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ABSTRACT

Interconnect-Aware Scheduling and Resource Allocation for

High-Level Synthesis

Awni Itradat, Ph.D.
Concordia University, 2009

A high-level architectural synthesis can be described as the process of transforming a
behavioral description into a structural description. The scheduling, processor allocation,
and register binding are the most important tasks in the high-level synthesis. In the past, it
has been possible to focus simply on the delays of the processing units in a high-level
synthesis and neglect the wire delays, since the overall delay of a digital system was
dominated by the delay of the logic gates. However, with the process technology being
scaled down to deep-submicron region, the global interconnect delays can no longer be
neglected in VLSI designs. It is, therefore, imperative to include in high-level synthesis
the delays on wires and buses used to communicate data between the processing units
1.e., inter-processor communication delays. Furthermore, the way the process of register
binding 1s performed also has an impact on the complexity of the interconnect paths
required to transfer data between the processing units. Hence, the register binding can no
longer ignore its effect on the wiring complexity of resulting designs. The objective of
this thesis is to develop techniques for an interconnect-aware high-level synthesis. Under
this common theme, this thesis has two distinct focuses. The first focus of this thesis 1s on
developing a new high-level synthesis framework while taking the inter-processor
communication delay into consideration. The second focus of this thesis is on the
developing of a technique to carry out the register binding and a scheme to reduce the

number of registers while taking the complexity of the interconnects into consideration.
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A novel scheduling and processor allocation technique taking into consideration the
Inter-processor communication delay 1is presenfed. In the proposed technique, the
communication delay ‘between a pair of nodes of different types is treated as a non-
computing node, whereas that between a pair of nodes of the same type is taken into
account by re-adjusting the firing times of the appropriate nodes of the data flow graph
(DFG). Another technique for the integration of the placement process into the
scheduling and processor allocation in order to determine the actual positions of the
processing units in the placement space is developed. The proposed technique makes use
of a hybrid library of functional units, which includes both operation-specific and
reconfigurable multiple-operation functional units, to maximize the local data transfer.

A technique for register binding that results in a reduced number of registers and
interconnects is developed by appropriately dividing the lifetime of a token into multiple
segments and then binding those having the same source and/or destination into a single
register. A node regeneration scheme, in which the idle processing units are utilized to
generate multiple copies of the nodes in a given DFG, is devised to reduce the number of
registers and interconnects even further.

The techniques and schemes developed in this thesis are applied to the synthesis of
architectures for a number of benchmark DSP problems and compared with various other
commonly used synthesis methods in order to assess their effectiveness. It is shown that
the proposed techniques provide superior performance in terms of the iteration period,
placement area, and the numbers of the processing units, registers and interconnects in

the synthesized architecture.
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Chapter 1

Introduction

1.1 General

VLSI technology has now advanced to a stage where it would be rather complex to
design a digital system starting at the transistor level or logic level. High-level synthesis
of digital systems consists of transforming a behavioral (algorithmic) description of a
design into a register transfer level (RTL) description of the design, rather than dealing
with the components of the design at the logic gate level. At the RTL level, an adder, for
instance, is viewed as a functional unit instead of as a series of NAND gates. The factors
such as the latency, area and the type of functional units associated with a design,
however, can be taken into consideration at a high-level synthesis without resorting to a
low-level implementation. Scheduling, processor allocation, and register binding are the

key tasks that influence these factors in the high-level synthesis. A general goal of a high-



level synthesis is to find hardware structures that minimize these design metrics subject

to certain constraints.

Some of the applications that need a high-level synthesis are digital signal
processing (DSP), communications, and image processing. These applications are among
the most important applications that demand high computational power, and must be
executed at a very high speed to enable real-time processing. Due to the parallelism
within the DSP applications, parallel processing architectures are a natural choice for the

synthesis of these applications [1- 3].

In the past, 1t has been possible to focus simply on the delays of the processing
units in a high-leve] synthesis and neglect the wire performance, since the overall delay
of a digital system was dominated by the delay of the logic gates. However, with the
process technology being scaled down to deep-submicron region, the global interconnect
delays can no longer be neglected in VLSI designs. It is, therefore, imperative to include
in high-level synthesis the delays and complexity of wires and buses used to
communicate data between the processing units, even though, in recent years, there have

been considerable developments in the interconnect technology.

Since scheduling and resource allocation are the most critical tasks in the high-
level synthesis, the following sections provide a brief review of the necessary background
material for the high-level synthesis. In order to provide the motivation for the research
work contained in this thesis, the weaknesses and shortcomings of the research schemes
for the scheduling and resource allocation of DSP application in the high-level synthesis

are also discussed. It is to be noted that the related research corresponding to each



particular problem dealt with in the thesis will be provided in the other chapters. This

chapter is concluded by providing the scope and the organization of this Thesis.

1.2 High-Level Synthesis

The hardware design starts from the behavioral description of algorithm as input to the
high level synthesis and proceeds downwards to the logic level and finally the physical
level which produces the circuit layout for the implementation, each time adding some
additional information needed for the next level of synthesis. A high-level synthesis can
be described as the process of transformation of a behavioral description into a structural
one that consist of a set of connected components collectively called the data path and a

controller that sequences and controls the functionality of these components.

The high level synthesis takes the specification of the behavioral requirement of a
system and a set of constraints and goals to be satisfied, and then to find a structure that
implements the behavioral requirement while satisfying these goals and constraints. The
behavior means the way the system and its components interact with their environment,
i.e., the mapping from the inputs to the outputs. The structure refers to the set of
components and their interconnection that is used to implement the system. Usually there
are many different structures that can be used to realize a given behavior. One of the
tasks of the synthesis is to find the structure that best meets the constraints, such as the
limitations on the cycle time, area or power, while minimizing other costs. For example,
the goal might be to minimize the area while achieving a certain minimum-processing

rate.



In recent years there has been a trend toward carrying out the synthesis at
increasingly higher levels of the design hierarchy. There has been considerable interest
shown in the High-level synthesis in the industry. There are a number of reasons for this:

a. Shorter design cycle. Since much of the cost of the chip is in the design
development, by carrying out the synthesis at higher levels and automating the
part of the design at lower levels can lower the design cost as well as make it
possible to hit the market window.

b. Fewer errors. Having more automation in the design process eliminates the
errors due to human factors and reduces the verification time of the design.

¢. The ability to search the design space. A good synthesis system can produce
several designs for the same specification in a reasonable amount of time. This
allows the developer to explore the trade-offs between the cost, speed, power, and

so on of the different designs including that of an existing one.

It 1s expected that the trend toward a high level synthesis will continue. Already
there are a number of research groups working on high-level synthesis, and great deal of
progress has been made in finding good techniques for optimizing and for exploring
design trade-off. These techniques are very important because decisions made at the high

level tend to have a much greater impact on the design than those at lower levels.

In general there are many advantages of investigating a design at a high-level.
First, the designer can concentrate on studying the design behavior rather than the
detailed implementation. Second, the RTL design of a digital system 1s usually less

complex than the design details at the logic level. Thus, its simulation can be done faster.



Further, studying an RTL design also allows the designers to quickly explore the design

space and decide as to which architecture fits their needs best.

1.3 The Synthesis Tasks

Scheduling, resource allocation, placement represent the core of transforming the
behavior of an application into a structure. They are closely interrelated and depend on
each other. Scheduling consist in assigning the operations to the control steps to be
executed. The control steps are fundamental sequences in a synchronous system; they
correspond to clock cycles. Allocation consists in assigning the operations and variable to

generic hardware resources.

1.3.1 Scheduling

Scheduling is one of the basic tasks in a high-level synthesis to produce an execution
order of each operational node. The aim of the scheduling 1s to minimize the amount of
time or the number of the control steps needed to complete the application, given certain

constraints on the available hardware resources [4-5].

Scheduling is significant in view of the fact that the relative execution order of the
operations has an effect on the speed, throughput, or any other performance measure of
the system design. Thus; an important purpose of the scheduling process is to achieve
some objective functions, while satisfying some design constraints, e.g., iteration pertod,

throughput, hardware resources, input-output delay, area cost, and power [6].



Some basic concepts in scheduling

When the operations that have to be scheduled and the precedence relations are known
beforehand, the scheduling can take place at the compile time. This i1s known as static
scheduling. Static scheduling differs from dynamic scheduling, which schedules the

operations at the run time.

Another characteristic of a scheduling method i1s whether or not it allows
operations to be interrupted once their execution has begun. If it is so possible and the
interrupted operations can be resumed at a later time, the scheduling is called pre-emptive
scheduling. In contrast, non pre-emptive scheduling requires that the operations are

executed without interruptions.

When an algorithm 1is scheduled for execution on architecture, several
optimization goals can be set. It is possible to minimize the throughput delay (or latency)
which is the time between the consumption of an input sample and the production of the
corresponding output sample. This optimization goal is typical for resource-constrained
scheduling in which the hardware is specified and it is independent of the type of the
scheduling used. In contrast, in a time-constrained scheduling, given the execution speed,

the hardware is minimized.

Scheduling methods exploit the parallelism that exists between operations of the
same iteration of a cyclic data flow graph (intrc;—iteration parallelism). However, the
cyclic data flow graphs often contain parallelism between the operations from different
iterations (inter-iteration parallelism). Scheduling algorithms can also exploit this

parallelism by allowing operations from different iterations to be executed in parallel.

The schedules that are then produced are called overlapped schedules. These schedules



contrast the non-overlapped schedules, where for every iteration period only operations

belonging to that iteration are executed.

Cyclo-static schedules form a special class of overlapped schedules. In a cyclo-
static schedule an operation does not have to be executed on the same processing element
for every iteration period. Cyclo-static schedules differ from fully-static schedules in

which each operation is assigned to the same processing element for all the 1terations.

Determining the time frames of the schedule

In general, DFGs expose parallelism in DSP applications. Each node has a range of
possible control steps that can be assigned to it. Most of scheduling algorithms require
the earliest and the latest bounds within which an operation in the DFG can be scheduled
(time frames). The first and simplest schemes that are used to determine these bounds are
called as soon as possible (ASAP) [7][8] and as late as possible (ALAP) algorithms [9],

respectively.
1.3.2 Resource allocation

Allocation 1s a task of determining generic resources (functional units and registers) on
which operational nodes are executed. It involves assigning operations and variables to
hardware resources and registers and specifying their usage while trying to minimize the
amount of hardware resources needed. It is assumed that a unit of generic resource could
only start the execution of one operation at a time. In particular, this includes two
subtasks, which are to determine the number of generic resources used and to bind nodes

and variable to resources. A generic resource type may be, for instance, an adder unit, a



multiplier unit, or an ALU which is capable of performing multiple operations such

additions, multiplications, etc.

In order to minimize the number of hardware resources required for the
implementation of a digital system, the operations (nodes) of a DFG representing the
DSP algorithm can be grouped to share a single hardware unit if they have mutually
exclusive schedule or life time. Sets of these mutually exclusive nodes are formed. A
single hardware resource is then allocated to each distinct set. Thus, the minimization
problem is the problem of decreasing the number of sets. This type of allocation is known

as folding. Folding is usually affected by the types of hardware resources.

Data path allocation involves the mapping of the operations onto the functional
units and also assigning values to registers, and providing interconnections between the
functional units and registers using buses and multiplexers. The optimization goal is
usually to minimize some objective function, such as the total interconnects length, the
total number of registers, and multiplexer cost, or the critical path delays. There may also
be one or more constraints on the design which limit the total area of the design, the total

throughput, or the delay from input to output.

1.4 Mapping of DSP Applications onto Hardware Models

The scheduling methods should use a detailed realistic model of the targeted architecture.
When a scheduling method does not consider a complete and realistic model of the
architecture, the resulting schedule will result in an inefficient implementation. It is
worthwhile to explicitly consider a realistic multiprocessor architecture. For then the

schedules produced will result in a latency that is on the average more twice than those



obtained from the schedules that are based on a less realistic model and therefore the

Jatter had to be modified before they could be executed on the actual hardware.

Thus, it is desirable that a scheduling method 1s based on a realistic model of a
targeted architecture. A realistic model should for instance support: communication
delays, contention of communication links, the structure of the data path, allocation of
registers (register binding), pipelining, etc. It is unlikely that a scheduling method based

on a complex hardware model will always produce schedule that is close to optimal.

The most popular hardware implementations of DSP applications are: (1)
application specific integrated circuit (ASIC), (2) field programmable gate arrays
(FPGAs), or (3) a set of instructions running on an application-specific processor.
Various implementations of the same application allow trade-offs for optimizing the
hardware in terms of multiple design parameters such as power consumption, area,

processing speed, and re-configurability of the system.

There are a number of advantages and disadvantages for these three
implementations. An ASIC implementation has fully customized data paths and logic. It
allows designers to optimize the hardware resources for one or more of the design
parameters. However, an ASIC implementation is not flexible, since it does not allow
reconfiguring itself and cannot be used in a wide range of applications. FPGAs, on the
other hand, consist of arrays of prefabricated logic blocks. FPGAs can provide a
reconfigured implementation of a certain design. The property of reconfigurability allows
the designers to reuse the resources in variety of applications. Although FPGAs have the
capability of programming functional units and wires, 1t has several inherent limitations.

FPGAs usually consume much higher power than an ASIC implementation. They also



have higher performance penalty and require larger silicon area because of their generic
reconfigurable platform. Another common method to implement a complex application is
to use application-specific processors such as a DSP processor. DSP processors are
designed for general-purpose DSP applications; and hence, they are not area,

performance, or power efficient.

1.5 Related Research in the High Level Synthesis for
Iterative DSP Applications

When a high-level synthesis is not based on a realistic model of targeted architectures,
the resulting schedule may lead to an inefficient implementation. A realistic model
should, for instance, support the inter-processor communication delays (1CDs), allocation
of registers (register binding), type of functional units, interconnects networks, and
structure and organization of the architecture. Moreover, that model must consider the
interaction between the decision taken at high level of synthesis and those taken at a
lower level of synthesis such as the placement which involves deciding where and how to
place functional components, circuitry, and logic elements in a generally limited amount
of space. Most of the techniques for scheduling of real-time DSP applications‘ consider
simplified architectural models in which the inter-processor communication delay,
interconnect complexity and other structural requirements are not taken into
consideration; thus, they eventually produce schedules that lead to unrealistic

implementations.

In high-level synthesis, the model of the targeted architecture can consist of

homogeneous or heterogeneous processing units. When processing units are

10



homogeneous, they all have identical behavior. Heterogeneous processing units do not
have identical behavior and they can, for example, differ in execution speed or they are
not all able to handle the same set of operations. Arithmetic logic units (ALUs) are
generally used for the design of homogenous multiprocessors. On the other hand,
processing units that can support a single type of operations are commonly employed for

heterogeneous designs.

In [10], the problem of assignment and scheduling for heterogeneous
multiprocessor systems has been addressed by proposing a two-phase approach to solve
it. In the first phase, the heterogeneous assignment problem is solved by assigning the
best functional unit to a node so that the total cost can be minimized while satisfying the
timing constraint. In the second phase, based on the node assignments thus obtained, a
minimum resource scheduling algorithm that has been developed in this paper is used to
generate a schedule and produce a feasible configuration with as little resources as
possible. Functional units with different execution times and costs are employed n this
technique. However, they cannot be considered to be fully heterogeneous, since they all
handle the same set of operations. In [11], a list-based scheduling algorithm has been
proposed. Since in this technique an acyclic data flow graph (DFG) is used to represent a
DSP application, the inter-iteration precedence cannot be exploited, and hence, a rate-
optimal schedule cannot be produced. Both [10] and [11] do consider the interprocessor

communication delay and interaction with the lower level of synthesis

In the techniques presented in [12]-[17], different solutions to deal with the
problem of scheduling of DSP applications mapped onto mu]tipfocessor systems have

been proposed by taking into account the inter-processor communication delay. In the
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range-chart technique proposed in [12], the flexibility in the scheduling of the nodes in a
DFG has been represented in the form of a ;han that specifies the possible range within
which a node can be executed. This techmque is very successful in scheduling and
allocation of a DSP application targeting homogeneous multiprocessor systems and can
produce an optimal solution with a polynomial time complexity. The inter-processor
communication delay is dealt with by converting the cyclic DFG representing a DSP
application into an acyclic one. However, this technique ignores the optimization of the
memory during the scheduling. The technique proposed in [13] has considered the inter-
processor communication delay and shown that it is essential for a realistic development
of multiprocessor schedules. The objective of this technique is to use the structure of a
multiprocessor system that takes into consideration the location of the operands, the
number of registers and the inter-processor communication delays to find rate optimal
schedules. However, the method is computationally expensive and suitable for small size
problems. In [14], a scheduling technique called cyclo-compaction scheduling has been
proposed to deal with the problem of inter-processor communication delay. First, a non-
overlapped schedule is constructed and then transformed into an overlapped one, while at
the same time, control steps are inserted into the time schedule to deal with the inter-.
processor communication delay. In this technique, the optimization of the number of
processors_or the memory size cannot be achieved, since the DSP application 1s mapped
onto a pre-specified multiprocessor topology. The techniques proposed in [15] and [16]
use integer linear programming (ILP) to take into account the inter-processor
communication delay during the scheduling of a DSP application mapped onto a

homogeneous multiprocessor system with a pre-specified topology ranging from a
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weakly connected configuration to a strongly connected one. It is well-known that ILP is
a very time-consuming technique for large size problems. Despite the fact that the
techniques in [15] and [16] can produce good results in terms of the throughput, they
cannot optimize the number of processors. Furthermore, the problem of optimizing the
memory size of the implementation has not been considered. In [17], an iterative
algorithm to compute the theoretical minimum initiation interval for the time schedule of
a given DSP application has been proposed with a fixed inter-module communication
delay for a two-module implementation. Unfortunately, in this technique the inter-
processor communication delay between the sub-modules within each module has been
neglected. In fact, none of the above techniques consider a close interaction between the

placement and the high level synthesis.

With the advances in ASIC synthesis technique, the idea of heterogeneous
multiprocessor architectures for the implementation of DSP applications is gaining
widespread usage because of the area efficiency of such systems. Scheduling an iterative
signal processing algorithm onto a heterogeneous multiprocessor system imposes a
greater need to consider the inter-processor communication delays of the target
architecture, since, in heterogeneous system nodes of different typevs and having data
precedence cannot be assigned to the same processor. To the best of the authors’
knowledge, no algorithm for scheduling of cyclic data flow graphs mapped onto a
heterogeneous multiprocessor system with inter-processor communication delay exists in

the Iiterature.

The way the process of register binding is performed also has an impact on the

complexity and performance of the interconnect paths required to transfer data between
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the processing units. Hence, the register binding can no longer ignore its effect on the
;viring complexity of resulting designs in a high level synthesis. In FDLS [17], ALPS
[19], OSAIC [20], InSyn [21], and MARS [22] different solutions and heuristics to the
scheduling problem have been provided in which the memory optimization, commonly
referred to as register binding, has been also considered, but the inter-processor
communication delay and interconnect are ignored. In [18]-[21], an acyclic DFG model
has been used to represent a DSP application and thus the inter-iteration precedence
cannot be exploited. In [22], the DFG 1s mapped onto a heterogeneous multiprocessor
with structural pipelining to produce a rate-optimal schedule. This novel technique
implicitly performs algorithmic transformations, such as pipelining and retiming, on the
DFG’s during the scheduling process to produce optimal or near-optimal solutions. In
this method, life-time analysis [23] 1s incorporated during the data path synthesis to
generate structures using the minimum number of registers for a given time schedule. In
this technique, the loops of the DFG need to be enumerated. Since, the number of loops
can be of an exponential order, algorithms to find all the loops could have an exponential
time complexity. To summarize, most of the techniques for scheduling a DSP recursive
application, in which the iteration period and throughput, is crucial have simplified the
model used for the high level synthesis. One possible reason is that it is really more
complicated to satisfy inter-iteration dependency [24] in recursive DSP data flow graphs
during a high level synthesis in presence of the mterprocessor communication delay and

other interconnect and structural constraints.
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1.5 Scope and Organization of the Thesis

The objective of this doctoral thesis is to devise efficient interconnect aware techniques
for the high-level synthesis of DSP applications leading to the implementations with
ASIC technology. Under this common theme, the thesis has two distinct focuses. The
first focus is on developing new techniques for scheduling and processor allocation while
taking into consideration the interprocessor communication delays. To this end, two
techniques are proposed. In the first technique, the interprocessor communication delay
in the tasks of scheduling and processor allocation is estimated or taken from an already
placed architecture. While in the second technique, a placement process is integrated into
the high level synthesis in order to, more accurately, consider the impact of the positions
of the processing units in the placement space and the corresponding interconnects delays
on the building of the time and processor schedules. The second focus of this thesis is on
developing a technique to carry out the register binding while taking into consideration
the complexity of the interconnects. Since the lower bound on the number of registers
resulting from any register binding technique gets fixed once the DFG is scheduled, a
node regeneration scheme is proposed to reduce the number of registers to a value that is

even lower than this bound and at the same time to lower the interconnect complexity.

This thesis is organized as follows. In Chapter 2, a new static scheduling
technique for DSP algorithms mapped onto fully connected heterogeneous register based
architectures with non-negligible inter-processor communication delays is proposed. The
proposed technique operating on the cyclic DFG of a DSP algorithm is designed to

determine the relative firing times of the nodes by using a longest path algorithm so that
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not only the inter-processor communication delays are taken into consideration, but also
the throughput i1s aimed to be maximized and the number of hardware resources in terms

of processors to be minimized.

In the above technique for scheduling and processor allocation, the interprocessor
communication delay is assumed to be taken from feedback placement information or
from an estimated value of the interprocessor communication delay. In Chapter 3, a
technique in which a placement process is integrated into the high level synthesis is
developed. The information about the physical positions of the processing units in the
placement space, the interconnect delays between the processing units, and the candidate
positions for placing new processing units, are utilized during the building of the time
schedule and processor allocation. Furthermore, most of the other techniques for high
level synthesis use only operation-specific functional units, 1.e., adders or multipliers, in
the allocation process. In order to maximize the local data transfers and reduce the
interprocessor communication delays, the proposed technique makes use of a hybrid
library of arithmetic functional unit composed of both fixed operation-specific units and

reconfigurable functional units capable of executing multiple operations.

The way in which the register binding 1s carried out affects the data transfers
between the processing units. In Chapter 4, the problem of register binding in a high-level
architectural synthesis is studied. A technique for binding the tokens produced by the
nodes of a scheduled DFG is proposed while aiming at minimizing the number ofi
interconnects. First, a segmentation scheme in which the lifetime of a token is
appropriately divided into multiple segments 1s developed. Then, the register binding

problem is formulated as a min-cost flow problem so that the tokens having the same
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source and/or destination are bound into the same register and results in a reduced

numbers of registers and interconnects.

Chapter 5 proposes a node regeneration scheme that generates multiple copies of
the original nodes in a given scheduled DFG with the resulting variables having lifetimes
shorter than those of the variables produced by the corresponding original nodes. The
freedom provided by having multiple copies of nodes is then further exploited to assign
each copy to a processing unit that results in minimizing the complexity of the

interconnect network thus obtained.

Finally, Chapter 6 concludes the thesis by highlighting the contribution made in

this investigation and suggesting some possible future research work.
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Chapter 2

Scheduling and Allocation of DSP Data
Flow Graphs with Inter-Processor
Communication Delays

2.1 Introduction

In an architectural synthesis problem, an efficient schedule is the one that respects the
time requirements of a given DSP application and at same time, produces RTL
architecture with an optimal or near-optimal number of functional units (resources). The
problem of optimally scheduling and resource allocation of the DSP application mapped
onto a multiprocessor architecture at compile time has been proven to be NP-hard, that is,
a problem that is not solvable by deterministic algorithms in a polynomial time [24]. The
situation becomes more complicated when the synthesis process targets a heterogeneous

architecture in which the inter-processor communication delay are taken into
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consideration. For such a problem, a heuristic solution is necessary. In this chapter [25-
29], a new static scheduling technique for DSP algorithms mapped onto fully connected
heterogeneous architectures with non-negligible inter-processor communication delays is
proposed. The proposed technique operating on the cyclic DFG of a DSP algorithm is
designed to determine the relative firing times of the nodes by using Floyd-Warshall's
longest path algorithm [30] so that not only the inter-processor communication delays are
taken into consideration, but also the throughput is aimed to be maximized and the
number of hardware RTL resources in terms of processing units is aimed to be
minimized.

