
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr J.-M. Sallese, président du jury
Dr M. Mattavelli, directeur de thèse

Prof. G. De Micheli, rapporteur
Dr J. Janneck, rapporteur
Dr M. Raulet, rapporteur

High-level synthesis of dataflow programs for heterogeneous
platforms: design flow tools and design space exploration

THÈSE NO 6653 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 29 MAI 2015

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
GROUPE SCI STI MM

PROGRAMME DOCTORAL EN MICROSYSTÈMES ET MICROÉLECTRONIQUE

Suisse
2015

PAR

Endri BEZATI

The philosophers have only interpreted the world, in various ways.

The point, however, is to change it.

— Karl Marx

To my parents for giving me the chance to pursue my dreams. . .

Acknowledgements
First of all I would like to thank my parents, Dhimiter and Pavlina Bezati for their strong efforts

as immigrants to support me during my studies in France. I would like to thank my brother,

Dr. Feliks Bezati for helping me with guidance all those years. I thank my uncle Dr. Anesti

Duka for his proposition to pursue my studies in France, my path would have been completely

different today. I would like to thank my partner Franziska Thoms for all those years of love,

happiness, and support.

I wish to express my gratitude to my supervisor Dr. MER Marco Mattavelli for his guidance,

support, advice, and criticism during the last four years. I would like to thank Dr. Mickaël

Raulet for believing in me and suggesting me to Marco for pursuing a PhD in my Lab. I wish

also to express my gratitude to my spiritual mentor Dr. Jörn Janneck for his help and guidance.

I would like to thank Dr. Ghislain Roquier for his patience and help that he provided me

during the first years of my thesis. Also, I would like to thank Dr. Matthieu Wipliez for the

Orcc compiler infrastructure, Herve Yviquel and Antoine Lorence for their maintenance and

advancement in Orcc. In addition, I would like to thank all previous developers of OpenForge

for their excellent work and Xilinx Inc. for open sourcing it.

I would like to thank my partner in crime Simone Casale Brunet, both of us have built tools

that are working in perfect coordination. Also, I would like to thank all my past and present

lab members.

Finally, I would like to thank the Swiss National Science Foundation for founding my research.

Lausanne, 29 April 2015 Endri Bezati

v

Abstract
The growing complexity of digital signal processing applications implemented in programmable

logic and embedded processors make a compelling case the use of high-level methodologies

for their design and implementation. Past research has shown that for complex systems,

raising the level of abstraction does not necessarily come at a cost in terms of performance or

resource requirements. As a matter of fact, high-level synthesis tools supporting such a high

abstraction often rival and on occasion improve low-level design. In spite of these successes,

high-level synthesis still relies on programs being written with the target and often the syn-

thesis process, in mind. In other words, imperative languages such as C or C++, most used

languages for high-level synthesis, are either modified or a constrained subset is used to make

parallelism explicit. In addition, a proper behavioral description that permits the unification

for hardware and software design is still an elusive goal for heterogeneous platforms. A promis-

ing behavioral description capable of expressing both sequential and parallel application

is RVC-CAL. RVC-CAL is a dataflow programming language that permits design abstraction,

modularity, and portability. The objective of this thesis is to provide a high-level synthesis solu-

tion for RVC-CAL dataflow programs and provide an RVC-CAL design flow for heterogeneous

platforms. The main contributions of this thesis are: a high-level synthesis infrastructure that

supports the full specification of RVC-CAL, an action selection strategy for supporting parallel

read and writes of list of tokens in hardware synthesis, a dynamic fine-grain profiling for syn-

thesized dataflow programs, an iterative design space exploration framework that permits the

performance estimation, analysis, and optimization of heterogeneous platforms, and finally a

clock gating strategy that reduces the dynamic power consumption. Experimental results on

all stages of the provided design flow, demonstrate the capabilities of the tools for high-level

synthesis, software hardware Co-Design, design space exploration, and power optimization

for reconfigurable hardware. Consequently, this work proves the viability of complex systems

design and implementation using dataflow programming, not only for system-level simulation

but real heterogeneous implementations.

Key words: High-level synthesis, Dataflow Programing, Clock-Gating, Co-Design, Design Flow,

Design Space Exploration

vii

Résumé
De nos jours, les applications de traitement numérique du signal sont de plus en plus com-

plexes dans leurs mises en œuvre et leurs conceptions pour des implantations sur des proces-

seurs embarqués contenant de la logique programmable. Ceci demande le développement de

nouvelles méthodologies basées sur un langage à haut niveau d’abstraction. Des recherches

antérieures ont montré que pour les systèmes complexes, l’élévation du niveau d’abstraction

n’augmente pas nécessairement les coûts en termes de ressources ou la dégradation des per-

formances. En général, des outils de synthèse haut niveau avec une telle abstraction, souvent

concurrentiels, améliorent dans certains cas la conception de systèmes de niveau hiérarchique

très bas. En dépit de ces succès, la synthèse haut niveau s’appuie toujours sur le principe

que les programmes doivent s’adapter à la cible souhaitée sans oublier les particularités du

système de synthèse. En d’autres termes, les langages impératifs tels que C ou C ++, les plus

utilisés pour la synthèse haut niveau, sont soit modifiés ou soit adaptés en un sous-ensemble

de langages pour faire un parallélisme explicite. De plus, une description comportementale

appropriée qui permet l’unification de conception de systèmes hétérogènes est toujours un

objectif difficile à atteindre. Une des plus prometteuses, capable d’exprimer à la fois l’applica-

tion séquentielle et parallèle, est exprimée en RVC-CAL. Ce dernier est donc un langage de

programmation en flux de données qui permet l’abstraction de la conception, de la modularité

et de la portabilité. Les objectifs de cette thèse sont de fournir une solution de synthèse haut

niveau pour des programmes écrits en RVC-CAL et de fournir une solution d’implantation

pour des plates-formes hétérogènes. Les principales contributions de cette thèse sont : une

infrastructure de synthèse de haut niveau qui prend en charge la spécification complète de

RVC-CAL, une stratégie de sélection d’action pour la synthèse haut niveau pour permettre

la lecture et l’écriture en parallèle de la liste des jetons, un profilage dynamique à grain fin

pour les programmes de flux de données qui sont synthétisés, une structure d’exploration de

l’espace pour des programmes de flux de données qui permet l’estimation de performance,

l’analyse et l’optimisation des plates-formes hétérogènes et enfin une stratégie de « clock-

gating » qui réduit la consommation d’énergie dynamiquement. Des résultats expérimentaux

sur toutes les étapes du déroulement de la conception, démontrent les capacités des outils

de synthèse haut niveau, le Co-Design des parties matériel et logiciel, l’exploration spatiale

de l’application, et l’optimisation de puissance pour des plates-formes reconfigurables. En

conclusion, ce travail prouve la viabilité de la conception et la mise en œuvre de systèmes com-

plexes en utilisant la programmation de flux de données, pas seulement pour la simulation au

niveau du système, mais aussi pour les implémentations hétérogènes.

ix

Acknowledgements

Mots clefs : synthèse de haut niveau, flux de données, clock-gating, co-design, flot de concep-

tion, exploration de l’éspace du design

x

Abbreviations
ALAP As Late As Possible

ANSI American National Standards Institute

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

AST Abstract Syntax Tree

BDL Behavioral Description Language

BRAM Block RAM

CAD Computer Aided Design

CAL CAL Actor Language

CAM Computer Aided Manufacturing

CDFG Control-Data Flow Graph

CFG Control Flow Graph

CL Computational Load

CP Critical Path

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DSL Domain-Specific Language

DSP Digital Signal Processor

EMF Eclipse Modeling Framework

ETG Execution Trace Graph

FDS Force-Directed Scheduling

xi

Acknowledgements

FF Flip-Flop Register

FPGA Filed-Programmable Gate Array

FSM Finite State Machine

HDL High-Description Language

HLS High-Level Synthesis

HW Hardware

IDE Integrated Developing Environment

ILP Integer Linear Programming

IP Intellectual Property

IR Intermediate Representation

ISPS Instruction Set Processor Specification

LLVM Low Level Virtual Machine

LUB Least Upper Bound

LUT Look-Up Table

LVA Live Variable Analysis

MDE Model-Driven Engineering

MoA Model of Architecture

MPEG Movie Picture Expert Group

Orcc Open RVC-CAL Compiler

QoR Quality of Results

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Layer

RVC Reconfigurable Video Coding

SoC System on Chip

SSA Single Static Assignment

SW Software

xii

Acknowledgements

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

VLSI Very-Large-Scale Integration

XLIM XML Language Independent Model

xiii

Contents
Acknowledgements v

Abstract (English/Français/Deutsch) vii

Abbreviations xi

List of figures xviii

List of tables xxi

1 Introduction 1

1.1 Design of Complex Systems . 1

1.2 Problem Statement and Motivation . 3

1.3 Design Flow for Dataflow Programs . 6

1.4 Thesis Contributions and Organization . 8

2 State of the Art 11

2.1 Introduction . 11

2.2 Heterogeneous platforms . 13

2.3 High-Level Synthesis . 15

2.3.1 HLS tools evolution . 16

2.3.2 Behavioral Description . 18

2.4 Scheduling of Operators, Operators Pipelining and Power Optimization in HLS 23

2.4.1 Scheduling of Operators . 23

2.4.2 Operators Pipelining . 25

2.4.3 Power Optimization . 26

2.5 Dataflow Design Flows for HW and SW Co-Design 28

2.6 Conclusion . 31

3 CAL Dataflow Programming Language 33

3.1 Introduction . 33

3.2 Process Networks . 36

3.2.1 KPN . 36

3.2.2 Dataflow Process Network . 37

3.2.3 Actor Transition System and Composition 38

xv

Contents

3.3 CAL Actor Language . 40

3.3.1 CAL Program . 40

3.3.2 Execution Model . 41

3.3.3 CAL Syntax and Semantics . 42

3.4 Standardization . 46

3.5 RVC-CAL Compiler Infrastructure . 48

3.6 Orcc Intermediate Representation . 50

3.6.1 Dataflow IR . 50

3.6.2 Procedural IR . 52

3.6.3 Visitors for Dataflow and Procedural IR and IR Interpreter 54

3.7 Conclusion . 54

4 High-Level Synthesis of Dataflow Programs: Xronos 57

4.1 Introduction . 57

4.2 Advances on the Orcc compiler infrastructure for Hardware Synthesis 59

4.2.1 Control Flow Graph Construction . 61

4.2.2 Dominance Graph . 61

4.2.3 Reaching Definition . 63

4.2.4 Live Variable Analysis . 63

4.2.5 Single Static Assignment, Pruned Form . 65

4.3 Procedural IR Transformations . 67

4.3.1 Expression Evaluator/Simplification . 67

4.3.2 Single Read and Write Register Optimization 67

4.3.3 Uninitialized Variables . 68

4.3.4 Constant Folding/Propagation . 69

4.3.5 Dead Code Elimination . 69

4.3.6 Type Casting . 70

4.3.7 Division and Modulo Implementation . 70

4.4 Pipelining . 72

4.5 Actor’s Action Selection Procedure . 73

4.5.1 Construction of the Action Selection Procedure 75

4.6 CDFG Representation of a Procedure . 78

4.7 Language Independent Model (LIM) . 79

4.7.1 Component . 79

4.7.2 Primitives . 82

4.7.3 Operation . 82

4.7.4 Memory . 83

4.7.5 Module . 84

4.7.6 Design . 86

4.7.7 Clock Domains . 87

4.7.8 Scheduling . 88

4.8 Mapping of Dataflow and Procedural IR to LIM 89

xvi

Contents

4.8.1 Network construction and Actor to Design 89

4.8.2 State variable to Memory Allocation . 89

4.8.3 Action to Task . 90

4.8.4 Operation to Node . 90

4.8.5 Expression to CDFG . 90

4.8.6 BlockBasic to Block . 92

4.8.7 BlockIf to Branch and BlockWhile to Loop 92

4.8.8 CDFG to Block . 93

4.8.9 Behavioral HDL Code Generation . 93

4.9 Xronos SystemC Code Generation . 95

4.9.1 SystemC Actor Template . 96

4.9.2 SystemC Actor Composition Template . 98

4.10 Xronos C++ Code Generation for Embedded Platforms 100

4.11 Mapping HW-SW and Interface Synthesis . 104

4.12 TestBench Generation and Profiling Data Extraction 105

4.13 Experimental Results . 107

4.13.1 StreamBench: a benchmark suite for streaming applications 108

4.13.2 Xronos versus state-of-the-art RVC-CAL to hardware synthesis 113

4.13.3 Multi-core performance on an embedded platform 115

4.13.4 Hardware and Software Co-Design on Heterogeneous platforms 116

4.14 Conclusion . 117

5 Iterative Design Space Exploration for Xronos 119

5.1 Introduction . 119

5.2 Profiling and Execution Trace Garph . 121

5.3 Model of Architecture, Mapping and Constraints 122

5.4 ETG Analysis . 123

5.4.1 Critical Path Evaluation . 123

5.4.2 Impact Analysis . 124

5.4.3 Queue Size Minimization . 125

5.5 ETG Post-Processor . 125

5.5.1 An event-based trace simulator . 126

5.5.2 Performance Estimation . 132

5.5.3 Mapping . 133

5.6 Optimization by Design Refactoring in IDSE . 134

5.6.1 Levels of parallelism . 134

5.6.2 Complexity and issues of automating refactoring optimizations 134

5.6.3 A refactoring strategy using impact analysis 135

5.7 Experimental Results . 137

5.8 Conclusion . 140

xvii

Contents

6 Power Optimization 141

6.1 Introduction . 141

6.2 Clock buffers on Xilinx FPGA’s . 143

6.3 Coarse-Grain Clock Gating Strategy . 145

6.3.1 Clock enabling controller . 146

6.3.2 Clock Enabler Circuit . 146

6.4 Experimental Study . 149

6.5 Conclusion . 152

7 Conclusion and Future Work 153

7.1 Conclusion and Summary . 154

7.2 Future Work . 157

7.2.1 Component Library Database . 157

7.2.2 SDC Scheduling for LIM . 158

7.2.3 Integration of state of the art procedural optimizations 158

7.2.4 Memory Partitioning . 159

7.2.5 Multi-Actor hierarchical memory management 159

7.2.6 Multiplexing and De-multiplexing queue channels for heterogeneous

targets . 159

7.2.7 Clock Gating on input conditions and Multi-Clock Domains Partitioning 160

7.2.8 Dataflow Machines: An alternative Intermediate Representation 160

Bibliography 176

Curriculum Vitae 177

xviii

List of Figures
1.1 Simplified design flow of a Hardware and Software heterogeneous system . . . 2

1.2 RVC-CAL Design Flow. Two directional flows, in black top to down implementa-

tion and in grey the iterative feedback. 7

2.1 Gajski’s Y-Chart, for different types of synthesis. 11

2.2 Generic FPGA architecture. 13

2.3 Slice found on Virtex-4 FPGAs . 14

2.4 Xilinx DSP48E1 (image courtesy of Xilinx Inc.) . 14

2.5 Xilinx Zynq 7000 Architecture (image courtesy of Xilinx) 15

2.6 A generic High-Level Synthesis Flow. 15

2.7 The CMU design system, one of the earliest HLS. 17

2.8 Three of the most used third generation HLS in the market. The three of them

focuses on HLS for ASICs. Catapult and recently CyberWorkbench offers also

FPGA support. 19

2.9 FCUDA: CUDA to FPGA Flow. 21

2.10 Koski a UML based Design Flow for HW-SW prototyping. 22

2.11 Classification of the most known scheduling algorithms. 23

2.12 Matlab HDLCoder HLS tool. 29

2.13 Daedalus Design Flow a unified environment for rapid system-level architectural

exploration. 30

3.1 RVC-CAL as the Behavioral Description in the Design Flow. 33

3.2 Actor Composition and Actor Structure. 40

3.3 Actor Execution Model. 42

3.4 Reconfigurable Video Coding. 48

3.5 Open RVC-CAL Compiler Infrastructure. 49

3.6 Class tree for Blocks, Instruction and Expression classes of the Procedural IR. . 51

3.7 Class tree for Blocks, Instruction and Expression classes of the Procedural IR. . 52

4.1 Xronos in the Design Flow. 58

4.2 Detailed Xronos Compiler Infrastructure, white boxes indicates personal contri-

butions. 60

4.3 Single Read and Write Register Optimization. Only a single read and a single

write for a, b, and c state variables. 68

xix

List of Figures

4.4 Constant Propagation (CP) and Constant Folding (CF). 69

4.5 Pipelining Optimization, from decision to generation. 72

4.6 One clock per stage pipeline scheduling with chaining and without sharing

resources. 73

4.7 Finite State Machine of Action Selection. 74

4.8 Foo actor Action Selection. 76

4.9 A State that contains two transitions. 78

4.10 Partial CDFG of the Listing 4.3. 80

4.11 LIM Component. 81

4.12 A Block with two components that they are execute one after the other. 84

4.13 A Decision Module . 85

4.14 A Branch with a true and a false part that both of them does not have an input

port. The decision input is connected to a data dependency from the peer bus of

the Branch input port to its input port. The Branch has an exit with two control

dependencies, 0 from the Exit’s Done of the true Block and 1 from the false Block. 85

4.15 A Loop Module, that contain a WhileBody. 86

4.16 Design I/O Fifo Interface. 87

4.17 Network representation of three Actors. The Actor A’s output port is connected

to the input of Actor B and Actor C. It is woth mentioning that if an output port

is connected to more than one input port a fanout is added. As depicted, each

connection has its proper queue. 95

4.18 Internal Modules Representation of the Actor Acc of Listing 4.4. 96

4.19 Header file of the SystemC inverse quantification actor. 98

4.20 Action Selection process of the inverse quantification actor. 99

4.21 Partitioning of a Design to FPGA and ARM CPU and Interface Synthesis. 105

4.22 Header and the payload of the stored data in the serialization FIFO. 105

4.23 Xronos TestBench and Profiling. 106

4.24 Load and Store Instruction Reduction after Single Read and Write Register Pro-

cedural IR Optimization. 111

4.25 Resource utilization on Xilinx Zynq 7045. 112

4.26 The RVC MPEG 4 SP decoder and its partitioning from 1 to 4 cores. 115

4.27 JPEG codec functional units and the partitioning for the platforms. 116

5.1 Iterative Design Space Exploration on the RVC-CAL design flow by using TURNUS.119

5.2 Representation of the design space according to two constraints. 120

5.3 Mapping from an application to an architecture. Constraints represent the

feasible regions of the design space. 123

5.4 Critical Path on partial execution trace graph. 124

5.5 Representation of Post-Processor Actor I/O and Buffer Model I/O events. 126

5.6 Atomic Actor FSM. 128

5.7 Atomic Actor FSM. 130

5.8 Post-Processor Mapping of a heterogeneous platform. 133

xx

List of Figures

5.9 Iterative Design Space Exploration methodology. 136

5.10 TURNUS analysis results. 138

6.1 Clock-Gating Strategy applied in the Design Flow. 141

6.2 Power Reduction Strategies. 142

6.3 View of an FPGA die, clocking trees and different clocking buffers found on a

Xilinx 7 family. 144

6.4 Xilinx BUFGCE primitive for user clock gating. 144

6.5 Clock gating methodology strategy for Actor A with one output port. The Clock

Enabler has as inputs the Almost Full and Full signal of each queue and a clock

from a clock domain, and as a result it is going to activate or deactivate the clock

of Actor A depending the FSM state of the controller. 146

6.6 State machine of the clock enabling controller. The controller has two inputs, F

for full, AF for almost full and one output en as the enable signal. 147

6.7 Clock Enabler Circuit in three different configurations. 147

6.8 Activation rates of each CG clock for each design with all their actors being clock

gated. Average values retrieved from different QCIF input stimuli for all designs. 151

xxi

List of Tables
3.1 System-Level Requirements and Coverage. With lsupported, wpartially sup-

ported, and mnot supported. 35

3.2 CAL lexical tokens . 43

4.1 Xronos features versus the state of the art. The contributions of this thesis is

related to the high-level synthesis of dataflow programs which are highlighted in

bold. 59

4.2 Algebraic identities for Expression Simplificator. With
∧

and logic and operator,

and
∨

or logic or operator. 67

4.3 Lest Upper Bound on Types . 70

4.4 Brief description and source of the Streambench benchmark RVC-CAL programs.108

4.5 Program Characteristics - 1 . 110

4.6 Program Characteristics - 2 . 110

4.7 Xronos HLS - Synthesis and Simulation Results. 111

4.8 Xronos C++ Code generation Throughput results in Zynq 7045 ARM with a

frequency of 999MHz. 112

4.9 Three-way comparison of the same RVC Intra MPEG-4 SP decoder on a Virtex

4 FPGA, using the old Orc2HDL framework with the M2M source to source

transformation, Xronos with the M2M and Xronos. (All results are post-place-

and-route, using Xilinx XST.) . 114

4.10 Xronos versus Orcc C backend + Vivado HLS, synthesis and throughput results

on Virtex 4 FPGA . 114

4.11 Framerate of the RVC MPEG-4 SP decoder at QCIF, SD and HD resolutions. . . . 115

4.12 Framerate of the JPEG codec with a 512x512 video resolution on P4080 and two

FPGA boards with 2 different interfaces. 117

5.1 Initial Critical Actions Ranking. E%: number of executions of the action as a percent-

age of the total number of steps in the profiled run, CL%: computational load as a share

of the total load, CPE%: the number of executions of that action on the critical path as a

share of its length, CPP%: the share of the computational load of those executions on

the critical path relative to its total load. 137

5.2 The modifications steps by most critical actor on the MPEG4 SP decoder. Syn-

thesis results for Xilinx Virtex 4 FPGA. 138

xxiii

List of Tables

6.1 Synthesis and power results of three designs, a JPEG encoder, the RVC Intra

MPEG 4 SP decoder and a full serial mpeg 4 sp decoder. The dynamic power

reduction is given as the clock gated design over the non clock gated one. . . . 150

xxiv

1 Introduction

This thesis reports the research work done by the candidate with the aim of yielding a complete

high level synthesis (HLS) design flow entirely based on a dataflow computation paradigm that

includes functionality and optimizations supporting heterogeneous system designs. Despite

continued scaling of silicon technology, individual sequential processors are not becoming

faster. Thereupon, rather than building complex single processors, manufacturers have used

the space gained from scaling the technology by adding more processors and incorporating

reconfigurable parts onto a single chip. Thus, making multi-core and reconfigurable machines

a nearly ubiquitous commodity in a full (and increasing) range of computing applications.

Therefore, the performance gains of modern heterogeneous platforms are primarily due to an

increase in the available parallelism. However, one of the main obstacles that may prevent the

efficient usage of heterogeneous platforms is the fact that the traditional sequential specifi-

cation formalisms and all existing software and IPs, legacy of several years of the continuous

successes of the sequential processor architectures, are not the most appropriate starting

point to program such parallel platforms. Moreover, such specifications are no more suitable

for unified specifications when targeting both processors and reconfigurable hardware com-

ponents. Another problem is that portability of applications on different platforms becomes a

crucial issue, and such property is not appropriately supported by the traditional sequential

behavioral description and associated methodologies.

1.1 Design of Complex Systems

The availability of heterogeneous parallel platforms that combines the processing features

of FPGAs with multi-core CPUs in a single silicon die offers a potential amount of comput-

ing power for embedded designs. That by far exceeds what was available in the past years.

However, such possibility can only be fully used if design flows can support heterogeneous

architectures. Figure 1.1 depicts a typical Co-Design design flow. The design flow starts by

choosing a behavioral description for implementing a chosen algorithm. A preliminary analy-

sis for such a design flow is to decide which parts of the algorithm should be ported in either

software and/or hardware processing elements. All relevant information has to be extracted

1

Chapter 1. Introduction

Behavioral
Descritpion

Analysis

Software/Hardware
Paritioning

Software
Porting

Hardware
Porting

Procedural
Optimization

Critical Path
Minimization

HDL SynthesisCompilation Interface Synthesis

Co-Simulation
Performance

Estimation

Hardware/Software
CoDesign

Optimization
up until satisfying

System Constraints

System
Implementation

Iteration Loop

Figure 1.1 – Simplified design flow of a Hardware and Software heterogeneous system

from the behavioral description of several thousand source code lines. This initial step of the

design flow has an enormous impact on the necessary optimization iteration needed to satisfy

the system constraints for the final target implementation.

The selection of the parts of the algorithm to be implemented by software, or hardware

components is a fundamental step that has serious consequences of the other steps of the

design flow. In fact, algorithmic parts for SW processing elements require to be revised (i.e. re-

written) according to platform specific SW optimization objectives. The other parts selected for

execution on hardware components (i.e., FPGA or ASIC) need to undergo different, even more

tedious, heavy transformations because specific timing constraints, that greatly affects the

quality and required expressiveness of the HDL description, need to be explicitly introduced.

In general, the optimization process of the hardware elements consists of reducing the critical

path of the circuit. The critical path of a circuit is defined as the longest combinatorial

path between two registers. This path represents the frequency of the circuit. Once the

timing constraints are satisfied, then an interface need to be implemented for connecting

the hardware and software components. An interface is characterized by two factors: its

availability of it on the processing element and the interface bandwidth. Once all the system

2

1.2. Problem Statement and Motivation

parts are complete, then the first iteration of co-simulation begins and can give indications of

an achievable performance for the developed design.

If the co-simulation results do not satisfy the defined constraints of the system, then parts of

software and hardware elements should migrate from one to the other. An additional problem

may also occur on the interface bandwidth or its handling. As a consequence, the design

space points explode. In addition, if an initial partition is chosen poorly then the number of

optimization iteration might increase rapidly. Finally, if a design space point is found that

satisfies the constraints, then the system is implemented on the chosen target.

1.2 Problem Statement and Motivation

As stated, the porting of software and hardware part is difficult and a tedious work. A behav-

ioral description must be capable of abstracting the architecture characteristics and must

encompass both hardware and software design concepts. Today current design flows requires

completely different abstractions for each processing element.

In addition, the average design time necessary for developing and optimizing designs for

heterogeneous platforms is, as a result, much higher due to the separation of work in hardware

and software parts. A common practice is to partition "a priori" a part of the design to be

executed by the CPU and then discover that it does not satisfy the system constraints. In this

case, it is necessary to rewrite from scratch a part of the design and rewrite it in a way that it

can be executed on the hardware component of the platform. The drawback of the approach

is that the two successive specifications of the design, although expressing the same semantic

behavior in terms of input and output data, have to make use of two different abstractions for

being executed on programmable hardware or on a processing unit. Not only is such a work

error-prone, but also the functional design verification should be effectuated by combining

both parts. In summary, the main problems in heterogeneous system designs are flexibility

and maintainability that both can be expressed as Design Abstraction, Reuse, and Modularity.

• Design Abstraction: What level of abstraction should be used for the specification, the

design, and the implementation? In the case of heterogeneous platforms, the question

is not trivial given the diverse nature of the platform. Different levels of abstraction

may be employed depending on the nature and level of requirements and constraints.

Thus, behavioral descriptions should be able to seamlessly express both parallel and

sequential computation paradigms.

• Modularity: In modular design, such as dataflow designs, the system functionality is

split into communicating components that divide the complexity of the overall applica-

tion. The design abstraction should be able to support modularity as a data and task

parallelism.

• Reuse: Design abstraction and the modularity of an application should permit the reuse

3

Chapter 1. Introduction

of components that can be described for hardware and software parts and at the same

time allow the reuse of parts of the same application family. As an example, many audio

codecs share part of the same functional units such as a direct cosine transform, which

makes the modularity a necessity for a developer who maintains a library of audio

codecs.

The essential difference between hardware and software is the execution model. In hardware

everything is executed concurrently; conversely software follows a sequential memory based

execution model which is derived from Turing machines. Sequential execution is very efficient

in software but a bad choice for hardware in most of the cases. This has a serious implication

when designing hardware from software programmers, their familiar algorithms are mostly

expressed sequentially. Even thought multi-core and many-core platforms are evolving and

becoming the mainstream in all computing devices (even low-cost ones), the last half of

the century programmers codes sequentially. C and C-likes programming languages have

conquered the sequential software programming, but today there is disagreement about

the preferred parallel model of computation that takes on consideration of different parallel

architectures. In addition, C or C-like languages have become the mainstream programming

languages for heterogeneous computing. Many vendors provide high-level synthesis solutions

based on C for the hardware part of their heterogeneous toolchain. As stated in [1], C and

C-like languages have the following problems :

• Sequentiality : One fundamental problem with C-like High-Level Synthesis tools today

is that they encourage the programmer to program algorithms sequentially with the

promise that the tool has techniques that will automatically expose the parallelism

of a sequential code. Unfortunately those techniques are limited to descriptions that

contains few operation dependencies. Concurrency is either supported by libraries

or pragmas or automatically detected by the tool, to use non standard C types and to

deal with different communication issues. Although a lot of research has been done

to support C features and make it as the default language for HLS, in the end all tools

have a different implementation of C except some tools that supports a subset of ANSI

C. Although SystemC is supporting all features above and it is a useful language for

high-level synthesis it is not ideal for multi-core/many-core programming due to its

library that is intentioned for circuit simulation. All these different implementation have

lead the research community to develop languages based on model of computations

that adapts to the hardware development specifics and parallel programming but also

to be portable on different platforms.

• Language Limitations: Due to the C language concurrency limits, most HLS extends

C with statements and/or parallel constructs, pragmas and libraries. Extending C with

statements or adding non standardized constructs introduces a fundamental and far-

reaching change to the language which makes it incompatible with standard C compilers

and other C HLS tools. A less intrusive way is to use tool specific pragmas. Finally, the

4

1.2. Problem Statement and Motivation

use of tool specific libraries locks the developer to a single tool which makes it very

difficult for a company to switch HLSs.

• Bitwise Types: Each base type in C or C++ is one or more bytes stored in memory. C

types can be implemented in hardware but types smaller than a byte can not be specified,

expect for defining the number of bits in the field of a structure. HLS tools approach of

supporting bitwise types is exactly the same as concurrency. They either change the C

language or their provide proprietary libraries.

A potential candidate which is not limited only to hardware development is the CAL dataflow

programming language. CAL offers the hardware developer the necessary constructs for

expressing parallel and sequential code, bitwise types, a consistent memory model, and a

lossless communication between parallel tasks through queues. Thus, CAL can be used as a

single behavioral description for SW and HW processing elements. Most of all, CAL comes

with a model of computation that enables the programmer to express applications as network

processes. The following points describe the properties of CAL:

• Concurrency & Parallelism Scalability: In parallel programming, programs either scale

with the size of the problem or with the size of the code. Developing concurrent parts

of a program without much interference is a well known problem for von Neumann

architectures. As a solution, the explicit concurrency of the actor model provides a

parallel composition mechanism that tends to lead to more parallelism as the size of an

application grows.

• Modularity: The hierarchical structure and the encapsulation of actors provides high

potential of parallelism. In addition, changing an actor will not have an impact on other

actors.

• Scheduling: Like procedural programming languages, actors offers a full control on the

order of execution of actions (i.e. the imperative part of actors).

• Portability: For heterogeneous platforms portability is still en elusive goal. Using a

single representation permits the maintainability and reuse of code between HW and

SW processing elements.

CAL dataflow programming is a challenging programming paradigm, it offers a flexible de-

velopment approach to deal with the increasing complexity of the applications, and offers

a large degree of parallelism to exploit the massive parallel capabilities available in modern

architectures. The use of a programming language based on the dynamic dataflow model is

more advantageous compared to static approaches. This is due to the fact that the developer

can be more flexible when expressing their design. Dynamicity, facilitates the conception of

complex applications with non-constant data structures. Moreover, these dynamic dataflow

5

Chapter 1. Introduction

languages offer a large expressive power along with a practical syntax that are both required

for an industrial-scale development.

Thesis: Dataflow Programming contains the necessary features for heterogeneous computing

that circumvent the imperative (MoC) limitations of C or C-like programming language because

it offers abstraction, concurrency, modularity, analyzability and portability for different

processing elements.

To support this statement this dissertation provides the following contributions:

1. A High-Level Synthesis solution of dataflow programs for heterogeneous platforms.

2. System methodologies for optimization of implementations at high abstraction level.

3. An iterative design space exploration with the purpose to minimize the initial partition-

ing and assignments to software and hardware processing elements.

4. A design flow supporting all the above features.

Moreover, the thesis describes the implementation of the integrated high-level design flow that

embeds new features, optimization tools, and methodological advances into an integrated

open source HLS solution for programming heterogeneous platforms. The complete environ-

ment called Xronos is available under open source license at: https://github.com/orcc/xronos

and has been used by two European projects (ACTORS and VAMPA) and research groups such

as INSA of Rennes, Lund University, University of Oulu, University of Cagliari, and Harriot

Watt University.

1.3 Design Flow for Dataflow Programs

The architecture of the high-level synthesis design flow and associated design space explo-

ration that offers a complete design flow methodology for programming heterogeneous plat-

forms is illustrated in Figure 1.2. A design contains a set of stages by which, from an abstract

representation of the application (i.e. the dataflow program), it is possible to accomplish the

synthesis of an integrated circuit or the implementation onto a SW processing unit, or any

combination of both elements. Each stage is composed by a single tool or the integration of a

composition of tools.

The RVC-CAL design flow is composed by eight stages. The stages are respectively:

1. Behavioral Description, Architecture, and Constraints: The design is expressed by

the RVC-CAL dataflow programming language based on process network principles.

The architecture defines on which kind of platform the design is implemented. The

architecture contains operators, media, and links. An operator defines the type of the

6

https://github.com/orcc/xronos

1.3. Design Flow for Dataflow Programs

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

Profiling
and

Analysis

Performance
Estimation

RVC-CAL
(Behavioral Description)

ArchitectureConstraints

R
ef

ac
to

ri
n

g
 D

ir
e

ct
io

n
s

C
o

m
p

il
e

r
D

ir
e

ct
iv

es

Figure 1.2 – RVC-CAL Design Flow. Two directional flows, in black top to down implementation
and in grey the iterative feedback.

processing element; the media defines the way that this platform is communicating, and

the links are the connection between operators and media. In addition, the constraints

are applied to the architecture and defines the clocking for each operator and the input

and output data consumption and production of the design.

2. Compiler Infrastructure: The abstract design specification is verified for algorithmic

correctness. The design can also be statically profiled for complexity analysis and for

identifying the longest computational path occurring when a set of input vectors are

processed.

3. Code Generation: According to the architecture defined at the abstract level, the code

generation stage generated the source code for execution on the SW architecture and

HDL code for configuring the HW architectures, FPGAs and/or ASICs.

4. Synthesis or Compilation: Generates code which is then synthesized or compiled using

7

Chapter 1. Introduction

standard tools to obtain software executables and/or hardware binary files/netlists for

physical implementations.

5. Performance Estimation: At this stage platform specific software profilers and/or HDL

testbenches are used to measure the performance of individual dataflow processing

components.

6. Analysis & Profiling: At this stage, the design bottlenecks are iteratively identified

and analyzed. Initially, in the early phase of the design process, the buffer size for

the different dataflow elements, the memory defined in the architecture given by the

constraints are estimated and allocated. In a second phase, a more in-depth design space

exploration including all dataflow components is applied to the design and profiling

information is extracted. For a software architecture, the design can be partitioned

into different processing units according to an optimization objective functions for

the given set of an input vector and design constraints. For hardware architectures,

different multi-clock domain partitioning are identified with the goal for reducing power

dissipation and respecting throughputs constraints. Finally, the performance of the

composition of hardware and software architectures can be analyzed with the purpose

of verifying the satisfaction of the overall system design constraints.

7. Code Refactoring Directions and Compiler Directives: After the Profiling & Analysis

stage, feedback is provided on how the dataflow program components, at a high abstrac-

tion layer, should be modified to satisfy the design constraints.

8. Implementation: The structure of the design flow is composed by two main paths. The

first is a direct path from the top to bottom linking the high-level dataflow program

abstraction to the synthesized executable implementation and the second is the iterative

system-level design exploration and optimization cycle.

The structure of the design flow is composed by two main paths. The first is a direct path

from the top to bottom linking the high level dataflow program abstraction to the synthesized

executable implementation and the second is the iterative system-level design exploration

and optimization cycle.

1.4 Thesis Contributions and Organization

The main contributions and the publications (related to each original contribution) of the

thesis can be summarized as follows:

1. A high-level synthesis compiler infrastructure that supports the full specification of

RVC-CAL dataflow programming language. The compiler infrastructure is based on

two open source projects: Orcc for the RVC-CAL fronted, and OpenForge for the Verilog

8

1.4. Thesis Contributions and Organization

backend. Research in [2, 3, 4, 5, 6] extends Orcc to a state-of-the-art compiler and pro-

vides the necessary transformations and optimizations to produce a close to hardware

intermediate representation for OpenForge.

2. An Action selection algorithm for the actor execution model. Research in [3, 4] provides

support for RVC-CAL "repeat" statements and guarded conditions on values of an input

list. In addition, parallel read and write of list tokens for hardware synthesis accelerates

the consumption and production of tokens.

3. Static and dynamic fine-grain profiling data extraction from RTL simulation of synthe-

sized RVC-CAL dataflow programs [3, 7]. The structure of the generated code permits

the extraction of timing profiling of the individual execution of each action.

4. A design flow that contains an iterative design exploration framework for RVC-CAL

dataflow programs for heterogeneous embedded platforms (FPGA + multi-core CPU).

Research in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] offers a complete design flow for

hardware and software from a single RVC-CAL behavioral description. In addition, the

design flow includes an open source design space exploration tool that reduces the

refactoring iterations for meeting the design constraints.

5. A clock gating strategy that reduces the dynamic power dissipation in synthesized

circuits for processes that communicates through queues [19].

This dissertation is divided into six parts that represent each step of the design flow:

Chapter 2 describes the state of the art on the high-level synthesis and design flows for hetero-

geneous platforms. An introduction to different types of synthesis and a brief description of

heterogeneous architectures is discussed. Moreover, the definition of high-level synthesis is

provided as well as the high-level synthesis tools evolution. In addition, the state-of-the-art of

principal high-level synthesis blocks such as scheduling, pipelining, and power optimization

is given. Furthermore, the state of the art of design flow for co-design is also provided. The

chapter concludes, by justifying why the RVC-CAL dataflow programming language is chosen

for describing the behavioral description of the proposed design flow.

Chapter 3 Reports CAL and the standardized version of it the RVC-CAL. After that, exam-

ples that demonstrate the expressiveness of CAL are given. Furthermore, Orcc, the compiler

infrastructure for RVC-CAL is presented and its Dataflow and Procedural Intermediate Repre-

sentations are analyzed in depth.

Chapter 4 describes Xronos the high-level synthesis and embedded software synthesis tool of

dataflow programs for heterogeneous platforms. The evolution of Xronos tool is discussed.

After that, the advancements and completion that were introduced to Orcc’s compiler in-

frastructure for enabling hardware synthesis are covered. An analysis in depth is also given

for the construction of the Action Selection procedure that allows a hardware friendly execu-

tion model of the actor transition system that support the concurrent reading and writing

9

Chapter 1. Introduction

of multi-tokens in actions. In addition, the Language Independent Model (LIM), a close to

hardware intermediate representation, and the mapping of the Dataflow and Procedural IR to

LIM is presented and examined. With the purpose to give a detailed overview of the Xronos

synthesis process. Subsequently, the embedded software and synthesizable SystemC code

generation are described. Finally, experimental results demonstrate the capabilities of the tool

for behavioral synthesis and heterogeneous software and hardware synthesis.

Chapter 5 describes the TURNUS tool for the iterative design space exploration of dataflow

programs. The chapter focuses on design exploration and optimization functionalities. It is

also demonstrated how run-time profiling data is extracted from heterogeneous platforms.

Design performance is estimated by the use of an execution trace post-processor. It is illus-

trated how estimation results are used in order to guide the optimization heuristic during the

exploration phases. Furthermore, the concept of design space critical path is defined and

used as primary metric of the optimization heuristics that are incorporated through TURNUS.

Finally, the iterative design space exploration methodology is presented, and experimental

results demonstrate the tool capabilities and its usefulness for optimizing the throughput of a

dataflow program for hardware synthesis.

Chapter 6 describes a clock-gating strategy that reduces the dynamic power dissipation on

systems described as processes that communicates through buffers. Moreover, the FPGA

clocking architecture is given, and the kind of clock buffers used for enabling coarse-grain

clock gating is described. Finally, experimental results demonstrate that the throughput of a

particular design is not modified by the clock-gating strategy, and does not at all affect the

design flow.

Finally, chapter 7 summarizes the thesis and highlights future work and potential improve-

ments in the overall design flow for hardware, software, and interface synthesis.

10

2 State of the Art

2.1 Introduction

As the race of minimizing the transistor footprint close to a single atom still goes one, the

number of transistor on future chip will furthermore increase. The need for new design

automation methodologies on more abstract levels, where cost to market/functionality and

trade-offs is easier to comprehend, is a must for developing future chips generations. Today,

VLSI technology has reached maturity level, and it is well understood and no longer provides a

competitive edge by itself [20]. The industry now is focusing at the product development cycle

with the purpose to increase productivity, where high-level synthesis (HLS) plays a central role.

Thus, enabling the automatic synthesis of high-level untimed or partially timed to low-level

cycle-accurate RTL specifications for efficient implementation in reconfigurable hardware.

System synthesis

Transistor layouts

Cells

Chips

Boards, MCMs

Transistor functions

Boolean expression

Register transfers

Flowchart, algorithms

Transistors

Gates, flip flop

Register, ALUs, MUXs

Processors, Memories, Buses Register-transfer synthesis

Logic synthesis

Circuits synthesis

Domain of this thesisSTRUCTURAL
DOMAIN

BEHAVIORAL
DOMAIN

PHYSICAL
DOMAIN

Figure 2.1 – Gajski’s Y-Chart, for different types of synthesis.

Driven by this complexity, there has been a renewed interest (from 2000) in high-level synthe-

11

Chapter 2. State of the Art

sis of digital circuits from behavioral descriptions. A key change that has taken place since

HLS was first explored in the 70s is that now RTL languages such as Verilog and VHDL are

widespread accepted. Design synthesis is a process that translates a behavioral description

into a structural one. In [21, 20] Gajski and al. used the Y-chart (Figure 2.1), a tripartite repre-

sentation of design. The axes in the Y-chart represents three different domains of description:

behavioral, structural, and physical. Gajski describes that the level of description becomes

more abstracts as we move farther away from the center of the Y-chart. So a design tool and

what information is used by the tool can be represented as arcs along domain’s axis or between

the axes. Today, the industry masters solutions for both the structural and physical domains,

but in behavioral domain of high-level synthesis there are still open problems that have not

yet being fully solved. Despite the past failure of early generations of commercial HLS tool,

there is a demand for high-quality HLS solutions for:

• An increasing silicon capacity: requires a higher level of abstraction. Design abstrac-

tion is one of the most effective method for controlling complexity, maintainability,

reuse, modularity, and improving design productivity. A recent study [22] shows that

code density can be reduced 7 to 10 times when moved from an RTL to a high-level C

specification.

• Embedded processors in SoC: FPGA market leaders offers heterogeneous processors

and reconfigurable logic on the same die. In addition, the programmable logic part

offers digital signal processors (DSPs), memories and custom logic. That is to say,

more software elements can be involved in the process of designing complex embed-

ded heterogeneous systems. An HLS, included in a design flow, allows developers to

specify functionality in high-level behavioral description for both embedded software

and reconfigurable hardware. In other words, developers can quickly experiment soft-

ware/hardware partitioning and explores trade-offs such as performance,area, and

power from a single behavioral description.

• IP reuse: improves design productivity. As opposed to RTL Intellectual Property (IP)

which has a fixed interface protocols and mirco-architecture, behavioral IP can be re-

purposed to different technologies (a greater range of FPGA families and constructors)

or system requirements.

The rest of this chapter summarizes the state-of-the art of HLS and hardware and software

design flows that partially solves the previous problems. In the following, the HLS tools

generations through the years, and cites previous work that have been effectuated for each

step in high-level synthesis flow. In addition, several dataflow design flows that permits

the HW and SW co-Design are also cited. This chapter concludes on the need for a new

behavioral description programming language that does not only fit for HLS but also for

parallel architectures such as many cores/multi-cores and hybrid hardware and software

architectures.

12

2.2. Heterogeneous platforms

2.2 Heterogeneous platforms

FPGA or Filed-Programmable Gate Array is an integrated circuit designed to be a reconfig-

urable circuit. The very first FPGA, the XC2064, was constructed by Xilinx and announced on

November 1, 1985. An FPGA is essentially a matrix of logic cells called slices. A generic FPGA

architecture is depicted in Figure 2.2. Slices, depicted in Figure 2.3, are connected among

themselves with Input/Output (IO) blocks through routing channels. Therefore, they are

distributed in the FPGA in horizontal and vertical form, and its connection are fixed using a

programmable switch matrix.

Slice

Block Ram

DSP
Multiplier

I/O Block

DCM

Clock
Buffer

Figure 2.2 – Generic FPGA architecture.

Each slice contains Look-Up Tables (LUT) and several Flip-Flops (FF) and programmable

multiplexers (MUX). These elements vary for each FPGA family. General parallel circuits and

complex functions are implemented in FPGA when these elements are associated among

themselves. Also, FPGAs contains RAM blocks (BRAM) that can be configured in different

combination and also acts as ROMs and hard-cabled arithmetic circuits. New Xilinx archi-

tecture have added the notion of Configurable Logic Block, which contains two kinds of

Slices: SLICEM and SLICEL. SLICEL and SLICEM support LUTs, eight storage elements, wide-

function multiplexers and carry logic. In addition, SLICEM supports two additional functions:

storing data using distributed RAM (memory in LUTs) and shifting data with 32-bits registers.

In Altera FPGAs, the equivalent to SLICE is called ALM or Adaptive Logic Module.

All new Xilinx FPGAs incorporate DSP48s arithmetic modules. A DSP48 slice has a two-input

multiplier connected to multiplexers and a three-input adder/subtractor. The multiplier

accepts two 18-bit, two’s complement operands producing a 36-bit, two’s complement result.

13

Chapter 2. State of the Art

Four-Input
LUT

Register

Four-Input
LUT

Register

1

2

3

4

1

2

3

4

Combout(0)

Regout(0)

Combout(0)

Regout(0)

Figure 2.3 – Slice found on Virtex-4 FPGAs

The result is a sign-extended to 48 bits and can optionally be fed to the adder/subtractor. The

adder/subtractor accepts three 48-bit, two’s complement operands and produces a 48-bit

two’s complement result. In addition, Altera is adding cabled-circuit floating-point DSP in

their FPGAs.

Figure 2.4 – Xilinx DSP48E1 (image courtesy of Xilinx Inc.)

A new trend in both Xilinx and Altera is to add ARM cores along in the same die with the FPGA.

The architecture of Xilinx Zynq 7000 is depicted in Figure 2.5 Both of them had already added

PowerPC cores but back then, those FPGAs were too expensive, and they had a poor adoption.

New Altera SoCss and Zynq FPGA have seen a great adoption by the open source community

and companies for co-design applications. The design flow presented in Figure 1.2 fits these

architectures perfectly because using a single behavioral description it is possible to target

both the CPUs cores and the FPGA.

Finally, most of the commercial HLS tools supports both FPGA and Application Specific

Integrated Circuit (ASIC) as a target architecture. An ASICs is an integrated circuit customized

for a particular use that is not reconfigurable. Those ICs exists in different types such as

Standard Cell, Full Custom ASIC, Gate-Array ASICs. It should be noted that the design flow

14

2.3. High-Level Synthesis

Figure 2.5 – Xilinx Zynq 7000 Architecture (image courtesy of Xilinx)

of this thesis is oriented for FPGAs, but it can also be applied with ASICs too. Even though,

it has not been not verified by the author. The interested reader may consult the following

references for more information on the ASIC architecture [23] and HLS for ASICs in [20, 24].

2.3 High-Level Synthesis

CDFG
Procedural

Optimization
Scheduling

CDFG
Scheduled

Allocation
And

Binding
RTL

Behavioral
Description

Constraints

Architecture
(Components

Library)

Power
Optimization

Figure 2.6 – A generic High-Level Synthesis Flow.

A High-Level Synthesis flow consists of a set of steps that from an abstract behavioral rep-

resentation to a Register Transfer Layer netlist is created. The flow starts with a behavioral

description, in which the designer specifies in a formal language the design algorithm. The

next step is the compiler infrastructure that parses the behavioral description and produces a

single or several Intermediate Representation(s) (IR) of it. In which the compiler is applying a

15

Chapter 2. State of the Art

set of procedural optimizations for reducing and optimizing the description. One of the most

used procedural optimization is the pipelining. The next is to create a graph called CDFG

(Control-Data Flow Graph) which captures all the control and data-flow dependencies of the

given IR. From this graph scheduling is applied. Scheduling is the process that partitions this

CDFG into subgraphs so that each subgraph is executed in one control step by taking on ac-

count the designer’s constraints applied to the behavioral description. Thus, then scheduling

converts the behavioral description into a set of register transfers that can be described by

an FSM. From the FSM it is derived the control step sequence and the conditions used to

determine the following control step sequence, the data path is derived from each register

transfer that is assigned to each control step. The datapath in the FSM is a netlist composed of

three types of register transfer components such as functional, storage and interconnection.

