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ABSTRACT 

Interconnect-Aware Scheduling and Resource Allocation for 

High-Level Synthesis 

Awni Itradat, Ph.D. 

Concordia University, 2009 

A high-level architectural synthesis can be described as the process of transforming a 

behavioral description into a structural description. The scheduling, processor allocation, 

and register binding are the most important tasks in the high-level synthesis. In the past, it 

has been possible to focus simply on the delays of the processing units in a high-level 

synthesis and neglect the wire delays, since the overall delay of a digital system was 

dominated by the delay of the logic gates. However, with the process technology being 

scaled down to deep-submicron region, the global interconnect delays can no longer be 

neglected in VLSI designs. It is, therefore, imperative to include in high-level synthesis 

the delays on wires and buses used to communicate data between the processing units 

i.e., inter-processor communication delays. Furthermore, the way the process of register 

binding is performed also has an impact on the complexity of the interconnect paths 

required to transfer data between the processing units. Hence, the register binding can no 

longer ignore its effect on the wiring complexity of resulting designs. The objective of 

this thesis is to develop techniques for an interconnect-aware high-level synthesis. Under 

this common theme, this thesis has two distinct focuses. The first focus of this thesis is on 

developing a new high-level synthesis framework while taking the inter-processor 

communication delay into consideration. The second focus of this thesis is on the 

developing of a technique to carry out the register binding and a scheme to reduce the 

number of registers while taking the complexity of the interconnects into consideration. 
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A novel scheduling and processor allocation technique taking into consideration the 

inter-processor communication delay is presented. In the proposed technique, the 

communication delay between a pair of nodes of different types is treated as a non-

computing node, whereas that between a pair of nodes of the same type is taken into 

account by re-adjusting the firing times of the appropriate nodes of the data flow graph 

(DFG). Another technique for the integration of the placement process into the 

scheduling and processor allocation in order to determine the actual positions of the 

processing units in the placement space is developed. The proposed technique makes use 

of a hybrid library of functional units, which includes both operation-specific and 

reconfigurable multiple-operation functional units, to maximize the local data transfer. 

A technique for register binding that results in a reduced number of registers and 

interconnects is developed by appropriately dividing the lifetime of a token into multiple 

segments and then binding those having the same source and/or destination into a single 

register. A node regeneration scheme, in which the idle processing units are utilized to 

generate multiple copies of the nodes in a given DFG, is devised to reduce the number of 

registers and interconnects even further. 

The techniques and schemes developed in this thesis are applied to the synthesis of 

architectures for a number of benchmark DSP problems and compared with various other 

commonly used synthesis methods in order to assess their effectiveness. It is shown that 

the proposed techniques provide superior performance in terms of the iteration period, 

placement area, and the numbers of the processing units, registers and interconnects in 

the synthesized architecture. 
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Chapter 1 

Introduction 

1.1 General 

VLSI technology has now advanced to a stage where it would be rather complex to 

design a digital system starting at the transistor level or logic level. High-level synthesis 

of digital systems consists of transforming a behavioral (algorithmic) description of a 

design into a register transfer level (RTL) description of the design, rather than dealing 

with the components of the design at the logic gate level. At the RTL level, an adder, for 

instance, is viewed as a functional unit instead of as a series of NAND gates. The factors 

such as the latency, area and the type of functional units associated with a design, 

however, can be taken into consideration at a high-level synthesis without resorting to a 

low-level implementation. Scheduling, processor allocation, and register binding are the 

key tasks that influence these factors in the high-level synthesis. A general goal of a high-
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level synthesis is to find hardware structures that minimize these design metrics subject 

to certain constraints. 

Some of the applications that need a high-level synthesis are digital signal 

processing (DSP), communications, and image processing. These applications are among 

the most important applications that demand high computational power, and must be 

executed at a very high speed to enable real-time processing. Due to the parallelism 

within the DSP applications, parallel processing architectures are a natural choice for the 

synthesis of these applications [1- 3]. 

In the past, it has been possible to focus simply on the delays of the processing 

units in a high-level synthesis and neglect the wire performance, since the overall delay 

of a digital system was dominated by the delay of the logic gates. However, with the 

process technology being scaled down to deep-submicron region, the global interconnect 

delays can no longer be neglected in VLSI designs. It is, therefore, imperative to include 

in high-level synthesis the delays and complexity of wires and buses used to 

communicate data between the processing units, even though, in recent years, there have 

been considerable developments in the interconnect technology. 

Since scheduling and resource allocation are the most critical tasks in the high-

level synthesis, the following sections provide a brief review of the necessary background 

material for the high-level synthesis. In order to provide the motivation for the research 

work contained in this thesis, the weaknesses and shortcomings of the research schemes 

for the scheduling and resource allocation of DSP application in the high-level synthesis 

are also discussed. It is to be noted that the related research corresponding to each 
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particular problem dealt with in the thesis will be provided in the other chapters. This 

chapter is concluded by providing the scope and the organization of this Thesis. 

1.2 High-Level Synthesis 

The hardware design starts from the behavioral description of algorithm as input to the 

high level synthesis and proceeds downwards to the logic level and finally the physical 

level which produces the circuit layout for the implementation, each time adding some 

additional information needed for the next level of synthesis. A high-level synthesis can 

be described as the process of transformation of a behavioral description into a structural 

one that consist of a set of connected components collectively called the data path and a 

controller that sequences and controls the functionality of these components. 

The high level synthesis takes the specification of the behavioral requirement of a 

system and a set of constraints and goals to be satisfied, and then to find a structure that 

implements the behavioral requirement while satisfying these goals and constraints. The 

behavior means the way the system and its components interact with their environment, 

i.e., the mapping from the inputs to the outputs. The structure refers to the set of 

components and their interconnection that is used to implement the system. Usually there 

are many different structures that can be used to realize a given behavior. One of the 

tasks of the synthesis is to find the structure that best meets the constraints, such as the 

limitations on the cycle time, area or power, while minimizing other costs. For example, 

the goal might be to minimize the area while achieving a certain minimum-processing 

rate. 
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In recent years there has been a trend toward carrying out the synthesis at 

increasingly higher levels of the design hierarchy. There has been considerable interest 

shown in the High-level synthesis in the industry. There are a number of reasons for this: 

a. Shorter design cycle. Since much of the cost of the chip is in the design 

development, by carrying out the synthesis at higher levels and automating the 

part of the design at lower levels can lower the design cost as well as make it 

possible to hit the market window. 

b. Fewer errors. Having more automation in the design process eliminates the 

errors due to human factors and reduces the verification time of the design. 

c. The ability to search the design space. A good synthesis system can produce 

several designs for the same specification in a reasonable amount of time. This 

allows the developer to explore the trade-offs between the cost, speed, power, and 

so on of the different designs including that of an existing one. 

It is expected that the trend toward a high level synthesis will continue. Already 

there are a number of research groups working on high-level synthesis, and great deal of 

progress has been made in finding good techniques for optimizing and for exploring 

design trade-off. These techniques are very important because decisions made at the high 

level tend to have a much greater impact on the design than those at lower levels. 

In general there are many advantages of investigating a design at a high-level. 

First, the designer can concentrate on studying the design behavior rather than the 

detailed implementation. Second, the RTL design of a digital system is usually less 

complex than the design details at the logic level. Thus, its simulation can be done faster. 
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Further, studying an RTL design also allows the designers to quickly explore the design 

space and decide as to which architecture fits their needs best. 

1.3 The Synthesis Tasks 

Scheduling, resource allocation, placement represent the core of transforming the 

behavior of an application into a structure. They are closely interrelated and depend on 

each other. Scheduling consist in assigning the operations to the control steps to be 

executed. The control steps are fundamental sequences in a synchronous system; they 

correspond to clock cycles. Allocation consists in assigning the operations and variable to 

generic hardware resources. 

1.3.1 Scheduling 

Scheduling is one of the basic tasks in a high-level synthesis to produce an execution 

order of each operational node. The aim of the scheduling is to minimize the amount of 

time or the number of the control steps needed to complete the application, given certain 

constraints on the available hardware resources [4-5]. 

Scheduling is significant in view of the fact that the relative execution order of the 

operations has an effect on the speed, throughput, or any other performance measure of 

the system design. Thus, an important purpose of the scheduling process is to achieve 

some objective functions, while satisfying some design constraints, e.g., iteration period, 

throughput, hardware resources, input-output delay, area cost, and power [6]. 
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Some basic concepts in scheduling 

When the operations that have to be scheduled and the precedence relations are known 

beforehand, the scheduling can take place at the compile time. This is known as static 

scheduling. Static scheduling differs from dynamic scheduling, which schedules the 

operations at the run time. 

Another characteristic of a scheduling method is whether or not it allows 

operations to be interrupted once their execution has begun. If it is so possible and the 

interrupted operations can be resumed at a later time, the scheduling is called pre-emptive 

scheduling. In contrast, non pre-emptive scheduling requires that the operations are 

executed without interruptions. 

When an algorithm is scheduled for execution on architecture, several 

optimization goals can be set. It is possible to minimize the throughput delay for latency) 

which is the time between the consumption of an input sample and the production of the 

corresponding output sample. This optimization goal is typical for resource-constrained 

scheduling in which the hardware is specified and it is independent of the type of the 

scheduling used. In contrast, in a time-constrained scheduling, given the execution speed, 

the hardware is minimized. 

Scheduling methods exploit the parallelism that exists between operations of the 

same iteration of a cyclic data flow graph (intra-iteration parallelism). However, the 

cyclic data flow graphs often contain parallelism between the operations from different 

iterations {inter-iteration parallelism). Scheduling algorithms can also exploit this 

parallelism by allowing operations from different iterations to be executed in parallel. 

The schedules that are then produced are called overlapped schedules. These schedules 
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contrast the non-overlapped schedules, where for every iteration period only operations 

belonging to that iteration are executed. 

Cyclo-static schedules form a special class of overlapped schedules. In a cyclo-

static schedule an operation does not have to be executed on the same processing element 

for every iteration period. Cyclo-static schedules differ from fully-static schedules in 

which each operation is assigned to the same processing element for all the iterations. 

Determining the timeframes of the schedule 

In general, DFGs expose parallelism in DSP applications. Each node has a range of 

possible control steps that can be assigned to it. Most of scheduling algorithms require 

the earliest and the latest bounds within which an operation in the DFG can be scheduled 

(time frames). The first and simplest schemes that are used to determine these bounds are 

called as soon as possible (ASAP) [7][8] and as late as possible (ALAP) algorithms [9], 

respectively. 

1.3.2 Resource allocation 

Allocation is a task of determining generic resources (functional units and registers) on 

which operational nodes are executed. It involves assigning operations and variables to 

hardware resources and registers and specifying their usage while trying to minimize the 

amount of hardware resources needed. It is assumed that a unit of generic resource could 

only start the execution of one operation at a time. In particular, this includes two 

subtasks, which are to determine the number of generic resources used and to bind nodes 

and variable to resources. A generic resource type may be, for instance, an adder unit, a 
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multiplier unit, or an ALU which is capable of performing multiple operations such 

additions, multiplications, etc. 

In order to minimize the number of hardware resources required for the 

implementation of a digital system, the operations (nodes) of a DFG representing the 

DSP algorithm can be grouped to share a single hardware unit if they have mutually 

exclusive schedule or life time. Sets of these mutually exclusive nodes are formed. A 

single hardware resource is then allocated to each distinct set. Thus, the minimization 

problem is the problem of decreasing the number of sets. This type of allocation is known 

as folding. Folding is usually affected by the types of hardware resources. 

Data path allocation involves the mapping of the operations onto the functional 

units and also assigning values to registers, and providing interconnections between the 

functional units and registers using buses and multiplexers. The optimization goal is 

usually to minimize some objective function, such as the total interconnects length, the 

total number of registers, and multiplexer cost, or the critical path delays. There may also 

be one or more constraints on the design which limit the total area of the design, the total 

throughput, or the delay from input to output. 

1.4 Mapping of DSP Applications onto Hardware Models 

The scheduling methods should use a detailed realistic model of the targeted architecture. 

When a scheduling method does not consider a complete and realistic model of the 

architecture, the resulting schedule will result in an inefficient implementation. It is 

worthwhile to explicitly consider a realistic multiprocessor architecture. For then the 

schedules produced will result in a latency that is on the average more twice than those 
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obtained from the schedules that are based on a less realistic model and therefore the 

latter had to be modified before they could be executed on the actual hardware. 

Thus, it is desirable that a scheduling method is based on a realistic model of a 

targeted architecture. A realistic model should for instance support: communication 

delays, contention of communication links, the structure of the data path, allocation of 

registers (register binding), pipelining, etc. It is unlikely that a scheduling method based 

on a complex hardware model will always produce schedule that is close to optimal. 

The most popular hardware implementations of DSP applications are: (1) 

application specific integrated circuit (ASIC), (2) field programmable gate arrays 

(FPGAs), or (3) a set of instructions running on an application-specific processor. 

Various implementations of the same application allow trade-offs for optimizing the 

hardware in terms of multiple design parameters such as power consumption, area, 

processing speed, and re-configurability of the system. 

There are a number of advantages and disadvantages for these three 

implementations. An ASIC implementation has fully customized data paths and logic. It 

allows designers to optimize the hardware resources for one or more of the design 

parameters. However, an ASIC implementation is not flexible, since it does not allow 

reconfiguring itself and cannot be used in a wide range of applications. FPGAs, on the 

other hand, consist of arrays of prefabricated logic blocks. FPGAs can provide a 

reconfigured implementation of a certain design. The property of reconfigurability allows 

the designers to reuse the resources in variety of applications. Although FPGAs have the 

capability of programming functional units and wires, it has several inherent limitations. 

FPGAs usually consume much higher power than an ASIC implementation. They also 
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have higher performance penalty and require larger silicon area because of their generic 

reconfigurable platform. Another common method to implement a complex application is 

to use application-specific processors such as a DSP processor. DSP processors are 

designed for general-purpose DSP applications; and hence, they are not area, 

performance, or power efficient. 

1.5 Related Research in the High Level Synthesis for 
Iterative DSP Applications 

When a high-level synthesis is not based on a realistic model of targeted architectures, 

the resulting schedule may lead to an inefficient implementation. A realistic model 

should, for instance, support the inter-processor communication delays (ICDs), allocation 

of registers (register binding), type of functional units, interconnects networks, and 

structure and organization of the architecture. Moreover, that model must consider the 

interaction between the decision taken at high level of synthesis and those taken at a 

lower level of synthesis such as the placement which involves deciding where and how to 

place functional components, circuitry, and logic elements in a generally limited amount 

of space. Most of the techniques for scheduling of real-time DSP applications consider 

simplified architectural models in which the inter-processor communication delay, 

interconnect complexity and other structural requirements are not taken into 

consideration; thus, they eventually produce schedules that lead to unrealistic 

implementations. 

In high-level synthesis, the model of the targeted architecture can consist of 

homogeneous or heterogeneous processing units. When processing units are 
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homogeneous, they all have identical behavior. Heterogeneous processing units do not 

have identical behavior and they can, for example, differ in execution speed or they are 

not all able to handle the same set of operations. Arithmetic logic units (ALUs) are 

generally used for the design of homogenous multiprocessors. On the other hand, 

processing units that can support a single type of operations are commonly employed for 

heterogeneous designs. 

In [10], the problem of assignment and scheduling for heterogeneous 

multiprocessor systems has been addressed by proposing a two-phase approach to solve 

it. In the first phase, the heterogeneous assignment problem is solved by assigning the 

best functional unit to a node so that the total cost can be minimized while satisfying the 

timing constraint. In the second phase, based on the node assignments thus obtained, a 

minimum resource scheduling algorithm that has been developed in this paper is used to 

generate a schedule and produce a feasible configuration with as little resources as 

possible. Functional units with different execution times and costs are employed in this 

technique. However, they cannot be considered to be fully heterogeneous, since they all 

handle the same set of operations. In [11], a list-based scheduling algorithm has been 

proposed. Since in this technique an acyclic data flow graph (DFG) is used to represent a 

DSP application, the inter-iteration precedence cannot be exploited, and hence, a rate-

optimal schedule cannot be produced. Both [10] and [11] do consider the interprocessor 

communication delay and interaction with the lower level of synthesis 

In the techniques presented in [12]-[17], different solutions to deal with the 

problem of scheduling of DSP applications mapped onto multiprocessor systems have 

been proposed by taking into account the inter-processor communication delay. In the 
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range-chart technique proposed in [12], the flexibility in the scheduling of the nodes in a 

DFG has been represented in the form of a chart that specifies the possible range within 

which a node can be executed. This technique is very successful in scheduling and 

allocation of a DSP application targeting homogeneous multiprocessor systems and can 

produce an optimal solution with a polynomial time complexity. The inter-processor 

communication delay is dealt with by converting the cyclic DFG representing a DSP 

application into an acyclic one. However, this technique ignores the optimization of the 

memory during the scheduling. The technique proposed in [13] has considered the inter-

processor communication delay and shown that it is essential for a realistic development 

of multiprocessor schedules. The objective of this technique is to use the structure of a 

multiprocessor system that takes into consideration the location of the operands, the 

number of registers and the inter-processor communication delays to find rate optimal 

schedules. However, the method is computationally expensive and suitable for small size 

problems. In [14], a scheduling technique called cyclo-compaction scheduling has been 

proposed to deal with the problem of inter-processor communication delay. First, a non-

overlapped schedule is constructed and then transformed into an overlapped one, while at 

the same time, control steps are inserted into the time schedule to deal with the inter-

processor communication delay. In this technique, the optimization of the number of 

processors or the memory size cannot be achieved, since the DSP application is mapped 

onto a pre-specified multiprocessor topology. The techniques proposed in [15] and [16] 

use integer linear programming (ILP) to take into account the inter-processor 

communication delay during the scheduling of a DSP application mapped onto a 

homogeneous multiprocessor system with a pre-specified topology ranging from a 
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weakly connected configuration to a strongly connected one. It is well-known that 1LP is 

a very time-consuming technique for large size problems. Despite the fact that the 

techniques in [15] and [16] can produce good results in terms of the throughput, they 

cannot optimize the number of processors. Furthermore, the problem of optimizing the 

memory size of the implementation has not been considered. In [17], an iterative 

algorithm to compute the theoretical minimum initiation interval for the time schedule of 

a given DSP application has been proposed with a fixed inter-module communication 

delay for a two-module implementation. Unfortunately, in this technique the inter-

processor communication delay between the sub-modules within each module has been 

neglected. In fact, none of the above techniques consider a close interaction between the 

placement and the high level synthesis. 

With the advances in ASIC synthesis technique, the idea of heterogeneous 

multiprocessor architectures for the implementation of DSP applications is gaining 

widespread usage because of the area efficiency of such systems. Scheduling an iterative 

signal processing algorithm onto a heterogeneous multiprocessor system imposes a 

greater need to consider the inter-processor communication delays of the target 

architecture, since, in heterogeneous system nodes of different types and having data 

precedence cannot be assigned to the same processor. To the best of the authors' 

knowledge, no algorithm for scheduling of cyclic data flow graphs mapped onto a 

heterogeneous multiprocessor system with inter-processor communication delay exists in 

the literature. 

The way the process of register binding is performed also has an impact on the 

complexity and performance of the interconnect paths required to transfer data between 
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the processing units. Hence, the register binding can no longer ignore its effect on the 

wiring complexity of resulting designs in a high level synthesis. In FDLS [17], ALPS 

[19], OSA1C [20], InSyn [21], and MARS [22] different solutions and heuristics to the 

scheduling problem have been provided in which the memory optimization, commonly 

referred to as register binding, has been also considered, but the inter-processor 

communication delay and interconnect are ignored. In [18]-[21], an acyclic DFG model 

has been used to represent a DSP application and thus the inter-iteration precedence 

cannot be exploited. In [22], the DFG is mapped onto a heterogeneous multiprocessor 

with structural pipelining to produce a rate-optimal schedule. This novel technique 

implicitly performs algorithmic transformations, such as pipelining and retiming, on the 

DFG's during the scheduling process to produce optimal or near-optimal solutions. In 

this method, life-time analysis [23] is incorporated during the data path synthesis to 

generate structures using the minimum number of registers for a given time schedule. In 

this technique, the loops of the DFG need to be enumerated. Since, the number of loops 

can be of an exponential order, algorithms to find all the loops could have an exponential 

time complexity. To summarize, most of the techniques for scheduling a DSP recursive 

application, in which the iteration period and throughput, is crucial have simplified the 

model used for the high level synthesis. One possible reason is that it is really more 

complicated to satisfy inter-iteration dependency [24] in recursive DSP data flow graphs 

during a high level synthesis in presence of the interprocessor communication delay and 

other interconnect and structural constraints. 
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1.5 Scope and Organization of the Thesis 

The objective of this doctoral thesis is to devise efficient interconnect aware techniques 

for the high-level synthesis of DSP applications leading to the implementations with 

ASIC technology. Under this common theme, the thesis has two distinct focuses. The 

first focus is on developing new techniques for scheduling and processor allocation while 

taking into consideration the interprocessor communication delays. To this end, two 

techniques are proposed. In the first technique, the interprocessor communication delay 

in the tasks of scheduling and processor allocation is estimated or taken from an already 

placed architecture. While in the second technique, a placement process is integrated into 

the high level synthesis in order to, more accurately, consider the impact of the positions 

of the processing units in the placement space and the corresponding interconnects delays 

on the building of the time and processor schedules. The second focus of this thesis is on 

developing a technique to carry out the register binding while taking into consideration 

the complexity of the interconnects. Since the lower bound on the number of registers 

resulting from any register binding technique gets fixed once the DFG is scheduled, a 

node regeneration scheme is proposed to reduce the number of registers to a value that is 

even lower than this bound and at the same time to lower the interconnect complexity. 

This thesis is organized as follows. In Chapter 2, a new static scheduling 

technique for DSP algorithms mapped onto fully connected heterogeneous register based 

architectures with non-negligible inter-processor communication delays is proposed. The 

proposed technique operating on the cyclic DFG of a DSP algorithm is designed to 

determine the relative firing times of the nodes by using a longest path algorithm so that 
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not only the inter-processor communication delays are taken into consideration, but also 

the throughput is aimed to be maximized and the number of hardware resources in terms 

of processors to be minimized. 

In the above technique for scheduling and processor allocation, the interprocessor 

communication delay is assumed to be taken from feedback placement information or 

from an estimated value of the interprocessor communication delay. In Chapter 3, a 

technique in which a placement process is integrated into the high level synthesis is 

developed. The information about the physical positions of the processing units in the 

placement space, the interconnect delays between the processing units, and the candidate 

positions for placing new processing units, are utilized during the building of the time 

schedule and processor allocation. Furthermore, most of the other techniques for high 

level synthesis use only operation-specific functional units, i.e., adders or multipliers, in 

the allocation process. In order to maximize the local data transfers and reduce the 

interprocessor communication delays, the proposed technique makes use of a hybrid 

library of arithmetic functional unit composed of both fixed operation-specific units and 

reconfigurable functional units capable of executing multiple operations. 

The way in which the register binding is carried out affects the data transfers 

between the processing units. In Chapter 4, the problem of register binding in a high-level 

architectural synthesis is studied. A technique for binding the tokens produced by the 

nodes of a scheduled DFG is proposed while aiming at minimizing the number of 

interconnects. First, a segmentation scheme in which the lifetime of a token is 

appropriately divided into multiple segments is developed. Then, the register binding 

problem is formulated as a min-cost flow problem so that the tokens having the same 
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source and/or destination are bound into the same register and results in a reduced 

numbers of registers and interconnects. 

Chapter 5 proposes a node regeneration scheme that generates multiple copies of 

the original nodes in a given scheduled DFG with the resulting variables having lifetimes 

shorter than those of the variables produced by the corresponding original nodes. The 

freedom provided by having multiple copies of nodes is then further exploited to assign 

each copy to a processing unit that results in minimizing the complexity of the 

interconnect network thus obtained. 

Finally, Chapter 6 concludes the thesis by highlighting the contribution made in 

this investigation and suggesting some possible future research work. 
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Chapter 2 

Scheduling and Allocation of DSP Data 
Flow Graphs with Inter-Processor 
Communication Delays 

2.1 Introduction 

In an architectural synthesis problem, an efficient schedule is the one that respects the 

time requirements of a given DSP application and at same time, produces RTL 

architecture with an optimal or near-optimal number of functional units (resources). The 

problem of optimally scheduling and resource allocation of the DSP application mapped 

onto a multiprocessor architecture at compile time has been proven to be NP-hard, that is, 

a problem that is not solvable by deterministic algorithms in a polynomial time [24]. The 

situation becomes more complicated when the synthesis process targets a heterogeneous 

architecture in which the inter-processor communication delay are taken into 
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consideration. For such a problem, a heuristic solution is necessary. In this chapter [25-

29], a new static scheduling technique for DSP algorithms mapped onto fully connected 

heterogeneous architectures with non-negligible inter-processor communication delays is 

proposed. The proposed technique operating on the cyclic DFG of a DSP algorithm is 

designed to determine the relative firing times of the nodes by using Floyd-Warshall's 

longest path algorithm [30] so that not only the inter-processor communication delays are 

taken into consideration, but also the throughput is aimed to be maximized and the 

number of hardware RTL resources in terms of processing units is aimed to be 

minimized. 

