92 research outputs found

    Low power digital signal processing

    Get PDF

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    Power and memory optimization techniques in embedded systems design

    Get PDF
    Embedded systems incur tight constraints on power consumption and memory (which impacts size) in addition to other constraints such as weight and cost. This dissertation addresses two key factors in embedded system design, namely minimization of power consumption and memory requirement. The first part of this dissertation considers the problem of optimizing power consumption (peak power as well as average power) in high-level synthesis (HLS). The second part deals with memory usage optimization mainly targeting a restricted class of computations expressed as loops accessing large data arrays that arises in scientific computing such as the coupled cluster and configuration interaction methods in quantum chemistry. First, a mixed-integer linear programming (MILP) formulation is presented for the scheduling problem in HLS using multiple supply-voltages in order to optimize peak power as well as average power and energy consumptions. For large designs, the MILP formulation may not be suitable; therefore, a two-phase iterative linear programming formulation and a power-resource-saving heuristic are presented to solve this problem. In addition, a new heuristic that uses an adaptation of the well-known force-directed scheduling heuristic is presented for the same problem. Next, this work considers the problem of module selection simultaneously with scheduling for minimizing peak and average power consumption. Then, the problem of power consumption (peak and average) in synchronous sequential designs is addressed. A solution integrating basic retiming and multiple-voltage scheduling (MVS) is proposed and evaluated. A two-stage algorithm namely power-oriented retiming followed by a MVS technique for peak and/or average power optimization is presented. Memory optimization is addressed next. Dynamic memory usage optimization during the evaluation of a special class of interdependent large data arrays is considered. Finally, this dissertation develops a novel integer-linear programming (ILP) formulation for static memory optimization using the well-known fusion technique by encoding of legality rules for loop fusion of a special class of loops using logical constraints over binary decision variables and a highly effective approximation of memory usage

    Metoda projektovanja namenskih programabilnih hardverskih akceleratora

    Get PDF
    Namenski računarski sistemi se najčesće projektuju tako da mogu da podrže izvršavanje većeg broja željenih aplikacija. Za postizanje što veće efikasnosti, preporučuje se korišćenje specijalizovanih procesora Application Specific Instruction Set Processors–ASIPs, na kojima se izvršavanje programskih instrukcija obavlja u za to projektovanim i nezavisnimhardverskim blokovima (akceleratorima). Glavni razlog za postojanje nezavisnih akceleratora jeste postizanjemaksimalnog ubrzanja izvršavanja instrukcija. Me ¯ dutim, ovakav pristup podrazumeva da je za svaki od blokova potrebno projektovati integrisano (ASIC) kolo, čime se bitno povećava ukupna površina procesora. Metod za smanjenje ukupne površine jeste primena DatapathMerging tehnike na dijagrame toka podataka ulaznih aplikacija. Kao rezultat, dobija se jedan programabilni hardverski akcelerator, sa mogućnosću izvršavanja svih željenih instrukcija. Međutim, ovo ima negativne posledice na efikasnost sistema. često se zanemaruje činjenica da, usled veoma ograničene fleksibilnosti ASIC hardverskih akceleratora, specijalizovani procesori imaju i drugih nedostataka. Naime, u slučaju izmena, ili prosto nadogradnje, specifikacije procesora u završnimfazama projektovanja, neizbežna su velika kašnjenja i dodatni troškovi promene dizajna. U ovoj tezi je pokazano da zahtevi za fleksibilnošću i efikasnošću ne moraju biti međusobno isključivi. Demonstrirano je je da je moguce uneti ograničeni nivo fleksibilnosti hardvera tokom dizajn procesa, tako da dobijeni hardverski akcelerator može da izvršava ne samo aplikacije definisane na samom početku projektovanja, već i druge aplikacije, pod uslovom da one pripadaju istom domenu. Drugim rečima, u tezi je prezentovana metoda projektovanja fleksibilnih namenskih hardverskih akceleratora. Eksperimentalnom evaluacijom pokazano je da su tako dobijeni akceleratori u većini slučajeva samo do 2 x veće površine ili 2 x većeg kašnjenja od akceleratora dobijenih primenom DatapathMerging metode, koja pritom ne pruža ni malo dodatne fleksibilnosti.Typically, embedded systems are designed to support a limited set of target applications. To efficiently execute those applications, they may employ Application Specific Instruction Set Processors (ASIPs) enriched with carefully designed Instructions Set Extension (ISEs) implemented in dedicated hardware blocks. The primary goal when designing ISEs is efficiency, i.e. the highest possible speedup, which implies synthesizing all critical computational kernels of the application dataflow graphs as an Application Specific Integrated Circuit (ASICs). Yet, this can lead to high on-chip area dedicated solely to ISEs. One existing approach to decrease this area by paying a reasonable price of decreased efficiency is to perform datapath merging on input dataflow graphs (DFGs) prior to generating the ASIC. It is often neglected that even higher costs can be accidentally incurred due to the lack of flexibility of such ISEs. Namely, if late design changes or specification upgrades happen, significant time-to-market delays and nonrecurrent costs for redesigning the ISEs and the corresponding ASIPs become inevitable. This thesis shows that flexibility and efficiency are not mutually exclusive. It demonstrates that it is possible to introduce a limited amount of hardware flexibility during the design process, such that the resulting datapath is in fact reconfigurable and thus can execute not only the applications known at design time, but also other applications belonging to the same application-domain. In other words, it proposes a methodology for designing domain-specific reconfigurable arrays out of a limited set of input applications. The experimental results show that resulting arrays are usually around 2£ larger and 2£ slower than ISEs synthesized using datapath merging, which have practically null flexibility beyond the design set of DFGs