The chapter is organized as follows. The data flow graph model used to represent
DSP applications and the underlying terminologies and definitions are briefly introduced
in Section 2.2. The target architecture and the design flow of the proposed architectural
synthesis scheme are given in Section 2.3. In Section 2.4, a theoretical formulation to
build an initial time schedule taking into consideration the inter-processor communication
delay between the nodes of different type is presented. Then, in Section 2.5, based on this
initial time schedule, an initial processor allocation matrix is developed. Next, in Section
2.6, the firing times and processor assignments of a pair of nodes of the same type are
tested and, if necessary, modified to satisfy the inter-processor communication delay
between the two nodes. In Section 2.7, the proposed technique is applied on some
benchmark DSP problems. In Section 2.8, the results of the proposed technique are then
compared with those obtained by other techniques in the literature when applied to the
some intensive DSP benchmark problems. Section 2.9 summarizes the work presented in

this chapter and highlights some of the salient features of the proposed technique.
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2.2 Data Flow Graph Model for DSP Applications

The data flow graph is proven to be an efficient representation of the system
specification due to its ability to expose the hidden concurrency between the operations
of the underlying algorithm. Since DSP applications are known for their inherent
parallelism, the DFG model is thus suitable for the behavioral representation of DSP
applications [13], [22]. A graph G can be represented by the pair (V, E), where V 1s a set
of nodes, and E is a set of elements called edges. Each edge is associated with a pair of
nodes.

The symbolsy,,v,...v, are used to represent the nodes and the symbols ¢;, ¢,,...are
used to represent the edges of a graph. A directed edge e = (v,.v,) 1s incident out of the

node »; and incident into the nodev,. A directed edge is usually called an arc. The nodes

v, and v, are called the end nodes of the edgee, . The node v, is called the initial node,

i

and the node v, the terminal node of the edgee . If v, =v;, then the edgee  is called a self-

loop. The arcs of DSP graphs represent the precedence constraints between their end

nodes.

Jdeal —delay
—

N D
v ale

Figure 2. 1: A graph showing an edge with an 1deal delay of N,

If the nodes v, and v, are, respectively, the initial and terminal nodes of an edge,
and the execution of v, at iteration 7 is dependent upon the availability of the output of v,

at iterationi-~,, where », is a nonnegative integer, then the edge ¢ is said to have
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associated with it v, 1deal delays. The edge, as shown in Fig. 2.1, is marked as », D (i.e.,
N,ideal delays). In this case, then the ideal delay », represents the inter-iteration

dependency between the pair of nodes in question. In contrast, an edge with no ideal
delay represents the intra-iteration dependency between the two associated nodes.

h
Data flow graph Data flow grap

Communication
dummy node insertion

Modified DFG
r Time scheduling ] y l
Building of initial time -
schedule 4—{ Longest path mamxj

Identification of critical
or near-critical loops %

vy

Initial processor
allocation

y
Frocessor allocation

uoljed0|je Jossasosd

Final time and
processor schedules

x, o % """"""""""" 5

| Node regeneration '

\J
Register binding

'

uopezjwiuiw pue
Buipuiq Je3s1B89

: I Register binding ]

RTL
S — T i
RTL
(a) (b)

Figure 2. 2: (a) The conventional flow of synthesis (b) The proposed design flow

A direct path »,, is a finite sequence of distinct nodes v,,v,,...v, and distinct edges

V%

such that the edge (v,.v,,)is present in the pathp,, . If v, =v, then this path is called a

directed circuit or loop. Each loop in a DSP graph must contain at least one ideal delay
element for the graph to be computable. The data flow graph that contains at least one

directed circuit is called the cyclic graph, otherwise it 1s acyclic.
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2.3 Proposed Scheme of Architectural Synthesis

2.3.1 Target architecture

In the traditional architectural synthesis targeting centrally-shared-register based
architectures, processing units read data from or write data to a centrally-shared register
file through a relatively long interconnect [31]. Such a data transfer is responsible for
occupying a portion of the clock cycle. This portion of the clock cycle has now become
comparable to the rest of the cycle in the deep submicron technology and could be even
larger when technology shifts deeper in the submicron region [32]. Therefore, the
interconnect delay plays an important role in determining the cycle time for centrally-
shared-register based architectures. Unfortunately, the existing techniques for high-level
synthesis for such architectures do not take into consideration the interconnect delays
during the synthesis. Instead, the interconnect delay is taken care by adding it to the
operation delay part of the clock period thus making the processing unit to remain idle
during the period of the data transfer, i.e., during the period of inter-processor
communication, which in turn significantly increase the overall execution time of the
synthesized centrally shared architecture. However, in a distributed register-based
architecture [31][32], registers are distributed so that each processing unit has its
dedicated registers that are placed close to it. Accordingly, each processing unit performs
two types of data transfer, namely, local and global. The global data transfer between
different processing units takes one or more cycles. In the distributed-register based
architecture it is possible to separate of the inter-processor communication delay for data

transfer from the computation delay of the processing units. The data transfers can then
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be dealt with in a way similar to the computations of the processing unit and, hence, can
be performed in one or more clock periods. Therefore, in the proposed synthesis scheme,
the distributed register-based architecture is chosen as the target architecture. Even
though in such a distributed architecture, the number of control steps (cycles) in their
time schedule are, generally, higher than that in the time schedule of a centrally-shared-
register based architecture, it uses smaller clock period and thus, the wasted slack time,
which is the difference between the clock period and computation time, gets reduced.
Moreover, a distributed-register based architecture allows operations of the data
commutation and data computations in parallel. However, if these operations are not
efficiently scheduled to avoid global data transfers, an increase in the number of control
steps (clock cycles) in the time schedules and thus an increase in the iteration period will
result. Consequently, this may significantly increase the overall execution time of a
synthesized recursive DSP system. As done in conventional approaches, the inter-
processor communication delay may be taken care in a post-synthesis step. However, the
hidden concurrency of the data communication and data computation will not be
efficiently exposed if this delay is not included during the synthesis process itself.
Therefore, in the proposed synthesis scheme, by targeting a distributed architecture, we
attempt to address the resolution of problems which have not been possible by using
centrally shared architectures. In the proposed synthesis scheme, the scheduling of data
communication and data computation i1s performed during the synthesis itself, and in

order to avoid global data transfer, locality of data computations is maximized.
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2.3.2 Design flow

Fig. 2.2 gives an overview of the conventional architectural synthesis flow and the design
flow of the proposed scheme. From the behavioural specification of a DSP algorithm
such as a DFG, the conventional synthesis produces a structural description at the
register-transfer level (RTL) by performing three main tasks, namely, the time
scheduling, processor allocation and register binding as shown in Fig. 2.2(a). In view of
the fact that ICD need to be taken into consideration, in the proposed scheme, the three
synthesis steps are performed in an environment in which the parallelism between the
data communication and data computation gets maximally exposed and utilized. The
communication delay between a pair of nodes of different types (e.g. the delay between a
node performing addition and that performing multiplication) is represented by a non-
computing node, whereas that between a pair of nodes of the same type is taken into
account by re-adjusting the firing times of the appropriate nodes of the DFG. At the front
end of the proposed design flow shown in Fig. 2.2(b), a DFG is taken as input and then
modified by inserting communication dummy nodes between nodes of the different types.
An 1nitial time schedule is then built to determine the relative firing times of the nodes by
using Floyd-Warshall's longest path algorithm [30]. Further, in order to reduce the ICD
between nodes of a critical or near-critical loop, such nodes are aimed to be assigned to a
single processor. Hence, critical and near-critical loops are first identified. Then based on
this identification process and the initial time schedule, an initial processor allocation
matrix is developed. Next, the firing times and processor assignmept of a pair of nodes of
the same type are tested and, if necessary, modified to satisfy the inter-processor

communication delay between the two nodes. Finally, by using the scheduled DFG, an
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algorithm to carry out the register binding is proposed (to be presented in Chapters 4 and

5.

2.4 Building of Initial Time Schedule

In this section, an algorithm to produce an initial time schedule taking into consideration
the inter-processor communication delay (ICD) between the nodes of different type is
proposed. A theoretical formulation to build the initial time schedule is presented. It is
shown that the problem of finding such initial time schedule can be reduced to the
problem of finding the longest-paths between all pairs of nodes of the given DSP graph.
Moreover, the feasibility of the produced initial time schedule is proved in this section.

In a heterogeneous distributed-register based architecture, nodes of different types
are executed on different processing units, whereas two or more nodes of the same type
may or may not be executed on different processors. Recall that in a distributed-register
based architecture, the processing unit and its dedicated registers are closely placed and
thus communication overhead for data transfer between the nodes assigned to a single
processing unit is almost zero, and therefore, can be neglected. However, the data
transfers between different processing units are regarded as global communications via
long interconnect delay that may take one or more cycles. Thus, the ICD between any
two nodes, having precedence dependency, and executed on two different processors has
to be taken into consideration, whereas the ICD between any two nodes being executed
on the same processor can be neglected. In the proposed technique, in order to take into
consideration the ICD between a pair of nodes of different types and having a direct
precedent, the original DFG, G, is first altered to give a modified graph, MG, by inserting

communication (dummy) nodes as shown in Fig. 2.3. These dummy nodes are not
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scheduled; they are used while scheduling other nodes. However, during the building of
the initial time schedule in this section, the ICD between a pair of nodes of the same type
having a direct precedence is not taken into consideration, since, in order to do so, this
would require that the nodes are assigned to processing units beforehand. Furthermore, at
this stage of synthesis it is not yet possible to determine whether the two nodes in

question can be assigned to a single or to two different processors.

Inserting a dummy node

O — O——K

Figure 2. 3: An example of inserting a dummy node.

Let us first define certain-terms that are used in this section to build the initial

time schedule. Let EFT(%) and LFT(%) be, respectively, the earliest firing time (EFT) and
the latest firing time (LFT) of a node w relative to the firing time of the reference node v.
Further, let errov) and Lr7(v) be the earliest and latest firing times of a node w relative to

all the previously scheduled nodes. The firing time of a node v is chosen in the interval of

its earliest and latest firing times and denoted by rr() . The path length, ]en[P‘.i,,l_ ], of the
path R, is defined as the minimum time elapsed between consuming the input
operand(s) at its initial nodev, and producing an output at its terminal nodev,, and it is

given as

len [P, 1= > d, -T-Np 2.1

Vv, eV (G) v eV(Py,)
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where d, is the computational delay of node v in P, , T is the iteration period, and N,
1

is the total number of ideal delays (see Section 2.2) in P‘,,_‘,j .

For the modified DFG MG, (2.1) becomes,

len [P 1= d, =T-Np+ICD 22
Vv,-v,-eV(MG)[ ) v ewZP:,..,,.) ’ ’ @2
where ICD, = Z d. , d, being the delay of the communication node ¢ in

¢ € ICD(P,,, )

P . . We define len [P, [ as the path length of path- P, when the computational
H VvivjeV(MG) i i

delay of its terminal node v, is excluded. In order to illustrate the computation of a path
length, consider the example shown in Fig. 2.4, Assume that the iteration period T is 6
time units, the computational delay for the nodes v,, v,and v,are 1, 2, and 1, respectively,
and the delay of the communication node (dummy node) c is 1. Using (2.2),

len[ P, ]=(14+2+1)=(1)(6)+1=—1.

1, =max[73]="7
ST (circuit1) =0
ST (circuit2) = 4

Circuit 1: T=7 Circuit 2; T=3

Figure 2. 5: An example illustrating the computations of 7,and ST(C).
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The iteration period bound 7, for initial time schedule is defined as the minimum time
between producing any two successive outputs. For a modified cyclic DFG MG, it is

given by

D CD,
T, = max [__CLI_C] (2.3)
Ce circuits NC

where D = Z d. , d, being the computational delay of node v in the circuit C,
vebeC)

ICD, = Zd(, , d. being the delay of communication node ¢ in C,N. is the total
c eV(C)

number of ideal delays in C, and fx]is the function that returns the smallest integer not

Iess than x.

On the other hand, for a modified acyclic DFG, the iteration period bound is equal to the

duration of the longest operation, i.e., Ty = max(d, ). A circuit C in MG is called critical
ve MG

Dy +1CD,

if its loop bound [ ]is equal to the iteration period bound7,, A non-critical

c
circuit has a spare time called the slack time. The slack time of a circuit C can be thought
of as the total time delay that can be added to the computation encapsulated in the circuit

without exceeding the critical loop bound, and is given by

ST(C)=TyN-—- D —ICD, 2.4
It is clear from (2.2) and (2.4) that

ST(C)=— len [C] (2.5)

Cecircuits
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An example of calculating of T,, and the slack times of circuits in a given modified
DFG i1s shown in Fig. 2.5. The DFG has two circuits, C1 and C2, which have loop bounds
of 7 and 3, respectively. By using (3), 7, is found to be 7, 1.e., the loop bound of C1, and
hence, resulting in a slack times of 0 for C1 and 4 for C2.

The theoretical optimal solution for the number of processing units of a certain type of

nodes, NP

npe

is given by
d,
NEpe = ’VZ—T,‘K] (2.6)

In order to determine the effect of the modifying of the original DFG G on the
precedence relations of a pair of nodes, and to show that the problem of finding an 1mtial
time schedule for the modified DFG MG can be reduced to the problem of finding the
longest-paths between all pairs of nodes of the given DSP graph, the following lemmas

and theorems are proved.

LEMMA 1 In a given modified DFG MG, let v be a reference node, and w any other

node. Then,

EFT()=FTv )+ oy lenlP.]

all Pwvy

LFT(%):FT(" )“ max len[P,[

all Puwv
where P_ is a path from node v to node w and F7{(v) is the finng time of node v

The proof of Lemma 1 is obvious.

LEMMA 2 The path length between any two nodes of a modified DFG MG is greater

than or equal 10 that between the same two nodes in the original DFG G, that is,
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len (P, 1< len [P, ]
Vel (Gy o Vv el (MG

Proof. The delay d_ of the communication node ¢ is a positive integer. Subtracting
(2.1) from (2.2) results in

len [P.,]1- len [P, 1=ICDp

Vviv; eV (MG ) r Vv eb(G)

Since ICD, > 0, from the above equation, we have

len [P.,]< len [P ]
vy, eV(G) Yy eV MG)

Hence, the Lemma g

As mentioned above, the paths,, is called a loop or a circuit ifv; =v;. Hence, the

result in Lemma 2 1s also applicable to any pair of nodes of a circuit in the DFG.

THEOREM 1 The earliest firing time EFT(%

) of a node v, relative to the firing time
0

of node v, in a modified DFG MG is greater than or equal to that in the original DFG G,

and the latest firing time LFT(\%) of node v, relative to the firing time of node v in

0

MG is less than or equal to that in G, that is,

EFT(VVO) > EFT(%) 2.7)

Y{vg vy JeV(MG)  Vivywy ek (G)

LFT(%) < LFT(%) (2.8)

V(vony JeV(MG)  Y(vy.w JeV(G)
Proof. Assume that vy,v, € V(G ) are two nodes having a path between them. Without

loss of generality, assume that v, has a fixed time schedule of zero in both G and MG.
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Let EFT(%) and LFT(%) be, respectively, the earliest and the latest firing times of
(] 0
node v, relative to the firing time of the reference node v,. Assume P, , is a path between

vo andv,. By Lemma I, we have

EFT (%,)= FT(v)+ max len[P, 1 (2.9)
Y (vo.v) )k (G) allPyo.,

LET (/) = FT(v)~ max lenl P, (2.10)
V(vo.vy JeV(G) all Ao

EFT (/) = FT(%o)+ pax lenlP.,, [ (2.11)
Y (vy.y JeVIMG) all £,

LFT(Y) = FT() = e lerlP, | (2.12)
Y (vy. v JeVIMG) all £,

Using Lemma 2 and comparing (2.9) with (2.11) and (2.10) with (2.12), we have

o)1)

VivowjeV(MG) V(v jeV(G)
LFT(y) < LFT(V)
Vo Vo

Y(v,w)eV( MG) V(v )eV(G)
Hence, the theorem J
LEMMA 3 Let MG’ be a graph having the same set of nodes and edges as that of the
modified graph MG such that the weights assigned to an edge e =(v,v,,) e MG' and
v, e MG' are, respectively, given by W, =d, +d, -Tn,, and W, =0, where d, Iis the
computational time of node v,, d._is the delay of the communication node c of the

edgee,and n, is the number of ideal delay associated with a given edge e, in MG. Then,

the length of any path P.. «MG' is equal 1o the length of the corresponding path
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P, <MG excluding the computational delay of the node v,, that is,

ny,

len[P. < MG']=len|PF.

¥V ¥

< MGY.

Proof. The length of the path P, . =(v,.e,v,,6,,...,,,_,.6,_1,v,, ) © MG'is given by

len[Pvlvm ] = Z VVe, = Z(dsource(e,) + dlCD(e,-) - Tne,- )

eiEE(prp'm ) (’iEE(pr'rm )

m-1 m—1

=( rfa'\,, + Za’[,’ - TZne'_ ) = len|P,, « MG']
I PR .
VeV ( Py )~Vm) GEICD(P,,, ) ¢€E(Py, )
= len[P‘,l‘.m < MG [
Hence, the lemma. 3
Now, let Qobe an NxN matrix in which Q,?:Wl, :dv,- +d,CDW—T-Ne for all
e=(v;,v;) e E(MG), where N, is the number of ideal delays associated with the edge
e=(v;,v;),and d,cp,,,is the delay of the communication node of the edge e. All other
entries of the matrix are — . Next, applying the Floyd-Warshall's longest path algorithm
to Q° results in a matrix 9/, where Q,:j/ could be finite or infinite. An infinite value
implies that there is no directed path connecting the node v; to the nodev,, whereas a

finite value of Q,.Jf represents the longest distance from node v; to nodey,, ie,

max len[PViVj[.

allP,,,,

THEOREM 2 The difference between the firing times of a pair of nodes in a modified

graph MG can be represented in terms of the elements of @', i.e., the longest distance

between the two nodes.
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Proof. Since EFT(%] < EFT(v,) < FT(v,)and LFT(%] > LFT(v,)> FT(v,), we

have
FT(v,)-FT(v,)> EFT(%)— FT(,) (2.13)
FT(v,)-FT(v)< LFT(%)— FT(v.) (214)

By Lemma 1, (2.13) and (2.14) become

FT(v;)-FT(v;)2 max len|[p,, [
all P, "

FT(v;)-FT(v;)< — max len[F, , [
all P, ,, Y

Since max len(F,, [= O/ and max len[P, ,[=QJ, we have
all Pv,vj ! al 4 :

O/ <FT(v;)-FT(v;) < -0} (2.15)

Hence, the theorem J

Using Lemma 1 and Lemma 3, the EFT and LFT for a node v, relative to that of a

reference node v, are, respectively, given by

v FT(V,)+0;7,gffj len[P,, [= FT(v,)+ 0] (2.16)
" = hd = )= f
LFT(% )_FT(v,.) mgx len[P, , [ FT(v,)- 0} (2.17)

To find the earliest and latest firing times of node v, the maximum earliest firing

time and the minimum latest firing time of the node must be found relative to all the

previously scheduled nodes. Thus, EFT and LFT of node v, are, respectively, given by
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EFT(v,) = max (EFT(%)J (2.18)

all i<j

LFT(v,)= min (LFT(%)) (2.19)

alli<j

The building of the initial time schedule starts by scheduling the input node (an
input node in a DFG is the node which consumes data from the input streams) of the
modified DFG, and then using it as a reference node for scheduling all other nodes. It is
to be noted that without loss of generality, we can assume that a graph has a single input
node, since in the case of DFG having multiple input nodes, a zero-delay node can be
added to the given graph such as it has a zero-delay edge going to each input node in the
original graph. Hence, this newly added node can be considered as the reference node to
start building the initial time schedule. The initial time schedule is then built iteratively
based on the node mobility. In this technique, the earliest and the latest firing times at
which each node can be scheduled to fire are iteratively calculated by using (2.18) and
(2.19). The node mobility or the range of control steps at which the corresponding node
can be scheduled is equal to the difference between its latest and earliest times. These
earliest and the latest firing times are found relative to a reference node and are the result
of intra- and inter-iteration precedence constraints.

All the nodes of the modified graph MG are first put in a set of non-scheduled
nodes, and a schedule i1s built by selecting a reference node and by calculating the
mobility of all the non-scheduled nodes with respect to this reference-node. The node
with the minimum mobility calculated thus far is chosen first, and removed from the list
of non-scheduled nodes. The chosen node is scheduled to fire at a time that would

minimize the communication delay and the number of processors required by examining

34



all the control steps within the mobility of the node. We define the level of a control step
to be the number of nodes of a certain type assigned to fire at this control step. The best
firing time 1s obtained by selecting the control step that has the minimum level. If more
than one control step has the same minimum level, one of the following two approaches
can be followed to resolve this conflict: (a) For a centrally-shared-register based
multiprocessor architecture, the best firing time is obtained by selecting the control step
that would nunimize the number of registers. (b) For a distributed-register based
multiprocessor architecture, the best firing time is obtained by selecting the control step
at which the minimum number of nodes having data dependency with the target node are
scheduled to be fired. Due to the new firing ime of the target node, the time schedule of
other non-scheduled nodes may be affected. This newly scheduled node is chosen to be
the new reference-node and the earliest and the latest firing times for the rest of the non-
scheduled nodes are calculated. A new node 1s chosen for scheduling and the process is
iteratively repeated until all the nodes are scheduled.

It is to be noted that in the above initial scheduling of a modified DFG, if during a
given iteration more than one node is found to have the same minimum mobility, then
such nodes are treated as special cases for their scheduling. These nodes are chosen as
target node for the scheduling according to their predecessor or successor node being a
reference node in previous iteration or being already scheduled. Since the mobility of any
non-scheduled node may decrease as other nodes are scheduled, the priority order used to
select the target node minimizes the consumed mobility of non-scheduled nodes, which,

in turn, reduces the impact on the flexibility of scheduling such nodes.
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An initial time schedule for a given iteration period 7 exists, if and only if at all
stages of the building of the initial time schedule, the earliest firing time of a non-
scheduled node is less than its latest firing time. We will now show by the following
theorem that the existence of a valid initial time schedule for a given iteration period

7>7, is guaranteed.

THEOREM 3 At any stage of the time scheduling, the condition EFT(v)< LFT(v) holds for

any non-scheduled node v.

Proof. Let the nodes be scheduled in the orderv,,v,...,v, , that is, node v, 1s scheduled only
after all the nodes v,, & <i are scheduled. The node v, is said to be scheduled at stage i of
the scheduling procedure.

Let y; ; = LFT(v;,j)- EFT(v;, j) where LFT(v,j)and EFT(v,j) are, respectively, the
latest and earliest firing times of nodev; at stage j. Thus, we have to prove thatp; ; >0,
for any i<~ and for all j <i. However, the mobility of any node may never increase as
other nodes are scheduled, p;; <, ;,.Hence, we only need to prove that

u;20 , j=i, i<N (2.20)

We will prove the above by employing induction. It is obvious that p,, =0, since the

graph is computable. Now, let (2.20) be valid for i=¢, t <N . Thatis, y,, 2 0. We now

have to prove the correctness of (2.20) fori=¢+1. Recall that, at any stage of the
proposed scheduling procedure, the node with the minimum mobility is chosen as the

target node for scheduling, that is,

M 2 By,
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Otherwise, node v,, would have been chosen before node v, for scheduling. Hence,
Heog —Hy 20 (2.21)
Obviously, the maximum decrease in the mobility of node v,,;, when moving from
stage 7 to t+1 is u,,, which is the final mobility that can be exploited by the scheduling

procedure for node v, just before scheduling it at stage ¢, that is,

Mo 2 Higpy ~ My (2.22)

Combining (2.21) and (2.22), results in

pl+],t+l 2 0

Hence, the theorem J

Based on the above theorem and the discussion preceding it, we now give the
algorithm for obtaining the initial time schedule. The result of the time schedule is a set
of firing times of all the non-communication nodes in the modified DFG, which will be

used later in finding the initial processor allocation.