The chapter is organized as follows. The data flow graph model used to represent 

DSP applications and the underlying terminologies and definitions are briefly introduced 

in Section 2.2. The target architecture and the design flow of the proposed architectural 

synthesis scheme are given in Section 2.3. In Section 2.4, a theoretical formulation to 

build an initial time schedule taking into consideration the inter-processor communication 

delay between the nodes of different type is presented. Then, in Section 2.5, based on this 

initial time schedule, an initial processor allocation matrix is developed. Next, in Section 

2.6, the firing times and processor assignments of a pair of nodes of the same type are 

tested and, if necessary, modified to satisfy the inter-processor communication delay 

between the two nodes. In Section 2.7, the proposed technique is applied on some 

benchmark DSP problems. In Section 2.8, the results of the proposed technique are then 

compared with those obtained by other techniques in the literature when applied to the 

some intensive DSP benchmark problems. Section 2.9 summarizes the work presented in 

this chapter and highlights some of the salient features of the proposed technique. 
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2.2 Data Flow Graph Model for DSP Applications 

The data flow graph is proven to be an efficient representation of the system 

specification due to its ability to expose the hidden concurrency between the operations 

of the underlying algorithm. Since DSP applications are known for their inherent 

parallelism, the DFG model is thus suitable for the behavioral representation of DSP 

applications [13], [22]. A graph G can be represented by the pair (V, E), where V is a set 

of nodes, and £ is a set of elements called edges. Each edge is associated with a pair of 

nodes. 

The symbolsi,,v2....,v„are used to represent the nodes and the symbols ej, e2,...are 

used to represent the edges of a graph. A directed edge e = (v,,v,) is incident out of the 

node v, and incident into the nodev,. A directed edge is usually called an arc. The nodes 

v. and v, are called the end nodes of the edgee . The node v, is called the initial node, 

and the node v, the terminal node of the edge? . If V/ = Vj•, then the edgee is called a self-

loop. The arcs of DSP graphs represent the precedence constraints between their end 

nodes. 

Ideal-delay 

Figure 2. 1: A graph showing an edge with an ideal delay of Ne 

If the nodes v, and v2 are, respectively, the initial and terminal nodes of an edge, 

and the execution of v,at iteration /' is dependent upon the availability of the output of v, 

at iteration /-Nt, where Ne is a nonnegative integer, then the edge er is said to have 
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associated with it NC ideal delays. The edge, as shown in Fig. 2.1, is marked as Ne £>(i.e., 

Ne ideal delays). In this case, then the ideal delay Nr represents the inter-iteration 

dependency between the pair of nodes in question. In contrast, an edge with no ideal 

delay represents the intra-iteration dependency between the two associated nodes. 
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Figure 2. 2: (a) The conventional flow of synthesis (b) The proposed design flow 

A direct path pViiVt is a finite sequence of distinct nodes v0,v,,...,v4 and distinct edges 

such that the edge (v,,v,,,)is present in the path^,oVj. If v0 = vAthen this path is called a 

directed circuit or loop. Each loop in a DSP graph must contain at least one ideal delay 

element for the graph to be computable. The data flow graph that contains at least one 

directed circuit is called the cyclic graph, otherwise it is acyclic. 
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2.3 Proposed Scheme of Architectural Synthesis 

2.3.1 Target architecture 

In the traditional architectural synthesis targeting centrally-shared-register based 

architectures, processing units read data from or write data to a centrally-shared register 

file through a relatively long interconnect [31]. Such a data transfer is responsible for 

occupying a portion of the clock cycle. This portion of the clock cycle has now become 

comparable to the rest of the cycle in the deep submicron technology and could be even 

larger when technology shifts deeper in the submicron region [32]. Therefore, the 

interconnect delay plays an important role in determining the cycle time for centrally-

shared-register based architectures. Unfortunately, the existing techniques for high-level 

synthesis for such architectures do not take into consideration the interconnect delays 

during the synthesis. Instead, the interconnect delay is taken care by adding it to the 

operation delay part of the clock period thus making the processing unit to remain idle 

during the period of the data transfer, i.e., during the period of inter-processor 

communication, which in turn significantly increase the overall execution time of the 

synthesized centrally shared architecture. However, in a distributed register-based 

architecture [31][32], registers are distributed so that each processing unit has its 

dedicated registers that are placed close to it. Accordingly, each processing unit performs 

two types of data transfer, namely, local and global. The global data transfer between 

different processing units takes one or more cycles. In the distributed-register based 

architecture it is possible to separate of the inter-processor communication delay for data 

transfer from the computation delay of the processing units. The data transfers can then 
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be dealt with in a way similar to the computations of the processing unit and, hence, can 

be performed in one or more clock periods. Therefore, in the proposed synthesis scheme, 

the distributed register-based architecture is chosen as the target architecture. Even 

though in such a distributed architecture, the number of control steps (cycles) in their 

time schedule are, generally, higher than that in the time schedule of a centrally-shared-

register based architecture, it uses smaller clock period and thus, the wasted slack time, 

which is the difference between the clock period and computation time, gets reduced. 

Moreover, a distributed-register based architecture allows operations of the data 

commutation and data computations in parallel. However, if these operations are not 

efficiently scheduled to avoid global data transfers, an increase in the number of control 

steps (clock cycles) in the time schedules and thus an increase in the iteration period will 

result. Consequently, this may significantly increase the overall execution time of a 

synthesized recursive DSP system. As done in conventional approaches, the inter-

processor communication delay may be taken care in a post-synthesis step. However, the 

hidden concurrency of the data communication and data computation will not be 

efficiently exposed if this delay is not included during the synthesis process itself. 

Therefore, in the proposed synthesis scheme, by targeting a distributed architecture, we 

attempt to address the resolution of problems which have not been possible by using 

centrally shared architectures. In the proposed synthesis scheme, the scheduling of data 

communication and data computation is performed during the synthesis itself, and in 

order to avoid global data transfer, locality of data computations is maximized. 
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2.3.2 Design flow 

Fig. 2.2 gives an overview of the conventional architectural synthesis flow and the design 

flow of the proposed scheme. From the behavioural specification of a DSP algorithm 

such as a DFG, the conventional synthesis produces a structural description at the 

register-transfer level (RTL) by performing three main tasks, namely, the time 

scheduling, processor allocation and register binding as shown in Fig. 2.2(a). In view of 

the fact that ICD need to be taken into consideration, in the proposed scheme, the three 

synthesis steps are performed in an environment in which the parallelism between the 

data communication and data computation gets maximally exposed and utilized. The 

communication delay between a pair of nodes of different types (e.g. the delay between a 

node performing addition and that performing multiplication) is represented by a non-

computing node, whereas that between a pair of nodes of the same type is taken into 

account by re-adjusting the firing times of the appropriate nodes of the DFG. At the front 

end of the proposed design flow shown in Fig. 2.2(b), a DFG is taken as input and then 

modified by inserting communication dummy nodes between nodes of the different types. 

An initial time schedule is then built to determine the relative firing times of the nodes by 

using Floyd-Warshall's longest path algorithm [30]. Further, in order to reduce the ICD 

between nodes of a critical or near-critical loop, such nodes are aimed to be assigned to a 

single processor. Hence, critical and near-critical loops are first identified. Then based on 

this identification process and the initial time schedule, an initial processor allocation 

matrix is developed. Next, the firing times and processor assignment of a pair of nodes of 

the same type are tested and, if necessary, modified to satisfy the inter-processor 

communication delay between the two nodes. Finally, by using the scheduled DFG, an 
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algorithm to carry out the register binding is proposed (to be presented in Chapters 4 and 

5. 

2.4 Building of Initial Time Schedule 

In this section, an algorithm to produce an initial time schedule taking into consideration 

the inter-processor communication delay (ICD) between the nodes of different type is 

proposed. A theoretical formulation to build the initial time schedule is presented. It is 

shown that the problem of finding such initial time schedule can be reduced to the 

problem of finding the longest-paths between all pairs of nodes of the given DSP graph. 

Moreover, the feasibility of the produced initial time schedule is proved in this section. 

In a heterogeneous distributed-register based architecture, nodes of different types 

are executed on different processing units, whereas two or more nodes of the same type 

may or may not be executed on different processors. Recall that in a distributed-register 

based architecture, the processing unit and its dedicated registers are closely placed and 

thus communication overhead for data transfer between the nodes assigned to a single 

processing unit is almost zero, and therefore, can be neglected. However, the data 

transfers between different processing units are regarded as global communications via 

long interconnect delay that may take one or more cycles. Thus, the ICD between any 

two nodes, having precedence dependency, and executed on two different processors has 

to be taken into consideration, whereas the ICD between any two nodes being executed 

on the same processor can be neglected. In the proposed technique, in order to take into 

consideration the ICD between a pair of nodes of different types and having a direct 

precedent, the original DFG, G, is first altered to give a modified graph, MG, by inserting 

communication (dummy) nodes as shown in Fig. 2.3. These dummy nodes are not 
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scheduled; they are used while scheduling other nodes. However, during the building of 

the initial time schedule in this section, the ICD between a pair of nodes of the same type 

having a direct precedence is not taken into consideration, since, in order to do so, this 

would require that the nodes are assigned to processing units beforehand. Furthermore, at 

this stage of synthesis it is not yet possible to determine whether the two nodes in 

question can be assigned to a single or to two different processors. 

Inserting a dummy node 

-H x) • C+)—K c 

Figure 2. 3: An example of inserting a dummy node. 

Let us first define certain terms that are used in this section to build the initial 

time schedule. Let EFT(^) and LFT(**/J be, respectively, the earliest firing time (EFT) and 

the latest firing time (LFT) of a node w relative to the firing time of the reference node v. 

Further, let EFT{W) and LFT(W) be the earliest and latest firing times of a node w relative to 

all the previously scheduled nodes. The firing time of a node v is chosen in the interval of 

its earliest and latest firing times and denoted by Fro). The path length, len[pv, ], of the 

path Prv is defined as the minimum time elapsed between consuming the input 

operand(s) at its initial nodev; and producing an output at its terminal nodev>5 and it is 

given as 

len [P ]= X dv-T-NP (2.1) 
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where dv is the computational delay of node v in Pvv , T is the iteration period, and NP 

is the total number of ideal delays (see Section 2.2) in Pvv . 

For the modified DFG MG, (2.1) becomes, 

Jen [Pvv] = X dv-T-NP+JCDP (2.2) 
VVlVjeV(MG) >> „ 6 ~ 

where /CD^ = ^ Jc , </c. being the delay of the communication node c in 
r eICD(Pr.v.) 

P . . We define /e« [/L [as the path length of path P when the computational 
'' ' VVjVjeV(MG) ' •' ' ' 

delay of its terminal node v7 is excluded. In order to illustrate the computation of a path 

length, consider the example shown in Fig. 2.4, Assume that the iteration period T is 6 

time units, the computational delay for the nodes v,, v2 and v, are 1, 2, and 1, respectively, 

and the delay of the communication node (dummy node) c is 1. Using (2.2), 

len[PViV3J = (\ + 2 + \)-(\)(6) + \ = -l. 

d,=\ rf„=2 

Figure 2. 4: An example for computing the path length. 

T0 = max[7,3] = 7 
ST(circuit 1) = 0 
ST (circuit 2) = 4 

Circuit 1:T=7 Circuit 2: T=3 

Figure 2. 5: An example illustrating the computations of T0 and ST(C). 
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The iteration period bound T0 for initial time schedule is defined as the minimum time 

between producing any two successive outputs. For a modified cyclic DFG MG, it is 

given by 

T0 = max 
Ce circuits 

D c + ICDC (2.3) 

where Dc = ĵT dv , dv being the computational delay of node v in the circuit C, 
v e l 'YO 

ICDC = ^dc , dc being the delay of communication node c in C,NC is the total 
C € V(C) 

number of ideal delays in C, and \x |is the function that returns the smallest integer not 

less than x. 

On the other hand, for a modified acyclic DFG, the iteration period bound is equal to the 

duration of the longest operation, i.e., Ta = max(dv). A circuit C in MG is called critical 
ve MG 

if its loop bound 
Dc + 1CDC is equal to the iteration period bound T0, A non-critical 

circuit has a spare time called the slack time. The slack time of a circuit C can be thought 

of as the total time delay that can be added to the computation encapsulated in the circuit 

without exceeding the critical loop bound, and is given by 

ST(C) = T0NC -Dc- 1CDC (2.4) 

It is clear from (2.2) and (2.4) that 

ST(C) = - !en [C] 
Cecircuits 

(2.5) 
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An example of calculating of T0 and the slack times of circuits in a given modified 

DFG is shown in Fig. 2.5. The DFG has two circuits, CI and C2, which have loop bounds 

of 7 and 3, respectively. By using (3), T0 is found to be 7, i.e., the loop bound of CI, and 

hence, resulting in a slack times of 0 for CI and 4 for C2. 

The theoretical optimal solution for the number of processing units of a certain type of 

nodes, NP/ype is given by 

NP = 
1 ™ type 

type 

T 
(2.6) 

In order to determine the effect of the modifying of the original DFG G on the 

precedence relations of a pair of nodes, and to show that the problem of finding an initial 

time schedule for the modified DFG MG can be reduced to the problem of finding the 

longest-paths between all pairs of nodes of the given DSP graph, the following lemmas 

and theorems are proved. 

LEMMA 1 In a given modified DFG MG, let v be a reference node, and w any other 

node. Then, 

EFT{»/)= FT(v )+ max len[pj 
all Pvw 

LFT(^,) = FT(v)-maxlen[pJ 
all Pn-v 

where Pm. is a path from node v to node w and FT(v) is the firing time of node v 

The proof of Lemma 1 is obvious. 

LEMMA 2 The path length between any two nodes of a modified DFG MG is greater 

than or equal to that between the same two nodes in the original DFG G, that is, 
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len [Pvy.]< len LP.,,.] 
Vi-^.Ei ' fC; ' ' vv,v/ei-Y;WG; ' ' 

Proof. The delay d\. of the communication node c is a positive integer. Subtracting 

(2.1) from (2.2) results in 

len [P¥V] - len [PVV] = ICDP 

Since JCDP > 0 , from the above equation, we have 

len [PYV)< ten [Pvv_] 

Hence, the Lemma j 

As mentioned above, the pathP,, is called a loop or a circuit ifv, = v - . Hence, the 

result in Lemma 2 is also applicable to any pair of nodes of a circuit in the DFG. 

THEOREM 1 The earliest firing time EFT\ y ojanode v, relative to the firing time 

of node v0 in a modified DFG MG is greater than or equal to that in the original DFG G, 

and the latest firing time LFT y of node v, relative to the firing time of node v0 in 
\/voJ 

MG is less than or equal to that in G, that is, 

EFiv/o)-EFivK) <2-7) 
Vf v0,v, )zV(MG) Vfv0,v, )zV(G) 

LFTiX)-LFTiX) (2-8) 
VCvo.^JsVOUG) V(v0,V])eV(G) 

Proof. Assume that v0,v, e V(G) are two nodes having a path between them. Without 

loss of generality, assume that v0 has a fixed time schedule of zero in both G and MG. 
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Let EFiiy] and LFTyy\ be, respectively, the earliest and the latest firing times of 

node v, relative to the firing time of the reference node v0. Assume P,.̂ . is a path between 

v0 and v,. By Lemma 1, we have 

EFT[/J = FT(v0)+ max M ^ 0 , , [ (2-9) 
viwei-yc; a i nV 

LFTtyJ = FT(v0)- max len[P^[ (2.10) 
V(V0,ve|/(-G; °"p>vo 

EFTVJ = F T ^ + max M ^ , v , [ (2-11) 
VA'O.VI;GCWC> n / / / V i 

LFTVJ =FT(vo)~ max M ^ , , [ (2-12) 
V<V0,v,J€Kf7WG; o / / / > v , , 0 

Using Lemma 2 and comparing (2.9) with (2.11) and (2.10) with (2.12), we have 

EFiXY-EFi\ 
\/(v,w)&V(MG) \/(r,w)<=V(G) 

LFT(V}/] < LFrh 
'>oy 

Vfv,w)€V(MG) V<v.w)zV(G) 

Hence, the theorem 3 

LEMMA 3 Let MG' be a graph having the same set of nodes and edges as that of the 

modified graph MG such that the weights assigned to an edge e, = (v,,v,+1) &MG' and 

Vt&MG' are, respectively, given by we.=dv.+dc.-Tnei, and wv,=d, where dr< is the 

computational time of node v;, dt.. is the delay of the communication node c, of the 

edgeei and ne is the number of ideal delay associated with a given edge <?; in MG. Then, 

the length of any path pr c MG' is equal to the length of the corresponding path 
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P c MG excluding the computational delay of the node vm, that is, 

len[Pril.m c MG'] = len[PV]Vm c MG[. 

Proof. The length of the path Pv v = (v],et,v2,e2,...,vm_{,em_],vm) c MG' is given by 

!en[PV]Vm ]= Yu We, = Yj(dsource!e, , + d1CD(e. } - Tne. ) 

m~\ m~\ m-\ 

= (Y,dv, + 5 X - TZ»e, ) = len[Pm. c MG'] 
(=1 ;=1 (=1 

Z <; + 2X ~T IX 
vrfV<P^m)-vm) ' c-,slCD(pJm) e,eE(Py]Vm') 

= Ien\pvv czMG\ 

Hence, the lemma. D 

Now, let «2°be an N*N matrix in which QJj = We = d + djCD(e)-T• Ne for all 

e=(vj,vJ) e E(MG), where Ne is the number of ideal delays associated with the edge 

e = (vjrVj), and dJCD(e)h the delay of the communication node of the edge e. All other 

entries of the matrix are - oo. Next, applying the Floyd-Warshall's longest path algorithm 

to Q° results in a matrix Q*, where Q? could be finite or infinite. An infinite value 

implies that there is no directed path connecting the node v; to the node v -, whereas a 

finite value of ^ r ep re sen t s the longest distance from node v, to nodev,., i.e., 

max len /T v v /". al lPV j V j 

THEOREM 2 The difference between the firing times of a pair of nodes in a modified 

graph MG can he represented in terms of the elements of Q1, i.e., the longest distance 

between the two nodes. 
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(vs/\ „ _ _ . . _ _ . . . f v ; 
Proof. SinceEFT V \< EFT(Vj)< FT(Vj) and LFT V > LFT(vj)> FT(vj),we 

have 

FTiv^-FTiv^EFn ^ \-FT{Vj) ( ' (2.13) 

FT{Vj)-FT{v,)<LFT V \-FT(Vi) (2.14) 

By Lemma 1, (2.13) and (2.14) become 

FT(Vj ) - FT(v,.) > max Jen [pVjVj [ 

f T ( v ) - / T ( v , ) < - max len[Pvv[ 
J all R..... ' ' 

r-nf Since max len[Pvv [=Q-j and max 1en[P^. [= Qj., we have 
all Pv,v: ' J J oflPviV, '•' ' 

1 / / Ql ^FTfvjJ-FTfv^^-Qji (2.15) 

Hence, the theorem 3 

Using Lemma 1 and Lemma 3, the EFT and LFT for a node v;. relative to that of a 

reference node v, are, respectively, given by 

EFT(%=FT{Vi)+ max len[P vr=/T(v,.W 
off ft •7-7 

zir(XJ=Mv,)-^/^[/,v,vl[=^r(v/)-ef 

(2.16) 

(2.17) 

To find the earliest and latest firing times of node v •, the maximum earliest firing 

time and the minimum latest firing time of the node must be found relative to all the 

previously scheduled nodes. Thus, EFT and LFT of node v, are, respectively, given by 

33 



f v / \ 

all i<j 
EFT(vj) = max EFT{ y ) (2.18) 

v / y. J 

( v / \ 
LFT{v )=min LFT{ V ) (2.19) J alli<j\ /V,. J 

The building of the initial time schedule starts by scheduling the input node (an 

input node in a DFG is the node which consumes data from the input streams) of the 

modified DFG, and then using it as a reference node for scheduling all other nodes. It is 

to be noted that without loss of generality, we can assume that a graph has a single input 

node, since in the case of DFG having multiple input nodes, a zero-delay node can be 

added to the given graph such as it has a zero-delay edge going to each input node in the 

original graph. Hence, this newly added node can be considered as the reference node to 

start building the initial time schedule. The initial time schedule is then built iteratively 

based on the node mobility. In this technique, the earliest and the latest firing times at 

which each node can be scheduled to fire are iteratively calculated by using (2.18) and 

(2.19). The node mobility or the range of control steps at which the corresponding node 

can be scheduled is equal to the difference between its latest and earliest times. These 

earliest and the latest firing times are found relative to a reference node and are the result 

of intra- and inter-iteration precedence constraints. 

All the nodes of the modified graph MG are first put in a set of non-scheduled 

nodes, and a schedule is built by selecting a reference node and by calculating the 

mobility of all the non-scheduled nodes with respect to this reference-node. The node 

with the minimum mobility calculated thus far is chosen first, and removed from the list 

of non-scheduled nodes. The chosen node is scheduled to fire at a time that would 

minimize the communication delay and the number of processors required by examining 
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all the control steps within the mobility of the node. We define the level of a control step 

to be the number of nodes of a certain type assigned to fire at this control step. The best 

firing time is obtained by selecting the control step that has the minimum level. If more 

than one control step has the same minimum level, one of the following two approaches 

can be followed to resolve this conflict: (a) For a centrally-shared-register based 

multiprocessor architecture, the best firing time is obtained by selecting the control step 

that would minimize the number of registers, (b) For a distributed-register based 

multiprocessor architecture, the best firing time is obtained by selecting the control step 

at which the minimum number of nodes having data dependency with the target node are 

scheduled to be fired. Due to the new firing time of the target node, the time schedule of 

other non-scheduled nodes may be affected. This newly scheduled node is chosen to be 

the new reference-node and the earliest and the latest firing times for the rest of the non-

scheduled nodes are calculated. A new node is chosen for scheduling and the process is 

iteratively repeated until all the nodes are scheduled. 

It is to be noted that in the above initial scheduling of a modified DFG, if during a 

given iteration more than one node is found to have the same minimum mobility, then 

such nodes are treated as special cases for their scheduling. These nodes are chosen as 

target node for the scheduling according to their predecessor or successor node being a 

reference node in previous iteration or being already scheduled. Since the mobility of any 

non-scheduled node may decrease as other nodes are scheduled, the priority order used to 

select the target node minimizes the consumed mobility of non-scheduled nodes, which, 

in turn, reduces the impact on the flexibility of scheduling such nodes. 
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An initial time schedule for a given iteration period T exists, if and only if at all 

stages of the building of the initial time schedule, the earliest firing time of a non-

scheduled node is less than its latest firing time. We will now show by the following 

theorem that the existence of a valid initial time schedule for a given iteration period 

T>T„ is guaranteed. 

THEOREM 3 At any stage of the time scheduling, the condition EFT{V)< LFT(V) holds for 

any non-scheduled node v. 

Proof. Let the nodes be scheduled in the orderv,,v2,...,vv, that is, node v, is scheduled only 

after all the nodes vk, k<i are scheduled. The node v( is said to be scheduled at stage i of 

the scheduling procedure. 

Let u, . = LFTfVj, j)- EFT(vjtj), where LFT(vjtj) and EFT(v,,/) are, respectively, the 

latest and earliest firing times of nodev, at stage/ Thus, we have to prove thatju, y > 0, 

for any i<N and for ally < i. However, the mobility of any node may never increase as 

other nodes are scheduled, p, • < u., •_,. Hence, we only need to prove that 

u i o > 0 , j = i, i < N (2.20) 

We will prove the above by employing induction. It is obvious that p.,, > 0, since the 

graph is computable. Now, let (2.20) be valid for i = t, t < N . That is, //,, > 0. We now 

have to prove the correctness of (2.20) for/' = / + l. Recall that, at any stage of the 

proposed scheduling procedure, the node with the minimum mobility is chosen as the 

target node for scheduling, that is, 

M,+,., ^ M , , 

36 



Otherwise, node v,+] would have been chosen before node v, for scheduling. Hence, 

u t + l t - u t , >0 (2.21) 

Obviously, the maximum decrease in the mobility of node v/+] when moving from 

stage / to t+1 is //,,, which is the final mobility that can be exploited by the scheduling 

procedure for node v, just before scheduling it at stage /, that is, 

Mt+i. i+i ^ M1+1.1 - M M C 2 - 2 2 ) 

Combining (2.21) and (2.22), results in 

M t + i , t + i - ° 

Hence, the theorem 3 

Based on the above theorem and the discussion preceding it, we now give the 

algorithm for obtaining the initial time schedule. The result of the time schedule is a set 

of firing times of all the non-communication nodes in the modified DFG, which will be 

used later in finding the initial processor allocation. 

Algorithm 2.1 Initial time schedule 

1. Calculate the minimum iteration period. Find the longest path matrix Qf. 

2. Take the input node as the reference node and schedule it first to fire at the control 

step zero. 

