; % Crossover Percentage 

  
nCrossover=round(pCrossover*nPop/2)*2;  % Number of Parents (Offsprings) 

  
pMutation=0.8;  % Mutation Percentage 

  
nMutation=round(pMutation*nPop);    % Number of Mutants 

  
mu=0.8;        % Mutation rate/prob 

  
SelectionPressure=8;    % Selection Pressure 

  
pause(0.01); 

  
%% Initialization 

  
tic 

  
empty_individual.Sequence=[]; 
empty_individual.Cost=[]; 
empty_individual.MA=[]; 
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pop=repmat(empty_individual,nPop,1); 

  
% First Generation 
for i=1:nPop 

     
    % Create Random Solution 
    pop(i).Sequence=randperm(n); 

        
    % Evalute Newly Created Solution 
    [pop(i).MA,pop(i).Cost]=SolnCalc( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

(i).Sequence ); 

     
end 

  
% Sort Population 
Costs=[pop.Cost]; 
[Costs, SortOrder]=sort(Costs); 
pop=pop(SortOrder); 

  
% Store Best Solution 
BestSol=pop(1); 

  
% Update Worst Cost 
WorstCost=max(Costs); 

  
% Array To Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 

  
%% GA Main Loop 

  
it=1; 

  
while Counter<ctrl 

  
    % Calculate Selection Probabilities 
    p=exp(-SelectionPressure*Costs/WorstCost); 
    p=p/sum(p); 

         
    % Crossover 
    popc=repmat(empty_individual,nCrossover/2,2); 
    for k=1:nCrossover/2 
        i1=GARouletteWheelSelction(p); 
        i2=GARouletteWheelSelction(p); 

  
        p1=pop(i1); 
        p2=pop(i2); 

  
        [popc(k,1).Sequence, 

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence); 
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        % Evaluatioan of children 
        [popc(k,1).MA,popc(k,1).Cost]=SolnCalc( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

c(k,1).Sequence); 
        [popc(k,2).MA,popc(k,2).Cost]=SolnCalc( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

c(k,2).Sequence); 

         
    end 

     
    popc=popc(:); 

     
    % Mutation 
    popm=repmat(empty_individual,nMutation,1); 
    for k=1: nMutation 
        i=GARouletteWheelSelction(p); 
        pp=pop(i); 

         
        popm(k).Sequence=GAMutate(pp.Sequence,mu,n); 

         
        % Pst-mutation evaluation 
        [popc(k).MA,popm(k).Cost]=SolnCalc( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,pop

c(k).Sequence); 

         
    end 

     
    % Merge 
    pop=[pop 
         popc 
         popm];  %#ok 

     
    % Sort Population 
    Costs=[pop.Cost]; 
    [Costs,SortOrder]=sort(Costs); 
    pop=pop(SortOrder); 

     
    % Delete Extra Individuals 
    pop=pop(1:nPop); 
    Costs=Costs(1:nPop); 

     
    % Store Best Solution 
    BestSol=pop(1); 
    display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA); 

     
    % Update Worst Cost 
    WorstCost=max(WorstCost,max(Costs)); 

     
    % Store Best Cost 
    BestCost(it)=BestSol.Cost; 

     
    % Display Iteration Information 
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    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))]); 

     
    % Stoping Condition 
    CurrentBest=BestCost(it); 
    if CurrentBest==PreviousBest 
    Counter=Counter+1; 
    end 
    if CurrentBest<PreviousBest 
    Counter=0; 
    end 
    if Counter==ctrl 
       disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);  
    end 
  PreviousBest=CurrentBest;  
  it=it+1;   
end 

  
%% Results 

  
figure; 
plot(BestCost,'LineWidth',2); 
toc 

  
iteration=it-ctrl; 
cost=CurrentBest; 

  

  
% end 
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Appendix D: MATLAB Codes Used in Chapter II 
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D.1: Test Problem Generator Function 

 
function [ 

MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost ] = 

TPG( m,n,l,tp ) 
 

close all; 
clc; 

  
%% Settings for Random Values 
% processing times 
PRmin=1; 
PRmax=10; 

  
% degradation rates 
DGmin=0; 
DGmax=2; 

  
% spare parts costs 
SPmin=1000; 
SPmax=20000; 

  
% workforce hojrly costs 
WFmin=500; 
WFmax=2000; 

  
% penalty costs 
PNmin=500; 
PNmax=600; 

  
% maintenance activity execution times 
EXmin=1; 
EXmax=4; 

  
%% Matrices and Scalars Definition 
MLmax=zeros(1,l); 
M1=100000; 
M2=100000; 
prcsTime=zeros(m,n); 
dtrRate=zeros(m,n,l); 
execTime=zeros(m,l); 
spCost=zeros(m,l); 
wfCost=zeros(1,l); 
dueDate=zeros(1,n); 
pnltCost=zeros(1,n); 

  
%% Generation of Matrices and Scalars 
for i=1:m 
    for j=1:n 
        prcsTime(i,j)=randi([PRmin,PRmax],1,1); 
    end 
end 
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 for j=1:n 
    dueDate(1,j)=randi([10,30],1,1); 
    pnltCost(1,j)=randi([PNmin,PNmax],1,1); 
end 

  
for i=1:m 
    for j=1:n 
        for k=1:l 
            dtrRate(i,j,k)= DGmin+(DGmax-DGmin)*rand; 
        end 
    end 
end 

  
prcMax=max(max(prcsTime)); 
for k=1:l 
    MLmax(1,k)= DGmax*prcMax;%1000; 
    wfCost(1,k)=randi([WFmin,WFmax],1,1); 
    for i=1:m 
        execTime(i,k)=randi([EXmin,EXmax],1,1); 
        spCost(i,k)=randi([SPmin,SPmax],1,1); 
    end 
end 

  
M1=M1*max(max(MLmax)); 
M2=M2*PRmax+EXmax*l*m*n; 

         

D.2: Updating the Processing Times 

 

function [ prc ] = updateProcTime( prc,ml ) 
% 
        if ml>=0.66 
            prc=prc*1.0; 
        end 
        if ml<0.66 && ml>=0.33 
            prc=prc*1.5; 
        end 
        if ml<0.33 
            prc=prc*2.0; 
        end 

  
end 
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D.3: Crossover Function 

 
function [y1,y2]=GACrossover(x1,x2) 

  
% Single-Point Crossover 
display(x1);display(x2); 
n=numel(x1); 

  
c=randi([1 n-1]); 

  
y1=[x1(1:c) x2(c+1:end)]; 
y2=[x2(1:c) x1(c+1:end)]; 

  
% corrections 
for i=1:n-c 
    if isempty(find(y1(1:c+i-1)==y1(c+i)))==0 
        for j=1:n 
            if isempty(find(y1(1:c+i-1)==x2(j)))==1 
                y1(c+i)=x2(j); 
                break 
            end 
        end 
    end 
end 

  
for i=1:n-c 
    if isempty(find(y2(1:c+i-1)==y2(c+i)))==0 
        for j=1:n 
            if isempty(find(y2(1:c+i-1)==x1(j)))==1 
                y2(c+i)=x1(j); 
                break 
            end 
        end 
    end 
end 

  
end 
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D.4: Mutation Function 

 
function x=GAMutate2(x,mu,n) 

  
p=ceil(n/5); 
for k=1:p 
    r=rand; 
    el=randi(n); 
    if mu<r 
        x(el)=1-x(el); 
    end 
end 

  
end 

 

 

Mutation Function of ALG 

 
function x=ALGMutate(x,ML,mu,n,i,kk,l,mlx,prc,seq,exc) 
for q=1:n-1 
    r=rand; 
    if mu<r && x(q)==0 
        if  1>0 
            x(q)=1; 
        end 
    end 
end 

  
end 
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D.5: Roulette Wheel Selection Function 

 
function i=GARouletteWheelSelction(p) 
    display(p); 
    r=rand; 

     
    c=cumsum(p); 

     
    i=find(r<=c,1,'first'); 

  
end 
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D.6: Fitness Function 

 
function [ minL,Tardiness,MaintCost,isFeas,ML] = evalSol( 

n,m,l,mlx,prc,dtr,exc,spc,wfc,due,seq,MA,Mem )                       
 

% Note: Here we use MA instead of y 
display('====='); 
display(MA); 
completion=zeros(m,n); % completion time after processing by a machine 
tardiness=zeros(1,n); 
ML=zeros(m,n,l); 
waitJob=zeros(m,n); 
waitMac=zeros(m,n); 
javad=prc; 

 
% start calculations. 
% IMPORTANT NOTE: I do not set zero values because I already set them 

through "zeros" method! 

  
% MLs are at their maximum level at the beginning 
for k=1:l 
    ML(:,1,k)=mlx(1,k); 
end 

  
% ML after first job 
ml=0; 
isFeas=1; 
for i=1:m 
    if isFeas==1 
        for q=2:n 
            j=seq(1,q); 
            jj=seq(1,q-1); 
            for k=1:l 
                if MA(i,q,k)==1 
                    ML(i,q,k)=mlx(1,k); 
                else 
                    ML(i,q,k)=ML(i,q-1,k)-prc(i,jj)*dtr(i,jj,k); 
                end 
            end 
            %display(q);display(ML); 
            % update MLs 
            if nnz(ML<0)==0           
                for k=1:l 
                    ml=ml+(ML(i,q,k)/mlx(1,k))/l; 
                end 
                % update processing times 
                prc(i,j)=updateProcTime(javad(i,j),ml); 
                ml=0; 
                if nnz(ML(i,q,:)<prc(i,j)*dtr(i,j,:))>0 
                    isFeas=0; 
                    break 
                end 
            else 
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                isFeas=0; 
                break 
            end 
        end 
    end 
end 
% display(ML); 
if isFeas==1 
    % completion times of first job 
    for i=1:m 
        completion(i,1)=sum(prc(1:i,seq(1,1))); 
    end 
    % waitJob for the first machine 
    for q=2:n 
        for r=2:q 
            for k=1:l 
                waitJob(1,q)=waitJob(1,q)+exc(1,k)*MA(1,r,k); 
            end 
        end 
        for r=1:q-1 
            waitJob(1,q)=waitJob(1,q)+prc(1,seq(1,r)); 
        end        
    end 
    % waitMac 
    for i=2:m 
        waitMac(i,1)=sum(prc(1:i-1,seq(1,1))); 
    end 
    % completion times of the other jobs after the first machine 
    for q=2:n 
        completion(1,q)=waitJob(1,q)+prc(1,seq(1,q)); 
    end 
    % all completion times for n>2, m>2 
    for i=2:m 
        for q=2:n 
            if completion(i,q-1)>completion(i-1,q) 
                waitJob(i,q)=completion(i,q-1)-completion(i-1,q); 
            elseif completion(i-1,q)>completion(i,q-1) 
                waitMac(i,q)=completion(i-1,q)-completion(i,q-1); 
            end 
            completion(i,q)=completion(i-