Algorithm 2.1 Initial time schedule

1. Calculate the minimum iteration period. Find the longest path matrix 9/ .
2. Take the input node as the reference node and schedule it first to fire at the control

step zero.

3. Calculate the earliest and latest firing times of all the remaining nodes with

respect to the mput node.
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4. Calculate the current schedule range or mobility for each of the remaining non-
scheduled nodes.

5. Schedule all the nodes that have zero mobility to fire at the only control step in
their mobility.

(Note: There is no need to update the earliest and latest firing times of the

remaining nodes after scheduling such a zero-mobility node)

6. Based on the current mobility for each non-scheduled node, choose one node as
the target node for the scheduling according to the following priority:

a. A node that has the minimum current finite mobility. If more than one node
has minimum current finite mobility, chose from these nodes the one that is a
predecessor or successor to the current reference node.

b. A node that is a predecessor or successor to the current reference node

c. A node that is a predecessor or successor of any scheduled node.

7. Within the scheduling range of the target node, find the best firing time position
as the control step that has the mmimum level. If more than one control step
results in the same minimum possible level, proceed as follows: (1) For
distributed-register based architecture, choose the control step with the minimum
level that results with the minimum number of
nodes having a data dependency with the target node. (i1) For centrally-shared-
register based architecture', choose the control step with the minimum level that
would minimize the number of registers.

8. Set the best firing time position found as the time schedule of the target node.

9. Set the target node to be the new reference node.

1. Algorithm 2.1 can also bc applicd to the synthesis aiming at centrally-sharcd-register based architectures in which dummy
nades can not he inserted in the DFG
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10. Update the earliest and latest firing times of all the remaining non-scheduled

nodes.

11. Go to Step 4 until all the nodes have been scheduled.

2.5 [Initial Processor Allocation Algorithm

In this section, an initial procéssor allocation scheme is proposed. Through this
scheme, the nodes of the modified DFG are assigned to the processors of a heterogeneous
multiprocessor system, and the set of nodes of a certain type in each critical or near-
critical loop (a near-critical loop is the loop whose loop bound is close enough to the
critical loop bound according to some criterion) are aimed to be assigned to the same
processor, which in turn results in reducing the inter-processor communication delay
(ICD) between the nodes Qf the same type. Thus, identification of each critical or near-
critical loop 1s crucial for processor allocation, and for this purpose, we first give an
algorithm to perform identification of such loops and use it later for the initial processor
allocation. A loop identification scheme can be found in [34].

A cnitical or near-cnitical loop is found by identifying the nodes of such a loop. The
process of this identification is carried out as follow. The matrix O/ is used to identify
the set of nodes in the longest loops (critical or near-critical) in the modified graph MG.

Since each diagonal element in O’ represents the longest path from the corresponding

node to itself, the nodes with the largest diagonal entries in @’ are on a critical loop. The

nodes of a near-critical loop have the diagonal entries whose values are less than those of

the entries corresponding to the critical loop. The values of the diagonal entries of the
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matrix (0’ are used as a guide to find the set of the nodes that form a critical or near-
critical loop. Fig. 2.6 gives an example as to how ¢/ 1s used to identify a critical or near-
critical loop. In this example, since the diagonal entries of Q7 corresponding to
nodesv,,v,, v, andv, of the given DFG are the largest, i.e., zeros, these nodes belong to
a critical loop. On the other hand, the diagonal entry corresponding to node v, has a

ax len[ P, [=(1+1+1)-1(4)=-1). Hence, this node

smaller entry of value -1 (Q/ m ,

:a P,
belongs to a near-critical loop. However, node v, alone does not form a loop, since there
is no self-loop from the node to itself in the graph. Therefore, node v; must belong to at
least one loop connecting to some of the other nodes v,,v,, v;, andv, in the graph.

Hence, we need to find the complete set of the nodes that forms a critical or near-critical
loop.

The following algorithm gives a scheme that identifies all the nodes belonging to a
particular critical or near-critical loop. This algorithm also determines the criticality level

of a loop, which is a measure of closeness of the loop to the critical loop bound.

Algorithm 2.2 Identification of critical or near-critical loops

1. Choose any node with the largest diagonal entry as target node v, . Use i to denote
the criticality level of the loop and j the number of the loop within the criticality

level i. Set i=0 and j=0.

2. Add the target node v, to the setip,(;), where 1 is the type of the target node; set

the current target node as a search node v,
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Among all the nodes next to the nodev,, select the node v, satisfying the

following three conditions:

(a) Node v, has the maximum diagonal entry value, (b)0}=0%, and (c)
04 +0L =0/, . In the case, there i1s more than one such node v, arbitrarily chose
one of them. Add the selected node to LP,()

Repeat Steps 3 until the current target node v, is reached and a new critic_a].or
near-critical loop containing the node v, is identified. j=j+1.

Choose a node from the remaining uncovered nodes that have a diagonal value in

0’ equal to the diagonal value of the current target node as the new target node;
go to Step 2. If there is no such a node, go to Step 6.

Choose any node with the next largest diagonal value to be the new target node.
Seti=i+]

Repeat Steps 2-6 until a specified percentage g of all nodes with a finite diagonal
entry in @/ has been covered. The terminating parameter g is the percentage of
nodes regarded as critical or near-critical and it obviously dependents on the
choice of the level of criticality that will allow a reasonable percentage of nodes

to be considered as critical or non-critical.
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Figure 2. 6: An example of critical and near-critical loops.

Even though the DFG given in Fig. 2.6 has 4 loops, L 1-L4, only two loops are identified,
namely, L1 (v,,v,, v5, andv,) and L3 (v,,v,, and vs), by applying Algorithm 2.2. This
1s so, since the algorithm has been designed to identify only a loop that has at least one
node belonging to it that is not covered by any other more critical loop. Thus, loops 1.2
and L4 are not 1dentified, since the sets of nodes (v;,v,,and v;) in L2 and (v,and vs)
in L4 are subsets of the sets of nodes in L1 and L3, respectively. It is to be noted that

despite the fact that node v, has different diagonal entry from those of v,andv,, v is

contained together with nodes v, andv, in L3, and with node v, in L4. In this example, L1

is the only critical loop with criticality level i=0. On the other hand, i=1 for L.3.

It is to be noted that, by using the above algorithm, a node may appear in one or
more than one loop with the same or different critically levels. This node duplication is
removed by making it to belong to only one loop that has the highest criticality level.

Based on the initial time schedule obtained in Section 2.4, and by using the loop
identification algorithm developed in this section, an initial processor allocation i1s now

produced. The result of this allocation is an initial processor allocation matrix 4(z), which
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specifies as to which processor of type ¢ a certain node is assigned. This scheme of
processor allocation starts by trying to assign the complete set nodes of a certain type in
each critical or near-critical loop to a single processor of type f according to the criticality
level of the loop to which they belong. The non-critical nodes, i.e., the nodes not
belonging to any critical or near-critical loops, are then assigned iteratively to the
processors until all the nodes of type t of MG are exhausted. In the initial processor
allocation, the complete set of nodes of a certain type in each critical or near-critical loop
may or may not be assigned to the same processor. If a pair of nodes in any critical or
near-critical loop cannot be assigned to the same processor, then the edges connecting
such a pair of nodes are referred to as cutting edges and assigned an urgency level equal
to the criticality level of the loop, since more the criticality level of a loop, more the
urgency for its nodes to satisfy the ICD. Therefore, the urgency levels of the edges can be
used prioritize the testing of the edges for their ICD compatibility. As to be seen in
Section 6, the urgency levels of the cutting edges will be needed in building the final time
and processor schedule. However, since during the phase of initial processor allocation,
we determine which nodes of critical or near-critical loop cannot be assigned to a single
processor of the same type, the process of marking of the cutting edges with the urgency
levels can be conveniently carried out at the same time. The process of the initial
processor allocation and the urgency marking of the cutting edges is described in

Algorithm 2.3.
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Algorithm 2.3 Initial processor allocation and urgency marking of the cutting edges

1.

Create allocation matrices A(2)’s of order £ =7, i.e. one matrix for each type of
processors, where 1 is the type of the processors, p is the number of processors of
type 7 and T 1s the iteration period. Set =0, i=0, j=0.

For each node veLp;n), determine the columns as FT(v) Modulo T and determine the
row only if one can find the first available processor that is free in these columns
and thus it can accommodate all of the nodes in 1r,(), then set j=j+/ and go to
Step 6.

Add a new processor of type r and create a corresponding new row in the
allocation matrix; assign as many of remaining nodes in the set .r;¢1) as possible
to this new processor and thusz =7, +1. If each nodes of the of the set 1p,¢) has
been assigned to a processor, set j=j+/ and go to Step 6.

Mark each of the cutting edges arising from Step 3 in the loop correspond
to Lp;(n with an urgency level equal to i

(Note that the first failure to accomrr_lodate all the nodes of a loop to a new added
processor will result in two cutting edges whereas succeeding failures will create

only one cutting edge)
Search for the first available processor that can accommodate the remaining nodes

in 2P, and assign them to this processor and set j=j+/. Otherwise go to Step 3.
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6. If j<j,, where,, is the number of loops in MG with the criticality level i as
determined by Algorithm 2, go to Step 2. Otherwise, set i=i+/. If i<i, , where
in- 1S the total number of criticality levels as determined by Algorithm 2, go to
Step 2.

7. 1f MG does not have a non-critical node that has yet to be assigned to a processor,
stop.

8. Choose one of the non-critical nodes of type ¢ from MG that have not been
assigned yet to a processor. Determine the corresponding column
as Fr(v) Modulo T and the corresponding row by finding the first available processor
of the type 7 that is free in this column and thus can accommodate this node;
assign the node to this processor.

9. If during Step 8, the node cannot be assigned to an existing processor, add a new
processor of type ¢ and thus create a new corresponding row in the allocation

matrix A(#). Assign the node to this processor and thus £ = £ +1. Go to Step 7

2.6 Final Time and Processor Schedule

The initial time schedule and processor allocation as obtained in Sections 2.4 and 2.5,
respectively, did not take into account the ICDs of the nodes of the same type. Since the
ICDs of such nodes are not negligible, the initial time schedule and processor allocation
may not be valid, if in MG the nodes of the same type having direct dependency could

not be assigned to the same processor. In this section, the ICDs between a pair of nodes
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of the same type assigned to two different processors are now taken into consideration in

order to find the final time and processor schedule.

The ICD between a pair of nodes of the same type assigned to two processors is
tested with respect to its compatibility with the firing times of the two nodes. In order to
take this ICD into consideration, a communication dummy node is inserted in the edge
that connects the two nodes. Such an insertion may violate the firing times of the two
nodes which in turn may also violate those of the other nodes in the modified graph MG.
If such a violation occurs for a pair of nodes, the firing times of the pair should be
modified to satisfy the inter-processor communication delay between them.

To determine the impact of inserting a communication node into an edge ¢,= (v;,v;)
that connects the two nodes v; and v;of the same type but assigned to two different

processors, the earliest scheduling time (EST) and the latest scheduling time (LST) of the

communication node ¢, with respect to the firing times of the two nodes are calculated
i

as follows,

i

EST(c, )= FT(v,)+d,

LST(c, )= FT{v,)-d, ~Tn,)

where d, is the computational delay of the node v;, d, the delay of the

cij

communication node ¢, , and n, the number of ideal delays associated with the edge
(’U > eu y g

e;- The time difference between the latest scheduling time and the earliest scheduling
time of the communication node ¢, is called the mobility, M(Ce., ), of inserted node Co s
y ! i

i

and 1t 1s given as
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M(c,)=LST(c,)~EST(c,)

The mobality of the communication node c, is required to respect the ICD, d,

i eif
between the two nodes by imposing the constraint,

Mc,) 2 0 (2.23)

If this condition is satisfied, then there is no need to modify the firing times of the two
computational nodes in MG. On the other hand, if this condition is not satisfied, then the

firing times of the nodes v,and v are adjusted so that the condition given by (2.23) is

satisfied with the equality sign. The adjustment of the firing times of the two nodes is
carried out by employing the procedure shift-successor- predecessor, which is used to

widen the mobility of ¢, to accommodate the communication node. The procedure shifi-
i

successor-predecessor 1s constructed based on two sub-procedures, shift-successor-left
and shift-predecessor-right. In each of the two sub-procedures, the nodes predecessors to

the node », and nodes successors to the node v ; are iteratvely shifted while satisfying the

precedent relation and keeping the current processor allocation unchanged. The
procedure shift-successor-predecessor, the main procedure, uses the two sub-procedures

In an iterative manner. It returns a “srue”, if in any iteration, the mobility of ¢, is
widened enough to satisfy the condition in (2.23), otherwise it returns a “false”.

If the shift-successor- predecessor procedure fails in widening the mobility, then it
is done so by inserting a number of cyc]es, N,.n;, required to satisfy the condition in

(2.23), into the allocation matrix starting from the control step

C

ins

= EST(c, )modulo T. Thus, the iteration period of the schedule is increased
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by N. . As aresult of this insertion of the new cycles into the allocation matrix, the firing

ms -

times of all the nodes in MG are modified.

The set of cutting edges that connect a pair of nodes of the same type assigned to
two processors are sorted for the testing for ICD compatibility according to the urgency
levels of the edges as obtained by Algorithm 2.3 of Section V. An example for

| illustrating the insertion of new cycles into the allocation matrix is given in Fig. 2.7. In

this example, all the nodes are assumed to be of the same type. Nodes v,, v,, and v, are
assigned to a single processor P1, whereasv,, vsandv,are assigned to P2. Therefore,
there are four cutting edges, namely, e,,, €,,, €5, and e, that have to be tested

according to their urgency levels as shown 1n Fig. 2.7. Edges e,, and e,, have the highest

urgency levels, each of which in tum leads to an insertion of one cycle as shown in Fig.

2.7, 1n order to satisfy the ICDs.

c —T=5
Urgency @ a 5 m’/% 40 | 1 1T2 L 3 | 4>
€34 €34 0 p1vi {vy |3 pliv |v2 V3
l:, I poloToalo] ¥ ]s] [
(%) Loops: L1 (1,2.3) L2 (1,2.4)

Figure 2. 7: An example of insertion of new cycles into the allocation matrix for ICD
compatibility between nodes of the same type.

Inserting new cycles into the allocation matrix would create an additional empty
space in each processor. This newly created space may be useful in eliminating the 1CD
between certain pairs of nodes of the same type, 1f more nodes could be allocated to same

processor. These empty spaces can be filled by moving the firing times of some of the
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nodes in the empty spaces of the processor executing these nodes or by moving the firing
times of these nodes even to the empty spaces of the processors. Such a moving is carried

out, if and only if; 1t results in no new edges to be added to the list of edges required to be

tested for their compatibility with the respective ICDs. A terminal node v; of the edge

e; in the list of edges to be tested is the candidate nodes to occupy the newly created

empty spaces, if it satisfies the condition FT(v; ) modulo T <C,, . Starting from the
candidate terminal node v; of the most urgent edge ¢, in the list of edges, we calculate the

latest firing time LFT(v;)of the node in question with respect to all of its successor

nodes, i.e., LFT(v,)= min LFT(v;Vge) - If LFT(v; )2 C,,, then the firing

Vouce ESUCCESSOr nodes
time of v, 1s moved to a processor chosen from the candidate processors, that results with
the largest number of nodes to have direct edges with the node in question v;. After such

a node movement, not only the edge e; that contains the node v; is removed from the list

of the edges to be tested for ICD compatibility, but also all other edges ¢; or e for
which the nodes v, or v, get assigned to the same processor to which the node v; has

been assigned. This node movement procedure, referred to as move procedure, 1is
iteratively repeated until all the candidate nodes to occupy the newly created empty space
are tested. If none of the candidate nodes can be accommodated by the created empty
space of any of the processors, the created empty space(s) is kept vacant. For the example

of Fig. 2.7, this move-procedure can be applied to move nodevsto occupy the empty
space at control step 2 which, in turn, satisfies the ICD between nodes v,andvs, and

therefore, ¢,5 is removed from the list of edges to be tested. The only remaining edge in
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the list of the cutting edges to be tested according to (2.23) iseg;. This edge is already
compatible with respect to the ICD between nodes v, andv;. Based on the above

discussions, we now give an algorithm for obtaining the final time and processor

schedule.

Algorithm 2.4 Final time and processor schedule

I. List all the edges in the modified graph that connect a pair of nodes of the same type
assigned to two processors of the same type.

2. For each edge in the list, assign an urgency level equal to the corresponding level
determined in the initial processor allocation algorithm (Algorithm 2.3). If no urgency
level was assigned to an edge during the initial processor allocation, then assign to
each of such edge a fixed urgency level value that is less than the smallest level found
in the initial processor allocation.

3. Sort the list of edges according to their decreasing urgency levels. If two or more
edges result in being assigned the same urgency level, then these edges are sorted
according to the order in which their termination nodes were scheduled to be fired in
the imitial time schedule.

4. 1f the sorted list of edges is empty, then stop.

5. Select the first edge in the list; insert a communication (dummy) node ¢, to this edge

in MG. Then remove this edge from the list

6. Calculate the earliest and latest scheduling time,esre, ) and isr,), for the
communication node ¢ inserted to the edge «; in MG.

7. Calculate i, ) of the communication node.
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8. If e, 20, go to Step 4.

9. Call the procedure shift-successor- predecessor. 1f it returns a “true” value, then go

to Step 4.
10. Calculate the number of cycles w,, =-m, ) required for a valid insertion of the
communication node ., into the edge «; .

11. Insert v, into the allocation matrix starting from control step &sri, )Moaio 7. Set

T = T + '\wlv".\
12. Update the firing times of all the nodes in MG.
13. Call the node movement procedure, move_procedure.

14. Go to Step 4.

2.7 Experimental Results and Discussions

In this section, some well-known benchmark problems of synthesizing DSP filters using
the technique presented in this chapter are considered. We have implemented the
proposed algorithms in C++ and performed tests on a Pentium 1V (1.7 MHz) machine.
Starting from the DFG corresponding to a given DSP algorithm, the process of synthesis
is applied to obtain the time schedule and processor allocation. In our experiments, a
distributed register based architecture and an inter-processor communication delay of 1
cycle are assumed. Moreover, structurally pipelined processing units are used in the

synthesis of all of the benchmark problems considered.

2.7.1 A fourth-order all-pole lattice filter

Fig. 2.8 shows an example of synthesizing a fourth-order all-pole lattice filter by

applying the proposed technique. The modified DFG of a fourth-order all-pole lattice
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filter is shown in Fig. 2.8(a). The initial iteration period bound for the modified DFG is
obtained using (2.3) and it consists of 18 cycles. The computational delays of addition
and multiplication nodes are assumed to be 1 and 5 cycles, respectively. Adders and
multipliers each with a structural pipeline of 1 stage and 5 stages, respectively, are used
in this example. The time and processor schedules obtained by applying the proposed
technique are givén in Fig. 2.8(b), which shows that this schedule results in an iteration
period of 19 cycles. The difference between the initial iteration period bound and the one
finally obtained is due to the inter-processor communication delay between nodes of the

same type.

(v)

Figure 2. 8: Example of applying the proposed technique for the synthesis of a fourth-
order all-pole lattice filter (a) the modified DFG of the filter (b) the time and processor
schedules.

2.7.2 A fourth-order Jaumann wave filter

Fig. 2.9 shows an example for synthesis of a fourth-order Jaumann wave filter by

applying the proposed technique. The modified DFG of a fourth-order Jaumann wave
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filter is shown in Fig. 2.9(a). The initial iteration period bound for the modified DFG
consists of 20 cycles. Just as in the previous example, the computational delays of
addition and multiplication nodes are assumed to be 1 and 5 cycles, respectively. Adders
and multipliers each with a structural pipeline of 1 stage and 5 stages, respectively, are
also used in this example. The synthesis of this filter is carried out using the proposed
technique giving the time and processor schedules shown in Fig. 2.9(b). It is seen from
this figure that the iteration period consists of 21 cycles and the architecture using this
schedule would require two adders and one multiplier. In order to minimize the number

of registers, the proposed node regeneration scheme is applied to this filter.

oI1'zl3[4]5je]7|a|9110111I1zi13}14i15|15]17}18]19‘20[
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(b)

Figure 2. 9: Example of applying the proposed technique for the synthesis of a fourth-
order Jaumman filter (a) the modified DFG of the filter (b) the time and processor
schedules.

2.7.3 A fifth-order elliptic wave filter

Fig. 2.10 shows an example for the synthesis of a fifth-order elliptic wave filter by

applying the proposed technique. The modified DFG of the filter is shown in Fig. 2.10(a).
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The initial iteration period bound for the modified DFG consists of 22 cycles. The
computational delays of addition and multiplication nodes are assumed to be 1 and 2
cycles, respectively. Adders and multipliers each with a structural pipeline of 1 stage and
2 stages, respectively, are used in this example. Fig. 2.10(b) shows the time and processor
schedules obtained by using the proposed technique. In the modiﬁed DFG of this
example, there are two critical loops having a loop bound of 22 cycles and one near-

critical Joop with a Joop bound of 21 cycles as found by using the Algorithm 2.2.

(b)

Figure 2. 10: Example of applying the proposed technique for the synthesis of a fifth-
order elliptic wave filter (a) the modified DFG of the filter (b) the time and processor
schedules.

These three loops have node 17 as a common node, thus making it necessary that

a single processor accommodates all the nodes belonging to these loops. However, in
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order to do so in the particular example under consideration, the minimum iteration
period must comprise at least 26 cycles. Since the process of allocating the nodes to the
processors is carried out based on the initial time schedule, which in this example has the
initial iteration period of only 22 cycles, all the nodes of the three loops cannot be
allocated to a single processor. Hence, the nodes in question are allocated to two
processors. Consequently, two inter-processor communication delays are introduced in
order for node 17 to communicate with other nodes of the same type having precedent
relations with it and assigned to different processors. This, as shown in Fig. 2.10(b),

results in a final time schedule with an iteration period consisting of 24 cycles.

2.8 Comparisons with Previous Work

In this section, the proposed technique is compared with some of the other techniques
in the literature in terms of the iteration period and number of processing units required
for the synthesis of the filter considered in Section 2.7. It 1s also compared with
commonly used scheme in terms of the overall execution time for some intensive DSP

benchmarks.

2.8.1 Comparison of various schemes in terms of on the iteration period
with and without ICD

The well-known techniques FDLS [18], ALPS [19], OSAIC [20], InSyn [21], and
MARS [22] have neglected the ICD when developing their synthesis technique. Hence, in
order to compare the results of the proposed synthesis technique with that of these
techniques, we have assumed that ICD is zero when applying the proposed technique of
synthesis. Table 2.1 gives the iteration period for the fifth-order elliptic filter when

synthesized under a given resource constraint by using the various techniques. It i1s seen
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from this table that only the technique of MARS and the proposed one give the lowest
iteration pertod possible, namely, the iteration period bound. It is to be noted that the
iteration period obtained by either method is unrealistic, since the 1CDs have been
neglected; however, unlike the technique of MARS, the proposed synthesis technique is
capable of including non-zero ICDs in the technique. Table 2.2 gives the synthesis results
mn terms of the iteration period and resource requirements obtained for the elliptic wave
filter considered in Section 8 by using the proposed technique and the techniques of [35]-
[37]. 1t 1s seen from this table that the iteration period obtained by using the proposed
technique consists of 24 cycles which is larger than the iteration periods obtained by the
techniques [35]-[37]. However, this higher value of the iteration period should be viewed
in the context that the iteration period bound using the proposed technique consists of 22
cycles for this filter and, as discussed in Section 2.7.3, this bound is unattainable if the

ICDs are taken into consideration.