Functional units, such as adders, subtractors, shifts, multipliers etc., execute the operation

that are specified in the behavioral description. Storage units, such as registers, RAMs, and

ROMs, hold the values of variables generated and consumed during the execution. Inter-

connections units, such as buses and multiplexers, transports the data between functional

units to other functional units and storage units to functional units. After that, allocation

and binding follow. Allocation consists of selecting the number and types of components

to be used in the design. Binding involves the mapping of the variables and operations in

the scheduled CDFG into function, storage, and interconnection units. The next step that is

optional, and not effectuated by all HLS is the power optimization. The power optimization

optimizes the dynamic and static power dissipation(if an ASIC is the target architecture). The

dynamic power dissipation is caused by transistors switching, and as a result charges are being

moved along wires. The static is the outcome of the current leakage of the transistors. Power

optimization is either optimizing both kinds of dissipations or only the dynamic one. Finally,

an RTL netlist is generated by the HLS. The final step of the design is the interfacing of the RTL

netlist, and the logic synthesis is applied to the final implementation.

2.3.1 HLS tools evolution

Grant Martin and Gary Smith on [25] have divided the evolution of High-Level Synthesis into

three generation and a primal one. The current generation is the third, and most of the tools

are C based (including C++ and SystemC). Late 1970s up until 1980s is the primal period, first

generation is from 1980s to 1990s, second generation goes from mid-1990s to early 2000s and

the third from early 2000s to today.

The first generation was oriented mainly on data-path research. The second generation,

mainly commercial products were driven by high description languages (HDL). Third and

current generation follows the trend of C-based HLS oriented on datapath applications.

The pioneer tool in "primal" period is the Carnegie-Mellon University design automation or

CMU-DA HLS. The design flow is represented in Figure 5.4 and was built by Carnegie Mellon

University in the 1970s [26, 27]. Their work focuses on design specification, simulation, and

16

2.3. High-Level Synthesis

RTL synthesis. Common software code-transformation, which are used by today tools, like

dead-code and redundant sub-expression elimination, constant propagation, code motion are

used in the synthesis process. The instruction set processor specification (ISPS) language is

used as the design specification [28]. The data-memory allocators perform a mapping function

from the algorithmic ISPS description to the data-path part of the hardware implementation.

Then the module selection binds the abstract components to a database of specified modules

and finally a controller of components is produced.

ISP
Functional
Description

Data-Memory
Allocator

Data Path Graph

Interconnection
Of abstract components

Module
Binder

Data Path Graph

With Physical
Modules Selected

Translation To
Sandia Software

Module Data Base

TTL
Chips

Sandia
Standard

Cells

Figure 2.7 – The CMU design system, one of the earliest HLS.

Although it was a groundbreaking research, this old work had a little impact on the industrial

design. This is because large electronics companies were not still using or starting adopting

CAD/CAM systems at that period.

During the first generation, a plethora of tools for research and prototyping were built. MI-

MOLA [29, 30] a design method with a purpose to produce digital processors from high-level

behavioral specification. The design system combines both compiler construction and hard-

ware oriented concepts. Advance Design AutoMation or ADAM [31, 32] was a unified frame-

work with restricted natural language interface (a dataflow graph representing the behavioral

specification) which contained program tools which synthesized RTL designs from behav-

ioral descriptions and the prediction tools which guides the designer in exploring the design

space. In addition, the Sehwa [33] tool in ADAM can generate pipelined implementations by

exploring the design space. The tool is able to synthesize and perform high-level estimates

on the area-delay characteristics of designs and to determine the best design that meets the

given constraints. Hardware ALlocater or HAL [34] is a data path synthesis tool with three

characteristics. Firstly, it offers the analysis of the input data flow graph and attempts to evenly

distribute operations with similar resources with a load balancing technique. Secondly, it

provides a global pre-selection of operator cells to full fill speed constraints and register and

multiplexer optimizations. Finally, HAL proposed a well-known scheduling technique called

the force-directed scheduling on [35] and conflict-graph graph coloring technique for sharing

resources in the datapath [34]. Flamel [36], a Pascal to gates HLS, extracts parallelism from

block-level transformations.

Hercules/Hebe [37, 38] is a C to gates HLS. Hercules introduced a method called Reference

17

Chapter 2. State of the Art

Stack a one-pass transformation on the parse tree that resolves variable/constant unfolding,

conditional assignments, and multiple arguments. This transformation, also provides infor-

mation to structural synthesis that minimizes the number of registers. In addition, Hercules

introduces an elegant way to handle operations with unbounded delay called relative schedul-

ing [39]. Hyper/Hyper-LP [40, 41] is a high-level synthesis system oriented on power mini-

mization by using architectural and computational transformations. Cathedral/Cathedral-II

was specially designed for the synthesis of digital signal processing hardware [42]. In addition,

proprietary in-house tools from IBM [43], Philips [44], Motorola [45] were also developed.

The second generation started when major EDA companies such as Cadence, Mentor, and

Synopsis begun to offer behavioral HDL to RTL synthesis. Most important such as Mentor’s

Monet [46] and Cadence’s Visual Architect [47]. In [25] several reasons are highlighted for

the failure of the second generation. First it failed to replace the established RTL design

because HDL languages were not popular among system designers, and there was a need for

a new steep learning curve. In addition, the quality of result were often widely variable and

unpredictable, hard to validate result because no verification methods were available at that

time, HLS produces poor results for control dominated algorithms, and simulation time were

almost as long as RTL synthesis.

Third-generation HLS tools focuses on using C or C-like languages as behavioral descrip-

tions. As discussed already on the Introduction chapter, the lack of expressing parallelism

with C motivated academics and companies to introduce additional languages extensions

and restrictions to make C more compliant to hardware synthesis. In this way, the devel-

oper is discouraged to use dynamic structures such as pointers with unknown bounds and

recursive functions. Most famous third generations tools are HardwareC [39], SpecC [48],

Impulse-C [49], Forte’s Cynthesizer [50] now acquired by Cadence, Calypto’s Catapult [51],

NEC Cyber Workbench [52], Synopsis SynphonyC [53] and AutoPilot xPilot acquired by Xilinx

and called Vivado HLS [54]. Often tool vendors restrict publications of benchmarking results,

but indications shows that third generation HLS tools is achieving reasonable success. In

addition, third generation tools are better that the second one because they focus on domain

application (Dataflow and DSP design) by achieving reasonable good designs. Furthermore,

they provide the "right" input languages that suits more application software developers(eg.

C-like and Matlab). Finally, the quality of results are better because HLS can take advantage of

compiler-based optimization (Procedural optimization).

2.3.2 Behavioral Description

High-level languages make writing, debugging and verification of complex applications more

efficient. The degree of how high-level a programming language can be depends on the

context. For a VLSI engineer, VHDL is considered high-level when he considers custom design,

for firmware engineer C is seen as high-level but for a web programmer C is very low-level

compared to JavaScript. Each programming language is built for a need. C was developed for

18

2.3. High-Level Synthesis

(a) Calypto Catapult.

(b) Forte Cynthesizer.

(c) NEC CyberWorkbench.

Figure 2.8 – Three of the most used third generation HLS in the market. The three of them
focuses on HLS for ASICs. Catapult and recently CyberWorkbench offers also FPGA support.

executing sequential code on a sequential processor and VHDL and Verilog were designed for

replacing hand-written RTL designs.

Most of the programming languages today are sequential. Although, parallel processors are

becoming the standard i.e. multi-core and many cores CPUs, general purpose GPUs, and

19

Chapter 2. State of the Art

hybrids multi-core besides an FPGA. Currently there is no parallel languages that target all

of them with a single representation. As discussed, for classic programming language like C,

libraries are used for exploiting the parallelism, only recently there is native thread support

within C++11. Currently only data-parallelism is efficiently supported by OpenCL and CUDA

APIs for GPGPUs. FPGAs are natural parallel machines, and Verilog and VHDL exploit their

full capability on task and data parallelism, but HDL languages are unacceptable to most

application software developers.

In this section, the state of the art of HLS languages and their corresponding tool is given, with

the majority of those being C based.

C-like HLS Languages

One of earliest C-to-Gates tools was Cones [55]. It synthesizes single functions, a cone, into

combinational blocks. Those blocks were modeled in the C programming language, using

assignments, branching, loops and iterative constraints. Ku and De Micheli developed Hard-

wareC [56] for the input of the Olympus [38] synthesis system. HardwareC is a behavioral

hardware language with C-like syntax and much larger expressing power than Cones. Hard-

wareC has extensive support for hardware-like structure and hierarchy, supports concurrency,

structural and timing constraints. The Transmogrifier C [57], now called FpgaC, is a small

C subset that supports branches, loops, and preprocessor directives. As a disadvantage it

does not support multiplication, division, pointers, arrays, structures, or recursion. Celoxica

Handle-C extends the C language with constructs for parallel statements and Occam-like

communications. CompiLogic C2Verilog or C Level Design, now part of Synopsis, the compiler

supports a broad set of ANSI C. It is capable of supporting features such as pointers and

dynamic memory allocation. The compiler and its transformations are described in details on

this patent [58]. SpecC language by Gajski et al. [48] is a superset of ANSI C that includes many

systems and hardware constructs such as FSM, concurrency and pipelining. Although, not all

constructs of SpecC are synthesizable, the designer can manually refine the SpecC program

into to one that can be. Bach C [59] from Sharp supports explicit concurrency and rendezvous

communications. Each operation is sequenced, and arrays are supported but not pointers.

C++ can also be used as an HLS language for synthesizing to RTL, some compilers supporting

it can even synthesize a subset of SystemC. SystemC is a C++ library that supports hardware

and system modeling. An HLS specialized in SystemC is the Cynthesizer from Forte Design

System, which was acquired by Cadence in 2014. Cyntheziser supports a strict set of SystemC’s

TLM. Calypto’s Catapult C, previously Mentor Graphics, performs a behavioral synthesis from

a strict subset of the ANSI C/C++ and SystemC. Vivado HLS, prior AutoESL Autopilot, is one of

the most recent HLS tools. Vivado HLS also synthesizes to RTL from C, C++, and SystemC. It

is based on the open source LLVM framework, and it uses Clang the LLVM C frontend. As an

advantage, with every iteration of LLVM, Vivado HLS naturally retrieves the latest optimizations

on LLVM’s compilation techniques. NEC CyberWorkbench targets behavioral synthesis, and

it has been used in industry for many years. CyberWorkbench supports BDL [60] and even

20

2.3. High-Level Synthesis

thought it deviates from C by adding support for I/O ports, specific types and operators,

explicit clock cycles and pragmas it can also synthesize C++ and SystemC.

StepNP [61] is a system-level exploration framework based on SystemC targeted at network

processors. It enables rapid prototyping and architectural exploration and provides well-

defined interfaces between processing cores, co-processors, and communication channels to

allow the usage of component models at different levels of abstraction. It enables the creation

of multi-processor architectures with models of interconnects (functional channels, NoCs),

processors (simple RISC), memories and coprocessors.

BlueSpec [62] takes as input a SystemVerilog or a SystemC subset and manipulates it with

technology derived from term rewriting systems (TRS) initially developed at MIT by Arvind et

al. It offers an environment to capture successive refinements to an initial high-level design

that are guaranteed correct by the system.

CUDA
Code

FCUDA
Annotated

code

Vivado
HLS

C Code

RTL
DesignAnnotation

Vivado HLS
Synthesis

FPGA
Implementation

guidelines

Coarse-grained
Parallelism
extraction

Fine-grained
Parallelism
extraction

Figure 2.9 – FCUDA: CUDA to FPGA Flow.

CUDA and OpenCL general purpose GPU development C-like languages have expanded their

capabilities for hardware synthesis. FCUDA [63] adapts the CUDA programming model into

an FPGA design flow that maps the coarse and fine grained parallelism exposed in CUDA onto

the reconfigurable fabric. The primary goal of the FCUDA is to convert thread blocks into C

functions, and them use a C-to-gates HLS for synthesis. SOpenCL [64] generates hardware

circuits from OpenCL programs as FCUDA does. SOpenCL is based on a source-to-source code

transformation step that coarsens the OpenCL fine-grained parallelism into a series of nested

loops, and on a template-based hardware generation back-end that configures the accelerator

based on the functionality and the application performance and area requirements. Altera’s

OpenCL SDK permits the developers to test their algorithms on a personal computers and

then, their OpenCL compiler converts the OpenCL program into an FPGA bitstream.

Other programming Languages used for HLS

JHDL or Just Another hardware Description Language [65] is an HLS language that focuses on

designing circuits through an object-oriented approach. JHDL synthesizes Java 1.1 without

further language extensions. Sea Cucumber [66] is another Java HLS that permits developers

21

Chapter 2. State of the Art

to describe the circuit coarse-level parallelism as concurrent threads. Kiwi [67] is a C# based

HLS that accepts the intermediate language output from either .NET or the open source

Mono C# compiler and generates Verilog. Pebble [68] is a language for parameterized and

reconfigurable hardware design with a simple block-structured syntax. The objective of Pebble

is to support development of designs that can be reconfigured in run-time. Esterel [69] is a

synchronous programming language for developing systems that react continuously to their

environment.

UML interface

XSM

XML

-HW platform
-Parametrized
HW

Arcitecture
(initial)

Mapping
(initial)

Application

Allocation
optimization

Scheduling

Arcitecture
(candidate)

Mapping
(candidate)

Schedule
(candidate)

Mapping

Optimized
XSM

XML

Application
Model

UML

Architecture
and mapping

models

UML

UML design with
TUT-profile

To dynamic optimization

Figure 2.10 – Koski a UML based Design Flow for HW-SW prototyping.

Unified Modeling Language (UML) is used in software engineering for designing large software

programs. A complete design flow using UML for system modeling is achieved by Kukkala et

al. and is called Koski, represented in Figure 2.10. The target of the Koski design flow [70] is

multiprocessor System-on-Chip (SoC). It is a library based method that hides unnecessary

details from high-level design phases but does not require a plethora of model abstractions.

The design flow provides an automated path from UML design entry to FPGA prototyping,

including functional verification, automated architecture exploration, and back annotation.

The design of the architecture is based on the application model: it results in an application

specific implementation. Hailpern et al. [71] highlighted that graphical languages are not well

accepted because it is slower to use than writing code.

22

2.4. Scheduling of Operators, Operators Pipelining and Power Optimization in HLS

2.4 Scheduling of Operators, Operators Pipelining and Power Opti-

mization in HLS

2.4.1 Scheduling of Operators

Scheduling is the process of splitting the IR into states and control steps. With the purpose to

do a temporal mapping of the given representation. Any behavioral description and its inter-

mediate representation consist of a sequence of operators to be performed by the synthesized

hardware. The task of scheduling consists on partitioning into time steps such that each or set

operations is executed in one-time step.

The most popular way of modeling the operator’s scheduling is by using Finite State Machine

with Datapath (FSMD). As a matter of fact, FSMDs are used to describe digital systems at the

register transfer lever. An FSMD consist of an FSM called control unit and a datapath. The

datapath expresses the storage and functional unit necessary for the system. The FSM consists

of a set of states that corresponds to time/control step of the scheduling, a set of transitions

between the states, and a set of actions involving the datapath that is associated with each

transition.

Scheduling
Algorithms

Time
Constrained

Resource
Constrained

MiscellaneousClassic

ASAP ALAP
Force

Directed
ILP List Based Static List

SDC

Iterative
Ref.

Sim.
Annealing

Path
Based

Balanced
Sched.

Figure 2.11 – Classification of the most known scheduling algorithms.

In the following the most used scheduling algorithms are described. Scheduling algorithms are

separated in three categories: basic algorithms such as ASAP and ALAP, time constrained and

resource constrained. Algorithms that combines them all are also described. Time constrained

is essential for designing applications in real-time systems such as DSPs where the main

objective is to minimize the cost of the hardware. Resource constrained scheduling has as

a goal to produce schedules that give the best possible performance but still meet the given

resource constraints.

The most basic scheduling algorithms are the As Soon As Possible (ASAP) and As Late As

Possible (ALAP). The ASAP algorithm starts with the highest nodes in the CDFG and assigns

time steps in increasing order as it proceeds downwards. ASAP considers that a successor node

23

Chapter 2. State of the Art

can execute only after its parents has executed. The algorithm schedules in the least number

of control steps, but it does not take on account the resource constraints. Two examples of

using ASAP scheduling are Facet [72] from CMU/Bell Laboratories and CATREE [73].

ALAP in contrary to ASAP, starts at the bottom of the CDFG and proceeds upwards. The

algorithm gives the slowest possible schedule that takes the maximum number of control

steps. This approach is a refinement of the ASAP scheduling with conditional postponement of

operations. ALAP is used in MIMOLA [74] system for postponing the concurrency of operators

when there are not sufficient functional units.

Integer Linear Programming (ILP) [75] tries to find an optimal schedule using branch and

bound algorithm. It also involves backtracking, for example, decisions that were made earlier

are changed afterward. The ILP formulation increases rapidly with the number of control

steps. For unit increase in the number of control steps, we will have n additional x variables.

Therefore, the time of execution of the algorithm also increases rapidly. In practice, the ILP

approach is applicable only to a limited set of applications. Heuristics methods such as

scheduling one operation at time-based criterion can eliminate the ILP backtracking, thus

saving a considerable time of computation.

Force-Directed Scheduling (FDS) [35] is popular for time constraint scheduling. The main

goal of the scheduling algorithm is to reduce the total number of functional units used in the

implementation of the design. The algorithm achieves its objective by uniformly distributing

operations of the same type (for example a multiplication) into all available states. This

uniform distribution ensures that functional units allocated to perform operations in one

control step are used efficiently in all other control steps, which leads to a high unit utilization.

Like ILP, the FDS algorithm uses both ASAP and ALAP to determine the range of the control

steps for every operation. The FDS scheduling algorithm it never backtracks on its decision

and hence is classified as constructive algorithm.

Iterative Rescheduling [76] was developed due to the lack of a look-ahead scheme of the

FDS algorithm, which might provide a sub-optimal solution. The idea is to take an initial

scheduling given by a scheduling algorithm and tries to reschedule one operation at a time.

An operation can be rescheduled into an earlier or a later step, as long as it does not violate the

data dependence constraints. The essential issue on rescheduling is the choice of a candidate

for rescheduling, the rescheduling procedure and the control of the improvement method.

Iterative Rescheduling has is based on the paradigm originally proposed for the graph bisection

problem by Kernigham and Lin [77].

List based scheduling [20] is the generalization of the ASAP algorithm. A list based algorithm

maintains a priority list of nodes whose predecessors have already been scheduled. A priority

function, that resolves any resource contentions, sorts all the operations of the priority list. For

each iteration, operations with higher priority are scheduled first and lower priority operations

are scheduled to later control steps. If an operator is scheduled to a control step it may make

some other non-ready operations ready. Thus, these operations are inserted into the list

24

2.4. Scheduling of Operators, Operators Pipelining and Power Optimization in HLS

according to the priority function. The QoR of the list based scheduling depends on its priority

function.

2.4.2 Operators Pipelining

In computing, a pipeline is a set of data processing elements connected in series, so that

the output of one element is the input of the next one [78, 79]. The elements of a pipeline

are executed in time-sliced fashion; in that case, pipeline registers are inserted in between

elements (pipeline stages). The pipeline stage time has to be larger than the longest delay

between pipeline stages. A pipelined system consumes more resources than one that executes

one batch at a time, because its stages cannot reuse the resources of a previous stage.

Numerous languages and intermediate representations have been created for describing

pipelines. Thus, the programming language C is widely used as behavioral input of pipelining

tools [80, 81, 82]. Pipelines can be represented as a data flow graph (DFG) [83], signal flow

graph [84, 85] , transactional specification [86] and other notations [87, 88, 89]. They can

also be synthesized from binaries [81]. The concurrent algorithmic language, CAL has been

developed for representing pipelined networks of actors [90, 91].

A pipeline system is determined by several parameters such as clock cycle time, stage cy-

cle time, number of pipeline stages, latency, data initiation interval, turnaround time, and

throughput. A pipeline synthesis problem can be constrained either by resource or time or a

combination of both. Given the available hardware, the objective of a scheduler is to find a

pipeline schedule with maximum performance. Given the constraint on the throughput, the

goal of a scheduler is to find a pipeline schedule consuming minimum hardware.

An important concept in circuit pipelining is re-timing, which exploits the ability to move

registers in the circuit in order to decrease the length of the longest path while preserving its

functional behavior [92, 93, 94]. The aim of constrained min-area retiming is to minimize the

number of registers for a target clock period, under the assumption that all registers have the

same area. In the retiming problem, the objective function and constraints are linear, so linear

programming techniques are used to solve this problem. Retiming assume that the degree of

functional pipelining has already been fixed and consider only the problem of adding pipeline

buffers to improve performance of a circuit.

Sehwa [33] can be considered as the first pipeline synthesis program. For a given constraint

on resources, it generates a pipelined data path with minimum latency. Sehwa minimizes the

time delay using a modified list scheduling algorithm with a resource allocation table. The

force-directed scheduling that is proposed in [35] and modified in [85, 95] performs a time-

constrained functional pipelining. ATOMICS [96] performs loop optimization starting with

estimating a latency and inter-iteration precedence. The pipelined DSP data-path synthesis

system SODAS [84] takes a signal flow graph as input and generates a trade-off in pipeline

designs by changing the synthesis parameters such as data initiation interval, clock cycle

25

Chapter 2. State of the Art

time and number of pipeline stages. In [97] an adaptation of ASAP list scheduling and an

iterative modulo scheduling is used for design space exploration based on slow, but area

efficient modules and fast but area consuming modules. Speculative loop pipelining from

binaries is proposed in [81]. It speculatively generates a pipeline netlist at compile time and

modifies it according to the result of runtime analysis. The automatic pipelining in [86] takes

user-specified pipeline-stage boundaries and synthesizes a pipeline that allows concurrent

execution of multiple overlapped transactions in different stages.

Integer Linear Programming is a very popular formulation of pipeline optimization problems,

although pipeline parameters can often be precisely described only by nonlinear functions.

Spaid [98] finds a maximally parallel pattern using ILP. In [99] an ILP formulation and a

reduction of it are used for rapid pipeline design space exploration. An ILP formulation of the

minimization problem, when delay buffers may need to be introduced for synchronizing the

data paths, is proposed in [99].

Pipelining is an effective method for optimizing the execution of a loop with or without loop-

carried dependencies. Highly concurrent implementations can be obtained by overlapping

the execution of consecutive iterations. Forward and backward scheduling is iteratively used

to minimize the delay in order to have more silicon area for allocating additional resources

that in turn will increase throughput. The loop winding method was proposed in Elf [100]. The

percolation based scheduling [101] deals with the loop winding by starting with an optimal

schedule [102] that is obtained without considering resource constraints. PLS pipelining is

an effective method [72] to optimize the execution of a loop especially for DSP. The rotation

scheduling of loop pipelining by means of retiming processing nodes is introduced in [83].

In [80] a pipeline vectorization method is proposed that pipelines the innermost loops in

a loop nest based on removing vector dependencies. Known transformation techniques

such as loop unrolling, tiling, merging, distribution and interchange are adapted to pipeline

vectorization.

2.4.3 Power Optimization

Due to the rapid growth of personal wireless communication, power optimization has attracted

a lot of attention. Most research in power estimation and optimization of VLSI circuits has

concentrated on the logic and lower levels of the design hierarchy [103, 104, 105]. Yet, several

research publications [106, 107, 108] have show that most power saving in power consumption

is often obtained at the higher level of design hierarchy.

First efforts on architectural power optimization was presented by Chandrakasan and al.

in [106] and [107]. In [106], the authors uses an architectural parallelism by the means of data

path replication and pipelining. So that is possible to enable supply voltage scaling for power

reduction. Another way of reducing power consumption using compiler transformations was

introduced in [107]. In [109], authors analyze activity metrics at high level for adders and

multipliers and derive architectural transformations for synthesizing low power circuits. With

26

2.4. Scheduling of Operators, Operators Pipelining and Power Optimization in HLS

the goal to identify data flow graph transformations that reduce overall circuit activity rather

than an accurate prediction of power consumption.

Optimizing memory-dominated computations for power consumption was addressed in [110,

111, 112]. In [110] and [112] the crucial impact of memory related power consumption on the

global system power budget, in particular for systems with intensive memory access patterns

and multi-dimensional signal processing subsystems. In [111] the importance of reducing

computational complexity in algorithmic and architectural level has a high impact on power

reduction.

Methods for performing data path allocation and assignment with the aim of minimizing

the switched capacitance in the data path were in given in [113, 114, 115, 116]. In [113] an

allocation method for low power is investigated by optimizing the controller to reduce data

path power dissipation. Hardware sharing effects on power dissipation on the switched capac-

itance and transition activity is presented in [114]. Authors in [115], formulates a minimum

cost clique for minimum power consumption for the switching activity of registers that shares

different data values. A level design technique to reduce the energy dissipated in switching

of the buses is proposed in [116]. A technique based on reducing the activity of functional

units during high-level synthesis was proposed in [117]. The use of limited-weight codes to

minimize power consumption in buses and I/O circuitry was described in [118].

Another method for reducing power consumption is by using multiple supply voltages, which

is well researched and several studies have appeared in the literature. Authors in [119] applies

resource and latency constrained scheduling algorithms to minimize power/energy consump-

tion when the resources operate at multiple voltages. A set datapath scheduling algorithms for

simultaneous minimization of peak and average power are proposed in [120, 121]. In [122], an

algorithm called MOVER (Multiple Operating Voltage Energy Reduction) to minimize datapath

energy dissipation through use of multiple supply voltages. An algorithm named MuVoF is

proposed in [123] to perform multivoltage multifrequency low-energy high-level synthesis

for functionally pipelined datapath under resource and throughput constraints. A dynamic

programming technique for solving the multiple supply voltage scheduling problem in both

nonpipelined and functionally pipelined data-paths is presented on [124]. An ILP model

in [125] offers variable scheduling techniques that consider in turn timing constraints alone,

resource constraints alone, and timing and resource constraints together for design space

exploration.

FPGAs compared to ASIC chips are perceived as not power efficient because of their large

amount of transistors and to their architecture to provide the reconfigurability. To this con-

sequence, FPGAs has been restrained for low power applications. As FPGAs have millions

of gates, the increase of design complexity and the need to reduce design time for early

time-to-market, there is a need to estimate power consumption at higher level.

Jha and al. [126] present a HLS approach for synthesizing power-optimized as well as area

optimized circuits from hierarchical data flow graphs under throughput constraints. Authors

27

Chapter 2. State of the Art

in [127] explores the accuracy of applying Rent’s rule [128] for wire length estimation during

high-level synthesis for FPGA architectures. Then, due to the importance of switching activity

for power estimation, they adopt a fast switching calculation algorithm [129]. After that, they

built a simulated annealing engine with a cost function the power estimation. During the

annealing process resource selection, function unit binding, scheduling, register binding, and

data path generation simultaneously are carried out. Finally, they apply a MUX optimization

algorithm to further reduce the power consumption of the design. This approach does not

consider multiple-clock design nor clock gating.

Globally Asynchronous Locally Synchronous (GALS) based systems consist of several locally

synchronous components that communicate with each other asynchronously. Works on GALS

can be divided into three categories; partitioning, communication devices, and dedicated ar-

chitectures. Dataflow design modeling, exploration and optimization for GALS-based designs

has been studied previously by several authors. For example Hemani et al. [130] proposed

a GALS design partitioning method for high performance and very large VLSI systems. The

system is partitioned into an optimal configuration of synchronous blocks by exploring rela-

tionships between power consumption and the number of synchronous blocks which define

the granularity of this approach. In this case, the main limitation is that the synchronous

blocks have fixed sizes that cannot be changed during the optimization process. Moreover, this

approach does not take into account system performance in the optimization process. Shen

et al. [131] proposed a design and evaluation framework for modeling application-specific

GALS-based dataflow architectures for cyclo-static applications, where system performance,

e.g. throughput, is taken into account during optimization. Similarly, Wuu et al. [132] and

Ghavami et al. [133] proposed a method for automatic synthesis of asynchronous digital

systems. These two approaches are developed for fine-grained dataflow graphs, where actors

are primitives or combinational functions.

2.5 Dataflow Design Flows for HW and SW Co-Design

Hardware/Software Co-Design can be defined as the simultaneous design of both the hardware

and software to implement in a desired application. It investigates the concurrent design of

hardware and software processing elements of complex electronic systems. It tries to exploit

the synergy of hardware and software with the goal to optimize and satisfy design constraints

such as cost, throughput, and power of the final product. At the same time, it targets to

reduce the time-to-market frame considerably. Several works have been conducted on HW-

SW co-Design Flows that uses as behavioral description dataflow programming languages or

models.

CodeSign [134] framework uses Object Oriented Time Petri Nets (OOTPN) as the modeling

language. This language is quite powerful to model real-time systems, and it is possible to

analyze it mathematically. The notion of time allows performance evaluation at the early

stages of the design. It produced the Moses Tool Suite, a tool for modeling and simulating and

28

2.5. Dataflow Design Flows for HW and SW Co-Design

evaluating heterogeneous systems using Petri nets.

Figure 2.12 – Matlab HDLCoder HLS tool.

The Trotter design flow [135] enables rapid prototyping and design space exploration of

applications specified using an internal graph representation of the application. In the very

early steps of the design flow, the framework provides useful metrics allowing the designer to

evaluate the impact of algorithmic choices on resource requirements in terms of processing,

control, memory bandwidth and potential parallelism at different levels of granularity. The

goal of their work is to perform automatically and rapidly the algorithmic exploration for the

functions called from the event-based level. Tools are available for simulation, formal proof

and code generation at the event-based level, but they do not consider any path to hardware.

SynDEx [136] is a graphical and interactive software implementing the Algorithm Architecture

Adequation methodology (AAA). Within this environment, the designer defines an algorithm

graph, an architecture graph, and system constraints. Syndex is a Computer-Aided-Design

software aiming at mapping an algorithm onto an architecture. The architecture taken into

account is only composed of several processors and hardware logic like FPGA cannot be

taken into consideration in this flow. The design space exploration is done according one

unique criterion, throughput. Another framework based on the AAA principles is Preesm [137],

compared to Syndex it offers schedulability analysis and it ensures deadlock freeness in the

generated code.

Finally, schematics based tools such as LabView and Matlab recently enabled high-level syn-

thesis on their design flow. National Instruments (NI) LabView FPGA hardware modules [138]

permits the LabView graphical development tool to target FPGAs on specific hardware mod-

ules developed by NI. MatLab’s HDLCoder [139] generates Verilog or VHDL from Simulink and

Stateflow designs.

29

Chapter 2. State of the Art

Figure 2.13 – Daedalus Design Flow a unified environment for rapid system-level architectural
exploration.

Daedalus [140], depicted in Figure 2.13 provides a unified environment for rapid system-level

architectural exploration, high-level synthesis, programming and prototyping of multimedia

MP-SoC architectures. The Daedalus framework is an automatic design flow from Kahn

Process Networks or directly from C/C++ specifications. Khan Process Network is well suited

for signal processing systems. The modeling of interrupts is complicated because of the nature

of Kahn Process Network model. Thus, it makes the study of time-dependent systems limited.

Metropolis [141] is a framework allowing the description and refinement of a design at different

levels of abstraction and integrates modeling, simulation, synthesis, and verification tools.

The function of a system, such as the application, is modeled as a set of processes that

communicate through media. Architecture building blocks are represented by performance

models where events are annotated with the costs of interest. A mapping between functional

and architecture models is determined by a third network that correlates the two models by

synchronizing events (using constraints) between them.

Mescal project [142] from University of California at Berkeley aims at designing heterogeneous,

application specific, programmable (multi) processors. The goal is to allow the programmer

to describe the application in any combination of models of computation that is natural for

the application domain. The goal is also to find a disciplined and correct by construction

abstraction path from the underlying micro-architecture to an efficient mapping between

application and architecture.

30

2.6. Conclusion

The PeaCE Environment [143] specifies a system level design with a heterogeneous composi-

tion of three models of computation. The PeaCE environment provides seamless co-design

flow from functional simulation to system synthesis, utilizing the features of the formal mod-

els maximally during the whole design process. This framework is based on the Ptolemy

project [144]. When dealing with C/C++ specifications, the Peace approach, however, does

not propose an automatic procedure to transform this specification into dataflow graphs.

SystemCoDesigner [145] is an actor-oriented approach using a high-level language named

SysteMoC, which is built on top of SystemC. It generates HW-SW SoC with automatic design

space exploration techniques. The model is translated into behavioral SystemC model as a

starting point for HW and SW synthesis. The HW synthesis is delegated to a commercial tool,

viz. Forte’s Cynthesizer, which generates RTL code from their SystemC intermediate model.

Hardware/Software Co-Design based on RVC-CAL programming language has been studied

in all steps of this thesis design flow. A first approach on CAL and RVC-CAL simulation and

hardware code generation was provided by the OpenDF [146, 147] framework developed

by Xilinx. An alternative to OpenDF for software synthesis called Open RVC-CAL Compiler

has been effectuated in [148] and it is the compiler infrastructure used in this thesis. A

third experimental compiler infrastructure for CAL developed by Ericsson is called Caltoopia

and described in [149]. Hardware and C++ software code generation for Orcc were firstly

introduced in [2, 3] and further developed in this thesis. Moreover, Interface synthesis for

heterogeneous platforms is presented in [150]. Furthermore, a design space exploration for

RVC-CAL dataflow programs is discussed in [10, 7]. Finally, a complete Co-Design environment

is presented in [9, 19].

Actor and Dataflow Machines [151, 6] is a machine model for dataflow actors that focuses

on minimizing the overhead of action selection for efficient implementations of static and

dynamic dataflow programs. Actor machines are used to reduce the runtime testing of con-

ditions, also actor machines can be composed to eliminate testing of port conditions. For

this thesis Actor Machines were not used due to the late arrival of a compiler infrastructure

supporting them. Finally, in the future works chapter is described that Dataflow Machines is

going to replace the Orcc intermediate representation for a better software and hardware code

generation that contains fewer tests in the action selection.

2.6 Conclusion

In this chapter, the state-of-the-art of high-level synthesis tools and design flows for het-

erogeneous platforms were presented. It was shown that the behavioral description of the

third-generation HLS tools is mainly C or C-like programming languages. In fact, C languages

have an important limitation; they do not express parallelism. As discussed, to circumvent

these obstacle vendors and academics have either modified the C language structures or they

provide specialized library, or add pragmas that recognized only by a single tool. Alternative

languages for HLS either offer a block-structure syntax or the possibility to design systems

31

Chapter 2. State of the Art

that react continuously to their environment.

Three building blocks found in almost all HLS are also introduced and discussed. Those

are scheduling of operators, pipelining, and power optimization. The list of the most used

scheduling algorithm is given and two types of scheduling problems were considered: time

constrained and resource-constrained scheduling. On one hand, the ILP approach solves

the time-constrained problem but it has long time executions. On the contrary, FDS finds a

solution quickly, but the optimality is not guaranteed. The Iterative Rescheduling improves an

initial schedule generated by one the previous schedulers. Moreover, list-scheduling solved

the problem of resource scheduling. As discussed, pipelining optimization is a time and

resource constrained scheduling problem with the purpose to increase the frequency of the

overall system. Power saving methodologies are related to the technology that is being used.

Most of the introduced methodologies and strategies are for ASICs, but there is a growing

interest for power saving techniques for FPGAs. In addition, there is no strategy that helps to

reduce the dynamic power dissipation for dynamic dataflow programs. Thus, power saving

techniques are applied or to static dataflow programs or synchronous or the power reduction is

effectuated statically during synthesis. A solution for reducing the dynamic power dissipation

caused by flip flop switching activities and extends the state-of-the-art in clock-gating is given

in Chapter 6.

Furthermore, design flow for hardware and software Co-Design were presented. Each design-

flow uses a high-level behavioral description for representing a design, mainly a derivative of

C language. In contrast, LabView’s behavioral description is a schematic based one. Matlab,

Syndex, Deadalus and others provides also a graphical representation of the dataflow depen-

dencies between the process. In addition, part of tools are using a single dataflow model of

computations such as the Kahn Process Network or in Mescal a combination of models of

computation is used. Finally, an RVC-CAL based flow were also introduced. In contrast, with

other design flows the RVC-CAL design flow, which is described and provided with this thesis,

permits the description of dynamic systems from a single representation. Moreover, it offers

support for both hardware and software processing elements, and a design space exploration

that permits the performance estimation and refactoring directions that can be applied for

accelerating the system latency (Chapter 5).

32

3 CAL Dataflow Programming Language

3.1 Introduction

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

Profiling
and

Analysis

Performance
Estimation

RVC-CAL
(Behavioral Description)

ArchitectureConstraints

R
e

fa
ct

o
ri

n
g

 D
ir

e
ct

io
n

s

C
o

m
p

il
e

r
D

ir
e

ct
iv

e
s

Action

FSM

Guarded atomic
Action

Point to point, buffered
Token passing Connection

Encapsulated State

Actor

Actor

Figure 3.1 – RVC-CAL as the Behavioral Description in the Design Flow.

The emergence of parallel processing elements such as many-cores/multi-cores, FPGAs,

GPGPUs demands to rethink the way of programming them. It is widely recognized that

programming parallel platforms is difficult and tedious. In addition, heterogeneous platforms

consisting on parallel processing elements is becoming a standard on personal computers, a

combination of multi-core processors and massively parallel GPUs, and also the introduction

of MPSoCs with programmable logic in the industry demands higher level of abstraction. A key

to the heterogeneous system level design is the notion of models of computation (MoC) [152].

A MoC is the semantics of the interactions between modules. Moreover, it is the model or

the specification principles of a design. Furthermore, MoCs relate strongly to the design style

but is not necessary to refer to the implementation technology. Classes of MoCs include:

33

Chapter 3. CAL Dataflow Programming Language

Imperative, Finite State Machine, Discrete Event, Synchronous Languages, and Dataflow.

The imperative MoC executes the modules sequentially to accomplish a task. In Finite State

Machines MoC, an enumeration of set of states specifies the steps to achieve a task. In the

Discrete Event MoC, modules react to event that occurs at a given time instant and produces

other events at the same time instant or at some future time instant. In Synchronous Languages

MoC, modules simultaneously react to a set of input events and instantaneously produce

output events.

A Dataflow MoC, is conceptually represented as a direct graph where nodes, called actors,

represent computational units, while edges describes communication channels on which

tokens are flowing. A token is an atomic piece of data. Dataflow graphs are often used to

represent data-dominated systems, like signal processing applications. Using Dataflow MoC

in such application domains often leads to behavioral descriptions that are much closer to the

original conception of the algorithms than if an imperative MoC was used. Dataflow models

also date back to the early 1970s, starting with seminal work by Dennis [153] and Kahn [88].

Several execution models that define the behavior of a dataflow program have been introduced

in literature [88, 152]. A Dataflow MoC may constrain the behavior of an actor, how actors

are executed relatively to each other, and aspects of their interaction with one another. As a

result, different MoCs offer different degrees of analyzability and compile-time schedulability

of dataflow programs written in them, and permit different guarantees (such as absence of

deadlocks or boundedness of buffers) to be inferred from them.

The first two MoC are fundamentally sequential and the last three are concurrent. In fact it is

possible to use the first two on parallel processing elements and the last three on sequential

machines. Thus, there is a distinction between MoCs and the way that they are implemented.

As a consequence, the efficiency might take a hit. In heterogeneous platforms there should be

a separation of tasks depending properties of a design. Modules that are sequential should

preferably execute on sequential platforms and parallel ones should perform on concurrent

machines. In effect, for system level design either should be a mix of different MoCs or the

properties and semantics of a single MoC should be rich enough to support heterogeneous

designs.

A potential candidate for heterogeneous system level design is RVC-CAL. RVC-CAL is dataflow

programming language that is based on the Dataflow MoC and it has the property to ex-

press applications as network processes. In fact, it offers parallelism scalability, modularity,

scheduling by finite state machines, portability, and adaptivity properties that are necessary to

unify the system level design for heterogeneous platforms. The MoC underlying the dataflow

networks that are expressed using the CAL formal language is based on the dataflow process

networks (DPN) model [152]. In addition to the properties of dataflow mentioned above, each

DPN actor executes a sequence of discrete computational steps, called firings. In each step, an

actor may (a) consume a finite number of input tokens, (b) produce a finite number of output

tokens, and (c) modify its internal state, if it has any. In an actor language such as CAL [154]

34

3.1. Introduction

and its subset RVC-CAL this behavior is specified as one or more actions. Each action describes

the conditions under which it may be fired (which may include the availability and values

of input tokens, and the actor’s state), and also what happens when it fires, i.e. how many

tokens are consumed and produced at each port, the values of the output tokens, and how the

actor state is modified. The execution of such an actor consists of two alternating phases: the

determination of an action who firing conditions are fulfilled (including a choice if there is

more than at some point), and the execution of that action itself.

Table 3.1 – System-Level Requirements and Coverage. With lsupported, wpartially supported,
and mnot supported.

C C
++

O
p

en
C

L

Ja
va

V
H

D
L

Ve
ri

lo
g

H
ar

d
w

ar
eC

Sp
ec

C

R
V

C
-C

A
L

Behavioral hierarchy m m w m m m m l l

Structural hierarchy m m m m l l l l l

Concurrency m w l w l l l l l

Synchronization m m l w l l l l l

Exception handling w l l l l l m l m

Timing m m m m l l w l m

State transitions m m w m m m m l l

Composition data types l l l l w w m l w

Heterogeneous & CoDesign m m l m m m m m l

Fine-Grain Profiling m m w m m m m m l

Table 3.1 compares traditional languages against a set of language requirements. Partial values

are retrieved from [48]. RVC-CAL supports the following behavioral hierarchies: sequen-

tial execution inside actions, FSM by the finite state machine of the actor, concurrent and

pipelined execution by the MoC. In addition, RVC-CAL supports structural hierarchy by actor

composition. An actor composition may contain another actor composition. Furthermore,

Synchronization is provided by the FIFO queues that the actors are interconnected. Exception

handling is not currently supported. RVC-CAL is high-level language that makes a total ab-

straction of time. Moreover, RVC-CAL support list types and future version will also support

composite types. Finally, this thesis demonstrates that RVC-CAL is a potential candidate

heterogeneous system level design and that it supports fine-grain profiling for hardware and

software processing elements.

Before describing the CAL programming language and its features, a brief introduction to the

Process Networks and the Model of Computations that CAL uses is given in the next section.

35

Chapter 3. CAL Dataflow Programming Language

3.2 Process Networks

In this section, the Kahn Process Network and Dataflow Process Network MoCs are described.

CAL inherits the properties of both models and extends them with the Actor Transition System.

A Model of Computation or MoC is a formal representation of the operational semantics of a

network of functional blocks describing a computation [155]. Moreover, it allows to specify

the algorithm and the cost (i.e. time) of the operations.

3.2.1 KPN

The Kahn Process Networks [88] is a formal model of concurrent computation first introduced

by French computer scientist Gilles Kahn in 1974. He introduced a language with simple

semantics with the goal of applying mathematical approaches to programming languages

and system design. Kahn’s model can naturally describe signal processing systems in which

infinite streams of data samples are incrementally transformed by a collection of processes

executing either in sequence or parallel.

In Kahn’s model, a network of processes communicates with each other via unbounded FIFO

queues. Kahn describes its model as a set of Turing machines [156] connected via one-way

tapes. Each process shares data with each other only through the input and output queues.

Each queue may contain a possible infinite sequence of tokens. By using the same notation as

in [152], each sequence or a stream is denoted with X = [x1, x2, x3, . . .] where each xi is a token

drawn from a set. A token is an atomic data object that is written (produced) exactly once, and

read (consumed) exactly once. Writes to the queues are non-blocking, in the sense that they

always succeed immediately, but reads from queues are blocking, in the sense that if a process

attempts to read a token from a queue and no data is available, then it stalls (i.e. wait) until

the queue has sufficient tokens to satisfy the read. In other words, it is not possible to test the

presence of input tokens.

Let Sp denotes the set of p-tuples of sequences as in X = {X1, X2, . . . , Xp } ∈ Sp . A Kahn process

is then defined as a mapping from a set of input sequences to a set of output sequences such

as:

F : Sp → Sq (3.1)

The KPN process F has event semantics instead of state semantics such as continuous time

which is used in some other domains. Furthermore, the only technical restriction is the need

of F a continuous mapping function.

Considering a prefix ordering of sequences, the sequence X precedes the sequence Y (written

X v Y) if X is a prefix of (or is equal to) Y . For example, if X = [x1, x2] and Y = [x1, x2, x3] then

X v Y . It is common to say that X approximates Y , since it provides partial information about

Y . The empty sequence, denoted with ⊥ is a prefix of any other sequence.

36

3.2. Process Networks

The increasing chain (possibly infinite) of sequences is defined as χ = {X0, X1, . . .} where

X1 v X2 v Such an increasing chain of sequences has one or more upper bounds Y , where

Xi v Y for all Xi ∈ χ. The least upper bound (LUB) tχ is an upper bound such that for any

other upper bound Y , tχv Y . The LUB may be an infinite sequence.

Let consider a functional process F and an increasing chain of sets of sequences χ. As defined

in the Equation (3.1), F will map χ into another set of sequencesΨ that may or may not be

an increasing chain. Let tχ denote the LUB of the increasing chain χ. Then F is said to be

continuous if for all such chains χ, tF (χ) exists and:

F (tχ) =tF (χ) (3.2)

Networks of continuous processes have a more intuitive property called monotonicity. A

process F is said to be monotonic if:

X v Y ⇒ F (X) v F (Y) (3.3)

A continuous process is monotonic. However, a monotonic process might be not continue. A

key consequence of these properties is that a process can be computed iteratively [157]. This

means that given a prefix of the final input sequences, it may be possible to compute part of

the output sequences. In other words, a monotonic process is non-strict (its inputs need not

be complete before it can begin computation). In addition, a continuous process will not wait

forever before producing an output (i.e. it will not wait for completion of an infinite input

sequence). Networks of monotonic processes are determinate. The KPN monotonicity prove

is given in [152].

3.2.2 Dataflow Process Network

Dataflow Process Networks (DPN) [152] formally establish a particular case of KPN, where

the computational blocks are called actors. As for the KPN process, actors can communicate

only through unidirectional and unbounded queues that can carry possible infinite sequences

of tokens. As for KPN, writes to queues are non-blocking. Contrarily, reading from queues

is blocking because an actor can test the presence of input tokens. If there are not enough

input tokens, then the read returns immediately and the actor needs not be suspended as

it cannot read. This could introduce non-determinism, without requiring the actor to be

nondeterminate.

DPN networks naturally extend the KPN embracing the notion of actor firing [153]. Actor firing

can be defined as an indivisible (atomic) quantum of computation. The firings themselves can

be described as functions, and the invocation of them is controlled by firing rules. Sequences

of firings define a continuous Kahn process as the least fixed point of an appropriately con-

structed function and are therefore formally establishing DPN as a particular case of KPN

[158].

37

Chapter 3. CAL Dataflow Programming Language

An actor with m inputs and n output is defined as a pair { f ,R}, where:

• f : Sm → Sn is a function called the firing function

• R ⊆ Sm is a set of finite sequences called the firing rules

• f (r) is finite for all r ∈ R

• no two distinct r,r ′ ∈ R are joinable, in the sense that they do not have a LUB

The Kahn process F defined in Equation (3.1) based on the actor { f ,R} has to be interpreted

as the least-fixed-point function of the functional φ : (Sm → Sn) → (Sn → Sm) defined such as:

(φ(F))(s) =
 f (r)•F (s′) if there exist s ∈ R such that s = r • s′ and s v s′

Λ otherwise.
(3.4)

where • represents the concatenation operator,Λ the tuple of empty sequences and (Sm → Sn)

the set of function mapping Sm to Sn . It is possible to demonstrate that φ is both a continuous

and monotonic function. The firing function f does not need to be continuous. In fact, it

might not be even monotonic. It merely needs to be a function, and its value must be finite for

each of the firing rules [158].

3.2.3 Actor Transition System and Composition

Actor transition systems (ATS) [151] describe actors in terms of labeled transition systems.

The ATS extends the notion of actor with firings by introducing the concepts of internal state,

atomic step and priority. In an ATS, a step makes a transition from one state to another. An

actor maintains and updates its internal variables: those are not sequences of tokens, but

simple internal values that can not be shared among actors. Moreover, the notion of priority

allows actors to ascertain and react to the absence of tokens. On the other hand, however, it

can also make them harder to analyze, and it may introduce unwanted non-determinism into

a dataflow application.

