
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uiie20

Download by: [Bilkent University] Date: 12 November 2017, At: 23:35

IIE Transactions

ISSN: 0740-817X (Print) 1545-8830 (Online) Journal homepage: http://www.tandfonline.com/loi/uiie20

Robustness and stability measures for scheduling:
single-machine environment

Selcuk Goren & Ihsan Sabuncuoglu

To cite this article: Selcuk Goren & Ihsan Sabuncuoglu (2008) Robustness and stability
measures for scheduling: single-machine environment, IIE Transactions, 40:1, 66-83, DOI:
10.1080/07408170701283198

To link to this article:  http://dx.doi.org/10.1080/07408170701283198

Published online: 06 Nov 2007.

Submit your article to this journal 

Article views: 793

View related articles 

Citing articles: 39 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=uiie20
http://www.tandfonline.com/loi/uiie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/07408170701283198
http://dx.doi.org/10.1080/07408170701283198
http://www.tandfonline.com/action/authorSubmission?journalCode=uiie20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uiie20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/07408170701283198
http://www.tandfonline.com/doi/mlt/10.1080/07408170701283198
http://www.tandfonline.com/doi/citedby/10.1080/07408170701283198#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/07408170701283198#tabModule


IIE Transactions (2008) 40, 66–83
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/07408170701283198

Robustness and stability measures for scheduling:
single-machine environment

SELCUK GOREN and IHSAN SABUNCUOGLU∗

Department of Industrial Engineering, Bilkent University, Ankara, Turkey
E-mail: {goren,sabun}@bilkent.edu.tr

Received November 2003 and accepted September 2005

This paper addresses the issue of finding robust and stable schedules with respect to random disruptions. Specifically, two surrogate
measures for robustness and stability are developed. The proposed surrogate measures, which consider both busy and repair time
distributions, are embedded in a tabu-search-based scheduling algorithm, which generates schedules in a single-machine environment
subject to machine breakdowns. The performance of the proposed scheduling algorithm and the surrogate measures are tested under a
wide range of experimental conditions. The results indicate that one of the proposed surrogate measures performs better than existing
methods for the total tardiness and total flowtime criteria in a periodic scheduling environment. A comprehensive bibliography is also
presented.

Keywords: Robustness, stability, proactive scheduling, tabu search

1. Introduction

Scheduling is a decision-making process concerned with
the allocation of limited resources (machines, material han-
dling equipment, operators, tools, etc.) to competing tasks
(operations of jobs) over time with the goal of optimiz-
ing one or more objectives (Pinedo, 1995). The output
of this process is time/machine/operation assignments. In
the scheduling literature, the performance of a schedule
is usually measured by using regular measures, which are
nondecreasing in completion time. In theoretical investi-
gations, a schedule is generated with the objective of opti-
mizing one or more of these regular measures. The main
emphasis in these studies is to generate optimal or near-
optimal schedules, leaving the implementation process to
practitioners.

In practice, however, due to unexpected interruptions
(e.g., breakdowns, new order arrivals, order cancellations,
or due date changes), schedules rapidly become infeasible
and there is a need for appropriate modifications. Indeed,
an inability to cope with these inevitable disruptions can be
viewed as a major contributor to the gap between schedul-
ing theory and industry practice. In industry practice, the
scheduling process is generally as follows. An initial sched-
ule is generated for a certain period of time to guide the shop
floor activities. In the face of disruptions, this schedule is
partly or completely revised to accommodate the disrup-

∗Corresponding author

tions and maintain the schedule’s feasibility. The schedule
that is actually executed on the shop floor is called the re-
alized schedule. This schedule may differ substantially from
the initial one, depending on the level of disruption and the
type of action used to restore production. It is beneficial
from the practitioner’s viewpoint for the realized schedule
to have a good performance and not to significantly deviate
from the initial schedule.

In the recent literature, two new criteria have been
brought to the attention of researchers for their consid-
eration: robustness and stability. A schedule whose perfor-
mance does not significantly degrade in the face of dis-
ruption is called robust. By definition, the performance of
a robust schedule should be insensitive to disruption. In
practice, when evaluating a scheduling system, the actual
performance (i.e., the performance of the realized sched-
ule) is more important than the planned or estimated per-
formance of the initial schedule. A schedule whose realized
events do not deviate from the original schedule in the face
of disruption is called stable. It is important to point out
that in the scheduling process not only are limited resources
allocated to competing jobs, but also a plan is prepared for
other production activities, such as setting delivery dates,
release times of orders to suppliers, determining planning
requirements for secondary resources such as tools, fixtures,
etc. Any deviation from the planned schedule can easily dis-
rupt these secondary plans and create system nervousness.
In the literature, there are several studies to generate ro-
bust and stable schedules including Leon et al. (1994) and

0740-817X C© 2008 “IIE”

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 67

Mehta and Uzsoy (1998). These will be reviewed in the next
section.

In this paper, we propose two new surrogate measures
for robustness and stability. These new surrogate measures
are embedded into a Tabu Search (TS)-based scheduling al-
gorithm to generate schedules in a single-machine environ-
ment with stochastic machine breakdowns. Extensive com-
putational experiments indicate that one of the proposed
surrogate measures performs better than existing methods
for the total tardiness and total flowtime criteria.

The rest of the paper is organized as follows. The next
section is devoted to a review of the literature. In Section
3, we consider the single-machine scheduling environment
subject to random machine breakdowns, and develop a TS-
based scheduling algorithm that utilizes two surrogate mea-
sures. In Section 4, we conduct extensive simulation exper-
iments to measure the performance of the proposed algo-
rithm and the surrogate measures. Concluding remarks and
future research directions are given in Section 5.

2. Literature review

Aytug et al. (2005) review the existing literature on schedul-
ing in the face of uncertainties. The authors give a four-
dimensional taxonomy of the uncertainty faced in schedul-
ing environments: cause, context, impact and inclusion of
disruptions. Cause can be viewed as object (e.g., machine)
and state (e.g., not ready). Context refers to the environmen-
tal situation, that is, the factors that can alter expectations
for processing time, yield or any other performance mea-
sure. Impact refers to the result of the disruption. Inclusion
refers to the type of action used to handle the disruptions;
if disruptions are considered during schedule generation
then the inclusion is predictive. On the other hand, if the
disruptions are responded to after they occur, the inclusion
is reactive. On reviewing the existing literature it is possible
to make the following observations: the cause is often ma-
chine availability, and the context is ignored. The inclusion
is generally predictive/reactive. The reconfiguration cost of
the system after a disruption is not included. The authors
suggest that the inclusion of impact and context of uncer-
tainty as well as estimation of reconfiguration costs be the
subjects of future research. They also suggest that using
all the available information on the nature of a disruption,
such as using distributions of machine failures, could be a
potentially fruitful topic for further research.

Davenport and Beck (2000) review scheduling techniques
containing uncertainty. They identify two approaches to
dealing with uncertainty in a scheduling environment:
proactive and reactive scheduling. Reactive scheduling does
not consider the uncertainty in generating the initial sched-
ules, and this schedule is revised when an unexpected event
occurs. On the other hand, robust (proactive) scheduling
takes future disruptions into consideration during the gen-
eration of the initial schedule. In conjunction with these

approaches, the following scheduling techniques, each of
which models the uncertainty differently, can be used:
stochastic scheduling, contingent scheduling and off-line/on-
line approaches.

Herroelen and Leus (2005) review project scheduling un-
der uncertainty. Their treatment is very close to that of
Davenport and Beck (2000) but it is in the domain of
project scheduling rather than machine scheduling. The au-
thors also include fuzzy scheduling and sensitivity analysis
among the techniques that are used to cope with uncer-
tainty. Fuzzy scheduling is based on the claim that proba-
bility distributions cannot be estimated correctly most of
the time and therefore it models the imprecision of input
data by using fuzzy numbers rather than probability distri-
butions. Sensitivity analysis is a post-solution analysis that
tries to answer several “what-if” questions on the optimal-
ity of the generated schedule in the face of changes in input
parameters.

In the rest of this section, we present our review of the
robust scheduling literature. Table 1 summarizes the details
of these studies using the classification framework proposed
in Sabuncuoglu and Goren (2005).

Wu et al. (1993) consider a single-machine environment
in which the machine is rescheduled after every failure and
they place an emphasis on stability along with makespan.
The authors obtain a set of non-dominated schedules. Their
computational experiments indicate that it is possible to
improve the stability substantially with slight increases in
makespan.

Leon et al. (1994) generate an initial schedule for a job
shop that minimizes the weighted average of the expected
makespan and the performance degradation under random
machine breakdowns. They use the average system slack
as a surrogate measure to estimate the expected perfor-
mance degradation. Their computational experiments in-
dicate that the average slack surrogate measure performs
well under high processing time variability.