Further, the works in [35]-[37] synthesize a fifth-order elliptical wave filter for a
two-chip implementation. Each chip has one adder and one two-stage pipelined
multiplier. In these techniques, inter-processor communication delay is considered only
between the chips (inter-chip communication) and it is neglected between a pair of
internal processing units within each chip. With the progress in deep submicron VLSI
technology, the inter-connect delay has become larger than the gate delay, thus making
the inter-connect delays a dominant factor of the overall delay in a chip. Thus, neglecting
the internal (intra-module) inter-processor communication delay in a chip, as is done in
[35]-[37], would be unrealistic or the cycle time in their resulting architectures must be

larger to accommodate the intra-module ICD.
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Table 2. 1: Results on iteration period with ICD assumed to be zero for a fifth- order
elliptic wave filter synthesized by various techniques for a given resource

constraint
Technique
Processors
FDLS | ALPS | MARS |InSyn | OSAIC | Proposed
1A, 1PM N/A 29 28 29 N/A 28
2A,1PM 19 19 17 19 19 17
3A, 1 PM 18 18 16 18 18 16

Table 2. 2: Results on iteration period taking ICD into consideration for a fifth order
elhiptic filter using various synthesis techniques

_ ICD
i Iteration ) i
Technique Processing units Inter- Intra-
period
module | module
2 chips, each with 1 adder 1 Not
APARTY [35] 21 o Taken
multiplier taken
2 chips, each with I adder 1 Not
VULCAN [36] 2] o Taken
multiplier taken
2 chips, each with 1 adder ] Not
Method of [37] 18 ) Taken
multiplier taken
Proposed 24 2 adders and 2 multipliers Taken | Taken

2.8.2 Comparison of the proposed and Force-Directed List-Based
scheduling [40] schemes in terms of the overall execution time and
number of control steps for some intensive DSP benchmarks

In this section, the propbsed scheme of synthesis targeting a distnbuted-register based
architecture 1s first compared with a commonly used scheme, namely, force-directed list-
based scheduling [40], targeting a centrally-shared-register based architecture. The
comparison is made in terms of the overall execution time, measured as a product of the

number of control steps and the duration of the step (i.e., the clock period), of the RTL
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architectures resulting from the application of the two schemes on a number of intensive
DSP benchmarks [41][42]. The number of operational nodes in the intensive DSP
benchmarks considered varies from 34 to 547. For the purpose of this experiment, the
delay of an adder is assumed to be 5 ns and that of a multiplier 10 ns. The ICD value is

set as 5 ns. The values of the two register parameters, +,,, and 1,.,, are chosen so as to

sctup

provide ¢, +1!,,,=2 ns. The clock period is determined by using the technique of [43].
setup clk2Q p y g q

Fig. 2.11 shows the execution times of the architectures corresponding to the various
DSP benchmarks. It 1s seen from this figure that the proposed scheme provides a
significant gain over that of the force-directed list-based scheduling. An average gain of
33.8% 1s achieved for the intensive DSP benchmarks considered in this experiment with
the maximum gain being 40.5% in the case of the specific benchmark, DCT7-dir. Since
the 1CD in distributed register based architecture may be taken care in a post-synthesis,
we compare the results of the number of control steps (i.e., the iteration period) by
obtaining the synthesis results from the proposed scheme for two cases respectively. In
the first case the ICD 1is taken care during the synthesis itself, whereas in the second case
it 1s done in a post-synthesis phase. Fig. 2.12 shows the number of control steps for
couple of intensive DSP benchmarks, namely, DCT-feig and DCT-chem, architectures
for these two cases of the synthesis. The comparison is carried out for different number of
processing units in the target architecture. It is seen from Fig. 2.12(a) and (b) that the
proposed scheme of incorporating the 1CD during the synthesis provides a significant
reduction in the number of control steps over the one in which it is done in the post-

synthesis phase.
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Figure 2. 12: The number of control steps obtained by using the proposed and post-
scheduling schemes for different numbers of processing units when applied to (a) DCT-
feig benchmark (b) DCT-chem benchmark.
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2.9 Summary

The tasks of high-level synthesis, namely, the scheduling and resource allocation should
use a realistic model of the parallel processing architecture. When a high-level synthesis
does not consider a realistic model of the target parallel processing architecture, the
resulting schedule may lead to an inefficient implementation. A realistic model should
support intér-processor communication delays and structural pipelining of functional

units.

A technique for the synthesis of DSP cyclic data flow graphs onto heterogeneous
distributed-register based multiprocessing architectures employing a graph theoretic
approach has been devised. The main focus has been on developing a new high-level
synthesis framework by considering a realistic model for the multiprocessor architecture
with a distributed-register configuration. The prbposed technique starts by modifying the
original DFG representing a DSP algonithm by inserting communication (dummy) nodes
to represent the 1CDs between the nodes of different types. The modified DFG is then
used to build iteratively a time schedule based on the mobility of each node. An
algorithm has been proposed to identify each cnitical or near-critical loop in the modified
DFG. Next, by employing the initial time schedule and by using the loop identification
algonthm, the task of an initial processor allocation i1s carried out. Since, the initial time
schedule and processor allocation does not take into account the ICDs of the nodes of the
same type, the initial time and processor schedules may not be valid. Hence, the initial
time and processor schedule have been modified to take into account the ICDs between a
pair of nodes of the same type assigned to two different processing units in order to find

the final time and processor schedule. This modification has been carried out by inserting
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additional cycles into the time schedule in order to ensure on the validity of the 1CDs
between a pair of nodes of the same type. In order to assess the proposed synthesis
technique, it has been applied to the synthesis of different DSP digital filters and has been
compared with various other commonly used synthesis techniques. Reasonable
computation times are obtained for all of the benchmark problems considered, i.e., less
than two seconds in case of the DCT-feig (547 nodes). It has been shown that the
proposed synthesis technique outperforms these techniques in terms of the iteration

period and the numbers of processing units of the synthesized architecture.
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Chapter 3

Simultaneous Scheduling, Allocation and
Placement taking into Consideration Inter-
processor Communication Delay

3.1 Introduction

In Chapter 2, due to the importance of considering the effect of physical design on high-
level synthesis, a technique for the high level synthesis with the objective of minimizing
interconnect delay of data communication between processing units has been developed.
In the proposed technique for scheduling and processor allocation, the interprocessor
communication delay has been assumed to be taken from feedback placement
information or from an estimated value of the interprocessor communication delay. In
this chapter, a téchnique in which the placement process is integrated into the high level
synthesis in order to determine the physical position of the processing units in the

placement space during the building of the time schedule and processor allocation, which
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provides with a more accurate information about the interconnect delay between the
functional units, is presented. Furthermore, the technique of chapter 2 and most of the
other techniques for high level synthesis uses only operation-specific functional units,
i.e., adders or multipliers, in the allocation process. In this chapter [44-46], the proposed
technique provides the designer with a greater flexibility to explore the design space by
using a hybrid arithmetic functional unit hbrary composed of both fixed operation- -
specific units and reconfigurable functional units capable of executing multiple
operations. Moreover, by using these reconfigurable units, the data transfers can be more

localized so that interprocessor communication delays are reduced.

A technique for simultaneous scheduling and allocation and placement using
hybrid library of functional units composed of both operation-specific and reconfigurable
multiple-operation functional units, 1s proposed. In order to build the time schedule and
processor allocation simultaneously with placement process, the information about the
positions of the functional units that already placed in placement space and about the
candidate positions for placing a new functional unit must be available or predictable.
Hence, a systematic process must be employed for th¢ placement. The concept of
triangular mesh is commonly used [48] to partition the interior region occupied by
number of objects into nicely shaped triangles by adding vertices in the center of the
objects and connecting them by edges. In our scheme, triangular meshes can be also
employed to connect the centers of functional units in the placement space. In this regard,
in order to find the suitable positions at where to place, one by one, the functional units, a
technique is needed to, iteratively, generate the triangular mesh. We use a Delaunay

triangular mesh [48] in the proposed scheme since this method of triangulation makes
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candidate positions well-distributed. Moreover, Delaunay triangulation maximizes the
minimum angles of the mesh. Hence, adjacent edges connected with a narrow angle are
avoided which in turn allows finding, quickly, the suitable gaps to place the remaining
functional units in the placement space. We have no theoretical justification that
Delaunay triangulation is the best method for our purpose. We would like to implement
other triangulation methods for the purpose of rectangle packing and compare them with

Delaunay triangulation.

The Chapter is organized as follows. A review for the related research for the high
level synthesis and placement, and that for the reconfigurable computing is given in
Section 3.2. The functional structures and characteristics of the dynamically
reconfigurable functional units incorporated in our scheme are described in Section 3.3.
The proposed scheme for the simultaneous scheduling, allocation, and placement is
presented is Section 3.4. In Section 3.5, the proposed scheme is applied to the some well-
know benchmark problems. Section 3.6 summarizes the work presented in this chapter

and highlights some of the salient features of the proposed scheme.

3.2 Related Research

3.2.1 Related research in high level synthesis and placement

Different approaches can be found in the literature addressing both the high level
synthesis and placement. In [49] operation binding, placement, and scheduling are
performed sequentially. The placement was driven by the clock slack time information
obtained from the binding results. The work of [50] proposed a layout estimation

technique for binding, and used it to select the most effective binding. Further, the
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technique of [51] formulated the simultaneous binding and placement problem into a
Mixed Integer Linear Programming (MILP) model. However, the applications of both in
[50] and [51] are confined to only a 1D placed target architecture. In [52], an estimation
of the layout cost for high level synthesis using a simulated annealing based floorplanner
has been proposed. In [53], a technique for the integration of resource sharing and
placement into an efficient linear programming formulation has been proposed. It is well-
know that simulating annealing used in [52] and ILP used in [53] are not practical for

intensive application due to their high time complexity.

3.2.2 Related research in reconfigurable architectures

It has been shown in [54] that reconfigurable computing is intended to fill the gap
between hardware and software, achieving potentially much higher performance than
software, while maintaining a higher level of flexibility than hardware. Reconfiguration
at the various levels of the computational hierarchy gives many trade-offs in terms of
flexibility, reconfiguration time, performance, area, and power/energy consumption. A
fine-grained reconfigurable device (gate level) is extremely flexible; it can implement
any application. However, the flexibility comes at a cost. The fouting architecture must
allow a connection from any part of the chip to any other part of the chip. Switch boxes
are used to enable this sort of flexibility. The switchboxes are composed of many
transistors to enable a hexible routing. Compared to a direct connection, it is apparent
that switch boxes add much overhead to the area, communication delay (performance),
and power consumption.

A significant number of reconfigurable architectures have already been proposed,

varying mostly on the granulanty's degree. An overview of the most popular
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reconfigurable architectures can be found in [55]. Fine-grained architectures [56], [57],
[58], such as classical FPGAs, suffer from high reconfiguration delays and power
consumption. Coarse-grained architectures [59], [60] eliminate the disadvantages of fine-
grained ones and preserve universality and flexibility at most cases, but operates only on
word-length data formats. Recently, hybrid architectures [61], [62] have been proposed
which try to combine the benefits of the two above approaches. All these solutions
propose new architectures to enable dynamic hardware reconfiguration. The Morphosys
reconfigurable system is a complete reconfigurable SoC implemented at the layout level
[63]. It incorporates a 32-bit RISC processor and a 8x8 array of coarse-grained
reconfigurable cells for efficient mapping of DSP applications. The basic reconfigurable
cell 1s universal consisting of an ALU and a MAC unit. The SoC also mcorporates a
DMA-controller and a Frame buffer for fast data transfers between the memory and the
reconfigurable array module. In [62], a coarse grain reconfigurable architecture is
proposed which targets DSP applications, enabling efficient template-based operation
chaining. Every node of the applications' DFG is mapped on a computational resource.
The templates are implemented by interconnecting appropriately a number of
computational cells. They perform template chaining by using a flexible inter-template
interconnection network. Although, the proposed architecture seems to have performance
gains in comparison with the straightforward template-based methods, the area overheads
imposed by the basic template cell architecture are not negligible. Moreover, the inter-
template communication delay has been not taken care.

To overcome the penalties of FPGA, small-scale reconfiguration would minimize the

area and delay penalties by inserting into fixed-logic only the mmimum amount of
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reconfigurable logic and interconnect and by reusing part of the available logic to achieve
the desired component flexibility. Therefore, arithmetic components designed with this
technique have the flexibility to perform multiple operations but are ASIC-like in their
efficiency. In high level synthesis, reconfiguration can be applied in the construction of
the RTL architecture considering that each RTL component is not active in every control
step. Partially inactive components can be merged into a reconfigurable component.

The concept of run-time (dynamically) reconfiguration is well known and can be
applied on different phases ‘of the design process, according to the granularity of the
reconfigurable blocks, which may be complex functions, simple RTL components or
LUTs. Dynamically reconfigurable components is presented in [64] by developing a
morphable multiplier, which is an array multiplier that can be configured through
multiplexers to work as either an adder or a multiplier. In [65] morphable multipliers are
used for the design of a graphics processor. In [66], an implementation of a simulating
annealing algorithm was presented to solve the scheduling, allocation and binding
problems, assuming that the target architecture uses run-time reconfigurable functional
units. Unfortunately, the inter-processor communication delay has been neglected.
Commercial microprocessors have used reconfigurable functional units to support SIMD
instructions [67]. These reconfigurable functional units support a single type of operation,

like addition, and vary only in the number and width of the operations.

3.3 Dynamically Reconfigurable Functional units
Existing approaches for high level synthesis consider functional units as blocks of
hardware that implement one or more operations, but where the setup of the desired

function has no cost. In other words, all the operators exist, in the functional unit, and the
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selection of the chosen function does not imply any time delay. Unfortunately, this
assumption 1s not valid since using such functional units needs a certain amount of time
to reconfigure its logic. When one operation is assigned to a functional unit that was last,
used for a different function, it is necessary to spend a certain number of clock cycles in
reconfiguration, prior to the execution of the operation.

One way to provide reconfigurable functional unit resources is to specify a
concise set of operations desired in a functional unit, and to design such a multi-mode
functional unit for very high speed. When a reconfigurable functional units is designed,
the similarities between the desired operations can be implemented in fixed logic, and
reconfigurable logic and interconnect must be used to implement the differences.
Therefore, the first step in designing a reconfigurable unit is to determine the common
functions between the operations to be implemented, hence minimizing the part for the
reconfigurable hardware (and its associated penalties). For example, adders and
multipliers have similar hardware substructure, making them more suitable to be
implemented as a reconfigurable unit, resulting in an efficient flexible implementation.
Other arithmetic operation combinations may also be considered for reconfigurable
implementation. Other forms of this reconfigurability could to integrated a wide bit width
operation with multiple operations of narrower width; several low-precision operations
could be embedded within a high-precision operation; a rarely used operation could be
also integrated within a high use operation. The direct and simple way to do this is to
construct an individual implementation of each operational mode in the functional unit,
and to use a multiplexor to select the output based on the mode. The delay overhead for

this type of reconfiguration consists of the multiplexor and latch delay, as well as the
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interconnect delay to move primary inputs and outputs to and from the different operators
within the reconfigurable functional unit. In order for a reconfigurable functional unit to
provide area savings, its area should be smaller than the combined area of all of the
operations implemented individually. Partitioning operations across time instead of space
(each operation can be implemented in the same physical space) and then the required
component configuration is selected at the . necessary time. Such structures of
reconfigurable functional units avoid the large performance, area, and power penalties
associated with FPGAs and DSP processors while at the same time clearly provides
hardware flexibility.

The morphable multiplier proposed in [64] 1s employed in the technique proposed
in this chapter since it is capable of implementing both multiplication and addition (in
fact, it can perform two or more data-independent additions in parallel) with the same
delay as a fixed logic multiplier and with very small area overhead. Given the regularity
occurrence of MAC operations in DSP algorithms, such dynamically reconfigurable
functional unit provides significant benefits for them. The goal of the proposed technique
1s to make use of this morphable multiplier in a hybrid library of functional units
composed both operation-specific and reconfigurable functional units supporting sets of
different operators. In this chapter, the focus is on the morphing between a set of
multiplication and addition operations in the high level synthesis. The objective is to
utilize such morphable multiplier to maximize the data transfer.

The morphable functional unit has been designed based on a tree multiplier. In a
tree multiplier, the partial products can be generated using an array of AND gates, or

more generally, radix-k Booth’s multiple generators. The partial product reduction tree
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(PPRT) adds the partial products and produces a sum result in a redundant form. The
redundant form is converted into a binary form by a carry propagate adder. The PPRT
design technique that is used in [64] is based on an approach in which a globally optimal
way of interconnecting low-level compressor stages is identified. This method exploits
the fact that the inputs and outputs of a compressor do not equally contribute to the delay
of the multiplier. The critical path through a tree multiplier will almost certainly pass
through compressors in the PPRT. In fact, not all the compressors in the PPRT are on the
critical path. Compressors that are not on the critical path have timing slack. The timing
slack for each non-critical compressor is equal to the minimum delay that can be added to
it in order to make that compressor critical. Utilizing a compressor in more than one
operation (e.g. add and multiply) requires some number of multiplexors to modify the
connections of this compressor. A compressor with sufficient slack to allow the
incorporation of multiplexors on its inputs is called a reusable compressor. Fig. 3.1 gives
an example for a Morphable 6 — birx 6 — bit Multiplier taken from [64] using re-used
adder cells. Gray wires show the PPRT in multiplier mode. In this figure the black adders
are re-used in a 7-bit ripple carry adder since they have a slack time. In fact, a 32 bit array
multiplier can be made to work as a multiplier in mode 1 and 8 32 bit adders in mode 2
with only 20% extra area. For fewer adders, the morphable multiplier uses a very little
area overhead and has the same delay with a single mode multiplier component. For our
application to HLS, we have chosen a morphable array multiplier that works as a
multiplier in mode 1 and 2 adders in mode 2. lbf during the time scheduling the morphable
multiplier has been reconfigured for two different type of nodes, then the two

configuration must be separated by one cycle delay to allow the reconfiguration between
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the two nodes. The incorporation of this morphable multiplier 1s given in the following
section. There are some important related issues which have to be addressed in the
proposed technique, for instance, how to allocate operational nodes to these
reconfigurable multipliers, the area and delay trade off, the reconfiguration times, the

way used for the placement of such processing units.
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Figure 3. 1: A Morphable 6 x 6 Multiplier [64] using re-used adder cells. Gray wires
show the PPRT in multiplier mode. The black adders are re-used in a 7-bit ripple carry
adder.

3.4 Simultaneous Scheduling, Allocation and Placement

This section presents the proposed technique for simultaneous scheduling, allocation, and
placement. The problem is to find a rectangular space of minimum size into which all
functional units are placed while taking into consideration the interprocessor
communication delay (the distance between the functional units) to satisfy time

constraints. Initially assumption is that all the operations in the DFG can be allocated to

72



distinct functional units. However, during the procedure of the proposed technique, two
functional units with the same operation type are allowed to be combined into one if their
assigned operations are not executed concurrently at the same control step. To support the
functional unit sharing between operational nodes, we should allow the possibility of
overlapping between functional units of the same operation type in placement space. The
overlapping between units of different time is allowed in some cases in which hybnd
library of fixed-specific operation functional unit and reconfigurable functional units is
supported while taking into consideration not only the ICD but also the reconfiguration

time.

The formulation of the problem must satisfy the following two constraints leads to

a feasible scheduling, allocation, and placement solution:

1. Disjoint constraint: Two functional units should not overlap if they are of different
types. However, they do if there are of the same type or a hybrid library of functional

units 1s available.

2. The precedence relations between operational nodes are not violated: a valid way to
schedule the operation while taking into consideration the interprocessor communication
delay and the reconfiguration time of the reconfigurable functional units. In other words,
the delay of interconnect between functional modules should not cause any node mobility

violation.

An iterative procedure based on the node’s mobility is employed. The earhest and
the latest firing times (EFT and LFT) at which each node can be scheduled to fire are
iteratively calculated.. These earliest and latest firing times are found relative to a

reference node taking into consideration the interprocessor communication delay (i.e., the
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positions of the functional units). In other words, the actual position of the functional

units in the placement space is taken into consideration in these calculations.

Let us assume that each node in a given DFG can be executed by a functional unit
of a rectangular shape. The proposed packing technique positions all of them onto an xy-
plane while it tries to minimize the layout area. Let us also assume that all edges of the
rectangles are parallel to the x-axis or y-axis. Under these assumptions, the algorithm
schedule the nodes one by one by allocating them to a specific functional unit while
specifying its position in the placement space so that the precedence relation between the
nodes are not violated. In each iteration of the process, one node is chosen according to
its urgency to be scheduled, which specified while taking into consideration, precedent
relation, the previously place units and the candidate position for new placements, and
then it is allocated to a functional unit that already placed. If there is no functional unit
available to allocate the node while the precedence relation are not violated, a new
functional is placed in the placement area so that ICD is taken into consideration and
precedence relation are satisfied. If there is no candidate position in the placement area
satisfies the ICD and precedence relations, this blocking situation is solved by inserting
new cycles (control steps) into the time schedule so that treat the violation in the
precedence relations is treated. Recall that the technique places the rectangles
representing the functional units at-candidate positions so that the area of the placement

space and the iteration period are minimized.

In order to reduce the time overhead due to the proposed simultaneous approach,
the proposed algorithm favours accelerating the rectangle packing process rather than

perfectly minimizing the layout space. Therefore optimization schemes are not applied to
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find the configuration of the rectangles (processing units) in the layout, but a heuristic is
used to quickly find gaps and place the remaining rectangles representing the functional
units in the gaps. Moreover, the number of candidate position available to place a new

processing unit is restricted to speed up the proposed technique.

The heuristic uses a Delaunay triangular mesh [48] to connect the centers of the
placed rectangles, as shown in Fig. 3.2. Let us denote a mesh as M(U,E,T ) consisting of
veﬂicesUz{u],...,unM}, edges Ez{e,,...,e,}, and triangles Tr:{lr,,...,lr,n}. The
algorithm picks up first reference node from the given DFG and allocates it to a
functional unit of the same type and then positions the rectangle r, representing the
functional unit at the center of the layout area and generates a rectangular space that
entirely encloses the positioned rectangle. Let the space be S, its four corner vertices be
u; to u,, and the center of r, be u,,,. We initially define the size of S as twice the size
of r. The algorithm then generates four triangles f, to fr,, which connect the five
vertices u, to us, as shown in Fig. 3.2. The next node to schedule is then selected
according to some rule and a corresponding functional unit is then allocated to the
functional unit placed previously in the layout area if it is capable of executing the
current node to be schedule or other wise it is allocated to a new functional unit that need
to be allocated in the layout are while taking the ICD into account. The ICD is assumed
to proportional to the distance between the centers of the functional units or the candidate
position in the tnangular mesh. After placing each new rectangle r, one by one, the

algorithm updates M as shown in Fig. 3.2, by connecting the new vertex u,,, to several

vertices and modifying several triangles as done in [48]. While deciding on a position in
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which to place a functional unit, the algorithm calculates candidate positions on £ and
evaluates the candidate positions. Next, we describe the order of visiting elements in £
and then describe the scheduling and the allocation and then the evaluation of the
candidate positions so that interconnect distance and proportional delay is taken into
consideration while the area is minimized. Finally, we describe the modification of the

triangular mesh.
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Figure 3. 2: Processing flow of functional unit placement and update of mesh M.

3.4.1 Order of referring to the mesh edges

The next operational node to be scheduled is chosen from the list of remaining operations
in away in which the node with the minimum mobility is chosen or at least one direct
predecessor or successor operation has been scheduled. This requirement is crucial to

improve the quality of the schedules that are found by the heuristic. The algorithm places

76



the rectangles one by one and searches for a position to place the rectangle, which
satisfies the following conditions as much as possible: Condition 1: No overlap between
r, and any previously placed rectangles. Condition 2: Minimum extension of the layout
area S and keep the iteration period close to its preferred minimum value i.e., close to the
iteration period bound. To quickly search for positions where rectangles can be placed
satisfying the above conditions, the algorithm picks suitable positions by using the
following two strategies: Strategy 1: It favours selecting sparsely popu]ated regions since
1t 1s easier to place rectangles in such places without overlapping with other rectangles.
Strategy 2: It favours selecting interior positions since it 1s easier to place rectangles in
such locations without enlarging the layout space.