1,q)+waitJob(i,q)+prc(i,seq(1,q)); 
            for k=1:l 
                completion(i,q)=completion(i,q)+exc(i,k)*MA(i,q,k); 
            end 
        end 
    end 
   % new completion time 
    CompTime=zeros(1,n); 
    for q=1:n 
        CompTime(q)=sum(waitJob(:,q))+sum(prc(:,seq(1,q))); 
        for k=1:l 
            for i=1:m 
                CompTime(q)=CompTime(q)+MA(i,q,k)*exc(i,k); 
            end 
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        end 
    end 
     % tardiness calculation 
    for q=1:n 
        if CompTime(q)>due(1,seq(1,q)) 
            tardiness(1,q)=CompTime(q)-due(1,seq(1,q)); 
        end 
    end 

     

 
    % total tardiness (OFV1) 
    Tardiness=sum(tardiness); 

  
    %total cost of maintenance (OFV2) 
    MaintCost=0; 
    for i=1:m 
        for q=1:n 
            for k=1:l 
                

MaintCost=MaintCost+MA(i,q,k)*(wfc(1,k)*exc(i,k)+spc(i,k)); 
            end 
        end 
    end 

  

     
    %% Satisfaction 
    n=size(Mem(1,:,1),2); 
    if n>1 
        [alpha11,alpha12,betta1,gamma1,alpha21,alpha22,betta2,gamma2] = 

getCoef( Mem ); 
        D=zeros(2,2); 
        OFV=[Tardiness MaintCost/1000]; 
        for g=1:2 
            for e=1:2 
                D(g,e)=abs(Mem(g,e+1,1)-OFV(g)); 
            end 
        end 
        L=zeros(1,2); 
        L(1)=-alpha11*D(1,1)-alpha12*D(1,2)+betta1*OFV(1)+gamma1; 
        L(2)=-alpha21*D(2,1)-alpha22*D(2,2)+betta2*OFV(2)+gamma2; 
        %display(L); 

         
        if nnz(L<0)>0 
            minL=-0.0001/sum(OFV); 
        else 
            minL=-min(L); 
        end 

  

         
    end 
else 
    minL=0; 
    Tardiness=inf; 
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    MaintCost=inf; 
end 
end 
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D.7: Function for Calculating the Coefficients of the iFMOLP 

 
function [Q11,Q12,l1,s,Q21,Q22,u2,s2]=getCoef(M) 
n=size(M(1,:,1),2); 
% input: membership matrix 
q=zeros(1,n-2); 
Z1=M(1,:,1);%example: [90,85,80,76] 
g1=M(1,:,2);%example: [0,0.5,0.8,1] 
t=zeros(1,n-1); 
for i=1:n-1 
    t(i)=(g1(i+1)-g1(i))/(Z1(i+1)-Z1(i)); 
end 

  
for j=1:n-2 
    q(j)=(t(j+1)-t(j))/2; 
end 
l1=(t(3)+t(1))/2; 
%%%for bn## 
m=(1-g1(n-1))/(Z1(n)-Z1(n-1)); 
bn=g1(n)-Z1(n)*m; 

  
%%%for b1%%% 
m2=(g1(2)-0)/(Z1(2)-Z1(1)); 

  
b1=-m2*Z1(1); 

  
s=(b1+bn)/2; 
Q11=q(1); 
Q12=q(2); 

%%%%For the 2nd obj%%%%%%%%%%%%%%%%%%% 
Z2=M(2,:,1);%[120,118,110,105] 
g2=M(2,:,2);%[0,0.5,0.8,1] 
t2=zeros(1,n-1); 
for i=1:n-1 
    t2(i)=(g2(i+1)-g2(i))/(Z2(i+1)-Z2(i)); 
end 

  
for i=1:n-2 
    q2(i)=(t2(i+1)-t2(i))/2; 
end 
u2=(t2(3)+t2(1))/2; 
%%%for bn## 
L=(1-g2(n-1))/(Z2(n)-Z2(n-1)); 
pn=g2(n)-Z2(n)*L; 

  
%%%for b1%%% 
L2=(g2(2)-0)/(Z2(2)-Z2(1)); 
p1=-L2*Z2(1); 
s2=(p1+pn)/2; 
Q21=q2(1); 
Q22=q2(2); 
end 
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D.8: Algorithm 2 

 
function [ MA ] = getMinMA( n,m,l,mlx,prc,dtr,exc,spc,wfc,due,seq ) 

 
MA = zeros(m,n,l); 
ML = zeros(m,n,l); 
javad = prc; 

  
for k=1:l 
    ML(:,1,k)=mlx(1,k); 
end 

  
ml=0; 
for i=1:m 
    for q=2:n 
        j = seq(1,q); 
        jj = seq(1,q-1); 
        for k=1:l 
            ML(i,q,k) = ML(i,q-1,k) - prc(i,jj)*dtr(i,jj,k); 
        end 
        for k=1:l 
            ml=ml+(ML(i,q,k)/mlx(1,k))/l; 
        end 
        % update processing times 
        prc(i,j)=updateProcTime(javad(i,j),ml); 
        ml=0; 
        for k=1:l 
            if ML(i,q,k) - prc(i,j)*dtr(i,j,k)<0 
                ML(i,q,k)=mlx(1,k); 
                MA(i,q,k)=1; 
            else 
                MA(i,q,k)=0; 
            end 
        end 
    end 
end 

  
end 
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D.9: The GAs 

 

Standard GA 

 
function [ GA_OFV,GA_Time,GA_Iter,bestTard,bestMaint ] = solveGA( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ) 

   
%% Initiate 
VarSize=n;   % Decision Variables Matrix Size 
ctrl=20;    % interations for convergence 
PreviousBest=-inf; 
Counter=0; 
%% GA Parameters 

  
MaxIt=100;  % Maximum Number of Iterations 

  
nPop=500;   % Population Size 

  
pCrossover=0.3; % Crossover Percentage 

  
nCrossover=round(pCrossover*nPop/2)*2;  % Number of Parents (Offsprings) 

  
pMutation=0.3;  % Mutation Percentage 

  
nMutation=round(pMutation*nPop);    % Number of Mutants 

  
mu=0.5;        % Mutation rate/prob 
mu2=0.5;      % Mutation rate/prob for MAs 

  
SelectionPressure=8;    % Selection Pressure 

  
pause(0.01); 

  
%% Initialization 

  
tic 

  
empty_individual.Sequence=[]; 
empty_individual.Cost=[]; 
empty_individual.MA=zeros(m,n,l); 
empty_individual.ML=zeros(m,n,l); 
empty_individual.Tardiness=[]; 
empty_individual.MaintCost=[]; 
empty_individual.isFeas=0; 

  
pop=repmat(empty_individual,nPop,1); 

  
% First Generation 
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% the randomly generated sequences should be unique! 
poppy = randperm(factorial(n),nPop); 
for i=1:nPop     
    % Create Random Solution 
    perm = perms_m(n,poppy(i)-1); 
    pop(i).Sequence = perm'; 
%     pop(i).Sequence=randperm(n); 
    pop(i).MA(:,2:n,:)=randi([0,1],m,n-1,l); 

        
    % Evalute Newly Created Solution 
    

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem ); 
    display(i); 
end 

  
% Sort Population 
Costs=[pop.Cost]; 
[Costs, SortOrder]=sort(Costs); 
pop=pop(SortOrder); 

  
% Store Best Solution 
BestSol=pop(1); 

  
% Update Worst Cost 
WorstCost=max(Costs); 

  
% Array To Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 

  
%% GA Main Loop 

  
it=1; 

  
while Counter<ctrl 

  
    % Calculate Selection Probabilities 
    p=-Costs+1;%exp(-SelectionPressure*Costs/WorstCost); 
    p=p/sum(p); 

         
    % Crossover 
    popc=repmat(empty_individual,nCrossover/2,2); 
    for k=1:nCrossover/2 
        i1=GARouletteWheelSelction(p); 
        i2=GARouletteWheelSelction(p); 
%         i2=randi(nPop); 

  
        p1=pop(i1); 
        p2=pop(i2); 
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        [popc(k,1).Sequence, 

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence); 
        for i=1:m 
            for j=1:l 
                [popc(k,1).MA(i,:,j), 

popc(k,2).MA(i,:,j)]=GACrossover(p1.MA(i,:,j),p2.MA(i,:,j)); 
            end 
        end 

         
        % Evaluatioan of children 
        

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem ); 
        

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem ); 

         
    end 

     
    popc=popc(:); 

     
    % Mutation 
    popm=repmat(empty_individual,nMutation,1); 
    for k=1: nMutation 
        i=GARouletteWheelSelction(p); 
        pp=pop(i); 

         
        popm(k).Sequence=pp.Sequence; 
        for i=1:m 
            for j=1:l 
                popm(k).MA(i,2:n,j)=GAMutate2(pp.MA(i,2:n,j),mu2,n-1); 
            end 
        end 

         
        % Pst-mutation evaluation 
        

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,pop(i).isFeas,popc(k,1

).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem ); 

         
    end 

     
    % Merge 
    pop=[pop 
         popc 
         popm];   
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    % Sort Population 
    Costs=[pop.Cost]; 
    [Costs,SortOrder]=sort(Costs); 
    pop=pop(SortOrder); 

     
    % Delete Extra Individuals 
    pop=pop(1:nPop); 
    Costs=Costs(1:nPop); 

     
    % Store Best Solution 
    BestSol=pop(1); 
    

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost); 

     
    % Update Worst Cost 
    WorstCost=max(WorstCost,max(Costs)); 

     
    % Store Best Cost 
    BestCost(it)=BestSol.Cost; 
    bestTard = BestSol.Tardiness; 
    bestMaint = BestSol.MaintCost; 

     
    % Display Iteration Information 
    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))]); 

     
    % Stoping Condition 
    CurrentBest=BestCost(it); 
    if CurrentBest==PreviousBest 
    Counter=Counter+1; 
    end 
    if CurrentBest<PreviousBest 
    Counter=0; 
    end 
    if Counter==ctrl 
       disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);  
    end 
  PreviousBest=CurrentBest;  
  it=it+1;   
end 

  
%% Results 

  
% figure; 
% plot(BestCost,'LineWidth',2); 

  
GA_Time = toc; 
GA_Iter = it-ctrl; 
GA_OFV = CurrentBest; 
end 
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Lower Bound for Z1 

 
function [ GA_OFV,GA_Time,GA_Iter ] = solveLBZ1( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ) 
% this GA favors Z1; has ALG structure 
% are blindly applied to S and y. 