Daniels and Kouvelis (1995) generate a robust job se-
quence for a single machine under processing time variabil-
ity such that the degradation of the performance measure
under the worst possible scenario is minimized (i.e., min-
imize maximum regret). The computational experiments
with the flowtime measure indicate that the sequences found
by their algorithms are more robust than priority dispatch-
ing rules.

The work by Mehta and Uzsoy (1998, 1999) is on stabil-
ity. Specifically, they insert additional idle times when gen-
erating schedules with their OSMH heuristic. Their com-
putational results indicate that inserting additional idleness
achieves stability without significantly degrading the max-
imum lateness.

O’Donovan et al. (1999) also work on generating stable
schedules. Unlike the study of Mehta and Uzsoy (1998),
they use the total tardiness as the performance measure.
They also test rescheduling policies (right shift, some ATC
derivatives, etc.) in response to machine breakdowns.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



T
ab

le
1.

C
la

ss
ifi

ca
ti

on
of

re
le

va
nt

st
ud

ie
s E
nv

ir
on

m
en

t
S

ch
ed

ul
e

ge
ne

ra
ti

on

H
ow

to

A
ut

ho
r

S
ho

p
flo

or
S

ta
ti

c/
dy

na
m

ic
S

to
ch

as
ti

c/
de

te
rm

in
is

ti
c

M
et

ho
d

O
bj

ec
tiv

e
W

he
n

to
S

ch
em

e
R

es
po

nd

W
u

et
al

.
(1

99
3)

Si
ng

le
m

ac
hi

ne
St

at
ic

St
oc

ha
st

ic
(m

ac
hi

ne
br

ea
kd

ow
n)

G
A

P
ai

rw
is

e
sw

ap
pi

ng
m

et
ho

ds

M
in

im
iz

e
de

vi
at

io
n

be
tw

ee
n

st
ar

t
ti

m
es

or
be

tw
ee

n
se

qu
en

ce
s

(s
ta

bi
lit

y)
M

in
im

iz
e

m
ak

es
pa

n

C
on

ti
nu

ou
s

af
te

r
ev

er
y

m
ac

hi
ne

br
ea

kd
ow

n

O
ff

lin
e

R
es

ch
ed

ul
e

(s
am

e
m

et
ho

d)

L
eo

n
et

al
.

(1
99

4)
Jo

b
sh

op
St

at
ic

St
oc

ha
st

ic
(m

ac
hi

ne
br

ea
kd

ow
n,

pr
oc

es
si

ng
ti

m
e

va
ri

ab
ili

ty
)

G
A

M
in

im
iz

e
ex

pe
ct

ed
m

ak
es

pa
n

an
d

ex
pe

ct
ed

de
vi

at
io

n
fr

om
or

ig
in

al
m

ak
es

pa
n

us
in

g
su

rr
og

at
e

m
ea

su
re

s
(r

ob
us

tn
es

s)

P
er

io
di

c
O

ff
lin

e
R

ig
ht

sh
if

t

D
an

ie
ls

et
al

.
(1

99
5)

Si
ng

le
m

ac
hi

ne
St

at
ic

St
oc

ha
st

ic
(p

ro
ce

ss
in

g
ti

m
e

va
ri

ab
ili

ty
)

B
&

B
,

he
ur

is
ti

cs
M

in
im

iz
e

ab
so

lu
te

w
or

st
-c

as
e

to
ta

l
flo

w
ti

m
e

di
ff

er
en

ce
(r

ob
us

tn
es

s)

P
er

io
di

c
O

ff
lin

e
D

o
no

th
in

g
(l

ef
t

or
ri

gh
t

sh
if

t)

M
eh

ta
an

d
U

zs
oy

(1
99

8,
19

99
)

Jo
b

sh
op

Si
ng

le
m

ac
hi

ne
St

at
ic

w
it

h
no

n-
ze

ro
re

ad
y

ti
m

es

St
oc

ha
st

ic
(m

ac
hi

ne
br

ea
kd

ow
n)

O
SM

H
/L

P
M

in
im

iz
e

de
vi

at
io

ns
be

tw
ee

n
co

m
pl

et
io

n
ti

m
es

w
hi

le
ke

ep
in

g
L

M
A

X
lo

w
us

in
g

su
rr

og
at

e
m

ea
su

re
s

(s
ta

bi
lit

y)

P
er

io
di

c
O

ff
lin

e
R

ig
ht

sh
if

t

O
’D

on
ov

an
et

al
.(

19
99

)
Si

ng
le

m
ac

hi
ne

St
at

ic
w

it
h

no
n-

ze
ro

re
ad

y
ti

m
es

St
oc

ha
st

ic
(m

ac
hi

ne
br

ea
kd

ow
n,

pr
oc

es
si

ng
ti

m
e

va
ri

ab
ili

ty
)

O
SM

H
an

d
A

T
C

de
ri

va
ti

ve
s

in co
m

bi
na

ti
on

M
in

im
iz

e
de

vi
at

io
ns

be
tw

ee
n

co
m

pl
et

io
n

ti
m

es
w

hi
le

ke
ep

in
g

to
ta

lt
ar

di
ne

ss
lo

w
(s

ta
bi

lit
y)

C
on

ti
nu

ou
s

af
te

r
ev

er
y

m
ac

hi
ne

br
ea

kd
ow

ns

O
ff

lin
e

R
ig

ht
sh

if
t

A
T

C
de

ri
va

ti
ve

s

W
u

et
al

.
(1

99
9)

Jo
b

sh
op

St
at

ic
St

oc
ha

st
ic

(p
ro

ce
ss

in
g

ti
m

e
va

ri
ab

ili
ty

)

B
&

B
,A

T
C

M
in

im
iz

e
ex

pe
ct

ed
w

ei
gh

te
d

to
ta

l
ta

rd
in

es
s

us
in

g
su

rr
og

at
e

m
ea

su
re

s
(r

ob
us

tn
es

s)

P
er

io
di

c
Q

ua
si

on
-l

in
e

R
ig

ht
sh

if
t

G
A

=
ge

ne
ti

c
al

go
ri

th
m

,B
&

B
=

br
an

ch
-a

nd
-b

an
d

al
go

ri
th

m
,L

P
=

lin
ea

r
pr

og
ra

m
m

in
g

ap
pr

oa
ch

.

68

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 69

Finally, Wu et al. (1999) consider the job shop scheduling
problem with processing time variability. Their approach
(the Process First Schedule Later approach) combines the
global viewpoint of off-line methods and adaptability of on-
line methods. Their computational results indicate that the
proposed method is superior to the traditional off-line and
on-line methods for the robustness measure (i.e., expected
weighted total tardiness).

Sotskov et al. (1997) discuss another viewpoint for stabil-
ity. They handle the uncertainty in a job shop environment
by an a posteriori analysis of the existing optimal schedule
with the objective of determining the maximum variation
in the processing times of the operations that allows the
optimal schedule at hand to still remain optimal. Such a
maximum variation is called “the stability radius” of the
schedule. This notion of stability, obtained by sensitivity
analysis, can be considered as a measure of “solution ro-
bustness” in the terms discussed by Herroelen and Leus
(2005). Although this type of post-optimality analysis may
provide valuable insights about the impacts of the uncer-
tainty, it does have associated drawbacks. If the “stability
radius” of the optimal schedule is large enough to accom-
modate all possible changes in the processing times then
the optimal schedule at hand can safely be used, but if
it is not that large, the question of what course of action
to take still remains to be answered. Hence, in this paper,
we are after a proactive viewpoint and incorporate uncer-
tainty into the scheduling processes. We concentrate on op-
timizing the “quality robustness” rather than the “solution
robustness”.

From this literature review, we identify the following re-
search points for further investigation.

1. The probability distributions of both the busy time and
repair duration are generally available to practitioners.
However, existing surrogate measures do not make use of
this information. As stated in Mehta and Uzsoy (1998),
one can develop better surrogate measures for stability
and robustness using this information.

2. In the majority of existing studies, makespan is used
in robustness studies and maximum lateness is used in
stability studies as the primary performance measure. As
also pointed out by Leon et al. (1994), one can extend
the existing studies for other performance measures.

3. Whether practitioners should consider robustness, sta-
bility, or both is an open research question. What is the
trade-off between these performance metrics? Along the
same lines, is it possible to develop a bicriterion approach
that considers both the stability and robustness simulta-
neously?

4. Can a minimax regret type of robustness (such as the
one used by Daniels and Kouvelis (1995)) be applied to
disruption types other than processing time variability?

In this paper, we focus on developing two new surrogate
measures for robustness and stability (i.e., the first research
question) where the two scheduling criteria, total flowtime

and total tardiness, are discussed separately. The details of
the proposed surrogate measures can be found in the next
section. Our computational experiments indicate that the
proposed method performs better than the average slack
method, which is commonly used in the literature as a sur-
rogate measure. Our study also provides a partial answer to
the third research question as explained later.