3. Calculate the earliest and latest firing times of all the remaining nodes with 

respect to the input node. 
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4. Calculate the current schedule range or mobility for each of the remaining non-

scheduled nodes. 

5. Schedule all the nodes that have zero mobility to fire at the only control step in 

their mobility. 

(Note: There is no need to update the earliest and latest firing times of the 

remaining nodes after scheduling such a zero-mobility node) 

6. Based on the current mobility for each non-scheduled node, choose one node as 

the target node for the scheduling according to the following priority: 

a. A node that has the minimum current finite mobility. If more than one node 

has minimum current finite mobility, chose from these nodes the one that is a 

predecessor or successor to the current reference node. 

b. A node that is a predecessor or successor to the current reference node 

c. A node that is a predecessor or successor of any scheduled node. 

7. Within the scheduling range of the target node, find the best firing time position 

as the control step that has the minimum level. If more than one control step 

results in the same minimum possible level, proceed as follows: (i) For 

distributed-register based architecture, choose the control step with the minimum 

level that results with the minimum number of 

nodes having a data dependency with the target node, (ii) For centrally-shared-

register based architecture', choose the control step with the minimum level that 

would minimize the number of registers. 

8. Set the best firing time position found as the time schedule of the target node. 

9. Set the target node to be the new reference node. 

I. Algorithm 2.1 can also be applied !o the synthesis aiming at ccntrally-sharcd-rcgistcr based architectures in which dummy 
nodes can not be inserted in the DFG 
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10. Update the earliest and latest firing times of all the remaining non-scheduled 

nodes. 

11. Go to Step 4 until all the nodes have been scheduled. 

2.5 Initial Processor Allocation Algorithm 

In this section, an initial processor allocation scheme is proposed. Through this 

scheme, the nodes of the modified DFG are assigned to the processors of a heterogeneous 

multiprocessor system, and the set of nodes of a certain type in each critical or near-

critical loop (a near-critical loop is the loop whose loop bound is close enough to the 

critical loop bound according to some criterion) are aimed to be assigned to the same 

processor, which in turn results in reducing the inter-processor communication delay 

(ICD) between the nodes of the same type. Thus, identification of each critical or near-

critical loop is crucial for processor allocation, and for this purpose, we first give an 

algorithm to perform identification of such loops and use it later for the initial processor 

allocation. A loop identification scheme can be found in [34]. 

A critical or near-critical loop is found by identifying the nodes of such a loop. The 

process of this identification is carried out as follow. The matrix Qf is used to identify 

the set of nodes in the longest loops (critical or near-critical) in the modified graph MG. 

Since each diagonal element in Qf represents the longest path from the corresponding 

node to itself, the nodes with the largest diagonal entries in Qf are on a critical loop. The 

nodes of a near-critical loop have the diagonal entries whose values are less than those of 

the entries corresponding to the critical loop. The values of the diagonal entries of the 
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matrix Q' are used as a guide to find the set of the nodes that form a critical or near-

critical loop. Fig. 2.6 gives an example as to how Qf is used to identify a critical or near-

critical loop. In this example, since the diagonal entries of ^corresponding to 

nodes v, ,v2 , v3, andv4 of the given DFG are the largest, i.e., zeros, these nodes belong to 

a critical loop. On the other hand, the diagonal entry corresponding to node v5 has a 

smaller entry of value -1 {Q{<,= max len[Pt.,. [=(1 +1 + 1)-1(4) = -1). Hence, this node 

all/*.,.., 5 • 

belongs to a near-critical loop. However, node v5 alone does not form a loop, since there 

is no self-loop from the node to itself in the graph. Therefore, node v5 must belong to at 

least one loop connecting to some of the other nodes v, ,v2, v3, andv4 in the graph. 

Hence, we need to find the complete set of the nodes that forms a critical or near-critical 

loop. 

The following algorithm gives a scheme that identifies all the nodes belonging to a 

particular critical or near-critical loop. This algorithm also determines the criticality level 

of a loop, which is a measure of closeness of the loop to the critical loop bound. 

Algorithm 2.2 Identification of critical or near-critical loops 

1. Choose any node with the largest diagonal entry as target node vr. Use /' to denote 

the criticality level of the loop and j the number of the loop within the criticality 

level /. Set i=0 andj=0. 

2. Add the target node v, to the set LP^t), where t is the type of the target node; set 

the current target node as a search node v,. 
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3. Among all the nodes next to the nodev,, select the node vk satisfying the 

following three conditions: 

(a) Node vk has the maximum diagonal entry value, (b) Q{k = Q°k, and (c) 

Qfk+Ql = Qkk- In the case, there is more than one such node vt, arbitrarily chose 

one of them. Add the selected node to !/>,(/) 

4. Repeat Steps 3 until the current target node vr is reached and a new critical or 

near-critical loop containing the node vr is identified. j=j+l. 

5. Choose a node from the remaining uncovered nodes that have a diagonal value in 

Qf equal to the diagonal value of the current target node as the new target node; 

go to Step 2. If there is no such a node, go to Step 6. 

6. Choose any node with the next largest diagonal value to be the new target node. 

Set /=/+; 

7. Repeat Steps 2-6 until a specified percentage p of all nodes with a finite diagonal 

entry in Qf has been covered. The terminating parameter p is the percentage of 

nodes regarded as critical or near-critical and it obviously dependents on the 

choice of the level of criticality that will allow a reasonable percentage of nodes 

to be considered as critical or non-critical. 
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0 1 2 3 2 

- 1 0 1 - 2 1 

- 2 - 1 0 - 3 0 

1 2 3 0 3 

- 3 - 2 - 1 - 4 - 1 

L 1 : (1.2.3.4) L 2: (1,2,3) L 3: (1.2.5) L4:(1,5) 

Figure 2. 6: An example of critical and near-critical loops. 

Even though the DFG given in Fig. 2.6 has 4 loops, L1-L4, only two loops are identified, 

namely, LI (v, ,v2 , v3, andv4) and L3 (v, ,v2 , and v5), by applying Algorithm 2.2. This 

is so, since the algorithm has been designed to identify only a loop that has at least one 

node belonging to it that is not covered by any other more critical loop. Thus, loops L2 

and L4 are not identified, since the sets of nodes (v,, v2 , and v3) in L2 and (v, and v5) 

in L4 are subsets of the sets of nodes in LI and L3, respectively. It is to be noted that 

despite the fact that node v5 has different diagonal entry from those of v, and v2, v5 is 

contained together with nodes v, and v2 in L3, and with node v, in L4. In this example, LI 

is the only critical loop with criticality level i=0. On the other hand, i=\ for L3. 

It is to be noted that, by using the above algorithm, a node may appear in one or 

more than one loop with the same or different critically levels. This node duplication is 

removed by making it to belong to only one loop that has the highest criticality level. 

Based on the initial time schedule obtained in Section 2.4, and by using the loop 

identification algorithm developed in this section, an initial processor allocation is now 

produced. The result of this allocation is an initial processor allocation matrix Aft), which 

T0 = max[ 4,3,3,2] = 4 

Q f -
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specifies as to which processor of type / a certain node is assigned. This scheme of 

processor allocation starts by trying to assign the complete set nodes of a certain type in 

each critical or near-critical loop to a single processor of type t according to the criticality 

level of the loop to which they belong. The non-critical nodes, i.e., the nodes not 

belonging to any critical or near-critical loops, are then assigned iteratively to the 

processors until all the nodes of type / of MG are exhausted. In the initial processor 

allocation, the complete set of nodes of a certain type in each critical or near-critical loop 

may or may not be assigned to the same processor. If a pair of nodes in any critical or 

near-critical loop cannot be assigned to the same processor, then the edges connecting 

such a pair of nodes are referred to as cutting edges and assigned an urgency level equal 

to the criticality level of the loop, since more the criticality level of a loop, more the 

urgency for its nodes to satisfy the ICD. Therefore, the urgency levels of the edges can be 

used prioritize the testing of the edges for their ICD compatibility. As to be seen in 

Section 6, the urgency levels of the cutting edges will be needed in building the final time 

and processor schedule. However, since during the phase of initial processor allocation, 

we determine which nodes of critical or near-critical loop cannot be assigned to a single 

processor of the same type, the process of marking of the cutting edges with the urgency 

levels can be conveniently carried out at the same time. The process of the initial 

processor allocation and the urgency marking of the cutting edges is described in 

Algorithm 2.3. 

43 



Algorithm 2.3 Initial processor allocation and urgency marking of the cutting edges 

1. Create allocation matrices A(t)'s of order P,XT , i.e. one matrix for each type of 

processors, where / is the type of the processors, p, is the number of processors of 

type / and 7 is the iteration period. Set/^=0, i=0,j=0. 

2. For each node . e LP^U) , determine the columns as FT{y) Modulo T and determine the 

row only if one can find the first available processor that is free in these columns 

and thus it can accommodate all of the nodes in LP0(I), then set j=j+l and go to 

Step 6. 

3. Add a new processor of type t and create a corresponding new row in the 

allocation matrix; assign as many of remaining nodes in the set LP^I) as possible 

to this new processor and thus/>, =p, + i. If each nodes of the of the set LP^I) has 

been assigned to a processor, set_/=_/'+7 and go to Step 6. 

4. Mark each of the cutting edges arising from Step 3 in the loop correspond 

toi^;(owith an urgency level equal to i 

(Note that the first failure to accommodate all the nodes of a loop to a new added 

processor will result in two cutting edges whereas succeeding failures will create 

only one cutting edge) 

5. Search for the first available processor that can accommodate the remaining nodes 

in LP/jV) and assign them to this processor and se\j=j+L Otherwise go to Step 3. 
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6. If j<j„i, where/,,/ is the number of loops in MG with the criticality level / as 

determined by Algorithm 2, go to Step 2. Otherwise, set /=/+/. If ><i„c, where 

i„c is the total number of criticality levels as determined by Algorithm 2, go to 

Step 2. 

7. If MG does not have a non-critical node that has yet to be assigned to a processor, 

stop. 

8. Choose one of the non-critical nodes of type t from MG that have not been 

assigned yet to a processor. Determine the corresponding column 

as FT(V) Modulo T and the corresponding row by finding the first available processor 

of the type / that is free in this column and thus can accommodate this node; 

assign the node to this processor. 

9. If during Step 8, the node cannot be assigned to an existing processor, add a new 

processor of type t and thus create a new corresponding row in the allocation 

matrix A(t). Assign the node to this processor and Xhusp, =p, + i. Go to Step 7 

2.6 Final Time and Processor Schedule 

The initial time schedule and processor allocation as obtained in Sections 2.4 and 2.5, 

respectively, did not take into account the ICDs of the nodes of the same type. Since the 

ICDs of such nodes are not negligible, the initial time schedule and processor allocation 

may not be valid, if in MG the nodes of the same type having direct dependency could 

not be assigned to the same processor. In this section, the ICDs between a pair of nodes 
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of the same type assigned to two different processors are now taken into consideration in 

order to find the final time and processor schedule. 

The ICD between a pair of nodes of the same type assigned to two processors is 

tested with respect to its compatibility with the firing times of the two nodes. In order to 

take this ICD into consideration, a communication dummy node is inserted in the edge 

that connects the two nodes. Such an insertion may violate the firing times of the two 

nodes which in turn may also violate those of the other nodes in the modified graph MG. 

If such a violation occurs for a pair of nodes, the firing times of the pair should be 

modified to satisfy the inter-processor communication delay between them. 

To determine the impact of inserting a communication node into an edge <?,-,. = (v,, v. ) 

that connects the two nodes v, and v • of the same type but assigned to two different 

processors, the earliest scheduling time (EST) and the latest scheduling time (LST) of the 

communication node ce with respect to the firing times of the two nodes are calculated 

as follows, 

ESnceij) = FT{Vi)+dVi 

LST(ceu) = FT(Vj)-(dCej-Tneij) 

where dv is the computational delay of the node v,, dc the delay of the 

communication node c. , and n„ the number of ideal delays associated with the edge 
U U 

e-. The time difference between the latest scheduling time and the earliest scheduling 

time of the communication node c„ is called the mobility, M(c. ) , of inserted node c„ , 
U v ij 

and it is given as 
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M(ce.) = LST(ce)-EST{ce.) 
i/ ii it 

The mobility of the communication node ce is required to respect the ICD, dc , 

0 ' '1/ 

between the two nodes by imposing the constraint, 

M(cev) > 0 (2.23) 

If this condition is satisfied, then there is no need to modify the firing times of the two 

computational nodes in MG. On the other hand, if this condition is not satisfied, then the 

firing times of the nodes v, and v - are adjusted so that the condition given by (2.23) is 

satisfied with the equality sign. The adjustment of the firing times of the two nodes is 

carried out by employing the procedure shift-successor- predecessor, which is used to 

widen the mobility of ce to accommodate the communication node. The procedure shift-

successor-predecessor is constructed based on two sub-procedures, shift-successor-left 

and shift-predecessor-right. In each of the two sub-procedures, the nodes predecessors to 

the node >, and nodes successors to the node v. are iteratively shifted while satisfying the 

precedent relation and keeping the current processor allocation unchanged. The 

procedure shift-successor-predecessor, the main procedure, uses the two sub-procedures 

in an iterative manner. It returns a "true", if in any iteration, the mobility of c is 

widened enough to satisfy the condition in (2.23), otherwise it returns a "false". 

If the shift-successor- predecessor procedure fails in widening the mobility, then it 

is done so by inserting a number of cycles, Njns, required to satisfy the condition in 

(2.23), into the allocation matrix starting from the control step 

Cins = EST(ce ^modulo T. Thus, the iteration period of the schedule is increased 
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by Njns. As a result of this insertion of the new cycles into the allocation matrix, the firing 

times of all the nodes in MG are modified. 

The set of cutting edges that connect a pair of nodes of the same type assigned to 

two processors are sorted for the testing for ICD compatibility according to the urgency 

levels of the edges as obtained by Algorithm 2.3 of Section V. An example for 

illustrating the insertion of new cycles into the allocation matrix is given in Fig. 2.7. In 

this example, all the nodes are assumed to be of the same type. Nodes v,, v2, and v3 are 

assigned to a single processor PI, whereasv4, v5andv6are assigned to P2. Therefore, 

there are four cutting edges, namely, e24, e41, el5, and e63, that have to be tested 

according to their urgency levels as shown in Fig. 2.7. Edges e24 and e41 have the highest 

urgency levels, each of which in turn leads to an insertion of one cycle as shown in Fig. 

2.7, in order to satisfy the ICDs. 

Urgency 
= 24 "^_ * " 
0 

v l 

v 6 

1 

v 2 

v5 

2 
v3 

v4 

P1 

P2 

-*— 
0 

v\ 

1 

v2 

v6 v5 

T=5 
3 

v3 

— • 

4 

v4 

Loops: L1 (1,2,3) L2 (1,2,4) 

Figure 2. 7: An example of insertion of new cycles into the allocation matrix for ICD 
compatibility between nodes of the same type. 

Inserting new cycles into the allocation matrix would create an additional empty 

space in each processor. This newly created space may be useful in eliminating the ICD 

between certain pairs of nodes of the same type, if more nodes could be allocated to same 

processor. These empty spaces can be filled by moving the firing times of some of the 
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nodes in the empty spaces of the processor executing these nodes or by moving the firing 

times of these nodes even to the empty spaces of the processors. Such a moving is carried 

out, if and only if, it results in no new edges to be added to the list of edges required to be 

tested for their compatibility with the respective ICDs. A terminal node v - of the edge 

etj in the list of edges to be tested is the candidate nodes to occupy the newly created 

empty spaces, if it satisfies the condition FT(vj) modulo T<Cim. Starting from the 

candidate terminal node Vj of the most urgent edge <?,.,. in the list of edges, we calculate the 

latest firing time LFT(v),) of the node in question with respect to all of its successor 

nodes, i.e., LFT(Vj) = min LFT(Vj/vnicc). If LFT(vj)>Cim, then the firing 
vsucc ̂ successor nodes 

time of v • is moved to a processor chosen from the candidate processors, that results with 

the largest number of nodes to have direct edges with the node in question v • . After such 

a node movement, not only the edge ê  that contains the node v • is removed from the list 

of the edges to be tested for ICD compatibility, but also all other edges et- or ejk for 

which the nodes v,- or vk get assigned to the same processor to which the node v • has 

been assigned. This node movement procedure, referred to as move_procedure, is 

iteratively repeated until all the candidate nodes to occupy the newly created empty space 

are tested. If none of the candidate nodes can be accommodated by the created empty 

space of any of the processors, the created empty space(s) is kept vacant. For the example 

of Fig. 2.7, this move-procedure can be applied to move node v5 to occupy the empty 

space at control step 2 which, in turn, satisfies the ICD between nodes v,andv5, and 

therefore, e]5 is removed from the list of edges to be tested. The only remaining edge in 
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the list of the cutting edges to be tested according to (2.23) ise63. This edge is already 

compatible with respect to the 1CD between nodes v6andv3. Based on the above 

discussions, we now give an algorithm for obtaining the final time and processor 

schedule. 

Algorithm 2.4 Final time and processor schedule 

1. List all the edges in the modified graph that connect a pair of nodes of the same type 

assigned to two processors of the same type. 

2. For each edge in the list, assign an urgency level equal to the corresponding level 

determined in the initial processor allocation algorithm (Algorithm 2.3). If no urgency 

level was assigned to an edge during the initial processor allocation, then assign to 

each of such edge a fixed urgency level value that is less than the smallest level found 

in the initial processor allocation. 

3. Sort the list of edges according to their decreasing urgency levels. If two or more 

edges result in being assigned the same urgency level, then these edges are sorted 

according to the order in which their termination nodes were scheduled to be fired in 

the initial time schedule. 

4. If the sorted list of edges is empty, then stop. 

5. Select the first edge in the list; insert a communication (dummy) node ce to this edge 

in MG. Then remove this edge from the list 

6. Calculate the earliest and latest scheduling time, EST(cee) and LST^J , for the 

communication node cCi inserted to the edge <>„ in MG. 

7. Calculate M(C,.> of the communication node. 
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8. If »(<„ >>o, go to Step 4. 

9. Call the procedure shift-successor- predecessor. If it returns a "true" value, then go 

to Step 4. 

10. Calculate the number of cycles v,„v =-w(rf.)required for a valid insertion of the 

communication node Cf into the edge <-,,. 

11. Insert .v,„, into the allocation matrix starting from control step Esnct,.} Modi,h T . Set 

12. Update the firing times of all the nodes in MG. 

13. Call the node movement procedure, move procedure. 

14. Goto Step 4. 

2.7 Experimental Results and Discussions 

In this section, some well-known benchmark problems of synthesizing DSP filters using 

the technique presented in this chapter are considered. We have implemented the 

proposed algorithms in C++ and performed tests on a Pentium IV (1.7 MHz) machine. 

Starting from the DFG corresponding to a given DSP algorithm, the process of synthesis 

is applied to obtain the time schedule and processor allocation. In our experiments, a 

distributed register based architecture and an inter-processor communication delay of 1 

cycle are assumed. Moreover, structurally pipelined processing units are used in the 

synthesis of all of the benchmark problems considered. 

2.7.1 A fourth-order all-pole lattice filter 

Fig. 2.8 shows an example of synthesizing a fourth-order all-pole lattice filter by 

applying the proposed technique. The modified DFG of a fourth-order all-pole lattice 
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filter is shown in Fig. 2.8(a). The initial iteration period bound for the modified DFG is 

obtained using (2.3) and it consists of 18 cycles. The computational delays of addition 

and multiplication nodes are assumed to be 1 and 5 cycles, respectively. Adders and 

multipliers each with a structural pipeline of 1 stage and 5 stages, respectively, are used 

in this example. The time and processor schedules obtained by applying the proposed 

technique are given in Fig. 2.8(b), which shows that this schedule results in an iteration 

period of 19 cycles. The difference between the initial iteration period bound and the one 

finally obtained is due to the inter-processor communication delay between nodes of the 

same type. 

M2 |T] 0 
(b) 

Figure 2. 8: Example of applying the proposed technique for the synthesis of a fourth-
order all-pole lattice filter (a) the modified DFG of the filter (b) the time and processor 
schedules. 

2.7.2 A fourth-order Jaumann wave filter 

Fig. 2.9 shows an example for synthesis of a fourth-order Jaumann wave filter by 

applying the proposed technique. The modified DFG of a fourth-order Jaumann wave 
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filter is shown in Fig. 2.9(a). The initial iteration period bound for the modified DFG 

consists of 20 cycles. Just as in the previous example, the computational delays of 

addition and multiplication nodes are assumed to be 1 and 5 cycles, respectively. Adders 

and multipliers each with a structural pipeline of 1 stage and 5 stages, respectively, are 

also used in this example. The synthesis of this filter is carried out using the proposed 

technique giving the time and processor schedules shown in Fig. 2.9(b). It is seen from 

this figure that the iteration period consists of 21 cycles and the architecture using this 

schedule would require two adders and one multiplier. In order to minimize the number 

of registers, the proposed node regeneration scheme is applied to this filter. 

0 1 2 3 4 5 j 6 7 8 9 10 11 12 j 13 14 i 15 16 17 18 19 20 

H 
0 0 

13 5 4 10 16 6' 17' 

M1 8 12 14 

(b) 

Figure 2. 9: Example of applying the proposed technique for the synthesis of a fourth-
order Jaumman filter (a) the modified DFG of the filter (b) the time and processor 
schedules. 

2.7.3 A fifth-order elliptic wave filter 

Fig. 2.10 shows an example for the synthesis of a fifth-order elliptic wave filter by 

applying the proposed technique. The modified DFG of the filter is shown in Fig. 2.10(a). 

53 



The initial iteration period bound for the modified DFG consists of 22 cycles. The 

computational delays of addition and multiplication nodes are assumed to be 1 and 2 

cycles, respectively. Adders and multipliers each with a structural pipeline of 1 stage and 

2 stages, respectively, are used in this example. Fig. 2.10(b) shows the time and processor 

schedules obtained by using the proposed technique. In the modified DFG of this 

example, there are two critical loops having a loop bound of 22 cycles and one near-

critical loop with a loop bound of 21 cycles as found by using the Algorithm 2.2. 

(a) 

0 I 1 I 2 I 3 I 4 I 5 | 6 I 7 I 8 | 9 | 10 I 11 I 12 I 13 I 14 I 15 I 16 | 17 | 18 I 19 | 20 I 21 I 22 j 23 

A1 I 2 I 12 I 13 I 7 116 117 I | IS j 8 I 19 i 20 ! I 6 I 3 I 9 I 11 I I 1 I 4 j 

A2 |30"J33'J24[ I 18 123 I | 25 I 2GI 28 J 32 | 0 

MI 0 0 0 0 
•K S [ill H H 

(b) 

Figure 2.10: Example of applying the proposed technique for the synthesis of a fifth-
order elliptic wave filter (a) the modified DFG of the filter (b) the time and processor 
schedules. 

These three loops have node 17 as a common node, thus making it necessary that 

a single processor accommodates all the nodes belonging to these loops. However, in 
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order to do so in the particular example under consideration, the minimum iteration 

period must comprise at least 26 cycles. Since the process of allocating the nodes to the 

processors is carried out based on the initial time schedule, which in this example has the 

initial iteration period of only 22 cycles, all the nodes of the three loops cannot be 

allocated to a single processor. Hence, the nodes in question are allocated to two 

processors. Consequently, two inter-processor communication delays are introduced in 

order for node 17 to communicate with other nodes of the same type having precedent 

relations with it and assigned to different processors. This, as shown in Fig. 2.10(b), 

results in a final time schedule with an iteration period consisting of 24 cycles. 

2.8 Comparisons with Previous Work 

In this section, the proposed technique is compared with some of the other techniques 

in the literature in terms of the iteration period and number of processing units required 

for the synthesis of the filter considered in Section 2.7. It is also compared with 

commonly used scheme in terms of the overall execution time for some intensive DSP 

benchmarks. 

2.8.1 Comparison of various schemes in terms of on the iteration period 
with and without ICD 

The well-known techniques FDLS [18], ALPS [19], OSAIC [20], InSyn [21], and 

MARS [22] have neglected the ICD when developing their synthesis technique. Hence, in 

order to compare the results of the proposed synthesis technique with that of these 

techniques, we have assumed that ICD is zero when applying the proposed technique of 

synthesis. Table 2.1 gives the iteration period for the fifth-order elliptic filter when 

synthesized under a given resource constraint by using the various techniques. It is seen 
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from this table that only the technique of MARS and the proposed one give the lowest 

iteration period possible, namely, the iteration period bound. It is to be noted that the 

iteration period obtained by either method is unrealistic, since the ICDs have been 

neglected; however, unlike the technique of MARS, the proposed synthesis technique is 

capable of including non-zero ICDs in the technique. Table 2.2 gives the synthesis results 

in terms of the iteration period and resource requirements obtained for the elliptic wave 

filter considered in Section 8 by using the proposed technique and the techniques of [35]-

[37]. It is seen from this table that the iteration period obtained by using the proposed 

technique consists of 24 cycles which is larger than the iteration periods obtained by the 

techniques [35]-[37]. However, this higher value of the iteration period should be viewed 

in the context that the iteration period bound using the proposed technique consists of 22 

cycles for this filter and, as discussed in Section 2.7.3, this bound is unattainable if the 

ICDs are taken into consideration. 