Let Σ denote the non-empty actor state space, U the universe of tokens that can be exchanged

between actors and Sn a finite and partially ordered sequence of n tokens over U . A n-to-m

actor is a labeled transition system 〈σ0,τ,Â〉 where:

• σ0 ∈Σ is the actor initial state

• τ⊂Σ×Sn ×Sm ×Σ defines the transition relation

• Â⊂ τ×τ defines a strict partial order over τ

38

3.2. Process Networks

Any (σ, s, s′,σ′) ∈ τ is called a transition, where σ ∈Σ is its source state, s ∈ Sn its input tuple,

σ′ ∈ Σ its destination state and s′ ∈ Sm its output tuple. It must be noted that Â is a non-

reflexive, anti-symmetric and transitive partial order relation on τ, also called priority relation.

An equivalent and more compact notation for the transition (σ, s, s′,σ′) is σ
s→s′−−−→σ′.

Enabled transition and step of an actor

Intuitively, the priority relation determines that a transition cannot occur if some other tran-

sition is possible. This can be seen as the definition of a valid step of an actor, which is a

transition such as two conditions are satisfied:

• the required input tokens must be present

• there must not be another transition that has priority

Given a n-to-m actor 〈σ0,τ,Â〉, a state σ ∈Σ and an input tuple v ∈ Sn , a transition σ
s→s′−−−→σ′

is enabled if and only if:v v s

6 ∃σ r→r ′
−−−→σ′′ ∈ τ : r v v ∧σ

s→s′−−−→σ′ Âσ
r→r ′
−−−→σ′′ (3.5)

Hence, a step from state σ with input v is then defined as any enabled transition σ
s→s′−−−→σ′.

Actors composition

For any transition relation τ its set of input ports P I
τ and its set of output ports PO

τ are defined

as the ports where at least one transition consumes input from or produce output to:P I
τ = {p ∈ P | ∃σ s→s′−−−→σ′ ∈ τ : σ(p) 6=⊥}

PO
τ = {p ∈ P | ∃σ s→s′−−−→σ′ ∈ τ : σ′(p) 6=⊥}

(3.6)

where P is the set of input and output ports names. It is assumed that an input port with name

p and an output port of the same name are in no way related. In order to express complex

functionality, actors are composed into a dataflow network as the one depicted in Figure

3.2. The structure of a network can be represented by a partial function from (input) ports to

(output) ports, mapping each input port in its domain to the output port that connects to it.

Note that this implies the absence of fan-in (as every input port is connected to at most one

output port), and it permits unconnected (open) input (and output) ports.

39

Chapter 3. CAL Dataflow Programming Language

3.3 CAL Actor Language

The Cal Actor Language (CAL) [90] is a domain-specific language that provides useful abstrac-

tions for dataflow programming with actors. The language directly captures the features of

DPN [159] MoC by adding the notion of atomic action firings, also called steps.

A

C

Actor Composition

Actor

State
Variables

Action

FSM

Pin Pout

PoutPin

B

Figure 3.2 – Actor Composition and Actor Structure.

Figure 3.2 illustrates the basic concepts of a CAL program. It represents a dataflow network

composed by a set of actors and a set of first-in first-out (FIFO) queues. Each CAL actor is

defined by a set of input ports, a set of output ports, a set of actions, and a set of internal

variables. CAL also includes the possibility of defining an explicit finite state machine (FSM).

This FSM captures the actor state’s behavior and drives the action selection according to

its particular state to the presence of input tokens and to the value of the tokens evaluated

by other language operators called guard functions. Each action may capture only a part

of the firing rule of the actor together with the part of the firing function that pertains to

the input/state combinations enabled by that partial rule defined by the FSM. An action is

enabled according to its input patterns and guards expressions. While patterns are determined

by the amount of data that is required for the input sequences, guards are boolean expressions

on the current state and/or on input sequences that need to be satisfied for enabling the

execution of an action.

In the following, a basic overview of the main concepts concerning the syntax and semantics

of CAL language is presented.

3.3.1 CAL Program

A CAL program network (actor composition) N is defined as a tuple (K , A,B) where:

40

3.3. CAL Actor Language

• K = {κ1,κ2, . . .κnκ
} is a finite set of actor classes

• A = {a1, a2, . . . , anA } is a finite set of actors

• B = {b1,b2, . . . ,bnB } is a finite set of queues

A CAL actor class κ defines the program-code-template and the implementation behaviors of

the actor (i.e. the CAL source code). Different actors can instantiate the same class. However,

each actor corresponds to a different object with its internal states that can not be shared.

A CAL actor a is defined as a tuple (κ,P i n ,P out ,Λ,V ,FSM) where:

• κ is the actor class

• P i n = {p i n
1 , p i n

2 , . . . , p i n
nI

} is the finite set of input ports

• P out = {pout
1 , pout

2 , . . . , pout
nO

} is the finite set of output ports

• Λ= {λ1,λ2, . . . ,λnΛ} is the finite set of actions

• V = {v1, v2, . . . , vnV } is the finite set of internal variables

• FSM is the internal finite state machine

A CAL queue b is defined as a tuple (as , ps , at , pt) where:

• as ∈ A is the source actor (i.e. the one that produces the tokens)

• ps ∈ P out
as

is the output port of the source actor

• at ∈ A is the target actor (i.e. the one that consumes the tokens from the queue)

• pt ∈ P i n
at

is the input port of the target actor

3.3.2 Execution Model

In this thesis it is assumed that the firing of an action is performed following the serial execu-

tion of the four stages illustrated in Figure 3.3. Those stages are respectively:

• Action selection where the internal actor scheduler selects the next schedulable action

(i.e. that satisfies all firing conditions). It should be noted that the action selection

must wait until all the input tokens are available on the respective input queues (i.e.

block-reading).

• Read from input queues where all the input tokens required by the algorithmic part of

the action are read from the respective input queues.

41

Chapter 3. CAL Dataflow Programming Language

• Action execution when the algorithmic part of the action is executed.

• Write to output queues when all the output tokens produced during the action execu-

tion are written to the respective output queues. It is to mention that when an actor is

implemented either in software or hardware processing elements, the action can only

start writing on the output queues when enough space for accommodating all output

tokens is available.

Action
Selection

Read from
Input queues

Execute
Action

Write to
Output queues

Figure 3.3 – Actor Execution Model.

3.3.3 CAL Syntax and Semantics

Lexical tokens

Lexical tokens help the user to understand the functionality provided by any language. They

are a string of indivisible characters known as lexemes. The CAL lexical tokens, also summa-

rized in Table 3.2, are described in the following:

• Keywords Keywords are a special type of identifiers. They are already reserved by default

in the programming language. These keywords can never be used as identifiers in the

code. Some of them are action, actor,procedure, function, begin, if else,

end, foreach, while, do, procedure,in,list, int, uint, float, bool, true

and false.

• Operators Operators usually represent mathematical, logical or algebraic operations.

Operators are written as any string of characters !, %, ˆ, &, *, /, +, -, =, <, >, ?, ˜ and |.

• Delimiters Delimiters are used to indicate the start or the end of this syntactical element

in the CAL. Following elements are used as delimiters: (,), [,], { and }.

• Comments Comments in CAL language are the same as in Java, C and C++. Single line

comments start with // and multiple line comments start with /* and end with */.

Actions

The simplest actor that can be described using CAL is the Passthrough actor defined in

Listing 3.1. This actor copies a token from its input port and places it into its output port.

42

3.3. CAL Actor Language

Table 3.2 – CAL lexical tokens

Kind Symbols

Keywords action, actor, procedure, function, begin, if, else, end,

foreach, while, do, procedure, in, list, int, uint, float,

bool, true, false

Operators !, %, ˆ, &, *, /, +, -, =, <, >, ?, ˜, |

Delimiters (,), [,], {, }, ==>, ->, :=

Comments //, /* . . .*/

The actor header is defined in the first line, which contains the actor name, followed by a

list of parameters provided inside the () construct (empty, in this case), and the declaration

of the input and output ports. The input ports are those in front of the ==> construct and

the output ports are those after it. In this case the input and output ports set are defined as

P i n
Passthrough = {I} and P out

Passthrough = {O} respectively. For each parameter and port, the

data type is specified before the name (all defined with an int data type, in this case). This

actor contains only one action, labeled as pass as defined in second line. In this case, the

actions set is defined as λPassthrough = {pass}. Action pass demonstrates how to specify

token consumption and production. The part in front of the ==>, which defines the input

patterns, it specifies how many tokens to consume from which ports and what to call those

tokens in the rest of the action. In this case, there is one input pattern: I:[v]. This pattern

indicates that one token is to be read (i.e. consumed) from the input port I, and that the token

is to be called v in the rest of the action. Such an input pattern also defines a condition that

must be satisfied for this action to fire: if the required token is not present, this action will not

be executed. Therefore, input patterns do the following:

• They define the number of tokens (for each port) that will be consumed when the action

is executed (fired).

• They declare the variable symbols by which tokens consumed by an action firing will be

referred to within the action.

• They define a firing condition for the action, i.e. a condition that must be met for the

action to be able to fire.

The output patterns of an action are those defined after the ==> construct. They simply define

the number and values of the output tokens that will be produced on each output port by each

firing of the action. In this case, the output pattern O:[v] says that exactly one token will be

generated at output port O, and its value is v.

43

Chapter 3. CAL Dataflow Programming Language

Listing 3.1 – Passthrought.cal

actor Passthrought() int I ==> int O :
pass: action I:[v] ==> O:[v]
end

end

Action Guard

So far, the only firing condition for actions was that there be enough tokens to consume, as

specified in their input patterns. However, in many cases it is possible to specify additional

criteria that need to be satisfied for an action to fire. Conditions, for instance, that depend on

the values of the tokens, or the state of the actor, or both. These conditions can be specified

using guards, as for example in the Split actor, defined in Listing 3.2. This actor defines one

input port I, two output ports O1 and O2, and two actions A and B. Those actions require

the availability of one token in I. However their selection is guarded by the value of the input

token val read from I. In this example, if val >= 0 then the action A is selected, otherwise

action B.

Listing 3.2 – Split.cal

actor Split() int I ==> int O1, int O2 :

A: action I:[val] ==> O1:[val]
guard

val >= 0
end
B: action I:[val] ==> O2:[val]
guard

val < 0
end

end

In the PingPongMerge actor, reported in Listing 3.3, a finite state machine schedule is used

to sequence the two actions A and B. The schedule statement introduces two states s1 and s2.

Contrarily, in the BiasedMerge actor, reported in Listing 3.4, the selection of which action

to fire is not only determined by the availability of tokens, but also depends on the priority

statement.

Actors composition

In CAL, it is possible to define a composition of actors or a network of interconnected actors

as the one illustrated in Figure 3.2. It is composed by three actors A, B and C, and by five

queues b1 and b2. Two different representations approach are supported: the first one is

called Functional unit Network Language (FNL) (see Listing 3.5), the second one is based

44

3.3. CAL Actor Language

Listing 3.3 – PingPongMerge.cal

actor PingPongMerge() T In1, T In2 ==> T O :

A: action In1:[val] ==> O:[val] end

B: action In2:[val] ==> O:[val] end

schedule fsm s1:
s1(A) --> B;
s2(B) --> A;

end

end

Listing 3.4 – BiasedMerge.cal

actor BiasedMerge() T In1, T In2 ==> T O :

A: action In1:[val] ==> O:[val] end

B: action In2:[val] ==> O:[val] end

priority
A > B

end

end

45

Chapter 3. CAL Dataflow Programming Language

on eXtensible Markup Language (XML) (Listing 3.6) known as XML Dataflow Format (XDF),

which in most of the case is edited by visual editor.

Listing 3.5 – BasicNetwork.nl

network BasicNetwork () int I ==> int O :

entities
A = ActorA(maxValue = 3);
B = ActorB();
B = ActorC();

structure
I --> A.I1;
A.O --> B.I;
B.O1 --> O;
B.O2 --> C.I;
C.O --> A.A2;

end

3.4 Standardization

A subset of the CAL programming language has been standardized by the ISO MPEG comity

and is called RVC-CAL. The MPEG Reconfigurable Video Coding ISO/IEC 23001-4 has as a

purpose to offer more flexible use and faster path to innovation of MPEG standards in a way

that is competitive in the current dynamic and evolving environment. Thus, MPEG standards

give an edge over its competitors by substantially reducing the time for which technology is

developed and the time the standard is available for market applications. The RVC initiative is

based on the concept of reusing commonalities among different MPEG standards and provide

possible extensions by using appropriate higher level specification formalisms. Thus, the

objective of the RVC standard is to describe current and future codecs in a way that makes such

commonalities explicit, reducing the implementation burden by providing a specification that

its starting point is closer to the final implementation. To achieve this objective, RVC provides

the specification of new codecs by composing existing components and possibly new coding

tools described in modular form.

The MPEG-B standard defines the language that is used to build the MPEG RVC framework.

The RVC-CAL dataflow programming language is the core of the system; it is used to describe

the behavior description of each module called Functional Unit (FU). With the specification

of the FU network topology, the functional behavior of a video decoder is specified. An FU

network topology is also called abstract decoder module. The term abstract refers to the fact

that FUs are only characterized by the I/O behavior and the firing rules embedded in the RVC-

CAL language. Thus, the interaction of each FU other FUs is fully specified by abstracting the

time and by only defining dependencies of data production and consumption. The MPEG-C

standard defines the Video Tool Library, a library of video coding tools. Figure 3.4 illustrates the

concept that any abstract decoder model, which is constituted by an FU network description,

46

3.4. Standardization

Listing 3.6 – BasicNetwork.xdf

<?xml version="1.0" encoding="UTF-8"?>
<XDF name="Composition">
<Port kind="Input" name="I">
<Type name="int">

<Entry kind="Expr" name="size">
<Expr kind="Literal" literal-kind="Integer" value="32"/>
</Entry>

</Type>
</Port>
<Port kind="Output" name="O">
<Type name="int">

<Entry kind="Expr" name="size">
<Expr kind="Literal" literal-kind="Integer" value="32"/>
</Entry>

</Type>
</Port>
<Instance id="A">
<Class name="ActorA"/>
<Parameter name="maxValue">
<expr kind="literal" literal-kind="integer" value="42"/>

</Parameter>
</Instance>
<Instance id="B">

<Class name="ActorB"/>
</Instance>
<Instance id="C">

<Class name="ActorCr"/>
</Instance>

<Connection src="" src-port="I" dst="A" dst-port="I1"/>
<Connection src="A" src-port="O" dst="B" dst-port="I"/>
<Connection src="B" src-port="O1" dst="" dst-port="O"/>
<Connection src="B" src-port="O2" dst="C" dst-port="I"/>
<Connection src="C" src-port="O" dst="A" dst-port="I2"/>

</XDF>

47

Chapter 3. CAL Dataflow Programming Language

FU Network
Description

(FNL)

Bitsream Syntax
Description
(RVC-BSDL)

Model Instantiation
Selection of FUs and

 Parameter Assignement

Abstract Decoder Model
(FNL + RVC-CAL)

MPEG
Tool Library

Implementation

Decoder
Implementation

Decoder Solution

Decoder
Description

Encoded Video Data

MPEG
Tool Library

(RVC-CAL FUs)

RVC Decoder Implementation

Decoded Video Data

ISO/IEC 23001-4 MPEG-B ISO/IEC 23002-4 MPEG-C

Figure 3.4 – Reconfigurable Video Coding.

can be implemented either in hardware or software.

3.5 RVC-CAL Compiler Infrastructure

A compiler supporting compilation of programs written using the standard RVC-CAL language

is called Orcc [160]. Orcc stands for Open RVC-CAL compiler, and it is collaboration work

between INSA of Rennes and EPFL. Recalling the RVC-CAL Design Flow in Figure 1.2. Orcc

provides the necessary tools for designing, simulating and generating source code for different

targets.

Figure 3.5 represents the Orcc building blocks of the Orcc compiler Infrastructure. The compi-

lation flow primarily translated the RVC-CAL into source code or into intermediate represen-

tation (e.g. such as the LLVM), instead of generating machine code like traditional compilers

(e.g. GCC) do.

Orcc uses extensively Model-Driven Engineering (MDE) by representing the IR with meta-

models. Also, it uses the same MDE technologies that are employed in Eclipse IDE. Those

MDEs are the Eclipse Modeling Framework (EMF), Xtext, and Xtend. The use of meta-models

and MDE speeds up the development by automating time-consuming and most important

error-prone tasks. Meta-modeling offers maintainability of the source code by having a global

homogeneity of a unique model for different meta-tools (in Orcc’s case Xtext and Xtend uses

the same EMF meta-model for the Orcc’s IR). Also, a meta-model is a source of documenting

48

3.5. RVC-CAL Compiler Infrastructure

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

Profiling
and

Analysis

Performance
Estimation

RVC-CAL
(Behavioral Description)

ArchitectureConstraints
R

ef
ac

to
ri

n
g

 D
ir

e
ct

io
n

s

C
o

m
p

il
e

r
D

ir
e

ct
iv

e
s

xdf

cal

Front-end Coreir ir Back-
Ends

Source
Code

Build
Script

Interpreter

C

LLVM

Promela

Java

Orcc

Figure 3.5 – Open RVC-CAL Compiler Infrastructure.

the code equivalent to UML.

The Orcc’s compiler infrastructure is the following:

• Front-end: RVC-CAL is parsed and translated into an Abstract Syntax Tree. The parsing

is implemented using Xtext [161], a framework dedicated to the development of DSL that

automatically generates a parser, a linker and an editor from the behavioral description

grammar. The AST then is transformed into an Intermediate Representation. During

this step the front-end, by extending classes in Xtext framework, performs semantic

validation, type inference, and expression evaluation.

• Core: Defines the IR and the visitors for optimizing it. The IR is modeled using the

Eclipse Modeling Framework [162, 163]. This framework offers many methods for

manipulating the data structure, one of them is the containment relationship between

objects. Furthermore, it provides the automatic serialization of the meta-model (IR),

allowing incremental compilation.

• Simulation: Orcc offers a simulation of an RVC-CAL program by interpreting its IR. The

simulation is type accurate, and it permits verifying the correct functionality of the

RVC-CAL program before implementation.

• Back-end: Is the final block in the compiler flow. It applies target particular optimization

(IR to IR transformations) before the code is generated. Orcc’s back-ends translate

the RVC-CAL program into a general purpose programming language to benefit from

the optimizations that those compilers offer. Whenever these optimizations are not

enough, additional IR optimization passes are performed by Orcc’s back-ends to meet

the demands. To generate the code for a particular target, the Xtend [164] framework is

49

Chapter 3. CAL Dataflow Programming Language

used. This framework provides a template based code generation that is flexible and

easy to use. It is meta-language based on Java and is fully integrated into Eclipse IDE.

3.6 Orcc Intermediate Representation

The Orcc’s IR has two parts, one representing the MoC of RVC-CAL and the other being a

procedural IR that represents the computational parts of actions.

3.6.1 Dataflow IR

Most of the compilers convert between different representations, one of those is to have a

linear code and then represent its execution using a Control Flow Graph and then back again

to a linear code. In dataflow programming it is necessary to describe the application as a graph,

that represents actors as nodes and connections as edges. Before describing the Dataflow IR

meta-model, it is important to define the Graph metal-model in order to represent dataflow

relations

In the graph metal-model the following classes can be defined:

• Graph: Is an object that contains a list of vertices and a list of edges. The hierarchy of

the graph that contains the sub-graph is naturally inherited from the Vertex class.

• Vertex: Is a Graph object. It contains two references, one for incoming and one for

outgoing edges which enable to deduct the successors and predecessors of the Vertex.

• Edge: Is a directed edge that defines the source and target reference of vertices.

The Dataflow IR meta-model contains the following aspects of the RVC-CAL MoC: Network,

Actor, Port, Connection and two helper classes Entity and Instance.

• Network (N): As introduced earlier in this chapter, actors can be composed. The

Dataflow IR represents the composition of actors with the Network class. A Network

has a name and contains two sets of inputs and output ports. Finally, a network includes

a set of connection and a set of vertices representing Network or Instances.

• Actor (A): Represents the basic component of the RVC-CAL MoC. It communicates

with two sets of input (P i n) and output (P out) ports. An actor contains a set of procedures

(see Section 3.6.2) and includes a set of Actions that are ordered according to their

priorities. Also, RVC-CAL Procedures and Functions are expressed as procedures.

The actor contains state variables called stateVars (V) and actor parameters as constant

variables. Finally, an actor may contains an FSM, which is used to schedule the actions.

50

3.6. Orcc Intermediate Representation

Dataflow IR

Actor : Vertex

name: String

inputs: Port

outputs: Port

actions: Action

actionsOutsideFSM: Action

proc: Procedure

parameters: Var

stateVar: variables

Network : Vertex

name: String

inputs: Port

outputs: Port

children: Vertex

parameters: Var

variables: V ar

Pattern

numTokensMap: Map<Port,Int>

ports: Port

portVarToMap: Map<Port,Var>

variables: Var

varPortToMap: Map<Var,Port>

Action

tag: String

body: Procedure

inputPattern: Pattern

outputPattern: Pattern

peekPattern: Pattern

scheduler: Procedure

Port : Vertex

name: String

type: Type

Connection : Edge

sourcePort: Port

targetPort: Port

FSM : Graph

initialState: State

Transition : Edge

actions: Action

State : Vertex

FSM: fsm

Figure 3.6 – Class tree for Blocks, Instruction and Expression classes of the Procedural IR.

• Port: Implements the external interface for Network and Actor classes. It has a

name and a type.

• Connection (B): Is either an edge between Ports of a Network or an Actor that

models the queue. A connection has a source and a target port, a type, and a size.

• EntityandInstance: Is the superclass ofActor,Network andInstance. Instance

is can reference a single Network or Actor several times in one description without

duplicating it.

• Action (Λ): Implements the firing function. An Action defines two procedures.

The first one, contains the body of the action, i.e. the firing function. The second

one is called isSchedulable. It expresses the guard condition, i.e. firing condition. An

Action contains three patterns: input pattern that specifies the number of tokens

to be consumed by the action’s input port, the output pattern which determines the

number of token productions from the action output patterns and the peek pattern that

corresponds to the values of the tokens that need to be validated later on by the actor

scheduler.

• Pattern: Describes a mapping between the input/outputPort and the local variables

51

Chapter 3. CAL Dataflow Programming Language

of the action procedural variables. It also defines the number of tokens that are going to

be consumed/produced and the amount of input tokens that should be checked before

firing an Action.

• FSM (F SM): Is a graph that implements the finite state machine of an Actor. It repre-

sents states by vertices and the transitions, i.e. actions, by edges.

3.6.2 Procedural IR

As mentioned in the previous section, an action is composed of twoprocedures. In addition,

RVC-CAL expresses Procedures and Functions as procedures. The computation part

in Orcc IR is called Procedural IR and describes the computational step of the imperative

language paradigm which is very close to general programming languages. The Procedural IR

is composed of the following classes:

Expression

ExprBinary

ExprUnary

ExprVar

Expr{Type}

E1: Expression

E2: Expression

OPBinary: +, -, *, /, %, &, |, =, !=, <,>,=<,>=

E: Expression

OPUnary: !,~,-

Value: Int, Uint, Boolean, float

Var: State, Local

Blocks
BlockBasic

Instructions: List of Statements

BlockIf

Condition: Expression

Then: List of Blocks

Else: List of Blocks

BlockWhile

Condition: Expression

Blocks: List of Bocks

InstAssign

InstLoad

InstStore

InstCall

Target: Local variable

Value: Expression

Target: Local variable

Source: State variable

Target: State variable

Target: Variable

Args: List of Expressions

Value: Expression

Instructions

InstReturn

Value: Expression

Figure 3.7 – Class tree for Blocks, Instruction and Expression classes of the Procedural IR.

• Procedure: Is the top class that contains a sequence of sequential statements. A

procedure has a name, a set of sequenced Blocks, a set of local Variables, and a

set of Parameters.

• Variable: Implements the concept of a variable. A variable has a name, a type and

property of being assignable, a define and use chain.

• Type: Describes the type kind of a Variable, a Parameter or a Port. Type is a

superclass and its subclasses are:

– TypeInt: An Integer Type.

– TypeInt: An Unsigned Integer Type.

– TypeBool: A Boolean Type.

52

3.6. Orcc Intermediate Representation

– TypeFloat: A Floating-point Type.

– TypeString: A String Type for a sequence of characters.

– TypeVoid: A Void Type is used for procedures that does return a value.

• Parameter/Argument: Is used to parameterize procedures, actors and networks.

The mechanism of parameterization is a standard construct that is used in many pro-

gramming languages in order to increase the code re-utilization.

• use/def: The use and define chains model the utilization and definitions of variables.

Once an Instruction inserts a value, a def is attributed to a variable. A use on

the other side is created whenever an instruction is requiring a value from a variable.

The Use/Def chain is very useful for compiler’s dataflow analysis like the live variable

analysis one.

• Block: Describes a portion of a sequence code and it is the super class forBlockBasic,

BlockIf andBlockWhile. BlocBasic is aBlock that contains a sequence of instruc-

tions. BlockIf is a branch Block that contains a true and a false branch blocks. The

decision on which a branch should be taken is given by its condition, which is always a

boolean expression. Finally, BlockWhile is a loop block that contains a set of ordered

blocks, it also has a boolean expression condition that defines whether the loop should

continue looping or exit.

• Instruction: Is a statement that is performed within aBlockBasic. Instruction

is a superclass and its subclasses are:

– InstAssign: Describes the assignment of an expression into a local Variable.

– InstLoad: Describes aRead access from a stateVariable to a localVariable.

– InstStore: Describes a Write access to a Variable from an Expression.

– InstCall: Describes the call of a Procedure given to a set of Arguments.

– InstReturn: Describes the return of an Expression when a Procedure

returns a value.

– InstPhi: Is a special instruction used only when the Procedural IR is described in

SSA form. It is used to resolve the conditional assignment of the exit as a BlockIf

and BlockWhile.

• Expression: Is a combination of explicit values, constants, variables and operators.

Expression is a superclass and its subclasses are:

– ExprVar: Models the evaluation of a variable.

– ExprInt,ExprUint,ExprFloat,ExprFloat,ExprList: anExpression

that contain a constant value of its Type.

– ExprList: an Expression that contains a List Value of a given Type

53

Chapter 3. CAL Dataflow Programming Language

– ExprCall: an Expression that evaluates the call of Procedure.

– ExprUnary: a unary Expression that evaluates a unary Operator given a

single expression.

– ExprBinary: a binary Expression that evaluates a binary Operator given

two expressions.

• Operator: An enumeration that defines the mathematical operation used in an

ExprUnary and in an ExprBinary.

– OpUnary: A unary operation such as: !, not, ∼,-.

– OpBinary: A binary operation such as: +, -, /, %, and, or, <, >, ≤, ≥ and others.

The Procedural IR is very close to other general purpose IR such as the Low Level Virtual

Machine. The IR is feature rich and it supports all the standardized RVC-CAL computational

constructs.

3.6.3 Visitors for Dataflow and Procedural IR and IR Interpreter

The Gang Of Four in Design Pattern [165] defines a visitor as: "Represent an operation to be

performed on elements of an object structure. A visitor lets you define a new operation without

changing the classes of the elements on which it operates". In Orcc visitors, patterns are used

to traverse the Dataflow and Procedural IR for code analysis, IR to IR transformations, IR

optimizations passes, and code generation.

The Orcc Interpreter is implemented as a Visitor that executes for each Object in the Dataflow

and Procedural IR a set of functions that represent the interpretation and execution of the IR

Object.

3.7 Conclusion

In this chapter, the notion of dataflow parallel programming has been illustrated. A formal

behavioral description called CAL has then been introduced and presented through a collec-

tion of CAL source code examples. Concepts like actors, actor composition, actions, guards,

priorities, finite state machine have been illustrated. As presented, the CAL and its Dataflow

MoC has the property to express an application as network processes. Beside that fact that

is inherently concurrent and modular, CAL offers parallelism scalability, no shared memory

between the process, communication with queues, state encapsulation, sequential execution

inside each process provided by finite state machines and bitwise types. All previous proper-

ties lead to the portability of CAL which makes it a potential candidate for unifying the system

level design for heterogeneous platforms.

A standardized subset of CAL called RVC-CAL and RVC standard and its compiler were also

described. Moreover, an in-depth illustration of a compiler infrastructure and its Dataflow

54

3.7. Conclusion

and Procedural IR called Open RVC-CAL Compiler. Despite the fact that Dataflow IR makes it

useful to describe most of the dataflow MoCs, limitations due to early decisions made by its

original developers are perceived. First of all, the mandatory ordering of the actions makes

indeterministic actors deterministic. Secondly, the absences of an action selection class in the

IR makes the construction of an action sequencer for each platform implementation tedious.

To construct a new scheduler, a back-end developer should visit all the patterns of actions

and the FSM class of the actor and should extract the guard part of the actions. Thirdly, the

guard of an action is an expression whose transformation into a procedure makes the analysis

of the firing condition more difficult. In the Conclusion chapter, a better IR structure will

be discussed. Finally, this chapter described all needed information on the Orcc’s Dataflow

and Procedural IR that is used in the following chapter. The following chapter is about the

RVC-CAL high-level synthesis tool called Xronos. This tool extends Orcc IRs and implements

missing compilation techniques that are necessary for high-level synthesis.

55

4 High-Level Synthesis of Dataflow Pro-
grams: Xronos

Njeriu në jetë ka nevoj për një filxhan shkencë, një shishe kujdes, dhe një oqean durim,

"Man in life needs a cup of science, a bottle of care, and an ocean of patience"

— Ismail Kadare

4.1 Introduction

The first implementation of a direct path to HW generation, called CAL2HDL, from CAL

dataflow program has been reported by Janneck and al. in [146]. CAL2HDL was a part of the

OpenDF [147] framework for developing CAL programs. At first it transforms a CAL actor to

an intermediate representation called XML Language Independent Model (XLIM). Secondly,

OpenForge is used to generate a Verilog description of the XLIM. OpenForge was initially

developed by Xilinx under the name Forge until it became available as open source in 2008

and renamed as OpenForge. CAL2HDL supports only a subset of CAL (for instance synthesis

of unsigned integer types, procedures with arguments and action input/output patterns

with multi-token lists are not supported). Thus, the unification of software and hardware

development is limited. Rewriting an elegant and compact piece of code into a version that

could be synthesized, for very complex applications, is especially resource consuming and an

error prone task (i.e. a parser of a video decoder).

As described in Section 3.4, a subset of CAL was standardized by ISO MPEG in ISO/IEC 23001-4

with the purpose to become the reference software code for video coding specifications. There

was a need to support the full specification of the RVC-CAL standard to facilitate the creation

of video codec circuits. An early attempt was made in [166]. Yet, it lacked loop support and

was therefore never finalized. In [2] an XLIM backend for Orcc was developed for unifying

the software and hardware code generation. However, support of multi-tokens on input

and output port was missing. In addition, the code generation process when dealing with

complex design such as AVC/H.264 video decoder was very slow. Then Jerbi and al proposed

an interesting solution for the multi-token support in [167]. This approach was based on

transforming the Orcc’s IR of actors by modifying the actor’s finite state machine and by

57

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

Profiling
and

Analysis

Performance
Estimation

RVC-CAL
(Behavioral Description)

ArchitectureConstraints

R
ef

ac
to

ri
n

g
 D

ir
e

ct
io

n
s

C
o

m
p

il
e

r
D

ir
ec

ti
ve

s

ir

Procedural
Optimizations

Pruned
SSA

CDFG

Action
Selection

+
Procedures

Unconstrained
Scheduling

Allocation
&

Binding

Verilog

SW
Interface
Wrappers

C++

HW
Interface
Wrappers

C++
Actor and
Network

Template

Xronos

SystemC

SystemC
Actor and
Network

Template

SystemC
Interface
Wrappers

Interface

Procedural
Optimizations

Figure 4.1 – Xronos in the Design Flow.

introducing to the IR the equivalent of mono-token actions. Although this represented a

solution to the problem, it resulted into an excessive sequentialization of equivalent actor

states. As a result, overall latency was increased, the overall performance was reduced, and

also the resources were increased.

Xronos has been coded from scratch but it can be seen as an evolution of the CAL2HDL and

the work done in [2]. Xronos was created with the purpose to resolve all the above stated

problems and to accelerate the code generation. It uses Orcc as the RVC-CAL frontend and

OpenForge as a backend for generating synthesizable Verilog code for each actor. To be precise,

Xronos is the middle-end between these tools. Firstly, it transforms the IR of ORCC with a

set of transformations/optimizations. Secondly, it turns the IR to a Control-and-Data Flow

Graph so that OpenForge can generate a Verilog representation of the actor. After that, Xronos

produces C++ source code for a general purpose and embedded processing platforms. Finally,

it generates code for the hardware and software interfaces for heterogeneous platforms.

Table 4.1 summarizes the features and contributions of this thesis. All features in bold have

58

4.2. Advances on the Orcc compiler infrastructure for Hardware Synthesis

Table 4.1 – Xronos features versus the state of the art. The contributions of this thesis is related
to the high-level synthesis of dataflow programs which are highlighted in bold.

Features Xronos CAL2HDL Orcc HLS + Vivado HLS

CAL 3 3 3

Bit accurate 3 3 7

Unsigned Integer Support 3 7 3

Procedures with Arguments 3 7 3

Generators statement 3 7 3

Foreach statement 3 7 3

Repeat Construct 3 7 3

Parallel I/O Read/Write 3 7 7

Pipelining 3 7 7

Static Resource Analysis 3 7 7

Dynamic Profiling 3 7 7

Testbench Generation 3 7 3

TURNUS Integration 3 7 7

Synthesizable SystemC 3 7 7

HW & SW CoDesign 3 7 7

Coarse Grain Clock Gating 3 7 7

Open source 3 3 Only HLS backend

been incorporated by the author. A part from the TURNUS Integration(Chapter 5) and the

Coarse Grain Clock Gating(Chapter 6), all other features are outlined in this Chapter.

Furthermore, this chapter describes in depth all advances that are included in Xronos in

comparison to the Orcc’s compiler infrastructure. After that, it explains in detail the Forge

intermediate representation called LIM, it’s scheduling and the hardware code generation. It

then clarifies how the Control Data-Flow Graph of an Orcc Procedure, Actors, and Actor

composition are mapped into LIM. Moreover, it presents the development of a synthesizable

SystemC and a C++ for embedded software processing elements. Afterwards mapping, in-

terface synthesis between hardware and software processing components, and profiling of

heterogeneous platforms are explained. Finally, experimental results proves the capabilities of

Xronos in hardware synthesis and in co-Design for heterogeneous platforms.

4.2 Advances on the Orcc compiler infrastructure for Hardware Syn-

thesis

Figure 4.2 depicts the Xronos compiler infrastructure. Xronos hardware code generation is

based on OpenForge and its intermediate representation is a CDFG based one. To facilitate the

translation of the Orcc IR to a CDFG for hardware synthesis, additional IR classes are inserted

in the Procedural IR and Dataflow IR. Furthermore, a number of classic compiler dataflow

59

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

analysis algorithms have been implemented within Xronos for optimizing the code, such as

Control Flow Graph, Dominance Graph, Reaching Definitions and Live Variable Analysis. To

minimize the local variables, the Procedure IR form is transformed into a pruned SSA one.

Thus, fewer wires and registers in the final RTL generation are needed.

AST	

IR	

O
RCC	

IR	
 Transform
a0ons	

Parser	

Orcc	

ORCC	

Xronos	

Xronos	

Procedural	

Transform
a0ons	

CDFG	
 TO
	
 LIM

	

LIM
	
 	

Scheduling	

Alloca0on	

Synthesizable	
 Verilog	

Generator	

Profiling	
 &
	
 Testbench	

Report	
 Generator	

OpenForge	

CAL	

Pow
er	
 O

p0m
iza0on	

O
rcc	
 IR	
 to	
 SSA	

SSA	
 to	
 CDFG	

C++	
 for	
 Embedded	
 CPUs	
 Synthesizable	
 SystemC	
 	

HW-­‐SW	
 Interface	
 Synthesis	

XDF	

HDL	

TCL	

C++	
 SystemC	

XML	
 C	

LLVM	

IR

Ac0on	
 Selec0on	

IR	
 Interpreter	

Figure 4.2 – Detailed Xronos Compiler Infrastructure, white boxes indicates personal contribu-
tions.

After SSA transformation, a set of IR optimization passes is applied on the Procedure. This

furthers minimizes the BlockBasic instructions and correctly handles the casting of local

variables bit size. In addition, operations such as division and modulo are transformed into

synthesizable operators and other BlockBasic IR passes are carried out.

On the Procedural IR meta-model the following classes are added:

• Instructions: A set of Instructions related to the port of the actors and a Casting Instruc-

tion.

– InstCast: Is a casting Instruction, which cast a local variable to a given Type with a

different bit size.

– InstPortRead: Defines a single token reading from an input Port.

– InstPortWrite: Defines a single token writing to an output Port.

– InstPortPeek: Defines a peek (reading the value but not consuming it) from an

input Port.

– InstPortStatus: Defines whether there is a single token on an input or output Port

• BlockMutex: Defines a kind of Block that contains Blocks that are mutually exclusive

(no dependencies) and can execute in parallel.

60

4.2. Advances on the Orcc compiler infrastructure for Hardware Synthesis

• CFG: Defines the Control Flow Graph that has as vertexes the Blocks of a Procedure and

as edges the order of the Blocks.

• CDFG: Control-Data Flow Graph, vertex are operations or CDFG nodes, two kinds of

edges: control and data. Compared to CFG, it contains all data and control dependencies

even inside Blocks.

4.2.1 Control Flow Graph Construction

A Control Flow Graph (CFG) models the flow of the control between Basic Blocks in a program.

A CFG is represented as a directed graph G = (N ,E), with each node n ∈ N corresponding to a

Basic Block (BlockBasic in Procedural IR) and each edge e = (ni ,n j) ∈ E corresponding to a

possible path of control from block ni to block n j .

For each Procedure in the Procedural IR, the CFG member is added. The CFG is Graph and

has two essential features: It identifies the beginning and the end of each basic block and it

connects the resulting blocks with "control" edges that describe the directed control transfer of

blocks. A CFG may contain multiple starts and exits but in RVC-CAL only one single beginning

and one single end of a program is possible which makes the construction of the CFG easier.

The Algorithm 1 starts by creating an empty CFG graph. After that, it adds an empty BlockBasic

as entry node of the CFG. It then visits the Blocks of the Procedure. If a Block is a BlockBasic,

it creates a new CFG node and makes it the last (the visit function set this node as the last).

If a Block is a BlockIf, it will first visit the true branch in order to create all CFG nodes for it

and will then create all nodes for the false branch. For resolving the exit of the BlockIf, an

empty join node is added as well as two incoming edges that are connected to it, one from the

last node of the true branch and one from the last node of the false branch. In the case of a

BlockWhile, it adds an edge from the last node to the node of the BlockWhile and stocks this

node in the memory. After that, it creates all the nodes from the Blocks of the BlockWhile and

attributes to them a true flag. Once being finished with those Blocks, it returns to the node of

the BlockWhile as it is the last one. It should be mentioned that the previous operation inherits

the false flag. Once all blocks have been processed, an empty BlockBasic is added to the graph

which is then connected to an edge from the last node.

4.2.2 Dominance Graph

A dominance graph is an iterative data-flow analysis that is used by many optimization

techniques. In a CFG with entry node b0, node bi dominates node b j , written bi dom b j , if

and only if bi lies on every path from b0 to b j . By definition bi dominates itself, bi dom bi .

Xronos calculates the dominance as follows:

Dom(n) = {n}∪
(⋂

m∈pr ed s(n)
Dom(m)

)
(4.1)

61

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Algorithm 1: Control Flow Graph Construction, visitor pseudo.

1 class CfgConstruction(Procedure procedure):
Variables :Cfg cfg
Variables :Vertex last
Variables :Boolean flag

2 def caseProcedure(Procedure procedure):
3 cfg := CreateCfg();
4 procedure.setCfg(cfg);
5 Vertex entry := createVertex();
6 cfg.setEntry(entry);
7 last := entry;
8 last := visit(procedure.getBlocks());
9 Vertex exit = createVertex();

10 cfg.setExit(exit);
11 addEdge(exit);

12 def caseBlockBasic(BlockBasic block):
13 Vertex node := addNode(block);
14 if last != null then
15 addEdge(node);

16 return node;

17 def caseBlockWhile(BlockWhile block):
18 Vertex node := addNode(block);
19 if last != null then
20 addEdge(node);

21 last := node;
22 flag := true;
23 last := visit(block.getBlocks());
24 flag := true;
25 addEdge(node);
26 last := node;
27 return node;

28 def caseBlockIf(BlockIf block):
29 Vertex node = addNode(block);
30 if last != null then
31 addEdge(node);

32 Vertex join = addNode(block.getJoinBlockl());
33 join.setLabel("join");
34 last := node;
35 flag := true;
36 last := visit(block.getThenBlocks());
37 flag := false;
38 addEdge(join);
39 last := node;
40 last := visit(block.getElseBlocks());
41 addEdge(join);
42 last := join;
43 return join;

44 def visit(List<Block> blocks):
45 for block in blocks do
46 last := visit(block);

47 return last;

48 def addEdge(CfgNode node):
49 Edge edge := cfg.add(last, node);
50 if flag then
51 edge.label := true;
52 flag = false;

53 def addNode(Block block):
54 Vertex node = createVertex(block);
55 cfg.add(node);
56 return node;

62

4.2. Advances on the Orcc compiler infrastructure for Hardware Synthesis

with the initial condition Dom(n0) = {n0}, and ∀n 6= n0, Dom(n) = N , where N is the set of all

nodes in the CFG. Dom(n) is computed as a function of n’s predecessors(pr ed s(ni)). As a

result, Dominance is a forward data-flow problem.

4.2.3 Reaching Definition

Given for each statement t ← ... with a target t there is a definition with a label dl , saying that

dl reached a statement dn in the program if there is some path of control-flow edges from dl

to dn without an intervening assignment that modifies that target of t . Reaching definitions

can be solved as a forward data-flow problem:

ReachIn(n) = ⋂
p∈pr ed [p]

ReachOut [p] (4.2)

ReachOut (n) =Gen(n)∪ (ReachIn(n)−K i l l (n)) (4.3)

Gen[d : y ← f (x1, . . . , xn)] = {d} and K i l l [d : y ← f (x1, . . . , xn)] = De f s[y]−{d}, where De f s[y]

is the set of all definitions that assign to the variable y .

Gen(m) contains those variables that are used in m before any redefinition inm. K i l l (m)

contains all the variables that are defined in m.

First to solve the equation Gen and K i l l sets should be filled. In Xronos, reaching definitions

is implemented as a Procedural IR visitor. This visitor, visits the instructions of all blocks in

the Procedure as described with the pseudo visitor in Algorithm 2. All sets are stored inside

the attributes for each BlockBasic.

4.2.4 Live Variable Analysis

Live Variable Analysis or liveness is a compiler backward dataflow analysis that calculates for

each "program point" (it can be a statement or a Block) the variables that may be potentially

read before their next write. It should be noted that the compiler dataflow analysis is an

entirely different concept from dataflow programming. A variable is live if it holds a value that

may be needed in the future. A useful property of liveness is that it finds which variables are

used and defined for each BlockBasic. Also, liveness enables to find the executed code that has

no overall effect on the program and uninitialized variables.

A variable v is live at point p if and only if there exists a path in the CFG from p to a use of

v , without being redefined. Live information is computed for each Block b in the procedure.

Gen(b) is defined as a set that contains all variables that are live at exit from b. Coming back

to the first property of the LVA, each variable on Gen(n0) has a potential uninitialized variable.

63

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Algorithm 2: Creating Gen and K i l l sets.

1 class Gen_Kill(Procedure procedure):
Variables :Set gen
Variables :Set kill

2 def caseBlockBasic(BlockBasic block):
3 gen := create a new empty set kill := create a new empty set
4 for instruction in block.getInstructions() do
5 visit(instruction);

6 block.setAttribute("Gen",gen);
7 block.setAttribute("Kill",kill);

8 def caseAssign(InstAssign assign):
9 visit(assign.getValueExpression());

10 Var target := assign.getTargetVariable();
11 kill.add(target);

12 def caseLoad(InstLoad load):
13 for expr : load.getIndexesExpressions() do
14 visit(expr);

15 Var target := load.getTargetVariable();
16 kill.add(target);

17 def caseStore(InstStore store):
18 visit(store.getValueExpression());
19 for expr : store.getIndexesExpressions() do
20 visit(expr);

21 Var target = store.getTargetVariable();
22 kill.add(target);

23 def caseStore(InstStore store):
24 for expr : store.getArgumentsExpression do
25 visit(expr);

26 if call.geTarget != null then
27 Var target = call.getTargetVariable();
28 kill.add(target);

29 def caseExprVar(ExprVar exprVar):
30 Var var := exprVar.getVariable(); gen.add(var);

64

4.2. Advances on the Orcc compiler infrastructure for Hardware Synthesis

The computation of the Li veOut is the following: For each node n in the Procedure CFG, a set

Gen(n) contains all the variables that are live at exit from the block of the node n. Li veOut (n)

is defined by an equation that uses the Li veOut sets of the n successors in the CFG, as well as

two sets Gen(n) and K i l l (n).

The dataflow equation is defined as follows:

Li veOut (n) = ⋃
m∈succ(n)

Gen(m)∪ (Li veOut (m)−K i l l (m)) (4.4)

Gen(m) and K i l l (m) sets are calculating according to Algorithm 2. The Li veOut (n) is just the

union of those variables that are live at the head of some block m that immediately follows n.

The GetReversePostOrder1 function on Algorithm 3 gives the reverse postorder of the CFG

graph of the Procedure. A postorder traversal visits as many of a node’s n children as possible

before visiting n. However, a reverse postorder traversal is the opposite. It visits as many of

node’s n predecessors as possible before visiting n. Two helper sets lineInsP and liveOutsP are

used for testing if the liveIns and liveOuts have been changed after a traversal of all vertex in the

CFG. If liveInsP is equal to liveIns and if liveOutsP is equal to liveOuts then liveness analysis has

terminated. Lines 19 to 23 calculate the most right part of LiveOut (Li veOut (m)−K i l l (m))

and lines 25 to 28 calculate the LiveOut of a vertex v .

4.2.5 Single Static Assignment, Pruned Form

Single Static Assignment (SSA) is an intermediate representation in which each variable has

only one definition in the program text [168]. The SSA form represents both the data flow

and control flow in the IR. Thus, it serves as a basis for a large set of transformations. Any

Operation x ← ... is a definition of x and any operation ... ← x is a use of x. A procedure is in

SSA form if the following constraints are applied: (1) every variable is defined only once and

(2) every use of the variable corresponds to a single definition.

To make sure that only one unique definition exists a variable Global Value Numbering (GVN)

is applied to the procedure. To transform Procedure IR to SSA form, Xronos insertsφ-functions

(InstPhi on the Procedural IR) at points where different control flow paths merge, and renames

variables as defined in constraints. Xronos constructs a pruned-SSA version which means

that all assignments by the φ-functions to a variable that is not live are eliminated. The live

information of the variable is provided by the live variable analysis. Thus, less register are

being used for loops, branches because pruned SSA minimizes data communication between

basic blocks. It is to say that the construction of a pruned-SSA is beyond the scope of this

thesis, for more information the reader may refer to [168].

65

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Algorithm 3: Live Variable Analysis, Procedure IR pseudo visitor.

1 class Liveness(Procedure procedure):
2 def caseProcedure(Procedure procedure):
3 Boolean changed := true;
4 Ordering rpo := GetReversePostOrder(cfg);
5 List vertices := rpo.getVertices();
6 Map liveIns := new Map(Vertex,Set(Variables));
7 Map liveOuts := new Map(Vertex,Set(Variables));
8 Map liveInsP := new Map(Vertex,Set(Variables));
9 Map liveOutsP := new Map(Vertex,Set(Variables));

10 while changed do
11 changed := false;
12 for vertex in vertices do
13 liveInsP.put(vertex, liveIns.get(vertex));
14 liveIOutsP.put(vertex, liveOuts.get(vertex));
15 Set gen = vertex.getBlock().getMap("gen");
16 Set kill := vertex.getBlock().getMap("kill");
17 Set liveOut := vertex.getBlock().getMap("kill");
18 /* Get Live In */
19 Set calcIn := Set.copy(gen);
20 Set calcRemove := Set.copy(liveOut);
21 calcRemove.remove(kill);
22 calcIn.addAll(calcRemove);
23 liveIns.put(vertex, calcIn);
24 /* Get Live Out */
25 Set calcOut = new Set(Var);
26 for s in vertex.getSuccessors() do
27 Set in = liveIns.get(s);
28 calcOut.addAll(in);

29 liveOuts.put(vertex, calcOut);

30 if !liveIns.equals(liveInsP) and liveOuts.equals(!liveOutsP) then
31 changed := true;

32 /* Store liveIns and liveOuts for each vertex */
33 for vertex in vertices do
34 Block block := vertex.getBlock();
35 block.setAttribute("LiveIn", liveIns.get(vertex));
36 block.setAttribute("LiveOut", liveOuts.get(vertex));

66

4.3. Procedural IR Transformations

4.3 Procedural IR Transformations

To prepare the IR for hardware synthesis some additional transformation should be applied

before converting the Procedural IR of each action to the Openforge LIM IR. Thanks to the

SSA representation of a Procedure, the constant propagation algorithm, and the dead code

elimination are easy to implement. For the hardware synthesis the variables and the operation

should have the correct bit size for reducing the resource footprint. Operations such as division

or modulo are often not synthesizable for either ASICs or FPGAs. Thus, Xronos is transforming

these operations into synthesizable components.