In our treatment, we assume that some information about
the nature of the uncertainty (machine breakdowns in our
case) is available in the form of probability density func-
tions. It may be the case that the decision maker has inade-
quate knowledge. In such a case, a “robustness approach”
that hedges against the worst contingency that may arise
can be used. The uncertain data is generally modeled by
interval estimations and no knowledge of probability den-
sities is assumed. We refer the reader to Kouvelis and Yu
(1997), who apply this approach to various problems such
as linear programming, assignment problem, shortest path
problem, etc. as well as scheduling. An example of such an
approach in a scheduling context is the study of Daniels
and Kouvelis (1995).

3. Methodology

3.1. Problem formulation

In this paper, we focus on the problem of periodic schedul-
ing of a single machine subject to random machine break-
downs. Consider a set of n jobs to be processed on the ma-
chine. The release times (ri), due dates (di) and processing
times (pi) of the jobs are deterministic and known a priori.
Release times are not necessarily all zero. We also assume
that busy times and repair times of the machine are in-
dependent and identically distributed continuous random
variables and their probability density functions (h(.) and
g(.), respectively) are known in advance. We focus on gen-
erating robust or stable initial schedules and assume the
right-shift rescheduling scheme, i.e., when the machine fails
the jobs are shifted to the right on the Gannt chart a suffi-
cient amount to just accommodate the repair duration. The
work already performed on the affected job is not lost and
processing resumes from where it left off. Let ci(s) denote
the completion time of job i in the initial schedule s and
cr

i (s) denote the corresponding realized completion time.
We consider the scheduling criteria of makespan, total flow
time and total tardiness.

From the viewpoint of robustness, what really matters
is the realized performance of the schedule rather than
the expected or planned performance (i.e., performance
of the initial schedule). Since the cr

i (s) are random vari-
ables, so is the performance of the realized schedule. Al-
though there are several stochastic dominance notions that
are used in stochastic optimization, we follow the common
practice in the robust scheduling literature and try to opti-
mize in expectation. That is, the robustness measure is the

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



70 Goren and Sabuncuoglu

Table 2. Robustness measures.

Robustness measure:
Performance measure: f (s) E[f r (s)]

Makespan: maxici(s) E[maxicr
i (s)]

Total flow time:
∑n

i=1 (ci(s) − ri) E[
∑n

i=1 (cr
i (s) − ri)]

Total tardiness: E[
∑n

i=1 max(cr
i (s) − di, 0)]∑n

i=1 max(ci(s) − di, 0)

expected realized performance of the system according to
the scheduling criterion in use. Table 2 shows the robustness
measures.

As for stability, a realized schedule should deviate only
minimally from the initial (or planned) schedule. We use
the expected sum of absolute deviations in job completion
times (i.e., E[

∑n
i=1 |ci(s) − cr

i (s)|]) as our stability measure.
Let S be the set of all possible permutations of the n jobs.
Then, when generating robust schedules we try to find a
schedule s∗ such that:

s∗ ∈ arg min
s∈S

E[f r(s)],

where the definition of f r(s) depends on the performance
measure under consideration as given in Table 2.

Similarly we try to find a schedule s∗∗ such that

s∗∗ ∈ arg min
s∈S

E

[
n∑

i=1

∣∣ci(s) − cr
i (s)

∣∣],

when generating stable schedules.
Even though the analytical calculation of these robust-

ness and stability measures is extremely hard for general
busy time and repair time distributions (we refer the reader
to Pinedo (1995) for some analytical results in the case of
an exponential distribution), one can predict or estimate
these values by using simulation and/or employing Surro-
gate Measures (SMs). In the simulation case, one can em-
ploy iterative-simulation mechanisms (e.g., Kutanoglu and
Sabuncuoglu (2001)). Since simulation experiments require
substantial computational times, most of the robustness
and stability studies in the literature focus on the devel-
opment of SMs.

The average slack method is usually used in SM appli-
cations (Leon et al., 1994) to generate robust schedules.
The expected realized performance of a schedule S is cal-
culated by E[f r(s)] = f (s) + E [δ(s)] where f (s) is the initial
or planned performance measure of s and E[δ(s)] is the
degradation in the performance measure due to random
disruptions. This is estimated by using the average system
slack SM. For each operation the difference between the
earliest and latest start times is calculated as the slack of that
operation. The average system slack value is calculated by
averaging the slack values of all operations. Experimental
studies performed by Leon et al. (1994) indicate that there
is a high correlation between the robustness and the average
slack value of schedules. The performance measure in Leon

et al. (1994) is the makespan but we consider total tardiness
and total flowtime measures in addition to makespan.

The average slack method is also used to generate stable
schedules as well as robustness. In the stability case, the
schedule with the largest average slack value is selected.
Mehta and Uzsoy (1998, 1999) show that there is a high
correlation between the stability and the average slack value
of schedules.

In this paper, we propose two new SMs for a single-
machine system with random machine breakdowns. In ad-
dition, we develop a scheduling algorithm that uses tabu
search methodology to efficiently evaluate sequences in a
large search space.

3.2. Structure of the proposed algorithm

The proposed algorithm is designed to generate robust
schedules by considering three different performance mea-
sures (makespan, total tardiness or total flowtime) or to
generate stable schedules. We use a TS algorithm to gener-
ate these schedules. The proposed algorithm consists of two
parts: a sequence generator and a sequence evaluator. We
start with an initial job sequence and use the TS algorithm
to scan the solution space efficiently (sequence generator).
At each iteration of the TS algorithm, we assess the quality
of the generated sequences using the evaluator and adopt
the best sequence as the new input to the generator. The
generator creates new sequences (the neighborhood of the
new input), which in turn are re-evaluated. The process goes
on until the stopping criterion is satisfied. The details of the
neighborhood generated are given in the next section.

Using the same sequence generator, we use four different
evaluators and compare their performances. As will be dis-
cussed in Section 3.4 in more detail, the first two evaluators
(called method 1 and method 2) generate the realization of
the job sequence (they create a breakdown/repair pattern
given a sequence, which comes from the generator part of
the algorithm). These realizations are then used to calcu-
late the values of the selected SMs. We also consider the
average slack method and the classical approach (which
minimizes the performance measure of the initial sched-
ule without taking breakdowns into account) as the other
evaluators for benchmark purposes. These four evaluators
are compared with each other in a simulation-based ex-
perimental study in Section 4. Note that the average slack
method for robustness was originally developed for the job
shop scheduling problem with a makespan criterion. We
adapt this method to the single-machine scheduling prob-
lem by calculating the slacks of the jobs (rather than the
slacks of operations) and taking the average. The reason
for this modification (at the risk of deteriorating the perfor-
mance of the original method) is that there is no robustness
procedure that is especially designed for the single-machine
problem with total flowtime or total tardiness measures (to
the best of our knowledge).

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 71

Fig. 1. Schematic representation of the proposed algorithm.

The details of the estimation methods are presented in
Section 3.4. Figure 1 illustrates the basic idea behind the
proposed algorithm. In the figure, V (s) denotes the value
of the SM calculated by the sequence evaluator for a given
sequence s. Table 3 presents the formulations of V (s) using
the notation developed in Section 3.4.

3.3. Sequence (neighborhood) generation

We use swap moves to generate the neighborhood of a given
schedule. The quality of the sequences in the neighborhood
is evaluated in terms of the SMs discussed in the next sec-
tion. The tabu list consists of triplets (x, y, z), where x is
the job identification number, y is the position in the se-
quence and z is the remaining tabu tenure. If (x, y, z) is in
the tabu list, job x cannot move to position y during the
next z iterations. A swap is identified as the tabu if one of
the corresponding moves is in the tabu list. For example
suppose the current sequence is “a b c d e. . . ”. The swap
of job a with job e is tabu if one of (a, 5, .) or (e, 1, .) is in
the tabu list. If the swap is tabu but the resulting sequence
performs better than the best sequence found so far, it is
still executed due to the aspiration criterion. If all possible
swaps are tabu, the swap that yields the best quality sched-
ule in the neighborhood is executed. After execution of a

Table 3. Formulation of V (s)

Evaluator
Purpose of
algorithm V(s)

Method 1 Robustness f (s ′)
Method 1 Stability

∑n
i=1 |ci(s) − ci(s ′)|

Method 2 Robustness
∑n

i=1 aif (s ′′
i )

Method 2 Stability
∑n

i=1 ai(
∑n

j=1 |cj(s) − cj(s ′′
i )|)

Average slack method Robustness f (s)–average slack of s
Average slack method Stability - average slack of s

swap, the corresponding two moves are added into the tabu
list, if they are not already in it. For example, assume that
the current candidate is “a b c d e . . . ”. If swap of job a with
job c is executed, then (a, 1, .) and (c, 3, .) entries are added
to the tabu list.

3.4. Sequence evaluation

The sequences (neighbors of the current solution) generated
in the previous step (Section 3.3) are now evaluated using
the SMs. As stated earlier, we use one of two SMs: method 1
or method 2. These are explained in the following sections.