Further, the works in [35]-[37] synthesize a fifth-order elliptical wave filter for a 

two-chip implementation. Each chip has one adder and one two-stage pipelined 

multiplier. In these techniques, inter-processor communication delay is considered only 

between the chips (inter-chip communication) and it is neglected between a pair of 

internal processing units within each chip. With the progress in deep submicron VLSI 

technology, the inter-connect delay has become larger than the gate delay, thus making 

the inter-connect delays a dominant factor of the overall delay in a chip. Thus, neglecting 

the internal (intra-module) inter-processor communication delay in a chip, as is done in 

[35]-[37], would be unrealistic or the cycle time in their resulting architectures must be 

larger to accommodate the intra-module ICD. 
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Table 2. 1: Results on iteration period with ICD assumed to be zero for a fifth- order 
elliptic wave filter synthesized by various techniques for a given resource 
constraint 

Processors 

1 A, 1 PM 

2 A, 1 PM 

3 A, 1 PM 

Technique 

FDLS 

N/A 

19 

18 

ALPS 

29 

19 

18 

MARS 

28 

17 

16 

InSyn 

29 

19 

18 

OSAIC 

N/A 

19 

18 

Proposed 

28 

17 

16 

Table 2. 2: Results on iteration period taking ICD into consideration for a fifth order 
elliptic filter using various synthesis techniques 

Technique 

APARTY [35] 

VULCAN [36] 

Method of [37] 

Proposed 

Iteration 

period 

21 

21 

18 

24 

Processing units 

2 chips, each with 1 adder 1 

multiplier 

2 chips, each with 1 adder 1 

multiplier 

2 chips, each with 1 adder 1 

multiplier 

2 adders and 2 multipliers 

ICD 

Inter­

module 

Taken 

Taken 

Taken 

Taken 

Intra-

module 

Not 

taken 

Not 

taken 

Not 

taken 

Taken 

2.8.2 Comparison of the proposed and Force-Directed List-Based 
scheduling [40] schemes in terms of the overall execution time and 
number of control steps for some intensive DSP benchmarks 

In this section, the proposed scheme of synthesis targeting a distributed-register based 

architecture is first compared with a commonly used scheme, namely, force-directed list-

based scheduling [40], targeting a centrally-shared-register based architecture. The 

comparison is made in terms of the overall execution time, measured as a product of the 

number of control steps and the duration of the step (i.e., the clock period), of the RTL 
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architectures resulting from the application of the two schemes on a number of intensive 

DSP benchmarks [41][42]. The number of operational nodes in the intensive DSP 

benchmarks considered varies from 34 to 547. For the purpose of this experiment, the 

delay of an adder is assumed to be 5 ns and that of a multiplier 10 ns. The ICD value is 

set as 5 ns. The values of the two register parameters, tsclup and tclk:g, are chosen so as to 

provide tsel + t(:lk2g=2 ns. The clock period is determined by using the technique of [43]. 

Fig. 2.11 shows the execution times of the architectures corresponding to the various 

DSP benchmarks. It is seen from this figure that the proposed scheme provides a 

significant gain over that of the force-directed list-based scheduling. An average gain of 

33.8% is achieved for the intensive DSP benchmarks considered in this experiment with 

the maximum gain being 40.5% in the case of the specific benchmark, DCT-dir. Since 

the ICD in distributed register based architecture may be taken care in a post-synthesis, 

we compare the results of the number of control steps (i.e., the iteration period) by 

obtaining the synthesis results from the proposed scheme for two cases respectively. In 

the first case the ICD is taken care during the synthesis itself, whereas in the second case 

it is done in a post-synthesis phase. Fig. 2.12 shows the number of control steps for 

couple of intensive DSP benchmarks, namely, DCT-feig and DCT-chem, architectures 

for these two cases of the synthesis. The comparison is carried out for different number of 

processing "units in the target architecture. It is seen from Fig. 2.12(a) and (b) that the 

proposed scheme of incorporating the ICD during the synthesis provides a significant 

reduction in the number of control steps over the one in which it is done in the post-

synthesis phase. 
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Control s teps (post -schedul ing) O Control steps (proposed) 

100 r - - - — 

10(A)+9(Mul) 12(A)+10(Mul) 14(A)+11(Mul) 

# p r o c e s s i n g u n i t s 

(a) 

I Control s teps (post-schedul ing) • Control steps (proposed) 

80 

6 

7 0 

6 0 

5 0 

4 0 

30 -

2 0 

10 

9(A)+8(Mul) 11(A)+9(Mul) 13(A)+10(Mul) 

#process ing units 

(b) 

Figure 2.12: The number of control steps obtained by using the proposed and post-
scheduling schemes for different numbers of processing units when applied to (a) DCT-
feig benchmark (b) DCT-chem benchmark. 
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2.9 Summary 

The tasks of high-level synthesis, namely, the scheduling and resource allocation should 

use a realistic model of the parallel processing architecture. When a high-level synthesis 

does not consider a realistic model of the target parallel processing architecture, the 

resulting schedule may lead to an inefficient implementation. A realistic model should 

support inter-processor communication delays and structural pipelining of functional 

units. 

A technique for the synthesis of DSP cyclic data flow graphs onto heterogeneous 

distributed-register based multiprocessing architectures employing a graph theoretic 

approach has been devised. The main focus has been on developing a new high-level 

synthesis framework by considering a realistic model for the multiprocessor architecture 

with a distributed-register configuration. The proposed technique starts by modifying the 

original DFG representing a DSP algorithm by inserting communication (dummy) nodes 

to represent the ICDs between the nodes of different types. The modified DFG is then 

used to build iteratively a time schedule based on the mobility of each node. An 

algorithm has been proposed to identify each critical or near-critical loop in the modified 

DFG. Next, by employing the initial time schedule and by using the loop identification 

algorithm, the task of an initial processor allocation is carried out. Since, the initial time 

schedule and processor allocation does not take into account the ICDs of the nodes of the 

same type, the initial time and processor schedules may not be valid. Hence, the initial 

time and processor schedule have been modified to take into account the ICDs between a 

pair of nodes of the same type assigned to two different processing units in order to find 

the final time and processor schedule. This modification has been carried out by inserting 

61 



additional cycles into the time schedule in order to ensure on the validity of the ICDs 

between a pair of nodes of the same type. In order to assess the proposed synthesis 

technique, it has been applied to the synthesis of different DSP digital filters and has been 

compared with various other commonly used synthesis techniques. Reasonable 

computation times are obtained for all of the benchmark problems considered, i.e., less 

than two seconds in case of the DCT-feig (547 nodes). It has been shown that the 

proposed synthesis technique outperforms these techniques in terms of the iteration 

period and the numbers of processing units of the synthesized architecture. 
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Chapter 3 

Simultaneous Scheduling, Allocation and 
Placement taking into Consideration Inter-
processor Communication Delay 

3.1 Introduction 

In Chapter 2, due to the importance of considering the effect of physical design on high-

level synthesis, a technique for the high level synthesis with the objective of minimizing 

interconnect delay of data communication between processing units has been developed. 

In the proposed technique for scheduling and processor allocation, the interprocessor 

communication delay has been assumed to be taken from feedback placement 

information or from an estimated value of the interprocessor communication delay. In 

this chapter, a technique in which the placement process is integrated into the high level 

synthesis in order to determine the physical position of the processing units in the 

placement space during the building of the time schedule and processor allocation, which 
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provides with a more accurate information about the interconnect delay between the 

functional units, is presented. Furthermore, the technique of chapter 2 and most of the 

other techniques for high level synthesis uses only operation-specific functional units, 

i.e., adders or multipliers, in the allocation process. In this chapter [44-46], the proposed 

technique provides the designer with a greater flexibility to explore the design space by 

using a hybrid arithmetic functional unit library composed of both fixed operation-

specific units and reconfigurable functional units capable of executing multiple 

operations. Moreover, by using these reconfigurable units, the data transfers can be more 

localized so that interprocessor communication delays are reduced. 

A technique for simultaneous scheduling and allocation and placement using 

hybrid library of functional units composed of both operation-specific and reconfigurable 

multiple-operation functional units, is proposed. In order to build the time schedule and 

processor allocation simultaneously with placement process, the information about the 

positions of the functional units that already placed in placement space and about the 

candidate positions for placing a new functional unit must be available or predictable. 

Hence, a systematic process must be employed for the placement. The concept of 

triangular mesh is commonly used [48] to partition the interior region occupied by 

number of objects into nicely shaped triangles by adding vertices in the center of the 

objects and connecting them by edges. In our scheme, triangular meshes can be also 

employed to connect the centers of functional units in the placement space. In this regard, 

in order to find the suitable positions at where to place, one by one, the functional units, a 

technique is needed to, iteratively, generate the triangular mesh. We use a Delaunay 

triangular mesh [48] in the proposed scheme since this method of triangulation makes 
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candidate positions well-distributed. Moreover, Delaunay triangulation maximizes the 

minimum angles of the mesh. Hence, adjacent edges connected with a narrow angle are 

avoided which in turn allows finding, quickly, the suitable gaps to place the remaining 

functional units in the placement space. We have no theoretical justification that 

Delaunay triangulation is the best method for our purpose. We would like to implement 

other triangulation methods for the purpose of rectangle packing and compare them with 

Delaunay triangulation. 

The Chapter is organized as follows. A review for the related research for the high 

level synthesis and placement, and that for the reconfigurable computing is given in 

Section 3.2. The functional structures and characteristics of the dynamically 

reconfigurable functional units incorporated in our scheme are described in Section 3.3. 

The proposed scheme for the simultaneous scheduling, allocation, and placement is 

presented is Section 3.4. In Section 3.5, the proposed scheme is applied to the some well-

know benchmark problems. Section 3.6 summarizes the work presented in this chapter 

and highlights some of the salient features of the proposed scheme. 

3.2 Related Research 

3.2.1 Related research in high level synthesis and placement 

Different approaches can be found in the literature addressing both the high level 

synthesis and placement. In [49] operation binding, placement, and scheduling are 

performed sequentially. The placement was driven by the clock slack time information 

obtained from the binding results. The work of [50] proposed a layout estimation 

technique for binding, and used it to select the most effective binding. Further, the 
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technique of [51] formulated the simultaneous binding and placement problem into a 

Mixed Integer Linear Programming (M1LP) model. However, the applications of both in 

[50] and [51] are confined to only a ID placed target architecture. In [52], an estimation 

of the layout cost for high level synthesis using a simulated annealing based floorplanner 

has been proposed. In [53], a technique for the integration of resource sharing and 

placement into an efficient linear programming formulation has been proposed. It is well-

know that simulating annealing used in [52] and ILP used in [53] are not practical for 

intensive application due to their high time complexity. 

3.2.2 Related research in reconfigurable architectures 

It has been shown in [54] that reconfigurable computing is intended to fill the gap 

between hardware and software, achieving potentially much higher performance than 

software, while maintaining a higher level of flexibility than hardware. Reconfiguration 

at the various levels of the computational hierarchy gives many trade-offs in terms of 

flexibility, reconfiguration time, performance, area, and power/energy consumption. A 

fine-grained reconfigurable device (gate level) is extremely flexible; it can implement 

any application. However, the flexibility comes at a cost. The routing architecture must 

allow a connection from any part of the chip to any other part of the chip. Switch boxes 

are used to enable this sort of flexibility. The switchboxes are composed of many 

transistors to enable a flexible routing. Compared to a direct connection, it is apparent 

that switch boxes add much overhead to the area, communication delay (performance), 

and power consumption. 

A significant number of reconfigurable architectures have already been proposed, 

varying mostly on the granularity's degree. An overview of the most popular 
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reconfigurable architectures can be found in [55]. Fine-grained architectures [56], [57], 

[58], such as classical FPGAs, suffer from high reconfiguration delays and power 

consumption. Coarse-grained architectures [59], [60] eliminate the disadvantages of fine­

grained ones and preserve universality and flexibility at most cases, but operates only on 

word-length data formats. Recently, hybrid architectures [61], [62] have been proposed 

which try to combine the benefits of the two above approaches. All these solutions 

propose new architectures to enable dynamic hardware reconfiguration. The Morphosys 

reconfigurable system is a complete reconfigurable SoC implemented at the layout level 

[63]. It incorporates a 32-bit RISC processor and a 8x8 array of coarse-grained 

reconfigurable cells for efficient mapping of DSP applications. The basic reconfigurable 

cell is universal consisting of an ALU and a MAC unit. The SoC also incorporates a 

DMA-controller and a Frame buffer for fast data transfers between the memory and the 

reconfigurable array module. In [62], a coarse grain reconfigurable architecture is 

proposed which targets DSP applications, enabling efficient template-based operation 

chaining. Every node of the applications' DFG is mapped on a computational resource. 

The templates are implemented by interconnecting appropriately a number of 

computational cells. They perform template chaining by using a flexible inter-template 

interconnection network. Although, the proposed architecture seems to have performance 

gains in comparison with the straightforward template-based methods, the area overheads 

imposed by the basic template cell architecture are not negligible. Moreover, the inter-

template communication delay has been not taken care. 

To overcome the penalties of FPGA, small-scale reconfiguration would minimize the 

area and delay penalties by inserting into fixed-logic only the minimum amount of 
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reconfigurable logic and interconnect and by reusing part of the available logic to achieve 

the desired component flexibility. Therefore, arithmetic components designed with this 

technique have the flexibility to perform multiple operations but are ASIC-like in their 

efficiency. In high level synthesis, reconfiguration can be applied in the construction of 

the RTL architecture considering that each RTL component is not active in every control 

step. Partially inactive components can be merged into a reconfigurable component. 

The concept of run-time (dynamically) reconfiguration is well known and can be 

applied on different phases of the design process, according to the granularity of the 

reconfigurable blocks, which may be complex functions, simple RTL components or 

LUTs. Dynamically reconfigurable components is presented in [64] by developing a 

morphable multiplier, which is an array multiplier that can be configured through 

multiplexers to work as either an adder or a multiplier. In [65] morphable multipliers are 

used for the design of a graphics processor. In [66], an implementation of a simulating 

annealing algorithm was presented to solve the scheduling, allocation and binding 

problems, assuming that the target architecture uses run-time reconfigurable functional 

units. Unfortunately, the inter-processor communication delay has been neglected. 

Commercial microprocessors have used reconfigurable functional units to support SIMD 

instructions [67]. These reconfigurable functional units support a single type of operation, 

like addition, and vary only in the number and width of the operations. 

3.3 Dynamically Reconfigurable Functional units 

Existing approaches for high level synthesis consider functional units as blocks of 

hardware that implement one or more operations, but where the setup of the desired 

function has no cost. In other words, all the operators exist, in the functional unit, and the 
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selection of the chosen function does not imply any time delay. Unfortunately, this 

assumption is not valid since using such functional units needs a certain amount of time 

to reconfigure its logic. When one operation is assigned to a functional unit that was last, 

used for a different function, it is necessary to spend a certain number of clock cycles in 

reconfiguration, prior to the execution of the operation. 

One way to provide reconfigurable functional unit resources is to specify a 

concise set of operations desired in a functional unit, and to design such a multi-mode 

functional unit for very high speed. When a reconfigurable functional units is designed, 

the similarities between the desired operations can be implemented in fixed logic, and 

reconfigurable logic and interconnect must be used to implement the differences. 

Therefore, the first step in designing a reconfigurable unit is to determine the common 

functions between the operations to be implemented, hence minimizing the part for the 

reconfigurable hardware (and its associated penalties). For example, adders and 

multipliers have similar hardware substructure, making them more suitable to be 

implemented as a reconfigurable unit, resulting in an efficient flexible implementation. 

Other arithmetic operation combinations may also be considered for reconfigurable 

implementation. Other forms of this reconfigurability could to integrated a wide bit width 

operation with multiple operations of narrower width; several low-precision operations 

could be embedded within a high-precision operation; a rarely used operation could be 

also integrated within a high use operation. The direct and simple way to do this is to 

construct an individual implementation of each operational mode in the functional unit, 

and to use a multiplexor to select the output based on the mode. The delay overhead for 

this type of reconfiguration consists of the multiplexor and latch delay, as well as the 

69 



interconnect delay to move primary inputs and outputs to and from the different operators 

within the reconfigurable functional unit. In order for a reconfigurable functional unit to 

provide area savings, its area should be smaller than the combined area of all of the 

operations implemented individually. Partitioning operations across time instead of space 

(each operation can be implemented in the same physical space) and then the required 

component configuration is selected at the necessary time. Such structures of 

reconfigurable functional units avoid the large performance, area, and power penalties 

associated with FPGAs and DSP processors while at the same time clearly provides 

hardware flexibility. 

The morphable multiplier proposed in [64] is employed in the technique proposed 

in this chapter since it is capable of implementing both multiplication and addition (in 

fact, it can perform two or more data-independent additions in parallel) with the same 

delay as a fixed logic multiplier and with very small area overhead. Given the regularity 

occurrence of MAC operations in DSP algorithms, such dynamically reconfigurable 

functional unit provides significant benefits for them. The goal of the proposed technique 

is to make use of this morphable multiplier in a hybrid library of functional units 

composed both operation-specific and reconfigurable functional units supporting sets of 

different operators. In this chapter, the focus is on the morphing between a set of 

multiplication and addition operations in the high level synthesis. The objective is to 

utilize such morphable multiplier to maximize the data transfer. 

The morphable functional unit has been designed based on a tree multiplier. In a 

tree multiplier, the partial products can be generated using an array of AND gates, or 

more generally, radix-k Booth's multiple generators. The partial product reduction tree 
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(PPRT) adds the partial products and produces a sum result in a redundant form. The 

redundant form is converted into a binary form by a carry propagate adder. The PPRT 

design technique that is used in [64] is based on an approach in which a globally optimal 

way of interconnecting low-level compressor stages is identified. This method exploits 

the fact that the inputs and outputs of a compressor do not equally contribute to the delay 

of the multiplier. The critical path through a tree multiplier will almost certainly pass 

through compressors in the PPRT. In fact, not all the compressors in the PPRT are on the 

critical path. Compressors that are not on the critical path have timing slack. The timing 

slack for each non-critical compressor is equal to the minimum delay that can be added to 

it in order to make that compressor critical. Utilizing a compressor in more than one 

operation (e.g. add and multiply) requires some number of multiplexors to modify the 

connections of this compressor. A compressor with sufficient slack to allow the 

incorporation of multiplexors on its inputs is called a reusable compressor. Fig. 3.1 gives 

an example for a Morphable 6 - bit* 6 - bit Multiplier taken from [64] using re-used 

adder cells. Gray wires show the PPRT in multiplier mode. In this figure the black adders 

are re-used in a 7-bit ripple carry adder since they have a slack time. In fact, a 32 bit array 

multiplier can be made to work as a multiplier in mode 1 and 8 32 bit adders in mode 2 

with only 20% extra area. For fewer adders, the morphable multiplier uses a very little 

area overhead and has the same delay with a single mode multiplier component. For our 

application to HLS, we have chosen a morphable array multiplier that works as a 

multiplier in mode 1 and 2 adders in mode 2. If during the time scheduling the morphable 

multiplier has been reconfigured for two different type of nodes, then the two 

configuration must be separated by one cycle delay to allow the reconfiguration between 
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the two nodes. The incorporation of this morphable multiplier is given in the following 

section. There are some important related issues which have to be addressed in the 

proposed technique, for instance, how to allocate operational nodes to these 

reconfigurable multipliers, the area and delay trade off, the reconfiguration times, the 

way used for the placement of such processing units. 
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Figure 3.1: A Morphable 6 x 6 Multiplier [64] using re-used adder cells. Gray wires 
show the PPRT in multiplier mode. The black adders are re-used in a 7-bit ripple carry 
adder. 

3.4 Simultaneous Scheduling, Allocation and Placement 

This section presents the proposed technique for simultaneous scheduling, allocation, and 

placement. The problem is to find a rectangular space of minimum size into which all 

functional units are placed while taking into consideration the interprocessor 

communication delay (the distance between the functional units) to satisfy time 

constraints. Initially assumption is that all the operations in the DFG can be allocated to 
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distinct functional units. However, during the procedure of the proposed technique, two 

functional units with the same operation type are allowed to be combined into one if their 

assigned operations are not executed concurrently at the same control step. To support the 

functional unit sharing between operational nodes, we should allow the possibility of 

overlapping between functional units of the same operation type in placement space. The 

overlapping between units of different time is allowed in some cases in which hybrid 

library of fixed-specific operation functional unit and reconfigurable functional units is 

supported while taking into consideration not only the ICD but also the reconfiguration 

time. 

The formulation of the problem must satisfy the following two constraints leads to 

a feasible scheduling, allocation, and placement solution: 

1. Disjoint constraint: Two functional units should not overlap if they are of different 

types. However, they do if there are of the same type or a hybrid library of functional 

units is available. 

2. The precedence relations between operational nodes are not violated: a valid way to 

schedule the operation while taking into consideration the interprocessor communication 

delay and the reconfiguration time of the reconfigurable functional units. In other words, 

the delay of interconnect between functional modules should not cause any node mobility 

violation. 

An iterative procedure based on the node's mobility is employed. The earliest and 

the latest firing times (EFT and LFT) at which each node can be scheduled to fire are 

iteratively calculated.. These earliest and latest firing times are found relative to a 

reference node taking into consideration the interprocessor communication delay (i.e., the 
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positions of the functional units). In other words, the actual position of the functional 

units in the placement space is taken into consideration in these calculations. 

Let us assume that each node in a given DFG can be executed by a functional unit 

of a rectangular shape. The proposed packing technique positions all of them onto an xy-

plane while it tries to minimize the layout area. Let us also assume that all edges of the 

rectangles are parallel to the x-axis or y-axis. Under these assumptions, the algorithm 

schedule the nodes one by one by allocating them to a specific functional unit while 

specifying its position in the placement space so that the precedence relation between the 

nodes are not violated. In each iteration of the process, one node is chosen according to 

its urgency to be scheduled, which specified while taking into consideration, precedent 

relation, the previously place units and the candidate position for new placements, and 

then it is allocated to a functional unit that already placed. If there is no functional unit 

available to allocate the node while the precedence relation are not violated, a new 

functional is placed in the placement area so that ICD is taken into consideration and 

precedence relation are satisfied. If there is no candidate position in the placement area 

satisfies the ICD and precedence relations, this blocking situation is solved by inserting 

new cycles (control steps) into the time schedule so that treat the violation in the 

precedence relations is treated. Recall that the technique places the rectangles 

representing the functional units at- candidate positions so that the area of the placement 

space and the iteration period are minimized. 

In order to reduce the time overhead due to the proposed simultaneous approach, 

the proposed algorithm favours accelerating the rectangle packing process rather than 

perfectly minimizing the layout space. Therefore optimization schemes are not applied to 
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find the configuration of the rectangles (processing units) in the layout, but a heuristic is 

used to quickly find gaps and place the remaining rectangles representing the functional 

units in the gaps. Moreover, the number of candidate position available to place a new 

processing unit is restricted to speed up the proposed technique. 

The heuristic uses a Delaunay triangular mesh [48] to connect the centers of the 

placed rectangles, as shown in Fig. 3.2. Let us denote a mesh as M(U,E,T) consisting of 

verticesU = {w,,...,w„+4}, edges E = {e,, . . . ,^}, and triangles Tr = {trf,...,trm}. The 

algorithm picks up first reference node from the given DFG and allocates it to a 

functional unit of the same type and then positions the rectangle r, representing the 

functional unit at the center of the layout area and generates a rectangular space that 

entirely encloses the positioned rectangle. Let the space be S, its four corner vertices be 

w, to u4, and the center of ri be uj+4 . We initially define the size of S as twice the size 

of rv The algorithm then generates four triangles /r, to tr4, which connect the five 

vertices «, to u5, as shown in Fig. 3.2. The next node to schedule is then selected 

according to some rule and a corresponding functional unit is then allocated to the 

functional unit placed previously in the layout area if it is capable of executing the 

current node to be schedule or other wise it is allocated to a new functional unit that need 

to be allocated in the layout are while taking the ICD into account. The ICD is assumed 

to proportional to the distance between the centers of the functional units or the candidate 

position in the triangular mesh. After placing each new rectangle r, one by one, the 

algorithm updates Mas shown in Fig. 3.2, by connecting the new vertex ui+4 to several 

vertices and modifying several triangles as done in [48]. While deciding on a position in 
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which to place a functional unit, the algorithm calculates candidate positions on E and 

evaluates the candidate positions. Next, we describe the order of visiting elements in E 

and then describe the scheduling and the allocation and then the evaluation of the 

candidate positions so that interconnect distance and proportional delay is taken into 

consideration while the area is minimized. Finally, we describe the modification of the 

triangular mesh. 
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Figure 3. 2: Processing flow of functional unit placement and update of mesh M. 