4.3.1 Expression Evaluator/Simplification

Expression evaluator/simplification is a helper visitor that finds algebraic identities to simplify

the expression. For instance, a constant folding transformation as described in Section 4.3,

uses the Expression Evaluator for streamlining the operations of constants.

Table 4.2 shows some identities that can be handled by the expression simplification if the

constant values of the expressions are unknown.

Table 4.2 – Algebraic identities for Expression Simplificator. With
∧

and logic and operator,
and

∨
or logic or operator.

a +0 = a a −0 = a a −a = 0 a ∗n2 = a << n

a ∗x1 = a a ∗0 = 0 a ÷1 = a a/n2 = a >> n

a >> 0 = a a >> 0 = a a
∧

a = a a
∨

a = a

The Expression Evaluator checks if the value of ExprUnary or ExprBin is known. If it is, then

knowing the operation, the calculation is effectuated and the ExprUnary or ExprBin is replaced

by constant Expressions such as ExprInt, ExprUint, etc..

4.3.2 Single Read and Write Register Optimization

Multiple readings and writings to the same memory are expensive operations. Each of them

requires at least one clock cycle for either retrieving or writing a variable value. Furthermore,

multiple read/write operations increase the latency of the overall execution of the procedure.

To minimize this latency, Xronos traverses the CFG of a procedure and stores all definitions and

uses of the scalar state variables to a set called UsedVars. At the entry of the BlockBasic

CFG node, Xronos inserts for each v in UsedVars a Load instruction with a target tempv . Af-

ter this operation it propagates for all the uses of v the variable tempv and replaces load/store

instructions with assignments. Finally, at the exit of the BlockBasic CFG node, it inserts

store instructions for each v with a value of tempv . Here it should be mentioned that this

optimization is effectuated at the Procedural IR level and may increase the hardware’s critical

path length of an action.

67

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

actor Actor()
int IN ==> int OUT:

int a := 0; int b := 0; int c := 0;

action IN:[token] ==> OUT:[c]
do

b := token;
b := a + b;
c := a + b;

end
end

(a) Orignial Code

actor Actor()
int IN ==> int OUT:

int a := 0; int b := 0; int c := 0;

action IN:[token] ==> OUT:[c]
var

int temp_a, int temp_b, int temp_c
do

temp_a := a;
temp_b := b;

temp_b := token;
temp_b := temp_a + temp_b;
temp_c := temp_a + temp_b;

a := temp_a;
b := temp_b;
c := temp_c;

end
end

(b) Optimized Register Use.

Figure 4.3 – Single Read and Write Register Optimization. Only a single read and a single write
for a, b, and c state variables.

4.3.3 Uninitialized Variables

Listing 4.1 – An actor with unitialized local variable

actor Uninitialized()
==> int O:

Act0:action ==> O:[token]
var

int a,
int token,

do
token := 5 + a;

end
end

Uninitialized variables are trivial to find once the CFG and liveliness are computed. It is

sufficient to retrieve the entry Basic Block n0 of the CFG and its liveness. For every variable v

that is not defined in n0 but found on the liveness set of n0, v is an uninitialized variable. By

default, Xronos initializes those variables to zero or false (depending the type of the variable)

and emits a warning to the programmer. In the Listing 4.1, Xronos will emit a warning that a

local variable "a" in action Act0 is uninitialized.

68

4.3. Procedural IR Transformations

(a) Code (b) CP Pass 1 (c) CF (d) CP Pass 1

Figure 4.4 – Constant Propagation (CP) and Constant Folding (CF).

4.3.4 Constant Folding/Propagation

Constant propagation searches for a constant value expression c that is assigned to a variable

dl : t ← c, and another statement dn that uses t. dn : x ← t Bi nOp y . Thanks to the reaching

definition analysis pass it is known that t is constant in dn if dl reaches dn , and no other

definitions of t reach dn . Thus, after constant propagation, dn : x ← c Bi nOp y . C

Constant folding begins once the constant propagation has terminated. This transformation

will search for a binary or unary expression that contains only value expressions and depending

on the operator will calculate the new expression value, and will assign to the target this new

expression.

Figure 4.4 represents the constant propagation and folding in action. For each procedure, the

constant propagation is relaunched up until no further modification is possible.

4.3.5 Dead Code Elimination

Dead code elimination acts on Instructions, Blocks, and Actions. If for an instruction with a

target variable t and t ← . . . contained in BlockBasic b such that t is not Li veOut (b) then this

instruction can be removed. This also can be resolved by using the use/def chain within the

SSA representation. If the variable t has no use, then it can be removed.

Constant propagation also acts on the BlockIf condition. Thus, if the condition has a

boolean expression value of true, then all Then Blocks are copied to the container of the

BlockIf and the BlockIf is removed. Consequently, if the condition is false then the Else

Blocks are copied to the container Block and the BlockIf is removed and if a condition on a

While Block is false, then the BlockWhile is removed.

Dead Code Elimination is also applied on the Dataflow IR. If an actor is parametrized, it is

possible that some actions contain a guard condition that includes the actor parameter value.

Hence, if a guard on an Action is false then this action is eliminated from the dataflow model,

and if this action is contained in a transition of the FSM of the actor then this transition is also

removed.

69

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

4.3.6 Type Casting

Type casting is a necessity for having a bit accurate execution of a program. Is applied to

the parameters of a function and to assignments. Each parameter of a function should have

the same type of the function’s corresponding argument. If this is not the case, then a cast

operation is necessary. The same applies when a variable with a different type or the same type

with different bit size is assigned (stored or loaded) to a left-hand variable in an instruction

such as t ←

For casting an expression, the Least Upper Bound should be defined. LUB represents the

minimal type to which both Expressions a and b can be assigned. Xronos defines its LUB

rules as defined in Table4.3. Type casting is applied as a visitor to the Procedural IR. All Block

Instruction and Expression classes are iteratively visited up until all LUB rules have been

employed.

Table 4.3 – Lest Upper Bound on Types

BitSize b
int unit float string

B
it

Si
ze

a int int max(a,b) i nt

{
max(a,b) if a > b

max(a,b +1) if a < b
float X

uint i nt

{
max(a +1,b) if a > b

max(a,b) if a < b
uint max(a,b) flaot X

float float float float X
string X X X string

4.3.7 Division and Modulo Implementation

Division and Modulo operations are supported by HDL simulators but not by logic synthesizers.

In Xronos, those operations are replaced by synthesizable ones. The Type of the numerator

and denominator plays an important role on how the division is effectuated. If either the

numerator or denominator type is signed, then the unsigned one should be casted as integer.

If the bit size of the unsigned one is greater than the integer one, then both of them should be

casted as integers and the bit size of the signed integer Type should be incremented by one.

As it can be seen on Algorithm 4 the division is bit accurate and its output is an unsigned

integer with a bit si ze = maxSi ze(num,den). The algorithm takes si ze number of clock

cycles to finish the operation. This algorithm is implemented in Xronos as a Procedural IR

visitor. If an ExprBin has an operator of division or modulo, then num and den are extracted

from the expression and two new variables are added to the procedure. The Algorithm 4 is

constructed programmatically and added to the instructions that contain the Division/Modulo

expression. Algorithm 5 represents the integer version of the algorithm. To avoid overcharging

70

4.3. Procedural IR Transformations

Algorithm 4: Unsigned Integer Divisions and Modulo replacement

1 def DivisionModulo(isDivsion, num, den):
2 size = maxSize(num,den);
3 uint(size) result := 0;
4 uint(size) remainder := num;
5 uint(size) mask := 1 « (size - 1);
6 for i = 0 to si ze do
7 uint(size) numer := remainder » (size - i);
8 if numer >= den then
9 result := result or mask;

10 remainder := remainder - (den « (size - i));

11 mask := mask » 1;

12 if not isDivision then
13 result := remainder;

14 return result;

Algorithm 5: Integer Divisions and Modulo replacement

1 def DivisionModulo(isDivsion, num, den):
2 size = maxSize(num,den);
3 int(size) result := 0;
4 int(size) remainder := num;
5 int(size) mask := 1 « (size - 1);
6 int(size) denom;
7 int(size) numer;
8 int flipResult := 0;
9 if num < 0 then

10 num := - num;
11 flipResult = flipResult xor 1;

12 if den < 0 then
13 den := - den;
14 flipResult = flipResult xor 1;

15 denom := den and (1 « size) ;
16 for i = 0 to si ze do
17 uint(size) numer := remainder » (size - i);
18 if numer >= denom then
19 result := result or mask;
20 remainder := remainder - (den « (size - i));

21 mask := (mask » 1) and ((1 « size) - 1);

22 if flipResult != 0 then
23 result = -result;

24 if not isDivision then
25 result := remainder;

26 return result;

71

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

the algorithms with more source code lines, the statement that contains the result variable is

deleted in both algorithms.

4.4 Pipelining

A CAL network of actors can be seen as a pipeline structure. The design frequency of the

pipeline is determined by a critical action with the longest combinatorial critical path. In

general a design goal is to increase the operating frequency so that the overall data throughput

increases as well. If the critical action is not in the critical path of the whole CAL program,

then the goal can be achieved by dividing the action into smaller actions within the same actor

without pipelining. Otherwise, the critical action can be pipelined by extracting it from the

original actor and by partitioning it into two or more additional smaller actors that implement

the pipeline stages. To find out the critical action the CAL program is first synthesized to HDL,

and then to RTL, where the information on the combinatorial critical path can be obtained.

X0 := in0 + in7;
X1 := in0 – in7;
X4 := in1 + in6;
...

Pipeline
Optimization

Stage 0

Stage 1

Stage N

CAL

XDF

nbrOperators

nbrVariables

List of Variables

List of Variables Width

List of Operators Input

List of Operators Output

Stages
To

Actors...

Decision Step Optimization Step Generation Step

Figure 4.5 – Pipelining Optimization, from decision to generation.

The technique to extract an action from an actor that contains other actions into its own actor

can be described as follows. First, the action has to be analyzed for its main input and output

ports. Along with its original input port, the state variables read/used by the action have to be

also received via input ports. If the action modifies a state variable, then the value has to be

sent as feedback via an output port to the other actions that require this variable. Whenever

the input port of the critical action is also used by other actions in the original actor, the

consumption of the token from the port has to be accurately controlled by guard conditions

so that the two actions do not consume the tokens at the same time. As for the output port, in

the case when other actions in the original actor are also using the same port as in the critical

action, the port has to be multiplexed correctly so that only a single output token from the

port is taken at a time.

The pipeline technique implemented in Xronos is described in [78]. First, initial as-soon-

as-possible (ASAP) and as-late-as-possible (ALAP) schedules are effectuated, and the corre-

sponding mobility of operators is extracted from the CDFG graph (see Section 4.6). From

this, an operator coloring technique is used on conflict and nonconflict directed graphs using

72

4.5. Actor’s Action Selection Procedure

. . .

Stage 1
One clock cycle

Stage N
One clock cycle

Low cost operators

No resource sharing
among operators

Pipeline registers

Operators chain

Figure 4.6 – One clock per stage pipeline scheduling with chaining and without sharing
resources.

recursive functions and explicit stack mechanisms. For each feasible number of pipeline

stages, a pipeline schedule with minimum total register width is taken as an optimal coloring,

which is then automatically transformed into an RVC-CAL description. An RVC-CAL developer

can add a pipeline attribute to a selected action for it to be pipelined.

4.5 Actor’s Action Selection Procedure

An actor has a set of actions that each of them can read, write and change state variables as

discussed in the previous chapter. If an actor has many actions, then either an FSM is defined

or the control is effectuated by the firing conditions (guards and tokens availability) of the

actions. When implementing an actor in either hardware or software, an action selection

procedure should be defined. This procedure handles the execution of an actor as mentioned

in Section 3.3.2 and it is implemented as a finite state machine. In comparison with actor

machines [151], here the action selection calculates all conditions in parallel and let the

extracted actor state machine to choose which action should be executed.

Figure 4.8 represents the action’s selection finite state-machine of an actor with four states.

For clarity, the image does not contain multiple transitions (actions) for each state. Figure 4.7a

depicts a general software oriented action selection FSM that each state has a transition with

three steps. First the transition has a blocking read on the input ports, then once the firing

rules are satisfied it fires the action and finally has a blocking write on the transition output

ports.

An action might read and write a list of tokens, but in hardware an FIFO queue implemen-

tation supports a single value in and a single value out which results in an implementation

problem. However, a list of tokens might be implemented in four approaches: as a bus, as a

concatenation of all list data as a single datum of a larger bit size, as a dual port memory that

73

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Read

Fire

Write

Blocking
Read

Blocking
Write

S0

S1

S3

S2

S0

(a) Software Action Selection

Read

Write

S0

Read

Write

S1

Read

Write

S3

Read

Write

S2

FireS0

(b) Xronos Action Selection

Figure 4.7 – Finite State Machine of Action Selection.

acts as a queue or as a sequential reading and writing single values from the input and output

ports. The first two approaches can not be implemented in hardware for two reasons. Firstly,

in the general case when the actor’s output port is connected to a successor actor, in which

the data is consumed at a different rate than it is produced by the predecessor, then a part

of data is lost. Secondly, the guard of an actor might do a peek in an index that is not in the

head of the queue, which means that it does not satisfy the firing condition. In other words, all

values should be available before the firing condition is resolved. The third approach, which is

elegant and its implementation is given in [169], has the disadvantage of multiple latencies

when both actors are writing and reading at the same time. Also, as mentioned in the same

paper [169] for the same RVC-CAL application, Xronos, which implements the fourth option,

has a two times higher throughput.

The fourth approach, reading and writing single tokens one by one, is easier to implement

by adding two more states on the actors FSM: the READ and the WRITE state. However, it is

necessary to have a local list for each input and output port with the maximum element size

of the largest repeat found on the actor’s actions. This might be considered as a disadvantaged

but actually it is not, because by having small local memories the FIFO queue size can be

decreased. In addition, another significant advantage is that actions with multiple read/writes

on different ports can perform a parallel Read on those input ports in the READ state and a

74

4.5. Actor’s Action Selection Procedure

parallel write on the output ports. This is possible because there are no dependencies between

those operations.

Let consider the following example in Listing 4.2:

Listing 4.2 – Foo Actor

actor Foo()
int A,
int B

==> int C:

Act0:action A:[a] repeat 64, B:[b] repeat 32 ==> C:[a[0] + b[0]]
end

Act1: action A:[a] repeat 32 ==> C:[a] repeat 32
end

schedule fsm s0:
s0 (Act0) --> s1;
s1 (Act1) --> s0;

end
end

Actor Foo has two actions Act0 and Act1. Both of them uses the CAL keyword repeat. Act0

reads a list of 64 tokens from port A and 32 tokens from port B and outputs a single token. Act1

reads a list of 32 elements and writes the input list to its output C. Xronos modifies its FSM as

depicted in Figure 4.8a by adding the READ and WRITE states. The READ state in Figure 4.8b

starts by forking both reading paths in the input ports if the previous state was s0, only port A

is read if s1. WRITE state in Figure 4.8c, depending on the previous state writes 1 token for s0

and 32 for s1.

4.5.1 Construction of the Action Selection Procedure

Contrarily to other Orcc code generators, Xronos does not pretty prints the code, but trans-

forms the Dataflow and Procedural IR to a close to hardware intermediate representation and

then it applies a scheduling on it. Moreover, Orcc backends do not create a Procedure for the

Action Selection. They just prints it by visiting the actors FSM and the actions inputPatterns

and outputPatterns. In Xronos, the choice was to first create an Orcc Procedure which then it is

transforms into an object called Task in LIM IR, and effectuated by the Xronos Procedural IR to

LIM mapping process, which is discussed in Section 4.8. Thus, it homogenizes and facilitates

the overall transformation process of Procedures in the Procedural IR. Xronos applies the

following steps/transformations for creating the Action Selection procedure:

1. ActionSelection Procedure: A new empty procedure with the name ActionSelection is

created and added to the actor.

2. AddFSM: This transformation will add an FSM to the actor if it does not have one.

75

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Read

Write

s0

Read

Write

S1

S0

(a) Action Selection FSM.

FORK

Idx == R_A?

Load
A

Idx == R_B ?

Load
B

JOIN

Start

End

Read A ? Read B ?
false false

true true

(b) State READ.

Idx == W

Store
C

Start

End

(c) State WRITE, W=1 if act0, W=32

if act1.

Figure 4.8 – Foo actor Action Selection.

Also, if an actor has an FSM but contains actions that are outside of the FSM it will

create a transition with the highest priority for each state and will add it to the state.

In addition, some actors may contain special actions called initialize. This action is

used for initializing variables as well as for any other initialization purpose. AddFSM

will create a INIT state with a set of transitions, defined by the number of initialized

actions in the code and will then add the INIT state and set it as the initial state. This

transformation is applied in order to homogenize the generation of a general actor.

3. WhileBlocks: This step creates a list of Blocks that will accommodate the Blocks created

for the following 7 steps.

4. EnumerateStates: This step creates a BlockBasic which assigns an index to each state

of the actor’s FSM;

5. IOLists: This transformation adds five state variables for each input and output port:

tokenIndex represents the number of tokens that read/written, MaxTokenIndex. Re-

questTokens is a state variable that indicates the number of the input tokens at a given

state that an action needs so that it can fire. SentTokens signifies the number of the

output tokens that should be written on the output port. finally, PortEnable acts on the

READ and WRITE states if a parallel reading/writing should be effectuated on those

states. In addition, it adds a list of state variable with a name portList for each port with

the maximum number of elements specified by the maximum repeat CAL construct

76

4.5. Actor’s Action Selection Procedure

in each action port. Eventually, it modifies all the InstLoads that target the associate

with an input port with the portList. It also does the same modification on InstStore

instructions associated with an output port. It should be mentioned that the association

is given by the inputPattern and outputPattern of the actions.

6. LoadCurrentStateBlock: This step creates a BlockBasic with a single InstLoad instruc-

tion that loads the actor’s initial state index to the FSM’s state variable called fsmState.

7. IsSchedulableBlocks: This step visits all the actions isSchedulable Procedure. As de-

scribed in Section 3.6.1, the isSchedulable procedure returns a boolean value that

signifies that the firing condition is satisfied. IsSchedulableBlocks will copy all the

isSchedulable procedures body Blocks of the actors in a list of Blocks and will then

replace the InstReturn instruction by an InstAssign one, that assigns the return value to

partialFiring local variable.

8. PortStatusBlock: This step will create a BlockBasic and add for all ports of the actor the

instruction InstPortStatus. Thus, it is possible to check if there is a token available in an

input queue and if there is available space in the output queue.

9. HasTokensBlock: This step creates a BlockBasic with only InstAssigns instructions that

will assign a boolean expression tokenIndex == RequestTokens that signifies the

partial firing condition on inputs. The RequestToken is changed when a state demands

the number of tokens to be read by an input.

10. StateBlocks: For each state a BlockIf is constructed to accommodate the state transi-

tions. If a state has a single transition, then: the BlockIf condition is an ExprVar that

references the value of the variable created by the IsSchedulableBlocks, the BlockIf’s

thenBlocks contains the call of the action’s procedure and a change of the state to

following state on the FSM, and the BlockIf’s else block contains an BlockIf for check-

ing if there is a necessity to read from input port of the action and the changes to

the READ state. If a state has many transitions, then a nested BlockIf is added on

elseBlocks of the transition that has the highest priority. Figure 4.9 depicts the flow

graph of a state with two transitions. The first transition handles the call for action

A and the second one the call for action B. Both of them are reading from an input

PI and writing to an output PO. If Guard A and Guard B are false, then it means that

both actions require input tokens from PI. If both actions have different consumption

rates, then PI _r eqestTokens = max(r epeat(A,PI),r epeat(B ,PI)). The subtraction

PI _tokenIndex_r ead = PI _r equestTokens−PI _tokenIndex helps to read only the

necessary tokens for the next state.

11. InifiteBlockWhile: an infinite BlockWhile is constructed and added to the Action Selec-

tion procedure. The condition of the BlockWhile is an ExprBool with a boolean of true.

All the blocks of the WhileBlocks are added on the BlockWhile blocks.

77

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Call(A)
nextState = s1

fsmState = WRITE
PO_requestTokens =32
PO_portEnable = true

Start

End

Guard A &&
PI_tokenIdx == R_A

?

Guard B &&
PI_tokenIdx == R_B

?

true

Call(B)
nextState = s0

fsmState = WRITE
PO_requestTokens =64
PO_portEnable = true

true

PI_tokenIdx < Max(PI)

PI_tokenIdx = PI_requestTokens – PI_tokenIdx
PI_portEnable = true

nextState = s0
fsmState = READ

true

false

false

false

Figure 4.9 – A State that contains two transitions.

Once the Action Selection construction has finished, then two Procedural IR optimizations

are applied on it. The first one is called BlockCombine and it combines all the different

BlockBasic to a single one. The second one is called RedundantLoadElimination that

eliminates all the redundant InstLoads from the state variables. Reading from a state

variable has a latency of minimum one clock cycle from a register or a memory. Thus, all guards

using the same state variable for the firing condition are combined to a single InstLoad, and

all following InstLoad instructions are replaced by InstAssign instructions to a local

variable of the procedure.

4.6 CDFG Representation of a Procedure

Before explaining each mapping process, the Control and Dataflow Graph (CDFG) should

be defined. A CDFG is a graph G(V,E) with V nodes being themselves a CDFG graph (three

node kinds: Block CDFG, Branch CDFG or Loop CDFG), special nodes: Entry, Init Entry,

FeedBack(FB) Entry and Exit or an operation node. The CDFG has two types of edges E =
{Ed ,Ec }, with Ed a data dependency and Ec a control dependency. A data dependency signifies

that a data value is passed from a node vi to a node vd . A control dependency however,

signifies the flow of the control from node vi to a node v j ; i.e vi has finished its process

and gives the hand to v j . In literature CDFG nodes that contain subgraphs are also called

Hierarchical Task Graphs (HTG) [170].

78

4.7. Language Independent Model (LIM)

Compared to CFG, a CDFG contains more information on how Blocks operations are inter-

connected. The construction of the CDFG takes as input a CFG graph, and populates its nodes

and edges by visiting the Instructions.

Let consider the following example in Listing 4.3:

Listing 4.3 – A Simple Procedure.

procedure toto(int b)
var

int a
int c

begin
a := b;
while a < 10 do

if b > 5 then
c := 2;

else
c := 1;

end
a := a - c;

end
...

end

A partial CDFG of Listing 4.3 is given in Figure 4.10

4.7 Language Independent Model (LIM)

The OpenForge IR is called Language Independent Model (LIM). The LIM IR expresses opera-

tions in terms of graphical objects: nodes are components and edges are the control or data

dependencies (as in a CDFG). Components are included into Modules and Modules into Tasks.

Tasks can be executed sequentially or Parallel and included a Design, which is the Top Level of

the program to be synthesized.

4.7.1 Component

Nodes in LIM are Components, represented in Figure 4.11. A component is the base class of

all components in the model. It is a node in a data flow graph of operations that describes a

module, an arithmetic or memory operation.

A component receive its input data from an Entry and output all processed data from its Exit.

The Entry specifies the input data Ports and the Exit specifies the output data Buses.

• Entry: Specifies one possible set of inputs for a Component’s Ports. For each Port, the

inputs are specified as a collection of one or more Dependencies. When scheduling,

the Dependencies of a given Entry must be scheduled so that they are all fulfilled

79

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

b0

Init
Entry

<

>

= =

Entry

Exit

Exit

-

=

FB
Entry

Data Dependency

Control Dependency

12

b0

5

a0

c1

a0

b0

c0

c2

a

a1

a2

Loop Node

Branch Node

BB0

BB1

BB2

BB3
BB4

BB5

T F

F

T

Figure 4.10 – Partial CDFG of the Listing 4.3.

simultaneously. However, they may be scheduled without regard to the Dependencies

of other Entry objects. Multiple Entries for the same Component are logically muxed.

• Exit: An Exit is a group of Buses that represent an exit condition from an Operation. In

addition, an Exit includes the control signal as well as all the data values that are output

at that point. A given Component may have multiple Exits.

• Port: Represents the receiving side of a data connection between components. At most

one source buses may be connected to a Port. A port can be owned only by a single

component and graphically is an anchor.

80

4.7. Language Independent Model (LIM)

Component

E
n
t
r
y

E
x
i
t

Port A

Done

Bus A

go

reset

clk

In
B

u
f

O
u

tB
u

f

E
xit

g
o

go

clk

reset

Figure 4.11 – LIM Component.

• Bus: Represents the source side of a data connection between components. One or

more destination ports may be connected to the Bus; these represent the receivers of the

Bus’s data. Each Bus is owned by a single component. In addition to Port connections, a

Bus may have multiple logical dependent Ports, represented by dependencies. It is from

these that the final Port connections are ultimately derived. Each Bus has an underlying

vector of Bits that comprise it. The number of bits in the vector is determined when the

width of the Bus is established. Each of these Bits also designates the Bus as its owner;

they can also be referenced to any value, but their number and identity within the Bus

can never be changed once they are created. The Bus also has a value. An initial value

is created along with the bit vector; this initial value just contains the bits of the vector.

Other value may be set on the Bus containing Bits that are owned by other Buses.

• InBuf: An InBuf is used to bring a structural flow to the inside of a Module from its

outside. A single InBuf is created automatically for each Module, and adding a data Port

to the Module also adds a corresponding Bus to the InBuf. The InBuf itself has no Ports

and no Entries. Logically, the Ports of the Module are the continued internally by the

InBuf’s Buses. The InBuf’s single Exit is created with the usual done Bus and at least two

data Buses. The done Bus is the continuation of the Module’s go Port; that is why it is

also known as the "go Bus". Clock and reset signals of the owner Module are represented

by the first two data Buses; this is because this is the only case in which a clock or a reset

will exit a Component.

• OutBuf: An OutBuf is used to bring a structural flow to the outside of a component’s

owner (Module) from its inside. An OutBuf is created automatically for each Exit of

the Module, and adding a data Bus to the Exit also adds a corresponding Port to the

OutBuf. The OutBuf itself has no Exit and no Buses. Logically, the Buses of the Exit are

the continuation of the OutBuf’s input Ports that are called peer.

• Dependency: A Dependency describes the relationship between a dependent Port and

the Bus on which it depends. There are multiple types of dependency, and the type of

dependency affects how it is handled during scheduling. Data Dependencies indicate

that the port will receive a connection to the logical bus that is depended on, though it

may be delayed or latched. Control Dependencies will cause the scheduler to find the

81

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

control signal that qualifies the dependent bus and will use that controlling signal to

resolve the dependency.

• Control Ports and Buses: Each component has a Clock, Reset, and a Go Port. Also, each

component has an Exit Done which includes the Done Bus. The Clock port indicates the

clocking signal; the Reset Port indicated the reset signal and the Go Port indicates that

the component is ready to be launched. The done bus indicated that this component

has finished the process.

4.7.2 Primitives

A Primitive is a low-level component that performs a simple logic function. It has a single Exit,

and the clock, reset, go, and done Buses are unused. The Primitive classes are the following:

• And: An And primitive accepts multiple 1-bit signals that make a AND operation on all

of them together to generate a 1-bit result.

• Mux: accepts paired GO/Data signals, using each GO to select its related Data to be

provided on the Result Bus.

• Not: A Not primitive accepts multiple 1-bit signals, that makes a NOT operation on all

of them together to generate a 1-bit result.

• Or: An Or primitive accepts multiple 1-bit signals, that makes a OR operation on all of

them together to generate a 1-bit result.

• Reg: Reg models a register and can be constructed to match any of the configurations

which are possible in a Xilinx FPGA. Specific accessor methods are available to retrieve

the data, enable, set, reset, clear, and preset ports. It’s exit specifies that the Latency of

this component is One. A Reg object always has ports for sync Set, sync Reset, Enable

async Preset, async Clear.

4.7.3 Operation

An Operation is an executable Component. Operations are assembled into Modules. Opera-

tions are separated into three categories: ValeuOp, UnaryOp, and BinaryOp.

• ValueOp: An operation that generates a single value (a constant).

• UnaryOp: Base class of all unary operations, which require only one operand and

generate one result. A type-casting operation that takes two parameters size and signed.

Size signifies the bit size to be casted and sign if the cast should be signed. Other unary

operations are ComplementOp, MinusOp, PlusOp, and ReductionOP.

82

4.7. Language Independent Model (LIM)

• BinaryOp: Base class of all binary operations, which require two operands and generate

one result. OpenForge’s binary operations are: AddOp, AndOp, ConditionalAndOp,

ConditionalOp, ConditionalOrOp, DivideOp, ModuloOp, MultiplyOp, OrOp, ShiftOp,

SubstractOp, and XorOp.

4.7.4 Memory

LogicalMemory is a symbolic representation of a memory space in a Design. The two primary

attributes of a LogicalMemory are its allocations and accesses.

• Allocation: Is a region of memory that is defined by the program via a variable decla-

ration. Each allocation has associated with it a size (the number of bytes needed to

represent the variable’s type) and an initial value. Allocations may be added to and

deleted from a LogicalMemory, as well as queried. Together the allocations represent

the memory space that is legally usable by the Design.

• Location: Designates a region of memory. It is a symbolic representation, and so only

records the size of the region as a number of addressable units. The actual address of

the Location is given by the LogicalMemory to which the Location belongs.

• LogicalValue: An instance of LogicalValue is the initial value of a given location in

a LogicalMemory. This initial value is specified when allocating a new region of the

memory. A LogicalValue can report its size in addressable units (stride) as well as the

content (numerical value) of those units.

• Access: Is a read or write of LogicalMemory. Accesses are denoted by LValues (left hand

values), each of which is either a read or a write. The LogicalMemory can record all the

Locations that are referenced by a given LValue, and determine whether a given Location

refers to all, part, or none of an existing allocation.

• MemoryAccess: It factors out functionality that is common among all accesses to mem-

ory such as address port, done bus and methods that identify whether the node uses go

or done. It is the base class of MemoryRead and MemoryWrite.

• AbsoluteMemoryRead: Is a fixed access to a LogicalMemory, in which the Location

being accessed is fully specified at compile time and does not depend on a base or offset

address. This module is populated with a MemoryRead and two constants. The first

identifies the address being read and is a DeferredConstant based on the particular

Allocation being accessed. The second is a fixed constant, indicating the number of

bytes being accessed. It is used to read stored values from an array.

• AbsoluteMemoryWrite: Is a fixed access to a LogicalMemory, in which the Location

being accessed is fully specified at compile time and does not depend on a base or offset

address. This module is populated with a MemoryWrite and two constants. The first

83

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

identifies the address being written and is a DeferredConstant based on the particular

Allocation being accessed. The second is a fixed constant, indicating the number of

bytes being accessed. It is used to store values into an array.

4.7.5 Module

A Module is a component that may contain other Components. Is the abstract class that is

extending by Block, Decision, Branch, Loop, LoopBody, Kicker, and Referee.

Block

In
B

u
f

E
n
t
r
y

Component

E
n
t
r
y

E
x
i
t

Port

Done

Bus

go

reset

clk

In
B

u
f

O
u

tB
u

f Component

E
n
t
r
y

E
x
i
t

Port

Done

Bus

go

reset

clk

In
B

u
f

O
u

tB
u

f

Port

go

reset

clk

E
x
i
t

go

clk

reset

E
x
i
t

Done

Bus

O
u

tB
u

f

Port Peer
Port Peer

Done Peer

Block

Figure 4.12 – A Block with two components that they are execute one after the other.

Block is a Module that contains a sequence of Components that are logically executed one

after the other. It represents a portion of code that executes statements sequentially like basic

blocks in a general compiler. All component’s data and control dependencies are resolved

during the construction of the block. Finally, a Block contains an Entry with a set of input

ports and an Exit with a set of output ports. As with each Component, a Block has a go, reset

and clock signal input ports and an output done signal output bus.

Latch

Latch is not a subclass of Reg. Rather, latch is the composition of a Reg with an enable and

reset input ports, and a 2 to 1 Mux.

Decision

Decision is a refinement of Module for components that produce a truth value. It defines

two Exits, one whose done bus signals true and one whose done bus signals false. On a

true condition, the true bus is asserted, and the false bus is deasserted; on a false condition,

the true bus is deasserted, and the false bus is asserted. The Decision is constructed with a

Component representing the boolean value to be tested. A Decision produces a single data

84

4.7. Language Independent Model (LIM)

Decision

E
x
i
t

done

O
u

tB
u

f
T

ru
e

E
x
i
t

O
u

tB
u

f
T

ru
e

done
Block

E
n
tr
y

E
xi
t

done

go

reset

clk

In
B

u
f

O
u

tB
u

f

port

bus

E
n
t
r
y

E
x
i
t

done

go

reset

clk

In
B

u
f

O
u

tB
u

f

port
bus

peer port peer bus

E
n
t
r
y

E
x
i
t

done

go

reset

clk

In
B

u
f

O
u

tB
u

f

A bus

B

peer A

peer B

peer
bus

E
n
t
r
y

E
x
i
t

done

go

reset

clk

In
B

u
f

O
u

tB
u

f

A bus

B

peer A

peer B

peer
bus

In
B

u
f

E
n
t
r
y

Port

go

reset

clk

E
x
i
t

go

clk

reset

peer port

peer
done

peer
done

Figure 4.13 – A Decision Module .

value.

Branch

In
B

u
f

E
n
t
r
y

Block
True

E
n
t
r
y

E
x
i
t

done

go

reset

clk

In
B

u
f

O
u

tB
u

f

Block
False

E
n
t
r
y

E
x
i
t

done

go

reset

clk

In
B

u
f

O
u

tB
u

f

Port

go

reset

clk

E
x
i
t

go

clk

reset

E
x
i
t

done

bus

O
u

tB
u

f

peer done 1

Branch

Decision

E
n
t
r
y

go

reset

clk

In
B

u
f

E
x
i
t

done

O
u

tB
u

f
T

ru
e

E
x
i
t

O
u

tB
u

f
T

ru
e

done

peer done 0

port

peer port

peer bus 1

peer bus 0

bus

bus

Figure 4.14 – A Branch with a true and a false part that both of them does not have an input
port. The decision input is connected to a data dependency from the peer bus of the Branch
input port to its input port. The Branch has an exit with two control dependencies, 0 from the
Exit’s Done of the true Block and 1 from the false Block.

A branch represents a choice of execution between two Components, one representing a path

for a true condition, the other a path for a false condition. The choice is based on the output

value of a Decision.

85

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Loop and LoopBody

A Loop is a generic representation of a loop control structure. Its purpose is to execute the

contents of a LoopBody iteratively. Internally, the Loop also creates data Registers and Latches

to manage feedback data.

LoopBody

Block

E
n
t
r
y

E
x
i
t

done

go

reset

clk

In
B

u
f

O
u

tB
u

f

bus
port

Decision

E
n
t
r
y

go

reset

clk

In
B

u
f

E
x
i
t

done
O

u
tB

u
f

fa
lse

E
x
i
t

O
u

tB
u

f
T

ru
e

done

port

In
B

u
f

Port

go

reset

clk
E
x
i
t

go

clk

reset

peer port

Port

go

reset

clk

F
e
e
d
b
a
c
k

E
n
t
r
y

I
n
i
t

E
n
t
r
y done

bus

O
u

tB
u

f

peer done
feedback

peer bus
F
e
e
d
b
a
c
k

E
x
i
t

done

bus

C
o
m
p
l
e
t
e

E
x
i
t

peer done
complete

peer done

Latch

E
n
t
r
y

E
x
i
t

done

go 1

reset

clk

In
B

u
f

O
u

tB
u

f

bus

go 0

port 1

port 0

E
n
t
r
y

port

go

reset

clk

In
B

u
f

E
x

it

go

clk

reset

port
peer

E
xi
t

O
u

tB
u

f

done

peer
done

bus

peer
bus

Loop

Figure 4.15 – A Loop Module, that contain a WhileBody.

A LoopBody characterizes the body of a Loop. A LoopBody designates one of its Exits as a

"feedback exit." When this exit is asserted, it indicates that another iteration of the loop should

begin. The Buses of this exit are connected to the feedback inputs of data and control Registers.

If the body will never iterate (for example if it ends with a break), then this exit may be null. The

Decision may also be null if it is known that it will never be reached (for instance, a do-loop

that ends with a break). In addition, a LoopBody identifies the input Port that provides the

initial value for each feedback data flow. Even thought, in OpenForge there are three kinds of

LoopBodies: ForBody, WhileBody, UntilBody. In Xronos, only the WhileBody is used because

the Procedural IR contains only one kind of Loops the BlockWhile.

4.7.6 Design

Design is the top level representation of an implementation in hardware. It defines a set of

input and output ports, internal logical memories, clock domains and its computational part

the Tasks.

Input/Output Interface

Designs communicate with each other via an interface protocol as depicted in Figure 4.16. This

interface protocol is compatible with standard FIFO interfaces such as First Word Fall Through

(FWFT). The FIFO size for each Design interconnection can be determined according to the

user or from various strategies. A strategy for minimal FIFO size is illustrated in Section 5.4.3.

86

4.7. Language Independent Model (LIM)

FWFT
FIFO

Design

FWFT
FIFO

Data

Empty

Read

Send

Ack

Data

Rdy Full

Write

Ack

Send

Tm

Ts Ts

Figure 4.16 – Design I/O Fifo Interface.

The interface has four signals: DATA, SEND, ACK and RDY. DATA, is an N-bit data signal

containing the token value. SEND, a 1-bit signal indicating that the value on DATA is valid.

ACK, is a 1-bit acknowledge signal indicating that the token on DATA is being consumed. The

token transaction occurs on the rising edge of the system clock when both SEND and ACK are

asserted. Finally, RDY, is a 1-bit ready signal, which is incorporated only on output interfaces.

If the ready is asserted, the consumer is indicating that an ACK will be provided immediately

(combinatorially) in response to the assertion of SEND. Xronos also provides asynchronous

FIFOs with two clock domains a write and a read one.

Logical Memories

See Section 4.7.4 for the logical Memories that the Design supports.

4.7.7 Clock Domains

Each Design by default has a single clock domain CLK. If a Network has been partitioned

in different clock domains by the user, then this information is passed to a Design and the

name of the clock domain is modified. The transition between two Designs belonging to

different clock domains is effectuated by instantiating asynchronous FIFOs.

Task

A Task is a thread of execution within a Design. It exists two type of Task: masters and slaves.

A master can Call slaves but a slave can not call neither a master nor slave. Also, a master

can not call itself. The executable contents of a Task are expressed as a Call to a Procedure

(to not be confused with the Procedural IR’s Procedure). A task starts execution once its go

signal has been activated and terminates by sending done signal. If a task can be executed

combinatorially, then the done signal is connected directly to go, which means that it took

zero clock cycles to execute the task.

• Call: Is a Reference to a Procedure. It represents a call by name, and it is expected that

the HDL compilation will resolve the reference. A Call contains maps of Call’s to referent

87

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

procedure body for ports, exits and buses.

• Procedure: Is a Component wrapper that allows the Component to be invoked via

the execution of a Call. A Procedure represents the definition of a call-by-name. It is

expected that the Procedure will be defined once in the output HDL and that the HDL

compiler will link each call to that definition. Procedures are not in themselves shared;

each Call represents a new instantiation of the hardware defined by the Procedure. A

Procedure has a label and a Block.

4.7.8 Scheduling

LIM objects are scheduled by As Soon As Possible unconstrained scheduling. In general,

Xronos operates as there is an unlimited amount of available resources in an FPGA. The reason

for this is that resource sharing (a single hardware unit to implement multiple operations

locally in a block or a super-block) requires adding multiplexers to the input ports of a shared

hardware unit. As a matter of fact, multiplexers are costly to implement in FPGAs [171].

Let’s consider a Block that has N components. The data control-flow graph of the block is a

directed acyclic graph G(V ,E), with V the list of the components of the Block and E the data

dependencies. Each vi ∈V represents an operation oi in the behavioral description. A direct

edge ei j from vi ∈ V to v j ∈ V exists in E if the data produced by operation oi is consumed

by o j . In this case vi is an immediate predecessor of v j which is denoted by Pr edvi . The

immediate predecessor in LIM is achieved by asking the entry of vi of its port dependency. In

the same way v j is an immediate successor of vi denoted by Succvi and in LIM the successor

of the component is given by the Exit data buses

Each component in LIM can be executed in Di control steps that are given by the control

dependencies of the Block components. Each control step signifies a latency of zero or more

clock cycles. Xronos assumes that each combinatorial operation has a Di of a latency ZERO.

That means that a set of operation connected to each other is chained in the same state.

Modules, such as Blocks, Branches and Loops, schedule first their internal components. Their

Latency is the accumulation of the Latencies of their internal components. Thus, it exists

a scheduling function for each Component and each class of Module (Block, Branch, Loop,

LoopBody).

Considering the information given by the previous paragraphs, Xronos applies ASAP on a

Block as defined in [20] or [24]. It should be noted that the LIM scheduler properly handles

instructions with multi-cycle latencies, such as pipelined multipliers or memory accesses and

loops.

88

4.8. Mapping of Dataflow and Procedural IR to LIM

4.8 Mapping of Dataflow and Procedural IR to LIM

The mapping of the Dataflow and Procedural IR to LIM is the "heart" of Xronos. The Xronos

mapping process is implemented as a set of visitors that creates for each Network, Actor State

Var, Action, Procedure, Operation, Instruction, Expression, BlockBasic, BlockIf and BlockWhile

an equivalent LIM object. For each Actor a Design object is generated which represents

the hardware implementation of an Actor.

4.8.1 Network construction and Actor to Design

The source code of a Network of Dataflow IR is generated using an Xtend VHDL template, as

explained in Section4.8.9. For each Actor in the Network a LIM Design is created and for

each state variable Var a memory allocation is generated in Design. After that, all Actions

are visited and a LIM slave Task is created and added to the Design. Finally, the Action

Selection is mapped into a LIM master Task. Once the Design is complete, scheduling,

allocation, binding is effectuated and a Verilog RTL file for each Actor is created. Algorithm 6

represents the mapping from an Actor to a Design.

Algorithm 6: Var to LogicalMemory
Input :Actor: A Prcedural IR Actor
Result :Design: A LIM Design

1 design := create an empty design ;
2 // Create the Block and the components
3 ;
4 VarToLogicalMemory(Actor get State Variables, Design);
5 // Create Task from the sctors actions
6 for ai ∈ Actor Actions do
7 task := ActionToTask(ai .body);
8 Add task to Design;

9 master_task := ActorToTask(get Action Selection Procedure from Actor) set attribute master to master_task;
10 Add master_task to Design;
11 return Design;

4.8.2 State variable to Memory Allocation

For each state variable (Var) in an actor, a memory allocation (LogicalMemory) is created

in a Design. Tasks are not allowed to have list memories, thus for every Action that contains list

local variables, a visitor will visit each action procedure body and will: 1) create a state variable

with the name of the local variable and the name of the action, 2) add this state variable to the

actor,3) visit all InstLoad and InstStore instructions and replace their source and target

variable respectively with the variable previously created, and 4) delete the local variable of

the Procedure.

All state variables if they are not initialized yet, will be initialized with 0 or with f al se by a

visitor depending on their type.

89

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Algorithm 7: VarToLogicalMemory
Input :SV: state varibales set
Input :Design: A design
Input :collocate: A boolean that signifies if memories should be collocated
Data :M : a map with entries as LogicalMemory and values as strides

1 for vi ∈ SV do
2 l vi := create LogicalValue(vi)
3 stride := l vi .getStride();
4 mi := M.get(stide);
5 if mi = ; then
6 mi := create LogicalMemory; mi .name := var.name; design.add(mi);
7 if collocate then
8 M.put(stride,mi);

9 mem.allocate(l vi);

The Algorithm 7 starts by creating a LogicalValue for vi by taking as stride the number of bits

of the Type of vi and as value the initial one of the vi . Then, it tests whether a memory with

the same stride exists and if not it creates one and adds it to the design. If a designer has

chosen that the memories should be collocated for memory consistency, then Xronos puts

this LogicalMemory to the Memories map.

4.8.3 Action to Task

Each Dataflow IR Action is mapped to a LIM Task and then added to the Design of the

actor. The Algorithm ActorToTask, which is not represented here for its simplicity, takes as

input a Procedure, and returns as output a Task. It visits all Blocks of the Action body

Procedure and creates a LIM Block. Finally, it adds the Block to the Task.

4.8.4 Operation to Node

The Procedural IR operation included in the Expressions is represented as a single node vopi

that is not a subgraph. vopi has a set of inputs P i n
vopi

and as an output a set of a single entry P out
vopi

.

In addition, it has a member that defines the kind of operator vopi .op, and vopi .component

member signifies the LIM component associated with vopi .

4.8.5 Expression to CDFG

An Expression is mapped to a Block. This is done because an Expression may contain another

expression. Thus, an expression on the CDFG is represented as a node vei that contains

another CDFG. A vei has a set of inputs P i n
vei

and as output a set of a single entry P out
vei

.

The Algorithm 8 represents the process from a Procedural IR to a CDFG. For each Expression,

a CDFG graph is constructed. Procedure PROPAGATE_NODE_INPUTS takes all inputs of a

ve0 , creates a Port on the parent graph and adds an edge between the Port and the ve0 input

90

4.8. Mapping of Dataflow and Procedural IR to LIM

Algorithm 8: Expression To CDFG
Input :E: Expression
Result :G: CDFG Graph

1 if E is ExprBinary then
2 E0 = E.getExpressionE0();
3 ve0 = ExpressionToCDFG(E0);
4 G.addNode(ve0);
5 E1 = E.getExpressionE1();
6 ve1 = ExpressionToCDFG(E1);
7 G.addNode(ve1);
8 vop0 .op = BinaryOperation(E.OpBinary);
9 G.addNode(vop0);

10 // Create data and control edges
11 PROPAGATE_NODE_INPUTS(ve0 , G);

12 G.addEdge("data", P out
ve0

(0), P i n
vop0

(0));

13 G.addEdge("data", P out
ve1

(0), P i n
vop0

(1));

14 G.addEdge("control",ve0 ,vop0);
15 G.addEdge("control",ve1 ,vop0);
16 PROPAGATE_CONTROL(vop0 , G);
17 return G;

18 else if E is ExprUnary then
19 // Create a CDFG from Expression, and add ve to G
20 E0 = E.getExpression();
21 ve0 = ExpressionToCDFG(E0);
22 G.addNode(ve0);
23 // Create an operation node and add it to G
24 vop0 .op = UnaryOperation(E.OpUnary);
25 G.addNode(vop0);
26 // Create data and control edges
27 PROPAGATE_NODE_INPUTS(ve0 , G);

28 G.addEdge("data", P out
ve0

(0), P i n
vop0

(0));

29 G.addEdge("control",ve0 ,vop0);
30 G.type = Bl ock;
31 PROPAGATE_CONTROL(vop0 , G);
32 return G;

33 else if E is ExprVar then
34 vop0 .op = NoOperation(E.Var);

35 P i n
vop0

= E.Var;

36 G.addNode(vop0) ;
37 PROPAGATE_NODE_INPUTS(vop0 , G);
38 PROPAGATE_CONTROL(vop0 , G);
39 return G;

40 else if E is (ExprInt or ExprUint or ExprBool) then
41 vop0 .op = Constant(E.Value, E.Type);

42 P i n
vop0

= ;;

43 G.addNode(vop0);
44 PROPAGATE_CONTROL(vop0 , G);
45 return G;

91

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

port. Procedure PROPAGATE_CONTROL produces a control edge from a CDFG node to the

CDFG. Internal data and control edges are resolved for each class Expression.

4.8.6 BlockBasic to Block

A Procedural IRBlockBasic is mapped to a LIMBlock through theBlockBasicToBlock

Algorithm 9. All BlockBasic’s Instructions are mapped to a CDFG node. The list of all in-

structions creates a CDFG graph that represents all data and control dependencies. Finally, the

CDFG is mapped to the LIM Block by the CDFGToBlock Algorithm 10. For simplicity only the

CDFG node of the InstAssign is illustrated in Algorithm 9. The input and output Ports for

each CDFG nodes are given by the Liveness analysis illustrated in Section 4.2.4. The procedure

PROPAGATE_NODE_INPUTS(source,target) will create a CDFG node, and will add a

data dependency from the source to target.