    High-level synthesis of dataflow programs for heterogeneous platforms:design flow tools and design space exploration

    Get PDF
    The growing complexity of digital signal processing applications implemented in programmable logic and embedded processors make a compelling case the use of high-level methodologies for their design and implementation. Past research has shown that for complex systems, raising the level of abstraction does not necessarily come at a cost in terms of performance or resource requirements. As a matter of fact, high-level synthesis tools supporting such a high abstraction often rival and on occasion improve low-level design. In spite of these successes, high-level synthesis still relies on programs being written with the target and often the synthesis process, in mind. In other words, imperative languages such as C or C++, most used languages for high-level synthesis, are either modified or a constrained subset is used to make parallelism explicit. In addition, a proper behavioral description that permits the unification for hardware and software design is still an elusive goal for heterogeneous platforms. A promising behavioral description capable of expressing both sequential and parallel application is RVC-CAL. RVC-CAL is a dataflow programming language that permits design abstraction, modularity, and portability. The objective of this thesis is to provide a high-level synthesis solution for RVC-CAL dataflow programs and provide an RVC-CAL design flow for heterogeneous platforms. The main contributions of this thesis are: a high-level synthesis infrastructure that supports the full specification of RVC-CAL, an action selection strategy for supporting parallel read and writes of list of tokens in hardware synthesis, a dynamic fine-grain profiling for synthesized dataflow programs, an iterative design space exploration framework that permits the performance estimation, analysis, and optimization of heterogeneous platforms, and finally a clock gating strategy that reduces the dynamic power consumption. Experimental results on all stages of the provided design flow, demonstrate the capabilities of the tools for high-level synthesis, software hardware Co-Design, design space exploration, and power optimization for reconfigurable hardware. Consequently, this work proves the viability of complex systems design and implementation using dataflow programming, not only for system-level simulation but real heterogeneous implementations