   
%% Initiate 
VarSize=n;   % Decision Variables Matrix Size 
ctrl=20;    % interations for convergence 
PreviousBest=Inf; 
Counter=0; 
%% GA Parameters 

  
MaxIt=100;  % Maximum Number of Iterations 

  
nPop=500;   % Population Size 

  
pCrossover=0.3; % Crossover Percentage 

  
nCrossover=round(pCrossover*nPop/2)*2;  % Number of Parents (Offsprings) 

  
pMutation=0.3;  % Mutation Percentage 

  
nMutation=round(pMutation*nPop);    % Number of Mutants 

  
mu=0.5;        % Mutation rate/prob 
mu2=0.1;      % Mutation rate/prob for MAs 

  
SelectionPressure=8;    % Selection Pressure 

  
pause(0.01); 

  
%% Initialization 

  
tic 

  
empty_individual.Sequence=[]; 
empty_individual.Cost=[]; 
empty_individual.MA=zeros(m,n,l); 
empty_individual.ML=zeros(m,n,l); 
empty_individual.Tardiness=[]; 
empty_individual.MaintCost=[]; 
empty_individual.isFeas=0; 

  
pop=repmat(empty_individual,nPop,1); 

  
% First Generation 
for i=1:nPop     
    % Create Random Solution 
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    pop(i).Sequence=randperm(n); 
    display('------'); 
    display(pop(i).Sequence); 
    pop(i).MA=getMinMA( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce ); 
    display(pop(i).MA);   
    % Evalute Newly Created Solution 
    

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem ); 
    display(pop(i).isFeas); 
    display(pop(i).ML); 
    display(i); 
end 

  
% Sort Population 
Costs=[pop.Tardiness]; 
[Costs, SortOrder]=sort(Costs); 
pop=pop(SortOrder); 
display(Costs); 

  
% Store Best Solution 
BestSol=pop(1); 

  
% Update Worst Cost 
WorstCost=max(Costs); 
if WorstCost==Inf 
    WorstCost = Costs(find(Costs==Inf,1)-1); 
end 

  
% Array To Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 

  
%% GA Main Loop 

  
it=1; 

  
while Counter<ctrl 
    % Calculate Selection Probabilities 
    p=exp(-SelectionPressure*Costs/WorstCost);%/WorstCost); 
    display(p); 
    p=p/sum(p); 

       
    % Crossover 
    popc=repmat(empty_individual,nCrossover/2,2); 
    for k=1:nCrossover/2 
        i1=GARouletteWheelSelction(p); 
        i2=GARouletteWheelSelction(p); 
%         i2=randi(nPop); 
        display(['i1 is ' num2str(i1) 'i2 is ' num2str(i2)]); 
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        p1=pop(i1); 
        p2=pop(i2); 

  
        [popc(k,1).Sequence, 

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence); 
        popc(k,1).MA=getMinMA( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence ); 
        popc(k,2).MA=getMinMA( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence ); 

         
        % Evaluatioan of children 
        

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem ); 
        

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,2).isFeas

,popc(k,2).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem ); 

         
    end 

     
    popc=popc(:); 

     
    % Mutation 
    popm=repmat(empty_individual,nMutation,1); 
    for k=1: nMutation 
        i=GARouletteWheelSelction(p); 
        pp=pop(i); 

         
        popm(k).Sequence=pp.Sequence; 
        for i=1:m 
            for j=1:l 
                

popm(k).MA(i,2:n,j)=ALGMutate(pp.MA(i,2:n,j),pp.ML,mu2,n,i,j,l,MLmax,prc

sTime,pp.Sequence,execTime); 
            end 
        end 

         
        % Pst-mutation evaluation 
        

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,popm(k).isFeas,popm(k)

.ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem );         
    end 

     
    % Merge 
    pop=[pop 
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         popc 
         popm];  %#ok 

     
    % Sort Population 
    Costs=[pop.Tardiness]; 
    [Costs,SortOrder]=sort(Costs); 
    pop=pop(SortOrder); 

     
    % Delete Extra Individuals 
    pop=pop(1:nPop); 
    Costs=Costs(1:nPop); 

     
    % Store Best Solution 
    BestSol=pop(1); 
    

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost); 

     
    % Update Worst Cost 
    WorstCost=max(WorstCost,max(Costs)); 

     
    % Store Best Cost 
    BestCost(it)=BestSol.Tardiness; 

     
    % Display Iteration Information 
    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))]); 

     
    % Stoping Condition 
    CurrentBest=BestCost(it); 
    if CurrentBest==PreviousBest 
        Counter=Counter+1; 
    end 
    if CurrentBest<PreviousBest 
        Counter=0; 
    end 
    if Counter==ctrl 
       disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);  
    end 
  PreviousBest=CurrentBest;  
  it=it+1;   
end 

  
%% Results 
 % figure; 
% plot(BestCost,'LineWidth',2); 

  
GA_Time = toc; 
GA_Iter = it-ctrl; 
GA_OFV = CurrentBest; 
end 
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Lower Bound for Z2 

 
function [ GA_OFV,GA_Time,GA_Iter ] = solveLBZ2( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ) 

   
%% Initiate 
VarSize=n;   % Decision Variables Matrix Size 
ctrl=20;    % interations for convergence 
PreviousBest=inf; 
Counter=0; 
%% GA Parameters 

  
MaxIt=100;  % Maximum Number of Iterations 

  
nPop=500;   % Population Size 

  
pCrossover=0.3; % Crossover Percentage 

  
nCrossover=round(pCrossover*nPop/2)*2;  % Number of Parents (Offsprings) 

  
pMutation=0.3;  % Mutation Percentage 

  
nMutation=round(pMutation*nPop);    % Number of Mutants 

  
mu=0.5;        % Mutation rate/prob 
mu2=0.1;      % Mutation rate/prob for MAs 

  
SelectionPressure=8;    % Selection Pressure 

  
pause(0.01); 

  
%% Initialization 

  
tic 

  
empty_individual.Sequence=[]; 
empty_individual.Cost=[]; 
empty_individual.MA=zeros(m,n,l); 
empty_individual.ML=zeros(m,n,l); 
empty_individual.Tardiness=[]; 
empty_individual.MaintCost=[]; 
empty_individual.isFeas=0; 

  
pop=repmat(empty_individual,nPop,1); 

  
% First Generation 
for i=1:nPop     
    % Create Random Solution 
    pop(i).Sequence=randperm(n); 
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    pop(i).MA=getMinMA( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce ); 

        
    % Evalute Newly Created Solution 
    

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem ); 
    display(i); 
end 

  
% Sort Population 
Costs=[pop.MaintCost]; 
[Costs, SortOrder]=sort(Costs); 
pop=pop(SortOrder); 

  
% Store Best Solution 
BestSol=pop(1); 

  
% Update Worst Cost 
WorstCost=max(Costs); 
if WorstCost==Inf 
    WorstCost = Costs(find(Costs==Inf,1)-1); 
end 

  
% Array To Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 

  
%% GA Main Loop 

  
it=1; 

  
while Counter<ctrl 

  
    % Calculate Selection Probabilities 
    p=exp(-SelectionPressure*Costs/WorstCost);%/WorstCost); 
    p=p/sum(p); 

          
    % Crossover 
    popc=repmat(empty_individual,nCrossover/2,2); 
    for k=1:nCrossover/2 
        i1=GARouletteWheelSelction(p); 
        i2=GARouletteWheelSelction(p); 
%         i2=randi(nPop); 

  
        p1=pop(i1); 
        p2=pop(i2); 

  
        [popc(k,1).Sequence, 

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence); 
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        popc(k,1).MA=getMinMA( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence ); 
        popc(k,2).MA=getMinMA( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence ); 

         
        % Evaluatioan of children 
        

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem ); 
        

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,2).isFeas

,popc(k,2).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem ); 

         
    end 

     
    popc=popc(:); 

     
    % Mutation 
    popm=repmat(empty_individual,nMutation,1); 
    for k=1: nMutation 
        i=GARouletteWheelSelction(p); 
        pp=pop(i); 

         
        popm(k).Sequence=pp.Sequence; 
        for i=1:m 
            for j=1:l 
                

popm(k).MA(i,2:n,j)=ALGMutate(pp.MA(i,2:n,j),pp.ML,mu2,n,i,j,l,MLmax,prc

sTime,pp.Sequence,execTime); 
            end 
        end 

         
        % Pst-mutation evaluation 
        

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,popm(k).isFeas,popm(k)

.ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem ); 

         
    end 

     
    % Merge 
    pop=[pop 
         popc 
         popm];  %#ok 
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    % Sort Population 
    Costs=[pop.MaintCost]; 
    [Costs,SortOrder]=sort(Costs); 
    pop=pop(SortOrder); 

     
    % Delete Extra Individuals 
    pop=pop(1:nPop); 
    Costs=Costs(1:nPop); 

     
    % Store Best Solution 
    BestSol=pop(1); 
    

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost); 

     
    % Update Worst Cost 
    WorstCost=max(WorstCost,max(Costs)); 

     
    % Store Best Cost 
    BestCost(it)=BestSol.MaintCost; 

     
    % Display Iteration Information 
    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))]); 