Algorithm 9: BlockBasicToBlock
Input :BlockBasic: A Prcedural IR BlockBasic
Result :Block: A LIM Block
Data :G: A CDFG
Data : MV : a Map of defined Var and CDFG Ports
Data : last_node: Last CDFG node

1 for i nsti ∈ BlockBasic Instructions do
2 if i nsti is InstAssign then
3 E = i nsti .Value;
4 ve = ExpressionToCDFG(E);
5 G.addNode(ve);

6 for pi n j
in P i n

ve do

7 var = pi n j
get variable;

8 if var ∈ LiveIn(BlockBasic) then
9 PROPAGATE_NODE_INPUTS(pi n j

, G);

10 else
11 G.addEdge("data", MV .get(var), pi n j

);

12 var = i nsti .Target;
13 if var ∈ LiveOut(BlockBasic) then
14 PROPAGATE_NODE_OUTPUTS(P out

ve (0), G);
15 else
16 MV .add(var,P out

ve (0));

17 PROPAGATE_CONTROL(l ast_node, ve);
18 G.kind = "Block";
19 l ast_node := ve ;

20 else
21 . . .

22 Block = CDFGToBlock(G);
23 return Block;

4.8.7 BlockIf to Branch and BlockWhile to Loop

A visual mapping of the BlockIf and BlockWhile CDFG is illustrated in Figure 4.10. For BlockIf,

the condition is first inserted into BlockBasic (BB2) and is extracted from the CDFG. The

92

4.8. Mapping of Dataflow and Procedural IR to LIM

Then and Else Blocks CDFG is extracted as well. Afterwards, the CDFG graph of the BlockIf is

constructed as follows: 1) an Entry node is inserted and control dependency is added to the

Entry and to the condition CDFG. If any data dependencies are required by both the Then and

the Else Blocks, then the data dependencies are inserted from the Entry to the Then and Else

Blocks by the LiveIn set of the Blocks. In addition, an Exit node is inserted into the CDFG

and all control and data dependencies are propagated from the Then and Else Blocks to the

Exit node. Finally, the BlockIF CDFG is mapped to Branch by the CDFGToBlock Algorithm.

The BlockWhile CDFG has two Entry nodes, the Init Entry and the FeedBack (FB) Entry. The

Init entry propagates all the input data dependencies to the BlockWhile CDFG, whereas the

Feedback Entry propagates all feedback data dependencies to the Body CDFG node and to the

BlockBasic CDFG node. The condition CDFG node has two control dependencies. A T control

dependency which is connected to the condition BlockBasic node that signifies that the loop

continues, and a F data dependency that is attached to the Exit node that signifies that the

loop has completed.

4.8.8 CDFG to Block

The Algorithm 10 represents the transformation from a CDFG graph to a LIM Block. First all

components of the Block are created and then the data and control dependencies are being

resolved.

4.8.9 Behavioral HDL Code Generation

The Network of an RVC-CAL program is generated as a VHDL file. The entity has the same

name as the Network’s name and for each input and output port additional VHDL ports are

added to the entity as outlined in Section 4.7.6. The architecture of the Network declares all

Designs (Actors) as components. Moreover, fanouts and queues are instantiated directly

because of their fanout and their queue size which are specified as parameters. Finally, all

internal signals are declared in advance and all Actors are then instantiated with correct port

maps between fanout and queues. An example of a Network dataflow architecture is depicted

in Figure 4.17.

OpenForge backend generates a Verilog Module file for each Design that represents an

Actor. To clarify the code generation the CAL source code of the Actor Acc in Listing 4.4

is given. Figure 4.18 represents the Actor Acc Module, the internal signals and the inner

Modules. As described previously an Actor Design has a master Task which is the Action

Selection, and a set of slave tasks. In the Actor Acc example, it contains only one, and it is

called Action. Each memory allocation (a state variable in Procedural IR) is also a Module

(StateVar acc). Each Design has two additional Modules: Global Reset and Kicker. Global Reset

is used to synchronize the reset with the actor clock. The Kicker generates a pulse based on

the synchronized reset signal and is used to activate the Action Selection Module.

93

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Algorithm 10: CDFG to Block
Input :G: CDFG
Result :Block: a LIM Block
Data :C: a list of components
Data :Entry: entry of the Block
Data :Exit: exit of the component
Data :M: a Map of nodes and components

1 // Create the components
2 for vi ∈ G vertices do
3 if vi .type is Block then
4 bvi = CDFGtoBlock(vi);
5 C.add(bvi); M.put(vi ,bvi);

6 else
7 cvi = vi .component;
8 C.add(cvi);
9 M.put(vi ,cvi);

10 // Create the Block and the components
11 Block = create a Block with C as the list of its components ;
12 // Resolve data dependencies
13 for di ∈ G data edges do
14 Ps = di .source;
15 Pt = di .target;
16 if Ps and Pt not a Graph Input or Output Port then
17 Bus bus = Ps get Bus;
18 Port port = Pt get Port;
19 ADD_DATA_DEPENDENCY(bus,port);

20 else if Ps is a Graph Input Port then
21 P i n

Bl ock = create a Block port;

22 Bus bus = P i n
Bl ock get peer Bus;

23 Port port = GET_COMPONENT_PORT(Pt);
24 ADD_DATA_DEPENDENCY(bus,port);

25 else if Pt is a Graph Output Port then
26 P out

Bl ock = create a Block bus;

27 Bus bus = Ps get Bus;
28 Port port = P out

Bl ock get peer Port;

29 ADD_DATA_DEPENDENCY(bus,port);

30 // Resolve control dependencies
31 for ci ∈ G control edges do
32 Ps = ci .source;
33 Pt = ci .target;
34 if Ps and Pt not a Graph Input or Output Port then
35 vs = source node;
36 vt = target node;
37 Bus bus = Ps get done Bus of vs .component;
38 Port port = Pt get done Port of vt .component;
39 ADD_CONTROL_DEPENDENCY(bus,port);

40 else if Ps is a Graph Input Port then
41 vt = target node;

42 P i n
Bl ock = get Block go Port;

43 Bus bus = P i n
Bl ock get peer Bus;

44 Port port = Pt get done Port of vt .component;
45 ADD_CONTROL_DEPENDENCY(bus,port);

46 else if Pt is a Graph Output Port then
47 vs = source node;
48 P out

Bl ock = get Block done Bus;

49 Bus bus = Ps get done Bus of vs .component;
50 Port port = P out

Bl ock get peer Port;

51 ADD_CONTROL_DEPENDENCY(bus,port);

52 return Block;

94

4.9. Xronos SystemC Code Generation

Fannout

DATA_IN

RDY_IN

SEND_IN

ACK_IN

Queue

DATA

SEND

ACK

DATA

RDY

SEND

ACK

DATA_OUT

RDY_OUT(1:0)

SEND_OUT(1:0)

ACK_OUT(1:0)

Actor
A

DATA_IN

SEND_IN

ACK_IN

DATA_OUT

RDY_OUT

SEND_OUT

ACK_OUT

Actor
B

DATA

SEND

ACK

DATA

RDY

SEND

ACK

Actor
C

DATA

SEND

ACK

DATA

RDY

SEND

ACK

Network

Queue

DATA_OUT

SEND_OUT

ACK_OUT

DATA_IN

RDY_IN

SEND_IN

ACK_IN

Queue

DATA

SEND

ACK

DATA

RDY

SEND

ACK

Queue

DATA

SEND

ACK

DATA

RDY

SEND

ACK

Actor
B

DATA_IN

SEND_IN

ACK_IN

DATA_OUT

RDY_OUT

SEND_OUT

ACK_OUT

Actor
C

DATA_IN

SEND_IN

ACK_IN

DATA_OUT

RDY_OUT

SEND_OUT

ACK_OUT

Queue

DATA_OUT

SEND_OUT

ACK_OUT

DATA_IN

RDY_IN

SEND_IN

ACK_IN

Queue

DATA_OUT

SEND_OUT

ACK_OUT

DATA_IN

RDY_IN

SEND_IN

ACK_IN

Queue

DATA_OUT

SEND_OUT

ACK_OUT

DATA_IN

RDY_IN

SEND_IN

ACK_IN

DATA_IN

SEND_IN

ACK_IN

DATA_OUT_0

SEND_OUT_0

ACK_OUT_0

DATA_OUT_1

SEND_OUT_1

ACK_OUT_1

Figure 4.17 – Network representation of three Actors. The Actor A’s output port is connected
to the input of Actor B and Actor C. It is woth mentioning that if an output port is connected
to more than one input port a fanout is added. As depicted, each connection has its proper
queue.

In a case of multiple actios that read and write from the same state variable, a memory referee

is added to the Actor’s Module. RAMs and ROMs are also Modules, openForge applies a binding

algorithm that instantiates correctly Xilinx RAMs (LUT RAM and Dual/Sigle Port BRAM). If

chosen by the user, Xronos can also instantiate generic memories.

Listing 4.4 – An accumulator actor

actor Acc()
int IN

==> int OUT:

int acc := 0;

action IN:[token] ==> OUT:[acc]
do

acc := acc + token;
end

end

4.9 Xronos SystemC Code Generation

SystemC is a modeling and simulation language based on standard C++ classes expressly

conceived for systems modeling and design. SystemC provides an event-driven simulation

interface that enables the simulation of concurrent processes. Other relevant features of

SystemC are the support for bit accurate datatypes, timing primitives that can be specified by

the user and communication patterns among processes and modules. Such features make

SystemC a preferable starting design point than standard C or standard C++ for high-level

hardware synthesis for the more natural and expressive way of specifying concurrence.IEEE

SystemC standard was developed initially for the simulation and verification of complex

Intellectual Property (IP) blocks, but later has been used as an High-Level Synthesis (HLS)

approach alternative to C and C++. The Open SystemC initiation group is in the process of

95

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Actor

Global
Reset

CLK

RESET

OUT

StateVar
acc

CLK

RESET

OUT

IN

ENABLE

Action
SelectionCLK

RESET

ACTION_DONE

OUT_RDY

IN_SEND

GO

ACTION_GO

Action

CLK

RESET

GO

VAR_EN

IN_DATA

VAR_IN

DONE

VAR_OUT

IN_ACK

OUT_SEND

Kicker

CLK

RESET

OUT

RESET

CLK

IN_DATA

IN_SEND

OUT_RDY

OUT_DATA

IN_ACK

OUT_SEND

Figure 4.18 – Internal Modules Representation of the Actor Acc of Listing 4.4.

standardizing a subset of Synthesizable SystemC (SCC) [172]. The current draft consists of

the definition of a synthesizable subset of the SystemC language and provides the coding

guidelines and the specification of which SystemC syntactic elements could be synthesized by

HLS tools.

4.9.1 SystemC Actor Template

The SystemC code generator generates hierarchically C++ header and source files for the

network and each actor. The network of actors is a header file that instantiate the queues and

the actors. Each actor is a SystemC module. The SystemC module defines the actor’s ports, the

methods declaration of the Procedural IR procedures and the constructor which register the

Action Selection method as a SystemC CThread process. The source file contains the

state variables that are declared as static, the implementation methods for each IR procedure

and the implementation of the Action Selection. Figure 4.20 represents the SystemC

module declaration of the inverse quantification CAL actor in Figure 4.5.

The action selection is a process that is sensitive to the positive clock edge, and it can be

reseted. It is an infinite process that waits for the start signal to start executing. This process

acts on each input and output port and calculates all the action guard conditions (the boolean

return value of each guard expressed by the isSchedulable procedure) a priori before selecting

which action should be executed.

Actions could read automatically from FIFO ports but in some cases a guard can be dependent

not only on the head of the queue but even further. From the SSC draft only primitive sc_fifo

types are supported which does not provide the peek support on queues. Those two conditions

requires a supplementary READ state. This state reads the tokens from the input ports and

stores it in a register or an array with size of the maximum number of readable tokens of all

96

4.9. Xronos SystemC Code Generation

Listing 4.5 – Dequantizer.cal

actor Dequantizer()
int(size=24) Block, uint(size=8) QT, int(size=16) SOI ==> int(size=13) Out:

List(type:List(type:uint(size=8), size=64), size=2) quant;

int count := 0;
int comp;

receive_QT:action QT:[q] repeat 130, SOI:[w, h] ==>
guard

count = 0
do

foreach int i in 0 .. 63 do
quant[0][i] := q[i + 1];
quant[1][i] := q[i + 66];

end
comp := 0;
count := 6 * (w) * (h);

end

// Dequant and unzigzag.
receive_block:action Block:[b] repeat 64 ==> Out:[out] repeat 64
guard

count != 0
var

int compType,
int(size=24) out[64]

do
compType := comp >> 2;
foreach int i in 0 .. 63 do

out[inv_zigzag[i]] := b[i] * quant[compType][i];
end

count := count - 1;

comp := (comp + 1) mod 6;
end

priority
receive_QT > receive_block;

end
end

97

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

actions that reads from this particular port. A positive side of having a state for reading is that

it can multiple port reading at the same time because the reading is independent. To have this

advantage also for writing on outputs ports a WRITE state is inserted.

#include "systemc.h"
SC_MODULE(dequant){
// -- Control Ports
sc_in<bool> clk;
sc_in<bool> reset;
sc_in<bool> start;
// -- Queue Ports
sc_fifo_in<sc_int<24> > Block;
sc_fifo_in<sc_uint<8> > QT;
sc_fifo_in<sc_int<16> > Block;
sc_fifo_out< sc_int<13> > Out;

// -- Action Body Declaration
void r_QT();
void r_block();
void isSchedulable_r_QT();
void isSchedulable_r_block();

// -- Action Selection
void action_selection();
SC_CTOR(dequant)
:clk("clk")
,reset("reset")
,start("start")
{
// -- Actions Selection Registration
SC_CTHREAD(action_selection, clk.pos());
reset_signal_is(reset, true);
}
};

Figure 4.19 – Header file of the SystemC inverse quantification actor.

4.9.2 SystemC Actor Composition Template

The Actor Composition SystemC Template is also a SC_MODULE. It defines the input and

output port assc_fifo and the constructorSC_CTOR instantiates all actors, internal queues

and finally makes the interconnection between I/O ports, queues and actors.

98

4.9. Xronos SystemC Code Generation

void dequant::action_selection(){
// -- Ports indexes
sc_uint<32> p_Block_index = 0;
sc_uint<32> p_Block_index_read = 0;
bool p_Block_consume = false;
...
bool p_Out_produce = false;
// -- Action guards
bool guard_receive_QT;
bool guard_receive_block;

wait();
state = s_dequant;
old_state = s_dequant;
// -- Wait For Start singal
do { wait(); } while (!start.read());
while(true){
// -- Calculate all guards
guard_receive_QT = isSchedulable_receive_QT();
guard_receive_block = isSchedulable_receive_block();

switch (state){
case (s_READ):
if(p_Block_consume && (Block.num_available() > 0)){
for(int i = 0; i < p_Block_index_read; i++){
p_Block[i] = Block.read();
p_Block_index++;
p_Block_consume = false;
}

}
if(p_QT_consume && (QT.num_available() > 0)){
...
break;

case (s_WRITE):
if(p_Out_produce){
for(int i = 0; i < p_Out_index_write; i++){
Out.write(p_Out[i]);
p_Out_index++;

}
p_Out_produce = false;
}
state = old_state;
break;
case(s_dequant):
if(guard_receive_QT && p_SOI_index == 2

&& p_QT_index == 130){
receive_QT();
p_SOI_index = 0;
p_QT_index = 0;
state = s_dequant;

} else if(guard_receive_block && p_Block_index == 64){
receive_block();
p_Block_index = 0;
p_Out_index_write = 64;
p_Out_produce = true;
old_state = s_dequant;
state = s_WRITE;

} else {
if(p_SOI_index < 2){
p_SOI_index_read = 2 - p_SOI_index;
p_SOI_consume = true;

}
if(p_Block_index < 64){
...
old_state = s_dequant;
state = s_READ;
}
break;
default:
state = s_dequant;
break;

}
wait();

}

Figure 4.20 – Action Selection process of the inverse quantification actor.

99

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

4.10 Xronos C++ Code Generation for Embedded Platforms

Xronos generates C++ source code for software processing elements. A Xtend class extends

the Dataflow and Procedural IR and visits all Actors in the Dataflow IR with purpose to create

a single header C++ class file that represents the Actor model.

The structure of the C++ Actor is represented in Listing 4.6. To facilitate the understanding of

how the C++ code is generated, the same CAL Dequantizer of Listing 4.5 is used here as well.

Listing 4.6 – Structure of C++ Actor

#ifndef __<NAME_OF_ACTOR>_H__
#define __<NAME_OF_ACTOR>_H__

#include <iostream >
#include " actor . h"
#include " f i f o . h"

class <name of actor >: public Actor {
public :

<name of actor > () {
. .

}
/ * FIFO Declaration * /
Fifo <<port type > , <number of fanout >>* port_ <port name>;
. . .

/ * Action Declaration , isScedulable and Body * /

bool isSchedulable_ <action name>() {
. . .

}

void <action name> () {
. . .

}

/ * Action S e l e c t i o n * /
void action_selection (EStatus& status) {

. . .
}

/ * Actor State Variables * /
private :

<type of variable > <name of variabel >;
. . .

} ;
#endif __<NAME_OF_ACTOR>_H__

Actor I/O

The Actor’s Input and Output port are represented by the F I FO Class developed specifically

for the Xronos C++ Code Generation. Each F I FO is defined by its type and by the number

of readers: F I FO < t y pe,nbReader s >. The F I FO is implemented as a circular buffer with

100

4.10. Xronos C++ Code Generation for Embedded Platforms

two pointers read and write. Furthermore, the F I FO Class provides methods for retriev-

ing the pointers r ead_addr ess and wr i teaddr ess, by updating read and write pointers

r ead_ad vance and wr i te_ad vance, available tokens count , and available space r ooms.

Listing 4.7 represents the three input ports and one port of the actor Dequantizer.

Listing 4.7 – Input and Output Queues

public :
Fifo <int , 1>* port_Block ;
Fifo <unsigned char , 1>* port_QT ;
Fifo <short , 3>* port_SOI ;

Fifo <short , 1>* port_Out ;

State Variables

Actor state variables are C++ private members and are initialized by the class constructor.

Listing 4.8 – State Variabes

. . .
private :

unsigned char inv_zigzag [6 4] ;
unsigned char quant [2] [6 4] ;
int count ;
int comp;

. . .

Actions

Action Body and isSchedulable procedures are translated into C++ function members. As

illustrated in Listing 4.9, if an action access data from input and output ports it retrieves

the pointers of the FIFOs by the r ead_addr ess and wr i te_addr ess methods. At the end

of the function it updates FIFO indexes and its local token counters with r ead_ad vance

and wr i te_ad vance methods. Contrarily to the hardware code generation, the CAL repeat

statement is supported by reading and writing directly from the FIFO pointers. Thus, there is

no need for an individual state in the action selection for reading and writing.

Listing 4.9 – Action Body and isSchedulable Functions

private :
bool isSchedulable_receive_block () {

bool r e s u l t ;
int local_count ;
local_count = count ;
r e s u l t = (local_count ! = 0) ;
return r e s u l t ;

}
void receive_block () {

int * Block = port_Block−>read_address (0 , 64) ;
short * Out = port_Out−>write_address () ;
int compType ;

101

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

int local_comp ;
int i ;
unsigned char tmp_inv_zigzag ;
int tmp_Block ;
unsigned char tmp_quant ;
int local_count ;
local_comp = comp;
compType = (local_comp >> 2) ;
i = 0 ;
while ((i <= 63)) {

tmp_inv_zigzag = jpeg_decoder_Dequantizer_inv_zigzag [i] ;
tmp_Block = Block [i] ;
tmp_quant = quant [compType] [i] ;
Out [tmp_inv_zigzag] = (tmp_Block * tmp_quant) ;
i = (i + 1) ;

}
local_count = count ;
count = (local_count − 1) ;
local_comp = comp;
comp = ((local_comp + 1) % 6) ;
port_Block−>read_advance (0 , 64) ;
status_Block_ −= 64;
port_Out−>write_advance (64) ;
status_Out_ −= 64;

}

Action Selection

Compared to Xronos’ hardware Action Selection procedure, the construction for the C++ code

generation is done directly in the Xtend template. The action selection starts by getting the

information of available tokens on input queues and available space of output queues. Then

the firing conditions of the actor are being tested inside a while statement. The condition of

the while is given by the Boolean variable "res" that indicates if an actor can still execute.

For example if no input tokens are available at a particular time, then "res" is false, and the

action selection terminates its execution.

The firing condition is a combination of the available input tokens and the isSchedulable

function return value. These conditions are provided as an if condition. If the condition is

true, then the actor fires the action by calling the "action body" function and by updating the

status to hasExecuted.

Listing 4.10 – Action Selection

public :
void action_selection (EStatus& status) {

status_Block_=port_Block−>count (0) ;
status_QT_=port_QT−>count (0) ;
status_SOI_=port_SOI−>count (1) ;
status_Out_=port_Out−>rooms () ;

bool res = true ;
while (res) {

res = f a l s e ;
i f (status_QT_ >= 130 && status_SOI_ >= 2 && isSchedulable_receive_QT ()) {

102

4.10. Xronos C++ Code Generation for Embedded Platforms

receive_QT () ;
res = true ;
s tatus = hasExecuted ;

}
else i f (status_Block_ >= 64 && isSchedulable_receive_block ()) {

i f (status_Out_ >= 64) {
receive_block () ;
res = true ;
s tatus = hasExecuted ;

}
}

}
}

Actor Composition

The actor composition is a C++ header file where the FIFO queues and the actors are declared.

If a processing element has not as many cores as actors, then a round-robin scheduling is

applied. Hence, if a mapping configuration is given with n processing cores, then n threads,

with a partition of actors, are being created. Listing 4.11 illustrates the actor composition

of Figure 3.2. The EStatus is an enumeration that defines whether an actor has executed.

The instantiation and the connection of actors and FIFOs are effectuated in the constructor.

Moreover, the actor composition class is instantiated by a main function that is manually

written by the developer. This is due to the differences in each platform and development

board. The developer needs to make all system calls and interface interconnections before

calling the run function of the actor composition class.

Listing 4.11 – C++ header of an Actor Composition of Figure 3.2

#include <map>
#include <str ing >
#include " f i f o . h"
#include " actor . h"

#include "A . h"
#include "B . h"
#include "C. h"

class Composition {
private :

A * inst_A ;
B * inst_B ;
C * inst_C ;
/ * FIFO Instanciation * /
Fifo <int , 1> f i f o _ 0 ;
Fifo <int , 1> f i f o _ 1 ;
Fifo <int , 1> f i f o _ 2 ;

public :
Composition () {

inst_A = new A () ;
inst_B = new B () ;
inst_C = new C() ;
f i f o _ 0 = new Fifo <int , 1 >;

103

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

f i f o _ 1 = new Fifo <int , 1 >;
f i f o _ 2 = new Fifo <int , 1 >;
inst_A−>port_I1 = I ;
inst_A−>port_I2 = f i f o _ 2 ;
inst_A−>port_O = f i f o _ 0 ;
inst_B−>port_I = f i f o _ 0 ;
inst_B−>port_O1 = O;
inst_B−>port_O2 = f i f o _ 1 ;
inst_C−>port_I = f i f o _ 1 ;
inst_C−>port_O = f i f o _ 2 ;

}
~Composition () {

delete inst_A ;
. . .

}

Fifo <int , 1> * I ;
Fifo <int , 1> *O;
void run () {

EStatus status = None ;
do {

status = None ;
inst_A−>action_selection (status) ;
inst_B−>action_selection (status) ;
inst_C−>action_selection (status) ;

} while (status ! = None) ;
}

}

4.11 Mapping HW-SW and Interface Synthesis

Different interfaces have been implemented and demonstrated in [9]. The HW-SW mapping

results in partitioning the Network graph with actors belonging to a processing element

(i.e. FPGA or CPU). The process mainly consists of transforming the Network by inserting

additional vertices that represent communications between partitions, using the appropriate

media between processing elements from the architecture (see Section 5.3). Such transforma-

tion introduces special vertices in the Network, which will encapsulate at a later stage the

(de)serialization of data and the inclusion of the corresponding interfaces between partitions.

This step is illustrated in Figure 4.1 (HW-SW Interface Wrappers) where (de)serialization (resp.,

Ser. and Des.) and interface vertices are inserted. An example of partitioning and the interface

between partitioning is depicted in 4.21. Deserialization and Serialization for CAL dataflow

programs were formalized in [150].

The serialization aims to schedule the communication between actors that are allocated on

different partitions at runtime. Whenever several edges from the dataflow graph are associated

with a single medium of the architecture, the data needs to be interlaced in order to be able to

share the same underlying medium.

In the case of serialization, on the sender side, "virtual" FIFOs are used to connect the

serializer to incoming actors. Contrarily to conventional FIFOs, that store data and

104

4.12. TestBench Generation and Profiling Data Extraction

Ser Des
Pci

express
Pci

express

Ser
Pci

express
Pci

express
Des

FPGA ARM

Mapping

Figure 4.21 – Partitioning of a Design to FPGA and ARM CPU and Interface Synthesis.

Dest Data Size Payload

1 2 3

Figure 4.22 – Header and the payload of the stored data in the serialization FIFO.

maintain the state (read/write counters), the "virtual" FIFOs keeps the state while the data is

directly stored into a single FIFO, shared by incoming actors. The idea behind such a proce-

dure is to emulate the history of FIFOs (emptiness, fullness) in order to schedule reasonably

the data in the serialization FIFO. Data is scheduled by actors themselves, without using

any scheduling strategy in the serializer. In order to retrieve data on the receiver side,

a header is placed at the beginning of each data that defines the destination FIFO and the

size (in byte) of the payload. This simple header is illustrated in Figure 4.22. On the receiver

side, conventional FIFOs are used to connect the deserializer to outgoing actors. The

deserializer is responsible for the decoding of the header and puts the payload to the

appropriate destination FIFO.

4.12 TestBench Generation and Profiling Data Extraction

Xronos creates for each actor and network a testbench that is used for functional verification

and profiling. The input and output vectors of the testbench can be generated by the Orcc’s

bit-accurate RVC-CAL simulator or are given by a golden reference. Each testbench takes an

input and output file (if any I/O has been defined for the actor or network) that represents

105

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Xronos
TestBench
Generation

Input
Transactor

Output
Transactor

Xronos
Network HDL

Or
Actor HDL

TestBench

G
o

/D
o

n
e

P
ro

fi
li

n
g

E

x
tr

a
c

ti
o

n Xronos
Dynamic Profiling

XML

Q
u

e
u

e
 T

ra
c

e
s

Fifo
Traces

Figure 4.23 – Xronos TestBench and Profiling.

the input and output tokens. A driver module takes the input files and fills the input queues

with the data file. Then a comparing module for each output file reads the golden references

and the output of the unit that is under test and compares the results. If an error occurs,

the simulation stops and indicates which output port and sequence has an incorrect value.

The simulation finishes once all tokens of output ports have been compared with the golden

references.

The Go/Done signals of each task are extracted from RTL simulation. The clock cycles differ-

ence between Done and Go indicates the latency for each Task execution. Thus, for each action

firing is possible to extract the number of clock cycles required for an execution. The Go/Done

signals values for each action at every clock cycle are dumped from the VCD waveform and

are stored to file. After that, Xronos retrieves the data, calculates the Done/Go difference for

each action and stores them to a map. Finally, an XML file is generated that contains for each

actor the overall firings of actions and the elapsed clock cycles. In addition, the min, mean

and max execution time for each action is included in the file. An example of profiling file is

depicted in Listing 4.12.

Listing 4.12 – Example of Profiling Extraction File

<?xml version=" 1.0 " ?>
<actors>

<actor name="encoder_huffman">

106

4.13. Experimental Results

<actions>
<action name="dchuffman" min=" 3.0 " mean=" 3.0 " max=" 3.0 " variance=" 0.0 " />
<action name=" sendstuffing " min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 " />
<action name=" s t u f f i n g " min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 " />
<action name=" getszh " min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 " />
<action name=" buildoutputbuffer " min=" 11.0 " mean=" 16.95 " max=" 45.0 " variance=" 34.77/ >
<action name="achuffman" min=" 4.0 " mean=" 6.89 " max=" 34.0 " variance=" 27.58 "/>
<action name=" sendbits " min=" 2.0 " mean=" 2.0 " max=" 2.0 " variance=" 0.0 "/>
<action name="donesend" min=" 3.0 " mean=" 3.0 " max=" 3.0 " variance=" 0.0 "/>
<action name=" generateht " min=" 44.0 " mean=" 194.0 " max=" 344.0 " variance=" 25714.28 "/>
<action name="doneachuffman" min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 "/>
<action name="doneht" min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 "/>
<action name=" getht " min=" 133.0 " mean=" 133.0 " max=" 133.0 " variance=" 0.0 "/>
<action name=" getblock " min=" 2.0 " mean=" 2.0 " max=" 2.0 " variance=" 0.0 "/>
<action name=" f i l l h t c o d e s l i s t " min=" 363.0 " mean=" 363.0 " max=" 363.0 " variance=" 0.0 "/>
<action name=" eoi " min=" 4.0 " mean=" 4.0 " max=" 4.0 " variance=" 0.0 "/>
<action name="getszw " min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 "/>

</actions >
</actor >
<actor name=" encoder_fdct_retranspose ">

<actions >
<action name="read " min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 "/>
<action name=" f i n i s h " min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 "/>
<action name=" sent " min=" 1.0 " mean=" 1.0 " max=" 1.0 " variance=" 0.0 "/>

</actions >
</actor >
. . .

</ actors >

For the Xronos C++ code generator, the same profiling information is extracted by using a

profiling API such as the Performance API(PAPI) [173]. PAPI works on CPUs that contains

hardware performance counters. Most new X86 and ARM CPUs are supported by PAPI on

Linux Systems. A function call in PAPI is profiled by adding a PAPI system call at the entry of

the function call. Thus, the hardware counters start. In addition, another PAPI system should

be inserted at the exit of the function for stopping the counters. As a result, the clock cycles

of the function are retrieved. As discussed in Section 4.10, every Action Body is mapped

into a C++ function. Thus, the clock cycles for each firing are retrieved for every executed

function thanks to the difference of the value of exit and entry counters. Finally, an XML file,

as previously is extracted for profiling the generated C++ code.

4.13 Experimental Results

In this section, the experimental results are conducted. In the beginning, StreamBench a

benchmark for RVC-CAL dataflow programs is assembled and synthesized with Xronos. This

provides a benchmark for high-level synthesis of dataflow programs, not only in different

application domains but also with distinct degrees of algorithmic complexity. In addition,

StreamBench was also built for comparing the future advancement of Xronos or other al-

ternative HLS for RVC-CAL. After that, Xronos is compared with another RVC-CAL HLS tool.

This tool generates C code from a RVC-CAL program and calls afterwards Vivado HLS for the

107

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

synthesis. Moreover, an experiment on an embedded multi-core platform is effectuated for

demonstrating the scalability of RVC-CAL when more processing power is available. Finally,

a proof of concept experiment of hardware and software co-design on two heterogeneous

platforms is conducted.

4.13.1 StreamBench: a benchmark suite for streaming applications

Benchmarking programs in StreamBench are brought from widely-used applications in the

real world. Table 4.4 summarizes the brief description and the sources of the programs.

Table 4.4 – Brief description and source of the Streambench benchmark RVC-CAL programs.

Domain Name Description Source

Filter FIR A 4-tap FIR filter University of Oulu [174]
IIR A 1-tap IIR filter University of Oulu [174]
LMS A adaptive LMS Filter University of Oulu [174]

Arithmetic DFADD Double precision floating-point addition SoftFloat [175]
DFMUL Double precision floating-point multiplication SoftFloat [175]

Media ADPCM ADPCM Encoder and Decoder SNU [176]
GSM Linear predictive coding analysis of GSM MediaBench [177]
JPEG A JPEG Encoder EPFL [2]
MPEG4 SP Serial MPEG-4 Simple Profile Decoder Xilinx [146]
RVC MPEG4 SP Parallel MPEG-4 SP Simple Profile Decoder MPEG

FIR: Is a Finite Impulse Response signal processing filter. The FIR implementation is a 4-tap

which means that the order of the filter is 4 and therefore has 4 coefficients. It is an 11 actor

RVC-CAL design developed by the University of Oulu [174].

IIR: Is an Infinite Impulse Response signal processing filter. It is implemented as a first order

filter in RVC CAL, it has also been developed by the University of Oulu.

LMS: Is a Least Mean Square adaptive filter used to mimic a desired filter by finding its

coefficients. It is also developed by Univesity of Oulu.

DFADD: Implements IEC/IEEE standard double-precision floating point addition using 64-

bit integer numbers. It is implemented without loops. The original code is authored by

SoftFloat [175]. The version used for this benchmark was implemented in RVC-CAL from the

C description in [178].

DFMUL: Implements IEC/IEEE standard double-precision floating point multiplication using

64-bit integer numbers. DFMUL has several common functions which are also used in DFADD.

The design was rewritten into RVC-CAL from the C description in [178].

ADPCM: Is an algorithm for Adaptive Differential Pulse Code Modulation. It implements the

CCIT F.722 ADPCM algorithm for voice compression. The design includes two actors, one for

encoding and one for decoding. It was rewritten into RVC-CAL from the C description in [178].

GSM: This design contains a part of Linear Predictive Coding analysis of the GSM communica-

108

4.13. Experimental Results

tion protocol for mobile phones. Only the lossy sound compression of GSM is implemented.

It was rewritten into RVC-CAL from the C description in [178].

JPEG: Is a RVC-CAL implementation [2] of YUV 4:2:0 JPEG encoder standard ISO/IEC 10918.

The RVC-CAL JPEG encoder is composed by 10 actors. Firstly, the input image is transformed

from a raster implementation to an YUV 4:2:0 macroblock by the raster to macroblock actor.

Secondly a forward Discrete Cosine Transformation is applied by the FDCT actor which is

composed by 6 actors. Then the quantization and zigzag scan algorithms are applied in the

same actor. And finally, the variable-length encoding (Huffman) is applied to each block, and

finally the bitstream organizer and writer generates a 4:2:0 JPEG bitsream.

MPEG-4 SP: Is a CAL implementation of full MPEG-4 4:2:0 Simple Profile decoder standard

ISO/IEC 14496-2. The main functional blocks include a parser, a reconstruction block, a

2-D inverse discrete cosine transform (IDCT) block, and a motion compensator. All of these

functional units are hierarchical compositions of actors in themselves. The entire description

of the decoder is composed of 31 actors. In the first place, the parser analyzes the incoming

bitstream and extracts the data from it. Then it feeds the data into the rest of the decoder

depending on where it is need. It is to mention that the parser is a single actor that is composed

by 71 actions. It is therefore the most complicated actor in the entire decoder. Thirdly,

the reconstruction block performs the decoding that exploits the correlation of pixels in

neighboring blocks. The IDCT is the most resource demanding actor as it performs most of the

computation performed by the decoder. Finally, the motion compensator adds selectively the

blocks by issuing from the IDCT the blocks taken from the previous frame. Consequently, the

motion compensator needs to store the entire previous frame of video data, which it needs to

address into with a certain degree of random access. In that case the entire frame is stored by

the actor ddr. For implementation reasons and in order to make it possible to fit into an FPGA,

the ddr memory actor can only fit a CIF (384x288 pixels) image. In a real implementation as

well as performed in [146], this actor is replaced by a memory referee that communicates with

an external memory.

RVC MPEG-4 SP: Is the RVC standarized MPEG-4 SP insipred by the previous decoder with

the main difference being that Y, U, and V components have their own decoding units. Thus,

the decoding is effectuated in parallel.

Table 4.5 and Table 4.6 summarize source-level characteristics such as the number of lines of

RVC-CAL code, the number of actors, the number of actions and the number of Function/Pro-

cedures. In addition, Procedural IR characteristics such as Operators, Block Statements, and

also Assign, Load and Store instructions are outlined. Furthermore, Table 4.6 contains the

number of Assign, Load, and Store instructions.

Figure 4.24 illustrates the reduction on Load and Store Instructions after the Single Read and

Write Register optimization. Designs such as FIR, IIR, and LMS have a higher rate of Load

reduction. These designs have also the greatest Store Reduction whereas the DFADD has

the second most significant Store reduction. For FIR, IIR, and LMS this reduction is due to

109

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Table 4.5 – Program Characteristics - 1

Operators

Name Lines Actors Actions Procedures +/- * / logic shift comp.

FIR 48 11 11 0 6 8 0 2 2 0

IIR 48 5 5 0 4 4 0 0 2 2

LMS 75 36 43 0 28 28 0 57 4 0

ADCPM 692 2 2 18 152 12 0 7 51 47

GSM 482 4 4 17 83 1 0 29 18 85

DFADD 550 14 32 12 55 8 0 94 28 161

DFMUL 489 7 17 8 22 8 0 54 20 66

JPEG 1557 10 94 14 351 4 0 20 40 141

MPEG4-SP 4276 31 478 34 401 15 2 343 83 419

RVC 3899 43 380 83 2768 45 3 539 266 1050

Table 4.6 – Program Characteristics - 2

Statements

Nominal IR Optimization

Name if while calls load store load store

FIR 0 0 0 47 31 6 9

IIR 0 0 0 26 16 8 7

LMS 0 0 0 178 133 40 60

ADCPM 33 15 63 529 243 321 169

GSM 61 33 157 729 162 618 164

DFADD 165 0 37 343 327 193 127

FDMUL 75 0 31 230 180 195 142

JPEG 53 28 52 910 642 768 558

MPEG4-SP 404 6 433 2129 1217 1101 734

RVC 852 51 652 5074 2891 3798 2487

the small number of instruction for each action. In these designs each action contains just

one single operation and only actors acting as delays have access to the registers. Thus, the

majority of reduced load and store instructions are in the Action Selection procedure. It should

be noted that the RVC design, which is the biggest design in terms of resources and source

code lines, has a non-negligible Load reduction of 26 %.

Figure 4.25 illustrates the required hardware resources of the streambench designs when

synthesized for a Xilinx Zynq 7045 (XC7Z045-2FFG900C). The graph is scaled from 0 % to

20 %, even thought the MPEG-SP BRAM utilization is 96% due to the required memory for

the referenced images used by inter prediction. RVC is the second design that requires more

BRAMs. However, that is normal considering the fact that each Y,U, and V component has its

110

4.13. Experimental Results

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

FIR	
 IIR	
 LMS	
 ADCPM	
 GSM	
 DFADD	
 FDMUL	
 JPEG	
 MPEG-­‐4	

SP	

RVC	

(a) Load Reductions

0	

10	

20	

30	

40	

50	

60	

70	

80	

FIR	
 IIR	
 LMS	
 ADCPM	
 GSM	
 DFADD	
 FDMUL	
 JPEG	
 MPEG-­‐4	

SP	

RVC	

(b) Store Reductions

Figure 4.24 – Load and Store Instruction Reduction after Single Read and Write Register
Procedural IR Optimization.

Table 4.7 – Xronos HLS - Synthesis and Simulation Results.

Name Max
Freq.
(MHz)

Slice
Regis-
ters

Slice
LUTs

BRAM DSP Input
Data

Output
Data

Cycles Throu-
ghput
(Mbit/s)

FIR 265 512 683 - - 16340 16340 43581 3032

IIR 190 200 351 - - 128 128 516 1438

LMS 119 1751 1241 1 42 16340 16340 228760 259

DFADD 86 3789 7820 2 - 46 46 600 107

DFMUL 117 3732 4115 15 16 20 20 368 313

ADPCM 52 6304 8785 1 156 100 100 4865 121

GSM 74 4270 8096 - 43 160 160 3642 61

JPEG 137 4867 9899 14 5 38016 3357 219821 16

MPEG4 SP 162 4416 8816 527 7 6748 190080 690260 340

RVC 113 15239 32087 57 27 6748 190080 989766 165

own framebuffer. In addition, the RVC design requires a considerable amount of LUTS(15 %).

This is due to the replication of the same actors for decoding in parallel the Y, U and V

components. ADPCM is the design that requires the most of DSP multipliers. In general terms

all designs, except the two MPEG-4 SP decoders and ADPCM, require less then 6 % of the

device. The BRAM of the decoders can be reduced significantly if the framebuffers are replaced

by a direct access to DRAM.

Table 4.7 contains the synthesis and simulation results of the different dataflow designs. As

illustrated, the synthesis frequency varies for each design. ADPCM has the lowest frequency

because of it insufficient design modularity. It contains only two actors, each with one single

action. As the number of lines indicates, each actor contains approximately 350 lines of

sequential code. Consequently, this demonstrates the Achilles heel of the LIM scheduling.

Considering a zero latency for each combinatorial operation it minimizes the total latency

111

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

0 2 4 6 8 10 12 14 16 18 20

FIR

IIR

LMS

ADCPM

GSM

DFADD

FDMUL

JPEG

MPEG-4 SP

RVC

DSP %

BRAM %

LUT %

Registers %

Figure 4.25 – Resource utilization on Xilinx Zynq 7045.

while increasing the critical path of the action. The GSM design on the other hand has exactly

the same problem but its synthesis frequency is slightly higher. As design becomes more

modular the synthesis frequency increases as can be observed for the rest of the designs.

Finally, the FIR design has the highest frequency of them all. FIR is simple and every actor

acts either as a single delay, as a multiplication, or as an addition. Due to this functional

decomposition, each actor is connected to a queue and the critical path is defined by the

combinatorial latency of the operator.

Table 4.8 – Xronos C++ Code generation Throughput results in Zynq 7045 ARM with a frequency
of 999MHz.

Name Throughput (Mbit/s)

FIR 87

IIR 6.2

LMS 3.9

DFADD 38.1

DFMUL 209.3

ADPCM 17.5

GSM 0.3

JPEG 1

MPEG4 SP 9.2

RVC 31.5

112

4.13. Experimental Results

The throughput for each design is illustrated as Mbit/s in the last column of Table 4.7. It

depends on the frequency of the circuit and on the elapsed cycles taken for generating the

output data. The slowest design in stream-bench is the JPEG encoder becaus of the complexity

of the huffman actor. The MPEG-4 SP decoder, however, has a higher throughput than RVC

due to a better IDCT implementation and to improved handling of the inter frame images.

Considering a video sequence of 1280x720 at a frame rate of 30 images per second (720p), the

video decoder should have a throughput of 316Mbit/s (image width*image height*1.5*8*30,

4:2:0 format,8 bit for each Y,U,and V and 30 images per second). Consequently, the MPEG-4

SP decoder can decode 720p sequences, but only when the internal frame buffer is replaced

by a DRAM. As a result, it is proved that with Xronos is possible to generate circuits that can be

used in real applications domains such as video decoding and this is thanks to the modularity

that the RVC-CAL programming language offers. Finally, due to their high frequency, the FIR

and IIR filter have a very high throughput.

Table 4.8 illustrates the throughput of the StreamBench Xronos C++ generated designs. The

generated code is compiled and run on a bare-metal ARM Cortex A9 core of the Zynq 7045

configured with a frequency of 999 MHz. The hardware throughput of Table 4.7 is higher for

all designs. FDMUL SW throughput is only 1.5 slower than the hardware one but for the other

designs the throughput is slower from 2.8 up to 233 times. This is due to the number of actors

of the StreamBench designs and that for SW there is a Network scheduler (as described in

Xronos C++ Actor Composition) that sequentializes the execution of actors, thus decreasing

the performance. In addition, even thought ARM has a frequency of 999 MHz, memory and

operation instructions takes from 1 to hundreds of cycles for the calculation of a statement.

Finally, the ARM core in the Zynq can be used as a co-processor for executing sequential actors

such as the entropy decoding of the RVC and MPEG-4 SP decoder or for actors that requires

large memories that does not fit on an FPGA.

4.13.2 Xronos versus state-of-the-art RVC-CAL to hardware synthesis

In [3] the Action Selection procedure is compared with the Multi-to-Mono token transforma-

tion [167] on Virtex 4 FPGA. Table 4.9 illustrates synthesis and simulation results, which are

retrieved from [3]. Synthesis results from the old Orc2HDl framework are also given. The val-

ues from the first column "Orc2HDL M2M" are retrieved from the paper of Jerbi and al. [167].

The second column "Xronos M2M" presents the evolution of the old framework Orc2HDL and

Xronos with the M2M transformation being activated. As depicted Xronos has almost doubled

the maximum synthesis frequency and has a speed-up of 3 times higher than Orc2HDL. More-

over, the slices are reduced by 39.9% and the LUTs by 25.6%. The low frequency on Orc2HDL

is due to the division operator used in the Inverse AC prediction on the Texture block. The

third column "Xronos" compares the Xronos support of multi-token, which is incorporated

in the action selection procedure, with the M2M transformation. As with Xronos M2M, the

results are better than the Orc2HDL M2M ones. Xronos gives a speed-up of 5, and uses almost

less than 50% of hardware resources.

113

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

Table 4.9 – Three-way comparison of the same RVC Intra MPEG-4 SP decoder on a Virtex 4
FPGA, using the old Orc2HDL framework with the M2M source to source transformation,
Xronos with the M2M and Xronos. (All results are post-place-and-route, using Xilinx XST.)

Hardware Generators

Orc2HDL M2M Xronos M2M Xronos

Slices 45574 27388 19291

LUTs 68962 51295 35315

BRAMs 18 18 18

DSPs 48 48 48

Max Freq. (MHz) 26.4 51 65

Max fps 73.8 222 406

fps/Max Freq. 2.8 4.35 6.24

Slice Reduction% - 39.9 57.7

LUT Reduction% - 25.6 48.8

Speed Up - 3 5.5

In [169] the authors present an Orcc backend that generates C code for Xilinx Vivado HLS

high-level synthesis tools. The Table 4.10 is retrieved from [169] and illustrates the synthesis

and simulation results of the RVC MPEG-4 SP video decoder presented on the previous section.

As illustrated, Xronos has on the one hand a higher throughput, and on the other hand it uses

much fewer resources. In addition, it is depicted that Xronos uses 77% of the BRAMs on the

Virtex 4. This is due to the default buffers size (512) that writers of [169] have not modified.

In general, this design requires buffers with smaller size than 512.Furthermore, Table 4.7

demonstrates that even if a different FPGA is used the resource requirements will not be that

high. Moreover, Xronos has a speed up of 1.8 compared to the design synthesized by Vivado

HLS. Here it should be noted that not all advantages of Vivado HLS have been exploited. Vivado

HLS offers various optimizations such as pipelining, loop unrolling, memory partitioning

and more advance Procedural optimizations than Xronos. However, they come at a cost.

The developer needs to activate these optimizations by adding directives to the source code.

However, over-optimizing a function does not guarantee that the overall design will have a

higher throughput. In the next chapter, it is demonstrated that a design space exploration and

a high-level synthesis tool which does not contain all optimizations that State-of-the-art C

HLS have, makes it possible to achieve great results thanks to the model of computation of

RVC-CAL.

Table 4.10 – Xronos versus Orcc C backend + Vivado HLS, synthesis and throughput results on
Virtex 4 FPGA

RVC-CAL Hardware Generators

Xronos Orcc HLS + Vivado HLS

Slices 22823/67584(42%) 142302/67584(210%)

4 input LUTs 51898/135168(38%) 194583/135168(143%)

BRAMs 223/288(77%) 150/288(52%)

Throughput fps 232 125

Simulation Freq. 50 MHz 50 MHz

114

4.13. Experimental Results

4.13.3 Multi-core performance on an embedded platform

The goal of this experiment is to validate the software synthesis for a multi-core embedded

platform. In the literature, it is possible to find different implementations on the multicore

using CAL [179, 180]. The experiment reported demonstrate the capabilities of the Xronos

C++ backend in terms of speedup and throughput for an embedded platform. The execution

is a Freescale P4080 platform, using a PowerPC e500 processor with 8 cores at 1.2GHz. Only

a single executable is compiled and four mapping files, a partitioning from a single to four

cores, are given. Foreman (QCIF, 300 frames, 200 kbps), crew (4CIF, 300 frames, 1 Mbps) and

Stockholm (720p60, 604 frames, 20 Mbps) are the sequences used. Partitions are described on

the Figure 4.26. The blocks represented by a striped background (Entropy Decoding, Texture Y,

and Texture V) are distributed over different partitions.

Source
Entropy

Decoding

Texture
Y

Texture
U

Texture
V

Motion
Y

Motion
U

Motion
V

Merger
YUV

Display

(a) MPEG 4-SP (1 Core)

Source
Entropy

Decoding

Texture
Y

Texture
U

Texture
V

Motion
Y

Motion
U

Motion
V

Merger
YUV

Display

(b) 2-Core Partitioning

Texture
Y

Motion
Y

Source
Entropy

Decoding
Texture

U

Texture
V

Motion
U

Motion
V

Merger
YUV

Display

(c) 3-Core Partitioning

Source
Entropy

Decoding

Texture
Y

Texture
U

Texture
V

Motion
Y

Motion
U

Motion
V

Merger
YUV

Display

(d) 4-Core Partitioning

Figure 4.26 – The RVC MPEG 4 SP decoder and its partitioning from 1 to 4 cores.