    Interconnect-aware scheduling and resource allocation for high-level synthesis

    Get PDF
    A high-level architectural synthesis can be described as the process of transforming a behavioral description into a structural description. The scheduling, processor allocation, and register binding are the most important tasks in the high-level synthesis. In the past, it has been possible to focus simply on the delays of the processing units in a high-level synthesis and neglect the wire delays, since the overall delay of a digital system was dominated by the delay of the logic gates. However, with the process technology being scaled down to deep-submicron region, the global interconnect delays can no longer be neglected in VLSI designs. It is, therefore, imperative to include in high-level synthesis the delays on wires and buses used to communicate data between the processing units i.e., inter-processor communication delays. Furthermore, the way the process of register binding is performed also has an impact on the complexity of the interconnect paths required to transfer data between the processing units. Hence, the register binding can no longer ignore its effect on the wiring complexity of resulting designs. The objective of this thesis is to develop techniques for an interconnect-aware high-level synthesis. Under this common theme, this thesis has two distinct focuses. The first focus of this thesis is on developing a new high-level synthesis framework while taking the inter-processor communication delay into consideration. The second focus of this thesis is on the developing of a technique to carry out the register binding and a scheme to reduce the number of registers while taking the complexity of the interconnects into consideration. A novel scheduling and processor allocation technique taking into consideration the inter-processor communication delay is presented. In the proposed technique, the communication delay between a pair of nodes of different types is treated as a non-computing node, whereas that between a pair of nodes of the same type is taken into account by re-adjusting the firing times of the appropriate nodes of the data flow graph (DFG). Another technique for the integration of the placement process into the scheduling and processor allocation in order to determine the actual positions of the processing units in the placement space is developed. The proposed technique makes use of a hybrid library of functional units, which includes both operation-specific and reconfigurable multiple-operation functional units, to maximize the local data transfer. A technique for register binding that results in a reduced number of registers and interconnects is developed by appropriately dividing the lifetime of a token into multiple segments and then binding those having the same source and/or destination into a single register. A node regeneration scheme, in which the idle processing units are utilized to generate multiple copies of the nodes in a given DFG, is devised to reduce the number of registers and interconnects even further. The techniques and schemes developed in this thesis are applied to the synthesis of architectures for a number of benchmark DSP problems and compared with various other commonly used synthesis methods in order to assess their effectiveness. It is shown that the proposed techniques provide superior performance in terms of the iteration period, placement area, and the numbers of the processing units, registers and interconnects in the synthesized architectur

    Design and implementation of an FPGA-based piecewise affine Kalman Filter for Cyber-Physical Systems

    Get PDF
    The Kalman Filter is a robust tool often employed as a process observer in Cyber-Physical Systems. However, in the general case the high computational cost, especially for large plant models or fast sample rates, makes it an impractical choice for typical low-power microcontrollers. Furthermore, although industry trends towards tighter integration are supported by powerful high-end System-on-Chip software processors, this consolidation complicates the ability for a controls engineer to verify correct behavior of the system under all conditions, which is important in safety-critical systems and systems demanding a high degree of reliability. Dedicated Field-Programmable Gate Array (FPGA) hardware can provide application speedup, design partitioning in mixed-criticality systems, and fully deterministic timing, which helps ensure a control system behaves identically to offline simulations. This dissertation presents a new design methodology which can be leveraged to yield such benefits. Although this dissertation focuses on the Kalman Filter, the method is general enough to be extended to other compute-intensive algorithms which rely on state-space modeling. For the first part, the core idea is that decomposing the Kalman Filter algorithm from a strictly linear perspective leads to a more generalized architecture with increased performance compared to approaches which focus on nonlinear filters (e.g. Extended Kalman Filter). Our contribution is a broadly-applicable hardware-software architecture for a linear Kalman Filter whose operating domain is extended through online model swapping. A supporting application-agnostic performance and resource analysis is provided. For the second part, we identify limitations of the mixed hardware-software method and demonstrate how to leverage hardware-based region identification in order to develop a strictly hardware-only Kalman Filter which maintains a large operating domain. The resulting hardware processor is partitioned from low criticality software tasks running on a supervising software processor and enables vastly simplified timing validation

    Design and resource management of reconfigurable multiprocessors for data-parallel applications