3.4.1 Order of referring to the mesh edges 

The next operational node to be scheduled is chosen from the list of remaining operations 

in away in which the node with the minimum mobility is chosen or at least one direct 

predecessor or successor operation has been scheduled. This requirement is crucial to 

improve the quality of the schedules that are found by the heuristic. The algorithm places 
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the rectangles one by one and searches for a position to place the rectangle, which 

satisfies the following conditions as much as possible: Condition 1: No overlap between 

rk and any previously placed rectangles. Condition 2: Minimum extension of the layout 

area S and keep the iteration period close to its preferred minimum value i.e., close to the 

iteration period bound. To quickly search for positions where rectangles can be placed 

satisfying the above conditions, the algorithm picks suitable positions by using the 

following two strategies: Strategy 1: It favours selecting sparsely populated regions since 

it is easier to place rectangles in such places without overlapping with other rectangles. 

Strategy 2: It favours selecting interior positions since it is easier to place rectangles in 

such locations without enlarging the layout space. 

Fig. 3.3(a) shows an example of a triangular mesh and rectangles. Here, let El be 

the length of a mesh edge, £7, is the length of the part of the edge that is inside the 

rectangle whose center places it at an end of the edge, and£72 is the length of the other 

part of the edge that is inside another rectangle, as shown in Fig. 3.3(b). Our technique 

calculates the values of EJr = El-(Elx + El2) , the length of the remaining part of the 

edge lying outside the two rectangles. Here, the technique lets £/, or El2 take the value 

of zero when the ends of the edge are on w,, / = 1...4. This is because it is more likely that 

gaps will be found around mesh edges whose Rvalues are larger. The numbers in Fig. 

3.3(c) denote that the edges are ordered from the largest Elr to the smallest. This is 

obvious since the larger the Elr the larger the interconnect delay between the two 

functional unit. The algorithm searches for gaps on the edges in this order so that it 

satisfies Strategy 1. 
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(a) 

(b) 

(c) 

Figure 3. 3: (a) Triangular mesh connecting centers of previously placed rectangles, (b) 
Calculation of values of Elr. (c) Order of the £7r values. 
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A Delaunay triangular mesh is used in the proposed heuristics since Delaunay 

triangulation makes candidate positions well-distributed. Since the definition of Delaunay 

triangulation is the triangulation that maximizes the minimum angle of M, it avoids 

making closer candidate positions by adjacent edges connected with a narrow angle. At 

the same time, the algorithm counts ce^ , the number of corner vertices w, to u4 touching 

the edge e •. Fig. 3.4(a) shows an example of the distribution of cey . This figure shows 

that interior mesh edges have the smaller ce values. The algorithm then groups the mesh 

edges according to their ce. values. The algorithm starts the trial placement of functional 

units on the edges. It first extracts edges from the cey = 0 group, then the cey- = 1 group, 

and, finally, the ce • = 2 group, so that it satisfies Strategy 2. 

The algorithm extracts edges in each group in the sorted order, starting from the 

edge that has the largest Elr value. The algorithm calculates at most three candidate 

positions where rk touches the functionals previously placed at the ends of ey, as shown 

by the two dotted rectangles in Fig. 3.4(b), and tries to place rk at each of these positions. 

For edges ce • = 1, the technique tries to place rk at a position at which it touches the 

functional unit previously placed located at one of the ends of ey- or in the center of it as 

shown in Fig. 3.4(c). In the case of ce = 2 edges, the technique tries to place rk at the 

center of e as shown in Fig. 3.4(d) because there are no rectangles at the ends of 

ce =2 edges. 
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Figure 3. 4: (a) Values of ce for edges, (b), (c), (d) positions to try to place the current 

rectangle. 
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3.4.2 Scheme for scheduling and allocation of the nodes 

The schedule is built by selecting a reference-node and by calculating the mobility of all 

non-scheduled nodes with respect to this reference node. All the non-scheduled nodes are 

put in a list. The node with the minimum mobility calculated thus far is chosen for 

scheduling first and then removed from the list. When choosing between equal mobility 

nodes, the selection is made such that individual operation concurrency is equalized with 

the previous step. This is to reduce the chance that a reconfigurable unit would need 

reconfiguration when used in that particular step. Due to the new firing time of the node, 

the time schedule of other non-scheduled nodes may be affected. This node is chosen to 

be the new reference-node and the rest of all the earliest and latest firing times for the rest 

of the non-scheduled nodes are calculated. The calculation of the earliest and latest firing 

times must include the position and distances between the functional units in the 

placement space. A new node is chosen for scheduling and the process is iteratively 

repeated until all the nodes are scheduled. 

A. Valid Ranges and Extra Cycle Insertion 

A valid schedule range specifies a valid way to schedule the operation for a given 

precedence relations, inter-processor communication and the current allocation and 

placement positions of the hardware. 

Given a data flow graph of a DSP application, the time schedule can be built 

using the longest path matrix Qf defined in Chapter 2. The scheduling heuristic 

calculates the valid range (mobility) of start times start times for an operational node 

while taking into consideration the position of the candidate functional unit in the layout 

space. The candidate positions to allocate and place the node are of two types: (i) the 
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center of the functional units that already placed or (ii) the possible points on the mesh 

edges to place a new functional unit. Since there is more than one candidate position and 

functional unit, the length of the communication delays depends on the position to which 

the operation is assigned. Therefore, more than one range is calculated for each node, 

namely, one for each candidate position in the layout space. The earliest firing time and 

the latest firing time for a node v; relative to that of a reference node v, are, respectively, 

given by 

EFT\\//), v ..cnps, v..crps, T,j = FT{v.)+Qf. + comm(v..crps.,v .cnps) (3.1) 

LFT[\i/.), v..cnps, v..crps,TirJ = FTyv.)- Qy. - comm(v ..cnps,v..crps ) (3.2) 

where FT(V-) is the firing time of node v,, cnps is the candidate position in placement 

space, crps is the current position in placement space, and comm(vrcrps.,v .cnps) is 

the interconnect delay between the candidate position to allocate and place node v; and 

the current position to which node v; is previously placed. The model used to calculate 

comm(vrcrps.,v ..cnps) will be discussed later in this section (Section 3.4.2.D). To 

find the earliest and the latest firing times of node v,-, the maximum earliest firing time 

and the minimum latest firing time of the node must be found relative to all previously 

scheduled nodes and taking into consideration ail previously place functional units. Thus, 

EFT and LFT of node v • are, respectively, given by 

EFT(V:) = max \EFT\['/V\ Vj.cnps, v..crps, Tcrjj (3.3) 
all i<j ' 
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LFT(Vj) = min{LFT^y{) Vj.cnps, v,.crps, T„)) (3.4) 

Thus, the mobility or the scheduling range in the schedule of any node vy is given by. 

M{Vj)=LFT(Vi)-EFT(Vj) (3.5). 

The ranges from the earliest firing time to the latest firing time are constantly 

obeyed when operations are scheduled; it is possible that when a new operation is 

scheduled to fire at a specific functional unit or to a specific candidate position , the 

earliest firing time is larger than the latest firing time. In other words, the scheduling 

range can be empty (the mobility M\yi) is negative). This can happen because the 

communication delays are not included in the final distance mat r ix^ . They can not be 

included because it would require that all operations are allocated and placed a position in 

the rectangular placement area beforehand. Hence, during the scheduling heuristic used, 

every time it schedules a node, it can happen that given a partial schedule, a still 

unscheduled operation can not be scheduled. The first reason is that the operation 

distance matrix does not include communication delays. It is then possible that given a 

partial schedule, the inter-processor communication delays for a node can not be 

satisfied, which is the case when all the ranges calculated for given node on all the 

available functional units are empty. A second reason is that the scheduling method tries 

to allocate the node in question to the available functional units. It can happen that given 

a partial schedule, a node can not be scheduled because the functional unit it needs is not 

available. The treatment is to insert cycles into the time schedule to solve the problem 

which is similar to the one presented in Section 2.6. Every time a new node is schedule, 
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cycles may be required to be inserted to the time schedule. These inserted cycles are in 

general due to the following two sources (a) an empty scheduling range (b) a time 

required for the reconfiguration of a reconfigurable functional unit. 

B. Inserting the New Cycles 

Inserting an extra cycle in the schedule creates for every resource a new free time unit in 

the schedule. Therefore it can be used when there was not a resource available for the 

operation. Furthermore, inserting extra cycles in the schedule can increase the time gap 

between two nodes. So, inserting extra cycles in the schedule can also be used when 

communication delays are not yet satisfied. Notice that a side effect is an increase of the 

iteration period T. When new cycles are inserted in the schedule, the number of extra 

cycles and the column in the time schedule table or matrix where to insert these cycles 

have to be specified. The cycles are inserted immediately before the preferred firing time. 

Because the scheduling is non-preemptive, after a cycle is inserted in the schedule every 

operation should still execute uninterruptedly and be allocated to a continuous series of 

cycles in the schedule. We proposed to move operations such that every node still starts 

in the same control step in the time schedule as it did before the cycles were inserted. In 

fact, we use similar strategy to the one proposed in Chapter 2 to determine the number of 

cycles to be inserted and where in the time schedule they must be inserted. 

The process of cycle insertion also determines how the node can be scheduled so that: 

(i) The operation fits in the time schedule. 

(ii) The precedence relations or minimum interprocessor communication delays for other 

nodes still not violated. 
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The process of cycle insertion returns an offset shift that indicates how many cycles the 

node is shifted to the right with respect to the targeted firing time that was required. It 

also returns the number of cycles TV that has to be inserted in the time schedule in front of 

the column corresponding to the preferred firing time. Note that the iteration period is 

increased by TV. To illustrate how the process works, 3 examples are shown in Fig. 3.5. 
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Figure 3. 5: Three examples of how a node can be inserted in the time schedule. 
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C. Choosing the firing time within the valid scheduling range 

The level of a control step is defined to be the number of nodes which will eventually 

occupy this control step. This level determines the number of functional units required 

during this control step in the time schedule. The chosen node is scheduled to fire at a 

control step that would results in a minimum number of functional units required given 

that precedence relations are satisfied. In presence of the hybrid functional units, the level 

of a control step being the summation of sub-levels of the different types of operations 

and given by level = levellype} + level0pe2 +.... The choosing of the best firing time is 

done by examining all the control steps within its mobility such that total number of 

operations per cycle is minimized, rather than individual operator concurrency. More 

specifically, find the control step having the minimum total level as a primary key or the 

minimum sublevel (level, ) as a secondary key. This is very significant to reduce the 

number of functional units needed and to increase the utilization of the dynamically 

reconfigurable functional units, thus the total area is reduced and local data transfer are 

maximized compared to an architecture that uses only operation-specific functional units. 

The following points summarize the above discussion regarding each possible 

scheduling, allocation, and placement of a non-scheduled node to the placement space: 

• The node is assigned to fire at previously placed functional unit or to new 

functional unit placed at the position in placement area results in the largest valid 

mobility (scheduling range). 

• If there is no valid mobility for each possible candidate potion, the node is 

scheduled to fire at the candidate position that leads to the minimum number of 

inserted cycles. 
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• In the proposed algorithm, a new functional unit is added in the placement space 

only if this will lead to less number of inserted cycles. 

• If adding a new unit will result in the same number of inserted cycles equal to that 

if the node is assigned to current functional units, then the node in question is 

assigned to one of current functional units so that the placement area is not 

increased. 

• Every time a node of type (a) is assigned to a reconfigurable unit running in a 

mode of type (m), a control step must be blocked on the corresponding functional 

unit in order to represent the reconfiguration time RTa_>,„ of the morphable 

multiplier. 

• The position of the reconfiguration time slots in the time schedule should be tested 

and modified (moved) every time a new node is scheduled. Fig. 3.6 shows 

examples of such a slot movement. 
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Figure 3. 6: Moving the reconfiguration time slots 

D. Delay model for the wires 

In fact, different delay models can be used to calculate the delay of the interconnect wires 

with respect to their length in the placement space, i.e., the distance between the two 

87 



functional units in question. One possible model is Elmore model that is commonly used 

is d = 0.5RC, where C-cl R-rl, I being the length of wire, r being the resistance of wire 

per unit length, and c being the capacitance of wire per unit length. With the advances in 

the fabrication technologies more accurate delay models can be employed to consider for 

example the inductance of the wires. 

3.4.3 Evaluation of candidate positions 

Given a candidate position, the algorithm checks if the point satisfies the two conditions 

described in Section 3.4 and the valid mobility for the node. Starting from the 

cej = 0 edges, the algorithm refers to edges in the sorted order and calculates candidate 

positions on the edges. The algorithm then attempts to place rk at the candidate positions. 

It checks overlaps between rk and previously placed rectangles and calculates 

enlargement of S. If the algorithm finds that one of the candidate positions satisfies both 

conditions and mobility, it decides to place rk there and selects the next rectangle. 

Otherwise, the algorithm selects the next edge to check to see if it satisfies both 

conditions. If no cej = 0 edge satisfies both conditions, the algorithm continues with the 

cej = 1 edges and, finally, the ce = 2 edges. 

Even if the candidate position satisfies only Condition 1, the algorithm can place rk 

after enlarging S. In this case, the algorithm evaluates the point. In fact, the points or the" 

candidate position are evaluated if multiple positions satisfy the conditions and mobility. 

The evaluation function for the candidate positions uses a combination of the placement 

area and iteration period of the corresponding time schedule. It calculates the 
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value OLA + TT, where a and x are user-defined positive values. A is calculated as 

follows: 

A = ^ -
A 

before 

where Aafieris the area of S that would be if rk is placed at the candidate position under 

evaluation and Ahefore is the area of S before the placement. Aajler can be calculated after 

the enlargement of S described in the following section. T\s calculated as follows: 

T 
rp _ after 

T 
before 

where Tarter is the iteration period of the time schedule after the placement of rk and the 

possible insertion of cycles in the time schedule and Tbefore is that before the placement. 

Again, T can be calculated after the enlargement of S. We define the value of a and x as 

a = x= 1, if equal preference is given to the placement area and the iteration period. 

However, it depends on the requirements of designer: If the minimization of the layout 

spaces is important, a should be larger thanx. If OA + TT calculated on the candidate 

position is smaller than the smallest in the values of previously processed candidate 

positions, the algorithm saves the candidate position with this OLA + TT value. The 

algorithm places rk at the most recently saved candidate position because this was 

evaluated as the best position. 

3.4.4 Local modification of the triangular mesh after the placement of 
a new unit 

If it is decided to place the rectangle r, at a candidate position that does not satisfy 

Condition 2, the algorithm enlarges S by moving some of the ?/,,/ = 1...4, as shown in 
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Fig. 3.7. Here, let the positions of ui,i = \..Aare (xf,yt), (x2,y\), (x2,y2), (xx,y2). 

Also, we position the four corners of rt at are (xa,ya), (xb,ya), (xb,yb), (xa,yh). 

The algorithm enlarges S by recalculating the position of v,, / = 1...4as follows: 

if xa < xa then x, = xa - ENGL 

f ya <y\ then y\=ya-
ENGL 

if xb < x2 then x2 = xb + ENGL 

if yb < yi then y2 = yh + ENGL 

where ENGL is a constant positive value. Our implementation applies ENGL=0.1 5,,. if 

Sw >Sh; otherwise, ENGL=0.1 Sh, where SM. and Sh are, respectively, the width of S 

and the height of S. After the algorithm places rf by using the above steps, it updates the 

triangular mesh by adding the center of the placed rectangle uj+4 to the mesh. This 

process first connects w/+4 to the two other vertices of the triangles that share the edge e--

and divides each of the triangles into two new triangles. Fig 3.8 explains the mesh 

modification process in case of the reconfigurable functional units compared to that of 

operation-specific function unit. In Fig. 3.8(a), 5 candidate position are considered. Fig. 

3.8(b) shows the enlargement of the space if a new functional unit is placed. Fig. 3.8(c) 

given the situation in which S has to be enlarged due to changing replacing a multiplier to 

a morphable one. The process then locally modifies the mesh, starting from the triangles 

that share the newly added edges. It selects an adjacent triangle to modify and swaps their 

shared edge to improve the triangles. The modification is recursively repeated between 

the modified triangles and their adjacent triangles until no triangles to be modified. The 

detailed algorithm of the mesh modification is described in [48]. 
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Figure 3. 7: (a) A rectangle and triangular mesh, (b) One more rectangle is placed on a 
mesh edge, (c) Corners of S are moved when the placement of the current rectangle 
requires enlarging the layout region S. 
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a mesh edge, (c) Enlarging of the layout space S due to placing of a morphable multiplier. 
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Figure 3. 9: The DFG of fifth-order elliptic wave filter 

3.5 Experimental Results 

In this section, some well-known benchmark examples of synthesizing intensive DSP 

applications using the technique presented in this chapter are considered. The proposed 

technique is first assessed in terms of the minimum iteration period obtained for some 

well-known DSP applications by using only operation-specific functional units in one 

case or by using hybrid library of functional units in the other case. Next, in order to 

study the impact of integrating the placement into the scheduling and allocation tasks, the 

proposed scheme is applied to the synthesis of the some benchmark problems. In this 

study, the results are obtained under three different scenarios for the candidate positions 

to place the functional units in the placement space. Finally, experiments are carried out 

to determine the placement area and iteration period for some problems by using a library 

contains only operation-specific functional units in one case or hybrid library of 

functional units in other case. The following are the three situations for evaluating the 
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candidate positions in the placement space: (i) The evaluation function gives a preference 

to the area over the iteration period (ii) The evaluation function gives a preference to the 

iteration period over the area (iii) The evaluation function gives equal preference to the 

area and the iteration period. 

The delay and area of the functional units including that of the reconfigurable 

ones are taken from [64]. It is shown in [64] that an extra area is required to be added in 

order to introduce mode 2 (reconfiguration to adder) to a fixed multiplier. For example, 

an additional area overhead of 1.5% is required to implement one 32-bit Adder in a 

reconfigurable 16xl6-bit morphable multiplier (RC-PMM). If mode2 has two adders 

(RC-PM2/(), the area overhead is pushed up significantly to be 11.4%. Normalized to the 

area of 32-bit Adder X: The area of the fixed 16x16-bit pipelined multiplier is 4.77X, and 

of the reconfigurable pipelined multipliers RC-PMMand RC-PM2j4, are 4.84X and 

5.32X, respectively. 

3.5.1 Obtaining the minimum iteration period 

We first consider an example of a DSP filter, a fifth-order elliptic wave filter, in order to 

demonstrate the ability of proposed technique to find the minimum iteration period. We 

select the user parameters in the placement evaluation function so that it is formulated to 

give a preference only to the iteration period. The DFG of this filter is shown in Figure 

3.9. The time schedules obtained for this filter in the two cases: (a) only operation-

specific functional units (b) hybrid library of functional units are shown in Figure 3.10(a) 

and (b). It is seen that the iteration period obtained for the time schedule using 

reconfigurable functional units compared to that obtained using only operation-specific 

functional units since the in the case of reconfigurable functional units the local data 
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transfers are maximized. The proposed scheme is also applied to obtain a minimum 

iteration period for five DSP applications using the same two cases of functional units. 

Table 3.1, summarizes the synthesis results obtained for the five DSP applications. It is 

seen that, the use of reconfigurable functional units in synthesis process with the 1CD 

provide an iteration period less than that using operation specific configuration. 

PM 

PM 

Minimum iteration period with op-specific functional units 

0 1 2 3 4 5 6 7 8 I 9 | 10 I 11 12 13 14 15 16 17 I 18 I 19 I 20 21 22 23 
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Figure 3.10: Time and processor schedules for the DFG given in Fig. 3.9 using, (a) fixed 
operation-specific FUs (b) hybrid (reconfigurable) FUs 
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Table 3.1 : Minimum iteration periods of some DSP benchmark problems 

Benchmark 

Fourth-order all-
pole lattice filter 

Fifth-order 
elliptic filter 

8-point DCT 

Raised cosine 
FIR 

Number 
of 

nodes 

15 

34 

40 

79 

Type of 
FU 

op-
specific 

Hybrid 

op-
specific 

Hybrid 

op-
specific 

Hybrid 

op-
specific 

Hybrid 

#FU 

2 PM, 3A 

1 RC-PM2", 
1 RC-PM M , 

1PM 

2 PM, 2A 

2 RC-PM", 
1 RC-PM24 

3 PM, 3A 

1 RC-PM2", 
3 RC-PM ' \ 

1 PM 

5 PM, 5A 

3 RC-PM'\ 
1 RC-PM M , 

1 PM 

Minimum iteration 
period (T) 

19 

16 

24 

23 

15 

13 

22 

18 

3.5.2 Placement area and iteration period results for three scenarios of 

candidate positions. 

In order to assess the gain that can be obtained from the integration of the placement 

process into the high level synthesis rather than just provide to the high level synthesis a 

fixed information about the placement space, we assume that the proposed placement 

process is carried out under three different scenarios for the candidate positions. Two 

scenarios impose a restriction of one candidate position that can be evaluated for each 

mesh edge. The other flexible scenario is the proposed one in which more than one 

candidate position can be evaluated for each mesh edge according to its. The proposed 
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scheme for the three different scenarios is applied to various intensive benchmark DSP 

algorithms, namely, DCT-dir, DCT-chem, DCT-feig. The three scenarios as follows: 

(1) The only candidate position of scenario 1 is: the comer of edges of ce = 0 

group, the corner of edges of cej = 1 group, and finally, the center of edges of 

ce- = 2 group. 

(2) The only candidate position of scenario 2 is: the center of edges of ce = 0 

group, the center of edges of cej = 1 group, and finally, the center of edges of 

cef =2 group. 

(3) The candidate positions of scenario 3 are the proposed one which is shown in 

figure 3.4. 

The synthesis results in terms of the placement area and the iteration period for the 

three intensive benchmarks by using the various scenarios of candidate positions are 

shown, respectively, in Figs. 3.11 and 3.12. It is seen from the two figures that the 

proposed scheme produces better synthesis results in terms of both the area and iteration 

period when the proposed scenario of the candidate positions (that is scenario 3) is used 

during the placing of the functional units in the placement space than that when the other 

two restricted scenarios of candidate positions (scenarios 1 and 2) are used. Hence, we 

conclude that the more the restrictions and constraints are imposed by the placement 

process to the high level synthesis tasks the less the flexibility to provide better synthesis 

results. The situation became even worse when the information from a fixed placement is 

provided to the high level synthesis. The results shown in Figs 3.11 and 3.12 necessitate 
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the proposed approach in which the placement is solved simultaneously with the 

scheduling and allocation tasks. It is to be noted that, in case of scenarios 1 or 2, we can 

not prefer one over the other for the area or the iteration period. For example, scenario 1 

gives better results than scenario 2 in terms of the placement area for the two 

benchmarks, DCT-dir and DCT-chem but the latter scenario is better in terms of the 

iteration period for the same two benchmarks. However, the situation in terms of 

placement area and iteration period is totally opposite for the two scenarios in case of the 

third benchmark, i.e., DCT-feig. In fact, the proposed scenario which use a hybrid of the 

two other scenarios provide more flexibility and, hence, better synthesis results for the 

three benchmarks in terms of the placement area and iteration period 

• scenario 1 of candidate position 

ED scenario 2 of candidate postion 

• scenario 3 of candidate position 
(proposed) 

Figure 3. 11: Placement area obtained by applying the proposed technique three 
intensive DSP Benchmark problems with three different scenarios of candidate positions. 
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Figure 3.12: Iteration period obtained by applying the proposed technique three 
intensive DSP Benchmark problems with three different scenarios of candidate positions. 

The improvement in the synthesis results in terms of the placement area and the 

iteration period obtained by using scenario 3 of candidate positions is not associated with 

an overhead in terms of the computation time compared to that in case of the other two 

scenarios for all of the benchmark problems considered. For example, in case of the 

DCT-feig (547 nodes), the computation times in seconds are 2.34, 2.37, and 2.56 for 

scenario 1, 2, and 3, respectively. The computation times are reasonable and compare 

well with that obtained for the DCT-feig in Chapter 2 when the placement was not 

incorporated into the high level synthesis. 

3.5.3 Placement area and iteration period results for three cases of the 

evaluation function. 

In order to assess the effect of the choosing the two parameters a and T in the 

evaluation function of the candidate positions given in Section 3.4.3 during the placement 

process, we select the parameters such that the area of the placement space has more 

priority to be minimized than the iterations period in one situation, the iteration period 

Ml 
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has more priority to be minimized than the area of the placement space in the second 

situation, and the area and iteration period have equal preference in the third situation. 

The proposed technique is applied to a set of DSP benchmark problems to determine the 

placement area and iteration period for these problems by using a library contains only 

operation-specific functional units in one case or hybrid library of functional units in 

other case given. The parameters a and T in three situations for evaluating the 

candidate positions in the placement space are selected as follows: (i) a>x when the 

evaluation function gives a preference to the area over the iteration period (ii) a<T when 

evaluation function gives a preference to the iteration period over the area (iii) a = x 

when the evaluation function gives equal preference to the area and the iteration period. 