     
    % Stoping Condition 
    CurrentBest=BestCost(it); 
    if CurrentBest==PreviousBest 
    Counter=Counter+1; 
    end 
    if CurrentBest<PreviousBest 
    Counter=0; 
    end 
    if Counter==ctrl 
       disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);  
    end 
  PreviousBest=CurrentBest;  
  it=it+1;   
end 

  
%% Results 

  
% figure; 
% plot(BestCost,'LineWidth',2); 

  
GA_Time = toc; 
GA_Iter = it-ctrl; 
GA_OFV = CurrentBest; 
end 
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The ALG 

 

function [ GA_OFV,GA_Time,GA_Iter,bestTard,bestMaint ] = solveGA( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ) 

 
%% Initiate 
VarSize=n;   % Decision Variables Matrix Size 
ctrl=20;    % interations for convergence 
PreviousBest=-inf; 
Counter=0; 
%% GA Parameters 

  
MaxIt=100;  % Maximum Number of Iterations 

  
nPop=500;   % Population Size 

  
pCrossover=0.3; % Crossover Percentage 

  
nCrossover=round(pCrossover*nPop/2)*2;  % Number of Parents (Offsprings) 

  
pMutation=0.3;  % Mutation Percentage 

  
nMutation=round(pMutation*nPop);    % Number of Mutants 

  
mu=0.3;        % Mutation rate/prob 
mu2=0.3;      % Mutation rate/prob for MAs 

  
SelectionPressure=8;    % Selection Pressure 

  
pause(0.01); 

  
%% Initialization 

  
tic 

  
empty_individual.Sequence=[]; 
empty_individual.Cost=[]; 
empty_individual.MA=zeros(m,n,l); 
empty_individual.ML=zeros(m,n,l); 
empty_individual.Tardiness=[]; 
empty_individual.MaintCost=[]; 
empty_individual.isFeas=0; 

  
pop=repmat(empty_individual,nPop,1); 

  
poppy = randperm(factorial(n),nPop); 
for i=1:nPop     
    % Create Random Solution 
    perm = perms_m(n,poppy(i)-1); 
    pop(i).Sequence = perm'; 
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%     pop(i).Sequence=randperm(n); 
    pop(i).MA=getMinMA( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce ); 

        
    % Evalute Newly Created Solution 
    

[pop(i).Cost,pop(i).Tardiness,pop(i).MaintCost,pop(i).isFeas,pop(i).ML]=

evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pop(i).Seque

nce,pop(i).MA,Mem ); 
    display(i); 
end 

  
% Sort Population 
Costs=[pop.Cost]; 
[Costs, SortOrder]=sort(Costs); 
pop=pop(SortOrder); 

  
% Store Best Solution 
BestSol=pop(1); 

  
% Update Worst Cost 
WorstCost=max(Costs); 
if WorstCost==0 
    WorstCost = Costs(find(Costs==0,1)-1); 
end 

  
% Array To Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 

  
%% GA Main Loop 

  
it=1; 

  
while Counter<ctrl 

  
    % Calculate Selection Probabilities 
    p=-Costs+1; 
%      
    p=p/sum(p); 

         
    % Crossover 
    popc=repmat(empty_individual,nCrossover/2,2); 
    for k=1:nCrossover/2 
        i1=GARouletteWheelSelction(p); 
        i2=GARouletteWheelSelction(p); 
%         i2=randi(nPop); 

  
        p1=pop(i1); 
        p2=pop(i2); 
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        [popc(k,1).Sequence, 

popc(k,2).Sequence]=GACrossover(p1.Sequence,p2.Sequence); 
        for i=1:m 
            for j=1:l 
                [popc(k,1).MA(i,:,j), 

popc(k,2).MA(i,:,j)]=GACrossover(p1.MA(i,:,j),p2.MA(i,:,j)); 
            end 
        end 

         
        % Evaluatioan of children 
        

[popc(k,1).Cost,popc(k,1).Tardiness,popc(k,1).MaintCost,popc(k,1).isFeas

,popc(k,1).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,1).Se

quence,popc(k,1).MA,Mem ); 
        

[popc(k,2).Cost,popc(k,2).Tardiness,popc(k,2).MaintCost,popc(k,2).isFeas

,popc(k,2).ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popc(k,2).Se

quence,popc(k,2).MA,Mem ); 

         
    end 

     
    popc=popc(:); 

     
    % Mutation 
    popm=repmat(empty_individual,nMutation,1); 
    for k=1: nMutation 
        i=GARouletteWheelSelction(p); 
        pp=pop(i); 

         
        popm(k).Sequence=pp.Sequence; 
        for i=1:m 
            for j=1:l 
                popm(k).MA(i,2:n,j)=GAMutate2(pp.MA(i,2:n,j),mu2,n-1); 
            end 
        end 

         
        % Pst-mutation evaluation 
        

[popm(k).Cost,popm(k).Tardiness,popm(k).MaintCost,popm(k).isFeas,popm(k)

.ML]=evalSol( 

n,m,l,MLmax,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,popm(k).Sequ

ence,popm(k).MA,Mem ); 

         
    end 

     
    % Merge 
    pop=[pop 
         popc 
         popm];   
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    % Sort Population 
    Costs=[pop.Cost]; 
    [Costs,SortOrder]=sort(Costs); 
    pop=pop(SortOrder); 

     
    % Delete Extra Individuals 
    pop=pop(1:nPop); 
    Costs=Costs(1:nPop); 

     
    % Store Best Solution 
    BestSol=pop(1); 
    

display(BestSol.Sequence);display(BestSol.Cost);display(BestSol.MA);disp

lay(BestSol.Tardiness);display(BestSol.MaintCost); 

     
    % Update Worst Cost 
    WorstCost=max(WorstCost,max(Costs)); 

     
    % Store Best Cost 
    BestCost(it)=BestSol.Cost; 
    bestTard = BestSol.Tardiness; 
    bestMaint = BestSol.MaintCost; 

     
    % Display Iteration Information 
    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))]); 

     
    % Stoping Condition 
    CurrentBest=BestCost(it); 
    if CurrentBest==PreviousBest 
    Counter=Counter+1; 
    end 
    if CurrentBest<PreviousBest 
    Counter=0; 
    end 
    if Counter==ctrl 
       disp(['number of interations before convergence is: ' num2str(it-

ctrl) ' iteraion(s) = ']);  
    end 
  PreviousBest=CurrentBest;  
  it=it+1;   
end 

  
%% Results 
%  
% figure; 
% plot(BestCost,'LineWidth',2); 

  
GA_Time = toc; 
GA_Iter = it-ctrl; 
GA_OFV = CurrentBest; 
end 
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D.10: A Function for Writing CPLEX Data Files 

 
function writeCPLEX( 

m,n,l,tp,MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnl

tCost,Mem ) 
fid=fopen(['CPLEX_16A_DataFile_' num2str(m) '-' num2str(n) '-' 

num2str(l) '_tp' num2str(tp) '.dat'],'w' ); 
fprintf(fid,['m=' num2str(m) ';' '\r\n']); 
fprintf(fid,['n=' num2str(n) ';' '\r\n']); 
fprintf(fid,['l=' num2str(l) ';' '\r\n']); 
fprintf(fid,['M1=' num2str(M1) ';' '\r\n']); 
fprintf(fid,['M2=' num2str(M2) ';' '\r\n']); 

  
STR='MLmax='; 
STR=[STR '[' num2str(MLmax(1,1))]; 
for k=2:l 
    STR=[STR ',' num2str(MLmax(1,k))]; 
end 
STR=[STR '];' '\r\n']; 
fprintf(fid,STR); 

  
STR='wfCost='; 
STR=[STR '[' num2str(wfCost(1,1))]; 
for k=2:l 
    STR=[STR ',' num2str(wfCost(1,k))]; 
end 
STR=[STR '];' '\r\n']; 
fprintf(fid,STR); 

  
STR='dueDate='; 
STR=[STR '[' num2str(dueDate(1,1))]; 
for j=2:n 
    STR=[STR ',' num2str(dueDate(1,j))]; 
end 
STR=[STR '];' '\r\n']; 
fprintf(fid,STR); 

  
% prcsTime 
STR='prcsTime=['; 
for i=1:m 
    STR=[STR '[' num2str(prcsTime(i,1))]; 
    for j=2:n 
        STR=[STR ',' num2str(prcsTime(i,j))]; 
    end 
    STR=[STR '],' '\r\n']; 
end 
trimPoint = numel(STR)-5; 
STR=[STR(1:trimPoint) '\r\n' '];' '\r\n']; 
fprintf(fid,STR); 

  
% execTime 
STR='execTime=['; 
for i=1:m 
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    STR=[STR '[' num2str(execTime(i,1))]; 
    for k=2:l 
        STR=[STR ',' num2str(execTime(i,k))]; 
    end 
    STR=[STR '],' '\r\n']; 
end 
trimPoint = numel(STR)-5; 
STR=[STR(1:trimPoint) '\r\n' '];' '\r\n']; 
fprintf(fid,STR); 

  
% spCost 
STR='spCost=['; 
for i=1:m 
    STR=[STR '[' num2str(spCost(i,1))]; 
    for k=2:l 
        STR=[STR ',' num2str(spCost(i,k))]; 
    end 
    STR=[STR '],' '\r\n']; 
end 
trimPoint = numel(STR)-5; 
STR=[STR(1:trimPoint) '\r\n' '];' '\r\n']; 
fprintf(fid,STR); 

  
% dtrRate 
STR='dtrRate=['; 
for i=1:m 
    STR=[STR '[']; 
    for j=1:n 
        STR=[STR '[' num2str(dtrRate(i,j,1))]; 
        for k=2:l 
            STR=[STR ',' num2str(dtrRate(i,j,k))]; 
        end 
        STR=[STR '],' '\r\n']; 
    end 
    trimPoint = numel(STR)-5; 
    STR=[STR(1:trimPoint) '],' '\r\n']; 
end 
trimPoint = numel(STR)-5; 
STR=[STR(1:trimPoint) '];' '\r\n']; 
fprintf(fid,STR); 

  
fprintf(fid,' \r\n'); 
%% iFMOLP parameters 
% get the coefficients 
[alpha11,alpha12,betta1,gamma1,alpha21,alpha22,betta2,gamma2] = getCoef( 