    Get PDF
    FPGA (Field-Programmable Gate Array)-based custom reconfigurable computing machines have established themselves as low-cost and low-risk alternatives to ASIC (Application-Specific Integrated Circuit) implementations and general-purpose microprocessors in accelerating a wide range of computation-intensive applications. Most often they are Application Specific Programmable Circuiits (ASPCs), which are developer programmable instead of user programmable. The major disadvantages of ASPCs are minimal programmability, and significant time and energy overheads caused by required hardware reconfiguration when the problem size outnumbers the available reconfigurable resources; these problems are expected to become more serious with increases in the FPGA chip size. On the other hand, dominant high-performance computing systems, such as PC clusters and SMPs (Symmetric Multiprocessors), suffer from high communication latencies and/or scalability problems. This research introduces low-cost, user-programmable and reconfigurable MultiProcessor-on-a-Programmable-Chip (MPoPC) systems for high-performance, low-cost computing. It also proposes a relevant resource management framework that deals with performance, power consumption and energy issues. These semi-customized systems reduce significantly runtime device reconfiguration by employing userprogrammable processing elements that are reusable for different tasks in large, complex applications. For the sake of illustration, two different types of MPoPCs with hardware FPUs (floating-point units) are designed and implemented for credible performance evaluation and modeling: the coarse-grain MIMD (Multiple-Instruction, Multiple-Data) CG-MPoPC machine based on a processor IP (Intellectual Property) core and the mixed-mode (MIMD, SIMD or M-SIMD) variant-grain HERA (HEterogeneous Reconfigurable Architecture) machine. In addition to alleviating the above difficulties, MPoPCs can offer several performance and energy advantages to our data-parallel applications when compared to ASPCs; they are simpler and more scalable, and have less verification time and cost. Various common computation-intensive benchmark algorithms, such as matrix-matrix multiplication (MMM) and LU factorization, are studied and their parallel solutions are shown for the two MPoPCs. The performance is evaluated with large sparse real-world matrices primarily from power engineering. We expect even further performance gains on MPoPCs in the near future by employing ever improving FPGAs. The innovative nature of this work has the potential to guide research in this arising field of high-performance, low-cost reconfigurable computing. The largest advantage of reconfigurable logic lies in its large degree of hardware customization and reconfiguration which allows reusing the resources to match the computation and communication needs of applications. Therefore, a major effort in the presented design methodology for mixed-mode MPoPCs, like HERA, is devoted to effective resource management. A two-phase approach is applied. A mixed-mode weighted Task Flow Graph (w-TFG) is first constructed for any given application, where tasks are classified according to their most appropriate computing mode (e.g., SIMD or MIMD). At compile time, an architecture is customized and synthesized for the TFG using an Integer Linear Programming (ILP) formulation and a parameterized hardware component library. Various run-time scheduling schemes with different performanceenergy objectives are proposed. A system-level energy model for HERA, which is based on low-level implementation data and run-time statistics, is proposed to guide performance-energy trade-off decisions. A parallel power flow analysis technique based on Newton\u27s method is proposed and employed to verify the methodology

    Cross-Layer Rapid Prototyping and Synthesis of Application-Specific and Reconfigurable Many-accelerator Platforms