Fig. 3.3(a) shows an example of a triangular mesh and rectangles. Here, let E/ be

the length of a mesh edge, E/ is the length of the part of the edge that is inside the
rectangle whose center places it at an end of the edge, and £/, is the length of the other

part of the edge that is inside another rectangle, as shown in Fig. 3.3(b). Our technique

calculates the values of El, = El - (El, + EI, ), the length of the remaining part of the
edge lying outside the two rectangles. Here, the technique lets E/, or El, take the value
of zero when the ends of the edge are on u;, 7 =1...4. This is because it 1s more likely that
gaps will be found around mesh edges whose E/ values are larger. The numbers in Fig.
3.3(c) denote that the edges are ordered from the largest E/. to the smallest. This is
obvious since the larger the EI, the larger the interconnect delay between the two

“functional unit. The algorithm searches for gaps on the edges in this order so that it

satisfies Strategy 1.
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Figure 3. 3: (a) Triangular mesh connecting centers of previously placed rectangles. (b)
Calculation of values of £/, . (c¢) Order of the E/ values.
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A Delaunay triangular mesh is used in the proposed heuristics since Delaunay
triangulation makes candidate positions well-distnibuted. Since the definition of Delaunay
triangulation is the tnangulation that maximizes the minimum angle of M, it avoids
making closer candidate positions by adjacent edges connected with a narrow angle. At

the same time, the algorithm countsce; , the number of corner vertices u; to u, touching
the edge e;. Fig. 3.4(a) shows an example of the distribution of ce; . This figure shows
that interior mesh edges have the smaller ce; values. The algorithm then groups the mesh
edges according to their ce; values. The algorithm starts the trial placement of functional

units on the edges. It first extracts edges from the ce; = 0 group, then the ce; =1group,

and, finally, the ce; = 2 group, so that it satisfies Strategy 2.

The algorithm extracts edges in each group in the sorted order, starting from the

edge that has the largest E/, value. The algorithm calculates at most three candidate

positions where r, touches the functionals previously placed at the ends of e;, as shown
by the two dotted rectangles in Fig. 3.4(b), and tries to place r; at each of these positions.
For edges ce; =1, the technique tries to place r; at a position at which it touches the
functional unit previously placed located at one of the ends of e; or in the center of it as
shown in Fig. 3.4(c). In the case of ce; =2 edges, the technique tries to place 7, at the
center of e; as shown in Fig. 3.4(d) because there are no rectangles at the ends of

ce; =2 edges.
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Figure 3. 4: (a) Values of ce; for edges. (b), (c), (d) positions to try to place the current
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3.4.2 Scheme for scheduling and allocation of the nodes

The schedule is built by selecting a reference-node and by calculating the mobility of all
non-scheduled nodes with respect to this reference node. All the non-scheduled nodes are
put in a list. The node with the minimum mobility calculated thus far is chosen for
scheduling first and then removed from the list. When choosing between equal mobility
nodes, the selection 1s made such that individual operation concurrency is equalized with
the previous step. This is to reduce the chance that a reconfigurable unit would need
reconfiguration when used in that particular step. Due to the new firing time of the node,
the time schedule of other non-scheduled nodes may be affected. This node s chosen to
be the new reference-node and the rest of all the earliest and latest firing times for the rest
of the non-scheduled nodes are calculated. The calculation of the earliest and latest firing
times must include the position and distances between the functional units in the
placement space. A new node is chosen for scheduling and the process is iteratively
repeated until all the nodes are scheduled.

A. Valid Ranges and Extra Cycle Insertion

A walid schedule range specifies a valid way to schedule the operation for a given
precedence relations, inter-processor communication and the current allocation and
placement positions of the hardware.

Given a data -f]ow graph of a DSP application, the time schedule can be built
using the longest path matrix O/ defined in Chapter 2. The scheduling heuristic

calculates the valid range (mobility) of start times start times for an operational node
while taking into consideration the position of the candidate functional unit in the layout

space. The candidate positions to allocate and place the node are of two types: (i) the
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center of the functional units that already placed or (i1) the possible points on the mesh
edges to place a new functional unit. Since there 1s more than one candidate position and
functional unit, the Jength of the communication delays depends on the position to which
the operation 1s assigned. Therefore, more than one range is calculated for each node,
namely, one for each candidate poéition in the layout space. The earliest firing time and

the latest firing time for a node v; relative to that of a reference node v, are, respectively,

given by

EFT ((/) v, cnps,v,crps, T, ): FT (v )+ Ql’ + comm('v, CYPS.,V,.CHpS ) 3.1

i

LFT ((/) V,.CHPS, V,.CIPS, T, ) =FT (v,, )— QJ{ —comm('v,.cnps, v, crps ) 3.2)

where FT(v,-) 1s the firing time of node v;, cnps is the candidate position in placement
space, crpsis the current position in placement space, and comm(v,.crps.,v,.cnps )is
the interconnect delay between the candidate position to allocate and place node v, and
the current position to which node v, is previously placed. The model used to calculate
comm(v,.crps.,v;.cnps) will be discussed later in this section (Section 3.4.2.D). To

find the earliest and the latest firing times of nodev,;, the maximum earliest firing time

and the minimum latest firing time of the node must be found relative to all previously

scheduled nodes and taking into consideration all previously place functional units. Thus,

EFT and LFT of node v; are, respectively, given by

EFT(v; )= max (EFT((‘%) v, .cnps, v;.crps, T, » (3.3)

alli<j
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LFT(v;)= min (LFT((‘%) v;.cnps,v;crps, T, )) (3.4)

alli<j
Thus, the mobility or the scheduling range in the schedule of any node v, is given by.
My, )= LFT(v,)- EFT(;) (3.5)

The ranges from the earliest firing time to the latest firing time are constantly
obeyed when operations are scheduled; it is possible that when a new operation 1s
scheduled to fire at a specific functional unit or to a specific candidate position , the
earliest firing time is larger than the latest firing time. In other words, the scheduling

range can be empty (the mobility M(v_,.) 1s negative). This can happen because the

communication delays are not included in the final distance matrix O/ . They can not be

included because it would require that all operations are allocated and placed a position in
the rectangular placement area beforehand. Hence, during the scheduling heuristic used,
every time 1t schedules a node, it can happen that given a partial schedule, a still
unscheduled operation can not be scheduled. The first reason is that the operation
distance matnx does not include communication delays. It is then possible that given a
partial schedule, the inter-processor communication delays for a node can not be
satisfied, which 1s the case when all the ranges calculated for given node on all the
available functional units are empty. A second reason is that the scheduling method tries
to allocate the node in question to the available functional units. It can happen that given
a partial schedﬁle, a node can not be scheduled because the functional unit it needs is not
available. The treatment is to insert cycles into the time schedule to solve the problem

which is similar to the one presented in Section 2.6. Every time a new node 1s schedule,
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cycles may be required to be inserted to the time schedule. These inserted cycles are in
general due to the following two sources (a) an empty scheduling range (b) a time

required for the reconfiguration of a reconfigurable functional unit.

B. Inserting the New Cycles

Inserting an extra cycle in the schedule creates for every resource a new free time unit in
the schedule. Therefore it can be used when there was not a resource available for the
operation. Furthermore, inserting extra cycles in the schedule can increase the time gap
between two nodes. So, inserting extra cycles in the schedule can also be used when
communication delays are not yet satisfied. Notice that a side effect is an increase of the
iteration period 7. When new cycles are inserted in the schedule, the number of extra
cycles and the column in the time schedule table or matrix where to insert these cycles
have to be specified. The cycles are inserted immediately before the preferred firing time.
Because the scheduling is non-preemptive, after a cycle is inserted in the schedule every
operation should still execute uninterruptedly and be allocated to a continuous series of
cycles in the schedule. We proposed to move operations such that every node still starts
in the same control step in the time schedule as 1t did before the cycles were inserted. In
fact, we use similar strategy to the one proposed in Chapter 2 to determine the number of
cycles to be inserted and where in the time schedule they must be inserted.

The process of cycle insertion also determines how the node can be scheduled so that:

(i) The operation fits in the time schedule.

(1) The precedence relations or minimum interprocessor communication delays for other

nodes stil] not violated.

84



The process of cycle insertion returns an offset shift that indicates how many cycles the
node is shifted to the right with respect to the targeted firing time that was required. It
also returns the number of cycles N that has to be inserted in the time schedule in front of
the column corresponding to the preferred firing time. Note that the iteration period is

increased by N. To illustrate how the process works, 3 examples are shown in Fig. 3.5.
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Figure 3. 5: Three examples of how a node can be inserted in the time schedule.
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C. Choosing the firing time within the valid scheduling range

The level of a control step is defined to be the number of nodes which will eventually
occupy this control step. This level determines the number of functional units required
dunng this control step in the time schedule. The chosen node is scheduled to fire at a
control step that would results in a minimum number of functional units required given
that precedence relations are satisfied. In presence of the hybrid functional units, the level
of a control step being the summation of sub-levels of the different types of operations

and given by level =level, ., +level,,, +.... The choosing of the best firing time is

done by examining all the control steps within its mobility such that total number of
operations per cycle is minimized, rather than individual operator concurrency. More
specifically, find the control step having the minimum total level as a primary key or the

minimum sublevel (/evel, ) as a secondary key. This is very significant to reduce the

npe
number of functional units needed and to increase the utilization of the dynamically
reconfigurable functional units, thus the total area is reduced and local data transfer are

maximized compared to an architecture that uses only operation-specific functional units.

The following points summarize the above discussion regarding each possible
scheduling, allocation, and placement of a non-scheduled node to the placement space:

e The node is assigned to fire at previously placed functional unit or to new
functional unit placed at the position in placement area results in the largest valid
mobility (scheduling range).

e [If there is no valid mobility for each possible candidate potion, the node is
scheduled to fire at the candidate position that leads to the minimum number of

mnserted cycles.
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e In the proposed algorithm, a new functional unit is added in the placement space
only if this will lead to less number of inserted cycles.

e If adding a new unit will result in the same number of inserted cycles equal to that
if the node 1s assigned to current functional units, then the node in question is
assigned to one of current functional units so that the placement area is not
increased.

e Every time a node of type (a) is assigned to a reconfigurable unit running in a
mode of type (i), a control step must be blocked on the corresponding functional

unit in order to represent the reconfiguration timeR7,

of the morphable
multiplier.

e The position of the reconfiguration time slots in the time schedule should be tested
and modified (moved) every time a new node is schéduled. Fig. 3.6 shows

examples of such a slot movement.
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Figure 3. 6: Moving the reconfiguration time slots
D. Delay model for the wires
In fact, different delay models can be used to calculate the delay of the interconnect wires

with respect to their length in the placement space, i.e., the distance between the two
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functional units in question. One possible model is Elmore model that is commonly used
i1s d =0.5RC, where C=cl R=rl, | being the length of wire, r being the resistance of wire
per unit length, and ¢ being the capacitance of wire per unit length. With the advances in
the fabrication technologies more accurate delay models can be employed to consider for
example the inductance of the wires.

3.4.3 Evaluation of candidate positions

Given a candidate position, the algorithm checks if the point satisfies the two conditions
described in Section 3.4 and the valid mobility for the node. Starting from the

ce; = 0 edges, the algorithm refers to edges in the sorted order and calculates candidate
positions on the edges. The algorithm then attempts to place r, at the candidate positions.

It checks overlaps between r, and previously placed rectangles and calculates

enlargement of S. If the algorithm finds that one of the candidate positions satisfies both

conditions and mobility, it decides to place 7, there and selects the next rectangle.
Otherwise, the algorithm selects the next edge to check to see if it satisfies both
conditions. If no ce; =0 edge satisfies both conditions, the algorithm continues with the
ce; =1edges and, finally, the ce; = 2 edges.

Even if the candidate position satisfies only Condition 1, the algorithm can place r,

after enlarging S. In this case, the algorithm evaluates the point. In fact, the points or the
candidate position are evaluated if multiple positions satisfy the conditions and mobility.
The evaluation function for the candidate positions uses a combination of the placement

area and iteration period of the corresponding time schedule. It calculates the
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valuead + 17, where a and Tt are user-defined positive values. A is calculated as
follows:

A= Aaﬁer

Abefore
where A4, 1s the area of S that would be if 7, is placed at the candidate position under
evaluation and 4, is the area of S before the placement. 4, can be calculated after

the enlargement of S described in the following section. T is calculated as follows:

T ior
T = after

T, before

where T .  is the iteration period of the time schedule after the placement of r, and the

afrer

possible insertion of cycles in the time schedule and 7)., is that before the placement.

Again, T can be calculated after the enlargement of S. We define the value of a and 1 as
a= 1= 1, 1f equal preference is giveh to the placement area and the iteration period.
However, it depends on the requirements of designer: If the minimization of the layout
spaces 1s important, a should be larger thant. If qA+TT calculated on the candidate
position is smaller than the smallest in the values of previously processed candidate
positions, the algorithm saves the candidate position with this oA+ t7T value. The

algorithm places 7, at the most recently saved candidate position because this was

evaluated as the best position.

3.4.4 Local modification of the triangular mesh after the placement of
a new unit

If it is decided to place the rectangle #, at a candidate position that does not satisfy

Condition 2, the algorithm enlarges S by moving some of the u,,i=1...4, as shown in
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Fig. 3.7. Here, let the positions of u,,i=1..4are (x;,%,), (X3, ), (X3,¥5), (X,,¥5)-
Also, we position the four corners of r; atare (x,,y,), (x,,¥,), (x.¥, ), (X,.¥p)-
The algorithm enlarges S by recalculating the position of v;, i =1...4 as follows:

if x, <x, then x; =x, - ENGL

if ya <y then yy =y, ~ENGL

if x, <x, then x, = x, + ENGL

if y, <y, then y, =y, + ENGL
where ENGL is a constant positive value. Our implementation applies ENGL=0.1 S, if
S, >S,; otherwise, ENGL=0.1S,, where S,. and S, are, respectively, the width of S
and the height of S. After the algorithm places #, by using the above steps, it updates the
triangular mesh by adding the center of the placed rectangle u,,, to the mesh. This
process first connects u,,, to the two other vertices of the triangles that share the edge e;

and divides each of the triangles into two new triangles. Fig 3.8 explains the mesh
modification process in case of the reconfigurable functional units compared to that of
operation-specific function unit. In Fig. 3.8(a), 5 candidate position are considered. Fig.
3.8(b) shows the enlargement of the space if a new functional unit is placed. Fig. 3.8(c)
given the situation 1n which S has to be enlarged due to changing replacing a multiplier to
a morphable one. The process then locally modifies the mesh, starting from the triangles
that share the newly added edges. It selects an adjacent triangle to modify and swaps their
shared edge to improve the triangles. The modification is recursively repeated between
the modified triangles and their adjacent triangles until no triangles to be modified. The

detailed algorithm of the mesh modification is described in [48].
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Figure 3. 7: (a) A rectangle and triangular mesh. (b) One more rectangle is placed on a
mesh edge. (c) Comners of S are moved when the placement of the current rectangle
requires enlarging the layout region S.
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a mesh edge. (c) Enlarging of the layout space S due to placing of a morphable multiplier.
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Figure 3. 9: The DFG of fifth-order elliptic wave filter

3.5 Experimental Results

In this section, some well-known benchmark examples of synthesizi_ng intensive DSP
applications using the technique presented in this chapter are considered. The proposed
technique is first assessed in terms of the minimum iteration period obtained for some
well-known DSP applications by using only operation-specific functional units in one
case or by using hybrid library of functional units in the other case. Next, in order to
study the impact of integrating the placement into the scheduling and allocation tasks, the
proposed scheme is applied to the synthesis of the some benchmark problems. In this
study, the results are obtained under three different scenarios for the candidate positions
to place the functional units in the placement space. Finally, experiments are carried out
to determine the placement area and iteration period for some problems by using a library
contains only operation-specific functional units in one case or hybrid library of

functional units in other case. The following are the three situations for evaluating the
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candidate positions in the placement space: (i) The evaluation function gives a preference
to the area over the iteration period (i1) The evaluation function gives a preference to the
iteration period over the area (iii) The evaluation function gives equal preference to the

area and the iteration period.

The delay and area of the functional units including that of the reconfigurable
ones are taken from [64]. It is shown in [64] that an extra area is required to be added in
order to introduce mode 2 (reconfiguration to adder) to a fixed multiplier. For example,

an additional area overhead of 1.5% is required to implement one 32-bit Adder in a
reconfigurable 16x16-bit morphable multiplier (RC-PM'*). If mode2 has two adders

(RC-PM ?*), the area overhead is pushed up significantly to be 11.4%. Normalized to the

area of 32-bit Adder X: The area of the fixed 16x16-bit pipelined multiplier is 4.77X, and

of the reconfigurable pipelined multipliers RC-PM'#and RC-PM?*, are 4.84X and

5.32X, respectively.

3.5.1 Obtaining the minimum iteration period

We first consider an example of a DSP filter, a fifth-order elliptic wave filter, in order to
demonstrate the ability of proposed technique to find the minimum iteration period. We
select the user parameters in the placement evaluation function so that it is formulated to
give a preference only to the iteration period. The DFG of this filter is shown in Figure
3.9. The time schedules obtained for this filter in the two cases: (a) only operation-
specific functional units (b) hybrid library of ﬁmctiona] units are shown in Figure 3.10(a)
and (b). It i1s seen that the iteration period obtained for the time schedule using
reconfigurable functional units compared to that obtained using only operation-specific

functional units since the in the case of reconfigurable functional units the local data
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transfers are maximized. The proposed scheme is also applied to obtain a minimum
iteration period for five DSP applications using the same two cases of functional units.
Table 3.1, summarizes the synthesis results obtained for the five DSP applications. It is
seen that, the use of reconfigurable functional units in synthesis process with the ICD

provide an iteration period less than that using operation specific configuration.

. Mmlmum iteration périod with op-specific functional units
0 } 112 | 3. l 4vl sl 6 I 7 I 8 | 9 |10|.11,12[13I14l15[16[17,18|19]20|21lzzlza
A (28 [ ] s [ ]
a o [z]rfn]7]w]r] 15[ [ref20]  [s]a]o ]
P |22] HEIRIE)
PM @

(a)

thi}hum iteration peﬁod with reconfigurable furctional units
0!1|2|3!4|5|6 7*8‘ ‘10‘11l12!13‘14‘15|16l17l18|19|20|21!22!

’__

RC-PM 29 (30| 24 18123 | A ~M 25{26 28|32 M
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Figure 3. 10: Time and processor schedules for the DFG given in Fig. 3.9 using, (a) fixed
operation-specific FUs (b) hybrid (reconfigurable) FUs
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Table 3. 1: Minimum iteration periods of some DSP benchmark problems

Benchmark Nur:fber Type of 4 FU Minimum iteration
nodes | TY period (T)
zp,.’ . 2 PM, 3A 19
Fourth-order all- s Specihic _
pole lattice filter . 1 RC-PM**,
Hybrid | 1RC-PM", 16
1 PM
op-
Fifth-order 34 specific 2 PM, 2A 24
elliptic filter ] 2 RC-PM",
op” 3 PM, 3A 15
specific
8-point DCT 40 1 RC-PM**,
Hybrid | 3 RC-PM", 13
1 PM
or 5 PM, 5A 22
Raised cosine pectiic _
FIR 79 3 RC-PM*,
Hybrid | 1RC-PM', 18
1 PM

3.5.2 Placement area and iteration period results for three scenarios of
candidate positions.

In order to assess the gain that can bé obtained from the integration of the placement
process into the high level synthesis rather than just provide to the high level synthesis a
fixed information about the placement space, we assume that the proposed placement
_process is carried out under three different scenarios for the candidate positions. Two
scenarios impose a restriction of one candidate position that can be evaluated for each
mesh edge. The other flexible scenario is the proposed one in which more than one

candidate position can be evaluated for each mesh edge according to its. The proposed
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scheme for the three different scenarios 1s applied to various intensive benchmark DSP

algorithms, namely, DCT-dir, DCT-chem, DCT-feig. The three scenarios as follows:
(1) The only candidate position of scenario 1 is: the corner of edges of ce; =0
group, the corner of edges of ce; =1group, and finally, the center of edges of

ce; =2 group.

(2) The only candidate position of scenario 2 is: the center of edges of ce; =0
group, the center of edges of ce; =1group, and finally, the center of edges of
ce; =2 group.

(3) The candidate positions of scenario 3 are the proposed one which is shown in

figure 3.4.

The synthesis results in terms of the placement area and the iteration period for the
three intensive benchmarks by using the various scenarios of candidate positions are
shown, respectively, in Figs. 3.11 and 3.12. It i1s seen from the two figures that the
proposed scheme produces better synthesis results in terms of both the area and iteration
period when the proposed scenario of the candidate positions (that is scenario 3) is used
during the placing of the functional units in the placement space than that when the other
two restricted scenarios of candidate positions (scenarios 1 and 2) are used. Hence, we
conclude that the more the restrictions and constraints are imposed by the placement
process to the high level synthesis tasks the less the flexibility to provide better synthesis
results. The situation became even worse when the information from a fixed placement is

provided to the high level synthesis. The results shown in Figs 3.11 and 3.12 necessitate
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the proposed approach in which the placement is solved simultaneously with the
scheduling and allocation tasks. It is to be noted that, in case of scenarios 1 or 2, we can
not prefer one over the other for the area or the iteration period. For example, scenario 1
gives better results than scenario 2 in terms of the placement area for the two
benchmarks, DCT-dir and DCT-chem but the latter scenario is better in terms of the
iteration period for the same two benchmarks. However, the situation in terms of
placement area and iteration period is totally opposite for the two scenarios in case of the
third benchmark, 1.e., DCT-feig. In fact, the proposed scenario which use a hybrid of the
two other scenarios provide more flexibility and, hence, better synthesis results for the

three benchmarks in terms of the placement area and iteration period

Placement Area

70
60 -
50
O scenario 1 of candidate position |
g a0-
- O'scenario 2 of candidate postion | £
i < 30
® scenario 3 of candidate position |
{proposed) i 20
10

DCT-dir DCT-chem DCT-feig
Benchmark

Figure 3. 11: Placement area obtained by applying the proposed technique three
intensive DSP Benchmark problems with three different scenarios of candidate positions.
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Figure 3. 12: Iteration period obtained by applying the proposed technique three
intensive DSP Benchmark problems with three different scenanos of candidate positions.

The improvement in the synthesis results in terms of the placement area and the
iteration period obtained by using scenario 3 of candidate positions is not associated with
an overhead in terms of the computation time compared to that in case of the other two
scenarios for all of the benchmark problems considered. For example, in case of the
DCT-feig (547 nodes), the computation times in seconds are 2.34, 2.37, and 2.56 for
scenario 1, 2, and 3, respectively. The computation times are reasonable and compare
well with that obtained for the DCT-feig in Chapter 2 when the placement was not

incorporated into the high level synthesis.

3.5.3 Placement area and iteration period results for three cases of the

evaluation function.

In order to assess the effect of the choosing the two parameters o and Tt in the
evaluation function of the candidate positions given in Section 3.4.3 during the placement
process, we select the parameters such that the area of the placement space has more

priority to be minimized than the iterations period in one situation, the iteration period
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has more priority to be minimized than the area of the placement space in the second
situation, and the area and iteration period have equal preference in the third situation.
The proposed technique is applied to a set of DSP benchmark problems to determine the
placement area and iteration period for these problems by using a library contains only
operation-specific functional units in one case or hybrid library of functional units in
other case given. The parameters a and 1t in three situations for evaluating the
candidate positions in the placement space are selected as follows: (i) a>t when the
evaluation function gives a preference to the area over the iteration period (i1) o<t when
evaluation function gives a preference to the iteration period over the area (i) o=t

when the evaluation function gives equal preference to the area and the iteration period.

Table 3.2, Table 3.3, and Table 3.4 give the synthesis results in terms of placement
area and iteration period for three setup situations of the evaluation function for the
candidate position. It is seen from the three tables that the proposed technique when it is
applied in presence of a hybrid library of functional units offers a substantial gain in
terms of reducing both the placement area as well as the iteration period for all the
benchmark problems compared to that in presence of only specific-operation functional

units in the three situation of candidate positions.

In situation I, in which a preference is given to the area over the iteration period, an
average reduction of 17.77% is achieved in the placement area for the intensive DSP
benchmarks considered with the minimum reduction being 3.16% for DCT-chem and the
maximum 28.1% for mcm. On the other hand, an average reduction of 14.88% is
achieved in the iteration period for the intensive DSP benchmarks considered with the

minimum reduction being 6.81% for mcm and the maximum 19.64% for DCT-chem.
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In situation 2, in which a preference is given to the iteration period over the area, an
average reduction of 17.96% i1s achieved in the placement area for the intensive DSP
benchmarks considered with the minimum reduction being 7.56% for DCT-chem and the
maximum 22.25% for DCT-planar . On the other hand, an average reduction of 15.37%
is achieved in the iteration period for the intensive DSP benchmarks considered with the

minimum reduction being 8.82% for DCT-feig and the maximum 20.83% for DCT-chem.