Mem ); 

  
%write 
STR = ['alpha11=' num2str(alpha11) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['alpha12=' num2str(alpha12) ';']; 
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fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['betta1=' num2str(betta1) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['gamma1=' num2str(gamma1) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['alpha21=' num2str(alpha21) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['alpha22=' num2str(alpha22) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['betta2=' num2str(betta2) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['gamma2=' num2str(gamma2) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  

  
STR = ['mem12=' num2str(Mem(1,2,1)) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['mem13=' num2str(Mem(1,3,1)) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['mem22=' num2str(Mem(2,2,1)) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['mem23=' num2str(Mem(2,3,1)) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
%% iFMOLP Model 
fprintf(fid,'/************i-FMOLP model'); 
fprintf(fid,' \r\n'); 
% write 
STR = ['S<=-(' num2str(alpha11) ')*(e11-d11)-(' num2str(alpha12) 

')*(e12-d12)+(' num2str(betta1) ')*(sum( q in 1..n)tardiness[q])+(' 

num2str(gamma1) ');']; 
fprintf(fid,STR); 
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fprintf(fid,' \r\n'); 

  
STR = ['S<=-(' num2str(alpha21) ')*(e21-d21)-(' num2str(alpha22) 

')*(e22-d22)+(' num2str(betta2) ')*(sum( i in 1..m,q in 1..n,k in 

1..l)y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+(' 

num2str(gamma2) ');']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['sum( q in 1..n) tardiness[q]+e11-d11==' num2str(Mem(1,2,1)) 

';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['sum( q in 1..n) tardiness[q]+e12-d12==' num2str(Mem(1,3,1)) 

';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['(sum( i in 1..m,q in 1..n,k in 1..l) 

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e21-d21==' 

num2str(Mem(2,2,1)) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
STR = ['(sum( i in 1..m,q in 1..n,k in 1..l) 

y[i][q][k]*(spCost[i][k]+execTime[i][k]*wfCost[k]))/1000+e22-d22==' 

num2str(Mem(2,3,1)) ';']; 
fprintf(fid,STR); 
fprintf(fid,' \r\n'); 

  
fprintf(fid,' \r\n'); 
fprintf(fid,'************/'); 
fclose('all'); 

  
end 
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D.11: Automation of the Computational Experiments 

 
clc; 
clear; 
close all; 

  
%determining the size 
for m=2:2 
    for n=15:15%[6,10,15] 
        for l=3:3%[1,2,3] 
            filename = ['16A-Results-' num2str(m) '-' num2str(n) '-' 

num2str(l) '.xlsx']; 
            A = []; 
            sheet = 'Sheet1'; 
            row = 2; 
            xlRange = ['A' num2str(row)]; 
            for tp=1:30 
                try 
                    % generate test problem 
                    [ 

MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost ] = 

TPG(m,n,l,tp); 
                    % calculate the membership function (Mem) 
                    Mem = zeros(2,4,2); 

  
                        % calculate the lower bound of z1; a GA just for 

tardiness 
                    [ LBZ1_OFV,LBZ1_Time,LBZ1_Iter ] = solveLBZ1( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ); 
                        % calculate the lower bound of z2; a GA just for 

MaintCost 
                    [ LBZ2_OFV,LBZ2_Time,LBZ2_Iter ] = solveLBZ2( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ); 
                    LBZ2_OFV = LBZ2_OFV/1000; 
                        % form the table 
                    Mem(1,4,1)=3*LBZ1_OFV/4; 
                    Mem(2,4,1)=3*LBZ2_OFV/4; 
                    for me=1:3 
                        me2=4-me; 
                        Mem(1,me2,1)=LBZ1_OFV+me*(1*LBZ1_OFV/3); 
                        Mem(2,me2,1)=LBZ2_OFV+me*(1*LBZ2_OFV/3); 
                    end 
                    Mem(1,:,2)=[0.0 0.5 0.75 1.0]; 
                    Mem(2,:,2)=[0.0 0.5 0.75 1.0]; 
                    % CPLEX: write data file and iFMOLP-part of the 

model 
                    

writeCPLEX(m,n,l,tp,MLmax,M1,M2,prcsTime,dtrRate,execTime,spCost,wfCost,

dueDate,pnltCost,Mem); 

  
                    % solve with GA 
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                    [GA_OFV,GA_Time,GA_Iter,GA_z1,GA_z2] = solveGA( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ); 
                    % solve with ALG 
                    [ALG_OFV,ALG_Time,ALG_Iter,ALG_z1,ALG_z2] = 

solveALG( 

m,n,l,MLmax,M2,prcsTime,dtrRate,execTime,spCost,wfCost,dueDate,pnltCost,

Mem ); 
                    % save the results 
                    tt=[m n l tp LBZ1_OFV LBZ2_OFV GA_OFV GA_Time 

GA_Iter GA_z1 GA_z2 ALG_OFV ALG_Time ALG_Iter ALG_z1 ALG_z2 0 0 0 0]; 
                    A=[A;tt]; 

             
                catch 
                    tt=[m n l tp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
                    A=[A;tt]; 
                end 
            end 
            % print the results in Excel 
            xlswrite(filename,A,sheet,xlRange); 
        end 
    end 
end 
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Appendix E: MATLAB Codes Used in Chapter III 
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E.1: Computational Experiments Main File 

 
clc; 
clear; 
%% Experiment Iniital setting 
filename='Experiments.xlsx'; 

  
phase=4; 
nTP=30;                                     % Number of Test Problems 

  
sheet=strcat('phase', num2str(phase)); 

  

  

  
switch phase 
    case 0         
        N=[4,6,8]; 
        DDTF=4; 
        maxML=50; 
        POP=[25,50,100,200,400]; 

         
    case 1         
        N=4; 
        DDTF=4; 
        maxML=50; 
        POP=400; 
    case 2 
        N=5:9; 
        DDTF=4; 
        maxML=50; 
        POP=200; 
    case 3 
        N=4; 
        DDTF=3:4; 
        maxML=50; 
        POP=200; 
    case 4 
        N=4; 
        DDTF=4; 
        maxML=[40 50 60]; 
        POP=200; 
end 

  
gaParameter.MaxIt=100;                              % Max Iteration of 

GA 
gaParameter.MaxStall=floor(0.20*gaParameter.MaxIt); % Stall Counter 

  
ROWs=size(POP,1)*size(N,1)*size(maxML,1)*size(DDTF,1)*nTP; 

  
data=zeros(ROWs,10);                                % matrix to store 

resutls 
xlswrite(filename,data(:,1:2),sheet,'A3') 
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xlswrite(filename,data(:,3:end),sheet,'H3') 
%% Run Experiment 
row=0; 
for n=N      
    for k=maxML 
        experiment.maxML=k; 
        experiment.N=n; 
        experiment.phase=phase; 
        for q=DDTF 
            experiment.DDTF=q; 
            for TP=1:nTP 
                experiment.TP=TP; 
                model=CreateModel(experiment);                  % Create 

Model 
                for popSize=POP 
                    disp(['Test Problem ', num2str(TP), ' for 

N=',num2str(n),', maxML=',num2str(k),', DDTF=',num2str(q),', and 

PopSize=',num2str(popSize),' initilized ...']) 
                    gaParameter.nPop=popSize;                   % 

Population size of GA 
                    row=row+1; 
                    tStart = tic;                               % model 

start time 
                    BestSol = ga(model,gaParameter);            % Call 

GA 
                    tElapsed = toc(tStart);                     

%Calculating Computation time 

  
                    % Store data 
                    z=BestSol.Sol.TotalCost; 
                    z1=BestSol.Sol.AvgMAcost; 
                    z2=BestSol.Sol.AvgTardinessCost; 
                    it=BestSol.it; 

  
                    data(row,:)=[popSize, n, q, k, TP, tElapsed, z, z1, 

z2, it]; 
                    xlswrite(filename,data(row,1:5),sheet,['A' 

num2str(2+row)]) 
                    xlswrite(filename,data(row,6:end),sheet,['J' 

num2str(2+row)]) 
                    disp('*** Test problem completed.') 
                end 
            end 
        end 
    end    
end 
save('data'); 
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E.2: Test Problem Generator 

 
function model=CreateModel(experiment) 
% clear; 
%%  Initial Parameters 
N=experiment.N; 
TP=experiment.TP; 
DDTF=experiment.DDTF;   % Due Date Tightness Factor vals=(3 4 5) 
maxML=experiment.maxML; % Max Maintanace Level for each MA 
M=3;                    % Number of Machines 
L=3;                    % Number of Maintanance Activities 
R=30;                   % Number of simulation replications  
nVar=N+(N-1)*M;         % Number of Decision Variables    
%% Stochastic Data Distributions 

  
% 1- Jobs TRI parameters 
    JobsTRI_Parameters=zeros(N,3);                  % Triangular Dist 

Matrix (Holds min,mLikely, max for each job processing time 
    for j=1:N 
       parameters=randsample(20:120,3);             % Picking 3 numbers 

b/w 20 and 120 for TRI parameters 
       JobsTRI_Parameters(j,:)=sort(parameters); 
    end 

     
% 2- MAs TRI parameters 
    MAsTRI_Parameters=zeros(L,3);                   % Triangular Dist 

Matrix (Holds min,mLikely, max for each MAs Duration 
    for k=1:L 
       parameters=randsample(8:30,3);               % Picking 3 numbers 

b/w 8 and 30 for TRI parameters 
       MAsTRI_Parameters(k,:)=sort(parameters); 
    end 

     
    % Jobs Due Date Info 
    eCmax=N*(max(JobsTRI_Parameters(:))+max(JobsTRI_Parameters(:)));                    

% Estimated Cmax 
    

jobsDD=[max(JobsTRI_Parameters(:))+max(JobsTRI_Parameters(:)),round(2*eC

max/DDTF)]; % UNIF(a b)   

  
    jobsPC=[10 20];                                             % Jobs 

Penalty Cost: UNIF(a b) 
    MAspc=[150 450];                                            % MA 

spare part cost: UNIF(a b) 
    MAwfc=20;                                                   % MA 

work force cost 
    maxLevels=[4*maxML 5*maxML 6*maxML];                        % MA Max 