Table 3.2, Table 3.3, and Table 3.4 give the synthesis results in terms of placement 

area and iteration period for three setup situations of the evaluation function for the 

candidate position. It is seen from the three tables that the proposed technique when it is 

applied in presence of a hybrid library of functional units offers a substantial gain in 

terms of reducing both the placement area as well as the iteration period for all the 

benchmark problems compared to that in presence of only specific-operation functional 

units in the three situation of candidate positions. 

In situation I, in which a preference is given to the area over the iteration period, an 

average reduction of 17.77% is achieved in the placement area for the intensive DSP 

benchmarks considered with the minimum reduction being 3.16% for DCT-chem and the 

maximum 28.1% for mem. On the other hand, an average reduction of 14.88% is 

achieved in the iteration period for the intensive DSP benchmarks considered with the 

minimum reduction being 6.81% for mem and the maximum 19.64% for DCT-chem. 
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In situation 2, in which a preference is given to the iteration period over the area, an 

average reduction of 17.96% is achieved in the placement area for the intensive DSP 

benchmarks considered with the minimum reduction being 7.56% for DCT-chem and the 

maximum 22.25% for DCT-planar . On the other hand, an average reduction of 15.37% 

is achieved in the iteration period for the intensive DSP benchmarks considered with the 

minimum reduction being 8.82% for DCT-feig and the maximum 20.83% for DCT-chem. 

In situation 3, in which an equal preference is given to the iteration period and the 

area, an average reduction of 16.55% is achieved in the placement area for the intensive 

DSP benchmarks considered with the minimum reduction being 8.37% for DCT-chem 

and the maximum 20.41% for mem. On the other hand, an average reduction of 15.55% 

is achieved in the iteration period for the intensive DSP benchmarks considered with the 

minimum reduction being 10.95% for DCT-feig and the maximum 22.22% for DCT-

chem. 

Furthermore, by comparing the results shown in the three tables, it can be 

concluded that the proposed evaluation function when it sets a = x brings about a trade 

off between the iteration period and the placement area. 

Table 3. 2: Placement area and iteration period obtained when the evaluation function 
gives the Area more preference than iteration period 

Benchmark 

DCT-planar 
mem 
IDCT 
DCT-dir 
DCT-chem 
DCT-feig 

Placement area 
Op-

Specific 
30.17 
19.57 
17.48 
25.42 
52.38 
61.71 

Hybrid 

24.65 
14.07 
14.24 
19.58 
50.72 
52.07 

Reduction 

18.29 
28.10 
18.53 
22.97 
03.16 
15.62 

Iteration 
Op-

Specific 
36 
44 
22 
55 
56 
77 

period 

Hybrid 

30 
41 
18 
46 
45 
68 

Reduction 

16.66 
06.81 
18.18 
16.36 
19.64 
11.68 
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Table 3. 3: Placement area and iteration period obtained when the evaluation function 
gives the iteration period more preference than area 

Benchmark 

DCT-planar 
mem 
IDCT 

DCT-dir 
DCT-chem 
DCT-feig 

Placement area 
Op-

Specific 
37.52 
23.82 
22.92 
31.94 
64.54 
71.39 

Hybrid 

29.17 
18.76 
18.74 
24.19 
59.66 
61.22 

Reduction 
% 

22.25 
21.24 
18.23 
24.26 
07.56 
14.24 

Iteration period 

Op-Specific 

31 
39 
18 
47 
48 
68 

Hybrid 

26 
34 
15 
39 
38 
62 

Reduction 
% 

16.12 
12.82 
16.66 
17.02 
20.83 
08.82 

Table 3. 4: Placement area and iteration period obtained when the evaluation function 
gives equal preference to area and iteration period 

Benchmark 

DCT-planar 
mem 
IDCT 

DCT-dir 
DCT-chem 
DCT-feig 

Placement area 
Op-

Specific 
33.65 
21.31 
20.74 
26.08 
59.12 
65.20 

Hybrid 

27.22 
16.96 
16.92 
21.11 
54.17 
56.07 

Reduction 
% 

19.10 
20.41 
18.41 
19.05 
08.37 
14.00 

Iteration 
Op-

Specific 
33 
42 
19 
52 
54 
73 

period 

Hybrid 

28 
37 
16 
43 
42 
65 

Reduction 
% 

15.15 
11.90 
15.78 
17.30 
22.22 
10.95 

3.6 Summary 

Most of the approaches for high level synthesis have not addressed the interaction with 

physical design such as the interconnect delays which led to unpredictable synthesis 

results and, hence, it significantly decreases the quality of the resulting implementation 

especially with the shrinking device features in sub-micron technologies. In this work, we 

have addressed the problem of integrating the placement of the functional units into the 

high-level architectural synthesis of DSP applications so that accurate information about 
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the interconnect delays needed for data communication between the processing units has 

been taken into consideration. In order to provide efficient modeling of the interconnect 

timing, a systematic and predictable process has been employed for the placement by 

using a Delaunay triangular mesh in the proposed scheme. Since this method of 

triangulation makes candidate positions well-distributed and maximizes the minimum 

angles of the mesh. Hence, we have avoided making closer candidate positions to place 

the functional units on adjacent edges connected with a narrow angle which in turn 

allows us to, quickly, find the suitable gaps to place the remaining functional units in the 

placement space. Furthermore, in order to maximize the local data transfers, a hybrid 

library of functional unit includes dynamically reconfigurable multiple-operation 

functional units and operation-specific functional units have been incorporated in the 

proposed approach. The incorporation of the hybrid library has been seen that it provides 

the designer of DSP applications with a greater flexibility to explore the design space. 

The proposed technique has been applied to well-known benchmark problems of DSP 

applications. The proposed scheme for the interaction between the high level synthesis 

and the fully flexible placement process provided a substantial gain in terms of reducing 

both the placement area as well as the iteration period for all the benchmark problems 

considered compared to the interaction with a restricted placement process. In overall, 

experimental results demonstrate the benefit and effectiveness of incorporating 

interconnect aware simultaneous placement, scheduling and allocation. 
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Chapter 4 

Interconnect-Aware Register Binding for 
High-level Synthesis 

4.1 Introduction 

In Chapters 2 and 3, scheduling and allocation techniques have been proposed taking into 

account the interconnect delay of data transfers between the processing units. It is well-

known that register binding is a crucial sub-task in a high level architectural synthesis of 

digital systems. Since the register binding affects the data transfer between the RTL 

components in the targeted architecture, the approaches to be used for carrying out the 

process of registers binding also have a great impact on the complexity and the 

performance of the interconnect paths used to communicate and transfer data from one 

module to the other in the RTL structure. In a behavioural description of a digital system, 
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variables are used for storing values. During the task of scheduling in the high level 

synthesis, temporary variables may be introduced to preserve values across control steps. 

A variable is said to live during a period starting the control step when it is produced and 

the one when it is consumed. Register sharing allows variables with non-overlapping 

lifetimes to reside in the same register. Without register sharing, each variable in the 

behavioural representation of a digital system is stored in a separate register leading to a 

large number of registers in the resulting architecture. An optimal solution to the register 

sharing problem yields an architecture with a minimum number of registers in the 

resulting architecture. 

The register sharing is performed during the task of register binding in the high 

level synthesis. Moreover, the registers have an impact on the design attributes such as 

the delay of the RTL structures [68-70]. The way the process of registers binding is 

performed also has an impact on the complexity of the network of the interconnect paths 

required to transfer data among the RTL components [71]. Recently, it has been shown 

by several researchers that even with the most optimistic values of metal resistively and 

dielectric constant used in the interconnect technology, the signal delay time for global 

wires will continue to increase with the technology scaling down into a deep submicron 

region primarily due to the increasing length and resistance of the wires [72]-[74]. 

There have been several studies [75]-[77] in which increasing importance has 

been placed on the interconnects in deep submicron technology. These studies were 

focused mainly on the lower levels of the synthesis process such as during the task of 

placement and routing. However, the techniques that automate the design process with 

the use of high level synthesis, can no longer afford to perform synthesis tasks without 
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taking into account the effect of their design decisions on the wiring performance of 

resulting designs. The technique of [78] shows a significant reduction in overall power by 

taking into account interconnects in the high level synthesis. It is also important to 

develop register binding schemes that can take into consideration their effect on the 

complexity of the associated interconnect network. The complexity of such an 

interconnect network can be measured in terms of the complexity of the multiplexer 

network used in the RTL structure [79]. 

The previous approaches used to solve the register binding problem in the high 

level synthesis can be categorized into two major groups. The first group performs the 

register binding simultaneously with the time scheduling and processor allocation in the 

high level synthesis. The problem of obtaining a simultaneous optimal schedule and 

processor allocation has been proven to be NP-hard, that is, it is a problem which is not 

solvable by deterministic algorithms in a polynomial time [80]. Hence, the approaches 

used for solving the various tasks of the high level synthesis simultaneously must use 

efficient heuristics to be practical only for large size problems. Examples of such 

simultaneous approaches include simulated annealing [81], simulated evolution [82], and 

integer linear programming (ILP) [83], [84]. 

In the second group, the task of register binding is solved separately from 

scheduling and processor allocation [85]-[88]. However, by using this approach of 

decomposing of the synthesis task into sub-tasks, the results of the subtask performed 

first become constraints for the succeeding subtask. Hence, these techniques, at best, 

produce a register binding solution with the number of registers that is constrained by the 

lower bound of the registers provided by the scheduled data flow graph. Moreover, the 
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optimal Left Edge technique [85] solve the task of register binding without taking into 

consideration its impact on the complexity of the interconnect network. 

On the other hand, the techniques of register binding in [86]-[88] do take into 

consideration the interconnect minimization. Although [86] and [87] provide better 

results in terms of interconnects, there is an overhead of additional registers that result 

from the register binding. The technique proposed in [88] is applicable only for an FPGA 

implementation having embedded memory blocks. 

In this chapter, the problem of register binding [89][90] in a high-level 

architectural synthesis of DSP algorithms is studied. A technique for binding the tokens 

produced by the nodes of a scheduled DFG is proposed while aiming at minimizing the 

number of interconnects. First, a segmentation scheme in which the lifetime of a token is 

appropriately divided into multiple segments is developed. Then, the register binding 

problem is formulated as a min-cost flow problem so that the tokens having the same 

source and/or destination are bound into the same register and results in a reduced 

numbers of registers and interconnects. 

The chapter is organized as follows. In Section 4.2, a technique for binding the 

variables produced by the nodes of a scheduled DFG is presented by developing a 

segmentation scheme in which a single-segment lifetime is appropriately partitioned to 

form multiple-segment lifetimes. Then, a flow network [91] is constructed in order to 

assign the segments to registers taking into consideration the interconnect complexity. In 

Section 4.3, the proposed technique is applied to some intensive benchmark DSP 
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problems and compared with other techniques in the literature in terms of the numbers of 

registers and interconnects. Section 4.3 summarizes the work presented in this chapter. 

4.2 Proposed Technique for Register Binding 

In this section, a technique for binding to registers the variables produced by the 

nodes of a scheduled DFG is presented. A segmentation scheme is developed in which a 

single-segment lifetime is appropriately partitioned to form multiple-segment lifetimes 

giving more freedom in binding the variables to registers. The binding task can be 

efficiently performed by using a flow network, which takes into consideration the 

complexity of the interconnects. Storage units, such as registers, are required for the 

processing of a DSP application in order for them to store the tokens produced by the 

execution of the nodes of the DFG representing the DSP application. 

Before presenting our technique for optimizing the number of registers, we will 

briefly discuss the need for a register binding and the factors that affect the number of 

registers required for a proper implementation of a DSP application. During the 

execution of a DSP application, the filters coefficient and the token data produced by a 

node should be stored in a storage unit as long as it is still needed by some other nodes. 

During each cycle of the execution of the nodes, the number of storage units required 

depends on the maximum number of tokens that are concurrently produced in a single 

control step and, therefore, need to be stored. The iterative execution of a DSP 

application implies that a node produces a token during each iteration of the execution. In 

our scheme, registers are used to store the token data in view of their short access time. 
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The register binding could be either overlapped or non-overlapped depending on 

whether or not more than one token can share the same register. In the proposed register 

binding technique, we use the overlapped binding whenever it is possible for more than 

one token to share the same register during the same iteration period in order to reduce 

the total number of registers. In the proposed technique, the memory consistency is 

ensured by the register binding, since all the tokens associated with a single register have 

disjoint lifetime periods. 

Let us now define certain terms that are used in this section for node regeneration. 

Assume that a node v produces a token Yr at time /, . This token is later consumed by a 

set of n nodes wt that are scheduled to fire at scheduling time t,. Assume that each of 

these nodes is connected to the node v via a set of/? edges <?, = (v, w, ) each associated with 

N, ideal delays. A lifetime LV of a token data produced by a node v is defined as the 

difference between the time a token data is produced and the latest time when it is 

consumed, and it is given by 

Lv = max[(NrT + t,.)-tY] (4.1) 
7=1 » 

where Tis the iteration period, and r, =iv + dv, /.and dr being, respectively, the firing time 

and the computational delay of the node v. If z.,, = o, the token produced need not to be 

stored in a register; instead, it can be directly sent to the consumer. 

We now perform the lifetime segmentation scheme by partitioning the single-

segment lifetime to form multiple-segments. In the cyclic data flow graph, the life time of 

a token Yr produced by the node v may span over one or more iteration periods 
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depending on the control step CY = tY modulo T at which the token is produced and the 

duration of the life time of the token. In such a case, the duration of the life time has to be 

partitioned into sub-periods such that each sub-period St consists of only a part of the life 

time duration and appears in only one iteration period. For a given token Yr, the number 

of sup-periods m into which the duration of the lifetime has to be partitioned is given by 

m = 
Lr + CY 

(4.2) 

The length of the sub-period S,- is given by 

i - i 

S, = [ww(((Lv-J^SJ) + Xl), T)]-Xi, i = 0,\,...,(m-\) (4.3) 
7=0 

where Xt is the control step at which the sub-period Sf is produced, and it is given by 

X; = a i = 0 

0 / = !,..., ( /» - ! ) ! 
(4.4) 

Based on (4.3) and (4.4), for each token YY, we can now construct a life time set 

The number of registers NRY required for allocating a token Yv is equal to the 

number of sub-periods of the lifetime, that is, NRy = m. It is to be noted that by 

employing the reusability concept, one register can be used for allocating the two sub-
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periods, S0and Sm^, if and only if S0+Sm_t <T. Hence, the number of registers 

required for allocating the token Yv can be reduced by one. 

For a cyclic scheduled DFG, the lifetimes of tokens can not be represented by 

intervals on a straight line, since it may span over one or more iteration periods. In this 

situation the lifetimes can be conveniently represented by arcs around a circle 

representing the iteration period. Since all the control steps together form the iteration 

period, the circle representing the iteration period gets divided equally into a number of 

arcs equal to the number of control steps. 

Fig. 4.1 shows an example of circular lifetime chart of tokens. In this example, 

four tokens with different lifetimes are given. The lifetime token Yr is the only token in 

this example whose lifetime lies in two iteration periods. The width Widc of lifetime 

chart CLC for control step c, is the number of lifetimes overlapping associated with 

control step c,. The maximum width of a circular lifetime chart Widmm is the maximum 

width Wid„ overall c, in CLG, i.e., Widm„=max\lVid^ I. 
fj / ' ' max , , \ C; j 

Vc, ' 

A directed graph is called the compatibility graph CG(N, A), if it is constructed 

according to the following rules (see the circular lifetime chart CLC shown in Fig. 4.1): 

(i) corresponding to each token Yv in CLC there is a node ny e N in the compatibility 

graph CG(N,A), (ii) there is a directed edge (nY ,nY) e A a pair of nodes nY and nY in 

CG(N, A) if and only if the lifetimes LY and LY do not overlap at any control step, and 
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Figure 4.1: Circular lifetime chart 

(iii) the death time {dtime) of the token Yu (the control step at which Yu is consumed, i.e., 

dtime(Yu) = CY + LY ) is less than the birth time (btime) of the token YY (the control step at 

which Yv is produced, i.e., btime(Yy) = CY ). Thus, dtime(Yu) < btime(Yy). 

It is to be noted that according to rule (i) for constructing CG(N,AJ, a token 

having a lifetime that lies in more than one iteration period cannot be included in the 

compatibility graph, since such nodes overlap with all other nodes. In order to include 

such tokens in the compatibility graph, we incorporate the set pr (as given by (4.3) and 

(4.4)) of sub-periods of the lifetime of a token for the construction of the compatibility 

graph so that each node in the compatibility graph corresponds to a sub-period in the set 

Pr of a token Yr. This modification provides more flexibility in the register binding, 

since it allows the sub-periods of the tokens to share registers with other tokens. 

Referring again Fig. 4.1, we notice that according to (4.3) and (4.4), 

pV4 ={(C 3 ,1) , (C 0 ,4)} , P); ={(c2,2)}, p,,, ={(c„l)}, and (3,, ={(c0,l)}. Since the sub-
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period (c0,4)of p\. (or (cQAk. ) span over 4 control steps and equals to one iteration 

period hence this sub-period cannot be compatible with any other sub-period of the 

lifetime of any other token. However, the sub-peiod (c3,l) of py (or (c3,])P). ) can be 

compatible with fiYjcQ,l) or p y ( c v \ ) , and therefore, can share the same register with 

them. Fig. 4.2(a) shows the compatibility graph obtained from the circular lifetime chart 

given in Fig. 4.1. 

Pn>.»0 Pr>2,2) M C " ! ) P/>2>2) 

(a) (b) 

Figure 4. 2: (a) Compatibility graph obtained from the CLC of Fig. 4.1. (b) The 
corresponding network graph 

We now construct a flow network G(M, E) from the compatibility graph CG(N, A) 

by introducing to it two additional nodes, namely, a source node s and a sink node t, such 

that M = N u {s, t} and E is the set of edges in G(M, E) that contains the set of edges A of 

CG(N, A) plus additional edges from the node s to every node in CG(N, A), and from 

every node in CG(N, A)Xo the node t (see Fig. 4.2(b)). 

The binding of tokens having the same source and/or destination into the same 

register reduces the number of interconnect. Since the processor allocation has already 
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been carried out, it is easy to assign a weight to an edge connecting a pair of nodes in 

G(M,E) by using the concept of common producer and common consumer of the tokens 

corresponding to the pair. Such weight represents the cost of the register sharing between 

the pair of nodes. The weight assigned to an edge connecting a pair of nodes, which 

represent the sub-periods of tokens, is defined as 

^ „ , , n ) „ ; = - ^ - ( ^ + C C k . % ) ) (4.5) 

where F is a Boolean variable equal to 1 if the pair of tokens have the same 

producer, CC(„ „ Y is the number of consumers common to the pair of tokens, and L is 

given as L = max (F + CC( )). 

In the flow network G(M,E), a capacity of one is^assigned to each edge 

e e E representing the maximum flow possible for an edge. The maximum flow in the 

flow network G(M,E), i.e., the maximum flow from the terminal node, is set as 

FL = Widmax. 

Assume that Widmax = k for a given CLC, then FL in G(M, E) is set to k. The 

register binding problem is solved by sending k units of flow from the source node to the 

sink of G(M.E) such that each node is visited exactly once, all the nodes are covered, and 

the overall cost is minimized. Since the capacity of each of the edges is one, it is 

guaranteed that each flow will follow a different edge-disjoint path, P]t...,Pk, in 

G(M, E). However, the paths may not be node disjoint, if they are not so in the original 

compatibility graph CG(N,A). To ensure the generation of node disjoint paths as well, a 
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node separation technique [92] can be used. In this technique, each node is duplicated and 

then the pair is connected by an edge. All the edges outgoing from the original node after 

the duplication are made to be outgoing from duplicate node as seen from the example of 

Fig. 4.3. The node and its duplicate are connected by an edge with capacity of 1 so that 

only a single flow can pass through a node because of the unit capacity assigned to the 

edge connecting the node and its duplicate node. A cost of - C where 

C = +1 is also assigned to the edge. This choice of cost, as to be 

shown later, ensures the coverage of all the nodes. 

Same cost, 
same capacity 

Same cost, 
same capacity 

separation 

Figure 4. 3: An example of node separation 

After performing the node separation, we apply min-cost flow technique to obtain 

a register binding with minimum number of interconnects. The min-cost flow [91] in the 

network finds k paths each corresponding to one clique such that the total cost is 

minimized. The set of nodes in the k generated paths form k cliques each being bound 

into a single register. The total cost on each individual path is the sum of the cost of all 

the individual edges in that path. Since the costs of the edges in G(M,E) are negative, the 

more the nodes in the path the less its cost. Thus, the min cost flow that guarantees the 

minimization of the total cost also guarantees the coverage of all nodes, since otherwise, 
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the coverage of the nodes not already covered will reduce the total cost even further thus 

implying that min cost flow has not provided a minimum cost solution. 

4.3 Experimental Results 

In this section, some well-known benchmark examples of synthesizing intensive 

DSP applications using the technique presented in this chapter are considered. Starting 

from the scheduled DFG corresponding to a given DSP algorithm, the process of 

synthesis is carried out to obtain register binding. In our experiments, both centrally 

shared and distributed-register based architectures are targeted. The proposed register 

binding technique is first assessed in terms of the number of registers and the number of 

interconnects required when the 1CD is ignored for both the centrally-shared- and 

distributed-register based architecture and the corresponding results are compared with 

those obtained by using the methods proposed in [85] (left-edge method), [86], and [87]. 

The proposed register binding technique is also assessed in terms of number of registers 

required for DFGs that have scheduled with and without taking ICD into consideration 

for some DSP filters. 

4.3.1 Number of Registers and Interconnects 

In order to assess the proposed register binding technique without the 

incorporation of interprocerssor communication delay, the proposed register binding 

technique and the methods in [85], [86], and [87] are applied to various intensive 

benchmark DSP algorithms, namely, ellip, fir, DCT-planar, man, DCT-dir, DCT-chem, 

DCT-feig. The number of operational nodes in the intensive DSP benchmarks considered 

varies from 34 to 547. The synthesis results in terms of the number of registers and the 
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number of interconnects obtained by the various register binding methods for the 

centrally-shared or the distributed register-based architecture are shown , respectively, in 

Figs. 4.4 and 4.5. 

It is seen from Fig. 4.4 that the register binding technique even without the 

incorporation of node regeneration outperforms the methods of [86] and [87], and it 

produces a number of registers equal to that obtained by the left-edge method [85], which 

produces an optimal number of registers for both centrally-shared and distributed register 

based architectures. On the other hand, Fig. 4.5 shows that the proposed register binding 

technique without the incorporation of node regeneration (Chapter 5) significantly 

outperforms the left-edge method in term of the number of interconnects, whereas it 

results in the number of interconnects that is less than that provided by most of the other 

methods of [85] and [20], except in the case of a very few examples where the number of 

interconnects are the same. 

Further, it can be seen from Figs. 4.4 and 4.5 that for each of the four methods the 

number of registers in centrally-shared register-based architecture is less than that in the 

distributed architecture, whereas the number of interconnects is higher in all of the DSP 

examples considered. This is expected in view of the fact that the sharing of registers is 

more in a centrally-shared register based architecture than in the corresponding 

distributed one, which in turn increases the complexity of the interconnect network in the 

architecture and, hence, the number of interconnects in the former. 
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Figure 4. 4: Number of registers obtained for some intensive DSP Benchmark problems 
by using the proposed register binding without node regeneration, the left-edge method 
[85], the method of [86], and the method of [87] targeting (a) centrally-shared 
architectures or (b) distributed register-based architecture. 
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Figure 4. 5: Number of interconnects obtained for some intensive DSP Benchmark 
problems by using the proposed register binding without node regeneration, the left-edge 
method [85], the method of [86], and the method of [87] targeting (a) centrally-shared 
architectures or (b) distributed register-based architectures. 
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4.3.2 Comparison of various schemes in terms of the number of 
registers 

Various register binding schemes have been also proposed in the synthesis techniques of 

FDLS [22], OSAIC [20], InSyn [21], method of [38] and MARS [22] [23], [39]. A 

comparison in terms of the number of registers between the proposed technique and these 

other techniques is carried out. Table 4.1 gives the number of registers obtained for the 

fifth-order elliptic wave filter using the various register binding techniques. In the case of 

the proposed technique, the results are provided both with and without the ICD taken into 

consideration, while it is neglected in the case of other techniques. In this table, NR 

and NR are number of registers normalized with respect to the number of registers 

obtained using the proposed technique, respectively, without and with the ICD is taken 

into consideration. It is clear from the results listed under NR and NR that proposed 

technique provides better synthesis results in terms of the number of registers not only 

when the ICD is ignored but also in all cases, with the exception of the method of [21 ], 

even when the ICD is taken into consideration. Note that 7V7?„ values in the table would 
Pi 

get even larger, had these other methods taken the ICD into consideration. Similar 

comparison results are obtained when the various synthesis techniques are applied to 

other benchmark DSP filters. 

4.3.3 Number of registers for various DSP benchmarks resulting from 
the proposed register binding scheme with and without ICD. 