3.4.1. Method 1
In our opinion, the well known and commonly used aver-
age slack method fails to incorporate the information that
can be inferred from the busy time and repair time distribu-
tions. In contrast, the first method proposed in this study,
method 1, explicitly considers probability distribution func-
tions. During estimation, multiple breakdowns are consid-
ered in a given scheduling period.

The essence of method 1 is to quickly estimate the per-
formance of a realized schedule. Specifically, it generates
a realization of the schedule (generated via the sequence
generator) by considering the machine breakdown and re-
pair events. We obtain an approximate realized schedule by
inserting constant downtimes into the initial schedule af-
ter every constant busy time period. We assume that the
machine fails after every busy time for a period of length
λL + (1 − λ)U , where λ is a real number between zero and
one, and L and U are points on the left and right tails of the
distribution g(t), respectively. As shown in Fig. 2, the prob-
ability that a machine breakdown will occur between L and
U is 0.95 (i.e, α = 0.05). That is, L and U are the 25th and
975th tiles of the 1000-tile busy time distribution. The pa-
rameter λ is determined from a correlation study, in which
a number of pilot schedules are estimated using λ values
of 0.2, 0.4, 0.6 and 0.8 along with the alternative of using
E[g(t)] instead of λL + (1 − λ)U as the busy time period.
We further assume that the repair activity lasts E[h(t)] time
units (i.e., the expectation of the repair time distribution).

Fig. 2. Parameters of busy time distribution for method 1.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



72 Goren and Sabuncuoglu

Fig. 3. Realization of the current schedule under method 1.

We find it quite satisfactory to consider only the expecta-
tion instead of incorporating more information that can be
inferred from the repair time distribution because the study
carried out by Mehta and Uzsoy (1999) indicates that this
makes little difference. Figure 3 illustrates the estimation of
the realized schedule.

In our experimental study, we use a gamma distribution
with a scale parameter of 0.7 for the busy time distribution
and set λ equal to 0.6 after a correlation study, whose de-
tails are given in Section 4.2. Note that the method can be
applied to virtually any continuous distribution.

After the realization of the input schedule is generated,
the SM for robustness or stability is calculated. We use the
performance of the estimated realization as the first SM for
robustness. Let s be the input sequence to the evaluator.
Method 1 inserts the repair durations as explained above
and let s ′ be the estimated realization. We use f (s ′) as a sur-
rogate for E[f r (s)], which is our robustness measure, where
f (.) stands for makespan, total flowtime, or total tardiness
depending on the performance measure under considera-
tion. Similarly, the sum of the absolute deviations of the
job completion times between the initial sequence s and
the estimated realization s ′ is used as the first SM for sta-
bility. That is, we use

∑n
i=1 |ci(s) − ci(s ′)| as a surrogate for

E[
∑n

i=1 |ci(s) − cr
i (s)|].

This SM for stability is very similar to the one that is used
in Mehta and Uzsoy (1999). In fact, both measures will in-
sert the same amount of total repair duration into initial
schedules if we use E[g(t)] instead of a convex combination
of 0.025- and 0.975-quantiles of the distribution when we
estimate the busy times. Mehta and Uzsoy, however, dis-
tribute the total amount of repair duration as additional
inserted idle times to jobs (proportional to their process-
ing times) without considering the shape of the busy time
distribution whereas we estimate the times of breakdown
events (by using the parameters of the busy time distri-
bution) and insert the repair duration only at this point.
Another difference arises from the different interpretations
of stability: Mehta and Uzsoy first solve the problem with-
out considering the breakdowns and then insert additional
idle times (aforementioned repair durations) after each job
to obtain the initial schedule. Their stability measure is the
sum of the absolute deviations of the job completion times

between this initial schedule, which contains additional idle
times, and the realized schedule. On the other hand, we con-
fine ourselves to the domain of non-delay schedules. Hence,
our stability measure is as in Wu et al. (1993) rather than in
Mehta and Uzsoy (1999).

3.4.2. Method 2
Method 2 assumes that there is only one machine failure
during a scheduling period. Because of this restrictive as-
sumption, this approach can be used within a continuous
rescheduling scheme, where the system is rescheduled from
scratch after every machine breakdown (see Sabuncuoglu
and Goren (2005)). The performance of the realization of
a schedule s (the second SM for robustness) is estimated in
three steps:

Step 1. For each job, calculate the probability that the ma-
chine fails during the processing of that job. As seen
in Fig. 4, ai is the probability that the machine fails
during the processing of job i.

Step 2. For each job, determine the realized sequence as-
suming that the machine failure materializes during
the processing of that job. Use E[h(t)] as the repair
duration. Let s ′′

i be this realized schedule.
Step 3. Calculate the estimated realized performance mea-

sure of the sequence s as
∑n

i=1 aif (s ′′
i ), which is the

second SM for robustness.

Similarly,
∑n

i=1 ai(
∑n

j=1 |cj(s) − cj(s ′′
i )|) is used as the sec-

ond SM for stability.
The following numerical example is presented to further

explain the execution of the algorithm for the robustness
measure. To make things clear, all four evaluators are ex-
plained. However, only one of them would be used in an
actual implementation, which the user would choose.

3.4.3. A numerical example
Consider the single-machine scheduling problem with three
jobs, whose arrival times, processing times and due dates are
given in Table 4.

Assume that the busy time distribution is Uniform [0, 3]
and the repair time distribution is also Uniform [0, 2]. We
use the total tardiness criterion as the performance measure
(i.e., we want to generate a schedule whose expected total

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 73

Fig. 4. Parameters of method 2.

tardiness is minimized). Now, suppose that our algorithm
begins with the initial schedule “J1-J2-J3”. The algorithm
first generates the neighborhood of this schedule by all-pair
wise swapping (there are three schedules in the neighbor-
hood of the schedule). These are: “J2-J1-J3”, “J3-J2-J1”
and “J1-J3-J2”. Let us call them S1, S2 and S3, respec-
tively. Next, the algorithm evaluates the quality of S1, S2
and S3 by using the SMs. Recall that the classical approach
is also used as a benchmark.

Classical approach: The algorithm calculates the initial to-
tal tardiness of each candidate schedule (i.e., S1, S2 and S3).
The initial schedules are given in Fig. 5(a). The results are
given in the second column of Table 5.

Average slack method: As explained at the beginning of
Section 3, this method employs (initial tardiness – average
system slack) as the SM for robustness. The third column
of Table 5 gives the values of this measure. The calculation
of average system slack can be found in Table 6.

Method 1: Method 1 calculates the total tardiness of real-
ized versions of each candidate schedule (i.e., S1, S2 and
S3). The L parameter of method 1 is 0.075 and the value
of U is 2.925 if we take α = 0.05 (see Fig. 6). Assume that
the value of λ is 0.5. As explained in Section 3.4.1, when es-
timating realization according to method 1, the algorithm

Table 4. Job parameters for the numerical example

Job
Arrival

time (hour)
Processing

time (hour)
Due date
(hour)

J1 5 1 6
J2 2 1 5
J3 1 1 4

inserts E[h(t)] = 1 hour of idle time as the repair duration
after every 0.5 × 0.075 + 0.5 × 2.925 = 1.5 hours of busy
time period. The estimated realized schedules can be seen
in Fig. 5(b). The fourth column of Table 5 displays the total
tardiness values of these realizations.

Method 2: As explained in Section 3.4.2, this procedure as-
sumes that the machine breaks down once and calculates
the expected total tardiness of the estimated realization of
each candidate schedule. Note that the probability of ma-
chine failure during the processing of any job (J1, J2 or J3)
is one-third. Method 2 first calculates the total tardiness of
the realized schedule assuming that the breakdown occurs
during the processing of J1, then J2 and finally J3. These to-
tal tardiness values can be found in Table 7. The weighted
average of these values (weights being the corresponding
probabilities, all one-third in this case) gives us the SM of
method 2. The values of the SM are given in the fifth col-
umn of Table 5. Figure 5(c) illustrates the above calculation
for candidate S1 as an example.

Next, the algorithm selects the best schedule in the neigh-
borhood. As seen in Table 5, S2 (J3-J2-J1) happens to be the
best solution in the neighborhood for all evaluation meth-
ods. Therefore, S2 will be used as the new current schedule.
This move involves the swap of J3 with J1. Assume that the
tabu tenure is 12. Then, (J1, 1, 12) and (J3, 3, 12) entries are

Table 5. Evaluation of the neighborhood

Evaluated candidate qualities

Schedule in the
neighbourhood

Classical
approach

Average slack
method Method 1 Method 2

J2-J1-J3 3 2.33 5 4
J3-J2-J1 0 −1.33 0 0.33
J1-J3-J2 6 6 8 8

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



74 Goren and Sabuncuoglu

Table 6. Calculation of the average system slack level

S1 S2 S3

Job Earliest Latest Slack Earliest Latest Slack Earliest Latest Slack

J1 5 5 0 5 5 0 5 5 0
J2 2 4 2 2 4 2 7 7 0
J3 6 6 0 1 3 2 6 6 0

Average slack 0.67 Average slack 1.33 Average slack 0

Fig. 5. Schematics of the numerical example: (a) candidate schedules for S1, S2 and S3; (b) estimated realizations (S1, S2 and S3)
under method 1; and (c) calculation of expectation for S1 under method 2.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 75

Table 7. Calculation of SM for robustness (method 2)

Total tardiness of
realization if machine fails

during processing of . . .