Values of Table 4.11 are retrieved from [11] and they describe the frame-rate (in frame per

second or fps) of the decoder from 1 to 4 cores and resulting speedup. Results reveals that it is

possible to achieve a significant speedup when more cores are available.

Table 4.11 – Framerate of the RVC MPEG-4 SP decoder at QCIF, SD and HD resolutions.

platform resolution framerate (# of cores)

1 2 3 4

Freescale P4080 176x144 223 465 711 853

704x576 15 30 43 52

1280x720 5 9 13 18

Normalized Speed-Up 1 2.08 3.18 3.86

In term of speedup factor versus the single-core performance, results are of the same order of

magnitude than the ones presented in [180]. In term of absolute throughput, this experiment

provides a speedup of four compared to [180] for the P4080 when normalized at the same

115

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

frequency. It should be mentioned, that the partitioning is effectuated manually and the

speed-up is almost linear. Although the P4080 has eight processing elements, using additional

cores has a negative impact on the speed-up. Consequently, either there is a limitation on the

communication between cores or the potential parallelism of the design is not higher than

four.

4.13.4 Hardware and Software Co-Design on Heterogeneous platforms

The goal of this experimental part is to validate the portability of RVC-CAL programs to hetero-

geneous platforms. Therefore, additionally to the JPEG encoder described previously, a JPEG

decoder was developed in RVC-CAL for creating a baseline profile JPEG codec represented

in Figure 4.27. The codec is implemented on three different platforms made of FPGAs and

embedded processors.

Quantization ZigZag VLCDCT

Input Image

VLDZigZag-1Quantization-1
DCT-1

Output Image

Figure 4.27 – JPEG codec functional units and the partitioning for the platforms.

The JPEG decoder is implemented on the software part whereas the JPEG encoder is imple-

mented on the hardware part. As a software platform, the embedded low power board with a

Freescale P4080 PowerPC CPU was chosen. The P4080 board contains an Ethernet port and a

PCI-Express input connector. For the hardware part, two platforms were used. A proprietary

Xilinx Spartan 3 FPGA with an Ethernet connection and a Xilinx University Program ML509

board that contains a Virtex-5 FPGA with an Ethernet port and a PCI-Express connector.

It should be noted that several partitioning configurations have been tested with success. That

confirms that the portability objectives of the design flow are reached. In fact, a single actor can

seamlessly be synthesized and mapped to general-purpose processors or FPGA. A partition

of the RVC-CAL dataflow network can be swapped from a SW to an HW implementation and

vice versa and from all yield functionally-equivalent implementations. To clarify, the results

are given only for meaningful partitioning, separating encoding and the decoding processes.

More precisely, the partitioning of the application consists of assigning the whole encoding

process to the specialized processing element, while the host does the decoding process.

Results of the experiment are summarized in Table 4.12. Two media of communication have

been tested. The results obtained using Virtex-5 FPGA, and the PCI-Express interface are

116

4.14. Conclusion

Table 4.12 – Framerate of the JPEG codec with a 512x512 video resolution on P4080 and two
FPGA boards with 2 different interfaces.

Ethernet PCIe

Spartan3 4.3 N.A.

ML509 with Virtex5 4.6 10.2

comparable with [181] and [145]. On one hand, the encoder implemented on the Virtex-5 can

encode around 4 Full HD frames per second at 80 MHz. On the other hand, the decoder on

the P4080, can decode at 135 fps 512x512 frames. This result clearly indicates that either the

interface bandwidth or the communication scheduling is a limit for the design performance.

4.14 Conclusion

This chapter presented Xronos, a high-level synthesis tool for dynamic dataflow programs

expressed in RVC-CAL. As illustrated, Xronos is a set of different tools. It uses Orcc for parsing

RVC-CAL programs and OpenForge for generating Verilog HDL. In addition, Xronos extends

Orcc in order to act as a compiler. As discussed in Chapter 3, Orcc works as a pretty-printer

which constructs from the RVC-CAL Abstract Syntax Tree a Procedural intermediate represen-

tation that fits the C code generation. Xronos, however, adds the missing compiler building

blocks such as Control Flow Graph representation for procedures, compiler dataflow analy-

sis such as Dominance Graph, Reaching Definitions, and Live Variable analysis. In addition,

Xronos transforms the Procedural IR to a Pruned Single Static Assignment form. As a result, the

Procedural IR is more compact, and all control and dataflow information for each Basic Block

is available thanks to the Single Static Assignment and Live Variable analysis. To represent the

actor execution model, Xronos constructs the Action Selection procedure.

Moreover, it was presented how Xronos produces an abstract Control-and-Dataflow Graph for

each Procedure. This is because OpenForge Intermediate Representation represents Proce-

dures as CDFG graphs with nodes as Components and edges as control and data dependencies.

Additionally, the Language Intermediate Model (LIM), OpenForge Intermediate Represen-

tation, and the Components, the basic building block that represents an operation, were

discussed. As presented, the LIM is rich and represents Modules, Branches, Loops and Mem-

ory access in an elegant way. Moreover, the Achilles heel of OpenForge and as a consequence

Xronos one is the LIM operation scheduling was discussed. The missing information on opera-

tors combinatorial latencies produces ASAP schedules that might reduce the overall maximum

synthesis frequency of the design. In fact, if an RVC-CAL design is modular the effect on the

unconstrained scheduling disappears as it is observed by the Experimental results. Finally, it

is presented how the Xronos CDFG is mapped onto the LIM one. Future works on OpenForge

will consist of creating a library of FPGA families with their associated operator combinatorial

latencies. Thus, new scheduling such as Scheduling of Different Constrained, as discussed

in the Conclusion and Future Work Chapter, will reduce the current clock latencies and will

117

Chapter 4. High-Level Synthesis of Dataflow Programs: Xronos

enable to apply constrained scheduling.

Furthermore, it was introduced how Xronos generates synthesizable SystemC code as an

alternative to the OpenForge Verilog one. In fact, the available HLS for SystemC that was

used, Vivado HLS from Xilinx, provided inconsistent results when Verilog or VHDL code was

generated. Even though the generated Xronos SystemC code is functionally correct and the

Vivado HLS post-synthesis SystemC code generation and simulation give the right output, the

generated Verilog or VHDL code when simulated represented faulty results, and the output

results were different for both of them. Future work should, therefore, consist in using different

HLS such as Calypto Catapult or Cadence Cynthesizer.

Moreover, Xronos produces C++ code for embedded platforms. Even thought Orcc generates

ANSI C code, prior work on interface synthesis was developed under C++. As a result, Xronos

generic C++ code has been tested with x86 workstation machines and also embedded ARMs

and PowerPC CPUs. The C++ generate code provides the necessary user space for driving

interfaces such as Ethernet and PCI-Express. Experimental results have demonstrated that the

current interface implementation lacks in efficiency.

Successively, experimental results presented a benchmark for streaming applications called

Streambench. The behavioral synthesis was produced by Xronos and RTL synthesis results for

a Xilinx FPGA were analyzed. As a matter of fact, Xronos generates quality code for modular

RVC-CAL programs and synthesizes complex applications such as full MPEG video decoders.

In addition, results and comparison with an alternative RVC-CAL to C for Vivado HLS backend

were analyzed. As depicted, the results of Xronos compared to the synthesized generated C

code by Vivado HLS are better in terms of throughput and resources. Moreover, a JPEG codec

mapped to a heterogeneous platform proved that Xronos handles code generation for SW, HW

and the interface synthesis between the processing elements. Results demonstrate that the

interface bandwidth is not fully exploited, and the communication scheduling is limiting to

the design performance. Hence, future work consists on providing a better implementation

for the current supported interface but also to add support for AXI interface. All new SoCs

from Xilinx and Altera handles the communication between the programmable logic and

processing system (ARM) through AXI. Thus, is mandatory to provide such an interface with

Xronos for a broader support of heterogeneous platforms. Finally, Xronos has been used for

synthesizing even more complex video decoders such as the AVC and during the writing of

this thesis for implementing an HEVC main profile video decoder description on a Xilinx Zynq

7045 SoC (double core ARM + FPGA).

118

5 Iterative Design Space Exploration for
Xronos

5.1 Introduction

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

RVC-CAL
(Behavioral Description)

ArchitectureConstraints

R
ef

a
ct

o
ri

n
g

D
ir

e
ct

io
n

s

C
o

m
p

il
e

r
D

ir
e

ct
iv

es

Mapping
configuration

Code Refactoring
Directions

TURNUS
Execution Trace Graph post-processing and analysis

Critical Path
Impact
analysis

Buffer
dimensioning

Partitioning
Performance

estimation

Exectution Trace Graph

TURNUS
Profiler

Profiling Data

Figure 5.1 – Iterative Design Space Exploration on the RVC-CAL design flow by using TURNUS.

Complex software systems have many design points in terms of selection of software compo-

nents and hardware architectures for implementation. These point choices create a large space

of possible design solutions called the design space. The design process requires exploration

of the design space in order to find valid design solutions before the actual implementation.

The aim of Design Space Exploration (DSE) is to find design solutions that satisfy functional

119

Chapter 5. Iterative Design Space Exploration for Xronos

performance constraints and/or optimize portions of the system (Figure 5.2). In addition,

the heterogeneity of modern parallel architectures and the diverse requirements of target

applications significantly complicates modern system designs. The development of efficient

programs for this kind of platforms requires design methodologies that can deal with system

complexity and flexibility. This has lead to the notion of system level design, where key roles are

played by aspects such as high-level modeling and simulation, and separation of concerns. In

this context, the exploration of the design space becomes an essential step for implementing

applications to heterogeneous and parallel platforms. This is due to the combinatorial explo-

sion of design options when dealing with multiple concurrent processing units. In order to

ensure an efficient implementation and integration process, the design has to be sufficiently

modular and portable, without the need of any or partially manual rewriting.

R
e

so
u

rc
e

 C
o

n
st

ra
in

t

Throughput Constraint

Target
Region

Resource
Requirement

Performance
Requirement

Design
Point

Figure 5.2 – Representation of the design space according to two constraints.

Most of the HLS tools, presented in the state-of-the-art Chapter 2, provides an estimation

on clock cycles for a given function extracted from the operator scheduling. In a case that a

parent function calls other inner functions, in the majority of the cases except if the developer

chooses not to inline the inner functions, the estimated clock cycles is only given for the parent

one. Thus, all information about the inner functions is lost. Even thought in Xronos inlining is

also effectuated for each that calls CAL Procedures or Functions, but the hierarchy of Actions

inside Actors is maintained and the clock cycles for execution those actions is estimated by

the operator scheduler if possible or by RTL simulation.

Another performance estimation issue arises when multiple parallel C functions that commu-

nicate with each other are synthesized or even worse; some of them are executed in a different

120

5.2. Profiling and Execution Trace Garph

processing element. How is possible to estimate which of these functions is the critical one?

In one hand, for the hardware part current HLS tools will first synthesize these functions and

will extract the Hardware critical path and either optimize or refactor the function with the

lowest frequency. On the other hand, for the software part is possible to extract profiling

information if the function is not nested, is a simple (i.e. a filter) and the interface of the

function is fixed (i.e. arguments have fixed array size). Another important issue is the interface

between hardware and software components. If the data traversing the interface are fixed

and packed for optimizing the bandwidth, then the conditions are ideal, but it is not always

the case. What happens when multiple connections are traversing the same interface? What

should be the scheduling policy? And if a scheduling exist can it be measured efficiently?

All the above question are only partially answered by the state-of-the-art and up to the author’s

best knowledge, there is no tool that fully answers all the above questions. In this chapter

an iterative design exploration tool, called TURNUS and integrated with Xronos, efficiently

answers the first question. As for the other two questions, there are not yet answered due to

the current interface limitations discussed in the previous Chapter. The main contribution of

the author on TURNUS is the performance estimation described in Section 5.5.

TURNUS efficiently gives a solution to the first question because of the Dataflow MoC used in

RVC-CAL. In fact, the provided hierarchy of RVC-CAL gives the possibility to extract fine-grain

profiling information from actions and actors implemented in hardware components. The

exploration methodology is the following. Once, the behavioral description has been verified

by the compiler’s (Orcc Interpreter) functional verification, the architecture target and the

constraints on the design has been defined, then the compiling infrastructure generates the

source code for the HW and SW parts. After that synthesis and/or compilation is effectuated.

The first performance estimation is either retrieved by platform simulation or by run-time

profiling of the design into a real target as explained in Section 4.12. If the implementation

meets the design constraints, then the design goals have been achieved, else the design should

be explored by TURNUS and refactored iteratively up until the constraints are satisfied.

The Iterative Design Exploration consists of: 1)the extraction of the Execution Trace Graph, 2)

the low-level Profiling data extraction from the implemented design, 3) overall Performance

estimation, 4) Critical Path Evaluation, 5) Refactoring Directions with Impact Analysis, 6)

Queue dimensioning and 7) Mapping by post-processing if the target is a parallel platform or

a heterogeneous one. In the following of this chapter each step is explained.

5.2 Profiling and Execution Trace Garph

The very first step of design space exploration is a functional high-level and platform inde-

pendent profiled simulation [182, 7]. During this stage, an exhaustive analysis of the design

under study is performed leading to the definition of its fundamental structure and complexity.

This initial analysis enables multidimensional design space explorations and helps to find

bottlenecks and potentially unexploited parallelism. In the literature, several methods have

121

Chapter 5. Iterative Design Space Exploration for Xronos

been proposed to measure the complexity of an algorithm in terms of execution of its building

blocks.

Two main axes are typically defined as: (a) the Computational Load (CL) and (b) the data

transfer and storage load [183]. In this direction, the TURNUS profiler is used, whic extends

the Orcc’s Interpreter (see Section 3.6.3), evaluates each executed action for both (a) and

(b). The "abstract" computational load is measured in terms of executed operators and

control statements (i.e. comparison, logical, arithmetic and data movement instructions).

Data transfers and storage loads are evaluated in terms of state variable, input/output port,

queues utilization and tokens production/consumption. During a profiled simulation, all the

executed actions with their dependencies are stored as a data set that adequately describes

the program’s behavior. The profiler will extract the following dependencies: (a) State Variable

Read/Write and Write/Read, (b) Finite State Machine, (c) Guard Enable and Disable, (d) Port

Read/Read and Write/Write, and (e) Token or FIFO dependencies. Detailed explanation of

these definitions can be found in [7, 10].

As defined in [182, 7], the ETG is a multi directed acyclic graph G(V,E). Each single firing of

an action τ ∈T is represented by a node υi ∈ V. Thus, the set Vτ ⊆ V contains all the firings of

the action τ. Moreover, each single dependence between two fired actions is represented by a

directed arc en
i , j ≡ (υi ,υ j)n ∈ E. The latter defines an execution order υi ≺ υ j , meaning that the

execution of υ j depends on the execution of υi . The previous considerations show that V can

be considered as a partially ordered set of executed actions. Indeed, constructing consistent

dependencies set E is fundamental in order to define constraints on the execution order

between any couple of fired actions describing a platform-independent design behavior. The

ETG needs to be built carefully to provide a solid basis that can produce quantified statements

about a dataflow program execution. In fact, in the general case of a dynamic Dataflow

network, such as the one expressed by the RVC-CAL dataflow language, the dependencies set

can vary by changing the input stimulus. In other words, the explored states of a dynamic

design can be dependent on the provided input. However, in the case of systems implementing

several classes of signal processing applications (e.g. video or audio codecs, packet switching

in communication networks), probabilistic approaches are a meaningful representation of the

underlying processing model. Therefore, input sets that are sufficiently large with respect to

the type of application can be used to generate statistically meaningful ETGs. Finally, the file

format of the ETG is XML and it can be reused for further analysis.

5.3 Model of Architecture, Mapping and Constraints

The Model of Architecture or MoA is a formal representation of the operational semantics of

networks of functional blocks describing architectures [184, 155]. Depending on the modeling

perspective, MoAs can be classified as abstract or executable description [185]. Abstract mod-

els are used to represent performance symbolically. For example, they associate the required

latency in clock cycles with each operation without executing any hardware description. On

122

5.4. ETG Analysis

Application Architecture

Model of Computation Model of Architecture

Constraints

Figure 5.3 – Mapping from an application to an architecture. Constraints represent the feasible
regions of the design space.

the other hand, executable specifications allows modeling precisely state-dependent behavior,

such as the timing of caches and pipelines. In the context of this thesis, only abstract MoAs are

analyzed as the ones proposed in [11, 186].

The mapping involves defining which part of the program is executed for a particular pro-

cessing element, and which part of the communication structure is assigned to a particular

medium. In the context of HW-SW co-Design, the problem to be solved is coordinating

the design of the parts of the system that need to be implemented as SW and those as HW

blocks [187]. The primary requirement is to avoid HW/SW integration problems that can arise

when heterogeneous platforms are used. Hence, a set of constraints should be imposed and

respected. Figure 5.3 depicts this process: the application is mapped onto a target architecture

if the set of constraints is fully satisfied. Constraints can be defined in terms of data type

[184, 155] (e.g. an application that makes use of floating points can be mapped only to an

architecture that support this kind of operation) but also in terms of memory allocation, power

consumption, and most important latency.

5.4 ETG Analysis

From the Execution Trace Graph of a dataflow program the Algorithmic Critical Path (CP), and

the minimum queue size are estimated.

5.4.1 Critical Path Evaluation

Once the ETG has been post-processed, and the computation weights have been calculated

as described in the previous steps, the calculation of CP length CP(x) using the linear time

algorithm proposed in [7] is used. Once the CP is calculated the following informations are

provided:

i A set of critical actors TC , actions AC and queues BC (i.e. that have at least one fired

action or fifo dependencies along the CP)

ii The C P Participation of each action cppτ and actor cppa (defined as the overall computa-

tional load contribution to CP of each action and actor)

123

Chapter 5. Iterative Design Space Exploration for Xronos

Figure 5.4 – Critical Path on partial execution trace graph.

iii The critical latency introduced by the scheduling or reading/writing tokens. All this infor-

mation is used during the exploration stages by the underlying optimization algorithms

such as the queue size optimization heuristic illustrated in Section 5.4.3

iv The maximum achievable design performances, from Equation5.4 with unbouded queue

size configuration and when all actors executes in parallel i.e clxσ
υi

= 0 and cl
xβ
υi

= 0. More-

over, the fact that all actors can run in parallel implies that no additional dependencies are

added to the original ETG. The CP calculated in this way and represented as CP∞. In the

following, CP∞ highlights the most serial and algorithmic-complex part of the design. Due

to this, the corresponding weighted ETG contains only the minimal set of dependencies,

and the weights that are only defined according to xρ (i.e. the action execution time).

5.4.2 Impact Analysis

In order to highlight the actions (or actors) that reduce the overall design performance, each

node of the trace is assigned to a weight which corresponds to the CL required for executing

the action. The CL is provided by Xronos and corresponds to the number of clock cycles

needed for the action firing. The CP of the design is evaluated from this weighted ETG. A first

metric provided by TURNUS is a ranked set of critical actions sorted by their CP Participation

(CPP) value. The action that has the highest CPP value is said to be the most critical action [7],

and is considered a target for optimization and refactoring. However, the reliability of this

metric tends to decrease as the design becomes more parallel. In fact, for highly parallel

designs reducing the CL of the most critical action does not necessarily cause a substantial

reduction of the CP. As illustrated in [7], in this case more than one CP might exist. Thus, in

order to obtain more robust guidance for refactoring the Impact Analysis is employed.

124

5.5. ETG Post-Processor

As explained in [7, 3, 188] the Impact Analysis exhibits the action λ which requires the less

refactoring effort in order to maximally reduce the C P and consequently improve the overall

throughput of the design.

5.4.3 Queue Size Minimization

The required memory size for a dataflow application consists of the sum of the actor’s state

variables, the local List of the actions, the program size and the queues that interconnect

actors. Empirically, the size of the state variables and the local lists in actions can be reduced

by applying Procedural IR optimization such as the one discussed in Section 4.2. However,

in dynamic dataflow applications the queues can be minimized by having a finite overall set

of possible input vectors (i.e reference sequence video streams that a video decoder should

support). In a possible input vector set of dynamic dataflow program, it is possible to guarantee

that the overall execution is deadlock free.

Thus, minimizing the total queue size can be a critical optimization objective in order to

reduce the resource costs on modern FPGAs and many-core platforms that have limited

memory. In the domain of SDF, CSDF designs, which are typically implemented on memory

constrained hardware platforms, the queue minimization problem is a NP-complete schedul-

ing problem [189]. Consequently, in a DPN application the design space exploration requires

the use of heuristic algorithms when dimensioning the design queue size configuration. As

reference in [7] the exploration process is split in two steps: (a) it evaluates a close to mini-

mal deadlock-free queue size configuration; (b) successively it explores different queue size

configurations.

If bβ is the queue size of β ∈B, the objective of the queue minimization problem is to find a

deadlock-free solution for:

minimize
∀β∈B

∑
bβ

subject to bβ ≤ bmax
β ,∀β ∈B

(5.1)

where bmax
β

defines the maximum queue size configuration imposed by the architecture.

TURNUS computes a close-to-minimal configuration xmi n
β

using the execution trace-walk

based algorithm proposed in [12] (i.e. suitable for DPN designs).

5.5 ETG Post-Processor

The Execution Trace Graph Post-Processor is an event-based simulator of the ETG. The Post-

Processor permits the performance estimation and the queue size dimensioning for Dataflow

program.

125

Chapter 5. Iterative Design Space Exploration for Xronos

5.5.1 An event-based trace simulator

The ETG Post-processor is based on Adevs [190]. Adevs is a simulator for models described

in terms of the Discrete Event System Specification (DEVS) [191]. The key feature of models

described in DEVS is that their dynamic behavior is defined by events. An event is any change

that is significant within the context of the model being developed.

IN_DATA

REQUEST_SPACE

READY_TO_CONSUME

IN_DATA_DONE

OUT_DATA

REQUEST_TOKENS

BufferActor Output Port

OUT_DATA

ASK_SPACE

OUT_DATA_RECEIVED

HAS_SPACE

IN_DATA

ASK_TOKENS

Actor Input Port

Figure 5.5 – Representation of Post-Processor Actor I/O and Buffer Model I/O events.

An Atomic DEVS model, as define in [191], is defined as a tuple M = (X ,Y ,S, ta ,δext ,δi nt ,λ)

• X is the set of input events

• Y is the set of output events

• S is the set of sequential states (or also called the set of partial states)

• ta : S →T∞ is the time advance function which is used to determine the lifespan of a

state

• δext : Q × X → S is the external transition function which defines how an input event

changes a state of the system

• δi nt : S → S is the internal transition function which defines how a state of the system

changes internally (i.e. when the elapsed time reaches the lifetime of the state)

• λ : S → Y φ is the output function where Y φ = Y ∪φ and φ ∉ Y are a silent or an unob-

served event. This function defines how a state of the system generates an output event

(when the elapsed time reaches the lifetime of the state)

where Q = {(s, te) : s ∈ S, te ∈ (T∩ [0, t a(s)])} is the set of total states, te is the elapsed time since

the last event, T∞ = [0,∞] defines the extended time base that is the set of non-negative real

number plus infinity [191].

The DEVS model used in Post-Processor has three AtomicModel Objects. The first one

AtomicActor represents the Actor DEVS Model, the second one AtomicFifo represents

the FIFO DEVS Model, and the third one AtomicPartition represents the Mapping DEVS

Model. To complete the DEVS model, an additional object called PortValue, that represents

the value of an input or output event, is added.

126

5.5. ETG Post-Processor

AtomicActor

Each actor is modeled as an AtomicActor which describes a DEVS atomic model. As

illustrated in Figure 5.8, each actor output port pout
i ∈ P out

a is modeled with the following four

PortValue elements:

• OUT_DATA: used for sending tokens to the connecting queue

• ASK_SPACE: used for sending the number of tokens that should be sent to the connect-

ing queue

• HAS_SPACE: used for receiving an acknowledgment from the queue that the requested

number of tokens is available on the connecting queue

• OUT_DATA_RECEIVED: used for receiving an acknowledgment from the connecting

queue when it receives and successfully stores on its internal memory all the sent tokens

Similarly, each actor input port p i n
i ∈ P i n

a is modeled with the following two PortValue

elements:

• IN_DATA: used for receiving the input tokens sent from the connecting queue

• ASK_TOKENS: used for sending the number of tokens that need to be consumed from

the connecting queue

It must be noted that an input event is associated for each input port. Similarly, an output

event is associated for each output port. The state transition system of this atomic model is

depicted in Figure 5.6. This is composed by the following set of sequential states:

• BEGIN: the actor has been selected by the partition scheduler and select its next firing

from the ETG

• IDLE: the actor has finished the post processing of its last firing and has not already

been selected by the partition scheduler

• WAIT_READ: the actor is waiting the availability of input tokens from its input queues

• READ: the actor is consuming tokens from its input queues

• PROCESS: the actor is executing its algorithmic part

• READY_TO_SEND: the actor has finished the processing of its algorithmic part and is

waiting that the output queues can accommodate the produced tokens

• SEND: the actor is sending the tokens to its output queues

127

Chapter 5. Iterative Design Space Exploration for Xronos

IDLE

PROCESS

WAIT_READ

READ

FINISHED

READY_TO_
SEND

SEND

!hasInputs && enable

hasInputs
&&

enable

tokenAvailable

!tokenAvailable

spaceAvailable

!spaceAvailable

!hasSteps && !hasOutput

!hasSteps

hasStepshasSteps && !hasOutput hasOutput

enable

!enable

BEGIN

Figure 5.6 – Atomic Actor FSM.

• FINISHED: there are no more firings of this actor that need to be post processed

where the transition conditions are the following:

• enable : If the instantiated actor is enabled by an AtomicPartition.

• hasInputs: If the current step needs to read a PortValue from an input event.

• hasOutputs: If the current step needs to write a PortValue from an output event.

• tokenAvailable: If a PortValue is available from an input event.

• spaceAvailable: If there is enough space to sent a PortValue.

• hasSteps: If there are any steps V left that have not yet been simulated.

The post-processing of the AtomicActor begins only when an external event enable is

processed by δext function. It retrieves then the first step from the V list of the instantiated

128

5.5. ETG Post-Processor

actor. If a step contains an input port dependency it goes to the state W AI T _RE AD , otherwise

it goes directly to the PROC ESS state. Once the state W AI T _RE AD is reached, then the

AtomicActor sends an output event ASK _T OK E N SPi n and simultaneously waits until it

receives an input event I N _D AT APi n (i.e. tokenAvailable is true). If tokenAvailable is true, it

goes to state RE AD with the PortValue being read and then the state changes to PROC ESS.

If the step has an output port dependency, the state changes to RE ADY _T O_SE N D , otherwise

it changes either to I DLE if there are still steps to be simulated or to F I N I SHED as the

simulation of this AtomicActor is terminated. However, if it goes to RE ADY _T O_SE N D

then the AtomicActorwill first send an event to ASK _SPAC EPout and it will then wait in the

same state until it receives a H AS_SPAC EPout (i.e. spaceAvailable is true). In the case that the

spaceAvailable is true, it will either change to state I DLE if there are still steps to be simulated

or to F I N I SHED as the simulation of this actor is terminated.

AtomicFifo

Each Fifo is modeled as an AtomicBuffer which describes a DEVS atomic model. As

illustrated in Figure 5.8, each queue b ∈ B is modeled with six PortValue elements. The

following four PortValue elements models the connections with the source actor:

• IN_DATA: used to receive the tokens produced by the connecting source actor

• IN_REQUEST_SPACE: used to receive the number of tokens value that the connecting

source actor want to store on the queue

• READY_TO_CONSUME: used to send the space availability acknowledgment to the

connecting source actor that asked for storing the tokens

• IN_DATA_DONE: used to send an acknowledgment to the connecting source actor

when all the received tokens have been processed and stored in the internal memory

Similarly, the following two PortValue elements models the connections with the target

actor:

• OUT_DATA: used to send the tokens that need to be consumed by the connecting target

actor

• REQUEST_TOKENS: used to receive the number of tokens value that the connecting

target actor want to consume

It must be noted that an input event is associated for each input port. Similarly, an output

event is associated for each output port. The state transition system of this atomic model is

depicted in Figure 5.7. It can be seen how two independent transition systems are defines:

one for receiving tokens (i.e. Rx), and one for transmitting tokens (i.e. Tx). The set of the Rx

sequential states:

129

Chapter 5. Iterative Design Space Exploration for Xronos

IDLE

READY
 TO

CONSUME

READY
TO

SEND

requestSpace > 0
&&

hasSpace!enable

BEGIN
RX

enable

START
RECEIVING

RECEIVING

RECEIVING
DONE

START
SENDING

SENDING

IDLE

!enable

BEGIN
TX

requestTokens > 0 && hasTokens

enable

 hasUnconsumedTokens
&&

requestSpace == 0

!hasUnconsumedTokens

hasUnconsumedTokens

hasUnsendTokens

!hasUnsendTokens

Figure 5.7 – Atomic Actor FSM.

• IDLE: the queue is waiting for some input tokens

• READY_TO_CONSUME: the queue is ready to receive the tokens produced by the actor

• START_RECEIVING: the queue starts receiving the tokens produced by the actor

• RECEIVING: the queue is receiving the tokens produced by the actor

• RECEIVING_DONE: the queue has just finished receiving tokens produced by the actor

where the transition conditions and variables are the following:

• enable: if the receiving part of the queue has been enabled by theAtomicPartition

where it is mapped

• requestSpace: it contains the number of tokens places that the actor producer asked

to accommodate on the queue

• hasSpace: if the queue can accommodate the tokens produced by the actor

130

5.5. ETG Post-Processor

• hasUnconsumedTokens: if there are tokens that the actor has send to the queue but

that are not yet stored on the internal memory of the queue

Similarly, The set of the Tx sequential states:

• IDLE: the queue is waiting for a request to send tokens

• READY_TO_SEND: the queue is ready for sending tokens to the actor

• START_SENDING: the queue starts sending tokens to the actor

• SENDING: the queue is sending tokens to the actor

where the transition conditions and variables are the following:

• enable: if the transmission part of the queue has been enabled by theAtomicPartition

where it is mapped

• requestTokens: it contains the number of tokens that the actor consumer asked to

the queue

• hasTokens: if the queue has the number of tokens required by the actor

• hasUnsendTokens: if there are still some tokens that should be send to the actor

Mapping model

Each partition is modeled as an AtomicPartition which extends a DEVS atomic model.

For each actor and queue partition, the scheduling policy is modeled by activating the corre-

sponding object. For each actor and queue atomic models an ENABLE PortValue element

is defined. Each actor has an ENABLE port, which is used by the partition scheduler to select

the executable actor(s). Each queue has two ENABLE input ports: one for the input and one

for the output. Those ports can be used asynchronously. Thus, it makes possible to model, for

example, queues that are on the boundary of two actor partitions or queues that are used in

a multi-clock domain architecture. As an example, Figure 5.8 illustrate the post-processing

model of a simple network with three actors. In this case the Producer and Filter actor

are partitioned on the same partition PartitionA, and the Consumer actor is partitioned on

PartitionB. Each of those partitions has an actor and a queue scheduler. It must be noted how

b1 is modeled as a synchronous queue (i.e. input and output are activated at the same time),

and contrarily b2 is modeled as an asynchronous queue (i.e. the activation of the input and

the output is decoupled).

131

Chapter 5. Iterative Design Space Exploration for Xronos

5.5.2 Performance Estimation

For a design space configuration x, defined in Section 5.5.3, an associated design performance

can be defined as a non-linear function:

T = f (x) (5.2)

In order to minimize the exploration time and effort, the performance must be estimated using

the design information provided by the application and architecture models (Section 5.3). In

order to obtain reliable exploration results the following condition must be satisfied:

||T− T̂|| = || f (x)− f̂ (x,p)|| ≈ 0 (5.3)

where T̂ represents the estimated performance. Performances are evaluated using a platform

model f̂ (x,p) that can be refined by enhanced profiling information p obtained as illustrated

in Section 4.12. Given the event-driven Post-Processor simulation run, the execution time

required for each fired action contained in the ETG is estimated according to the mapping

configuration x. Thus, the performance is estimated at an x point. To this end, a weight wυi is

assigned to each fired action υi ∈ V of the ETG. This weight is the computational load of each

fired action as defined in [7]:

cl(x,p)υi = clxσ
υi

+cl
xρ
υi

+cl
xβ
υi

(5.4)

Where

• clxσ
υi

: represents the time overhead introduced by the scheduler xσ when scheduling υi

(i.e. action selection)

• cl
xρ
υi

represents the action computational time obtained with the mapping configuration

xρ (i.e. action execution);

• cl
xβ
υi

represents the time overhead introduced by both queue reading and writing (i.e.

read/write delay) which also contains additional latency due to a full output queue.

In other words, this represents the time elapsed between the moment υi becomes

schedulable and the one when all its output queues can receive the produced tokens.

Queue Size Dimensioning

With a minimal queue size configuration, the latencies introduced by the queues (i.e. cl
xβ
υi

of

Equation 5.4) are maximized. Thence, for a given mapping configuration x∗
ρ , x∗

σ > the following

relation arise:

CP∞ ≤ CP(x∗
ρ , x∗

σ, xβ) ≤ CP(x∗
ρ , x∗

σ, xmi n
β) (5.5)

132

5.5. ETG Post-Processor

The design space needs then to be explored in order to find a queue configuration x∗
β

that

both meets performance requirements and respects resources utilization constraints. The

queue size dimensioning can be defined as a multi-objective minimization problem:

minimize
∀β∈B

{
CP(x∗

ρ , x∗
σ, xβ)

B =∑
bβ

subject to B ≤ Bmax

bmi n
β ≤ bβ ≤ bmax

β ,∀β ∈B

(5.6)

The solution calculated in the TURNUS environment is obtained using the heuristic illustrated

in [12]. The ETG is iteratively post-processed by trying different queue configurations. These

are evaluated starting from xmi n
β

and at each iteration step the most critical queue is calculated

as illustrated in Section 5.2. Moreover, its size is incremented by the maximum number of

blocked tokens.

5.5.3 Mapping

The design mapping links each CAL application component (i.e. actors, actions, ports, and

queues) to the corresponding architectural components (i.e. processing element, the commu-

nication element, interface).

Partition B

Producer Filter Consumerb1 b2

ENABLE ENABLE ENABLE

ENABLE ENABLE

Scheduler

Partition A

Scheduler

Figure 5.8 – Post-Processor Mapping of a heterogeneous platform.

The mapping is a file that is passed on the Compiler Infrastructure for defining which Actors

and queues are mapped into a processing element defined in the architecture. In addition,

further information such as queues and scheduling policies for each "software" processing

element can be attributed into the corresponding object in the file. The mapping configuration

defines then a configuration design space point that is provided into IDES for another iteration

of exploration.

133

Chapter 5. Iterative Design Space Exploration for Xronos

A mapping configuration, as defined in [7], can be represented as a 3-tuple:

x =< xρ , xσ, xβ > (5.7)

where xρ , xσ and xβ respectively define a particular partitioning, scheduling and queue con-

figuration. Thence, the objective on the post-processing of the ETG is to find a configuration

x∗ that satisfies the input constraints.

5.6 Optimization by Design Refactoring in IDSE

The starting point of the exploration process is a simulation of the behavioral description.

Once the ETG is constructed and the Critical Path and Impact Analysis are effectuated, a list of

the most critical actions is provided and the first action that should be modified is given by

the impact analysis.

5.6.1 Levels of parallelism

Parallelism is a form of computation in which many calculations are executed simultaneously.

The parallelism, depending on the architecture, can be expressed in various types of which

some can be applied automatically without the need of the developer’s input. In the following

the most used kinds of parallelism are presented:

• Task-Level: refers to the execution of a given task in a concurrent manner, where the

task is partitioned across several parallel subtasks. In order for subtasks to execute in

parallel, no precedence relations are permitted. If there are dependencies between the

subtasks, it is called pipeline parallelism.

• Data-Level: refers to the execution of several similar tasks in a concurrent manner,

where the task is replicated several times. In this case, input data is partitioned accord-

ingly and sent to each of the replicated tasks.

• Loop and Instruction-Level: refers to the amount of parallelism available among in-

structions that can exploit parallelism among iterations of a loop. It is a form of data

parallelism that is performed inside a procedure.

5.6.2 Complexity and issues of automating refactoring optimizations

The refactoring techniques for parallelism and memory optimizations involve significant

modifications of the design architecture. For RVC-CAL programs, the flexibility provided

by the model makes the task of automatically generating a parallel or a memory optimized

architecture very difficult. Especially, when considering the number of design points that can

be implemented. As a consequence, there is a high number of design styles, parameters, and

134

5.6. Optimization by Design Refactoring in IDSE

controls that could be applied in a Dataflow program. Some specific issues are summarized

below:

• Data and Task Parallelism: One challenging part is to create automatically an actor for a

partitioned/replicated action while considering all possible state variable dependencies.

Moreover, it includes generating the relevant interfaces and control that will resolve the

state variable dependencies. Finding a generic automatic technique for splitting actors

for either data or task parallelism is considered a very difficult task.

• Loop and Instruction parallelism: are well-known parallelisms that compilers can

handle with ease in certain cases. The difficulty in applying such optimizations is to find

in which part of the program those optimizations should be effectuated to minimize the

CL. In addition, if this portion of code is not in the algorithmic CP then the impact on

throughput by optimizing this loop can be unimportant or even null.

The problem of automatically finding a program structure can be related to the Kolmogorov

complexity [192] or descriptive complexity theory. The main problem is to find a minimum

description for a given string of output values, given by C f (x) = mi n{|p| : f (p) = x} which aims

to find the smallest |p| in order to represent the output string x using a computable function

f . Programs with an input specification, have an extension to a conditional Kolmogorov com-

plexity with a Universal Turing Machine U [156]. So the conditional Kolmogorov complexity

for U is given by Cu(x/y) = mi n{|p| : U (p, y) = x}, where the objective includes an input y . So

if x can be described as a function, then the minimum p can be found. However, if x has the

notion of being random or incompressible, x can not be expressed as a function anymore,

and p can be proven to be incomputable [192]. Thus, the program structure p cannot be

refactored automatically, and the developer should modify it manually.

5.6.3 A refactoring strategy using impact analysis

The starting point of the co-exploration process is a simulation of the design similar to the one

used throughout the development process for the functional validation. Here, however, it is

used to obtain a scheduler-independent execution trace [182], which will be used extensively

by TURNUS during the analysis and optimization process. As discussed in 5.4.2, the Impact

Analysis highlights the actions where the refactoring effort should be concentrated in order to

reduce the overall CP length.

Figure 5.9 illustrates the iterative design space exploration methodology. At first, the developer

provides the RVC-CAL program, the initial mapping and the throughput constraints. After

that, a clock accurate simulation with large queue size (the queues should never be full) is

performed, and the Execution Trace Graph is created. Then, the CP analysis is effectuated.

At that stage, the CP analysis and the profiling data are handled to the Post-Processor. Thus,

the first simulation of the ETG is carried out. From there on, the Impact Analysis is calculated,

135

Chapter 5. Iterative Design Space Exploration for Xronos

ETG

Critical Path
Analysis

Post-Processor

Profiling
Data

Extraction

Clock
Accurate

Simulation

Reduce Most Critical Action

Reduced ?

Refactor
Design

Throughput
Constraint
Resolved ?

END

START

Impact Analysis

RVC-CAL Mapping Constraints

true

false

false

true

Re-Run Post-Processor

Throughput Constraint not Resolved

Figure 5.9 – Iterative Design Space Exploration methodology.

and the most critical action λ is highlighted. Therefore, the developer needs to reduce the CL

of that action λ. If it is not possible to reduce it, then the design should be refactored, and the

136

5.7. Experimental Results

process starts again. If action λ has been reduced, then only the Impact Analysis is relaunched

n times until the throughput constraints are met. Finally, the Post-Processor is launched once

more for retrieving the queue size dimensioning (Section 5.5.2).

5.7 Experimental Results

In this section, the analysis and implementation steps of a full RVC-CAL MPEG 4 SP decoder

(ISO/IEC JTC1/SC29/WG11) are illustrated. The same RVC decoder is used as presented in

Section 4.13.1. As the first step of the optimization process, the initial RVC-CAL reference code

has been profiled with the TURNUS profiler. The purpose of this experiment was to optimize

the decoder as much as possible during a single week.

Table 5.1 – Initial Critical Actions Ranking. E%: number of executions of the action as a percentage

of the total number of steps in the profiled run, CL%: computational load as a share of the total load,

CPE%: the number of executions of that action on the critical path as a share of its length, CPP%: the

share of the computational load of those executions on the critical path relative to its total load.

Actor Action E% CL% CPE% CPP%

IDCT (TEX Y) untg_0 0.17 20.75 78.99 99.92

PARSER (P) untg_1 4.45 1.58 7.03 0.03

SERIALIZE (P) shift 5.43 0.96 6.75 0.01

IQ (TEX Y) ac 0.17 5.63 0.03 0.01

SPLITTER_420 (P) splity 0.17 3.83 0.03 0.01

IS (TEX Y) read_write 7.71 2.74 2.20 0.01

FBUFF (MOT Y) untg_0 0.29 4.21 0.03 0.01

At the beginning, the ETG is extracted by the profiler and the weights for each action has been

retrieved using the profiling information provided by Xronos. After that, the CP is calculated

and the initial critical actions ranking list is shown in Table 5.1. The most critical action is the

IDCT:untg_0: CPP is 99.92%. However, since this is a high parallel design, reducing only the

CL of this action does not necessarily guarantee an improvement of the overall performance

of the design.

According to Figure 5.10, where the results of the Impact Analysis are depicted, among all

initial critical actions only the IDCT:untg_0 needs to be initially optimized. TURNUS estimates

that by improving the performance of this action the overall CP length can be reduced by

9.5%. It is therefore clear that the following actions of the IDCT:untg_0, SPLITTER420:splity,

MERGER420:read_y, FBUFF:untg_0, and DC_SPLIT:untg_0 should be refactored to increase

the overall system throughput. Here must be mentioned that the action MERGER420:read_y

does not appear in the initial critical actions ranking list. This is due to the fact that the design

contains other parallel critical paths. From these results, the highlighted actions have been

refactored by modifying the source code with the purpose to reduce their CL. The synthesis

and simulation information obtained during the different refactoring stages are summarized

in Table 5.2.

137

Chapter 5. Iterative Design Space Exploration for Xronos

Figure 5.10 – TURNUS analysis results.

The Impact Analysis indicates that the IDCT actor is the first one to be modified. The original

IDCT actor has a single action with an input port that read 64 tokens and produced 64 tokens

in its output whose weight or latency is 634 clock cycles. To reduced the action’s weight latency

the pipeline optimization in Section 4.4 was used to decrease the latency by 40 %. An eight

stage pipelining was generated by the optimizations with a latency of 235 clock cycles for a

block of 64 tokens. After the design refactoring, the system was first synthesized with the new

IDCT actors and then simulated. The first column on Modifications depicts that the number of

LUTs was increased, which is normal due to additional queues and actors, and that the Speed

Up was increased as expected by the Impact Analysis.

Table 5.2 – The modifications steps by most critical actor on the MPEG4 SP decoder. Synthesis
results for Xilinx Virtex 4 FPGA.

Modifications

Original IDCT IQ SPLITTER_420 MERGER_420 FBUFF DC_SPLIT IAP

Slices 27658 31062 30143 29966 26756 26024 25389 24835

LUTs 50661 53394 51663 51329 45535 43994 42791 41779

Max Frequency (MHz) 49.9 49.9 49.9 49.9 50 50 50 85

Max fps 232 257 257 26 304 378 404 692

fps / Max Frequency 2.33 2.58 2.58 2.62 3.04 3.77 4.04 4.05

Speed Up - 1.11 1.11 1.12 1.31 1.63 1.74 2.98

After the first modification, the ETG was extracted from the refactored design and the Impact

Analysis was re-run. The next actor to be modified is the Merger 420. It should be noted that if

the actions of SPLITTER_420 or IQ are refactored, because as indicated in Table 5.1 are the

next with the higher CL, will not have an impact on the system throughput. To prove that

the modifying action outside the scope of the Impact Analysis does not increase the system

throughput, both actions were modified and as illustrated in the fourth and fifth column the

same throughput was maintained. As expected, the optimization of those actions did not

lead to a performance improvement. For both actors the input and output ports were not

138

5.7. Experimental Results

changed. The only difference was that previous actions were consuming a set of 64 tokens

and producing 64 tokens and were thus having a latency of 64 clock cycles for reading, 64 for

processing and producing the tokens. As a result, the total latency was 128 clock cycles. The

actors were modified so that they consume and produce a token at each firing with a latency

of one clock cycle.

As indicated by the Impact Analysis, the MERGER_420 was the correct actor to modify. This

actor reads serially four luminance blocks (256 pixels) and it restructures the pixels in a

raster form. The read input latency for this actor is 256 clock cycles, after that the pixels are

processed with nested loops for 256 clock cycles and 256 for producing the final raster form of

the macroblock. This leads to a total latency of 768 clock cycles. The actor was optimized by

adding more actions with the purpose to consume and produce a token as soon as possible.

Six actions were created: 1) an action that read and produce directly a token, 2) an action that

stores to a list of 56 elements, 3) an action that produces a token from the list of 56 elements,

4) an action that produces a token from the list of 56 elements and stocks the new block 56

elements 5) an action with a guard counter on 8 elements, and 6)an action that stops a counter

on 56 elements. To summarize, at the beginning 8 elements are read and sent directly, and

then 56 elements are stored, after that 8 lines again are read and sent directly, and finally 56

elements are stored. Hence, the first of the 128 elements are consumed. The next action to be

fired is the one that produces a token from the memory and stocks a new one from the input.

In this case the total weight for producing and consuming the 256 luminance pixels takes 368

clock cycles. Even though it is not the most optimal solution, the computation load for the

actor is drastically reduced. As a consequence, the Speed-Up has increased by 31%. After that,

the impact analysis is applied once again and the computation load of the untag_0 action of

the FBUFF actor was reduced by rearranging the structure of the actor. As a matter of fact,

that action was completely removed, and parts of it were ported to other actions. Thence it is

providing an additional Speed-Up improvement of 32%.

Once again the structure of the decoder was changed. The ETG was once more regenerated

and new profiling data information on the new actions was given by Xronos. The Impact

Analysis indicated that the DC_SPILT untag_1 should be modified. As before, the latency was

high due to the repeat CAL statement. The actor structure was modified, and the Speed-Up

was increased by additional 11%. Finally, a last iteration on the IDES was conducted, and

the impact analysis indicated that the CL action copy of actor IAP needed to be reduced.

This action contains a division operator that limits the frequency of the decoder (50MHz the

hardware critical path indicated by XST synthesis tool was in the copy Task Module of the

actor DC_SPLIT). Thus, the division operation was replaced by a set of actions in which the

finite state machine replaced the While statement of the division (see Section 4.3.7). The

decoder had therefore a higher synthesis frequency of 85 MHz, which led to a final speed of

298%.

Finally, the buffers for the decoder were given by the methodology introduced in [12]. The

decoder can be even further improved if a specific constraint on output is given, for example

139

Chapter 5. Iterative Design Space Exploration for Xronos

giving a constraint on throuhput of decoding pictures at 720p30 as the MPEG-4 SP decoder

handles in Section 4.13.1. This experiment was effectuated only for a week and a speed-up of

3 was achieved.

5.8 Conclusion

In this chapter, an iterative design space exploration methodology based on TURNUS and

Xronos was presented. It was illustrated how TURNUS fits in the RVC-CAL design flow and

which input information is needed by the tool. Most of C HLS tools, presented in the state-of-

the-art Chapter 2, provide an estimation on clock cycles for a given function. However if this

function calls other inner functions, the clock cycles estimation is given only for the parent

one. Another performance estimation problem arises when multiple parallel C functions

that communicate with each other are synthesized. How is it possible to estimate which of

those C functions is the critical one? Current HLS will first synthesize these functions and will

then extract the hardware’s critical path. It will either optimize or re-factor the function with

the slowest frequency. In Dataflow MoC however each actor executes a sequence of discrete

computational steps called firings. Xronos can extract the dynamic profiling information

for each firing in terms of clock cycles during RTL simulation or software execution for both

hardware and software, as described in Section 4.12.

It has been proven that TURNUS answers efficiently the question raised on estimating the

critical functions on a parallel programs. For doing so, TURNUS first extracts the Execution

Trace Graph by simulating the RVC-CAL program with an input stimuli. Then, each step

in the Execution Trace Graph is weighted by the profiling information provided by Xronos.