In situation 3, in which an equal preference is given to the iteration period and the
area, an average reduction of 16.55% is achieved in the placement area for the intensive
DSP benchmarks considered with the minimum reduction being 8.37% for DCT-chen
and the maximum 20.41% for mcm. On the other hand, an average reduction of 15.55%
1s achieved in the iteration period for the intensive DSP benchmarks considered with the

minimum reduction being 10.95% for DC7T-feig and the maximum 22.22% for DCT-
chem.

Furthermore, by comparing the results shown in the three tables, it can be
concluded that the proposed evaluation function when it sets o=t brings about a trade

off between the iteration period and the placement area.

Table 3. 2: Placement area and iteration period obtained when the evaluation function
gives the Area more preference than iteration pertod

Placement area Iteration period
Benchmark Op- .. | Reduction Op- . Reduction
Spegiﬁc Hybrid Spe(lz)iﬁc Hybrid
DCT-planar 30.17 24.65 18.29 36 30 16.66
mcm 19.57 14.07 28.10 44 41 06.81
IDCT 17.48 14.24 18.53 22 18 18.18
DCT-dir 25.42 19.58 22.97 55 46 16.36
DCT-chem 52.38 50.72 03.16 56 45 19.64
DCT-feig 61.71 52.07 15.62 77 68 11.68
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Table 3. 3: Placement area and iteration period obtained when the evaluation function
gives the iteration period more preference than area

Placement area . Iteration period .

Benchmark Op- _ Redhlctlon . ‘ Redlolctlon

Specific Hybrid Yo Op-Specific | Hybrid Yo

DCT-planar 37.52 29.17 22.25 31 26 16.12
mcm 23.82 18.76 21.24 39 34 12.82
IDCT 22.92 18.74 18.23 18 15 16.66
DCT-dir 31.94 24.19 24.26 47 39 -17.02
DCT-chem 64.54 59.66 07.56 48 38 20.83
DCT-feig 71.39 61.22 14.24 68 62 08.82

Table 3. 4: Placement area and iteration period obtained when the evaluation function
gives equal preference to area and iteration period

Placement area

Iteration period

Reduction Reduction

Benchmark Sp(gfi | Hybrid| % Spgf]. | Hybrid %
DCT-planar 33.65 27.22 19.10 33 28 15.15
mcm 21.31 16.96 |- 20.41 42 37 11.90
IDCT 20.74 16.92 18.41 19 ~ 16 15.78
DCT-dir 26.08 21.11 19.05 52 43 17.30
DCT-chem 59.12 54.17 08.37 54 42 22.22
DCT-feig 65.20 56.07 14.00 73 65 10.95

3.6 Summary

Most of the approaches for high level synthesis have not addressed the interaction with

physical design such as the interconnect delays which led to unpredictable synthesis

results and, hence, it significantly decreases the quality of the resulting implementation

especially with the shrinking device features in sub-micron technologies. In this work, we

have addressed the problem of integrating the placement of the functional units into the

high-level architectural synthesis of DSP applications so that accurate information about
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the interconnect delays needed for data communication between the processing units has
been taken into consideration. In order to provide efficient modeling of the interconnect
timing, a systematic and predictable process has been employed for the placement by
using a Delaunay triangular mesh in the proposed scheme. Since this method of
triangulation makes candidate positions well-distributed and maximizes the minimum
angles of the mesh. Hence, we have avoided making closer candidate positions to place
the functional units on adjacent edges connected with a narrow angle which in turn
allows us to, quickly, find the suitable gaps to place the remaining functional units in the
placement space. Furthermore, in order to maximize the local data transfers, a hybrid
library of functional unit includes dynamically reconfigurable multiple-operation
functional units and operation-specific functional units have been incorporated in the
proposed approach. The incorporation of the hybrid library has been seen that it provides
the designer of DSP applications with a greater flexibility to explore the design space.
The proposed technique has been applied to well-known benchmark problems of DSP
applications. The proposed scheme for the interaction between the high level synthesis
and the fully flexible placement process provided a substantial gain in terms of reducing
both the placement area as well as the iteration period for all the benchmark problems
considered compared to the interaction with a restricted placement process. In overall,
experimental results demonstrate the benefit and effectiveness of incorporating

interconnect aware simultaneous placement, scheduling and allocation.
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Chapter 4

Interconnect-Aware Register Binding for
High-level Synthesis

4.1 Introduction

In Chapters 2 and 3, scheduling and allocation techniques have been proposed taking into
account the interconnect delay of dafa transfers between the processing units. It is well-
known that register binding is a crucial sub-task in a high level architectural synthesis of
" digital systems. Since the register binding affects the data transfer between the RTL
components in the targeted architecture, the approaches to be used for carrying out the
process of registers binding also have a great impact on the complexity and the
performance of the interconnect paths used to communicate and transfer data from one

module to the other in the RTL structure. In a behavioural description of a digital system,
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variables are used for storing values. During the task of scheduling in the high level
synthesis, temporary variables may be introduced to preserve values across control steps.
A variable is said to live during a period starting the control step when it is produced and
the one when it is consumed. Register sharing allows variables with non-overlapping
lifetimes to reside in the same register. Without register sharing, each variable in the
behavioural representation of a digital system is stored in a separate register leading to a
large number of registers in the resulting architecture. An optimal solution to the register
sharing problem yields an architecture with a minimum number of registers in the

resulting architecture.

The register sharing is performed during the task of register binding in the high
level synthesis. Moreover, the registers have an impact on the design attributes such as
the delay of the RTL structures [68-70]. The way the process of registers binding is
performed also has an impact on the complexity of the network of the interconnect paths
required to transfer data among the RTL components [71]. Recently, it has been shown
by several researchers that even with the most optimistic values of metal resistively and
dielectric constant used in the interconnect technology, the signal delay time for global
wires will continue to increase with the technology scaling down into a deep submicron

region primarily due to the increasing length and resistance of the wires [72]-[74].

There have been several studies [75]-[77] in which increasing importance has
been placed on the interconnects in deep submicron technology. These studies were
focused mainly on the lower levels of the synthesis process such as during the task of
placement and routing. However, the techniques that automate the design process with

the use of high level synthesis, can no longer afford to perform synthesis tasks without
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taking into account the effect of their design decisions on the wiring performance of
resulting designs. The technique of [78] shows a significant reduction in overall power by
taking into account interconnects in the high level synthesis. It is also important to
develop register binding schemes that can take into consideration their effect on the
complexity of the associated interconnect network. The complexity of such an
interconnect network can be measured in terms of the complexity of the multiplexer

network used in the RTL structure [79].

The previous approaches used to solve the register binding problem in the high
level synthesis can be categorized into two major groups. The first group performs the
register binding simultaneously with the time scheduling and processor allocation in the
high level synthesis. The problem of obtaining a simultaneous optimal schedule and
processor allocation has been proven to be NP-hard, that is, it is a problem which is not
solvable by deterministic algorithms in a polynomial time [80]. Hence, the approaches
used for solving the various tasks of the high level synthesis simultaneously must use
efficient - heuristics to be practical only for large size problems. Examples of such
simultaneous approaches include simulated annealing [81], simulated evolution [82], and

integer linear programming (ILP) [83], [84].

In the second group, the task of ’register binding is solved separately from
scheduling and processor allocation [85]-[88]. However, by using this approach of
decomposing of the synthesis task into sub-tasks, the results of the subtask performed
first become constraints for the succeeding subtask. Hence, these techniques, at best,
produce a register binding solution with the number of registers that is constrained by the

lower bound of the registers provided by the scheduled data flow graph. Moreover, the
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optimal Left Edge technique [85] solve the task of register binding without taking into

consideration its impact on the complexity of the interconnect network.

On the other hand, the techniques of register binding in [86]-[88] do take into
consideration the interconnect minimization. Although [86] and [87] provide better
results in terms of interconnects, there is an overhead of additional registers that result
from the register binding. The technique proposed in [88] is applicable only for an FPGA

implementation having embedded memory blocks.

In this chapter, the problem of register binding [89][90] in a high-level
architectural synthesis of DSP algorithms is studied. A technique for binding the tokens
produced by the nodes of a scheduled DFG is proposed while aiming at minimizing the
number of interconnects. First, a segmentation scheme in which the lifetime of a token is
appropriately divided into multiple segments is developed. Then, the register binding
problem is formulated as a min-cost flow problem so that the tokens having the same
source and/or destination are bound into the same register and results in é reduced

numbers of registers and interconnects.

The chapter is organized as follows. In Section 4.2, a technique for binding the
variables produced by the nodes of a scheduled DFG is presented by developing a
segmentation scheme in which a single-segment lifetime is a;;propriately partitioned to
form multiple-segment lifetimes. Then, a flow network [91] is constructed in order to
assign the segments to registers taking into consideration the interconnect complexity. In

Section 4.3, the proposed technique is applied to some intensive benchmark DSP
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problems and compared with other techniques in the literature in terms of the numbers of

registers and interconnects. Section 4.3 summarizes the work presented in this chapter.

4.2 Proposed Technique for Register Binding

In this section, a technique for binding to registers the variables produced by the
nodes. of a scheduled DFG is presented. A segmentation scheme is developed in which a
single-segment lifetime is appropriately partitioned to form multiple-segment lifetimes
giving more freedom in binding the variables to registers. The binding task can be
efficiently performed by using a flow network, which takes into consideration the
complexity of the interconnects. Storage units, such as registers, are required for the
processing of a DSP application in order for them to store the tokens produced by the

execution of the nodes of the DFG representing the DSP application.

Before presenting our technique for optimizing the number of registers, we will
briefly discuss the need for a register binding and the factors that affect the number of
registers required for a proper implementation of a DSP application. During the
execution of a DSP application, the filters coefficient and the token data produced by a
node should be stored in a storage unit as long as it is still needed by some other nodes.
During each cycle of the execution of the nodes, the number of storage units requ_ired
depends on the maximum number of tokens that are concurrently produced in a single
control step and, therefore, need to be stored. The iterative execution of a DSP
application implies that a node produces a token during each iteration of the execution. In

our scheme, registers are used to store the token data in view of their short access time.
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The register binding could be either overlapped or non-overlapped depending on
whether or not more than one token can share the same register. In the proposed register
binding technique, we use the overlapped binding whenever it is possible for more than
one token to share the same register during the same iteration period in order to reduce
the total number of registers. In the proposed technique, the memory consistency is
ensured by the register binding; since all the tokens associated with a single register have
disjoint lifetime periods.

Let us now define certain terms that are used in this section for node regeneration.

Assume that a node v produces a token v, at time r, . This token is later consumed by a
set of #» nodes w, that are scheduled to fire at scheduling time ;. Assume that each of
these nodes is connected to the node v via a set of » edges ¢, = (v, »; ) each associated with
N, ideal delays. A lifetime L, of a token data produced by a node v is defined as the

difference between the time a token data is produced and the latest time when it is

consumed, and it 1s given by

L,=max[(N;-T+1,)—ty ] 4.1

i=l...,n

where T is the iteration period, and 1, =1, +4,, r,and 4, being, respectively, the firing time
and the computational delay of the node v. If L, =0, the token produced need not to be

stored in a register; instead, it can be directly sent to the consumer.

We now perform the lifetime segmentation scheme by partitioning the single-
segment lifetime to form multiple-segments. In the cyclic data flow graph, the life time of

a token Y. produced by the node v may span over one or more iteration periods
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depending on the control step C; =7, modulo T" at which the token is produced and the

duration of the life time of the token. In such a case, the duration of the life time has to be

partitioned into sub-periods such that each sub-period S, consists of only a part of the life
time duration and appears in only one iteration period. For a given token Y_, the number

of sup-periods m into which the duration of the lifetime has to be partitioned is given by

m= L_Yi (4.2)
T )

The length of the sub-period S, is given by

i-1
S, =[min((L, =Y . S)+ X)), DI-X,., i=0L..(m-1) (4.3)

j=0

where X is the control step at which the sub-period S, is produced, and it is given by

{c,._ i=0 }
X, =" (4.4)
0 i=lka,(m-1

Based on (4.3) and (4.4), for each token Y, , we can now construct a life time set
BY‘, = {(XosSo)s (X158))5ees (Xm—l’Sn1~l}'

The number of registers NR, required for allocating a token Y, is equal to the
number of sub-periods of the lifetime, that is, NR, =m. It is to be noted that by

employing the reusability concept, one register can be used for allocating the two sub-
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if and only if S,+S,,<T. Hence, the number of registers

m-12

periods, S,and S

required for allocating the token Y, can be reduced by one.

For a cyclic scheduled DFG, the lifetimes of tokens can not be represented by
intervals on a straight line, since it may span over one or more iteration periods. In this
situation the lifetimes can be conveniently represented by arcs around a circle
representing the iteration period. Since all the control steps together form the iteration
period, the circle representing the iteration period gets divided equally into a number of

arcs equal to the number of control steps.

Fig. 4.1 shows an example of circular lifetime chart of tokens. In this example,

four tokens with different lifetimes are given. The lifetime token Y, is the only token in
this example whose lifetime lies in two iteration periods. The width Wid,  of lifetime
chart CLC for control step ¢, is the number of lifetimes overlapping associated with

control step ¢;. The maximum width of a circular lifetime chart Wid_,_ 1s the maximum

width Wid_ overall ¢, in CLG,1.e, Widm‘:max(Widc,).
i ; Ye; !

A directed graph is called the compatibility graph CG(N, 4), if 1t is constructed
according to the following rules (see the circular lifetime chart CLC shown in Fig. 4.1):

(i) corresponding to each token Y, in CLC there is a node ny €N in the compatibility
graph CG(N, 4), (ii) there is a directed edge (ny ,n, ) € A a pair of nodes », and n, in

CG(N, 4) if and only if the lifetimes L, and L, do not overlap at any control step, and
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Figure 4. 1: Circular lifetime chart

(111) the death time (dtime) of the token Y, (the control step at which Y, is consumed, 1.e.,

diime (Y,)=Cy +Ly ) 1s less than the birth time (brime) of the token Y, (the control step at

which Y, is produced, i.e., biime(Y,)= Cy ). Thus, diime(¥,) < biime(Y,) .

It is to be noted that according to rule (i) for constructing CG(N, 4), a token
having a hfetime that lies in more than one iteration period cannot be included in the
compatibility graph, since such nodes overlap with all other nodes. In order to include
such tokens in the compatibility graph, we incorporate the set 8, (as given by (4.3) and
(4.4)) of sub-periods of the lifetime of a token for the construction of the compatibility
graph so that each node in the compatibility graph corresponds to a sub-period in the set
By of a token Y,. This modification provides more flexibility in the register binding,
since it allows the sub-periods of the tokens to share registers with other tokens.
Referring again Fig. 4.1, we notice that according to (43) and (4.4),

By, = e s (coB)}s By =1c2, D)}, By, = (e, D}, and B, ={(c, D)} Since the sub-

vy
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period (c,,4)of By (or (co4); ) span over 4 control steps and equals to one iteration

period hence this sub-period cannot be compatible with any other sub-period of the

lifetime of any other token. However, the sub-peiod (c;,1) of B, (or (c;) ) can be
compatible with By (¢,1) or B, (¢, 1), and therefore, can share the same register with

them. Fig. 4.2(a) shows the compatibility graph obtained from the circular lifetime chart

given in Fig. 4.1.

B);4 (03, 1) By‘., (Coa 1)

Figure 4. 2: (a) Compatibility graph obtained from the CLC of Fig. 4.1. (b) The
corresponding network graph

We now construct a flow network G(M, E) from the compatibility graph CG(N, 4)

by introducing to it two additional nodes, namely, a source node s and a sink node t, such

that M = N U{s, 1} and E is the set of edges in G¢M, E)that contains the set of edges 4 of
CG(N, A) plus additional edges from the node s to every node in CG(N, 4), and from

every node in CG(N, 4)to the node t (see Fig. 4.2(b)).

The binding of tokens having the same source and/or destination into the same

register reduces the number of interconnect. Since the processor allocation has already
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been carried out, it is easy to assign a weight to an edge connecting a pair of nodes in
G(M, E) by using the concept of common producer and common consumer of the tokens
corresponding to the pair. Such weight represents the cost of the register sharing between
the pair of nodes. The weight assigned to an edge connecting a pair of nodes, which

represent the sub-periods of tokens, 1s defined as

W ny, .y, ) =-L-(F+ CC(n,-u ay, )) (45)

where F is a Boolean variable equal to | if the pair of tokens have the same

) is the number of consumers common to the pair of tokens, and L is

producer, CC(

ny, oy,

givenas L= max (F+CC(, , )

V(n)vr Ay, )

In the flow network G(M,E), a capacity of one is assigned to each edge

e € E representing the maximum flow possible for an edge. The maximum flow in the

flow network G(M, E), ie., the maximum flow from the terminal node, is set as

FL=Wid

max *

Assume that Wid =k for a given CLC, then FL in G(M, E ) is set to k. The

max

register binding problem is solved by sending & units of flow from the source node to the

sink of G¢M, E )such that each node is visited exactly once, all the nodes are covered, and
the overall cost 1s minimized. Since the capacity of each of the edges is one, it is

guaranteed that each flow will follow a different edge-disjoint path, 7,,...,P,, in
G(M, E ). However, the paths may not be node disjoint, if they are not so in the original

compatibility graph CG(N, 4). To ensure the generation of node disjoint paths as well, a
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node separation technique [92] can be used. In this technique, each node is duplicated and
then the pair is connected by an edge. All the edges outgoing from the .original node after
the duplication are made to be outgoing from duplicate node as seen from the example of
Fig. 4.3. The node and its duplicate are connected by an edge with capacity of 1 so that
only a single flow can pass through a node because of the unit capacity assigned to the

edge connecting the node and its duplicate node. A cost of —C where

C= Z Wea, my | +1 18 also assigned to the edge. This choice of cost, as to be
V( ) v -

Ay, My,

shown later, ensures the coverage of all the nodes.

Same cost, Same cost,
same capacity same capacity

separation .
n _’ n > I’I'
Cost=-C,
Capacity=1

Figure 4. 3: An example of node separation

After performing the node separation, we apply min-cost flow technique to obtain
a register binding with rﬁinimum number of interconnects. The min-cost flow [91] in the
network finds k paths each corresponding to one clique such that the total cost is
minimized. The set of nodes in the & generated paths form k cliques each being bound
mto a single register. The total cost on each individual path is the sum of the cost of all
the individual edges in that path. Since the costs of the edges in G(M, E) are negative, the
more the nodes in the path the less its cost. Thus, the min cost flow that guarantees the

minimization of the total cost also guarantees the coverage of all nodes, since otherwise,
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the coverage of the nodes not already covered will reduce the total cost even further thus

implying that min cost flow has not provided a minimum cost solution.

4.3 Experimental Results

In this section, some well-known Benchmark examples of synthesizing intensi\}e
DSP applications using the technique presented in this chapter are considered. Starting
from the scheduled DFG corresponding to a given DSP algorithm, the process of
synthesis is carried out to obtain register binding. In our experiments, both centrally
shared and distributed-register based architectures are targeted. The proposed register
binding technique is first assessed in terms of the number of registers and the number of
interconnects required when the ICD is ignored for both the centrally-shared- and
distributed-register based architecture and the corresponding results are compared with
those obtained by using the methods proposed 1n [85] (left-edge method), [86], and [87].
The proposed register binding technique is also assessed in terms of number of registers
required for DFGs that have scheduled with and without taking 1CD into consideration

for some DSP filters.

4.3.1 Number of Registers and Interconnects

In order to assess the proposed register binding technique without the
incorporation of interprocerssor communication delay; the proposed register binding
technique and the methods in [85], [86], and [87] are applied to various intensive
benchmark DSP algorithms, namely, ellip, fir, DCT-planar, mcm, DCT-dir, DCT-chem,
DCT-feig. The number of operational nodes in the intensive DSP benchmarks considered

varies from 34 to 547. The synthesis results in terms of the number of registers and the
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number of interconnects obtained by the various register binding methods for the
centrally-shared or the distributed register-based architecture are shown , respectively, in

Figs. 4.4 and 4.5.

It 1s seen from Fig. 4.4 that the register binding technique even without the
incorporation of node regeneration outperforms the methods of [86] and [87], and it
| produces a number of registers equal to that obtained by the left-edge method [85], which
produces an optimal number of registers for both centrally-shared and distributed register
based architectures. On the other hand, Fig. 4.5 shows that the proposed register binding
technique without the incorporation of node regeneration (Chapter 5) significantly
outperforms the left-edge method in term of the number of interconnects, whereas it
results in the number of interconnects that is less than that provided by most of the other
methods of [85] and [20], except in the case of a very few examples where the number of

mterconnects are the same.

Further, it can be seen from Figs. 4.4 and 4.5 that for each of the four methods the
number of registers in centrally-shared register-based architecture is less than that in the
distributed architecture, whereas the number of interconnects is higher in all of the DSP
examples considered. This is expécted in view of the fact that the sharing of registers is
more in a centrally-shared register based architecture than in the corresponding
distributed one, which in turn increases the complexity of the interconnect network in the

architecture and, hence, the number of interconnects in the former.
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Figure 4. 4: Number of registers obtained for some intensive DSP Benchmark problems
by using the proposed register binding without node regeneration, the left-edge method
[85], the method of [86], and the method of [87] targeting (a) centrally-shared

architectures or (b) distributed register-based architecture.

118




Centrally-Shared Architecture
180 -
160 - | mLef-edge [85] |
| |
140 - | OProposed |
120 - 0 Method [87]
° Meth
© 490 | AV Od [86]
c
8
E’ 80 -
£
# 60
40
20 /
5
0 - -
elip (34) fir (40) DCT- mcm DCT-dir DCT-
planar (94) (148) chem
(42) (347)
DSP benchmark
(a)
Distributed Architecture
160 -
140 - mLeft-edge [85] |
120 O Proposed }
2 0 Method [87] |
o 100 -
2 7 Method [86]
5 80- '
o
(]
E 60-
®
40 -
20 -
L/
0 J 2y

elip  fir (40) DCT- mcm  DCT-dir  DCT-
(34) planar  (94) (148) chem
(42) (347)
DSP benchmark
(b)

Figure 4. 5: Number of interconnects obtained for some intensive DSP Benchmark
problems by using the proposed register binding without node regeneration, the left-edge
method [85], the method of [86], and the method of [87] targeting (a) centrally-shared
architectures or (b) distributed register-based architectures.
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4.3.2 Comparison of various schemes in terms of the number of
registers

Various register binding schemes have been also proposed in the synthesis techniques of
FDLS [22], OSAIC [20], InSyn [21], method of [38] and MARS [22] [23], [39]. A
comparison in terms of the number of registers between the proposed technique and these
other techniques is carried out. Table 4.1 gives the number of registers obtained for the
fifth-order elliptic wave filter using the various register binding techniques. In the case of
the proposed technique, the results are provided both with and without the ICD taken into

consideration, while it is neglected in the case of other techniques. In this table, NR,
and NR, are number of registers normalized with respect to the number of registers

obtained using the proposed technique, respectively, without and with the ICD is taken

into consideration. It is clear from the results listed under MR, and NR, that proposed

technique provides better synthesis results in terms of the number of registers not only
when the ICD is ignored but also in all cases, with the exception of the method of [21],

even when the ICD is taken into consideration. Note that NR ,, values in the table would
get even larger, had these other methods taken the ICD into consideration. Similar

comparison results are obtained when the various synthesis techniques are applied to

other benchmark DSP filters.

4.3.3 Number of registers for various DSP benchmarks resulting from
the proposed register binding scheme with and without ICD.

The proposed register binding scheme is applicable to any given scheduled DFG. In order
to assess the proposed scheme in terms of number of register required for the either with

or without ICD, it is applied to various benchmark DSP filters. Table 4.2 gives the
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iteration period and the number of registers obtained with and without the ICD by using

- the proposed synthesis technique and MARS technique for each DSP.