Levels: Fixed 

     
    MA_Types=[0 0 0; 1 0 0; 0 1 0; 0 0 1; 1 1 0; 1 0 1; 0 1 1; 1 1 1];  
    MADUDR=[1, 0.85, 0.75];                                     

%Maitanace Activity Duration Discount Rate 
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    PTIR=[1 1; 0.66  1.5; 0.33 2;-5.00 2];                      

%Maitanace Activity Duration Discount Rate 

  
%% Population based data 
    %1-Jobs 
    empty_job.ST=zeros(1,M);        % Start Time of job on machine m 
    empty_job.FT=zeros(1,M);        % Finish Time of job on machine m   
    empty_job.Dd=0;                 % Due Date of job j 
    empty_job.LateP=0;              % Lateliness Penalty cost of job j 

per time unit 
    empty_job.TDcost=0;             % Tardiness COst of Job j 
    empty_job.Du=zeros(R,M);        % Duration of job on machine m 
    empty_job.MADu=zeros(R,M);      % Maintanance Activity Duration of 

before starting job   
    empty_job.MACost=zeros(R,M);    % Maintanance Activity Duration of 

before starting job   
    empty_job.MA=zeros(L,M);        % Maitanance Activity type (0-7)/ 

Check the excel table 
    empty_job.TRI=zeros(1,3);       % Triangular Dist. Parameters used 

to genereate the processing time for the job 

  
    Job=repmat(empty_job,1,N);      % Create the population of jobs 

  
    %% Generating Jobs Info 
    for j=1:N 
        for i=1:M 
            for rep=1:R 
                Job(j).Du(rep,i)=round(randDist('TRIA', 

JobsTRI_Parameters(j,1), 

JobsTRI_Parameters(j,2),JobsTRI_Parameters(j,3))); 
            end 
        end 
      Job(j).Dd=round(randDist('UNI', jobsDD(1), jobsDD(2)));  
      Job(j).LateP=round(randDist('UNI', jobsPC(1), jobsPC(2)));  
      Job(j).TRI=JobsTRI_Parameters(j,:); 
    end 

  
%% Generating MAs Info 
    empty_MA.MaxLevel=0;                    % Max level of MAs 
    empty_MA.wf=0;                          % Workforce Cost of MA l per 

time unit     
    empty_MA.Level=zeros(1,M);              % Initial Maitanace Level of 

part l on machine m 
    empty_MA.count=zeros(1,M);              % Number of replacement of 

part l  
    empty_MA.sp=zeros(1,M);                 % Spare Part cost of MA l on 

machine m 
    empty_MA.TRI=zeros(1,3);                % TRI dist parameters to 

generate MAs Duration     
    empty_MA.Du=zeros(R,M);                 % Duration time to replace 

part l on machine m 
    empty_MA.timeLevel=zeros(R,M,2,N*2);    % Status of Maitanance Level 

of each part on each machine before and after each job 
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     MA=repmat(empty_MA,1,L); 

  
    % Define Duration of maintanace on each machine    

    
    for k=1:L 
        for i=1:M 
            for rep=1:R 
                MA(k).Du(rep,i)=round(randDist('TRIA', 

MAsTRI_Parameters(k,1),MAsTRI_Parameters(k,2),MAsTRI_Parameters(k,2))); 
            end 
            MA(k).sp(1,i)=round(randDist('UNI',MAspc(1),MAspc(2)));             
        end 
       MA(k).MaxLevel=maxLevels(k); 
       MA(k).wf=MAwfc;  
       MA(k).Level(1,:)=maxLevels(k);    
       MA(k).TRI=MAsTRI_Parameters(k,:); 
    end     

  
%% Capsulate Model 
    model.N=N; 
    model.M=M; 
    model.L=L; 
    model.R=R; 
    model.Job=Job; 
    model.MA=MA; 
    model.nVar=nVar; 
    model.MA_Types=MA_Types; 
    model.MADUDR=MADUDR; 
    model.PTIR=PTIR; 
    model.TP=TP; 
    model.phase=experiment.phase; 
    model.DDTF=DDTF; 
    model.maxML=experiment.maxML; 
    save('model'); 
%% Create CPLEX File 
    CreateCPLEXFile(model); 
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E.3: CPLEX Data File Writer 

 
function CreateCPLEXFile(model) 

  
%% Extract Info from model 
TP=model.TP; 
N=model.N; 
M=model.M; 
L=model.L; 
R=model.R; 
Job=model.Job; 
MA=model.MA; 
DDTF=model.DDTF; 
maxML=model.maxML; 
phase = model.phase; 
%% Initiliziation 
    O=2^L-1; %number of combinations 

     
    fid=fopen(['17D_CPLEX_N' num2str(N) '-DDTF' num2str(DDTF) '-maxML' 

num2str(maxML) '-TP' num2str(TP) '-Phase' num2str(phase) '.dat'],'w' ); 
    fprintf(fid,['/* Project 17D */' '\r\n' '/*Date: ' 

datestr(now,'yyyy-mm-dd_HH-MM-SS') '*/' '\r\n']); 
    fprintf(fid,['/*=====================================*/' '\r\n']); 
    fprintf(fid,['m=' num2str(M) ';' '\r\n']); 
    fprintf(fid,['n=' num2str(N) ';' '\r\n']); 
    fprintf(fid,['l=' num2str(L) ';' '\r\n']); 
    fprintf(fid,['S=' num2str(R) ';' '\r\n']); 
    fprintf(fid,['o=' num2str(O) ';' '\r\n']); 

     
    fprintf(fid,['K=' num2str(100000) ';' '\r\n']); 

     
    %probabilities 
    str = 'probability ='; 
    prob = 1/R; 
    str = [str '[' num2str(prob)]; 
    for s=2:R 
        str = [str ',' num2str(prob)]; 
    end 
    str = [str '];' '\r\n']; 
    fprintf(fid,str); 

     
    %processing times 
    str = 'p = ['; 
    for i=1:M-1 
    str=[str '[']; 
        for j=1:N-1 
            str=[str '[' num2str(Job(j).Du(1,i))]; 
            for s=2:R 
                str=[str ',' num2str(Job(j).Du(s,i))]; 
            end 
            str=[str '],']; 
        end 
        str=[str '[' num2str(Job(N).Du(1,i))]; 
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        for s=2:R 
            str=[str ',' num2str(Job(N).Du(s,i))]; 
        end 
        str=[str ']']; 
        str=[str '],']; 
    end 
    str=[str '[']; 
    for j=1:N-1 
        str=[str '[' num2str(Job(j).Du(1,M))]; 
        for s=2:R 
            str=[str ',' num2str(Job(j).Du(s,M))]; 
        end 
        str=[str '],']; 
    end 
    str=[str '[' num2str(Job(N).Du(1,M))]; 
    for s=2:R 
        str=[str ',' num2str(Job(N).Du(s,M))]; 
    end 
    str=[str ']]];' '\r\n']; 
    fprintf(fid,str); 

     
    %maintenance durations (combinations) 
    str = ['epsilon = [' '\r\n']; 
    for i=1:M-1 
    str=[str '[']; 
        for o=1:O-1 
            if o<4 
            str = [str '[' num2str(MA(o).Du(1,i))]; 
            elseif o==4 
                str = [str '[' 

num2str(0.75*(MA(1).Du(1,i)+MA(2).Du(1,i)))]; 
            elseif o==5 
                str = [str '[' 

num2str(0.75*(MA(1).Du(1,i)+MA(3).Du(1,i)))]; 
            elseif o==6 
                str = [str '[' 

num2str(0.75*(MA(2).Du(1,i)+MA(3).Du(1,i)))]; 
            elseif o==7 
                str = [str '[' 

num2str(0.60*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i))) ]; 
            end 
            for s=2:R 
                if o<4 
                str = [str ',' num2str(MA(o).Du(s,i))]; 
                elseif o==4 
                    str = [str ',' 

num2str(0.75*(MA(1).Du(s,i)+MA(2).Du(s,i)))]; 
                elseif o==5 
                    str = [str ',' 

num2str(0.75*(MA(1).Du(s,i)+MA(3).Du(s,i)))]; 
                elseif o==6 
                    str = [str ',' 

num2str(0.75*(MA(2).Du(s,i)+MA(3).Du(s,i)))]; 
                elseif o==7 
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                    str = [str ',' 

num2str(0.60*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))]; 
                end 
            end 
            str=[str '],' '\r\n']; 
        end 
        str = [str '[' 

num2str(0.60*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i))) ]; 
        for s=2:R 
            str = [str ',' 

num2str(0.60*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))]; 
        end 
        str = [str ']],' '\r\n']; 
    end 
    str=[str '[']; 
    for o=1:O-1 
        if o<4 
        str = [str '[' num2str(MA(o).Du(1,M))]; 
        elseif o==4 
            str = [str '[' num2str(0.75*(MA(1).Du(1,M)+MA(2).Du(1,M)))]; 
        elseif o==5 
            str = [str '[' num2str(0.75*(MA(1).Du(1,M)+MA(3).Du(1,M)))]; 
        elseif o==6 
            str = [str '[' num2str(0.75*(MA(2).Du(1,M)+MA(3).Du(1,M)))]; 
        elseif o==7 
            str = [str '[' 

num2str(0.60*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,i))) ]; 
        end 
        for s=2:R 
            if o<4 
            str = [str ',' num2str(MA(o).Du(s,M))]; 
            elseif o==4 
                str = [str ',' 

num2str(0.75*(MA(1).Du(s,M)+MA(2).Du(s,M)))]; 
            elseif o==5 
                str = [str ',' 

num2str(0.75*(MA(1).Du(s,M)+MA(3).Du(s,M)))]; 
            elseif o==6 
                str = [str ',' 

num2str(0.75*(MA(2).Du(s,M)+MA(3).Du(s,M)))]; 
            elseif o==7 
                str = [str ',' 

num2str(0.60*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))]; 
            end 
        end 
        str=[str '],' '\r\n']; 
    end 
    str = [str '[' 

num2str(0.60*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,M))) ]; 
    for s=2:R 
        str = [str ',' 

num2str(0.60*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))]; 
    end 
    str = [str ']]];' '\r\n']; 
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    fprintf(fid,str); 

     

     