Schedule J1 J2 J3 Expectation

S1 5 3 4 4
S2 1 0 0 0.33
S3 9 7 8 8

added to the tabu list (which was empty). The algorithm
continues until the stopping criterion is met.

4. Computational results

We conducted extensive computational experiments in or-
der to tune-up the parameters and evaluate the performance
of the proposed algorithm. We solved a broad range of test
problems, whose details are given in the following section.
In general, we assumed a periodic scheduling scheme i.e.,
scheduling decisions are made periodically (Sabuncuoglu
and Goren, 2005). Thus, when a breakdown event occurs
the jobs in the schedule are right shifted by the length of the
repair time. For the second SM, however, we used a contin-
uous scheduling scheme in which the system is scheduled
from scratch, due to the assumption of a single breakdown
in any scheduling period. Hence, both the continuous and
periodic schedulings were implemented in the experiments.
The proposed scheduling system, programmed in the C lan-
guage, reads the problem parameters from an input file and
generates the desired schedules. The computational envi-
ronment and CPU times are given in Section 4.5.

4.1. Experimental environment

4.1.1. Problem parameters
We used the data generation scheme previously proposed
by Mehta and Uzsoy (1999) to create test problems.

Number of jobs (n): We considered five levels of the number
of jobs (n = 10, 30, 50, 70 and 90). In general, the number
of jobs designates the size of the problem. As it increases,

Fig. 6. The L and U parameters of method 1.

the computational burden and the amount of time needed
to find the optimal solution also increase.

Processing time (pi): Job processing times were generated
from discrete uniform distributions. Two such distributions
were used – Uniform [1, 11] and Uniform [4, 8], which are
referred to as P1 and P2, respectively. P1 and P2 have the
same mean, but the variance of P1 is higher than that of P2.
Hence, we also tested the performance of the algorithm as
a function of variability in the system.

Arrival times (ri): Job arrival times were generated from
a discrete uniform distribution between zero and αnE[pi],
where E[pi] is the expected job processing time (= 6 time
units). Therefore, nE[pi] is the expected makespan of the
schedule. A low level for α makes the jobs arrive in a shorter
time horizon. Note that α = 0 means that all jobs are ready
at time 0.

Job due dates (di): Job due dates were generated as di =
ri + γpi, with γ being generated from a continuous uniform
distribution with the parameters of a and b. Different a
and b levels determine the tightness and the range of the
due dates. Four levels of (a, b) were considered as shown
in Table 8. D1 and D2 have tighter mean due dates than
D3 and D4. The range of due dates are greater for D1 and
D4 and smaller for D2 and D3. Note that we have 200
experimental design points from the combination of the
above parameters for test problems (See Table 8).

4.1.2. Breakdown parameters
In the absence of real data, Law and Kelton (2000) recom-
mend the use of a gamma distribution for the busy time
distribution with a shape parameter of 0.7, and a scale pa-
rameter to be specified. They also state that a gamma dis-
tribution with a shape parameter of 1.4 is appropriate to

Table 8. Test problem parameters

Values used in
Parameter experimentation Total values

Number of jobs (n) 10, 30, 50, 70, 90 5
Processing times (pi) Uniform [1, 11] (P1)

Uniform [4, 8] (P2)
2

Arrival times (ri) ai = Uniform (0, amax)
where amax = αE[Cmax]
α = 0.25, 0.5, 0.75, 1.25,

1.75

5

Job due date (di) di = ri + γpi
where γ = uniform [a, b]
where values of (a, b) are

taken as
(−1, 3) (D1)
(0, 2) (D2)
(2, 4) (D3)
(1, 5) (D4)

4

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



76 Goren and Sabuncuoglu

Table 9. Breakdown parameters

Parameter Values used in experimentation Total values

Busy time Gamma distribution with a shape
parameter of 0.7 and mean of
θE[pi]

θ = 10.0 (long busy time) (B1, B2)
θ = 3.0 (short busy time) (B3, B4)

2

Downtime Gamma distribution with a shape
parameter of 1.4 and mean of
βE[pi]

β = 1.5 (long repair time) (B1, B3)
β = 0.5 (short repair time) (B2, B4)

2

describe the downtime distribution. The scale parameter of
the busy time distribution was arranged so that the mean
was θE[pi]. We considered θ values of ten and three. Mehta
and Uzsoy (1999) use the same scheme except that an expo-
nential distribution is used instead of a gamma distribution.
The scale parameter of the downtime distribution was set
such that the mean was βE[pi]. We considered β values of
1.5 and 0.5. Consequently, we have 200 problem combina-
tions (Table 8) and four breakdown combinations (Table 9)
giving 800 problem classes as a whole.

4.2. Fine-tuning of algorithm parameters

We conducted pilot runs to set the parameters of the
scheduling algorithm. These are:

Stopping criterion: This parameter determines when the
scheduling algorithm should cease searching the solution
space.

Tabu tenure: This parameter dictates the number of itera-
tions for which a move should remain in the tabu list after
inclusion. We considered five levels of tabu tenure in our
pilot runs that were conducted for fine-tuning purposes: 1,
5, 7, 10 and 15.

Objective functions: We considered five objective functions
in our pilot runs. Total tardiness, total flowtime, and total
system slack of the initial schedule, total tardiness and to-
tal flowtime estimated by method 1. Note that method 1
employs the breakdown distributions. Instead of using the
breakdown parameters presented above, which would lead
to four method 1 variants, we used an average breakdown
scheme to keep the pilot runs simple: we set θ = 6 and β =
1. Similarly we used the expectation (θE[pi] = 6 × 6 = 36)
instead of λL + (1 − λ)U as the busy time period, because
the optimal level for λ has not yet been determined.

In order to fine tune the parameters of the algorithm
(stopping criterion, tabu tenure, λ) we generated 5000 prob-
lems created from 200 problem combinations, five tabu
tenure levels and five objective functions. We ran the al-

gorithm on each problem for 1000 iterations. We recorded
the number of iterations between the improvements of the
best solution updates of the TS. We also recorded the best
objective value attained for each problem. We observed that
for 96.4% of the test problems, it is possible to stop the al-
gorithm when there is no improvement for 20 iterations. We
deliberately did not include method 2 in our pilot runs be-
cause the numerical integration of the density function of
the gamma distribution (needed to calculate relevant prob-
abilities of method 2) and rescheduling the system from
scratch after every breakdown requires excessive computer
time. Based on the results, we also used random tabu tenures
that use the discrete uniform distribution with parameters
of 10 and 15.

Determining the best λ value: We generated five instances
for each of the 800 possible parameter combinations (Ta-
bles 8 and 9) to set the λ value of method 1. There were two
objective functions in the TS: total tardiness and total flow-
time of the estimated realizations (SM for robustness). We
used 0.2, 0.4, 0.6 and 0.8 as candidate λ values. We also used
E[g(t)] instead of λL + (1 − λ)U as the busy time period of
the machine. We simulated the “best so far” schedule five
times, and recorded the average objective function values
as well as the average estimate of method 1 for these val-
ues. We also conducted a simple linear regression analysis
using 800 data points (corresponding to the total number
of factor combinations). The dependent variable was the
expected realized performance, that is, the robustness mea-
sure. This was taken as the average of the 25 simulation runs
(five replications × five instances). The independent vari-
able was the average method 1 estimates of the performance
measures (SM for robustness). The regression analysis was
repeated for each λ level. The R2 (coefficient of determi-
nation) values were also recorded. Since the coefficients of
the determinations are very close to each other (and they
are almost equal to unity), the choice of λ is not impor-
tant with respect to R2, hence, we determined the value of
λ by considering the expected performance of the realized
schedule (i.e., the λ value which generates the most robust
schedules). After examining the simulation results, λ = 0.6
was chosen as the overall best. The R2 values for this selec-
tion were 0.9744 and 0.9683 when the total flowtime and
total tardiness criteria were used, respectively.