Furthermore, a post-processing ETG scheduler provides an event-driven simulation of the

execution trace graph. This event-driven simulator permits the developer to accelerate the

refactoring of dataflow program when only the computation load, i.e. the reduction of the

needed clock cycles for task, of an action has been changed. But also, it allows to estimate

the overall performance of the design and to dimension properly the queues with a size that

does not affect the overall throughput. Based on the Critical Path analysis of the Execution

Trace Graph a refactoring strategy called Impact Analysis is used for reducing the refactoring

iterations by illustrating the developer which action should be modified for achieving the

design goals. Experimental results have demonstrated the usefulness of the iterative design

space exploration by optimizing three times the throughput of an MPEG-4 SP video decoder

only in a single week.

140

6 Power Optimization

6.1 Introduction

Compiler
Infrastructure

Code
Generation

Synthesis
or

Compilation

Implementation

Profiling
and

Analysis

Performance
Estimation

RVC-CAL
(Behavioral Description)

ArchitectureConstraints

R
ef

ac
to

ri
n

g
 D

ir
e

ct
io

n
s

C
o

m
p

il
e

r
D

ir
e

ct
iv

e
s

Clock Gating
Strategy

Figure 6.1 – Clock-Gating Strategy applied in the Design Flow.

Power dissipation is currently the major limitation of silicon computing devices. Reduced

power consumption implies a lower need for cooling, greater longevity, longer battery life

in the case of mobile devices and, of course, lower power costs. For these reasons power

also frequently affects the choice of the computing platform right at the outset. For example,

Field-Programmable Gate Arrays (FPGAs) incur a higher power consumption per logic unit

141

Chapter 6. Power Optimization

compared to an equivalent Application-Specific Integrated Circuit (ASIC) but often compare

favorably to a conventional processor used for the same task.

For any silicon device, power dissipation can be broken down into two components: static and

dynamic. Static power dissipation, also referred to quiescent or standby power consumption,

is the result of the leakage current of the transistors, also affected by the ambient temperature.

By contrast, dynamic power dissipation is caused by transistors being switched and charges

being moved along wires. The power dissipation is roughly increasing linearly with circuit

frequency since the most significant source of dynamic power consumption in CMOS circuits

is the charge and discharge of transistors capacitance. To counteract this, ASIC designers have

been using clock gating (CG) techniques in the last twenty years [193, 194, 195].

Combinatorial
logic

FF

Combinatorial
logic

FF

CLK 1

CLK 2

(a) Multi Clock Domain

Combinatorial
logic

FFClock Gating
Logic

CLK

(b) Clock Gating

Figure 6.2 – Power Reduction Strategies.

Modern FPGAs have clock enable pins on the flip-flops in logic blocks. However, the use of

such pins is not to provide switching activity reduction on the clock signal, and to yield power

savings on the clock network [196]. FPGAs can provide gating at the top-level of the clock

tree [197]. However, the top-level gating shuts down the entire clock network and, therefore,

cannot be applied when some clock loads which are not used in gated form and others in

gated form, or when there exist multiple enabled domains for a single clock signal. In addition,

clock gating can be applied to large IP blocks such as DSP blocks and multipliers.

Different strategies for optimizing power consumption on ASICs and FPGAs were discussed in

the state-of-the-art in Chapter 2.4.3. All of them describe the impact of a chosen technology

or a given architecture, but they do not describe how to reduce power at the level of design

abstraction. Adding power controllers at the behavioral description might reduce the porta-

bility of the code if a platform is changed during the development process. Moreover, it is

difficult for HLSs that uses Imperative MoCs to apply power optimization that are extracted

from the behavioral description. In contrary, dynamic Dataflow MoC such as the one used

with RVC-CAL has two interesting properties that can be exploited for reducing the power

consumption without modifying the behavioral description at all. Firstly, every actor is con-

current and has an input blocking read, and secondly every actor communicates with lossless

FIFO queues. As a result, an actor may be stopped for a certain period if it is idle or its output

142

6.2. Clock buffers on Xilinx FPGA’s

FIFO is full without impacting the overall throughput of the design. In addition, the more

dynamic a dataflow program is, compared to synchronous dataflow, the more efficient the

power reduction can be. This is due to the fact that synchronous dataflow programming

always consumes and produce a fixed amount of data, and the queue size are fixed. Thus,

synchronous dataflow design always consumes the same amount of power.

As a result, to reduce the power consumption of streaming applications, a coarse-grain clock-

gating strategy was developed. This strategy consists of clock-gating an actor when the output

queues of each actor are becoming full. The idea here is to select which local clock can be

stopped when the circuit is in an idle state or when no output transition is effectuated. The

clock-gating strategy aims at significantly reducing power consumption of streaming applica-

tion designs based on asynchronous queued blocks. The approach, which is an elaboration of

the ideas in [198], is based on controlling the top-level clock of the FPGA by using its clock

buffers. Gating is coarse-grained because clocks are switched off for relatively large portions of

the design. A similar effort targeting ASICs has been reported in [199]. Finally, the clock-gating

strategy does not affect at all the Design Flow (see Figure 6.1), because it modifies just the

actor composition (Network) by adding modules that control the clock for each actor.

6.2 Clock buffers on Xilinx FPGA’s

In an ASIC design, the clock tree that distributes the clock to all clocked elements is individually

routed for each different design. Therefore, there is the freedom of realizing clock trees with

any logic circuits in the tree so that it is possible to gate only particular clocks or groups of

clocks. In doing so, the clock tree is built to handle all delays related to the routing of the

logic elements. FPGAs, on the other hand, have dedicated clock trees that are represented as

nets and buffers that distribute the clock signals to all logic components of the chip. There is

dedicated support for allowing a designer to divide a design into clock regions, to control the

distribution of clock signals to these regions and their frequency, and also to shut them off

completely.

For Xilinx FPGAs, the root of the clock tree is called global buffer. All global clocks are driven

by the Xilinx primitive BUFGCTRL, those global clocks are located in the middle of the die.

Each BUFGCTRL drives a vertical spine in the center of the die that runs from the bottom to

the top of the die. This can been seen in figure 6.3. To use those clocks buffers the user needs

to use the Xilinx primitive BUFGCTRL or its derivatives such as the BUFGCE. This primitive

can be found on all latest Xilinx architectures. It represents a global clock buffer with a clock

enable port and is used in the coarse-grain clock gating strategy. Finally, It allows the clock to

turn on and off dynamically.

As a result, dynamic clock gating is enabled for power savings and the generation of decimated

clocks by using the BUFGCE primitive. Furthermore, the "clock enable" signal is generated by

the user’s design. Moreover, the BUFGCE primitive can do a glitch and runt free clock gating if

the clock enable is generated synchronously. In the 7 family, most of the FPGAs have 32 global

143

Chapter 6. Power Optimization

IO

C
M

T

Leaf Cell
Clocks

Clock
Region

BUFG in
Center of

Device
BUFMR

BUFR

BUFH
HROW

Vertical Spines
Of the global

clocks

Clock Buffer
& Routing

column

Figure 6.3 – View of an FPGA die, clocking trees and different clocking buffers found on a Xilinx
7 family.

Figure 6.4 – Xilinx BUFGCE primitive for user clock gating.

clock networks, except of the smallest Artix-7 that has 16 and the largest Virtex-7 having 128

clock buffers.

In addition, there is also the BUFH clock buffer. Those horizontal cells are the connection

144

6.3. Coarse-Grain Clock Gating Strategy

points between the vertical spines of the clock buffers and the horizontal clock nets that enter

each clock region. They can be also driven with a clock enable primitive BUFHCE. These cells

can gate the clock entering the clock region. There are 12 of these per clock region, but they

have a strong restriction. All logic that uses such a gated clock must fit in one clock region. The

clock buffers are not used by depicted strategies due to the previously described restriction.

Furthermore, the tools are not capable enough to cut and fit portions of the design to certain

clock regions. However, gating using any other resource, for example gating a clock with an

LUT, the clock needs to leave the clock network and to be routed using general routing to an

LUT and then routed back to another clock buffer such as BUFG/BUFH. As a consequence,

this clock will arrive later than the other clocks on the clock tree.

In other words this routing will add an extra amount of delay which will make the design

slow and is not recommended for FPGA design. Here should be mentioned that each flip-flop

within the Xilinx FPGA has a clock enable pin. In some cases, it is possible to turn off the

updating of some flip-flops when their value is not needed which can be done automatically

by the tool if the "intelligent clock gating" is activated. More information on the intelligent

clock gating can be found in [200] and for clock buffers on Xilinx 7 family in [197].

6.3 Coarse-Grain Clock Gating Strategy

This clock gating strategy works thanks to the Dataflow MoC. When the output buffers of the

actors are full, the clock of those actors should be turned off. In any case, when the buffer are

full the actor is idle. Thus, switching off its clock will not have an impact on throughput of the

design. Even thought RVC-CAL is used as the behavioral description, this clock gating strategy

is more general and can be applied to systems that represent the execution of a process that

communicates with asynchronous FIFO buffers. The queues should be asynchronous for a

lossless communication when an actor is clock gated, and when a design has different input

clock domains.

The strategy consists in adding a Clock Enabler circuit for activating the clock of the Actors.

This circuit contains a controller for each output port queue of the actor, a combinatorial

logic for the configuration of the output ports and a clock buffer that enables the clock. A

representation of an Actor with a single output port being clock gated is illustrated in Figure 6.5.

As depicted, queues are asynchronous. Queues have two input clocks, one for consuming

and one for producing tokens, and they have two output port AF for almost full and F for full.

The actors input clock is connected to the output of the Clock Enabler circuit. As described in

the previous Section 6.2, the clock buffer BUFGCE input clock should be connected with a

Flip-Flop for having a glitch-free clock gating.

Note: The Flip-Flop will introduce a one-clock latency when the clock is switched off, but this

additional clock cycle will not have an impact on actors that are on the critical path. Those

actors are not being clock gated because the TURNUS dimensioning of the FIFO queues is based

on the critical path analysis. Thus, not impacting the overall performance.

145

Chapter 6. Power Optimization

Actor A

CLK

CLK

D S

CLK

Controller
EN

CLK

Clock Enabler Circuit

BUFGCE

Queue

CLK R F AFCLK W

Queue

CLK R F AFCLK W

F

AF

Figure 6.5 – Clock gating methodology strategy for Actor A with one output port. The Clock
Enabler has as inputs the Almost Full and Full signal of each queue and a clock from a clock
domain, and as a result it is going to activate or deactivate the clock of Actor A depending the
FSM state of the controller.

6.3.1 Clock enabling controller

The clock enabling controller is represented in Figure 6.6. The controller is implemented as

a finite state machine that has two inputs, F for full, AF for almost full and an output EN for

enable. It is a finite state machine (FSM) with 5 states S = {I N I T,SPAC E , AFU LL_D I S ABLE ,

FU LL, AFU LL_E N ABLE }. The controller starts with the I N I T state and it maintains the

EN output port at active high up until F and AF are at active low. The active high EN is

maintained during the SPAC E state, but once a queue is almost full then the state changes

to AFU LL_D I S ABLE . In this state, the EN output passes to an active low. A conservative

approach is taken in this state, this is due to the fact the BUFGCE is disabling the output clock

on the high-to-low and that the clock enable entering the BUFGCE should be synchronous of

the input clock. Once the queue becomes full, the controller maintains the EN at active low.

When a token is consumed from the queue, the controller passes to the AFU LL_E N ABLE

state, and it activates the clock. Then, depending whether the buffer becomes full, either full

or almost full, it moves to the FU LL or SPAC E state respectively.

6.3.2 Clock Enabler Circuit

The user can choose a mapping configuration that indicates which actor should be clock

gated. To do so, an attribute is given for each actor. If an actor has been selected to be clock

gated then all of its output FIFO queues A and AF are connected to a clock enabler controller.

Output queues can be connected through a fanout or directly to a queue. For the first case,

the result of the controllers is connected to an AND logic port. This is a safe approach because

as said previously, if one of the queues in the fanout is full then the fanout should give the

command to the actor to not produce any token. For the second case, if an actor’s output

is connected directly to a queue without a fanout, the result should be connected to an OR

logic port. This is due to the possibility that the next actor may need to consume a certain

146

6.3. Coarse-Grain Clock Gating Strategy

F, AF F, AF

F, AF

F, AF

F, AF

F, AF F, AF

F, AF

F, AF

F, AF

F, AF

AFULL
ENABLE

en

SPACE
en

FULL
en

AFULL
DISABLE

en

INIT
en

Figure 6.6 – State machine of the clock enabling controller. The controller has two inputs, F
for full, AF for almost full and one output en as the enable signal.

number of tokens to output a token. As a consequence, it may lead the system to lock due

to the unavailability of data. In the third case, if there is a combination of outputs with or

without a fanout, then an n-input OR logic port is inserted. Figure 6.7 depicts the previous

configurations.

Note: AF is active high when there is only one space left on the FIFO queue.

CLK

D S

CLK

Clock Enabler Circuit

BUFGCE

Controller
EN

CLK
F

AF

Controller
EN

CLK
F

AF

(a) Single Output Port with a Fanout

CLK

D S

CLK

Clock Enabler Circuit

BUFGCE

Controller
EN

CLK
F

AF

Controller
EN

CLK
F

AF

(b) Two Different Output Ports

CLK

D S

CLK
Clock Enabler Circuit

BUFGCE

Controller
EN

CLK
F

AF

Controller
EN

CLK
F

AF

Controller
EN

CLK
F

AF

(c) A single Output Port with a Fanout and another Ouput

port

Figure 6.7 – Clock Enabler Circuit in three different configurations.

These different cases are being recognized automatically by Xronos, and the Verilog modules

are being generated at the same time as the actors Verilog code. Eventually, a flip-flop is

147

Chapter 6. Power Optimization

Algorithm 11: Clock Enabler circuit module creation
Input :actor

Input :enable

Input :clk_in

Input :reset

Input :∀P out
al most_ f ul l

Input :∀P out
f ul l

Output :clk_out

1 module clock_enabler

2 for p in ∀P out do

3 wire ["sizeof(p.fanout)":0] "nameof(p)"_enable;

4 reg clock_enable;

5 wire buf_enable;

6 for p in ∀P out do

7 for idx in sizeof(p.fanout) do

8 controller c_"nameof(p)"_"idx"(

9 .almost_full("nameof(p)"_almost_full["idx"])

10 .full("port.name"_full["idx"]),

11 .enable("port.name"_enable["idx"]),

12 .clk(clk),

13 .reset(reset));

14 always @(posedge clk) being

15 clock_enable <= for p ∀P out SEPARATOR "|" do

16 if sizeof(p.fanout) > 1 then

17 for idx in sizeof(p.fanout) SEPARATOR "&" do

18 nameof(p)_enable["idx"]

19 else

20 nameof(p)_enable

21 assign buf_enable = en ? clock_enable : 1;

22 BUFGCE clock_enabling (.I(clk), .CE(buf_enable), .O(clk_out));

23 endmodule

148

6.4. Experimental Study

connected between the BUFGCE and the final OR or AND port to have glitches and runt free

clock enabling. The last output of the clock gating is a new clock that is connected to the actors,

its fanouts, and its queues write clock (CLK B). The Verilog template of the clock Enabler circuit

is given in Algorith 11.

6.4 Experimental Study

In this section, the clock gating strategy is evaluated by applying it to three designs. In [201]

the reader might find a large variety of RVC-CAL applications that can be synthesized with

Xronos and can test the proposed clock gating methodology. For all designs, the minimum

buffer size was to obtain by using the minimization technique as presented in Section s:buffers.

This information (an XML file containing all queue sizes) is given to Xronos so that it can

generate the top HDL module of the designs with the estimated queue sizes. The design used

for the following experiments are: JPEG encoder introduced on [2], Serial MP4 and MPEG4 SP

decoder used as a case study on [146] and finally RVC Intra MPEG 4 SP decoder was used as a

case study on [3].

For the experimental results, a Virtex 7 XC7VX485T-2 FPGA (VC707 Evaluation Kit) has been

used. First the HDL code of the decoder has been generated by Xronos and synthesized with

the Vivado synthesizer. After the synthesis, the place and route are applied to produce the

final netlist. This netlist is then simulated with Modelsim so that it is possible to extract the

switching activity information (SAIF file) of the design. Vivado Power analyzer tool is used to

obtain the power results. This power analyzer takes as an input the design netlist, the design

constraints and the simulation activity SAIF. It is to mention that all given results have a high

confidence level, which means that at least 97% of the design nets are found in the SAIF file.

Afterward, the activation rate for each clock-gated clock are extracted from the power analyzer

as an XML file followed by Xronos generating a new top HDL module for the design.It should

be mentioned that multiple XML files have been given to Xronos, for simulating the designs

with a set of video sequences that have different image resolutions.

Table 6.1 reports the synthesis and the power consumption of the three designs. As it can

be observed the designs are pretty small, all of them are less than 50k Slices. Compared to

other designs, the JPEG encoder consumes more BRAMs than the video decoders because of

its FIFO sizes. The RVC intra is the most demanding design on the number of slices. This is

due to the parallel processing of luminance and chrominance, as the actors for the U and V

chrominance are identical but slightly different for Y luminance. All designs have been given a

clock constraint of 10ns clock period. However, the Serial MP4 decoder can handle a clock

with higher frequency constraint [146].

Two configurations are compared for each design, non CG clock gating deactivated and CG

clock gating activated one. Even though Table 6.1 does not represent the synthesis results for

the non CG design, the difference in Slices is less than 2k slices for each non CG design and

only one clock buffer is being used. In total every design consumes from 290 mW up to 400

149

Chapter 6. Power Optimization

Table 6.1 – Synthesis and power results of three designs, a JPEG encoder, the RVC Intra MPEG
4 SP decoder and a full serial mpeg 4 sp decoder. The dynamic power reduction is given as the
clock gated design over the non clock gated one.

Logic JPEG Encoder Serial MP4 RVC Intra

Slices 19800 25497 42006

BRAMs 35 7 18

DSPs 5 7 18

BUFGs 11 30 31

Freq. MHz 100 100 100

Power (mW)

NON CG CG NON CG CG NON CG CG

Clocks 53 46 108 97 159 123

Signals 10 10 22 14 17 15

Logic 8 7 15 10 14 12

BRAM 24 19 < 0.1 < 0.1 < 0.1 < 0.1

DSP < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

I/O 1 1 4 4 2 2

Dynamic 96 83 149 125 192 152

Static 207 207 207 207 207 207

Total 303 290 357 334 399 357

Dynamic Power Reduction %

13.54% 16.1% 20.8%

mW. The static power dissipation is the same for every design as all simulations were given

the same configuration (e.g. temperature, clock frequency). The decoders BRAMs consume

the same amount of power as the one found on the JPEG Encoder. Analyzing the results, the

BRAMs power consumption in the JPEG encoder is almost one-third of the total dynamic

power dissipation. A possible refactoring on the design to decrease the number of BRAMs will

reduce significantly the JPEG encoder dynamic power.

Comparing the non-CG with the CG one, the highest power reduction comes from the clocks

power consumption. The reduction in clocks goes as follows: for the JPEG encoder 13.2%, for

the serial MP4 10% and the RVC Intra 22%. By comparing this values to the overall dynamic

power consumption of Table 6.1 there are some differences. For the JPEG encoder and the

RVC Intra decoder, the differences are slight. But for the serial MP4 there is a missing 6% that

comes from the power consumed by signals and logic. This difference is due to the nature of

the serial MP4 decoder that is composed of small actors that contain only one action executing

in one clock cycle. As a result, it makes the design more parallel than the other two and more

power hungry because those actors are always activated. Finally, the CG methodology reduces

the power significantly on different streaming applications.

Figure 6.8 represents the activation rate of the CG clocks for the three designs. The image

depicts that some clocks are always activated, 2 for the JPEG Encoder, 4 for the serial MP4

decoder and 10 for the RVC Intra. Those CG clocks should be removed from the designs as they

consume BUFGCE clock buffers and more slices for the clock enabling controller. A future

150

6.4. Experimental Study

0

10

20

30

40

50

60

70

80

90

100
Buffer Enable

fdct_
co

l_c
lk

fdct_
ret

ran
sp

ose
_c

lk

fdct_
rig

hsh
ift_

clk

fdct_
row_c

lk

fdct_
sc

ale
_c

lk

fdct_
tra

nsp
ose

_c
lk

huffm
an

_c
lk

quan
t_c

lk

ras
ter

_c
lk

sy
ntax

_w
rite

r_c
lk

A
ct

iv
at

io
n

R
at

e
%

(a) JPEG Encoder

0

10

20

30

40

50

60

70

80

90

100
Buffer Enable

ac
dc_

ac
pred

_c
lk

ac
dc_

dcp
red

_c
lk

ac
dc_

dcs
plit_

clk

ac
dc_

deq
uan

t_c
lk

ac
dc_

se
q_c

lk

ac
dc_

zig
za

g_c
lk

ac
dc_

zza
ddr_c

lk

idct2
d_c

lip
_c

lk

idct2
d_d

ownsa
mple_

clk

idct2
d_fa

irm
erg

e_
clk

idct2
d_id

ct1
d_c

ombine_
clk

idct2
d_id

ct1
d_fi

nal_
clk

idct2
d_id

ct1
d_s

ca
le_

clk

idct2
d_id

ct1
d_s

huffle
_c

lk

idct2
d_id

ct1
d_s

huffle
fly

_c
lk

idct2
d_re

tra
ns_

clk

idct2
d_ro

wso
rt_

clk

idct2
d_s

ep
_c

lk

idct2
d_tr

an
s_

clk

motio
n_a

dd_c
lk

motio
n_in

ter
polat

e_
clk

motio
n_m

bpac
k_

clk

motio
n_m

em
orym

an
ag

er_
clk

motio
n_s

ea
rch

win_c
lk

motio
n_u

npac
k_

clk

pars
er_

blke
xp

_c
lk

pars
er_

mvre
co

n_c
lk

pars
er_

mvs
eq

_c
lk

pars
er_

pars
eh

ea
ders

_c
lk

pars
er_

se
ria

liz
e_

clk

A
ct

iv
at

io
n

R
at

e
%

(b) Serial MP4

0

10

20

30

40

50

60

70

80

90

100
Buffer Enable

Merg
er4

20
_c

lk

noM_U
_a

dd_c
lk

noM_V
_a

dd_c
lk

noM_Y
_a

dd_c
lk

par_
blke

xp
_c

lk

par_
pars

eh
ea

ders
_c

lk

par_
se

ria
liz

e_
clk

par_
sp

litt
er_

42
0_

B_c
lk

par_
sp

litt
er_

BTYPE_c
lk

par_
sp

litt
er_

Qp_c
lk

tex
_U

_D
CR_a

dr_c
lk

tex
_U

_D
CR_in

vp
red

_c
lk

tex
_U

_D
Csp

lit_
clk

tex
_U

_IA
P_c

lk

tex
_U

_id
ct2

d_c
lk

tex
_U

_IQ
_c

lk

tex
_U

_IS
_c

lk

tex
_V

_D
CR_a

dr_c
lk

tex
_V

_D
CR_in

vp
red

_c
lk

tex
_V

_D
Csp

lit_
clk

tex
_V

_IA
P_c

lk

tex
_V

_id
ct2

d_c
lk

tex
_V

_IQ
_c

lk

tex
_V

_IS
_c

lk

tex
_Y

_D
CR_a

dr_c
lk

tex
_Y

_D
CR_in

vp
red

_c
lk

tex
_Y

_D
Csp

lit_
clk

tex
_Y

_IA
P_c

lk

tex
_Y

_id
ct2

d_c
lk

tex
_Y

_IQ
_c

lk

tex
_Y

_IS
_c

lk

A
ct

iv
at

io
n

R
at

e
%

(c) RVC Intra MPEG 4 SP

Figure 6.8 – Activation rates of each CG clock for each design with all their actors being clock
gated. Average values retrieved from different QCIF input stimuli for all designs.

work of this methodology is to find the minimum activation rate of CG clocks that should

be kept. The minimum activation rate for JPEG Encoder can be 90% or 75%, for the Serial

151

Chapter 6. Power Optimization

MP4 decoder 80%, and for Intra RVC decoder 75%. Achieving this minimum activation rate, it

allows to save 4, 17 (17 clock buffers represent more than 50% of available clock buffer of a

modern Xilinx FPGA), and 9 BUFGCEs respectively for each design.

6.5 Conclusion

This chapter presented a clock-gating strategy applied to dataflow designs, i.e. designs that

consist of networks of computational kernels connected by FIFO queues. Even though the

techniques are discussed in the context of dataflow, using a dataflow application to validate

and evaluate it, it can be applied to processes that communicate with queues. Hence, it might

conceivably be applied more broadly.

The results obtained are encouraging, the power saving strategy is achieved at the price of

only small amounts of control logic without losing any throughput at all. Unsurprisingly,

clock gating becomes particularly interesting in situations where the design is not used to

full capacity, in which case it is a simple, automatic, and efficient way to recover power that

would otherwise be lost in "idle" cycles. As a result, this technique is especially interesting

in applications with dynamically varying performance requirements, where designing to a

particular performance point is not an option, and where power is nonetheless at a premium.

Another strategy for reducing power dissipation is by using Multiple-Clock Domains. Authors

in [202] presented an alternative solution for dynamic by using a design methodology to

partition dynamic RVC-CAL dataflow applications on a multi-clock domain architecture

without impacting the overall throughput performances. The results can not be directly

compared with the proposed clock gating strategy because another FPGA was used, and the

nominal frequency used is inferior to the one proposed in the previous results section. But,

the total reduction percentage is higher with the presented coarse clock-gating strategy.

Future work in clock-gating consists in adding the condition of the idleness of an actor and

the FIFO emptiness. The emptiness condition is not enough to clock gate an actor because it

might be in a firing state. Thus, taking both conditions and the output fullness condition may

further improve the overall power consumption. Another interesting direction is to combine

the clock-gating strategy with multi-clock domains. Clocks that have a lower frequency than

the nominal one might reduce the overall power consumption.

An important limitation of this strategy is the fixed clock tree of the FPGAs. Compared to ASICs

the clock tree is fixed, and it provides a limited number of clock buffers. In addition, those

clock buffers are separated in half for the upper and lower part of the FPGA. Thus, making it

very difficult to create place and route constraints for an application that uses 16 clock buffers

(most of the new Xilinx FPGAs have 32 clock buffers). Future FPGAs as the not yet available

Xilinx Virtex UltraScale have more than 100 clock buffers, which makes the proposed clock

gating strategy easier to implement.

152

7 Conclusion and Future Work

The research work described in this dissertation introduces significant contributions to the

state-of-the-art of dataflow program high-level synthesis for hardware descriptions. Such

contributions can be summarized as follows:

• The development of a design flow based on a compiler infrastructure called Xronos, in or-

der to generate behavioral HDL code and C++ source code for embedded heterogeneous

platforms.(Chapter 4)

• The development of the Action Selection Procedure that represents the actor execution

model. This procedure not only reduces the resources but also increases the throughput

of Actors for hardware synthesis compared to available alternative solutions in the state-

of-the-art. In addition, by means of such procedure also advanced RVC-CAL statements

such as "repeat" are now synthesizable.(Section 4.5).

• The development of a fine-grain profiling methodology at RTL level that create a direct

correspondence between clock cycle accurate measures and abstract computation at

dataflow program level. The structure of the generated RTL performing the profiling is

achieved without impacting the throughput of the design (i.e. without side effects). In

addition, the same methodology is applied to software code generation by using a library

for retrieving the hardware counters and timers of different CPU families.(Section 4.12).

• The development of analysis and optimization strategies for dataflow programs hard-

ware synthesis based on mapping clock cycle accurate measures onto structured (high

level) dataflow computation representations. The methodology is called "Impact Analy-

sis" and is integrated in the TURNUS design space exploration tool available as open

source project.(Section 5.6)

• The development and implementation in the hardware synthesis stage of a clock-gating

strategy applicable in principle to any dynamic dataflow program based design for

reducing the circuit’s dynamic power dissipation. The interest of the approach is that

it is completely independent of the dataflow program semantics, thus can be applied

153

Chapter 7. Conclusion and Future Work

to whatever dataflow design and is also generalizable to designs not directly derived

from dynamic dataflows computation models, but only based on asynchronous units

communicating each others by means of queues. This strategy has a very low impact on

resources and does not affect the throughput of the design.(Chapter 6)

7.1 Conclusion and Summary

The motivations that fostered this research work are driven by the typical problems that a

system designer faces when develops applications implemented on heterogeneous platforms.

The new dataflow design flow and associated tools were built with the purpose of supporting

as much as possible automated tools assisted procedures along all the design steps, with the

purpose of finding (close to) optimal design space points, clearly identify issues and objectives

of manual designer intervention, thus with the purpose of reducing the design resources (time)

for achieving quality implementation results on (massively) parallel heterogeneous platforms.

A fundamental issue when designing (complex) applications on heterogeneous platforms is the

choice of the behavioral description. In Chapter 2 the state-of-the-art of high-level synthesis

and design flows for heterogeneous platforms was critically revised. Most of the High-Level

Synthesis tools uses C-like languages which presents several drawbacks. By taking such an

imperative language, they encourage the designer to develop algorithms using a sequential

paradigm and in general non analyzable operators and constructs, with the promise that

the HLS tool provides all technologies that will automatically restructure the program and

expose the potential parallelism of a sequential code. Unfortunately, such technologies are

limited and the designer is confronted with the necessity to either refactor the code or to

manually add code annotations (i.e. pragmas) or use additional ad-hoc constructs (threads,

semaphores, etc.). In fact, concurrency must be in general derived by specifically considering

the semantic of the program and is either supported by libraries or user inserted annotations.

Thus, the resulted code is in general not portable or scalable to another design flows or

even to other embedded SW platforms. Moreover, there is absolutely no guarantee that

the code transformations/optimizations does not add undesired behaviors when executing

concurrently (bugs!), that were not present in the formally correct sequential code.

In Chapter 3, a solution to the difficulties mentioned above is provided by the RVC-CAL

programming language. As described in Chapter 3, the CAL and its Dataflow MoC have the

property to express an application as network processes. Besides being inherently concur-

rent and modular, CAL offers parallelism scalability, no shared memory between processes,

communication with queues, state encapsulation, execution of a sequence of steps cadenced

by a finite state machine by each process and bitwise types. All previous properties lead to

the portability of CAL which makes it a candidate for unifying the system’s level design for

heterogeneous platforms. It was also mentioned that a subset of CAL has been standardized by

the MPEG committee with the purpose to provide the reference software of current and future

video decoding standards. As a matter of fact, CAL or RVC-CAL applications are portable to

154

7.1. Conclusion and Summary

hardware and software processing elements as demonstrated in Section 4.13 and thanks to

the work provided with this thesis.

To support the full subset of RVC-CAL for high-level synthesis, Xronos HLS was developed. In

Chapter 4, Xronos is presented and analyzed. Prior work on HLS of CAL programs offered only

a restricted synthesis of the subset of the language. Xronos on the other hand was built from

scratch to circumvent these limitations. Previous toolchains used a set of XSLT transformations

for transforming the Intermediate Representation of an Actor to a close to hardware one. Thus,

the time of code generation was effectuated in tens of minutes or sometimes even in hours

in case of complex actors. With the developments of this research work included in Xronos,

the compiler operations and all the transformations are all executed using Java. As a result,

the time for the behavioral synthesis stage of the actors that constitute a dataflow design has

been reduced by a factor ranging between two or three order of magnitude. This make the

synthesis and validation of manual refactoring practically interactive also for very complex

designs. Thanks to the Procedural IR, procedures with arguments, generator statements or

foreach statement are naturally supported by the Xronos RVC-CAL front-end called Orcc.

Despite the advancement offered by the Orcc’s Dataflow and the Procedural IR further actions

were taken to optimize, reduce and transform these representations for hardware synthesis as

discussed in the Chapter 4. One of the most important transformation is the Pruned Single

Static Assignment form. This form makes an extraction of the Control and Dataflow Graph of

a procedure possible and thanks to its pruned form the number of the used local variables and

data dependencies between Basic Blocks is minimal. Thus, the number of wires and registers

in behavioral synthesis is also minimized. Furthermore, it was discussed how Xronos supports

bit accurate operations by casting instructions in the Procedural IR. Xronos has extended the

state-of-the-art on HLS of RVC-CAL Programs by creating an Action Selection Procedure that

defines the actor execution models for hardware synthesis. Xronos’ Action Selection regroups

all the firing conditions and optimizes the memory accesses in it. Thus, if an actor does not

contain multiple guards on the same list state variable or a guard with a modulo or division

operator, then the synthesized Action Selection Task guarantees that the following firing step

is scheduled in the following clock cycle if the input rules are satisfied. In addition, the Action

Selection permits the parallel reading and writing of list inputs and outputs of the "repeat" CAL

statement and hence accelerates the consumption and production of tokens. Experimental

results in Section 4.13.2 have demonstrated that the Action Selection not only reduces the

resources but also increases the throughput compared to other methodologies.

For achieving better QoR for the generated behavioral HDL code more advanced and sophis-

ticated Procedural IR optimizations should be applied. Commercial HLS tools, provides to

some extent more advanced procedural optimizations than Xronos. Hence, those tools are the

result of hundreds or even thousands man-years of engineering work compared to Xronos.

Even though, such Procedural optimizations are not yet implemented in Xronos, because

they would requires considerable engineering efforts beyond what available in this PhD work,

the RVC-CAL model of computation abstraction offers several features which enable in some

cases to outperform HLS results of typical C flows. This observation provides the motivation

155

Chapter 7. Conclusion and Future Work

for planning future work for introducing some fundamental procedural IR optimizations, as

described in the next Section. For instance, a more sophisticated scheduling strategy could

easily increase the RTL synthesis frequency of the design and will permit adding constraints

on dataflow actions. As a result, the gap (or the advantage) in some performance metrics

between the dataflow based design commercial HLSs and Xronos will decrease (or increase)

even further.

In addition, Xronos also produces C++ code for embedded platforms and therefore unifies

system level designs for heterogeneous platforms. To ensure the communication between

hardware and software processing elements, Xronos provides the necessary user space drivers

for driving interfaces such as Ethernet and PCI-Express. Experimental results have demon-

strated that the current interface implementation lacks in efficiency. Future work, could

provide a better performing implementation for the current supported interfaces and also of

adding support for the AXI interface. All new SoCs from Xilinx, and Altera handle the commu-

nication between the programmable logic and processing system (ARM) through AXI. Thus, it

is appropriate to provide such an interface with Xronos for a broader support of heterogeneous

platforms.

So far the design flow presented in this thesis proved that a RVC-CAL dataflow programming

language is an attractive alternative for heterogeneous platforms. To complete the design flow

an iterative design space exploration was added, and presented in Chapter 5 to circumvent

the limitations on the performance estimation of HLSs. Most of C HLS tools, presented in the

state-of-the-art Chapter 2, provide an estimation on clock cycles for a given function, but if this

function calls other inner functions, the clock cycles estimation is given only for the parent

one. Another performance estimation problem arises when multiple parallel C functions

that communicate with each other are synthesized. How is it possible to estimate which of

those C functions is the critical one? Current HLS will first synthesize these functions and will

extract the hardware critical path and either optimize or re-factor the function with the slowest

frequency. As introduced in Chapter 3, in Dataflow MoC each actor executes a sequence of

discrete computational steps called firings. Xronos, for both the hardware and software can

extract the dynamic profiling information for each firing in terms of clock cycles during RTL

simulation or software execution, as described in Section 4.12. As presented in Chapter 5, the

Execution Trace Graph is first extracted by simulating the RVC-CAL program with an input

stimuli. Then, each step in the Execution Trace Graph is weighted by the profiling information

provided by Xronos. A post-processing ETG scheduler provides afterwards an event-driven

simulation of the execution trace graph. This event-driven simulator permits the developer

to accelerate the refactoring of dataflow program when only the computation load, i.e. the

needed clock cycles for task is reduced, of an action has been changed. But also, it allows

estimating the overall performance of the design and dimensioning properly the queues with

a size that does not affect the overall throughput. Moreover, based on the critical path analysis

of the Execution Trace Graph a refactoring strategy called Impact Analysis is used for reducing

the refactoring iterations by instructing the developer which action should be modified for

achieving the design goals. Experimental results demonstrate the usefulness of the iterative

156

7.2. Future Work

design space exploration by optimizing three times the throughput of an MPEG-4 SP video

decoder only in a single week.

Finally, this thesis extends even more the state-of-the-art and the presented design flow by

providing a clock-gating strategy for process networks that communicate with queues (see

Chapter 6). Even though the strategy is discussed in the context of RVC-CAL, using a dataflow

program to validate and evaluate it, there is really nothing about it that is particular to this

kind of MoC, so it might conceivably be applied more broadly. The results obtained are

encouraging, the power saving strategy is achieved at the price of only small amounts of

control logic without losing any throughput. Unsurprisingly, clock gating becomes particularly

interesting in situations where the design is not used to full capacity, in which case it is a

simple, automatic, and efficient way to recover power that would otherwise be lost in "idle"

cycles. As a result, this technique is especially interesting in applications with dynamically

varying performance requirements, where designing to particular performance points is not

an option, and where power is nonetheless at a premium. An important limitation of this

strategy is the fixed clock tree of the FPGAs. Compared to ASICs the clock tree is fixed, and it

provides a limited number of clock buffers. In addition, those clock buffers are separated in

half for the upper and lower part of the FPGA. This makes it very difficult to create the "place

and route" constraints for an application that uses 16 clock buffers (most of the new Xilinx

FPGAs have 32 clock buffers). Future FPGA generations will offer more than 100 clock buffers,

which makes the proposed clock gating strategy easier to implement and useful in power

restricted implementations.

7.2 Future Work

The proposed design flow has demonstrated its efficiency for reducing the dynamic power

dissipation in high-level synthesis, software code generation, design space exploration for

heterogeneous platforms and clock gating strategy. Nevertheless, some problems have been

identified and will need to be addressed in the future. As a result, future works will consist

in exploiting the same Procedural optimizations that commercial HLSs and state-of-the-art

compilers offer, but will also include methodologies and techniques that are not yet to be

found in other tools (i.e. Multi-Actor hierarchical memory management).

7.2.1 Component Library Database

This part consists of exploring the FPGA architecture by retrieving the number of LUTS,

I/O ports, Internal Memories size and types and the gates combinatorial delay. Each FPGA

fabricator uses different names for their internal structure so a general library database should

be created that has a one to one representation of the LIM structure. Apart from device

hardware characteristics that are fixed (i.e. memory size in an FPGA), the gate delay varies

depending on which place the gates are routed. Thus, the estimation of the gate propagation

delay is close to the real delay.

157

Chapter 7. Conclusion and Future Work

This step is a necessity for better scheduling, allocation and binding. In addition, in the

component library database characteristics of development boards should be given too. When

the architecture model is described the information of off-chip memories (DDR, SDRAM, etc.)

and interfaces is available to the developer.

The task by itself can be implemented as TCL scripts that run various benchmarks. For each

operation, registers should be added before its input and after output port, which gives directly

the gate delay of the operator. Once, the information is retrieved in can be added to Xronos’

internal library that can be represented as an equivalent to a SQL database.

7.2.2 SDC Scheduling for LIM

Xronos Achilles heel is that it does not support constraints. Scheduling of Different Constraints

proposed by Cong and Zhang in [203] performs a variety of optimizations under a unified

mathematical programming framework. The advantage of using SDC is that it is possible to

apply scheduling that supports constraints for resources, frequency, latency, relative timing

and overall latency.

The idea is to formulate the scheduling problem as a linear program that can be solved with a

standard LP solver. As described in [204], each operation is assigned to a variable that after

having solved it, will hold the control step (clock cycle) in which the operation is scheduled.

Let us consider two operations oi and o j and CCoi representing the clock cycle in which oi is

to be scheduled and CCo j for o j . The value of CCoi is given by the library database described

in the previous sub-section 7.2.1. Assuming that there is a control and data dependency from

oi to o j , the following different constraints are added to the LP formulation C Soi −C So j ≥ 0.

Furthermore, a clock period constraint can be incorporated. Let Cp be the target clock period

and Chai n a chain of any N dependent combinational operations in a Block with a chain

Chai n = o1 −→ o2 −→ . . . −→ on . The total estimated combinatorial delay of operation is the

sum Te =∑n
i=1 CCoi . The clock period constraint on the chain is CCon −CCo1 ≥ dCp /Tee−1.

Such constraints control determine which operators can be chained together in a clock cycle.

Chaining is only permitted if the target Cp is met. For more information on SDC refer to [203].

The advantage of having a flexible scheduler that constraints can be applied on Actor ports

and Actions makes CAL programming language even more flexible for HLS. As described in the

design space exploration chapter, the impact analysis gives the necessary clock cycles that an

action should be reduced for not being in the algorithmically critical path. If the scheduler can

resolve the latency constraint on the selected set of actors, TURNUS and Xronos can optimize

a design automatically.

7.2.3 Integration of state of the art procedural optimizations

Commercial HLS such as Xilinx’s Vivado HLS and Calypto’s Catapult use C/C++/SystemC

front-ends that are not developed by them. Vivado HLS for example uses the Clang the C

158

7.2. Future Work

frontend of LLVM and it takes advantage of the open source community in a vast choice of

procedural optimization. Xronos has a need for loop and if-hyper block optimizations. Loop

unrolling, merging, unswitching and code invariant motion are necessary optimizations that

should be implemented in Xronos.

7.2.4 Memory Partitioning

Memory partitioning is widely adopted to increase the memory bandwidth efficiently by

using multiple memory banks and reducing data access conflict. Xronos does not support

this feature and developers need to separate different memory banks manually by adding

more actions and complexity into their existing code. An attractive solution that fits streaming

application is proposed in [205] and [206]. Wang and al.[206] based in the methodology in [205]

propose an automatic memory partitioning scheme for multidimensional arrays based on a

linear transformation. With the purpose to provide high data throughput of on-chip memories

for the loop pipelining in high-level synthesis.

7.2.5 Multi-Actor hierarchical memory management

In streaming video programs such as the MPEG decoders, there is a need to store reference

images in large memories that do not fit in the internal FPGA memories. The concept is to

create automatically, given a Component Library Database of supported board, an external

memory referee that will manage large memories inside actors. Given the MoC of an actor,

and especially the property that only one action can be executed, caching techniques should

be investigated for pre-loading memory portions. In addition, this referee should manage

read and write requests from other actors too.

7.2.6 Multiplexing and De-multiplexing queue channels for heterogeneous tar-
gets

As described in Section 4.13.4, the interface bandwidth or the communication scheduling

had a huge impact on performance. In addition, in Section 5.6 the bandwidth presented a

significant problem for finding a mapping between SW and HW processing elements. There is

a need for a better interface implementation and for an analysis of the implemented commu-

nication scheduling. In addition, SoCs that contain an ARM processing element communicate

nowadays through an AXI interface. AXI is an internal bus that is used to communicate with

peripheral devices and memory and offers high bandwidth and data locality. Supporting the

AXI interface immediately gives a broader support for constructor independent SoCs.

159

Chapter 7. Conclusion and Future Work

7.2.7 Clock Gating on input conditions and Multi-Clock Domains Partitioning

In the proposed clock-gating strategy, the idleness of an actor and the FIFO emptiness was not

taken into account. The emptiness condition is not enough to clock gate an actor, because the

actor might be in a firing state. Thus, taking both conditions and the output fullness condition

may further improve the overall power consumption. A further interesting direction might

be to combine the clock-gating strategy with multi-clock domains. Clocks that have a lower

frequency than nominal ones might also reduce the overall power consumption as illustrated

in [202].

7.2.8 Dataflow Machines: An alternative Intermediate Representation

The Orcc Dataflow IR and Procedural IR presents a set of limitation as discussed in Section 3.7.

A new alternative intermediate representation called Dataflow Machines [6], based on Actor

Machines [151], represents a better model for stream programs aimed at capturing their logical

structure in a way that they are amenable to analysis, composition, and hardware/software

code generation for parallel implementations. Replacing Orcc front-end in Xronos with

Dataflow Machines will mainly consist of producing a CDFG graph from a Dataflow Machine

model.

160

Bibliography

[1] S. Edwards, “The challenges of synthesizing hardware from c-like languages,” Design

Test of Computers, IEEE, vol. 23, pp. 375–386, May 2006.

[2] E. Bezati, H. Yviquel, M. Raulet, and M. Mattavelli, “A unified hardware/software co-

synthesis solution for signal processing systems,” in Design and Architectures for Signal

and Image Processing (DASIP), 2011 Conference on, pp. 1 –6, nov. 2011.

[3] E. Bezati, S. Brunet, M. Mattavelli, and J. Janneck, “Synthesis and optimization of high-

level stream programs,” in Electronic System Level Synthesis Conference (ESLsyn), 2013,

pp. 1–6, May 2013.

[4] E. Bezati, M. Mattavelli, and J. Janneck, “High-level synthesis of dataflow programs for

signal processing systems,” in Image and Signal Processing and Analysis (ISPA), 2013 8th

International Symposium on, pp. 750–754, Sept 2013.

[5] E. Bezati, G. Roquier, and M. Mattavelli, “Live demonstration: High level software and

hardware synthesis of dataflow programs,” in Circuits and Systems (ISCAS), 2013 IEEE

International Symposium on, pp. 660–660, May 2013.

[6] J. Janneck, G. Cedersjo, E. Bezati, and S. Casale-Brunet, “Dataflow machines,” in Signals,

Systems and Computers, 2014 Asilomar Conference on, Nov 2014.

[7] S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot, G. Roquier, M. Mattavelli, and J. W.

Janneck, “Methods to explore design space for mpeg rmc codec specifications,” Signal

Processing: Image Communication, vol. 28, no. 10, pp. 1278–1294, 2013.

[8] G. Roquier, E. Bezati, R. Thavot, and M. Mattavelli, “Hardware/software co-design of

dataflow programs for reconfigurable hardware and multi-core platforms,” in Design

and Architectures for Signal and Image Processing (DASIP), 2011 Conference on, pp. 1–7,

Nov 2011.

[9] G. Roquier, E. Bezati, and M. Mattavelli, “Hardware and software synthesis of heteroge-

neous systems from dataflow programs,” Journal of Electrical and Computer Engineering,

vol. 2012, no. 484962, 2014.

161

Bibliography

[10] S. Casale Brunet, M. Mattavelli, and J. Janneck, “Profiling of dataflow programs using

post mortem causation traces,” in Signal Processing Systems (SiPS), 2012 IEEE Workshop

on, oct. 2012.

[11] E. Bezati, R. Thavot, G. Roquier, and M. Mattavelli, “High-level dataflow design of signal

processing systems for reconfigurable and multicore heterogeneous platforms,” Journal

of Real-Time Image Processing, vol. 9, no. 1, pp. 251–262, 2014.

[12] S. Brunet, M. Mattavelli, and J. Janneck, “Buffer optimization based on critical path

analysis of a dataflow program design,” in Circuits and Systems (ISCAS), 2013 IEEE

International Symposium on, pp. 1384–1387, May 2013.

[13] S. Casale-Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi, and J. Janneck, “Multi-

clock domain optimization for reconfigurable architectures in high-level dataflow ap-

plications,” in Signals, Systems and Computers, 2013 Asilomar Conference on, pp. 1796–

1800, Nov 2013.

[14] S. Casale-Brunet, E. Bezati, C. Alberti, G. Roquier, M. Mattavelli, J. Janneck, and J. Boutel-

lier, “Design space exploration and implementation of rvc-cal applications using the

turnus framework,” in Design and Architectures for Signal and Image Processing (DASIP),

2013 Conference on, pp. 341–342, Oct 2013.

[15] S. Casale-Brunet, E. Bezati, M. Mattavelli, M. Canale, and J. Janneck, “Execution trace

graph analysis of dataflow programs: bounded buffer scheduling and deadlock recovery

using model predictive control,” in Proceedings of Conference on Design and Architec-

tures for Signal and Image Processing (DASIP), 2014.

[16] S. Casale-Brunet, M. Wiszniewska, E. Bezati, M. Mattavelli, J. Janneck, and M. Canale,

“Turnus: an open-source design space exploration framework for dynamic stream pro-

grams,” in Proceedings of Conference on Design and Architectures for Signal and Image

Processing (DASIP), 2014.

[17] M. Canale, S. Casale-Brunet, E. Bezati, M. Mattavelli, and J. Janneck, “Dataflow programs

analysis and optimization using model predictive control techniques: An example of

bounded buffer scheduling,” in Signal Processing Systems (SiPS), 2014 IEEE Workshop

on, pp. 1–6, Oct 2014.

[18] C. Sau, L. Raffo, F. Palumbo, E. Bezati, S. Casale-Brunet, and M. Mattavelli, “Automated

design flow for coarse-grained reconfigurable platforms: An rvc-cal multi-standard

decoder use-case,” in Embedded Computer Systems: Architectures, Modeling, and Simu-

lation (SAMOS XIV), 2014 International Conference on, pp. 59–66, July 2014.