     
    %maintenance durations (original) 
    str = ['epsilon2 = [' '\r\n']; 
    for i=1:M-1 
    str=[str '[']; 
        for o=1:O-1 
            if o<4 
            str = [str '[' num2str(MA(o).Du(1,i))]; 
            elseif o==4 
                str = [str '[' 

num2str(1.0*(MA(1).Du(1,i)+MA(2).Du(1,i)))]; 
            elseif o==5 
                str = [str '[' 

num2str(1.0*(MA(1).Du(1,i)+MA(3).Du(1,i)))]; 
            elseif o==6 
                str = [str '[' 

num2str(1.0*(MA(2).Du(1,i)+MA(3).Du(1,i)))]; 
            elseif o==7 
                str = [str '[' 

num2str(1.0*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i))) ]; 
            end 
            for s=2:R 
                if o<4 
                str = [str ',' num2str(MA(o).Du(s,i))]; 
                elseif o==4 
                    str = [str ',' 

num2str(1.0*(MA(1).Du(s,i)+MA(2).Du(s,i)))]; 
                elseif o==5 
                    str = [str ',' 

num2str(1.0*(MA(1).Du(s,i)+MA(3).Du(s,i)))]; 
                elseif o==6 
                    str = [str ',' 

num2str(1.0*(MA(2).Du(s,i)+MA(3).Du(s,i)))]; 
                elseif o==7 
                    str = [str ',' 

num2str(1.0*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))]; 
                end 
            end 
            str=[str '],' '\r\n']; 
        end 
        str = [str '[' 

num2str(1.0*(MA(1).Du(1,i)+MA(2).Du(1,i)+MA(3).Du(1,i))) ]; 
        for s=2:R 
            str = [str ',' 

num2str(1.0*(MA(1).Du(s,i)+MA(2).Du(s,i)+MA(3).Du(s,i)))]; 
        end 
        str = [str ']],' '\r\n']; 
    end 
    str=[str '[']; 
    for o=1:O-1 
        if o<4 
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        str = [str '[' num2str(MA(o).Du(1,M))]; 
        elseif o==4 
            str = [str '[' num2str(1.0*(MA(1).Du(1,M)+MA(2).Du(1,M)))]; 
        elseif o==5 
            str = [str '[' num2str(1.0*(MA(1).Du(1,M)+MA(3).Du(1,M)))]; 
        elseif o==6 
            str = [str '[' num2str(1.0*(MA(2).Du(1,M)+MA(3).Du(1,M)))]; 
        elseif o==7 
            str = [str '[' 

num2str(1.0*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,i))) ]; 
        end 
        for s=2:R 
            if o<4 
            str = [str ',' num2str(MA(o).Du(s,M))]; 
            elseif o==4 
                str = [str ',' 

num2str(1.0*(MA(1).Du(s,M)+MA(2).Du(s,M)))]; 
            elseif o==5 
                str = [str ',' 

num2str(1.0*(MA(1).Du(s,M)+MA(3).Du(s,M)))]; 
            elseif o==6 
                str = [str ',' 

num2str(1.0*(MA(2).Du(s,M)+MA(3).Du(s,M)))]; 
            elseif o==7 
                str = [str ',' 

num2str(1.0*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))]; 
            end 
        end 
        str=[str '],' '\r\n']; 
    end 
    str = [str '[' 

num2str(1.0*(MA(1).Du(1,M)+MA(2).Du(1,M)+MA(3).Du(1,M))) ]; 
    for s=2:R 
        str = [str ',' 

num2str(1.0*(MA(1).Du(s,M)+MA(2).Du(s,M)+MA(3).Du(s,M)))]; 
    end 
    str = [str ']]];' '\r\n']; 
    fprintf(fid,str); 

     
    %ML_max 
    str = ['MLmax = [' num2str(MA(1).MaxLevel) ',' 

num2str(MA(2).MaxLevel) ',' num2str(MA(3).MaxLevel) '];' '\r\n']; 
    fprintf(fid,str); 

     
    %Spare part cost for MA combinations 
    str =['SPprime = [' '\r\n']; 
    for i=1:M-1 
        str = [str '[' num2str(MA(1).sp(i))]; 
        str = [str ',' num2str(MA(2).sp(i))]; 
        str = [str ',' num2str(MA(3).sp(i))]; 
        str = [str ',' num2str(MA(1).sp(i) + MA(2).sp(i))]; 
        str = [str ',' num2str(MA(1).sp(i) + MA(3).sp(i))]; 
        str = [str ',' num2str(MA(2).sp(i) + MA(3).sp(i))]; 
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        str = [str ',' num2str(MA(1).sp(i) + MA(2).sp(i) + 

MA(3).sp(i))]; 
        str = [str '],' '\r\n']; 
    end 
    str = [str '[' num2str(MA(1).sp(M))]; 
    str = [str ',' num2str(MA(2).sp(M))]; 
    str = [str ',' num2str(MA(3).sp(M))]; 
    str = [str ',' num2str(MA(1).sp(M) + MA(2).sp(M))]; 
    str = [str ',' num2str(MA(1).sp(M) + MA(3).sp(M))]; 
    str = [str ',' num2str(MA(2).sp(M) + MA(3).sp(M))]; 
    str = [str ',' num2str(MA(1).sp(M) + MA(2).sp(M) + MA(3).sp(M)) 

']];' '\r\n']; 

     
    fprintf(fid,str); 

     
    %Work Force Unit Cost 
    str = ['WF = 20;' '\r\n']; 
    fprintf(fid,str); 

     
    %due dates 
    str = ['d = [' num2str(Job(1).Dd)]; 
    for j=2:N 
        str = [str ',' num2str(Job(j).Dd)]; 
    end 
    str = [str '];' '\r\n']; 
    fprintf(fid,str); 

     
    %penaltis 
    str = ['pi = [' num2str(Job(1).LateP)]; 
    for j=2:N 
        str = [str ',' num2str(Job(j).LateP)]; 
    end 
    str = [str '];' '\r\n']; 
    fprintf(fid,str); 

     
    fprintf(fid,['a = [1.1,1.2,1.3];' '\r\n']); 
    fprintf(fid,['b = [1.1,1.2,1.3,2.3,2.4,2.5,3.6];' '\r\n']); 

  
    %the end of the CPLEX data file 

  
end 
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E.4: Crossover Function 

 
function [y1 y2]=Crossover(x1,x2,gamma,VarMin,VarMax) 

  
    alpha=unifrnd(-gamma,1+gamma,size(x1)); 

     
    y1=alpha.*x1+(1-alpha).*x2; 
    y2=alpha.*x2+(1-alpha).*x1; 

     
    y1=max(y1,VarMin); 
    y1=min(y1,VarMax); 

     
    y2=max(y2,VarMin); 
    y2=min(y2,VarMax); 

  
end 
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E.5: Mutation Function 

 
function y=Mutate(x,mu,VarMin,VarMax) 

  
    nVar=numel(x); 

     
    nmu=ceil(mu*nVar); 

     
    j=randsample(nVar,nmu); 

     
    sigma=0.1*(VarMax-VarMin); 

     
    y=x; 
    y(j)=x(j)+sigma*randn(size(j))'; 

     
    y=max(y,VarMin); 
    y=min(y,VarMax); 

  
end 
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E.6: Roulette Wheel Selection Function 

 
function i=RouletteWheelSelection(P) 

  
    r=rand; 

     
    c=cumsum(P); 

     
    i=find(r<=c,1,'first'); 

  
end 
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E.7: The GA and Related Functions 

 
function BestSol = ga(model,gaParameter) 
clearvars -except model gaParameter 

  
    global NFE; 
    NFE=0; 
 

    CostFunction=@(q) MyCost(q,model);      % Cost Function 

     
    nVar=model.nVar;                        % Number of Decision 

Variables 
    VarSize=[1 nVar];                       % Size of Decision Variables 

Matrix 

  
    VarMin=0;                               % Lower Bound of Variables 
    VarMax=1;                               % Upper Bound of Variables 
%% GA Parameters 
    MaxIt=gaParameter.MaxIt;                % Maximum Number of 

Iterations 
    nPop=gaParameter.nPop;                  % Population Size 

  
    pc=0.8;                                 % Crossover Percentage 
    nc=2*round(pc*nPop/2);                  % Number of Offsprings 

(Parnets) 

  
    pm=0.8;                                 % Mutation Percentage 
    nm=round(pm*nPop);                      % Number of Mutants 

  
    gamma=0.05;                             % Normal Dist Mutation 

Factor 
    mu=0.03;                                % Mutation Rate 

  
    % Roulette Wheel Selection Parameters 
    beta=8;                                 % Selection Pressure 

     
    % Stall Parameter 
    StallCounter=0;                         % Stall Counter 
    MaxStall=gaParameter.MaxStall;          % Max number of Stalls 
    BestSol.Cost=10^6;                      % big M 

  
%% Initialization 

  
    empty_individual.Position=[]; 
    empty_individual.Cost=[]; 

  
    pop=repmat(empty_individual,nPop,1); 

  
    for i=1:nPop 
        % Initialize Position 
            pop(i).Position=unifrnd(VarMin,VarMax,VarSize); 
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        % Evaluation 
            [pop(i).Cost, pop(i).Sol]=CostFunction(pop(i).Position); 
    end 

  
    % Sort Population 
    Costs=[pop.Cost]; 
    [Costs, SortOrder]=sort(Costs); 
    pop=pop(SortOrder); 

    
    % Array to Hold Best Cost Values 
    BestCost=zeros(MaxIt,1); 

  
    % Store Cost 
    WorstCost=pop(end).Cost; 

  
    % Array to Hold Number of Function Evaluations 
    nfe=zeros(MaxIt,1); 

  

  
%% Main Loop 

  
    for it=1:MaxIt 

  
        % Calculate Selection Probabilities 
        P=exp(-beta*Costs/WorstCost); 
        P=P/sum(P); 

  
        % Crossover 
        popc=repmat(empty_individual,nc/2,2); 
        for k=1:nc/2 
            % Select Parents Indices 
            i1=RouletteWheelSelection(P); 
            i2=RouletteWheelSelection(P); 

  
            % Select Parents 
            p1=pop(i1); 
            p2=pop(i2); 