The proposed register binding scheme is applicable to any given scheduled DFG. In order 

to assess the proposed scheme in terms of number of register required for the either with 

or without ICD, it is applied to various benchmark DSP filters. Table 4.2 gives the 
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iteration period and the number of registers obtained with and without the ICD by using 

the proposed synthesis technique and MARS technique for each DSP. 

It is seen from the table that the proposed technique reduces the number of registers 

in both situations with and without ICD. 

Table 4.1 : Number of registers required by a fifth-order elliptic filter obtained by using 
various synthesis techniques 

Technique 

MARSf221f231[39] (W/O ICD) 
FDLS[18] (W/O ICD) 
OSAIC [201 (W/O ICD) 
InSyn[21] (W/O ICD) 
Method of [38] (W/O ICD) 

Proposed (W/O ICD) 

Proposed (with ICD) 

No. of 
Registers, R 

9 
12 
10 
8 
10 

7 (*„) 

9 (*„2) 

NR - R/ 
' Kn /Rn 

1.285 
1.714 
1.428 
1.141 
1.428 

1 

1.285 

AT? - R/ A / >2 /Rn 

1 
1.333 
1.111 
0.888 
1.333 

0.777 

1 

Table 4. 2: Number of registers using proposed technique with and without ICD 
compared to that obtained by the MARS technique 

DSP filters 

Fifth-order 
elliptic 

wave filter 
Fourth-
order 

Jaumann 
filter 

Fourth-
order All-
pole filter 
Second-

order filter 

(Non negligible ICD) 

Iteration 
period 

24 

21 

19 

5 

Number of registers 

MARS 

10 

7 

6 

3 

proposed 

9 

6 

5 

2 

(Negligible ICD) 

Iteration 
period 

16 

16 

14 

3 

Number of registers 

MARS 

8 

6 

5 

3 

proposed 

7 

5 

4 

2 
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4.4 Summary 

Register binding is one of the main tasks in a high level architectural synthesis of digital 

systems. The function of register binding is to assign the tokens produced by the 

processing units to registers in the resulting RTL structure and it is done in a way so as to 

minimize their number. Since the register binding affects the data transfer among the 

RTL components, the way the process of registers binding is performed also has an 

impact on the complexity of the network of the interconnect paths used to transfer data. 

With the technology scaling down into a deep submicron region, the register binding can 

no longer afford to be performed without taking into account its effect on the wiring 

complexity of the resulting architectures. In this chapter, the problem of register binding 

in a high-level architectural synthesis of DSP algorithms has been studied. A technique 

for binding the tokens produced by the nodes of a scheduled DFG has been proposed 

while aiming at minimizing the number of interconnects. First, a segmentation scheme in 

which the lifetime of a token is appropriately divided into multiple segments is 

developed. Then, the register binding problem is formulated as a min-cost flow problem 

so that the tokens having the same source and/or destination are bound into the same 

register and results in a reduced numbers of registers and interconnects. In order to assess 

the proposed technique of register binding, it has been applied to the synthesis targeting 

centrally-shared and distributed register based architectures for different intensive DSP 

algorithms and has been compared with various other commonly used synthesis methods 

for register binding. The results of these experiments have shown that the proposed 

register binding technique produces the number of registers equal to the optimal solution 
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provided by using the left-edge method [85] and it outperforms other methods not only in 

terms of the number of registers but also in terms of the number of interconnects. 
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Chapter 5 

Interconnect Aware Node Regeneration 
Scheme for Register Minimization 

5.1 Introduction 

The lower bound on the number of registers resulting from any register binding technique 

gets fixed once the DFG has been scheduled. For scheduled DFG, the processing units 

could be idle for one or more control steps. In the context of register binding problem, 

this idle state of a processing unit if utilized could minimize the lifetimes of the variables. 

Generally, in order to reduce the lifetime of a variable in a schedule, the node producing 

that variable must be scheduled as close as possible to the consuming node. However, 

this is not always possible due to the precedence relation constraints between nodes in a 

given behavioral description. Instead of storing a variable, according to its lifetime, in a 
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register for a long period, it is possible under some conditions to reproduce the variable at 

a time closer to the firing time of each of its consumers. The idle processing units can 

then be utilized to perform the task of reproducing the variable by regenerating a copy of 

the original node that produces it. Thus, if the hidden flexibility of node regeneration for 

a scheduled DFG could be exposed, then this flexibility can be utilized to minimize the 

lifetime of the variables. This flexibility can be also used to minimize the interconnect 

requirements by appropriately assigning the regenerated copies of the original nodes to 

the idle processing units. Since register binding in a decomposed high level synthesis is 

constrained by the lower bound on the number of registers imposed by a given scheduled 

DFG. On the other hand, it should be possible to decrease this lower bound by exposing 

of the hidden flexibility for node regeneration in a given scheduled DFG without 

rescheduling it. 

In this chapter [89], an interconnect-aware register minimization technique is 

presented by proposing a node regeneration scheme that generates multiple copies of the 

original nodes with the resulting variables having lifetimes shorter than those of the 

variables produced by the corresponding original nodes. The freedom provided by having 

multiple copies of nodes is then further exploited to assign each copy to a processing unit 

that results in minimizing the complexity of the interconnect network thus obtained. 

The chapter is organized as follows. In Section 5.2, a theoretical formulation of 

the proposed scheme for node regeneration is presented and the conditions under which 

such node regeneration is possible are described. A technique is then developed in 

Section 5.3 in which a flow network [91] is constructed in order to assign the regenerated 

nodes to idle processing units. In Section 5.4, the proposed technique is applied to some 
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intensive benchmark DSP problems and compared with other techniques in the literature 

in terms of the numbers of registers and interconnects. Further, in order to show the 

impact of the incorporation of node regeneration scheme in the proposed register binding 

technique on the total interconnects length of the resulting RTL structure, some well-

known benchmark problems are also synthesized in this section. Section 5.5 summarizes 

the work presented in this chapter and highlights some of the salient features of the 

proposed technique. 

5.2 Process of Node Regeneration for Register Minimization 

Since the number of registers in register binding techniques are constrained by a lower 

bound imposed by the given scheduled DFG, in this section, we present a scheme for 

carrying out register minimization while taking into the consideration interconnect 

requirements of the underlying architecture by making appropriate modification in the 

firing times of some of the nodes in a given scheduled DFG. The modification in firing 

times of the nodes is performed by applying a new scheme referred to as node 

regeneration method. 

In a given scheduled DFG, the processing units could be idle for one or more 

control steps. In the context of register binding problem, this idle state of a processing 

unit if utilized could minimize the lifetimes of the variables. Generally, in order to reduce 

the lifetime of a variable in a schedule, the node producing that variable must be 

scheduled as close as possible to the consuming node. However, this is not always 

possible due to the precedence relation constraints between the nodes of a given 

behavioral description. Instead of storing a variable in a register for a long period 

according to its lifetime, it is possible under certain conditions to reproduce have 
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flexibility in reproducing the variable at a time closer to the firing time of each of its 

consumers. Then, an idle processing unit can be utilized to perform the task of 

reproducing the variable by generating a copy of the original node that produced the 

variable. Thus, if such a flexibility of node regeneration for a scheduled DFG exists, then 

it can be utilized to minimize the lifetime of the variables. This flexibility can also be 

used to minimize the interconnect requirements by appropriately assigning the 

regenerated nodes to the idle processing units. 

We now present a scheme for node regeneration and the conditions under which 

such a node regeneration is possible. 

The problem of register minimization using node regeneration can be formulated 

as follows: Given the time schedule and processor allocation for a given data flow graph, 

calculate the lifetimes for all the tokens in the given schedule, then apply node 

regeneration method to minimize the number of registers without decreasing the 

throughput or increasing the number of processors. 

Assume that in a given DFG, a node v,. is connected to r destination nodes v, via r 

edges etj. Let s<r of the r nodes v, be scheduled to fire far from nodev,. A node Vj is 

said to fire far from node v, if the lifetime of the token produced by v. is not equal to this 

token's minimum lifetime imposed by the precedent relation between the two nodes. If 

an idle processor of the same type as that of the node v, is available, then a new copy of 

this node is regenerated on this processor in order for it to be fired at a time close to the 

originally scheduled firing times of the 5 nodes instead of saving the token produced by 

v, for a long time in a register for later consumption by the s successor nodes. This node 
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regeneration is possible if the operand(s) to be consumed by the node v, are still alive 

after the original firing of the node v,. 

Figure 5.1: (a) Lifetimes before node regeneration (b) Lifetimes after regeneration of 
node 3 

The proposed node regeneration scheme is illustrated in Fig. 5.1. Fig. 5.1(a) 

shows a scheduled DFG in which the nodes v„v2, and v3 produce three tokens with 

overlapped lifetimes LV1, LV2 and LV3 respectively. Therefore, three registers are 

required for allocating these overlapped tokens. Fig. 5.1(b) shows how the node v3 is 

regenerated as v3nn. at the control step c5 by using the long lifetimes LV1 and LV2 of the 

tokens produced by the nodes v, and v,, the predecessor nodes of v3. As a result of this 

simple regeneration, the token produced by the node v, need not be saved in a separate 
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register unlike in Fig. 5.1(a), where it was required to be saved until the node v5 became 

ready to be fired. The lifetime LV3 of the token produced by v3is zero in the new 

scheduled DFG of Fig. 5.1(b). Hence, only two registers are required as compared to 

three in Fig. 5.1(a). The following two theorems establish that by using this node 

regeneration method, it is possible to reduce the lifetime of the token produced by the 

regenerated node from its current value, if such a node is scheduled to fire at its latest 

firing time with respect to its successor nodes that constitute a subset of the successor 

nodes to the original node from which the regenerated node was created. 

THEOREM 1 Let v be a node in a DFG with the firing time tv and computational delay 

dv such that all ojits predecessor nodes v, and successor nodes w, have fixed firing 

times tUi and /„.., respectively. Then, the node v can be regenerated as node vm.„. to fire at 

a time t , such that tv + dY< tv < min 

f min (tY +£„.), 
V Uj e predecessors of v "' ' 

m*n (tw ~ max ?er*[K i r t ) 
v Vw;€successors ofv„l/u. ' all P, .... "*"*' ' / 
\ ' -* "•" vne\\") y 

if 

there exists an idle processor at time tv 

Proof. The firing rule of a node implies that this node can be fired on an idle processor if 

the node's operand(s) are available and the precedent relations are satisfied. The 

availability of the operand(s) of the node vnm. is ensured by ty < min (/, +LU) , 
'"'" V u, e predecessors of v "' ' 

which means that the operand(s) of v/M.„. are still alive at or after /, . Moreover, since the 

node v depends on all of the predecessor nodes u-,, 
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tv > max 
Vujeprcdcccssors of v 

and /„ < /, . Hence, 

tv > max 
ncw Vu;epredcccssors of v 

all PUJV 
*Ui + max ' e n But max \enfPu^J= max\enfPuJ 

all Pu;v„.„,. all Pu,v 

f len[Pu.v [ , which satisfies the backward precedent S + max 

relations between vneu. and the predecessors ur Further, since, 

tv < min (t„, - max lenfP,, w \), then the forward precedent relations 
nnv Vw,€succcssorsofvn„v

 j all Pv „.. ncw : 

between vnen. and the nodes w, are satisfied. Thus, tv in the specified range satisfies 

the backward and forward relations and if their exists an idle processor at this time, it 

must be possible to regenerate v as vne)v. to fire at tv . 

THEOREM 2 Let v be a node regenerated as v;7(m, with firing times of /,. and /,. , 

respectively. Let Lv and Lv be, respectively, the lifetimes of the token produced by v 

before and after the node regeneration. Then, Ly - (Lr +1,. ) >dv, where dv is the 

computational delay of v (and therefore, of v„„,.). 

Proof Let that the node v have k successor nodes w,. Before applying node regeneration, 

the node v must provide its token to all of its k successor nodes such that its lifetime z, is 

given as 

Lv = max (n,T + tw. )-(tv+dv) (5.1) 
7 = 1 , . . . , A" ' 

However, after the node regeneration, the node v provides the tokens only to those 

successor nodes w; for which (tw + nf) <tY . On the other hand, the node vnew 
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provides the tokens to all remaining the successor nodes w, for which the relation 

(t +~niT)>tv^ satisfied. Without the loss of generality, assume that the relation 

(t„. + nj)< /,w is satisfied for the successor nodes «> to w; where j<k. Then, 

Lv = max fiiiT + t w J - f t v +d v ) (5.2) 
v new - _ - , i K > n c w n c w 

L =max(niT + t w J - ( t v + d v ; (5.3) 
i=l,...J ' 

Further, using (5.2) and (5.3), 

Lv + Lvnc„ = max^njT + tw. ) - (tv + dv) + 

max fnT + t.., )-(tv +dv ) 
i= j+i , . i ' s "c" v"™ 

However, for / < j , max fnjT + tw. ) < tv , thus 

L v +L v < t v - ( % + d v j + max fn,T + t w J - f t v + dv j 
v v new vncw i—i+1 k new new 

< max (n{T + tw,)-(tv+dJ-dv 
i=j+I,..k ' "' 

(5.4) 

Equation (5.1) can be written as 

L,. = max 

^maxfnjT + t w J - ( % + dv;, ^ 
i=l,...,j 

max (nj + tw. ) - (tv + dv ) 
^i=j+l,...,k ' J 

(5.5) 

Since the first item of the bracketed terms of (5.5) is smaller than the second one, the 

above equation can be rewritten as Lv = max (n{l + tw. )-(tv +dv). Therefore, (5.4) 
i=j+l,...,k 

can be rewritten as 

Lv + Lv < Lv - dv or LY - (I,. +1, ) > dv . 
\ * new v v n e w '"•» " < " 

Hence the theorem. 13 
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Based on the above two theorems, it is possible to minimize the lifetime of the 

token produced by the original node from which the regenerated node was created, which 

in turn reduces the total number of required registers. 

5.3 Interconnect Aware Assignment of Regenerated Nodes to 
Control Steps and Processing Units 

We now provide the proposed methods for interconnect aware scheduling and assignment 

of the regenerated nodes to, respectively, the control steps and idle processing units in the 

given scheduled DFG. 

5.3.1 Assignment of regenerated nodes to control steps 

In the previous sub-section, we determined the candidate nodes to be regenerated as vnew 

and specified the range, given by Theorem 1, of a possible control step as 

min (tY +LU), |̂ 
V Uj e predecessors of v "' ' 

min (tw - max len[Pv 1(. [) 
V it'- e successors of v_„„. ' all P. „.. "''" ' J 

We should now perform two tasks in order to include the regenerated nodes into the 

scheduled DFG: 

(i) the selection of a specific control step within its range to fire the regenerated node, and 

(ii) the assignment of a regenerated node to an idle processing unit. These two tasks can 

be efficiently performed by using bipartite graphs [93] while taking into consideration the 

complexity of the interconnects. 

In order to perform the first task, a bipartite graph is constructed for each type of 

nodes. We denote the bipartite graph of type / by BG, (Vt, C, E), where Vt is the set of 

*(v,7eil.) = {tv +dv),min 
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the candidate nodes of type t, C is the set of nodes representing the control steps, and E is 

the edge set. There is an edge (v, c) £ E if and only if the control step c e R (v). Fig. 5.2 

shows an example of a bipartite graph for a given type of nodes. In this figure, the 

numbers in the brackets represent the range R{v). Once a bipartite graph is built for each 

type of regenerated nodes, the scheduling process of the regenerated nodes can be 

transformed into the one of mapping of the nodes of V, to the control steps of C. The 

problem of finding a mapping in the bipartite graph is solved by converting the graph into 

a flow network and then by using the flow algorithm of [91] to find the maximum flow in 

the constructed flow network. The flow network is constructed by adding a source node 

S, a sink node T, and two sets of edges, namely, {(S, v-)| v • e v,} and {(ck , T)\ ck e 

C} to the bipartite graph. The advantage of using the flow network is the convenience 

that it provides in imposing the constraint on the availability of idle processing units, 

which decides the maximal number of regenerated nodes that can be executed in parallel 

in each control step. Imposing such a constraint can be easily carried out by setting the 

capacity of the incoming edges of node T in the flow network according to the number of 

idle processing units available. The capacity of all other edges in the flow network is set 

to be 1. Obviously, the maximum flows found under these edge capacities correspond to 

schedules that always satisfy the resource constraint (i.e., the constraint on the number of 

idle processing units in a given control step), since the number of regenerated nodes 

mapped to each control step cannot exceed the capacity of the incoming edges of T. It is 

to be noted that even if there is an overlap between the ranges of possible control steps 

i?(vnew), the mapping of the regenerated nodes to control steps would not be affected, 

since according to Theorem 1, precedent relation between nodes is still satisfied. The 
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method proposed in [91] to implement the max-flow algorithm is used in this study, 

•7 

which has a complexity of 0(MN log(7V IM + 2)), where M and N are the numbers of 

edges and vertices, respectively, in the flow network. 

Figure 5. 2: An example of a bipartite graph 

Fig. 5.3 shows a flow network constructed from the bipartite graph given in Fig. 5.2. In 

this example, there are 2 idle processing units available to each of the control steps c2 

and c3, implying that maximally two regenerated nodes can be executed in parallel in 

each of the two control steps. On the other hand, there is only one idle processing unit 

available to each of the control steps c, and c4. Thus, the capacity of each of the edges 

(c2 , T) and (c3, T) is set to 2. The capacity of other edges in the flow network is set to 1. 
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An example of one possible mapping from the regenerated nodes to the control steps 

found by using the maximum-flow algorithm is shown by using thick edges in Fig. 5.3. 

Figure 5. 3: The flow network for the bipartite graph of Fig. 5.2, and a corresponding 
maximum flow mapping satisfying the constraint on the number of idle processing units. 

In the flow network, the maximum flow decides the maximal number of 

regenerated nodes that can be scheduled so that the available idle processing units are 

maximally utilized. Since under the constraint of the available number of idle processing 

units, there exist multiple maximum flows, each corresponding to a feasible schedule in 

which the idle processing units are maximally utilized, the mapping process itself for 

obtaining a max-flow could be guided by the considerations that affect the interconnect 

complexity of the resulting architecture. It is obvious that the higher the number of nodes 

having common input and outputs assigned to a single processing unit, the less the 

number of interconnects between the processing unit and the other modules of the 

architecture. Hence, it is preferred to assign a regenerated node to the idle processing unit 
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to which maximum number of its predecessor or successor nodes having common inputs 

or outputs are assigned. In order to take this fact into consideration while scheduling the 

regenerated node to a control step, a preference is given to the control step that has more 

number of nodes having input/output common with that of the regenerated node in 

question assigned to idle processing unit available during the control step. Accordingly, a 

scheduling-cost SC reflecting this preference is assigned to each edge connecting the 

regenerated node to a control step in the flow network. Thus, the higher the input/output 

commonality, the less the scheduling cost. The search for a max-flow is carried out by 

incorporating this scheduling-cost to the mapping process. To this end, two steps have to 

be performed: 1) a scheduling-cost is formulated to evaluate the preference of scheduling 

a regenerated node to a particular control step, and 2) the minimum-cost max-flow 

algorithm [21] is used to carry out this scheduling process. In the proposed method, the 

scheduling-cost is assigned to the edges of the part of flow network that corresponds to 

the bipartite graph from which the network was constructed. The costs assigned to the 

edges connecting the node S to a regenerated node and that assigned to the edge 

connecting a control step to the terminal node T are set to 0. Consequently, our problem 

is to find a solution to the minimum-cost maximum-flow problem for the flow network. 

The cost function to be minimized is given by ^SCe , where E is the set of edges 
V<? f v f , e£ 

connecting the regenerated nodes to the control steps to which the nodes are scheduled. 

The following is method used to determine the scheduling-cost assigned to each 

edge connecting a regenerated node to a control step in the flow network. 

Calculation of Scheduling-Cost in Flow Network 
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As discussed above, in addition to the capacity associated to each edge connecting a 

regenerated node to a control step in the flow network, this edge is also assigned a cost 

representing the scheduling-cost of a possible mapping of the regenerated node to a 

certain control step. The formulation of such a scheduling-cost to an edge is done as 

follows. The regenerated node in question is inserted into the scheduled DFG at the 

targeted control step by introducing an edge connecting the regenerated node to each of 

its predecessor and successor nodes. The set of predecessor nodes of the regenerated node 

are the same as those of the original node from which the regenerated node is created. On 

the other hand, the set of its successor nodes are that subset of the successor nodes of the 

original node that are scheduled to fire at a control step greater than the targeted control 

step as discussed in the previous sub-section. It is to be noted that inserting the 

regenerated node in question into the scheduled DFG is performed without specifying the 

idle processing unit that will execute it. After performing this insertion process, we 

associate weights to each of the edges connecting the regenerated node to its successor or 

predecessor nodes. These weights are formulated as follows. For each edge e connecting 

the regenerated node to a successor or a predecessor node, we calculated CIOe as 

CIOe = CI + CO + l (5.6) 

where CI and CO are, respectively, the numbers of common inputs and outputs between 

the regenerated node and the other node (a successor or a predecessor node) of the edge 

e. Assume that IDLE represents the set of idle processing units available during the target 

control step. Let the regenerated node v- has successor nodes v, and predecessor 

nodes v,.. 
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Control step in 
question 

(b) 

Figure 5. 4: (a) A DFG containing a regenerated node v.. (b) The weighted edges 

connecting v. with its predecessor and successor nodes. 

Then, we calculate the weight associated with the edge in the scheduled DFG 

connecting the inserted regenerated node V to a predecessor node v; or to a successor 

node v̂  as 
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\CIOe.. + a if PUiv^CilDLE * 0 
W'9 I Cia otherwise ^'^ 

ru 

= (CIOejk + P if PU(vk )fl IDLE * 0 

*% 1 CIO,, otherwise ( ' ' 

where P£/(v) is the processing units to which the node v is assigned, and a and /?are 

constants used to increase weight of a particular edge if the edge connects the regenerated 

node to a predecessor or a successor node assigned to a processing unit that is idle during 

the targeted control step. We set the values a and ft based on the type of the organization 

of the targeted architecture. Fig. 5.4 gives an example of the calculation of weights 

associated with the edges in a scheduled DFG connecting an inserted regenerated node 

v with its successor or predecessor nodes. Fig 5.4(a) shows the nodes and edges of the 

DFG including those resulting from the insertion of the regenerated node at the targeted 

control step. Fig 5.4(b) shows that there are three processing units in the scheduled DFG, 

two of them being Idle during the targeted control step. The weights of edges connecting 

the regenerated node v to the other nodes are also shown in Fig. 5.4(b). The weight of 

each edge is calculated by using (5.6)-(5.8). For example, the edge from v- to v3 is 

associated with the weight we ^ . Since Vj and v3 have 2 common output nodes, namely, 

v4 and v6, CO=2. They also have 1 common input node, namely, v,, implying that CI 

=1. Then, according to (13), CJOe = 2 +1 +1 = 4. As v3 is a successor node, we use (5.8) 
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to find vt/,, =4 + j3. The constant ft is added to CIOe in this particular example, since 

the processing unit to which the node v3 is assigned is idle at the targeted control step. 

We now determine the scheduling-cost of the edge connecting the regenerated 

node v and a particular control step c in the flow network. After specifying in the 

scheduled DFG the weight of each edge connecting the regenerated node in question to 

its predecessor and successor nodes, we now define the quantity Uv as follows. 