[19] E. Bezati, S. Brunet, M. Mattavelli, and J. Janneck, “Coarse grain clock gating of stream-

ing applications in programmable logic implementations,” in Electronic System Level

Synthesis Conference (ESLsyn), Proceedings of the 2014, pp. 1–6, May 2014.

162

Bibliography

[20] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-Level Synbthesis: Introduction

to Chip and System Design. Kluwer Academic Publishers, 1st ed., 1992.

[21] D. Gajski and R. Kuhn, “Guest editors’ introduction: New vlsi tools,” Computer, vol. 16,

pp. 11–14, Dec 1983.

[22] K. Wakabayashi, “C-based behavioral synthesis and verification analysis on industrial

design examples,” in Proceedings of the 2004 Asia and South Pacific Design Automation

Conference, ASP-DAC ’04, (Piscataway, NJ, USA), pp. 344–348, IEEE Press, 2004.

[23] M. J. S. Smith, Application-specific Integrated Circuits. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 1997.

[24] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher

Education, 1st ed., 1994.

[25] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” Design Test of

Computers, IEEE, vol. 26, pp. 18–25, July 2009.

[26] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G. Leive, and J. Kim, “The

cmu design automation system - an example of automated data path design,” in Design

Automation, 1979. 16th Conference on, pp. 73–80, June 1979.

[27] A. Parker and S. Hayati, “Automating the vlsi design process using expert systems and

silicon compilation,” Proceedings of the IEEE, vol. 75, pp. 777–785, June 1987.

[28] M. Barbacci, D. of Computer Science, C.-M. U. Electrical Engineering, G. Barnes, R. Cat-

tell, and D. Siewiorek, The ISPS Computer Description Language: The Symbolic Ma-

nipulation of Computer Descriptions. Carnegie-Mellon University, Computer Science

Department, 1978.

[29] P. Marwedel, “The mimola design system: Detailed description of the software system,”

in Design Automation, 1979. 16th Conference on, pp. 59–63, June 1979.

[30] P. Marwedel, “The mimola design system: Tools for the design of digital processors,” in

Design Automation, 1984. 21st Conference on, pp. 587–593, June 1984.

[31] J. Granacki, D. Knapp, and A. Parker, “The adam advanced design automation system:

Overview, planner and natural language interface,” in Design Automation, 1985. 22nd

Conference on, pp. 727–730, June 1985.

[32] R. Jain, K. Kucukcakar, M. Mlinar, and A. Parker, “Experience with the adam synthesis

system,” in Design Automation, 1989. 26th Conference on, pp. 56–61, June 1989.

[33] N. Park and A. Parker, “Sehwa: a software package for synthesis of pipelines from

behavioral specifications,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 7, pp. 356–370, Mar 1988.

163

Bibliography

[34] P. Paulin, J. Knight, and E. Girczyc, “Hal: A multi-paradigm approach to automatic data

path synthesis,” in Design Automation, 1986. 23rd Conference on, pp. 263–270, June

1986.

[35] P. Paulin and J. Knight, “Force-directed scheduling for the behavioral synthesis of asics,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 8,

pp. 661–679, Jun 1989.

[36] H. Trickey, “Flamel: A high-level hardware compiler,” Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, vol. 6, pp. 259–269, March 1987.

[37] G. De Micheli and D. Ku, “Hercules-a system for high-level synthesis,” in Design Au-

tomation Conference, 1988. Proceedings., 25th ACM/IEEE, pp. 483–488, June 1988.

[38] G. De Micheli, D. Ku, F. Mailhot, and T. Truong, “The olympus synthesis system,” Design

Test of Computers, IEEE, vol. 7, pp. 37–53, Oct 1990.

[39] D. Ku and G. De Micheli, “Relative scheduling under timing constraints,” in Design

Automation Conference, 1990. Proceedings., 27th ACM/IEEE, pp. 59–64, Jun 1990.

[40] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. Brodersen, “Hyper-lp: a system for

power minimization using architectural transformations,” in Computer-Aided Design,

1992. ICCAD-92. Digest of Technical Papers., 1992 IEEE/ACM International Conference

on, pp. 300–303, Nov 1992.

[41] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing

power using transformations,” Computer-Aided Design of Integrated Circuits and Sys-

tems, IEEE Transactions on, vol. 14, pp. 12–31, Jan 1995.

[42] H. De Man, J. Rabaey, P. Six, and L. Claesen, “Cathedral-ii: A silicon compiler for digital

signal processing,” Design Test of Computers, IEEE, vol. 3, pp. 13–25, Dec 1986.

[43] R. A. Bergamaschi, R. A. O’Connor, L. Stok, M. Z. Moricz, S. Prakash, A. Kuehlmann, and

D. S. Rao, “High-level synthesis in an industrial environment,” IBM J. Res. Dev., vol. 39,

pp. 131–148, Feb. 1995.

[44] P. Lippens, J. Van Meerbergen, A. van der Werf, W. Verhaegh, B. McSweeney, J. Huisken,

and O. McArdle, “Phideo: a silicon compiler for high speed algorithms,” in Design

Automation. EDAC., Proceedings of the European Conference on, pp. 436–441, Feb 1991.

[45] K. Kucukcakar, C.-T. Chen, J. Gong, W. Philipsen, and T. Tkacik, “Matisse: an architectural

design tool for commodity ics,” Design Test of Computers, IEEE, vol. 15, pp. 22–33, Apr

1998.

[46] J. P. Elliott, Understanding Behavioral Synthesis: A Practical Guide to High-Level Design.

Norwell, MA, USA: Kluwer Academic Publishers, 1999.

164

Bibliography

[47] A. Hemani, B. Karlsson, M. Fredriksson, K. Nordqvist, and B. Fjellborg, “Application of

high-level synthesis in an industrial project,” in VLSI Design, 1994., Proceedings of the

Seventh International Conference on, pp. 5–10, Jan 1994.

[48] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC: Specification Language

and Methodology. Normwell, Ma:Springer, 1st ed., 2000.

[49] “Impulse.” http://www.impulseaccelerated.com/. Accessed: 12-2014.

[50] “Cadence Cynthesizer solution.” http://www.cadence.com/products/sd/cynthesizer/

pages/default.aspx?CMP=MOSS5/. Accessed: 12-2014.

[51] “Calypto Catapult.” http://calypto.com/en/products/catapult/overview/. Accessed:

12-2014.

[52] “NEC Cyber WorkBench.” http://www.nec.com/en/global/prod/cwb/. Accessed: 12-

2014.

[53] “Synopsis synphonyc compiler.” http://www.synopsys.com/Tools/Implementation/

RTLSynthesis/Pages/SynphonyC-Compiler.aspx. Accessed: 12-2014.

[54] “Xilinx Vivado High-level Synthesis.” http://www.xilinx.com/products/design-tools/

vivado/integration/esl-design.html. Accessed: 12-2014.

[55] C. E. Stroud, R. R. Munoz, and D. A. Pierce, “Behavioral model synthesis with cones,”

IEEE Des. Test, vol. 5, pp. 22–30, May 1988.

[56] D. C. Ku and G. De Micheli, High Level Synthesis of ASICs Under Timing and Synchro-

nization Constraints. Norwell, MA, USA: Kluwer Academic Publishers, 1992.

[57] D. Galloway, “The transmogrifier c hardware description language and compiler for

fpgas,” in Proceedings of the IEEE Symposium on FPGA’s for Custom Computing Machines,

FCCM ’95, (Washington, DC, USA), pp. 136–, IEEE Computer Society, 1995.

[58] Y. Panchul, D. Soderman, and D. Coleman, “System for converting hardware designs in

high-level programming languages to hardware implementations,” Oct. 25 2001. US

Patent App. 09/846,092.

[59] T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Ohnishi, A. Kay, P. Boca, V. Zammit, and

T. Nomura, “A c-based synthesis system, bach, and its application (invited talk),” in

Proceedings of the 2001 Asia and South Pacific Design Automation Conference, ASP-DAC

’01, (New York, NY, USA), pp. 151–155, ACM, 2001.

[60] K. Wakabayashi and T. Okamoto, “C-based soc design flow and eda tools: An asic and

system vendor perspective,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 19, pp. 1507–

1522, Nov. 2006.

165

http://www.impulseaccelerated.com/
http://www.cadence.com/products/sd/cynthesizer/pages/default.aspx?CMP=MOSS5/
http://www.cadence.com/products/sd/cynthesizer/pages/default.aspx?CMP=MOSS5/
http://calypto.com/en/products/catapult/overview/
http://www.nec.com/en/global/prod/cwb/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

Bibliography

[61] P. Paulin, C. Pilkington, and E. Bensoudane, “Stepnp: a system-level exploration plat-

form for network processors,” Design Test of Computers, IEEE, vol. 19, pp. 17–26, Nov

2002.

[62] “Bluespec inc.” http://www.bluespec.com/. Accessed: 12-2014.

[63] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and W.-M. Hwu, “Fcuda:

Enabling efficient compilation of cuda kernels onto fpgas,” in Application Specific

Processors, 2009. SASP ’09. IEEE 7th Symposium on, pp. 35–42, July 2009.

[64] M. Owaida, N. Bellas, K. Daloukas, and C. Antonopoulos, “Synthesis of platform archi-

tectures from opencl programs,” in Field-Programmable Custom Computing Machines

(FCCM), 2011 IEEE 19th Annual International Symposium on, pp. 186–193, May 2011.

[65] P. Bellows and B. Hutchings, “Jhdl-an hdl for reconfigurable systems,” in FPGAs for

Custom Computing Machines, 1998. Proceedings. IEEE Symposium on, pp. 175–184, Apr

1998.

[66] J. L. Tripp, P. A. Jackson, and B. Hutchings, “Sea cucumber: A synthesizing compiler for

fpgas,” in Proceedings of the Reconfigurable Computing Is Going Mainstream, 12th Inter-

national Conference on Field-Programmable Logic and Applications, FPL ’02, (London,

UK, UK), pp. 875–885, Springer-Verlag, 2002.

[67] D. Greaves and S. Singh, “Using c sharp attributes to describe hardware artefacts within

kiwi,” in Specification, Verification and Design Languages, 2008. FDL 2008. Forum on,

pp. 239–240, Sept 2008.

[68] W. Luk and S. McKeever, “Pebble: A language for parametrised and reconfigurable hard-

ware design,” in Field-Programmable Logic and Applications From FPGAs to Computing

Paradigm, Springer Berlin Heidelberg, 1998.

[69] G. Berry and G. Gonthier, “The esterel synchronous programming language: Design,

semantics, implementation,” Sci. Comput. Program., vol. 19, pp. 87–152, Nov. 1992.

[70] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T. D. Hämäläinen, J. Ri-

ihimäki, and K. Kuusilinna, “Uml-based multiprocessor soc design framework,” ACM

Trans. Embed. Comput. Syst., vol. 5, pp. 281–320, May 2006.

[71] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad, and the ugly,”

IBM Syst. J., vol. 45, pp. 451–461, July 2006.

[72] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin, “Pls: a scheduler for pipeline synthesis,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 12, pp. 1279–

1286, Sep 1993.

[73] C. H. Gebotys and M. I. Elmasry, “Vlsi design synthesis with testability,” in Proceedings

of the 25th ACM/IEEE Design Automation Conference, DAC ’88, (Los Alamitos, CA, USA),

pp. 16–21, IEEE Computer Society Press, 1988.

166

http://www.bluespec.com/

Bibliography

[74] P. Marwedel, “A new synthesis algorithm for the mimola software system,” in Design

Automation, 1986. 23rd Conference on, pp. 271–277, June 1986.

[75] J.-H. Lee, Y.-C. Hsu, and Y.-L. Lin, “A new integer linear programming formulation for the

scheduling problem in data path synthesis,” in Computer-Aided Design, 1989. ICCAD-89.

Digest of Technical Papers., 1989 IEEE International Conference on, pp. 20–23, Nov 1989.

[76] I.-C. Park and C.-M. Kyung, “Fast and near optimal scheduling in automatic data path

synthesis,” in Proceedings of the 28th ACM/IEEE Design Automation Conference, DAC

’91, (New York, NY, USA), pp. 680–685, ACM, 1991.

[77] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”

Bell System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[78] A.-H. Ab Rahman, A. Prihozhy, and M. Mattavelli, “Pipeline synthesis and optimization

of fpga-based video processing applications with cal,” EURASIP Journal on Image and

Video Processing, vol. 2011, no. 1, 2011.

[79] L. Gao, D. Zaretsky, G. Mittal, D. Schonfeld, and P. Banerjee, “A software pipelining

algorithm in high-level synthesis for fpga architectures,” in Quality of Electronic Design,

2009. ISQED 2009. Quality Electronic Design, pp. 297–302, March 2009.

[80] M. Weinhardt and W. Luk, “Pipeline vectorization,” Trans. Comp.-Aided Des. Integ. Cir.

Sys., vol. 20, pp. 234–248, Nov. 2006.

[81] S. Oh, T. G. Kim, J. Cho, and E. Bozorgzadeh, “Speculative loop-pipelining in binary

translation for hardware acceleration,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 27, pp. 409–422, March 2008.

[82] G. De Micheli, “Hardware synthesis from c/c++ models,” in Design, Automation and

Test in Europe Conference and Exhibition 1999. Proceedings, pp. 382–383, 1999.

[83] L.-F. Chao, A. LaPaugh, and E.-M. Sha, “Rotation scheduling: a loop pipelining algo-

rithm,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

vol. 16, pp. 229–239, Mar 1997.

[84] H.-S. Jun and S.-Y. Hwang, “Design of a pipelined datapath synthesis system for digital

signal processing,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 2, pp. 292–303, Sept 1994.

[85] W. Verhaegh, P. Lippens, E. Aarts, J. Korst, J. Van Meerbergen, and A. van der Werf,

“Improved force-directed scheduling in high-throughput digital signal processing,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 14,

pp. 945–960, Aug 1995.

[86] E. Nurvitadhi, J. Hoe, T. Kam, and S. Lu, “Automatic pipelining from transactional

datapath specifications,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 30, pp. 441–454, March 2011.

167

Bibliography

[87] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE, vol. 75,

pp. 1235–1245, Sept 1987.

[88] G. Kahn, “The Semantics of Simple Language for Parallel Programming,” in IFIP Congress,

pp. 471–475, 1974.

[89] A. Prihozhy, “Net scheduling in high-level synthesis,” Design Test of Computers, IEEE,

vol. 13, pp. 26–35, Spring 1996.

[90] J. Eker and J. Janneck, “CAL Language Report,” Tech. Rep. ERL Technical Memo

UCB/ERL M03/48, University of California at Berkeley, Dec. 2003.

[91] M. Mattavelli, I. Amer, and M. Raulet, “The Reconfigurable Video Coding Standard,”

Signal Processing Magazine, IEEE, vol. 27, pp. 159 –167, May 2010.

[92] C. Leiserson and J. B. Saxe, “Optimizing synchronous systems,” in Foundations of Com-

puter Science, 1981. SFCS ’81. 22nd Annual Symposium on, pp. 23–36, Oct 1981.

[93] S. Malik, K. Singh, R. Brayton, and A. Sangiovanni-Vincentelli, “Performance optimiza-

tion of pipelined logic circuits using peripheral retiming and resynthesis,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 12, pp. 568–

578, May 1993.

[94] N. Shenoy, “Retiming: Theory and practice,” Integr. VLSI J., vol. 22, pp. 1–21, Aug. 1997.

[95] K. Hwang, A. Casavant, C.-T. Chang, and M. d’Abreu, “Scheduling and hardware sharing

in pipelined data paths,” in Computer-Aided Design, 1989. ICCAD-89. Digest of Technical

Papers., 1989 IEEE International Conference on, pp. 24–27, Nov 1989.

[96] G. Goossens, J. Rabaey, J. Vandewalle, and H. De Man, “An efficient microcode compiler

for application specific dsp processors,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 9, pp. 925–937, Sep 1990.

[97] W. Sun, M. Wirthlin, and S. Neuendorffer, “Fpga pipeline synthesis design exploration

using module selection and resource sharing,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 26, pp. 254–265, Feb 2007.

[98] B. Haroun and M. Elmasry, “Architectural synthesis for dsp silicon compilers,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 8, pp. 431–447,

Apr 1989.

[99] H. Javaid, A. Ignjatovic, and S. Parameswaran, “Rapid design space exploration of ap-

plication specific heterogeneous pipelined multiprocessor systems,” Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 29, pp. 1777–1789,

Nov 2010.

[100] E. Girczyc, “Loop winding - a data flow approach to functional pipelining,” in ISCAS,

pp. 382–385, 1987.

168

Bibliography

[101] R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation based synthesis,” in Design

Automation Conference, 1990. Proceedings., 27th ACM/IEEE, pp. 444–449, Jun 1990.

[102] A. Aiken and A. Nicolau, “Optimal loop parallelization,” in Proceedings of the ACM

SIGPLAN 1988 Conference on Programming Language Design and Implementation,

PLDI ’88, (New York, NY, USA), pp. 308–317, ACM, 1988.

[103] F. N. Najm, “Feedback, correlation, and delay concerns in the power estimation of vlsi

circuits,” in Proceedings of the 32Nd Annual ACM/IEEE Design Automation Conference,

DAC ’95, (New York, NY, USA), pp. 612–617, ACM, 1995.

[104] M. Pedram, “Power minimization in ic design: Principles and applications,” ACM Trans.

Des. Autom. Electron. Syst., vol. 1, pp. 3–56, Jan. 1996.

[105] S. M. Srinivas Devadas, “A survey of optimization techniques targeting low power vlsi

circuits,” in Design Automation, 1995. DAC ’95. 32nd Conference on, pp. 242–247, 1995.

[106] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital design,” Solid-

State Circuits, IEEE Journal of, vol. 27, pp. 473–484, Apr 1992.

[107] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing

power using transformations,” Computer-Aided Design of Integrated Circuits and Sys-

tems, IEEE Transactions on, vol. 14, pp. 12–31, Jan 1995.

[108] R. Mehra and J. Rabaey, “Behavioral level power estimation and exploration,” in in Proc.

Int. Wkshp. Low Power Design, pp. 197–202, 1994.

[109] A. Chatterjee and R. Roy, “Synthesis of low power linear dsp circuits using activity

metrics,” in VLSI Design, 1994., Proceedings of the Seventh International Conference on,

pp. 265–270, Jan 1994.

[110] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. De Man, “Global com-

munication and memory optimizing transformations for low power signal processing

systems,” in VLSI Signal Processing, VII, 1994., [Workshop on], pp. 178–187, 1994.

[111] D. Lidsky and J. Rabaey, “Low-power design of memory intensive functions,” in Low

Power Electronics, 1994. Digest of Technical Papers., IEEE Symposium, pp. 16–17, Oct

1994.

[112] P. Panda and N. Dutt, “Reducing address bus transition for low power memory mapping,”

in European Design and Test Conference, 1996. ED TC 96. Proceedings, pp. 63–68, Mar

1996.

[113] A. Raghunathan and N. Jha, “Behavioral synthesis for low power,” in Computer Design:

VLSI in Computers and Processors, 1994. ICCD ’94. Proceedings., IEEE International

Conference on, pp. 318–322, Oct 1994.

169

Bibliography

[114] A. Raghunathan and N. Jha, “An ilp formulation for low power based on minimizing

switched capacitance during data path allocation,” in Circuits and Systems, 1995. ISCAS

’95., 1995 IEEE International Symposium on, vol. 2, pp. 1069–1073 vol.2, Apr 1995.

[115] M. P. Jui-Ming Chang, “Register allocation and binding for low power,” in Design Au-

tomation, 1995. DAC ’95. 32nd Conference on, pp. 29–35, 1995.

[116] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimiza-

tion during microarchitecture synthesis,” in Proceedings of the 1995 International Sym-

posium on Low Power Design, ISLPED ’95, (New York, NY, USA), pp. 69–74, ACM, 1995.

[117] E. Musoll and J. Cortadella, “High-level synthesis techniques for reducing the activity

of functional units,” in Proceedings of the 1995 International Symposium on Low Power

Design, ISLPED ’95, (New York, NY, USA), pp. 99–104, ACM, 1995.

[118] M. Stan and W. Burleson, “Bus-invert coding for low-power i/o,” Very Large Scale Inte-

gration (VLSI) Systems, IEEE Transactions on, vol. 3, pp. 49–58, March 1995.

[119] A. Manzak and C. Chakrabarti, “A low power scheduling scheme with resources operat-

ing at multiple voltages,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 10, pp. 6–14, Feb 2002.

[120] S. Mohanty and N. Ranganathan, “Energy efficient scheduling for datapath synthesis,”

in VLSI Design, 2003. Proceedings. 16th International Conference on, pp. 446–451, Jan

2003.

[121] S. Mohanty and N. Ranganathan, “Simultaneous peak and average power minimization

during datapath scheduling,” Circuits and Systems I: Regular Papers, IEEE Transactions

on, vol. 52, pp. 1157–1165, June 2005.

[122] M. C. Johnson and K. Roy, “Datapath scheduling with multiple supply voltages and level

converters,” ACM Trans. Des. Autom. Electron. Syst., vol. 2, pp. 227–248, July 1997.

[123] X. Xing and C.-C. Jong, “Multivoltage multifrequency low-energy synthesis for function-

ally pipelined datapath,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 17, pp. 1348–1352, Sept 2009.

[124] W.-T. Chang, S. Ha, and E. A. Lee, “Heterogeneous simulation—mixing discrete-

event models with dataflow,” J. VLSI Signal Process. Syst., vol. 15, pp. 127–144, Jan. 1997.

[125] Y.-R. Lin, C.-T. Hwang, and A. C.-H. Wu, “Scheduling techniques for variable voltage low

power designs,” ACM Trans. Des. Autom. Electron. Syst., vol. 2, pp. 81–97, Apr. 1997.

[126] G. Lakshminarayana and N. Jha, “High-level synthesis of power-optimized and area-

optimized circuits from hierarchical data-flow intensive behaviors,” Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 18, pp. 265–281,

Mar 1999.

170

Bibliography

[127] D. Chen, J. Cong, and Y. Fan, “Low-power high-level synthesis for fpga architectures,” in

Low Power Electronics and Design, 2003. ISLPED ’03. Proceedings of the 2003 Interna-

tional Symposium on, pp. 134–139, Aug 2003.

[128] B. Landman and R. L. Russo, “On a pin versus block relationship for partitions of logic

graphs,” Computers, IEEE Transactions on, vol. C-20, pp. 1469–1479, Dec 1971.

[129] A. Bogliolo, L. Benini, B. Ricco, and G. De Micheli, “Efficient switching activity computa-

tion during high-level synthesis of control-dominated designs,” in Low Power Electronics

and Design, 1999. Proceedings. 1999 International Symposium on, pp. 127–132, Aug 1999.

[130] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg, P. Ellervee,

and D. Lundqvist, “Lowering power consumption in clock by using globally asyn-

chronous locally synchronous design style,” in Design Automation Conference, 1999.

Proceedings. 36th, pp. 873–878, 1999.

[131] S. Suhaib, D. Mathaikutty, and S. Shukla, “Dataflow architectures for GALS,” Electronic

Notes in Theoretical Computer Science, vol. 200, no. 1, pp. 33–50, 2008.

[132] T.-Y. Wuu and S. B. K. Vrudhula, “Synthesis of asynchronous systems from data flow

specification,” Research Report ISI/RR-93-366, University of Southern California, Infor-

mation Sciences Institute, Dec 1993.

[133] B. Ghavami and H. Pedram, “High performance asynchronous design flow using a novel

static performance analysis method,” Comput. Electr. Eng., vol. 35, pp. 920–941, Nov.

2009.

[134] M. Gerber and T. Gossi, “Parallel coprocessor architectures for molecular dynamics

simulation: a case study in design space exploration,” in Circuits and Systems, 1998.

ISCAS ’98. Proceedings of the 1998 IEEE International Symposium on, vol. 6, pp. 155–158

vol.6, May 1998.

[135] Y. Le Moullec, J.-P. Diguet, N. Amor, T. Gourdeaux, and J.-L. Philippe, “Algorithmic-level

specification and characterization of embedded multimedia applications with design

trotter,” Journal of VLSI signal processing systems for signal, image and video technology,

vol. 42, no. 2, pp. 185–208, 2006.

[136] “The syndex project.” http://www.syndex.org/. Accessed: 12-2014.

[137] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi, “Preesm: A dataflow-

based rapid prototyping framework for simplifying multicore dsp programming,” in

Education and Research Conference (EDERC), 2014 6th European Embedded Design in,

pp. 36–40, Sept 2014.

[138] “National instruments fpga.” http://www.ni.com/fpga/. Accessed: 12-2014.

[139] “Matlab hdl coder.” http://mathworks.com/products/hdl-coder/. Accessed: 12-2014.

171

http://www.syndex.org/
http://www.ni.com/fpga/
http://mathworks.com/products/hdl-coder/

Bibliography

[140] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Polstra, and E. F. De-

prettere, “A framework for rapid system-level exploration, synthesis, and programming

of multimedia mp-socs,” in Proceedings of the 5th IEEE/ACM International Conference

on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’07, (New York, NY,

USA), pp. 9–14, ACM, 2007.

[141] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-Vincentelli, G. Yang,

H. Zeng, and Q. Zhu, “A next-generation design framework for platform-based design,”

in DVCon 2007, February 2007.

[142] M. P. Howarth, P. Flegkas, G. Pavlou, N. Wang, P. Trimintzios, D. Griffin, J. Griem, M. Bou-

cadair, P. Morand, A. Asgari, and P. Georgatsos, “Provisioning for interdomain quality of

service: The mescal approach,” Comm. Mag., vol. 43, pp. 129–137, June 2005.

[143] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “Peace: A hardware-software codesign

environment for multimedia embedded systems,” ACM Trans. Des. Autom. Electron.

Syst., vol. 12, pp. 24:1–24:25, May 2008.

[144] “The ptolemy project.” http://ptolemy.eecs.berkeley.edu/. Accessed: 12-2014.

[145] J. Keinert, M. Streub&uhorbar;hr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich,

and M. Meredith, “Systemcodesigner—an automatic esl synthesis approach by

design space exploration and behavioral synthesis for streaming applications,” ACM

Trans. Des. Autom. Electron. Syst., vol. 14, pp. 1:1–1:23, Jan. 2009.

[146] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet, “Synthesizing

Hardware from Dataflow Programs: An MPEG-4 Simple Profile Decoder Case Study,”

Journal of Signal Processing Systems, vol. 63, no. 2, pp. 241–249, 2009. 10.1007/s11265-

009-0397-5.

[147] “Open dataflow.” http://sourceforge.net/projects/opendf. Accessed: 12-2014.

[148] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and M. Raulet, “Orcc: Multime-

dia development made easy,” in Proceedings of the 21st ACM International Conference

on Multimedia, MM ’13, pp. 863–866, ACM, 2013.

[149] “Caltoopia.” http://www.caltoopia.org/. Accessed: 12-2014.

[150] R. Thavot, High-level dataflow programming for complex digital systems. PhD thesis,

STI, Lausanne, 2013.

[151] J. Janneck, “A machine model for dataflow actors and its applications,” in Signals, Sys-

tems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar

Conference on, pp. 756–760, Nov 2011.

[152] E. Lee and T. Parks, “Dataflow process networks,” Proceedings of the IEEE, vol. 83, pp. 773

–801, may 1995.

172

http://ptolemy.eecs.berkeley.edu/
http://sourceforge.net/projects/opendf
http://www.caltoopia.org/

Bibliography

[153] J. B. Dennis, “First version of a data flow procedure language,” in Symposium on Pro-

gramming, pp. 362–376, 1974.

[154] J. Eker and J. Janneck, “CAL Language Report,” Tech. Rep. ERL Technical Memo

UCB/ERL M03/48, University of California at Berkeley, Dec. 2003.

[155] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli, “System-level

design: Orthogonalization of concerns and platform-based design,” Trans. Comp.-Aided

Des. Integ. Cir. Sys., vol. 19, pp. 1523–1543, nov 2006.

[156] A. Turing, “On computable numbers with an application to the "Entscheidungsprob-

lem",” Proceeding of the London Mathematical Society, 1936.

[157] D. McAllester, P. Panangaden, and V. Shanbhogue, “Nonexpressibility of fairness and

signaling,” J. Comput. Syst. Sci., vol. 47, pp. 287–321, oct. 1993.

[158] E. Lee and A. Sangiovanni-Vincentelli, “Comparing models of computation,” in Pro-

ceedings of the 1996 IEEE/ACM international conference on Computer-aided design,

pp. 234–241, IEEE Computer Society, 1997.

[159] E. Lee and T. Parks, “Dataflow process networks,” in Proceedings of the IEEE, pp. 773–799,

1995.

[160] “Open RVC-CAL compiler.” http://orcc.sourceforge.net/. Accessed: 12-2014.

[161] “Xtext: Language development made easy!.” https://eclipse.org/Xtext/. Accessed: 12-

2014.

[162] “Eclipse modeling framework.” http://eclipse.org/modeling/emf/. Accessed: 12-2014.

[163] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Frame-

work 2.0. Addison-Wesley Professional, 2nd ed., 2009.

[164] “Xtend: Modernized java.” http://www.altera.com/products/software/opencl/

opencl-index.html. Accessed: 12-2014.

[165] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

[166] N. Siret, M. Wipliez, J.-F. Nezan, and A. Rhatay, “Hardware code generation from dataflow

programs,” in Design and Architectures for Signal and Image Processing (DASIP), 2010

Conference on, pp. 113–120, Oct 2010.

[167] K. Jerbi, M. Raulet, O. Deforges, and M. Abid, “Automatic generation of synthesizable

hardware implementation from high level RVC-CAL description,” in Acoustics, Speech

and Signal Processing (ICASSP), 2012 IEEE International Conference on, pp. 1597–1600,

March 2012.

173

http://orcc.sourceforge.net/
https://eclipse.org/Xtext/
http://eclipse.org/modeling/emf/
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html

Bibliography

[168] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently com-

puting static single assignment form and the control dependence graph,” ACM Trans.

Program. Lang. Syst., vol. 13, pp. 451–490, Oct. 1991.

[169] M. Abid, K. Jerbi, M. Raulet, O. Deforges, and M. Abid, “System level synthesis of dataflow

programs: Hevc decoder case study,” in Electronic System Level Synthesis Conference

(ESLsyn), 2013, pp. 1–6, May 2013.

[170] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: a high-level synthesis framework

for applying parallelizing compiler transformations,” in VLSI Design, 2003. Proceedings.

16th International Conference on, pp. 461–466, Jan 2003.

[171] A. Inc., “Fpga performance benchmarking methodology.”

[172] OSCI, “Systemc synthesizable subset draft 1.3,” 2010.

[173] “performance api.” http://icl.cs.utk.edu/papi/. Accessed: 12-2014.

[174] A. Ghazi, J. Boutellier, M. Abdelaziz, X. Lu, L. Anttila, J. Cavallaro, S. Bhattacharyya,

M. Valkama, and M. Juntti, “Low power implementation of digital predistortion filter on

a heterogeneous application specific multiprocessor,” in Acoustics, Speech and Signal

Processing (ICASSP), 2014 IEEE International Conference on, pp. 8336–8340, May 2014.

[175] “Berkeley softfloat.” http://www.jhauser.us/arithmetic/SoftFloat.html. Accessed: 12-

2014.

[176] “Snu real time benchmarks.” http://www.cprover.org/goto-cc/examples/snu.html. Ac-

cessed: 12-2014.

[177] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for evaluating and

synthesizing multimedia and communications systems,” in Microarchitecture, 1997.

Proceedings., Thirtieth Annual IEEE/ACM International Symposium on, pp. 330–335, Dec

1997.

[178] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quantitative analysis

of the chstone benchmark program suite for practical c-based high-level synthesis,”

Journal of Information Processing, vol. 17, pp. 242–254, 2009.

[179] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, J.-F. Nezan, and O. Déforges,

“Reconfigurable video coding on multicore,” IEEE Signal Processing Magazine, vol. 26,

pp. 113 –123, november 2009.

[180] A. Carlsson, J. Eker, T. Olsson, and C. von Platen, “Scalable parallelism using dataflow

programming,” in Ericson Review, On-line publishing www.ericsson.com, 2011.

[181] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere, “System design using

kahn process networks: The compaan/laura approach,” in Proceedings of the Conference

on Design, Automation and Test in Europe - Volume 1, DATE ’04, (Washington, DC, USA),

pp. 10340–, IEEE Computer Society, 2004.

174

http://icl.cs.utk.edu/papi/
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.cprover.org/goto-cc/examples/snu.html

Bibliography

[182] J. Janneck, I. Miller, and D. Parlour, “Profiling dataflow programs,” in Proceedings of the

IEEE International Conference on Multimedia and Expo, pp. 1065–1068, 2008.

[183] M. Ravasi, An automatic C-code instrumentation framework for high level algorithmic

complexity analysis and system design. PhD thesis, STI, Lausanne, 2003.

[184] A. Kienhuis, Design Space Exploration of Stream-based Dataflow Architectures: Methods

and Tools. PhD thesis, Delft University of Technology, The Netherlands, January 1999.

[185] M. Gries, “Methods for evaluating and covering the design space during early design

development,” Integr. VLSI J., vol. 38, pp. 131–183, dec 2004.

[186] M. Pelcat, J. Nezan, J. Piat, J. Croizer, and S. Aridhi, “A System-Level Architecture Model

for Rapid Prototyping of Heterogeneous Multicore Embedded Systems,” in Conference

on Design and Architectures for Signal and Image Processing (DASIP) 2009, (nice, France),

p. 8 pages, Sep 2009.

[187] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal models for embedded

system design,” IEEE Design & Test of Computers, vol. 17, no. 2, pp. 14–27, 2000.

[188] A. A. H. B. Ab Rahman, Optimizing Dataflow Programs for Hardware Synthesis. PhD

thesis, STI, Lausanne, 2014.

[189] P. K. Murthy and S. S. Bhattacharyya, Memory Management for Synthesis of DSP Software.

CRC Press, 2006.

[190] “A discrete event system simulator.” http://web.ornl.gov/~1qn/adevs/. Accessed: 12-

2014.

[191] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of Modeling and Simulation. Orlando,

FL, USA: Academic Press, Inc., 2nd ed., 2000.

[192] J. Woodward, “Computable and incomputable functions and search algorithms,” in

Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Con-

ference on, vol. 1, pp. 871–875, Nov 2009.

[193] M. Pedram, “Power minimization in ic design: Principles and applications,” ACM Trans.

Des. Autom. Electron. Syst., vol. 1, pp. 3–56, Jan. 1996.

[194] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low power design of

sequential circuits,” Circuits and Systems I: Fundamental Theory and Applications, IEEE

Transactions on, vol. 47, pp. 415–420, Mar 2000.

[195] G. Tellez, A. Farrahi, and M. Sarrafzadeh, “Activity-driven clock design for low power

circuits,” in Computer-Aided Design, 1995. ICCAD-95. Digest of Technical Papers., 1995

IEEE/ACM International Conference on, pp. 62–65, Nov 1995.

[196] Xilinx, Virtex-7 T and XT FPGAs Data Sheet, November 2013. DS183.

175

http://web.ornl.gov/~1qn/adevs/

Bibliography

[197] Xilinx, 7 Series FPGAs Clocking Resources, August 2013. UG472.

[198] D. B. Parlour, “Power control in a data flow processing architecture.” US Patent 7,437,582,

October 2008.

[199] H. Prabhu, S. Thomas, J. Rodrigues, T. Olsson, and A. Carlsson, “A GALS ASIC implemen-

tation from a CAL dataflow description,” in NORCHIP, 2011-11-14/2011-11-15, 2011.

[200] Xilinx, Analysis of Power Savings from Intelligent Clock Gating, August 2012. XAPP790.

[201] “Open RVC-CAL Applications,” 2014. http://github.com/orcc/orc-apps, accessed 25-

February-2014].

[202] S. Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi, and J. Janneck, “Partitioning and

optimization of high level stream applications for multi clock domain architectures,” in

Signal Processing Systems (SiPS), 2013 IEEE Workshop on, pp. 177–182, Oct 2013.

[203] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm based on sdc

formulation,” in Proceedings of the 43rd Annual Design Automation Conference, DAC

’06, (New York, NY, USA), pp. 433–438, ACM, 2006.

[204] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown, and

T. Czajkowski, “Legup: High-level synthesis for fpga-based processor/accelerator sys-

tems,” in Proceedings of the 19th ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, FPGA ’11, (New York, NY, USA), pp. 33–36, ACM, 2011.

[205] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic memory partitioning and scheduling for

throughput and power optimization,” in Computer-Aided Design - Digest of Technical

Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on, pp. 697–704, Nov

2009.

[206] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning for multidimen-

sional arrays in high-level synthesis,” in Proceedings of the 50th Annual Design Automa-

tion Conference, DAC ’13, (New York, NY, USA), pp. 12:1–12:8, ACM, 2013.

176

http://github.com/orcc/orc-apps

Endri Bezati

36 Rue St.Martin
1005 Lausanne

Å (+41) 076.528.21.61
� endri.bezati@epfl.ch

 Education

2007 - 2010 Engineer EII, INSA of Rennes (Institut National des Sciences Appliquées), France
Master degree in Electronics and Computer Engineering,
With option in “Embedded Systems” and “Business Engineering”

2005 - 2007 DUT GEII, University of Rennes 1, France
Bachelor In Electronics and Computer Engineering

2004 - 2005 STPI – 1er Cycle, INSA de Rennes (Institut National des Sciences Appliquées)
 First year of “Cycle Préparatoire” of “Engineer Student” in the EURINSA international

section
2003 - 2004 A-Level, 3rd High School of Piraeus, Greece

“APOLYTIRION” A-Level equivalent in Math’s and Engineering, degree with Honors

 Skills

 Information Technology

Pro. Languages C, C++, Java, CAL Hardware
Languages

Verilog, VHDL, SystemC

Script
Languages

Bash, Javascript API .Net, MFC, GTK, QT,SWT

OS Windows, Linux, Mac OS X Embedded OS Linux RT, Android
I.D.E Visual Studio, Eclipse, Xcode Image/Video

Standards
JPEG,MPEG4, AVC/H.264, SVC,
HEVC/H2.65

 Electronics

 Conception
Tools

OrCAD, PSPICE, Modelsim,
Quartus, Xillinx ISE/Vivado

Signal Processing Matlab, LabView, Scilab, Octave

E.D.A. Altium Designer, Protel, Eagle P.L.C. Siemens, Schneider

 Professional Experiences

2010 Master Thesis, EPFL SCI-STI-MM, Lausanne, Switzerland
Full feature data flow Implementation of the entropy decoder CABAC (Context Adaptive
Binary Arithmetic Coding) of the AVC/H.264 Main Profile decoder.

2009 Engineer Internship, I.E.T.R., Rennes, France
Data flow modeling and programming of the MPEG-SVC (H.264) decoder for integrating it
in the video tool library of the new MPEG-RVC (Reconfigurable Video Coding) standard

2007 Bachelor Internship, Thomson Grass Valley (now Technicolor), Rennes, France
Hardware (schematic conception, component selection, routing) and Software (.Net GUI,
C++) conception of an automatic digital signal cutter for testing robustness of the
Thomson Grass Valley high definition video encoders

 Foreign Languages

English Advanced (TOEIC 920/990) French Perfect

Albanian Mother tongue Greek Mother tongue

 Center of Interest

IT Linux Kernel, OpenCL, Android Films Science fiction, Action, Comedy

Books Science fiction Sports Football, Body Building

177

 Publications

2015 A. Prihozhy ,E. Bezati, A. Ab-Rahman , M.Mattavelli " Synthesis and Optimization of

Pipelines for HW Implementations of Dataflow Programs," Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on , accepted for publication

2014 E. Bezati, R. Thavot, G. Roquier, and M. Mattavelli, “High-level dataflow design of signal
processing systems for reconfigurable and multicore heterogeneous platforms,” Journal of
Real-Time Image Processing, vol. 9, no. 1, pp. 251–262, 2014.

E.Bezati, S.Brunet, M.Mattavelli, and J.Janneck, “Coarse grain clock gating of streaming
applications in programmable logic implementations,” in Electronic System Level Synthesis
Conference (ESLsyn), Proceedings of the 2014, pp. 1–6, May 2014.

S. Casale-Brunet, M. Wiszniewska, E. Bezati, M. Mattavelli, J. Janneck, and M. Canale,
“Turnus: an open- source design space exploration framework for dynamic stream
programs,” in Proceedings of Conference on Design and Architectures for Signal and Image
Processing (DASIP), 2014.

S. Casale-Brunet, E. Bezati, M. Mattavelli, M. Canale, and J. Janneck, “Execution trace graph
analysis of dataflow programs: bounded buffer scheduling and deadlock recovery using
model predictive control,” in Proceedings of Conference on Design and Architectures for
Signal and Image Processing (DASIP), 2014.

S. Casale-Brunet, M. Wiszniewska, E. Bezati, M. Mattavelli, J. Janneck, and M. Canale,
“Turnus: an open- source design space exploration framework for dynamic stream
programs,” in Proceedings of Conference on Design and Architectures for Signal and Image
Processing (DASIP), 2014.

M. Canale, S. Casale-Brunet, E. Bezati, M. Mattavelli, and J. Janneck, “Dataflow programs
analysis and optimization using model predictive control techniques: An example of
bounded buffer scheduling,” in Signal Processing Systems (SiPS), 2014 IEEE Workshop on,
pp. 1–6, Oct 2014.

 C. Sau, L. Raffo, F. Palumbo, E. Bezati, S. Casale-Brunet, and M. Mattavelli, “Automated
design flow for coarse-grained reconfigurable platforms: An RVC-Cal multi-standard
decoder use-case,” in Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), 2014 International Conference on, pp. 59– 66, July 2014.

J. Janneck, G. Cedersjo, E. Bezati, and S. Casale-Brunet, “Dataflow machines,” in Signals,
Systems and Computers, 2014 Asilomar Conference on, Nov 2014.

2013 E. Bezati, S. Brunet, M. Mattavelli, and J. Janneck, “Synthesis and optimization of high-level
stream programs,” in Electronic System Level Synthesis Conference (ESLsyn), 2013, pp. 1–6,
May 2013.

E. Bezati, G. Roquier, and M. Mattavelli, “Live demonstration: High level software and
hardware synthesis of dataflow programs,” in Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on, pp. 660– 660, May 2013.

E. Bezati, M. Mattavelli, and J. Janneck, “High-level synthesis of dataflow programs for
signal processing systems,” in Image and Signal Processing and Analysis (ISPA), 2013 8th
International Symposium on, pp. 750–754, Sept 2013.

S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot, G. Roquier, M. Mattavelli, and J. W.
Janneck, “Methods to explore design space for mpeg rmc codec specifications,” Signal
Processing: Image Communication, vol. 28, no. 10, pp. 1278–1294, 2013.

178

S. Casale-Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi, and J. Janneck, “Partitioning
and optimization of high level stream applications for multi clock domain architectures,” in
Signal Processing Systems (SiPS), 2013 IEEE Workshop on, pp. 177–182, Oct 2013.

S. Casale-Brunet, E. Bezati, C. Alberti, G. Roquier, M. Mattavelli, J. Janneck, and J. Boutellier,
“Design space exploration and implementation of rvc-cal applications using the turnus
framework,” in Design and Architectures for Signal and Image Processing (DASIP), 2013
Conference on, pp. 341–342, Oct 2013.

S. Casale-Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi, and J. Janneck, “Multi-clock
domain optimization for reconfigurable architectures in high-level dataflow applications,”
in Signals, Systems and Computers, 2013 Asilomar Conference on, pp. 1796–1800, Nov
2013.

2012 G. Roquier, E. Bezati, and M. Mattavelli, “Hardware and software synthesis of
heterogeneous systems from dataflow programs,” Journal of Electrical and Computer
Engineering, vol. 2012, no. 484962.

A. Ab-Rahman, R. Thavot, S. Casale-Brunet, E. Bezati, and M. Mattavelli, “Design space
exploration strategies for fpga implementation of signal processing systems using cal
dataflow program,” in Design and Architectures for Signal and Image Processing (DASIP),
2012 Conference on, pp. 1–8, Oct 2012.

2011 E. Bezati, H. Yviquel, M. Raulet, and M. Mattavelli, “A unified hardware/software co-
synthesis solution for signal processing systems,” in Design and Architectures for Signal and
Image Processing (DASIP), 2011 Conference on, pp. 1 –6, nov. 2011.

G. Roquier, E. Bezati, R. Thavot, and M. Mattavelli, “Hardware/software co-design of
dataflow programs for reconfigurable hardware and multi-core platforms,” in Design and
Architectures for Signal and Image Processing (DASIP), 2011 Conference on, pp. 1–7, Nov
2011.

2010 E. Bezati, M. Mattavelli, and M. Raulet, “RVC-Cal dataflow implementations of mpeg
avc/h.264 cabac decoding,” in Design and Architectures for Signal and Image Processing
(DASIP), 2010 Conference on, pp. 207–213, Oct 2010.

MPEG Contribution: Dataflow CABAC Implementation in RVC-CAL, June 2010

179

	Title page

	Acknowledgements
	Abstract (English/Français/Deutsch)
	Abbreviations
	Contents

	List of Figures

	List of Tables

	Introduction
	Design of Complex Systems
	Problem Statement and Motivation
	Design Flow for Dataflow Programs
	Thesis Contributions and Organization

	State of the Art
	Introduction
	Heterogeneous platforms
	High-Level Synthesis
	HLS tools evolution
	Behavioral Description

	Scheduling of Operators, Operators Pipelining and Power Optimization in HLS
	Scheduling of Operators
	Operators Pipelining
	Power Optimization

	Dataflow Design Flows for HW and SW Co-Design
	Conclusion

	CAL Dataflow Programming Language
	Introduction
	Process Networks
	KPN
	Dataflow Process Network
	Actor Transition System and Composition

	CAL Actor Language
	CAL Program
	Execution Model
	CAL Syntax and Semantics

	Standardization
	RVC-CAL Compiler Infrastructure
	Orcc Intermediate Representation
	Dataflow IR
	Procedural IR
	Visitors for Dataflow and Procedural IR and IR Interpreter

	Conclusion

	High-Level Synthesis of Dataflow Programs: Xronos
	Introduction
	Advances on the Orcc compiler infrastructure for Hardware Synthesis
	Control Flow Graph Construction
	Dominance Graph
	Reaching Definition
	Live Variable Analysis
	Single Static Assignment, Pruned Form

	Procedural IR Transformations
	Expression Evaluator/Simplification
	Single Read and Write Register Optimization
	Uninitialized Variables
	Constant Folding/Propagation
	Dead Code Elimination
	Type Casting
	Division and Modulo Implementation

	Pipelining
	Actor's Action Selection Procedure
	Construction of the Action Selection Procedure

	CDFG Representation of a Procedure
	Language Independent Model (LIM)
	Component
	Primitives
	Operation
	Memory
	Module
	Design
	Clock Domains
	Scheduling

	Mapping of Dataflow and Procedural IR to LIM
	Network construction and Actor to Design
	State variable to Memory Allocation
	Action to Task
	Operation to Node
	Expression to CDFG
	BlockBasic to Block
	BlockIf to Branch and BlockWhile to Loop
	CDFG to Block
	Behavioral HDL Code Generation

	Xronos SystemC Code Generation
	SystemC Actor Template
	SystemC Actor Composition Template

	Xronos C++ Code Generation for Embedded Platforms
	Mapping HW-SW and Interface Synthesis
	TestBench Generation and Profiling Data Extraction
	Experimental Results
	StreamBench: a benchmark suite for streaming applications
	Xronos versus state-of-the-art RVC-CAL to hardware synthesis
	Multi-core performance on an embedded platform
	Hardware and Software Co-Design on Heterogeneous platforms

	Conclusion

	Iterative Design Space Exploration for Xronos
	Introduction
	Profiling and Execution Trace Garph
	Model of Architecture, Mapping and Constraints
	ETG Analysis
	Critical Path Evaluation
	Impact Analysis
	Queue Size Minimization

	ETG Post-Processor
	An event-based trace simulator
	Performance Estimation
	Mapping

	Optimization by Design Refactoring in IDSE
	Levels of parallelism
	Complexity and issues of automating refactoring optimizations
	A refactoring strategy using impact analysis

	Experimental Results
	Conclusion

	Power Optimization
	Introduction
	Clock buffers on Xilinx FPGA's
	Coarse-Grain Clock Gating Strategy
	Clock enabling controller
	Clock Enabler Circuit

	Experimental Study
	Conclusion

	Conclusion and Future Work
	Conclusion and Summary
	Future Work
	Component Library Database
	SDC Scheduling for LIM
	Integration of state of the art procedural optimizations
	Memory Partitioning
	Multi-Actor hierarchical memory management
	Multiplexing and De-multiplexing queue channels for heterogeneous targets
	Clock Gating on input conditions and Multi-Clock Domains Partitioning
	Dataflow Machines: An alternative Intermediate Representation

	Bibliography
	Curriculum Vitae