4.3. Evaluation of method 1

4.3.1. Robustness
We compare the performance of method 1 with the average
slack approach. The classical approach, which minimizes
the planned (initial) performance measure, is also used as
a benchmark. Leon et al. (1994) estimate the realized per-
formance measure as given below:

E[f (S)] = f (S0) + E[δ(S)],

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 77

Table 10. Summary table for robustness results

Evaluation method Makespan
Total

tardiness
Total flow

time

Robustness
Classical approach 400.25 3801.64+ 3915.99
Slack method 399.76∗ 3792.81 3915.99
Method 1 400.14 3755.19∗ 3873.46∗

Stability
Classical approach 1381.04+ 1159.66 1160.56
Slack method 1337.55∗ 1158.46 1160.44
Method 1 1358.24 815.17∗ 815.26∗

where E[f (S)] is the expectation of the realized performance
measure (our robustness measure); f (S0) is the initial (or
planned) performance measure of S, and E [δ(S)] is the
degradation in the performance measure because of the
disruptions, which is estimated by using –(average system
slack) as the SM.

We generated five instances for each of 800 possible prob-
lem classes (see Tables 8 and 9), leading to 4000 experimen-
tal design points. We ran the TS algorithm with three dif-
ferent evaluators (the classical approach, the average slack
method and method 1) for three performance measures
(makespan, total tardiness and total flowtime). This yielded
4000 × 3 × 3 = 36 000 instances. We simulated the solu-
tions to obtain the expected realized performances, that is,
the value of robustness measures (taken as the average of
five simulations that yields 36 000 × 5 = 180 000 simulation
runs), and stability measures (total absolute job comple-
tion time differences). Table 10 presents the averages of the
results. Note that the stability values are also given even
though the primary objective is to optimize the robustness.
The figures marked with “+” sign are the worst in their
group, whereas the figures marked with a “*” sign are the
best according to paired-t tests with α = 0.05.

After a careful examination of these results, we can make
the following observations: In terms of robustness, the clas-
sical approach is very poor. It displays the worst perfor-
mance of all the criteria but the difference is statistically
significant only for the total tardiness criterion. In con-
trast, the proposed method (method 1) is statistically better
than both the average slack method and the classical ap-
proach for the total tardiness and total flowtime criteria. It
is also very competitive for the makespan criterion. Note
that the numerical difference from the average slack method
is very small (practically insignificant), yet it is statistically
significant.

In terms of stability, the classical approach is again
the worst, but the difference is significant only for the
makespan criterion. In general, method 1 and the aver-
age slack method are very competitive. The average slack
method is better than method 1 for the makespan crite-
rion. However, method 1 is better than the average slack
method for the other two criteria (total tardiness and total
flowtime). A slightly improved performance of the average

slack method over method 1 for makespan in the stability
case can be attributed to the following fact: as stated before,
the average slack method estimates the expected makespan
(the robustness measure) as E[f (S)] = f (S0) + E[δ(S)]. The
initial makespan of any non-delay schedule (i.e., a sched-
ule that does not keep a machine idle when there is a
job waiting in the queue) is constant. Therefore, minimiz-
ing E[f (S)] = f (S0) + E[δ(S)] is equivalent to minimizing
E[δ(S)], which is estimated by the average system slack level.
As a result, the average system slack method optimizes the
robustness by maximizing the average system slack level
for the makespan criterion, which is exactly the same ap-
proach used to optimize the stability (this argument is only
valid for non-delay schedules). The average slack method
inherently optimizes the stability while minimizing the ex-
pected makespan (robustness measure), whereas method 1
does not consider stability when it is used to optimize the
robustness. However, the proposed method is better than
the average slack method when the other two performance
measures are considered.

In summary, to optimize the robustness, the average slack
method is the appropriate choice for the makespan crite-
rion (after all this is the criterion for which it is originally
developed) whereas method 1 should be recommended for
the total tardiness or total flowtime criteria. Note that the
use of the makespan criterion does not make sense in dy-
namic problems since there is no fixed job population at any
point in time in the system due to new job arrivals. Instead,
practitioners often use flowtime and tardiness-related per-
formance measures in these environments.

4.3.2. Stability
Unlike the robustness, the stability of schedules does not
depend on the regular performance metrics such as flow-
time and tardiness since it measures the deviation of the
realized schedule in terms of completion times. For that rea-
son, we solved 12 000 instances instead of 36 000 instances.
Table 11 presents the averages of the results. Again, the fig-
ures marked with a “+” sign are the worst in their group,
whereas the figures marked with a “*” sign are the best
according to paired-t tests with α = 0.05.

We make the following observations from the results.
In terms of stability, which is the primary goal in these

Table 11. Summary results for stability

Evaluation method Makespan
Total

tardiness
Total flow

time

Stability
Classical approach 1381.04+ 1159.66+ 1160.56+
Slack method 904.96 904.96 904.96
Method 1 755.52∗ 755.52∗ 755.52∗

Robustness
Classical approach 400.25∗ 3801.64∗ 3915.99∗
Slack method 495.24+ 7891.78+ 8000.26+
Method 1 425.74 5065.84 5174.91

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



78 Goren and Sabuncuoglu

experiments, the proposed method (method 1) outperforms
the other methods since it yields a significantly better per-
formance than the average slack method and the classical
approach. Hence, it is clearly the winner. When we consider
the secondary goal (robustness), however, the classical ap-
proach is significantly better than the other two methods
(the average slack method and method 1). This can be ex-
plained as follows: the robustness value of the average slack
method and method 1 deteriorate when the primary goal
is changed to optimize stability. However, the classical ap-
proach does not suffer from this deterioration, since it does
not consider stability at all. As a result, it yields a good
robustness performance. These observations also indicate
a trade-off between robustness and stability. This trade-off
is further discussed in Section 4.3.3.

4.3.3. Bicriterion approach
When considering two performance measures simultane-
ously, we minimized the objective function of “y = w ×
robustness measure + (1 − w) × stability measure,” where w

is a real number between zero and one that represents the
weight given to a particular measure. Recall that w is equal
to one (pure robustness) in Section 4.3.1 and it is equal to
zero (pure stability) in Section 4.3.2. We applied the lin-
ear combination approach used in Leon et al. (1994) to see
how the proposed SM works under their conditions. We
designed the experiments to see if it is possible to maintain
a good realized schedule performance (robustness) while
significantly increasing schedule stability when w is close to
one. We took w = 0.85 and used 0.85 robustness measure +
0.15 stability measure as the neighborhood evaluation func-
tion of the TS. Again, we included the classical approach
as a benchmark.

Table 12 presents a summary of the results (for 36 000
instances). Table 13 gives the 0.85 robustness + 0.15 stability
values.

Now we can make the following observations. In terms
of robustness, the average slack method is statistically the
worst for the makespan criterion and method 1 is the worst
for the total tardiness and total flowtime criteria. The classi-
cal approach performs the best for the makespan criterion.
For the other criteria (total tardiness and total flowtime)

Table 12. Summary table for bicriterion approach results

Evaluation method Makespan
Total

tardiness
Total flow

time

Robustness
Classical approach 400.25∗ 3801.64 3915.99
Slack method 404.36+ 3796.77 3917.34
Method 1 402.28 3823.97+ 3934.74+

Stability
Classical approach 1381.04+ 1159.66 1160.56
Slack method 1329.49 1159.41 1161.07
Method 1 853.89∗ 805.17∗ 805.40∗

Table 13. Values obtained using the composite objective function
0.85 robustness + 0.15 stability

Evaluation method Makespan
Total

tardiness
Total

flow time

Classical approach 547.37+ 3405.34 3502.67
Slack method 543.13 3401.17 3503.90
Method 1 470.02∗ 3371.15∗ 3465.34∗

the average slack method and the classical approach are
very competitive and the differences between them are not
statistically significant.

In terms of stability, method 1 performs the best. In gen-
eral, the classical approach and the average slack method
are competitive. Even though the average slack method per-
forms better than the classical approach for the makespan
and total tardiness criteria, the difference is statistically sig-
nificant only for the makespan criterion.

In short when a composite objective function (which is
the primary objective) is considered the proposed method
(method 1) performs statistically better than the average
slack and the classical approach for all three performance
measures. Both the classical approach and the average slack
method are competitive. The average slack method is bet-
ter than the classical approach for the makespan and to-
tal tardiness criteria, even though the classical approach
is better for the total flowtime criterion. The difference in
their performances is slight and it is significant for only the
makespan criterion.