  
            % Apply Crossover 
            [popc(k,1).Position , popc(k,2).Position]=... 
            Crossover(p1.Position,p2.Position,gamma,VarMin,VarMax); 

  
            % Evaluate Offsprings 
            [popc(k,1).Cost, 

popc(k,1).Sol]=CostFunction(popc(k,1).Position); 
            [popc(k,2).Cost, 

popc(k,2).Sol]=CostFunction(popc(k,2).Position); 
        end 
        popc=popc(:); 
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        % Mutation 
        popm=repmat(empty_individual,nm,1); 
        for k=1:nm 
            % Select Parent 
            i=randi([1 nPop]); 
            p=pop(i); 

  
            % Apply Mutation 
            popm(k).Position=Mutate(p.Position,mu,VarMin,VarMax); 

  
            % Evaluate Mutant 
            [popm(k).Cost, popm(k).Sol]=CostFunction(popm(k).Position); 
        end 

  
        % Create Merged Population 
        pop=[pop 
             popc 
             popm]; 

  
        % Sort Population 
        Costs=[pop.Cost]; 
        [Costs, SortOrder]=sort(Costs); 
        pop=pop(SortOrder); 

  
        % Update Worst Cost 
        WorstCost=max(WorstCost,pop(end).Cost); 

  
        % Truncation 
        pop=pop(1:nPop); 
        Costs=Costs(1:nPop); 

  
        % Store Best Solution 
            lastBestCost=BestSol.Cost;            % Storing last Besto 

sol for checking stall condition 
            BestSol=pop(1); 
            BestSol.it=MaxIt; 
            BestSol.Stall='False'; 

  
        % Checking model Stallation 
            if lastBestCost==BestSol.Cost 
                StallCounter=StallCounter+1; 
            else 
                StallCounter=0; 
            end 

         
        % Store Best Cost Ever Found 
        BestCost(it)=BestSol.Cost; 

  
        % Store NFE 
        nfe(it)=NFE; 

         
        if StallCounter>MaxStall 
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           BestSol.Stall='true'; 
           BestSol.it=it; 
           break;  
        end 
    end 
    save('BestSol'); 

 

 

CreateNeighbor() 

 
function qnew=CreateNeighbor(q) 

  
    m=randi([1 3]); 

     
    switch m 
        case 1 
            % Do Swap 
            qnew=Swap(q); 

             
        case 2 
            % Do Reversion 
            qnew=Reversion(q); 

             
        case 3 
            % Do Insertion 
            qnew=Insertion(q); 
    end 

  
end 

 
 

CreateRandomSolution() 

 
function q=CreateRandomSolution(model) 

  
    nVar=model.nVar; 

     
    q=randperm(nVar); 

  
end 

 
 

MyCost() 

 
function [z ,SimSol]=MyCost(q,model) 
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    global NFE; 
    NFE=NFE+1; 
    R=model.R; 
    w1=1; 
    w2=1; 
    w3=10^6; 

     
    Z=zeros(1,R); 
    z1=zeros(1,R); 
    z2=zeros(1,R); 
    z3=zeros(1,R); 
    sol=[]; 
    for rep=1:R 
        sol=ParseSolution(q,model,rep);         
        z1(rep)=sol.TotalMAcost; 
        z2(rep)=sol.TotalTardinessCost; 
        z3(rep)=sol.InfeasibilityCounter; 
    end 

    
   % Objective Function 
   z=mean(w1*z1+w2*z2+w3*z3); 

    
   % Capsulate important info in SimSol 
   SimSol.AvgMAcost=mean(z1); 
   SimSol.AvgTardinessCost=mean(z2); 
   SimSol.TotalCost=z; 
   SimSol.newQ=sol.newQ; 
   SimSol.model=sol.model; 
end 

 

ParseSolution() 

 
function sol=ParseSolution(q,model,rep) 
    InfeasibilityCounter=0; 
    %% Convert q to newQ by adding 0 for the first job in each 

machine(no Maintanance is required) 
    N=model.N; 
    M=model.M; 
    L=model.L; 

     
    % Create newQ matrix 
    [~ ,newQ]=sort(q(1:N)); 
    for k=1:L 
        newQ=[newQ 0 q(N+(k-1)*(N-1)+1:N+k*(N-1))]; 
    end 

     
    nmodel=UpadeModel(newQ,model,rep);  %Update model by finding MAs 

duration and cost 

     
    Job=nmodel.Job; 
    MA=nmodel.MA; 
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    PTIR=nmodel.PTIR; 
    % Retreiving jobs sequence 
    JobSequence=newQ(1:N); 

     
%% Parse Solution 
    for i=1:M 
        jobcounter=0; 
        for j=JobSequence   
            jobcounter=jobcounter+1; 
            % calacualte the avg health level of machine parts 
            AvgLevel=0; 
            for k=1:L 

                 
               if Job(j).MA(k,i)==1                        
                  MA(k).Level(1,i)=MA(k).MaxLevel;                  
               end 

                
               AvgLevel=AvgLevel+MA(k).Level(1,i)/MA(k).MaxLevel;  
            end 
            AvgLevel=AvgLevel/L; 

             
            rate=PTIR(find(PTIR(:,1)<AvgLevel,1,'first')-1,2); 
            JobDu=Job(j).Du(rep,i)*rate; 

  
            if find(JobSequence==j)==1                  
                if i==1     % The first jobs start at time 0 on first 

Machine 
                    Job(j).ST(1,i)=0; 
                    Job(j).FT(1,i)=Job(j).ST(1,i)+Job(j).Du(rep,i);     
                else 
                    Job(j).ST(1,i)=Job(j).FT(1,i-1);  
                    Job(j).FT(1,i)=Job(j).ST(1,i)+Job(j).Du(rep,i); 
                end 
            else                 
                previous_job=JobSequence(jobcounter-1); 

                 
                if i==1           
                    

Job(j).ST(1,i)=Job(previous_job).FT(1,i)+Job(j).MADu(rep,i); 
                    Job(j).FT(1,i)=Job(j).ST(1,i)+JobDu; 
                else 
                    Job(j).ST(1,i)=max(Job(j).FT(1,i-

1),Job(previous_job).FT(1,i)+Job(j).MADu(rep,i));  
                    Job(j).FT(1,i)=Job(j).ST(1,i)+JobDu;  
                end 
            end 
                % Update the level of MAs to Max level in case of 

Maintanance 
            for k=1:L 
               % Deteriorate MAs 
               MA(k).Level(1,i)=MA(k).Level(1,i)-JobDu; 
               if MA(k).Level(1,i)<=0 
                    InfeasibilityCounter=InfeasibilityCounter+1; 
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               end 
            end                             
        end 
    end 

     
    TotalMAcost=0; 
    TotalTardinessCost=0; 
    for j=1:N 
       TotalMAcost=TotalMAcost+sum(Job(j).MACost(rep,:)); 
       Job(j).TDcost=max(Job(j).FT(1,M)-Job(j).Dd,0)*Job(j).LateP; 
       TotalTardinessCost=TotalTardinessCost+Job(j).TDcost; 
    end 

     
    %Update Job and MAs 
    nmodel.Job=Job; 
    nmodel.MA=MA; 

     
    % Capsulate Sol 
    sol.InfeasibilityCounter=InfeasibilityCounter; 
    sol.TotalMAcost=TotalMAcost; 
    sol.TotalTardinessCost=TotalTardinessCost; 
    sol.newQ=newQ; 
    sol.model=nmodel; 
end 

 
 

RandDist() 

 
function rnd=randDist(Dist, p1, p2,p3) 

  
switch Dist 
   case 'NORM' 
      pd=makedist('Normal',p1,p2); 
      rnd=random(pd); 
   case 'TRIA' 
      pd=makedist('Triangular',p1,p2,p3); 
      rnd=random(pd); 
   case 'UNI' 
      rnd=p1+rand*abs((p2-p1)); 
end 
end 

 

 

UpdateModel() 

 
function    nmodel=UpadeModel(q,model,rep) 
    nmodel=model; 
    M=nmodel.M;                     % Number of Machines 
    N=nmodel.N;                     % Numbner of Jobs 
    L=nmodel.L;                     % Number of MAs 
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    Job=nmodel.Job;                 % Jobs 
    MA=nmodel.MA;                   % Maintanance Activities 
    MA_Types=nmodel.MA_Types;       % Table of Maintanance combination 

(0-7) 
    JobsSequence=q(1:N); % Get the sequence of jobs 
    MADUDR=nmodel.MADUDR;           %Maitanace Activity Duration 

Discount Rate 
    for i=1:M 
        for j=JobsSequence 
            JobOrder=find(JobsSequence==j,1,'first');   % obtain the 

order of job              
            typenumber=q(N+(i-1)*N+JobOrder);           % this is a rand 

number that indicates MAs combination type 
            MAtype=min(floor(typenumber*8),7);          %There are 7 

different MA combination type 
            row=MAtype+1;                               % row number 

related to the type of Maintanance combination 

             
            %% Set Job Maintanance Duration and Cost 
            du=0; 
            sp=0; 
            wf=0; 
            flag=0; 
            rate=1; 

             
            NumberOfCombinesMAs=sum(MA_Types(row,:));   % Total number 

of MAs concurretly implemented 
            if NumberOfCombinesMAs>0 
                rate=MADUDR(NumberOfCombinesMAs);       % Obtain the 

discount rate of MAs duration 
            end 

             
            Job(j).MA(:,i)=MA_Types(row,:);                     % Assign 

MA type to its struct 

  
            % Retreive Data from MAs 
            for k=1:L 
                flag=MA_Types(row,k); 
                if flag==1 
                    du=MA(k).Du(rep,i); 
                    sp=MA(k).sp(1,i); 
                    wf=MA(k).wf; 
                    MA(k).Level(1,i)=MA(k).MaxLevel; 
                    MA(k).count(1,i)=MA(k).count(1,i)+1; 

                     
                    Job(j).MADu(rep,i)=Job(j).MADu(rep,i)+du*rate; 
                    

Job(j).MACost(rep,i)=Job(j).MACost(rep,i)+du*rate*wf+sp; 
                end            
            end 
        end 
    end 
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    nmodel.Job=Job; 
    nmodel.MA=MA; 
end 
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