It is seen from the table that the proposed technique reduces the number of registers

in both situations with and without ICD.

Table 4. 1: Number of registers required by a fifth-order elliptic filter obtained by using
various synthesis techmques

Technique Re;:t‘e(r)sf, R NRy = %n NRpp = %,2
MARS[22][23][39] (W/O ICD) 9 1.285 1
FDLS [18} (W/O ICD) 12 1.714 1.333
OSAIC [20] (W/O ICD) 10 1.428 1.111
InSyn [21] (W/0 ICD) 8 1.141 0.888
Method of [38] (W/0 ICD) 10 1.428 1.333
Proposed (W/0 ICD) 7 (&) 1 0.777
Proposed (with ICD) 9 (r,;,) 1.285 1

Table 4. 2: Number of registers using proposed technique with and without ICD
compared to that obtained by the MARS technique

(Non negligible 1CD) (Neghgible ICD)
) Number of registers . Number of registers
DSP filters | Iteration Itera’flon
period MARS proposed period MARS proposed
Fifth-order
elliptic 24 10 9 16 8 7
wave filter
Fourth-
e 21 7 6 16 6 5
aumann
filter
Fourth-
order All- 19 6 5 14 5 4
pole filter
Second-
order filter 5 3 2 3 3 2
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4.4 Summary

Register binding is one of the main tasks in a high level architectural synthesis of digital
systems. The function of register binding is to assign the tokens produced by the
processing units to registers in the resulting RTL structure and 1t is done in a way so as to
minimize their number. Since the register binding affects the data transfer among the
RTL components, the way the process of registers binding is performed also has an
impact on the complexity of the network of the interconnect paths used to transfer data.
With the technology scaling down into a deep submicron region, the register binding can
no longer afford to be performed without taking into account its effect on the wiring
complexity of the resulting architectures. In this chapter, the problem of register binding
in a high-level architectural synthesis of DSP algorithms has been studied. A technique
for binding the tokens produced by the nodes of a scheduled DFG has been proposed
while aiming at minimizing the number of interconnects. First, a segmentation scheme in
which the lifetime of a token is appropriately divided into multiple segments is
developed. Then, the register binding problem is formulated as a min-cost flow problem
so that the tokens having the same source and/or destination are bound into the same
register and results in a reduced numbers of registers and interconnects. In order to assess
the proposed technique of register binding, it has been applied to the synthesis targeting
centrally-shared and distributed register based architectures for differént intensive DSP
algorithms and has been compared with various other commonly used synthesis methods
for register binding. The results of these experiments have shown that the proposed

register binding technique produces the number of registers equal to the optimal solution
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provided by using the left-edge method [85] and it outperforms other methods not only in

terms of the number of registers but also in terms of the number of interconnects.
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Chapter 5

Interconnect Aware Node Regeneration
Scheme for Register Minimization

5.1 Introduction

The lower bound on the number of registers resulting from any register binding technique
gets fixed o‘nc'é"the DFG has been scheduled. For scheduled DFG, the processing units
could be idle for one or more control steps. In the context of register binding problem,
this idle state of a processing unit if utilized could minimize the lifetimes of the variables.
Generally, in order to reduce the lifetime of a vanable in a schedule, the node producing
that variable must be scheduled as close as possible to the consuming node. However,
this is not always possible due to the precedence relation constraints between nodes in a

given behavioral description. Instead of storing a variable, according to its lifetime, in a
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register for a long period, it is possible under some conditions to reproduce the variable at
a time closer to the firing time of each of its consumers. The idle processing units can
then be utilized to perform the task of reproducing the variable by regenerating a copy of
the original node that produces it. Thus, if the hidden flexibility of node regeneration for
a scheduled DFG could be exposed, then this flexibility can be utilized to minimize the
lifetime of the variables. This flexibility can be a]sQ used to minimize the interconnect
requirements by appropriately- assigning the regenerated copies of the original nodes to
the idle processing units. Since register binding in a decomposed high level synthesis is
constrained by the lower bound on the number of registers imposed by a given scheduled
DFG. On the other hand, it should be possible to decrease this lower bound by exposing
of the hidden flexibility for node regeneration in a given scheduled DFG without

rescheduling 1t.

In this chapter [89], an interconnect-aware register minimization technique is
presented by proposing a node regeneration scheme that generates multiple copies of the
original nodes with the resulting variables having lifetimes shorter than those of the
variables produced by the corresponding original nodes. The freedom provided by having
multiple copies of nodes is then further exploited to assign each copy to a processing unit

that results in minimizing the complexity of the interconnect network thus obtained.

The chapter is orga}lized as follows. In Section 5.2, a theoretical formulation of
the proposed scheme for node regeneration is presented and the conditions under which
such node regeneraﬁon i1s possible are described. A technique is then developed -
Section 5.3 in which a flow network [91] is constructed in order to assign the regenerated

nodes to idle processing units. In Section 5.4, the proposed technique is applied to some
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intensive benchmark DSP problems and compared with other techniques in the literature
in terms of the numbers of registers and interconnects. Further, in order to show the
impact of the incorporation of node regeneration scheme in the proposed register binding
technique on the total interconnects length of the resulting RTL structure, some well-
known benchmark problems are also synthesized in this section. Section 5.5 summarizes

the work presented in this chapter and highlights some of the salient features of the

proposed technique.

5.2 Process of Node Regeneration for Register Minimization
Since the number of registers in register binding techniques are constrained by a lower
bound imposed by the given scheduled DFG, in this section, we present a scheme for
carrying out register minimization while taking into the consideration interconnect
requirements of the underlying architecture by making appropriate modification in the
finng times of some of the nodes in a given scheduled DFG. The modification in firing
times of the nodes is performed by applying a new scheme referred to as node
regeneration method.

In a giveh scheduled DFG, the processing units could be idle for one or more
control steps. In the context of register binding problem, this idle state of a processing
unit if utilized could minimize the lifetimes of the vanables. Generally, in order to reduce
the lifetime of a variable in a schedule, the node producing that variable must be
scheduled as close as possible to the consuming node. However, this is not always
possible due to the precedence relation constraints between the nodes of a given
behavioral description. Instead of storing a variable in a register for a long period

according to its lifetime, it is possible under certain conditions to reproduce have
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flexibility in reproducing the variable at a time closer to the firing time of each of its
consumers. Then, an idle processing unit can be utilized to perform the task of
reproducing the variable by generating a copy of the original node that produced the
variable. Thus, if such a flexibility of node regeneration for a scheduled DFG exists, then
it can be utilized to minimize the lifetime of the vaniables. This flexibility can also be
used to minimize the interconnect requirements by appropriately assigning the
regenerated nodes to the idle processing units.

We now present a scheme for node regeneration and the conditions under which
such a node regeneration 1s possible.

The problem of register minimization using node regeneration can be formulated
as follows: Given the time schedule and processor allocation for a given data flow graph,
calculate the lifetimes for all the tokens in the given schedule, then apply node
regeneration method to minimize the number of registers without decreasing the

throughput or increasing the number of processors.

Assume that in a given DFG, a node v, is connected to r destination nodes v, via r
edges ¢,. Let s<r of the » nodes v, be scheduled to fire far from nodev,. A node v; is
said to fire far from node v, if the lifetime of the token produced by v, is not equai to this
token’s minimum lifetime imposed by the precedent relation between the two nodes. If
an idle processor of the same type as that of the node v, is available, then a new copy of
this node is regenerated on this processor in order for it to be fired at a time close to the
originally scheduled firing times of the s nodes instead of saving the token produced by

v, for a long time in a register for later consumption by the s successor nodes. This node
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regeneration is possible if the operand(s) to be consumed by the node v, are still alive

after the original firing of the node v, .

Figure 5. 1: (a) Lifetimes before node regeneration (b) Lifetimes after regeneration of
node 3

The proposed node regeneration scheme is illustrated in Fig. 5.1. Fig. 5.1(a)

shows a scheduled DFG in which the nodes v,v,, and », produce three tokens with

overlapped lifetimes LVI, LV2 and LV3 respectively. Therefore, three registers are
required for allocating these overlapped tokens. Fig. 5.1(b) shows how the node v, is
regenerated as v, at the control step < by using the long lifetimes LV1 and LV?2 of the

tokens produced by the nodes v and v,, the predecessor nodes of v,. As a result of this

simple regeneration, the token produced by the node v, need not be saved in a separate
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register unlike in Fig. 5.1(a), where 1t was required to be saved until the node . became
ready to be fired. The lifetime LV3 of the token produced by ;is zero in the new

scheduled DFG of Fig. 5.1(b). Hence, only two registers are required as compared to
three in Fig. 5.1(a). The following two theorems establish that by using this node
regeneration method, it is possible to reduce the lifetime of the token produced by the
regenerated node from its current value, if such a node is scheduled to fire at its latest
firing time with respect to its successor nodes that constitute a subset of the successor

nodes to the original node from which the regenerated node was created.

THEOREM 1 Let vbe a node in a DFG with the firing time 1, and computational delay
d, such that all of its predecessor nodes u, and successor nodes w, have fixed firing

times 1, and 1, , respectively. Then, the node v can be regenerated as node v, 1o fire at

w7

min (ty +L,),
Vu;€ predecessors of v Y !

if

atime 1, ,suchthat t,+d,<t, <min . ,
new min (¢, — max lenlP. | [)

:. e Iy 7
¥V w; € successors of vy, all B, ..

there exists an idle processor at time t, .
newv

Proof- The firing rule of a node implies that this node can be fired on an 1dle processor 1f

the node’s operand(s) are available and the precedent relations are satisfied. The

availability of the operand(s) of the node v, 1s ensured by + < min (ty, +1,) ,

Y u, € predecessors of v

which means that the operand(s) of v,,, are still alive at or after :, . Moreover, since the

node v depends on all of the predecessor nodes 0
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t, 2 max Yo + max ]en[Pui\,[ . But o len/P . [= . len[P, [

1Y new

Vu; epredecessors of v all Pu,y all Puv,., all Pu,»
and 7, <t, . Hence,
new
ty,., 2 max te + max len[Puanc“_[ , which satisfies the backward precedent
Vu; epredecessors of v all Puv.
relations  between v,,, and the predecessors ;. Further, since,
v = min (ty,— max len[P,  [),then the forward precedent relations

" ¥ w; esuccessors of v, View Wi

between v

nevw

and the nodes w; are satisfied. Thus, 7, 1n the specified range satisfies

the backward and forward relations and if their exists an idle processor at this time, it

to fireat 7,

new

must be possible to regenerate vas v,

THEOREM 2 Let v be a node regenerated as v,,, with firing times of 1.and 1,
respectively. Let L, and L", be, respectively, the lifetimes of the token produced by v
before and after the node regeneration. Then, L .—(L,+1, )>d,, where d. is the
computational delay of v (and therefore, of v, ).

Proof. Let that the node v have k successor nodes », . Before applying node regeneration,
the node v must provide its token to all of its & successor nodes such that its lifetime L, is
given as

¥

L,= max (nT+1,)—(1,+d,) (5.1
= k !

i=l,.,

However, after the node regeneration, the node v provides the tokens only to those

successor nodes w; for which (¢, +nT)<t. . On the other hand, the node v,
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provides the tokens to all remaining the successor nodes w;for which the relation

a, +nT)>1,  satisfied. Without the loss of generality, assume that the relation

a, +nT)<t, is satisfied for the successor nodes w, to w; where j<k. Then,

L, = max (nT+t,)=(t, +d, ) (52)

new j= J+]-->-: W new

L"__n?ax(n T+t, )—(t,+d,) (5.3)

Further, using (5.2) and (5.3),

L. +L, —max(nT+t“,) (t,+d, )+

v View ]_]

max(nT+t“) (t, +d, )

i=j+1.. new

However, for i < j, max (n T+t, )S t, thus

,,,,,

L,+L, <t, —(t,+d,)+ max (nT+tw) (t, +d, )

new new

v View T View i=j+l, (5.9)
< max (nT+t“,)—(t‘,+dv)—dv '
i=j+1,.k "

Equation (5.1) can be written as

max(nT+t“) (t,+d,),

max (n,T+t, )-(t, +d,) (5-5)

i=j+h,... K

L, = max

Since the first item of the bracketed terms of (5.5) is smaller than the second one, the

above equation can be rewritten as L = max (n;T+t, )—(t, +d, ). Therefore, (5.4)

can be rewritten as

L. +L <L,-d, ori - +L, )>d

v vn(‘W v v new 0 0 Thew new
Hence the theorem.

131



Based on the above two theorems, it is possible to minimize the lifetime of the
token produced by the original node from which the regenerated node was created, which

in turn reduces the total number of required registers.

5.3 Interconnect Aware Assignment of Regenerated Nodes to
Control Steps and Processing Units

We now provide the proposed methods for interconnect aware scheduling and assignment

of the regenerated nodes to, respectively, the control steps and idle processing units in the

given scheduled DFG.

5.3.1 Assignment of regenerated nodes to control steps
In the previous sub-section, we determined the candidate nodes to be regenerated as v,

and specified the range, given by Theorem 1, of a possible control step as

min (ty +L,)
R ( ) (Z | +d . | Yu,e predecessors of v i i
v )= ), min _
e oo min (t, ~ max lenlP, . [)

al

V w; e successors of v, A

We should now perform two tasks in order to include the regenerated nodes into the

scheduled DFG:

(1) the selection of a specific control step within its range to fire the regenerated node, and
(11) the assignment of a regenerated node to an idle processing unit. These two tasks can
be efficiently performed by using bipartite graphs [93] while taking into consideration the

complexity of the interconnects.

In order to perform the first task, a bipartite graph is constructed for each type of

nodes. We denote the bipartite graph of type 7 by BG, (V,, C, E), where V, is the set of
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the candidate nodes of type ¢, C is the set of nodes representing the control steps, and E is
the edge set. There is an edge (v, ¢) € F if and only if the control step ¢ € R (v). Fig. 5.2

shows an example of a bipartite graph for a given type of nodes. In this figure, the
numbers in the brackets represent the range R(v). Once a bipartite graph is built for each
type of regenerated nodes, the scheduling process of the regenerated nodes can be

transformed into the one of mapping of the nodes of ¥, to the control steps of C. The

problem of finding a mapping in the bipartite graph is solved by converting the graph into
a flow network and then by using the flow algorithm of [91] to find the maximum flow in
the constructed flow network. The flow network is constructed by adding a source node

S, a sink node T, and two sets of edges, namely, {(S, v;)lv, €V,} and {(¢;, D] ¢, €

C} to the bipartite graph. The advantage of using the flow network is the convenience
that it provides in imposing the constraint on the availability of idle processing units,
which decides the maximal number of regenerated nodes that can be executed in parallel
in each control step. Imposing such a constraint can be easily carried out by setting the
capacity of the incoming edges of node T in the flow network according to the number of
idle processing units available. The capacity of all other edges in the flow network is set
to be 1. Obviously, the maximum flows found under these edge capacities correspond to
schedules that always satisfy the resource constraint (i.e., the constraint on the number of
idle processing units in a given control step), since the number of regenerated nodes
mapped to each control step cannot exceed the capacity of the incoming edges of T. It is
to be noted that even if there is an overlap between the ranges of possible control steps

R(v,.. ), the mapping of the regenerated nodes to control steps would not be affected,

since according to Theorem 1, precedent relation between nodes is still satisfied. The
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method proposed in [91] to implement the max-flow algorithm is used in this study,

which has a complexity of O(MN log(Nz/M + 2)), where M and N are the numbers of

edges and vertices, respectively, in the flow network.

Regenerated
nodes

Control steps

Figure 5. 2: An example of a bipartite graph

Fig. 5.3 shows a flow network constructed from the bipartite graph given in Fig. 5.2. In

this example, there are 2 idle processing units available to each of the control steps c,
and ¢, implying that maximally two regenerated nodes can be executed in parallel in

each of the two control steps. On the other hand, there is only one idle processing unit

available to each of the control steps ¢, and c,. Thus, the capacity of each of the edges

(c,, T)and (c;, T) is set to 2. The capacity of other edges in the flow network is set to 1.
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An example of one possible mapping from the regenerated nodes to the control steps

found by using the maximum-flow algorithm is shown by using thick edges in Fig. 5.3.

Regenerated
nodes

Control steps

/

RRIDE

Figure 5. 3: The flow network for the bipartite graph of Fig. 5.2, and a corresponding
maximum flow mapping satisfying the constraint on the number of idle processing units.

In the flow network, the maximum flow decides the maximal number of
regenerated nodes that can be scheduled so that the available idle processing units are
maximally utilized. Since under the constraint of the available number of idle processing
units, there exist multiple maximum flows, each corresponding to a feasible schedule in
which the idle processing units are maximally utilized, the mapping process itself for.
obtaining a max-flow could be guided by the considerations that affect the interconnect
complexity of the resulting architecture. It is obvious that the higher the number of nodes
having common input and outputs assigned to a single processing unit, the less the
number of interconnects between the processing unit and the other modules of the

architecture. Hence, it is preferred to assign a regenerated node to the idle processing unit
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to which maximum number of its predecessor or successor nodes having common inputs
or outputs-are assigned. In order to take this fact into consideration while scheduling the
regenerated node to a control step, a preference is given to the control step that has more
number of nodes having input/output common with that of the regenerated node in
question assigned to idle processing unit available during the control step. Accordingly, a
scheduling-cost SC reflecting this preference is assigned to each edge connecting the
regenerated node to a control step in the flow network. Thus, the higher the input/output
commonAality, the less the scheduling cost. The search for a max-flow is carried out by
incorporating this scheduling-cost to the mapping process. To this end, two steps have to
be performed: 1) a scheduling-cost is formulated to evaluate the preference of scheduling
a regenerated node to a particular control step, and 2) the minimum-cost max-flow
algorithm [21] is used to carry out this scheduling process. In the proposed method, the
scheduling-cost is assigned to the edges of the part of flow network that corresponds to
the bipartite graph from which the network was constructed. The costs assigned to the
edges connecting the node S to a regenerated node and that assigned to the edge
connecting a control step to the terminal node T are set to 0. Consequently, our problem

is to find a solution to the minimum-cost maximum-flow problem for the flow network.

The cost function to be minimized is given by ZSCem) , where E is the set of edges
Ve, o )€E -

connecting the regenerated nodes to the control steps to which the nodes are scheduled.

The following is method used to determine the scheduling-cost assigned to each

edge connecting a regenerated node to a control step in the flow network.

Calculation of Scheduling-Cost in Flow Network
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As discussed above, in addition to the capacity associated to each edge connecting a
regenerated node to a control step in the flow network, this edge is also assigned a cost
representing the scheduling-cost of a possible mapping of the regenerated node to a
certain control step. The formulation of such a scheduling-cost to an edge is done as
follows. The regenerated node in question is inserted into the scheduled DFG at the
targeted control step by introducing an edge connecting the regenerated node to each of
its predecessor and successor nodes. The set of predecessor nodes of the regenerated node
are the same as those of the original node from which the regenerated node is created. On
the other hand, the set of its successor nodes are that subset of the successor nodes of the
oniginal node that are scheduled to fire at a control step greater than the targeted control
step as discussed in the previous sub-section. It is to be noted that inserting the
regenerated node in question into the scheduled DFG is performed without specifying the
idle processing unit that will execute it. After performing this insertion process, we
associate weights to each of the edges connecting the regenerated node to its successor or
predecessor nodes. These weights are formulated as follows. For each edge e connecting

the regenerated node to a successor or a predecessor node, we calculated CJ/O, as
ClO,=CI+CO+1 (5.6)

where CI and CO are, respectively, the numbers of common inputs and outputs between
the regenerated node and the other node (a successor or a predecessor node) of the edge
e. Assume that IDLE represents the set of idle processing units available during the target

control step. Let the regenerated node v; has successor nodes v; and predecessor

nodesv;, .
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(a)

PU1

PU2

PU3

Control step in
question

(b)

Figure 5. 4: (a) A DFG containing a regenerated node v; . (b) The weighted edges

connecting v, with its predecessor and successor nodes.

Then, we calculate the weight associated with the edge in the scheduled DFG

connecting the inserted regenerated node v; to a predecessor node V; or to a successor

node v, as
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CIO, +o if PU(v,)NIDLE # 0
= ’ : (5.7)
Y C]Oe,,j otherwise
o cio,, +p if PU(v,)NIDLE #0 59
ek cio,, otherwise '

where PU(v) is the processing units to which the node v is assigned, and  and Bare

constants used to increase weight of a particular edge if the edge connects the regenerated
node to a predecessor or a successor node assigned to a processing unit that is i1dle during

the targeted control step. We set the valuesa and £ based on the type of the organization

of the targeted architecture. Fig. 5.4 gives an example of the calculation of weights
associated with the edges in a scheduled DFG connecting an inserted regenerated node

v, with its successor or predecessor nodes. Fig 5.4(a) shows the nodes and edges of the

DFG including those resulting from the insertion of the regenerated node at the targeted
control step. Fig 5.4(b) shows that there are three processing units in the scheduled DFG,
two of them being Idle during the targeted control step. The weights of edges connecting

the regenerated node v; to the other nodes are also shown in Fig. 5.4(b). The weight of
each edge is calculated by using (5.6)-(5.8). For example, the edge from v; to v; is
associated with the weight We s - Since v; and v; have 2 common output nodes, namely,

v, and v,, CO=2. They also have 1 common input node, namely, v, implying that CJ

=1. Then, according to (13), CIO, =2+1+1=4. As v, is a successor node, we use (5.8)
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to find W, = 4+ . The constant S is added to CIO, in this particular example, since

the processing unit to which the node v; is assigned is idle at the targeted control step.

We now determine the scheduling-cost of the edge connecting the regenerated

node v; and a particular control step ¢ in the flow network. After specifying in the

scheduled DFG the weight of each edge connecting the regenerated node in question to

its predecessor and successor nodes, we now define the quantity U, as follows.
J
U, = Zw{,ﬂ + Zwey_ (5.9)
Vej‘ Ve

By using (5.9), we determine the weights SC.,,. . n the flow network as follows
SC :L—U.j, (5.10)

where L = n\sax(U‘,j )+1 . Finally, in order to schedule the regenerated nodes to specific
v

control steps, min-cost max-flow algorithm [21] 1s applied to the flow network.
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Figure 5. 5: (a) A scheduled DFG contains 7 regenerated nodes. (b) The bipartite graph
constructed from the scheduled DFG.
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5.3.2 Assignment of regenerated nodes to idle processing units

Once each regenerated node has been assigned to a specific control step by applying min-
cost max-flow algorithm on the flow network, we next perform the second task, i.e., the
assignment of the regenerated nodes to the idle processing units. A bipartite graph,
showing all possible assignments of each regenerated node to idle processing units, is
constructed. We denote the bipartite graph of type 1 by BG, (V,, P, E), where V, is the set
of regenerated nodes of type ¢ (for example, addition or mu]tip]iéation), P is the set of

idle processing units, and £ is the edge set. There is an edge (v,, p,(c,)) € E, if and only

if the node v, is scheduled at ¢, and the processing unit p; 1s idle during the control step

¢, . Fig. 5.5 gives an example for the construction of the bipartite graph from a scheduled

DFG containing the regenerated nodes. Fig. 5.5(a) shows a part of a scheduled DFG

containing 7 regenerated nodes denoted asv,, i=1,2,...,7. There are three processing
units used in the scheduled DFG. In addition to the nodes u, originally assigned to the
three processing units, each regenerated node v, has to be assigned to one idle processing

unit available during the control step at which the regenerated node is scheduled. The
shaded part of the scheduled DFG shown in Fig. 5.5(a) contains the regenerated nodes to
be assigned to idle processing units as well as the data flow edges connecting each
fegenerated node with all other nodes in the DFG. The assignment of a regenerated node
is carried out taking into consideration the impact that this assignment would have on the
interconnect complexity of the targeted architecture. In order to explore this impact, the
assignment of other regenerated nodes having flow dependency with the regenerated

node should also be taken into consideration. For this purpose, the concept of node
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compatibility is incorporated. The resulting bipartite graph is then used to solve the
problem of assignment of the regenerated nodes to the idle processing units. Before
proceeding further in presenting the proposed assignment scheme, let us define some
terms that are required in the proposed scheme. We say that a pair of regenerated nodes
are compatible if only if: (a) they are scheduled at two different control steps, (b) there is
a single idle processing unit capable of performing both of them, i.e., a processing unit
idle during the two control steps at which they are scheduled, and (c) they have data flow

dependency. Nodes v, and v,given in Fig. 5.5 are compatible, since they satisfy the
three compatibility conditions: they are schedﬁ]ed to two different control steps ¢, and c;,
there is a processing unit, namely B, idle during ¢ and c,, and they have data flow
dependency, i.e., node v, consumes the output of v,. Other pairs of compatible nodes in
Fig 5.5(a) are (v, = v;), (v, = v,), (v, = v;), (v = v, ). We also define the compatible
path as a link-list set of compatible nodes (v, > v, &> ---v,_;, &> v, & v,,,) such that v_, is
compatible with v, and v, is compatible with v,,,. The set of nodes in a compatible path
are ordered according to the control steps at which they are scheduled, ie., c(v, |) <

c(v,), where c(v,) represents the control step at which the node v, is scheduled.