The behavior of method 1 when both criteria are con-
sidered can be explained as follows. The robustness mea-
sure is not highly dependent on the sequence. An initial
sequence with a high traditional performance measure is
likely to have a high expected realized performance. This
can be confirmed by comparing the robustness measures in
Table 10. The independence from sequence is also stated by
Mehta and Uzsoy (1999) for the maximum lateness mea-
sure. Although the robustness values of method 1 and the
classical approach are very close to each other, we observe
that there is a significant difference between the stability
values. The difference in stability values suggests that the
solutions of the two methods are significantly different, but
despite this difference their expected realized performances
are close. Intuitively, there is a set of “elite” solutions with
high expected realized performance values, but their stabil-
ities differ drastically. From Tables 10–13 we can see that
the classical approach is inclined to give better robustness
values whereas method 1 is inclined to give better stabil-
ity values no matter what the primary objective. When a
composite objective is considered, the classical approach
sticks to the schedules with the best performance ignoring
stability (after all, this is what it is designed for) and the av-
erage slack method is clearly better able to generate stable
schedules rather than robust ones (see Table 11); both meth-
ods lose their competitive advantages. On the other hand,

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 79

Table 14. Robustness under method 1 (summary)

Robustness values
Evaluation

method w = 0 w = 0.85 w = 1

Makespan 425.74 402.28 400.14
Total tardiness 5065.84 3823.97 3755.19
Total flowtime 5174.91 3934.74 3873.46

method 1 has enough flexibility to scan the set of “elite”
solutions and find the most stable schedule with a good
robustness value. Tables 12 and 13 confirm this intuition.

We do not, however, claim that our proposed algorithm
is very good at handling robustness and stability together in
a multi-criterion setting. We are aware of the fact that using
the linear combinations of conflicting objective functions is
not a good approach. Previous findings of Leon et al. (1994)
and Mehta and Uzsoy (1999) suggest that robustness and
stability are conflicting objectives. The aim is only to shed
some light on the question of whether it is possible to main-
tain an acceptable level of robustness while achieving high
stability values, and to understand the nature of the conflict.
Our results show that it is possible to achieve high stabil-

Fig. 7. (a) Robustness values; and (b) stability values.

Table 15. Stability values under method 1 (summary)

Stability values
Evaluation

method w = 0 w = 0.85 w = 1.0

Makespan 755.52 853.89 1358.24
Total tardiness 755.52 805.17 815.17
Total flowtime 755.52 805.40 815.26

ity measures without sacrificing much from the robustness
level. A method which uses the estimation logic of method
1 and is capable of generating a set of non-dominated solu-
tions instead of using a linear combination may be designed
to give better results.

We further elaborate on the performance of method 1 for
varying values of w. Our experimental results indicate that
method 1 performs generally better than the other methods
when the concern is to minimize (w × robustness + (1 −
w) × stability) measure, for w = 0, w = 0.85 and w = 1.0
(Sections 4.3.1, 4.3.2 and 4.3.3). Tables 14 and 15, and Fig.
7 summarize the experimental results.

As seen in Fig. 7(a) for the makespan criterion, the re-
alized performance (robustness) is fairly constant, (i.e., the

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



80 Goren and Sabuncuoglu

Fig. 8. Continuous and periodic scheduling (see Sabuncuoglu and Goren, 2005).

robustness plot is nearly horizontal). From Fig. 7(b) it can
be seen that the stability plot is linear with a slight slope
up to w = 0.85, after which it abruptly increases. For the
other two performance measures (total tardiness and total
flowtime), we see that the plot for both robustness and sta-
bility are nearly linear. That is, as w increases, the robustness
improves gradually, whereas the stability gradually deteri-
orates. The absolute value of the slope of the robustness
line (≈1300) is much greater than the slope of the stability
line (≈60). We see that the robustness is more sensitive to
changes in w. Moreover, the lines are nearly parallel to each
other. This indicates that the trade-off between the robust-
ness and the stability is independent of the performance
measure in use.

From the above two observations, we conclude that prac-
titioners should place emphasis on the stability, rather than
the robustness for the makespan criterion. For the other
two performance measures (i.e., total tardiness and total
flowtime) there is a linear trade-off (e.g., if we increase w

by �w, we gain 1300�w units of the robustness, whereas
we lose 60�w units of the stability for our problem set).
We can say that practitioners should pay more attention to
robustness than stability when the performance measure is
the total tardiness or total flowtime, on seeing too small
an improvement in stability associated with a substantial
sacrifice from robustness.

4.4. Evaluation of method 2

We compare the performance of method 2, from the view-
point of the robustness, to the average system slack and
method 1. We also use the classical approach as a bench-
mark. As stated in Section 3.4.2, method 2 assumes that the
machine experiences a single breakdown in a given schedul-
ing period. Because of this restrictive assumption, we use
a continuous scheduling scheme under which the entire

system is rescheduled from scratch after every disruption
(machine breakdown in our case), rather than a periodic
scheduling scheme in which the system is rescheduled pe-
riodically. In Fig. 8, the heads of the arrows denote the
scheduling points in these two different policies.

We excluded 70-job and 90-job problems due to the high
computational burden of the continuous rescheduling ap-
proach. We generated five instances for each of the remain-
ing 480 possible problem classes (see Tables 8 and 9), leading
to 2400 experimental design points. We ran our TS algo-
rithm with four different evaluation functions (the clas-
sical approach, the slack method, method 1 and method
2) for three performance measures (makespan, total tar-
diness and total flow time). This resulted in 2400 × 4 ×
3 = 28 800 runs. After a machine breakdown, the remain-
ing jobs were rescheduled from scratch. We recorded the
estimated performance measures, the realized performance
measures, and the stability measure (total absolute job com-
pletion time difference). Table 16 presents a summary of

Table 16. Summary table for continuous scheduling results
(robustness)

Evaluation
method Makespan

Total
tardiness

Total flow
time

Robustness
Classical approach 237.89 1250.31 1315.24
Slack method 237.29∗ 1249.75 1315.05∗
Method 1 239.90 1339.10+ 1404.70
Method 2 242.47+ 1291.99 1324.86

Stability
Classical approach 374.65 378.99 378.31
Slack method 363.14 372.91∗ 375.76∗
Method 1 476.08 432.52 436.64+
Method 2 1188.80+ 412.95 378.44

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 81

the results. Note that the stability values are also given even
though our objective is to optimize the robustness. We com-
pared the best two methods with each other for each group
of Table 16. If the difference is statistically significant ac-
cording to a paired-t test with α = 0.05, the figure that
summarizes the performance of that method is marked with
a “*” sign. Similarly, if the difference between the worst two
methods is statistically significant, we mark the correspond-
ing figure with a “+” sign.

After careful analysis of the presented results we can
make the following observations. In terms of robustness,
the numerical values are very close to each other but the
differences are not statistically significant for the makespan
criterion. Method 2 yields the numerically worst results.
The average slack method performs the best. This is some-
what counterintuitive because one expects a continuous
rescheduling scheme to yield the best results in terms of ro-
bustness, since it is able to make changes after each break-
down. We also observe similar results for the total tardi-
ness and total flowtime criteria. The good performance
of method 1 also deteriorates significantly in a continu-
ous scheduling scheme and it yields the numerically worst
results for the total tardiness and total flowtime criteria,
where the difference is also statistically significant for the
total tardiness case. The inferior performance of method
1 can be explained as follows: method 1 considers the
possibility of future breakdowns and generates the initial
schedule accordingly. However, according to the continu-
ous scheduling scheme we stop the execution of this sched-
ule as soon as the first breakdown event occurs. This pre-
mature interruption of the schedule adversely affects the
performance of method 1. We conclude that method 1 is
suitable for a periodic scheduling scheme. Our results also
indicate that method 2 does not perform well in the con-
tinuous scheduling case due to the single breakdown as-
sumption. Leon et al. (1994) have already reported a similar
result for the makespan criterion under a job shop environ-
ment in a periodic scheduling context. Our results indicate
that this result is also valid for total tardiness and total
flowtime criteria, even if a continuous scheduling scheme is
used.

In terms of stability, the average slack method yields the
best results for all three criteria. The differences are statis-
tically significant for the total tardiness and total flowtime
criteria.

In conclusion, the average slack method is suitable for
a continuous scheduling approach. On the other hand,
scheduling after each machine breakdown creates system
nervousness. Thus, there is a need to balance robust-
ness gains and stability loses in the continuous schedul-
ing scheme. This trade-off should be investigated in future
research studies. Note that, as Church and Uzsoy (1992)
discuss, the benefit of extra scheduling diminishes rapidly.
We believe that in the adaptive scheduling approach (where
a scheduling process is triggered after a certain amount of
deviation from the initial schedule occurs), the proposed

Table 17. Average CPU time required by evaluators (periodic
scheduling)

Number of jobs Evaluator
Average CPU

time (seconds)

10 Classical 0.017
Average slack 0.040
Method 1 0.033

30 Classical 0.415
Average slack 1.168
Method 1 0.824

50 Classical 2.301
Average slack 7.175
Method 1 4.316

70 Classical 7.623
Average slack 26.883
Method 1 13.714

90 Classical 18.271
Average slack 75.270
Method 1 32.329

methods, especially method 1, can maintain its high perfor-
mance. This topic deserves further investigation.

4.5. Computational times

We recorded the solution times in terms of CPU time in
seconds for each problem. These measurements were per-
formed by utilizing the clock() function of the standard
C library. The computational experiments were performed
on a Sun4u Sparc Ultra-Enterprise Sun Workstation run-
ning under SunOS 5.7 with a 3 GB memory. The machine
is, however, not solely dedicated to our computational tests.
In fact, the average CPU capacity dedicated to our tests was
about 1% throughout the experiment. Tables 17 and 18 and
Figs. 9 and 10 present the averages of the solution times.