    Get PDF
    Technological advances of recent years laid the foundation consolidation of informatisationof society, impacting on economic, political, cultural and socialdimensions. At the peak of this realization, today, more and more everydaydevices are connected to the web, giving the term ”Internet of Things”. The futureholds the full connection and interaction of IT and communications systemsto the natural world, delimiting the transition to natural cyber systems and offeringmeta-services in the physical world, such as personalized medical care, autonomoustransportation, smart energy cities etc. . Outlining the necessities of this dynamicallyevolving market, computer engineers are required to implement computingplatforms that incorporate both increased systemic complexity and also cover awide range of meta-characteristics, such as the cost and design time, reliabilityand reuse, which are prescribed by a conflicting set of functional, technical andconstruction constraints. This thesis aims to address these design challenges bydeveloping methodologies and hardware/software co-design tools that enable therapid implementation and efficient synthesis of architectural solutions, which specifyoperating meta-features required by the modern market. Specifically, this thesispresents a) methodologies to accelerate the design flow for both reconfigurableand application-specific architectures, b) coarse-grain heterogeneous architecturaltemplates for processing and communication acceleration and c) efficient multiobjectivesynthesis techniques both at high abstraction level of programming andphysical silicon level.Regarding to the acceleration of the design flow, the proposed methodologyemploys virtual platforms in order to hide architectural details and drastically reducesimulation time. An extension of this framework introduces the systemicco-simulation using reconfigurable acceleration platforms as co-emulation intermediateplatforms. Thus, the development cycle of a hardware/software productis accelerated by moving from a vertical serial flow to a circular interactive loop.Moreover the simulation capabilities are enriched with efficient detection and correctiontechniques of design errors, as well as control methods of performancemetrics of the system according to the desired specifications, during all phasesof the system development. In orthogonal correlation with the aforementionedmethodological framework, a new architectural template is proposed, aiming atbridging the gap between design complexity and technological productivity usingspecialized hardware accelerators in heterogeneous systems-on-chip and networkon-chip platforms. It is presented a novel co-design methodology for the hardwareaccelerators and their respective programming software, including the tasks allocationto the available resources of the system/network. The introduced frameworkprovides implementation techniques for the accelerators, using either conventionalprogramming flows with hardware description language or abstract programmingmodel flows, using techniques from high-level synthesis. In any case, it is providedthe option of systemic measures optimization, such as the processing speed,the throughput, the reliability, the power consumption and the design silicon area.Finally, on addressing the increased complexity in design tools of reconfigurablesystems, there are proposed novel multi-objective optimization evolutionary algo-rithms which exploit the modern multicore processors and the coarse-grain natureof multithreaded programming environments (e.g. OpenMP) in order to reduce theplacement time, while by simultaneously grouping the applications based on theirintrinsic characteristics, the effectively explore the design space effectively.The efficiency of the proposed architectural templates, design tools and methodologyflows is evaluated in relation to the existing edge solutions with applicationsfrom typical computing domains, such as digital signal processing, multimedia andarithmetic complexity, as well as from systemic heterogeneous environments, suchas a computer vision system for autonomous robotic space navigation and manyacceleratorsystems for HPC and workstations/datacenters. The results strengthenthe belief of the author, that this thesis provides competitive expertise to addresscomplex modern - and projected future - design challenges.Οι τεχνολογικές εξελίξεις των τελευταίων ετών έθεσαν τα θεμέλια εδραίωσης της πληροφοριοποίησης της κοινωνίας, επιδρώντας σε οικονομικές,πολιτικές, πολιτιστικές και κοινωνικές διαστάσεις. Στο απόγειο αυτής τη ςπραγμάτωσης, σήμερα, ολοένα και περισσότερες καθημερινές συσκευές συνδέονται στο παγκόσμιο ιστό, αποδίδοντας τον όρο «Ίντερνετ των πραγμάτων».