We now proceed in presenting the proposed scheme for the assignment of
regenerated nodes to the idle processing units. Since multiplexers connects multiple
inputs to a processing unit or to a register in the targeted architecture, the multiplexer
count is an efficient indicator of the interconnect complexity [79]. In this regard, the more
the nodes having data flow dependency assigned to a single processing unit, the less the

number of different inputs or outputs to or from the processing units required, and hence,
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the less the number of multiplexers. Accordingly, since compatible nodes have flow
dependency and they can be executed on a single processing unit, we modify the bipartite
graph by introducing in it a mapping that represents a possible assignment of a set of link
listed compatible nodes to a processing unit. In the bipartite graph, each edge connecting
a regenerated node to a processing unit is replaced, whenever possible, by a path
connecting the link list of compatible nodes. Such path is called an assignment

compatible  path. An  assignment compatible path is denoted as
L A R A e 2 pj(c(v,), c(vy)...c(vi_, )elv; ), c(v,,; ).

The process of generating the assignment compatible paths for the bipartite graph
1s carried out as follows. Assume that v, is a regenerated node that can be assigned to an
idle processing unit p, during the control step c(v;). This implies that there is an edge
v, = p,;(c(v;))in the bipartite graph. Further, assume that v, is compatible with v, ,,
which in turn 1s compatible with v,,,, such that c(v,)<c(v,,)<c(v,,,). Then, the edge
v, = p,(c(v;)) in the bipartite graph is replaced by the path v, = v,,, — pic(v),c(v,.,))

to include the regenerated node v, and then once again replaced by

i+l
Vv, > Vi, 2V, > pile(v), e(v,,), c(v,,,)) to include v, ,resulting in an assignment
compatible path. After introducing an assignment compatible path, we remove any
redundant edge from the resulting bipartite graph. We say an edge v, = p (c(v;))is
redundant, if and only if it is contained in the assignment compatible path in question.

For example, if we have v, > v, , > v, , = p,(c(v;), c(v,)),c(v,,,)) as an assignment

compatible path, the original edge v, — p;(c(v;)) of the bipartite graph is removed since
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it is contained in the assignment compatible path. Note  that
pilcv) p(c(v DV p(c(v.,)=p,(c(v),c(v,,),c(v,.,)). The resulting bipartite
graph, in which all possible assignment compatible paths have been introduced and any
redundant edge removed is called the modified bipartite graph. Note that the modified
bipartite graph may still contain some original edges of the bipartite graph when a
regenerated node is not compatible to any other regenerated node with respect to a given
processing unit. Fig. 5.6(a) depicts all possible assignment compatible paths (indicated
by thick edges) and all the redundant edges (indicated by crossed thivn edges),
corresponding to the bipartite graph of Fig. 5.5(b). It is seen from this figure that 3 new

assignment compatible paths are introduced. The path, for example, v, = v, = p,(c,, c,)
1s introduced in the bipartite graph, since the nodesv,andv,are compatible. The
corresponding edge v; = p,(c,) 1s redundant. The removal of the redundant edges from

the graph of Fig. 5.6(a) gives rise to the modified bipartite graph as shown in Fig. 5.6(b).

We use the modified bipartite graph to perform the assignment of the regenerated
nodes to processing units. It is to be noted that one or more than one node can be found in
more than one assignment compatible path. The assignment compatible paths differ from
one another in terms of the impact that a path would make on the interconnect complexity
depending on the set of compatible nodes that belong to a path. The more the number of
inputs and outputs that is common to the nodes belonging to an assignment compatible
path or common to these nodes and the nodes previously assigned to the processing unit
in question, the less the number of interconnects in the resulting architecture. We assign a

weight to each edge in an assignment compatible path as follows. A weight is assigned to
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each edge, except the last one, of a path as the sum of the numbers of inputs and outputs
common to the two nodes of all the pairs of nodes, where each pair is formed by the
initial node of the edge and a node from the link list of the regenerated nodes that follow
the initial node of the edge in the assignment compatible path. For the last edge in an
assignment compatible path, a weight is assigned as the number of edges in the path plus
the sum of numbers of inputs and outputs common to the two nodes of a pair of nodes,
where the set of pairs of nodes consist of the pairs in which one node is taken from the set
of regenerated nodes 1n the path and the other node of the pair is taken from the nodes
assigned to the processing unit of the path in question, other than those belonging to the
path. The formulation of the assignment of weights to the edges of the assignment

compatible paths just describe is carried out as follows

Assume that

ViV, DV, DY v, oy, o pile(n), e e(v)s e(v), e(vy)-e(v,)
1s an assignment compatible path in a modified bipartite graph. The weight assigned to an
edge v, > v, is given as

Wy = D(CO, oy +CL ) (5.11)

J=i+l

and CO,

0, ATE5 respectively, the number of inputs and outputs common

where C](‘__,",,)
to nodes v, and V. Assume that there is a set of nodes v,, k=1,2,...,m, previously
assigned to the processing unit p, . The weight assigned to the last edge of the assignment

compatible path, i.e., the edge v, > p,(c(v), c(v,),...,c(v, })sc(v,), c(v,.,)...c(v,)), 1s

given as

146



Regenerated Idle procssing
nodes units

(O py(c5¢,)
O pale)

>~ psy(c)

() py(c5¢35¢,)

@ \/< =Opz(cz)

> ) pi(cs)

’ . ps(cssey)
O ps(c)

Ve pz (C4)
ps(cy)
(@)
Regenerated Idle procssing
nodes units

p,(c,)

(b)

Figure 5. 6: (a) Assignment compatible paths introduced into the bipartite graph given in
Fig 5.5b. (b) Weighted paths used during the assignment process.
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Wy p) = {ZZ(C](VW )+ Co(‘.i,‘,“)} +(n-1) (5.12)

i=t k=1

where, as mentioned earlier, node v, belongs to the set of regenerated nodes in the
assignment compatible path, and v, belongs to the set of nodes assigned to the

processing unit of the path in question. In Fig 5.6(b) the weights assigned to the edges of
the modified bipartite graph are also indicated, where each of the weights is determined

using (5.11) or (5.12).

After assigning weights to each edge in the modified bipartite graph, we
determine the length of each assignment compatible path as the sum of the weights of all
the edges in the path. The longest path is chosen first for the assignment and its entire
link list of nodes are assigned to the processing unit terminating the path, i.e., the link list

of nodes (v,,v,,... V,_,,V,, V., ,...,V, ) is assigned to
pc(m); c(v,)s...5c(v, ), c(v), €(vy,)--.c(v,)) ifthepath v, > v, > ...y, >V, —>

Vi = -V, = pen), e(v,)sc(vi)s ev), e(vy)-..e(v,)) has the longest length.
Assuming that this is the longest one, and therefore, the nodes v,, v,,..., v, |, Vs Vi,5-- 5 V,
are assigned to p;, these nodes and their olutgoing.edges are removed from the modified
bipartite graph.

Assigning the link list of nodes v,,v,,...v._,,v.,v,,,...,V, to the processing unit
p; at the control steps c(v,), c(v,)s-..5¢(vi) ), c(v,), c(v,,,)-..c(v,), respectively, implies

that this processing unit is no longer available for assignment of other nodes at these

specific control steps. Consequently, in the modified bipartite graph, if there is another
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node representing the same processing unit p; with a set of control steps that is a subset

of the set of control steps c(v,), c(v,),...,c(v,_,), c(v;), ¢(v,,))...c(v,), then this node 1s

also no longer available at its set of control steps. We call such node representing the

processing unit p; at the associated control steps as fully occupied. On the other hand, if
there is a node in the modified bipartite graph representing the processing unit p; with a

set of control steps such that only a subset of this set is also a subset of the control steps
c(v)s c(Vy)s-..5¢(v, 1)y c(v;), €(v,,,)-..c(v,), then the processing unit p, is no longer
available at the control steps of this subset, but it is still available at the remaining control

steps of the set of control steps associated with this node of p;. We, therefore, call such a
node representing the processing unit p; and the associated set of control steps as

partially occupied. In the modified bipartite graph, the entire nodes and edges of an
assignment compatible path terminated by to a fully occupied node are removed except
those nodes and edges that are shared between the path in question and some other
assignment compatible paths. On the other hand, the entire nodes and edges of an
assignment compatible path terminated by a partially occupied node are first removed
except those nodes and edges that are shared between the path in question and some other
assignment compatible paths, and then the set of nodes in the removed path, excluding
the nodes scheduled at control steps responsible for making the terminating mode of the
path partially occupied, are used for constructing, as necessary, one Or more new
assignment compatible paths in the modifies bipartite graph using the remaining link list
of the removed path. As an example, assume that
Vi DV, VDV, VLV, DV LY

7
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P (c(W), c(vy), c(v), c(v}), €(V), e(vy),c(¥)s.... ,¢(V,)) is an assignment compatible
path in which the node p; is partially occupied such that it is no longer available at the
control steps c¢(vi) and c(v;). Consequently, this assignment compatible path is
removed, and 3 new assignments compatible paths v =V, — p(c(V), c(¥3)),
v, - vi > p(c(v)),c(v)), and Vi —>...V, = p(c(V)),...,c(v))) are added in the
modified bipartite graph.

The removal of the longest assignment compatible path, the removal of other
nodes and edges resulting from the removal of the longest assignment compatible path
and the addition of new assignment compétib]e paths constitute one iteration of
regenerated nodes assignment and results in a reduced modified bipartite graph. The
weights of the edges in the reduced modified bipartite graph are updated using (5.11) and
(5.12). The process is repeated using the reduced modified bipartite graph until all

regenerated nodes are assigned.

5.4 Experimental Results

In our experiments, both centrally shared and distributed-register based architectures are
targeted. The proposed scheme is first assessed in terms of the number of registers and
the number of interconnects required when the node regeneration is incorporated in the
register binding technique proposed in the previous chapter to carry out the synthesis of
the some benchmark examples targeting both the centrally-shared- and distributed-
register based architecture and the corresponding results are compared with those

obtained by using the proposed register binding technique without incorporation of the

150



node regeneration scheme Finally, experiments are carried out to determine the total
mterconnect lengths in the RTL structures obtained through the synthesis of some DSP
problems with and without the incorporation of the node regeneration scheme in the

proposed register binding technique.

5.4.1 Number of registers and interconnects with node regeneration

In order to assess the effect of incorporating the node regeneration scheme into the
proposed register binding technique, the technique is applied to the same set of DSP
benchmark problems as in Section 4.3. Fig. 5.7 gives the number of registers obtained
with and without the incorporation of node regeneration scheme to the proposed register
binding technique »fobr targeting centrally-shared and distributed register-based
architectures. It is seen from this figure that the node regeneration reduces the number of
registers in both types of architectures. The proposed register binding technique offers a
substantial gain in terms of reducing the number of registers when it incorporates the
node regeneration. In centrally-shared register-based architecture, an average reduction of
16.13% 1s achieved for the intensive DSP benchmarks considered with the minimum
reduction bemng 12.7% for DCT-chem and the maximum 21.87% for mcm. In the
distributed architecture, the average reduction is 13% with the minimum and the
maximum reduction being 6.25% and 15.47% for the benchmarks of DCT-planar and

DCT-chem, respectively.
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Figure 5. 7: Number of registers obtained by applying the proposed technique for the
register binding of some intensive DSP Benchmark problems with and without node
regeneration targeting both the centrally-shared and the distributed register-based

architectures.

Fig. 5.8 gives the corresponding results in terms of the number of interconnects. Again
we see that the incorporation of the node regeneration scheme to the proposed register
binding technique reduces the number of interconnects for both types of architectures. In

centrally-shared register-based architecture, an average reduction of 8.89% is achieved
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for the intensive DSP benchmarks considered with the minimum reduction being 5% for
ellip and the maximum 13.3% for fir. In distributed one, the average reduction i1s 19.56%
with the minimum and the maximum reduction being 16.36% and 24% for the

benchmarks of mcm and fir, respectively.

5.4.2 Overall length of interconnects for the RTL structures of some
DSP benchmarks.

Interconnect lengths have become a dominant factor in the design of integrated circuits.
The parasitics associated with length of interconnects account for a significant part of the
noise, delay and power associated with a signal [77]. In order to show as to how reducing
the number of interconnects obtained by the incorporation of the node regeneration
scheme into the proposed register binding results in reducing the total wire length, we
generate the layouts of the RTL structures of some of the DSP benchmark problems using
Cadence’s Silicon Ensemble and measure the total length of the interconnects. The DSP
benchmarks chosen are 8-tap FIR filter, 8-tap 1IR filter, and 1-point 8X8 DCT filter. For
each benchmark, two RTL structures, one targeting the centrally-shared register based

architecture and the other the distributed registered based architecture, are obtained.
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Figure 5. 8: Number of Interconnects obtained by applying the proposed technique for
the register binding of some intensive DSP Benchmark problems with and without node
regeneration targeting both the centrally-shared and distributed register-based
architectures.

Table 5.1 lists the resources of the synthesized RTL structures and the resulting
wire length for each of the benchmarks considered with and without the incorporation of
node regeneration scheme. The RTL resources are specified in terms of the number of the
multipliers, adders, and registers. Even though the proposed register binding technique
and the node regeneration schemes are not concerned with the total number of

interconnects in all the tasks of the high level synthesis globally, it is obvious from this

154



table that they help in reducing the total wire length in the RTL structures. For the

benchmark problems considered, the average reduction in the total wire length i1s 10.83%

for the centrally-shared register based architecture and it i1s 11.18% for the distributed

one.

Table 5. 1: Comparison of the total wire length with and without the incorporation of

node regeneration scheme

RTL resources

Total wire-length (i )

Type of Without Without
Benchmark y.p ithou With node ithou With node Reduction
architecture node node
) regeneration . regeneration
regeneration regeneration
Centrally-
2M, 2A, 14R | 2M, 2A, 11R 139287 122771 10.80 %
FIR shared
Distributed | 2M, 2A,21R | 2M, 2A, 15R 111020 98953 11.85%
Centrally-
4M, 2A, 13R | 4M, 2A, 10R 173271 151480 12.50 %
IR shared
Distributed | 4M, 2A, 17R | 4M, 2A, 14R 160661 146392 14.20 %
Centrally-
4M, 4A,27R | 4M, 4A, 22R 509463 462420 9.20%
DCT shared
Distributed | 4M, 4A, 36R | 4M, 4A, 28R 480860 444563 7.50%

5.5 Summary

The lower bound on the number of registers resulting from any register binding technique

gets fixed once the DFG has been scheduled. In this paper, a scheme, referred to as node

regeneration, has been proposed to reduce the number of registers to a value that is even

lower than this bound. This scheme by utilizing the idle processing units generates

'multip]e copies of the nodes in the original scheduled DFG with the lifetimes of the

tokens in the modified DFG to be shorter than that of tokens of the nodes in the original

scheduled DFG. In essence, the scheme reduces the number of registers by having at its
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disposal a modified scheduled DFG without re-scheduling the DFG or adding additional
resources. The freedom provided by having multiple copies of nodes has also been
exploited to the idle processing units to minimize the complexity of the interconnect
network. In order to assess the proposed technique of register binding, it has been applied
to the synthesis targeting centrally-shared and distributed register based architectures for
different intensive DSP algorithms and has been compared with various other commonly
used synthesis methods for register binding. The reductions in terms of the number of
registers and the number of interconnects are even more substantial when the proposed
node regeneration scheme is incorporated in the register binding technique. Finally, it has
been shown that the reduction in the number of interconnect in fact results in reducing the

total wire length of the layout of the RTL structures.
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Chapter 6

Conclusion

6.1 Concluding Remarks

With the technology scaling down into a deep submicron region, the high level synthesis
tasks can no longer afford to be performed without taking into account the impact of the
interconnects on the performance of the resulting architectures. A realistic model to be
used in the high level synthesis should, for instance, support interprocessor
communication delays, different types of processing units, and the structure and
organization of the data path. This doctoral thesis has been concemned with the problem
of developing efficient interconnect aware techniques for the high-level synthesis of DSP
applications leading to the implementations with parallel processing architectures. Under
this common theme, the thesis has two distinct focuses. The first focus has been on

developing new techniques for scheduling and processor allocation while taking into
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consideration the interprocessor communication delay. To this end, two techniques have
been proposed. In the first technique, the interprocessor communication delay used in the
tasks of scheduling and processor allocation has been estimated or taken from an already
placed architecture. While in the second technique, a placement process has been
integrated into the high level synthesis to consider the impact of the positions of the
processing units in the placement space on the building of the time and processor
schedules. The second focus of this thesis has been on developing a technique to carry
out the register binding while taking into consideration the complexity of the
interconnects. Since the lower bound on the number of registers resulting from any
register binding technique gets fixed once the DFG is scheduled, a node regeneration
scheme has been proposed to reduce the number of registers to a value that is even lower
than this bound and at the same time to lower the interconnect complexity.

A technique for the synthesis of DSP cyclic data flow graphs onto heterogeneous
distributed-register based multiprocessor architectures employing a graph theoretic
approach has been proposed. The interprocessor communication delay has been assumed
to be taken from estimation or from feedback information from a placement. The
proposed technique starts by modifying the original DFG representing a DSP algorithm
by inserting dummy communication nodes to represent the ICDs between the nodes of
different types. The modified DFG is then used to build iteratively a time schedule based
on the mobility of each node. An algorithm has been proposed to identify each critical or
near-critical loop in the modified DFG. Next, by employing the initial time schedule and
by using the loop identification algorithm, the task of an initial processor allocation is

carried out. Since, the initial time schedule and processor allocation does not take into
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account the 1CDs of the nodes of the same type, the initial time and processor schedules
may not be valid. Hence, the initial time and processor schedule have been modified to
take into account the ICDs between a pair of nodes of the same type assigned to two
different processors in order to find the final time and processor schedule. This
modification has been carried out by inserting additional cycles into the time schedule in
order to ensure on the validity of the ICDs between a pair of nodes of the same type. In
order to assess the proposed synthesis technique, it has been applied to the synthesis of
different DSP digital filters and has been compared with various other commonly used
synthesis techniques. It has been shown that the proposed synthesis technique
outperforms these techniques in terms of the iteration period and the numbers of

processors of the synthesized architecture.

Existing synthesis tools perform the high level synthesis tasks and the tasks of
physical design such as placement independently. A techmique for the integration of the
placement process into the high-level architectural synthesis has been developed in away
so that information about the position of the processing units in the placement space and
about interconnect delays are used during the building of time schedule and the allocation
of the nodes. A systematic process has been employed for the placement by using a
Delaunay triangular mesh in the proposed scheme, since this method of triangulation can
make candidate positions of the processing units well-distributed. This triangulation
method nﬁaximizes the mimimum angles of the mesh, and, hence, it 1s then became
possible to avoid making candidate positions for placing the processing units on adjacent
edges connected by a narrow angle which in turn allows to, quickly, find the suitable

gaps to place the functional units in the placement space. In order to maximize the local
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data transfers, a hybrid lbrary of functional unit, which includes dynamically
reconfigurable multiple-operation and operation-specific functional units, have been used
in the proposed technique. Moreover, the use of hybrid library provides the designer of
DSP applications with a greater flexibility to explore the design space. The proposed
techniqué has been épplied to well-known benchmark problems of DSP applications in
order to assess the effectiveness of the interaction between the high level synthesis and
the placement process. During the experiments, the placement has performed under two
assumptions about the number of candidate position allowed to place the processing
unitsT In one case, a restricted number of candidate positions is used. While in the other
case, the number of the candidate positions has been increased in order to provide more
flexibility to the placement process. It has been shown that a substantial gain in terms of
reducing both the placement area as well as the iteration has obtained period for all the
benchmark problems considered when the high level synthesis interacts with a flexible

placement compared to a restricted placement process.

An interconnect aware register binding has been proposed. The function of register
binding is to assign the tokens produced by the processing units to registers in the
resulting RTL structure and it is traditionally done in a way so as to minimize their
number. A technique for binding the tokens produced by the nodes of a scheduled DFG
while aiming at minimizing the number of interconnects has been presented. F;rst, a
segmentation scheme in which the lifetime of a token 1s appropriately divided into
multiple segments is developed. Then, the register binding problem is formulated as a

min-cost flow problem so that the tokens having the same source and/or destination are

bound into the same register and results in a reduced numbers of registers and
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interconnects. In order to assess the proposed technique of register binding, it has been
applied to the synthesis targeting centrally-shared and distributed register based
architectures for different intensive DSP algorithms and has been compared with various
other commonly used synthesis methods for register binding. The results of these
experiments have shown that the proposed register binding technique produces the
number of registers equal to the optimal solution provided by using the left-edge method
and it outperforms other methods not only in terms of the number of registers but also in

terms of the number of interconnects.

The lower bound on the number of registers resulting from any register binding
technique gets fixed once the DFG has been scheduled. A scheme, referred to as node
regeneration, has been proposed to reduce the number of registers to a value that is even
lower than this bound. This scheme by utilizing the idle processing units generates
multiple copies of the nodes in the original scheduled DFG with the lifetimes of the
tokens in the modified DFG to be shorter than that of tokens of the nodes in the original
scheduled DFG. In essence, the scheme reduces the number of registers by having at its
disposal a modified scheduled DFG without re-scheduling the DFG or adding additional
resources. The freedom provided by having multiple copies of nodes has also been
exploited to the idle processing units to minimize the complexity of thev interconnect
network. In order to assess the proposed scheme, it is incorporated with proposed register
binding technique and it has then been applied to the synthesis targeting centrally-shared
and distributed register based architectures for different intensive DSP algorithms and has
been compared with various other commonly used synthesis methods for register binding.

It has been shown that the reductions in the number of registers and interconnects are
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even more substantial when the proposed node regeneration scheme is incorporated in the
register binding technique. Finally, it has been shown that the reduction in the number of
interconnect by the proposed register binding technique and the node regeneration
scheme, in fact, results in reducing the total wire length of the layout of the RTL

structures.

6.2 Directions for Future Research

The research work undertaken in this thesis can be extended in several respects.
One interesting area of investigation would be the development of high level synthesis
techniques while taking into consideration other performance metrics for the
interconnects such as power and area. In this thesis, a technique for the integration of the
placement process into the scheduling and allocation tasks of the high level synthesis has
been proposed. To the best of the auther’s knowledge, there is no reported work in the
literature in which the routing is incorporated into the process of high level synthesis.
Due to the impact of the routing on the interconnect network of an architecture, it would

worth exploring the integration of interconnect routing into the high level synthesis itself.

Another interesting area of investigation could be the development of techniques
for high level synthesis targeting the newly advanced 3D integrated technologies which
offer a great promise in providing improvements in the overall circuit performance. The
3D integrated circuits are fabricated by stacking multiple active device layers using wafer
bonding with vertical interconnects for ihter—layer communication. This recent progress
in the fabrication of 3D integrated circuits has opened up the possibility of exploiting this

technology to alleviate the problems related to power and interconnect delays resulting
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from the deep-submicron technology. Hence, methodologies and techniques need to be
developed to address the scheduling and resources allocation during high level synthesis
for vertically integrated 3D systems. Also, the problem of integration of 3D-placemet into
the high level synthesis must be dealt with in order to determine the location of individual
processing units on a 3D placement and to identify the intra-layer and inter-layer

interconnect delays.
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