It can be observed that the smallest computational ef-
fort is required by the classical approach and the greatest

Table 18. Average CPU time required by evaluators (continuous
scheduling)

Number of jobs Evaluator
Average CPU

time (seconds)

10 Classical 0.008
Average slack 0.016
Method 1 0.029
Method 2 0.090

30 Classical 0.394
Average slack 1.175
Method 1 0.976
Method 2 7.337

50 Classical 2.613
Average slack 10.213
Method 1 5.759
Method 2 90.339

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



82 Goren and Sabuncuoglu

Fig. 9. Average CPU time of evaluators (periodic scheduling).

burden is incurred by the average slack method among the
periodical scheduling methods. For the continuous schedul-
ing schemes, method 2 requires the most amount of time
whereas the classical approach is associated with the small-
est computational effort.

5. Concluding remarks

In this paper, we studied robustness and stability in a
scheduling context. Specifically, we developed two new
SMs. We also embed these SMs into a TS algorithm so
as to be able to generate robust and stable schedules for a
single machine subject to random machine breakdowns.

We compared method 1 with the average slack method
and the classical approach in a periodic scheduling scheme
where the response to machine breakdowns is to right shift
the remaining jobs. We first compared the alternative ap-
proaches from the viewpoint of robustness with stability be-
ing considered to be a secondary goal. The results indicated
that the classical approach is not very good, and method 1 is
better than the average slack method for the total tardiness
and total flowtime criteria. As for the makespen criterion,
although the difference between method 1 and the average
slack method is slight, it is, however, statistically significant.

Fig. 10. Average CPU time of evaluators (continuous scheduling).

Method 1 also yields significantly improved stable sched-
ules compared to the average slack method for the total
tardiness and total flowtime criteria.

Next, we compared the methods from the viewpoint of
stability, considering robustness as a secondary objective.
We observed that method 1 generates more stable sched-
ules than others for all three performance measures. We
also observed that the classical approach does not perform
well in terms of stability (statistically the worst alternative),
however, it is statistically the best alternative in terms of
robustness.

Then, we examined whether it is possible to maintain high
robustness levels and improve stability when we use a bicri-
terion approach. We used 0.85 robustness + 0.15 stability
as the neighborhood evaluation function in the proposed
algorithm. We observed that the classical approach is gen-
erally better in terms of robustness and the average slack
method is generally better in terms of stability although
method 1 is competitive for both robustness and stability.
However, we observed that when we evaluated the compos-
ite objection function, which considers both robustness and
stability simultaneously, method 1 is better. In addition we
found that it is possible to maintain high robustness levels
while significantly improving stability by means of this bi-
criterion approach, even when the weight of the stability is
as small as 0.15.

Then we analyzed the performance of method 1 with
varying weights (w) given to the robustness. We observed
that for the makespan criterion, practitioners should place
more emphasis on stability because robustness is insensitive
to the value of w. We also observed that there is a linear
trade-off between robustness and stability (i.e., improving
one deteriorates the other). Our experimental results also
show that stability is less sensitive to changes in w than
robustness (i.e., the absolute value of the slope of the line
that plots stability values against varying values of w is less
than that of robustness).

Finally, we compared the performance of method 2 with
the other alternatives (the classical approach, the average
slack method and method 1) from the viewpoint of robust-
ness, taking stability as the secondary goal. Since method
2 assumes that the machine only breaks down once during
a scheduling period, we used it in a continuous schedul-
ing environment where the whole system is rescheduled
from scratch after a machine breakdown. The average slack
method performed well in such an environment.

We completed this study under a static environment with
non-zero job arrival times (can be called semi-dynamic).
Actually, we do not know the performance of the proposed
methods in a true dynamic environment. Also, we do not
know the stability performance of the proposed methods in
a continuous scheduling environment. These topics should
be investigated in future studies. Furthermore, the use of
the linear combination approach for multi-objective prob-
lems leaves out a lot of non-dominated solutions when deal-
ing with a scheduling problem. Hence, a more thorough

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 



Robustness and stability measures for scheduling single machines 83

study can be conducted when considering stability and ro-
bustness together, such as applying an epsilon-constraint
approach.

References

Aytug, H., Lawley, M., McKay, K., Mohan, S. and Uzsoy, R. (2005)
Executing production schedules in the face of uncertainties: A re-
view and some future directions. European Journal of Operational
Research, 161(1), 86–110.

Church, L.K. and Uzsoy, R. (1992) Analysis of periodic and event-
driven rescheduling policies in dynamic shops. International Journal
of Computer Integrated Manufacturing, 5, 153–163.

Daniels, R.L. and Kouvelis, P. (1995) Robust scheduling to hedge against
processing time uncertainty in single-stage production. Management
Science, 41(2), 363–376.

Davenport, A.J. and Beck, J.C. (2000) A survey of techniques
for scheduling with uncertainty. available at http://eil.utoronto.
ca/profiles/chris/chris.papers.html, accessed September 2003.

Herroelen, W. and Leus E. (2005) Project scheduling under uncertainty:
survey and research potentials. European Journal of Operational Re-
search, 165(2), 289–306.

Kouvelis, P. and Yu, G. (1997) Robust Discrete Optimization and its Ap-
plications, Kluwer, Boston, MA.

Kutanoglu, E. and Sabuncuoglu, I. (2001) Experimental investigation of
iterative simulation-based scheduling in a dynamic and stochastic
job shop. Journal of Manufacturing Systems, 20(4), 264–279.

Law, A.M. and Kelton, W.D. (2000) Simulation Modeling and Analysis,
3rd ed., McGraw-Hill, Singapore.

Leon, V.J., Wu, S.D. and Storer, R.H. (1994) Robustness measures and
robust scheduling for job shops. IIE Transactions, 26(5), 32–43.

Mehta, S.V. and Uzsoy, R. (1998) Predictable scheduling of a job shop
subject to breakdowns. IEEE Transactions on Robotics and Automa-
tion, 14(3), 365–378.

Mehta, S.V. and Uzsoy, R. (1999) Predictable scheduling of a single ma-
chine subject to breakdowns. International Journal of Computer In-
tegrated Manufacturing, 12(1), 15–38.

O’Donovan, R., Uzsoy, R. and McKay, K.N. (1999) Predictable
scheduling of a single machine with breakdowns and sensitive
jobs. International Journal of Production Research, 37(18), 4217–
4233.

Pinedo, M. (1995). Scheduling: Theory, Algorithms, and Systems, Prentice-
Hall, Englewood Cliffs, NJ.

Sabuncuoglu, I. and Goren, S. (2005) A review of reactive scheduling re-
search: proactive scheduling and new robustness and stability mea-
sures. Technical Report, IE/OR 2005-02, Department of Industrial
Engineering, Bilkent University, Ankara.

Sotskov, Y., Sotskova, N.Y. and Werner, F. (1997) Stability of an optimal
schedule in a job shop. Omega: the International Journal of Manage-
ment Science, 25(4) 397–414.

Wu, S.D., Byeon, E. and Storer, R.H. (1999) A graph-theoretic decom-
position of the job shop scheduling problem to achieve scheduling
robustness. Operations Research, 47(1), 113–124.

Wu, S.D., Storer, R.N. and Chang, P. (1993) One-machine rescheduling
heuristics with efficiency and stability as criteria. Computers & Op-
erations Research, 20(1), 1–14.

Biographies

Selcuk Goren is a Ph.D. candidate in the Department of Industrial Engi-
neering at Bilkent University. He received his B.S. and M.S. degrees from
Bilkent University. His primary research interest is scheduling under un-
certainty.

Ihsan Sabuncuoglu is a Professor of Industrial Engineering at Bilkent
University. He received B.S. and M.S. degrees in Industrial Engineer-
ing from the Middle East Technical University and a Ph.D. degree in
Industrial Engineering from Wichita State University. Dr. Sabuncuoglu
teaches and conducts research in the areas of scheduling, production
management, simulation, and manufacturing systems. He has published
papers in IIE Transactions, Decision Sciences, Simulation, International
Journal of Production Research, International Journal of Flexible Manu-
facturing Systems, International Journal of Computer Integrated Manu-
facturing, European Journal of Operational Research, Production Planning
and Control, Journal of the Operational Research Society, Computers and
Operations Research, Computers and Industrial Engineering, OMEGA,
Journal of Intelligent Manufacturing, and International Journal of Pro-
duction Economics. He is on the Editorial board of International Jour-
nal of Operations and Quantitative Management and also the Journal of
Operations Management. He is an associate member of Institute of In-
dustrial Engineering, Institute of Simulation, and Institute of Operations
Research and Management Science.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

35
 1

2 
N

ov
em

be
r 

20
17

 