Το μέλλον επιφυλάσσει την πλήρη σύνδεση και αλληλεπίδραση των συστημάτων πληροφορικής και επικοινωνιών με τον φυσικό κόσμο, οριοθετώντας τη μετάβαση στα συστήματα φυσικού κυβερνοχώρου και προσφέροντας μεταυπηρεσίες στον φυσικό κόσμο όπως προσωποποιημένη ιατρική περίθαλψη, αυτόνομες μετακινήσεις, έξυπνες ενεργειακά πόλεις κ.α. . Σκιαγραφώντας τις ανάγκες αυτής της δυναμικά εξελισσόμενης αγοράς, οι μηχανικοί υπολογιστών καλούνται να υλοποιήσουν υπολογιστικές πλατφόρμες που αφενός ενσωματώνουν αυξημένη συστημική πολυπλοκότητα και αφετέρου καλύπτουν ένα ευρύ φάσμα μεταχαρακτηριστικών, όπως λ.χ. το κόστος σχεδιασμού, ο χρόνος σχεδιασμού, η αξιοπιστία και η επαναχρησιμοποίηση, τα οποία προδιαγράφονται από ένα αντικρουόμενο σύνολο λειτουργικών, τεχνολογικών και κατασκευαστικών περιορισμών. Η παρούσα διατριβή στοχεύει στην αντιμετώπιση των παραπάνω σχεδιαστικών προκλήσεων, μέσω της ανάπτυξης μεθοδολογιών και εργαλείων συνσχεδίασης υλικού/λογισμικού που επιτρέπουν την ταχεία υλοποίηση καθώς και την αποδοτική σύνθεση αρχιτεκτονικών λύσεων, οι οποίες προδιαγράφουν τα μετα-χαρακτηριστικά λειτουργίας που απαιτεί η σύγχρονη αγορά. Συγκεκριμένα, στα πλαίσια αυτής της διατριβής, παρουσιάζονται α) μεθοδολογίες επιτάχυνσης της ροής σχεδιασμού τόσο για επαναδιαμορφούμενες όσο και για εξειδικευμένες αρχιτεκτονικές, β) ετερογενή αδρομερή αρχιτεκτονικά πρότυπα επιτάχυνσης επεξεργασίας και επικοινωνίας και γ) αποδοτικές τεχνικές πολυκριτηριακής σύνθεσης τόσο σε υψηλό αφαιρετικό επίπεδο προγραμματισμού,όσο και σε φυσικό επίπεδο πυριτίου.Αναφορικά προς την επιτάχυνση της ροής σχεδιασμού, προτείνεται μια μεθοδολογία που χρησιμοποιεί εικονικές πλατφόρμες, οι οποίες αφαιρώντας τις αρχιτεκτονικές λεπτομέρειες καταφέρνουν να μειώσουν σημαντικά το χρόνο εξομοίωσης. Παράλληλα, εισηγείται η συστημική συν-εξομοίωση με τη χρήση επαναδιαμορφούμενων πλατφορμών, ως μέσων επιτάχυνσης. Με αυτόν τον τρόπο, ο κύκλος ανάπτυξης ενός προϊόντος υλικού, μετατεθειμένος από την κάθετη σειριακή ροή σε έναν κυκλικό αλληλεπιδραστικό βρόγχο, καθίσταται ταχύτερος, ενώ οι δυνατότητες προσομοίωσης εμπλουτίζονται με αποδοτικότερες μεθόδους εντοπισμού και διόρθωσης σχεδιαστικών σφαλμάτων, καθώς και μεθόδους ελέγχου των μετρικών απόδοσης του συστήματος σε σχέση με τις επιθυμητές προδιαγραφές, σε όλες τις φάσεις ανάπτυξης του συστήματος. Σε ορθογώνια συνάφεια με το προαναφερθέν μεθοδολογικό πλαίσιο, προτείνονται νέα αρχιτεκτονικά πρότυπα που στοχεύουν στη γεφύρωση του χάσματος μεταξύ της σχεδιαστικής πολυπλοκότητας και της τεχνολογικής παραγωγικότητας, με τη χρήση συστημάτων εξειδικευμένων επιταχυντών υλικού σε ετερογενή συστήματα-σε-ψηφίδα καθώς και δίκτυα-σε-ψηφίδα. Παρουσιάζεται κατάλληλη μεθοδολογία συν-σχεδίασης των επιταχυντών υλικού και του λογισμικού προκειμένου να αποφασισθεί η κατανομή των εργασιών στους διαθέσιμους πόρους του συστήματος/δικτύου. Το μεθοδολογικό πλαίσιο προβλέπει την υλοποίηση των επιταχυντών είτε με συμβατικές μεθόδους προγραμματισμού σε γλώσσα περιγραφής υλικού είτε με αφαιρετικό προγραμματιστικό μοντέλο με τη χρήση τεχνικών υψηλού επιπέδου σύνθεσης. Σε κάθε περίπτωση, δίδεται η δυνατότητα στο σχεδιαστή για βελτιστοποίηση συστημικών μετρικών, όπως η ταχύτητα επεξεργασίας, η ρυθμαπόδοση, η αξιοπιστία, η κατανάλωση ενέργειας και η επιφάνεια πυριτίου του σχεδιασμού. Τέλος, προκειμένου να αντιμετωπισθεί η αυξημένη πολυπλοκότητα στα σχεδιαστικά εργαλεία επαναδιαμορφούμενων συστημάτων, προτείνονται νέοι εξελικτικοί αλγόριθμοι πολυκριτηριακής βελτιστοποίησης, οι οποίοι εκμεταλλευόμενοι τους σύγχρονους πολυπύρηνους επεξεργαστές και την αδρομερή φύση των πολυνηματικών περιβαλλόντων προγραμματισμού (π.χ. OpenMP), μειώνουν το χρόνο επίλυσης του προβλήματος της τοποθέτησης των λογικών πόρων σε φυσικούς,ενώ ταυτόχρονα, ομαδοποιώντας τις εφαρμογές βάση των εγγενών χαρακτηριστικών τους, διερευνούν αποτελεσματικότερα το χώρο σχεδίασης.Η αποδοτικότητά των προτεινόμενων αρχιτεκτονικών προτύπων και μεθοδολογιών επαληθεύτηκε σε σχέση με τις υφιστάμενες λύσεις αιχμής τόσο σε αυτοτελής εφαρμογές, όπως η ψηφιακή επεξεργασία σήματος, τα πολυμέσα και τα προβλήματα αριθμητικής πολυπλοκότητας, καθώς και σε συστημικά ετερογενή περιβάλλοντα, όπως ένα σύστημα όρασης υπολογιστών για αυτόνομα διαστημικά ρομποτικά οχήματα και ένα σύστημα πολλαπλών επιταχυντών υλικού για σταθμούς εργασίας και κέντρα δεδομένων, στοχεύοντας εφαρμογές υψηλής υπολογιστικής απόδοσης (HPC). Τα αποτελέσματα ενισχύουν την πεποίθηση του γράφοντα, ότι η παρούσα διατριβή παρέχει ανταγωνιστική τεχνογνωσία για την αντιμετώπιση των πολύπλοκων σύγχρονων και προβλεπόμενα μελλοντικών σχεδιαστικών προκλήσεων
    corecore