"v, = 2 X + Z ^ (5-9) 

By using (5.9), we determine the weights SCe in the flow network as follows 
' *j '•> 

SC. =L-Uv.t (5.10) 

where L = max (£/,..)+l. Finally, in order to schedule the regenerated nodes to specific 

control steps, min-cost max-fiow algorithm [21 ] is applied to the flow network. 
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P1 P2 P3 

C-i idle I U 

(a) 

Regenerated 
nodes 

Idle procssing 
units 

PM) 

(b) 

Figure 5. 5: (a) A scheduled DFG contains 7 regenerated nodes, (b) The bipartite graph 
constructed from the scheduled DFG. 
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5.3.2 Assignment of regenerated nodes to idle processing units 

Once each regenerated node has been assigned to a specific control step by applying min-

cost max-flow algorithm on the flow network, we next perform the second task, i.e., the 

assignment of the regenerated nodes to the idle processing units. A bipartite graph, 

showing all possible assignments of each regenerated node to idle processing units, is 

constructed. We denote the bipartite graph of type t by BG, (V,, P, E), where V, is the set 

of regenerated nodes of type t (for example, addition or multiplication), P is the set of 

idle processing units, and E is the edge set. There is an edge (v;,/>.(cA.)) e E, if and only 

if the node v, is scheduled at ck and the processing unit/?, is idle during the control step 

ck. Fig. 5.5 gives an example for the construction of the bipartite graph from a scheduled 

DFG containing the regenerated nodes. Fig. 5.5(a) shows a part of a scheduled DFG 

containing 7 regenerated nodes denoted asv;, /* = 1, 2,..., 7. There are three processing 

units used in the scheduled DFG. In addition to the nodes u. originally assigned to the 

three processing units, each regenerated node v, has to be assigned to one idle processing 

unit available during the control step at which the regenerated node is scheduled. The 

shaded part of the scheduled DFG shown in Fig. 5.5(a) contains the regenerated nodes to 

be assigned to idle processing units as well as the data flow edges connecting each 

regenerated node with all other nodes in the DFG. The assignment of a regenerated node 

is carried out taking into consideration the impact that this assignment would have on the 

interconnect complexity of the targeted architecture. In order to explore this impact, the 

assignment of other regenerated nodes having flow dependency with the regenerated 

node should also be taken into consideration. For this purpose, the concept of node 
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compatibility is incorporated. The resulting bipartite graph is then used to solve the 

problem of assignment of the regenerated nodes to the idle processing units. Before 

proceeding further in presenting the proposed assignment scheme, let us define some 

terms that are required in the proposed scheme. We say that a pair of regenerated nodes 

are compatible if only if: (a) they are scheduled at two different control steps, (b) there is 

a single idle processing unit capable of performing both of them, i.e., a processing unit 

idle during the two control steps at which they are scheduled, and (c) they have data flow 

dependency. Nodes v, and v3 given in Fig. 5.5 are compatible, since they satisfy the 

three compatibility conditions: they are scheduled to two different control steps c, and c3, 

there is a processing unit, namely P2, idle during c, and c3, and they have data flow 

dependency, i.e., node v3 consumes the output of v,. Other pairs of compatible nodes in 

Fig 5.5(a) are (v2 —» v5), (v4 —» v6), (v4 -» v7 ), (v5 —> v7). We also define the compatible 

path as a link-list set of compatible nodes (v, —» v2 —» ••• v(._, —> vj —» v/+1) such that v(._, is 

compatible with v,. and v. is compatible with v/+I. The set of nodes in a compatible path 

are ordered according to the control steps at which they are scheduled, i.e., c(v; ,) < 

c(v(.), where c(v.) represents the control step at which the node v, is scheduled. 

We now proceed in presenting the proposed scheme for the assignment of 

regenerated nodes to the idle processing units. Since multiplexers connects multiple 

inputs to a processing unit or to a register in the targeted architecture, the multiplexer 

count is an efficient indicator of the interconnect complexity [79]. In this regard, the more 

the nodes having data flow dependency assigned to a single processing unit, the less the 

number of different inputs or outputs to or from the processing units required, and hence, 
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the less the number of multiplexers. Accordingly, since compatible nodes have flow 

dependency and they can be executed on a single processing unit, we modify the bipartite 

graph by introducing in it a mapping that represents a possible assignment of a set of link 

listed compatible nodes to a processing unit. In the bipartite graph, each edge connecting 

a regenerated node to a processing unit is replaced, whenever possible, by a path 

connecting the link list of compatible nodes. Such path is called an assignment 

compatible path. An assignment compatible path is denoted as 

v, -> v2 -> ••• vf._, -» v. -> v,+1 -> pj(c(vi), c(v2 ),...c(v(_i ) , cfvg), c(vM )). 

The process of generating the assignment compatible paths for the bipartite graph 

is carried out as follows. Assume that v; is a regenerated node that can be assigned to an 

idle processing unit /?. during the control step c(v(.). This implies that there is an edge 

v;. —» /7-(c(v;.))in the bipartite graph. Further, assume that v,. is compatible with v/+1, 

which in turn is compatible with vI+2, such that c(v;)<c(v(.+I)<c(v.+ 2 ) . Then, the edge 

v,. —> j3-(c(v(.)) in the bipartite graph is replaced by the path v,. -» v,+l —> /?y(c(v;), c(v(.+])) 

to include the regenerated node v/+], and then once again replaced by 

v,. —> v(.+, -> v/+2 —> /?-(c(v,.), c(v;+]), c(v/+2)) to include v/+2 resulting in an assignment 

compatible path. After introducing an assignment compatible path, we remove any 

redundant edge from the resulting bipartite graph. We say an edge v;. —>/?.(c(v(.))is 

redundant, if and only if it is contained in the assignment compatible path in question. 

For example, if we have v, —> v(.+, —> v,+2 —> Pjicty), c(v/+I), c(v.+2)) as an assignment 

compatible path, the original edge v; —» /?-(c(v,-)) of the bipartite graph is removed since 
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it is contained in the assignment compatible path. Note that 

Py(c(vJ.))u/77.(c(v|.+,))Ujpy(c(vI.+2)) = /7y(c(v|.),c(v/+1),c(v/+2)). The resulting bipartite 

graph, in which all possible assignment compatible paths have been introduced and any 

redundant edge removed is called the modified bipartite graph. Note that the modified 

bipartite graph may still contain some original edges of the bipartite graph when a 

regenerated node is not compatible to any other regenerated node with respect to a given 

processing unit. Fig. 5.6(a) depicts all possible assignment compatible paths (indicated 

by thick edges) and all the redundant edges (indicated by crossed thin edges), 

corresponding to the bipartite graph of Fig. 5.5(b). It is seen from this figure that 3 new 

assignment compatible paths are introduced. The path, for example, v, —> v, —> p2(cl,c2) 

is introduced in the bipartite graph, since the nodes v, and v3 are compatible. The 

corresponding edge v3 —> p2(c2) is redundant. The removal of the redundant edges from 

the graph of Fig. 5.6(a) gives rise to the modified bipartite graph as shown in Fig. 5.6(b). 

We use the modified bipartite graph to perform the assignment of the regenerated 

nodes to processing units. It is to be noted that one or more than one node can be found in 

more than one assignment compatible path. The assignment compatible paths differ from 

one another in terms of the impact that a path would make on the interconnect complexity 

depending on the set of compatible nodes that belong to a path. The more the number of 

inputs and outputs that is common to the nodes belonging to an assignment compatible 

path or common to these nodes and the nodes previously assigned to the processing unit 

in question, the less the number of interconnects in the resulting architecture. We assign a 

weight to each edge in an assignment compatible path as follows. A weight is assigned to 
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each edge, except the last one, of a path as the sum of the numbers of inputs and outputs 

common to the two nodes of all the pairs of nodes, where each pair is formed by the 

initial node of the edge and a node from the link list of the regenerated nodes that follow 

the initial node of the edge in the assignment compatible path. For the last edge in an 

assignment compatible path, a weight is assigned as the number of edges in the path plus 

the sum of numbers of inputs and outputs common to the two nodes of a pair of nodes, 

where the set of pairs of nodes consist of the pairs in which one node is taken from the set 

of regenerated nodes in the path and the other node of the pair is taken from the nodes 

assigned to the processing unit of the path in question, other than those belonging to the 

path. The formulation of the assignment of weights to the edges of the assignment 

compatible paths just describe is carried out as follows 

Assume that 

v, -» v2 ->. . . v._, -> v, -> v,.+1 ->...v„ -> pj(c(vl),c(v2),...,c(vi^),c(vi),c(vM)...c(vn)) 

is an assignment compatible path in a modified bipartite graph. The weight assigned to an 

edge v, —» vi+1 is given as 

w(v„vw,= E(co ( V | t V y ) + a ( r i , l v ) ) (5 . i i ) 
y=i + l 

where CJ(V ,,^and CO(l r }are, respectively, the number of inputs and outputs common 

to nodes v, and v.. Assume that there is a set of nodes v'k, k = 1, 2,...,m, previously 

assigned to the processing unit p.. The weight assigned to the last edge of the assignment 

compatible path, i.e., the edge v„ -> pJ(c(vt),c(v2),...,c(vi_]),c(v:),c(vi+l)...c(vJ), is 

given as 
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Figure 5. 6: (a) Assignment compatible paths introduced into the bipartite graph given in 
Fig 5.5b. (b) Weighted paths used during the assignment process. 
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W»..PJ) T,Ha«.v + coM)) 
/=! k=\ 

+ (n-\) (5.12) 

where, as mentioned earlier, node v, belongs to the set of regenerated nodes in the 

assignment compatible path, and v'k belongs to the set of nodes assigned to the 

processing unit of the path in question. In Fig 5.6(b) the weights assigned to the edges of 

the modified bipartite graph are also indicated, where each of the weights is determined 

using (5.11) or (5.12). 

After assigning weights to each edge in the modified bipartite graph, we 

determine the length of each assignment compatible path as the sum of the weights of all 

the edges in the path. The longest path is chosen first for the assignment and its entire 

link list of nodes are assigned to the processing unit terminating the path, i.e., the link list 

of nodes (v,,v2,... v,._1,v,.,v/+1,...,v„) is assigned to 

Pj(c{v,), c(v,),.. .,c(v,._,), c(v,), c(v/+I).. .c(v„)) if the path v, -> v2 -> ... v,._, -» v, -> 

v(.+l->...v„-»^y.(c(v,),c(v2),...,c(v;_1),c(vI.),c(v/+I)...c(vII)) has the longest length. 

Assuming that this is the longest one, and therefore, the nodes v,, v2,..., v;._,, v(, v/+1,..., vn 

are assigned to p , these nodes and their outgoing edges are removed from the modified 

bipartite graph. 

Assigning the link list of nodes v, ,v, , . . . v,..,,^,^.^,...,^ to the processing unit 

Pj at the control steps c(v,),c(v2),...,c(vM), c(v,.),c(v/+I)...c(vn), respectively, implies 

that this processing unit is no longer available for assignment of other nodes at these 

specific control steps. Consequently, in the modified bipartite graph, if there is another 
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node representing the same processing unit p with a set of control steps that is a subset 

of the set of control steps c(v,),c(v2),...,c(vI._,),c(v;),c(v.+1)...c(vll), then this node is 

also no longer available at its set of control steps. We call such node representing the 

processing unit p} at the associated control steps as fully occupied. On the other hand, if 

there is a node in the modified bipartite graph representing the processing unit Pj with a 

set of control steps such that only a subset of this set is also a subset of the control steps 

c(v,),c(v2),...,c(v;_1),c(v/-),c(v;+l)...c(vn), then the processing unit p; is no longer 

available at the control steps of this subset, but it is still available at the remaining control 

steps of the set of control steps associated with this node of p.. We, therefore, call such a 

node representing the processing unit jt?y and the associated set of control steps as 

partially occupied. In the modified bipartite graph, the entire nodes and edges of an 

assignment compatible path terminated by to a fully occupied node are removed except 

those nodes and edges that are shared between the path in question and some other 

assignment compatible paths. On the other hand, the entire nodes and edges of an 

assignment compatible path terminated by a partially occupied node are first removed 

except those nodes and edges that are shared between the path in question and some other 

assignment compatible paths, and then the set of nodes in the removed path, excluding 

the nodes scheduled at control steps responsible for making the terminating mode of the 

path partially occupied, are used for constructing, as necessary, one or more new 

assignment compatible paths in the modifies bipartite graph using the remaining link list 

of the removed path. As an example, assume that 

v\ - » v; - > V3 - > v\ - > v\ - > v[ - > v'7 ->...v'm - > 
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Pj(c(vl),c(v[),c(v',),c(v'4),c(v^),c(v'6),c(v'7),...,c(v'J) is an assignment compatible 

path in which the node /?. is partially occupied such that it is no longer available at the 

control steps civ'^) and c(v'6). Consequently, this assignment compatible path is 

removed, and 3 new assignments compatible paths v\ —> v'2 —> Pj(c(v[), c(v'2)), 

v'4 - > v; - > p . ( c{v4), c(v'5)), and v'7 - » . . . v r
m ^ Pj(c(v'7),..., c(v'm)) are added in the 

modified bipartite graph. 

The removal of the longest assignment compatible path, the removal of other 

nodes and edges resulting from the removal of the longest assignment compatible path 

and the addition of new assignment compatible paths constitute one iteration of 

regenerated nodes assignment and results in a reduced modified bipartite graph. The 

weights of the edges in the reduced modified bipartite graph are updated using (5.11) and 

(5.12). The process is repeated using the reduced modified bipartite graph until all 

regenerated nodes are assigned. 

5.4 Experimental Results 

In our experiments, both centrally shared and distributed-register based architectures are 

targeted. The proposed scheme is first assessed in terms of the number of registers and 

the number of interconnects required when the node regeneration is incorporated in the 

register binding technique proposed in the previous chapter to carry out the synthesis of 

the some benchmark examples targeting both the centrally-shared- and distributed-

register based architecture and the corresponding results are compared with those 

obtained by using the proposed register binding technique without incorporation of the 
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node regeneration scheme Finally, experiments are carried out to determine the total 

interconnect lengths in the RTL structures obtained through the synthesis of some DSP 

problems with and without the incorporation of the node regeneration scheme in the 

proposed register binding technique. 

5.4.1 Number of registers and interconnects with node regeneration 

In order to assess the effect of incorporating the node regeneration scheme into the 

proposed register binding technique, the technique is applied to the same set of DSP 

benchmark problems as in Section 4.3. Fig. 5.7 gives the number of registers obtained 

with and without the incorporation of node regeneration scheme to the proposed register 

binding technique for targeting centrally-shared and distributed register-based 

architectures. It is seen from this figure that the node regeneration reduces the number of 

registers in both types of architectures. The proposed register binding technique offers a 

substantial gain in terms of reducing the number of registers when it incorporates the 

node regeneration. In centrally-shared register-based architecture, an average reduction of 

16.13% is achieved for the intensive DSP benchmarks considered with the minimum 

reduction being 12.7% for DCT-chem and the maximum 21.87% for mem. In the 

distributed architecture, the average reduction is 13% with the minimum and the 

maximum reduction being 6.25% and 15.47%) for the benchmarks of DCT-pIanar and 

DCT-chem, respectively. 

151 



160 

140 

120 

100 

™ 80 

Number of Registers 

D Distributed W/O Node-R 

D Distributed With Node-R 

H Centrally-Shared WO Node-R 

1 Centrall-Shared With Node-R 

CO 

CD -*—• 
CO 

CD 

3t 
60 

40 

20 

in 

1 1 

S i 

! _ 

ft 

I 
ellip (34) fir (40) DCT-

planar 

(42) 

mem (94) DCT-dir 

(148) 

DSP Benchmarck 

DCT-chem DCT-feig 

(347) (547) 

Figure 5. 7: Number of registers obtained by applying the proposed technique for the 
register binding of some intensive DSP Benchmark problems with and without node 
regeneration targeting both the centrally-shared and the distributed register-based 
architectures. 

Fig. 5.8 gives the corresponding results in terms of the number of interconnects. Again 

we see that the incorporation of the node regeneration scheme to the proposed register 

binding technique reduces the number of interconnects for both types of architectures. In 

centrally-shared register-based architecture, an average reduction of 8.89% is achieved 
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for the intensive DSP benchmarks considered with the minimum reduction being 5% for 

ellip and the maximum 13.3% for fir. In distributed one, the average reduction is 19.56% 

with the minimum and the maximum reduction being 16.36% and 24% for the 

benchmarks of mem and Jlr, respectively. 

5.4.2 Overall length of interconnects for the RTL structures of some 
DSP benchmarks. 

Interconnect lengths have become a dominant factor in the design of integrated circuits. 

The parasitics associated with length of interconnects account for a significant part of the 

noise, delay and power associated with a signal [77]. In order to show as to how reducing 

the number of interconnects obtained by the incorporation of the node regeneration 

scheme into the proposed register binding results in reducing the total wire length, we 

generate the layouts of the RTL structures of some of the DSP benchmark problems using 

Cadence's Silicon Ensemble and measure the total length of the interconnects. The DSP 

benchmarks chosen are 8-tap FIR filter, 8-tap IIR filter, and 1-point 8X8 DCT filter. For 

each benchmark, two RTL structures, one targeting the centrally-shared register based 

architecture and the other the distributed registered based architecture, are obtained. 
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Figure 5. 8: Number of Interconnects obtained by applying the proposed technique for 
the register binding of some intensive DSP Benchmark problems with and without node 
regeneration targeting both the centrally-shared and distributed register-based 
architectures. 

Table 5.1 lists the resources of the synthesized RTL structures and the resulting 

wire length for each of the benchmarks considered with and without the incorporation of 

node regeneration scheme. The RTL resources are specified in terms of the number of the 

multipliers, adders, and registers. Even though the proposed register binding technique 

and the node regeneration schemes are not concerned with the total number of 

interconnects in all the tasks of the high level synthesis globally, it is obvious from this 
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table that they help in reducing the total wire length in the RTL structures. For the 

benchmark problems considered, the average reduction in the total wire length is 10.83% 

for the centrally-shared register based architecture and it is 11.18% for the distributed 

one. 

Table 5.1: Comparison of the total wire length with and without the incorporation of 
node regeneration scheme 

Benchmark 

FIR 

IIR 

DCT 

Type of 

architecture 

Centrally-

shared 

Distributed 

Centrally-

shared 

Distributed 

Centrally-

shared 

Distributed 

RTL resources 

Without 

node 

regeneration 

2M,2A, 14R 

2M,2A,21R 

4M,2A, 13R 

4M,2A, 17R 

4M, 4A, 27R 

4M, 4A, 36R 

With node 

regeneration 

2M,2A,11R 

2M,2A, 15R 

4M,2A, 10R 

4M,2A, 14R 

4M, 4A, 22R 

4M, 4A, 28R 

Total wire-length (\un ) 

Without 

node 

regeneration 

139287 

111020 

173271 

160661 

509463 

480860 

With node 

regeneration 

122771 

98953 

151480 

146392 

462420 

444563 

Reduction 

10.80% 

11.85% 

12.50% 

14.20% 

9.20% 

7.50% 

5.5 Summary 

The lower bound on the number of registers resulting from any register binding technique 

gets fixed once the DFG has been scheduled. In this paper, a scheme, referred to as node 

regeneration, has been proposed to reduce the number of registers to a value that is even 

lower than this bound. This scheme by utilizing the idle processing units generates 

multiple copies of the nodes in the original scheduled DFG with the lifetimes of the 

tokens in the modified DFG to be shorter than that of tokens of the nodes in the original 

scheduled DFG. In essence, the scheme reduces the number of registers by having at its 
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disposal a modified scheduled DFG without re-scheduling the DFG or adding additional 

resources. The freedom provided by having multiple copies of nodes has also been 

exploited to the idle processing units to minimize the complexity of the interconnect 

network. In order to assess the proposed technique of register binding, it has been applied 

to the synthesis targeting centrally-shared and distributed register based architectures for 

different intensive DSP algorithms and has been compared with various other commonly 

used synthesis methods for register binding. The reductions in terms of the number of 

registers and the number of interconnects are even more substantial when the proposed 

node regeneration scheme is incorporated in the register binding technique. Finally, it has 

been shown that the reduction in the number of interconnect in fact results in reducing the 

total wire length of the layout of the RTL structures. 
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Chapter 6 

Conclusion 

6.1 Concluding Remarks 

With the technology scaling down into a deep submicron region, the high level synthesis 

tasks can no longer afford to be performed without taking into account the impact of the 

interconnects on the performance of the resulting architectures. A realistic model to be 

used in the high level synthesis should, for instance, support interprocessor 

communication delays, different types of processing units, and the structure and 

organization of the data path. This doctoral thesis has been concerned with the problem 

of developing efficient interconnect aware techniques for the high-level synthesis of DSP 

applications leading to the implementations with parallel processing architectures. Under 

this common theme, the thesis has two distinct focuses. The first focus has been on 

developing new techniques for scheduling and processor allocation while taking into 
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consideration the interprocessor communication delay. To this end, two techniques have 

been proposed. In the first technique, the interprocessor communication delay used in the 

tasks of scheduling and processor allocation has been estimated or taken from an already 

placed architecture. While in the second technique, a placement process has been 

integrated into the high level synthesis to consider the impact of the positions of the 

processing units in the placement space on the building of the time and processor 

schedules. The second focus of this thesis has been on developing a technique to carry 

out the register binding while taking into consideration the complexity of the 

interconnects. Since the lower bound on the number of registers resulting from any 

register binding technique gets fixed once the DFG is scheduled, a node regeneration 

scheme has been proposed to reduce the number of registers to a value that is even lower 

than this bound and at the same time to lower the interconnect complexity. 

A technique for the synthesis of DSP cyclic data flow graphs onto heterogeneous 

distributed-register based multiprocessor architectures employing a graph theoretic 

approach has been proposed. The interprocessor communication delay has been assumed 

to be taken from estimation or from feedback information from a placement. The 

proposed technique starts by modifying the original DFG representing a DSP algorithm 

by inserting dummy communication nodes to represent the ICDs between the nodes of 

different types. The modified DFG is then used to build iteratively a time schedule based 

on the mobility of each node. An algorithm has been proposed to identify each critical or 

near-critical loop in the modified DFG. Next, by employing the initial time schedule and 

by using the loop identification algorithm, the task of an initial processor allocation is 

carried out. Since, the initial time schedule and processor allocation does not take into 
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account the ICDs of the nodes of the same type, the initial time and processor schedules 

may not be valid. Hence, the initial time and processor schedule have been modified to 

take into account the ICDs between a pair of nodes of the same type assigned to two 

different processors in order to find the final time and processor schedule. This 

modification has been carried out by inserting additional cycles into the time schedule in 

order to ensure on the validity of the ICDs between a pair of nodes of the same type. In 

order to assess the proposed synthesis technique, it has been applied to the synthesis of 

different DSP digital filters and has been compared with various other commonly used 

synthesis techniques. It has been shown that the proposed synthesis technique 

outperforms these techniques in terms of the iteration period and the numbers of 

processors of the synthesized architecture. 

Existing synthesis tools perform the high level synthesis tasks and the tasks of 

physical design such as placement independently. A technique for the integration of the 

placement process into the high-level architectural synthesis has been developed in away 

so that information about the position of the processing units in the placement space and 

about interconnect delays are used during the building of time schedule and the allocation 

of the nodes. A systematic process has been employed for the placement by using a 

Delaunay triangular mesh in the proposed scheme, since this method of triangulation can 

make candidate positions of the processing units welWistributed. This triangulation 

method maximizes the minimum angles of the mesh, and, hence, it is then became 

possible to avoid making candidate positions for placing the processing units on adjacent 

edges connected by a narrow angle which in turn allows to, quickly, find the suitable 

gaps to place the functional units in the placement space. In order to maximize the local 
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data transfers, a hybrid library of functional unit, which includes dynamically 

reconfigurable multiple-operation and operation-specific functional units, have been used 

in the proposed technique. Moreover, the use of hybrid library provides the designer of 

DSP applications with a greater flexibility to explore the design space. The proposed 

technique has been applied to well-known benchmark problems of DSP applications in 

order to assess the effectiveness of the interaction between the high level synthesis and 

the placement process. During the experiments, the placement has performed under two 

assumptions about the number of candidate position allowed to place the processing 

units. In one case, a restricted number of candidate positions is used. While in the other 

case, the number of the candidate positions has been increased in order to provide more 

flexibility to the placement process. It has been shown that a substantial gain in terms of 

reducing both the placement area as well as the iteration has obtained period for all the 

benchmark problems considered when the high level synthesis interacts with a flexible 

placement compared to a restricted placement process. 

An interconnect aware register binding has been proposed. The function of register 

binding is to assign the tokens produced by the processing units to registers in the 

resulting RTL structure and it is traditionally done in a way so as to minimize their 

number. A technique for binding the tokens produced by the nodes of a scheduled DFG 

while aiming at minimizing the number of interconnects has been presented. First, a 

segmentation scheme in which the lifetime of a token is appropriately divided into 

multiple segments is developed. Then, the register binding problem is formulated as a 

min-cost flow problem so that the tokens having the same source and/or destination are 

bound into the same register and results in a reduced numbers of registers and 
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interconnects. In order to assess the proposed technique of register binding, it has been 

applied to the synthesis targeting centrally-shared and distributed register based 

architectures for different intensive DSP algorithms and has been compared with various 

other commonly used synthesis methods for register binding. The results of these 

experiments have shown that the proposed register binding technique produces the 

number of registers equal to the optimal solution provided by using the left-edge method 

and it outperforms other methods not only in terms of the number of registers but also in 

terms of the number of interconnects. 

The lower bound on the number of registers resulting from any register binding 

technique gets fixed once the DFG has been scheduled. A scheme, referred to as node 

regeneration, has been proposed to reduce the number of registers to a value that is even 

lower than this bound. This scheme by utilizing the idle processing units generates 

multiple copies of the nodes in the original scheduled DFG with the lifetimes of the 

tokens in the modified DFG to be shorter than that of tokens of the nodes in the original 

scheduled DFG. In essence, the scheme reduces the number of registers by having at its 

disposal a modified scheduled DFG without re-scheduling the DFG or adding additional 

resources. The freedom provided by having multiple copies of nodes has also been 

exploited to the idle processing units to minimize the complexity of the interconnect 

network. In order to assess the proposed scheme, it is incorporated with proposed register 

binding technique and it has then been applied to the synthesis targeting centrally-shared 

and distributed register based architectures for different intensive DSP algorithms and has 

been compared with various other commonly used synthesis methods for register binding. 

It has been shown that the reductions in the number of registers and interconnects are 
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even more substantial when the proposed node regeneration scheme is incorporated in the 

register binding technique. Finally, it has been shown that the reduction in the number of 

interconnect by the proposed register binding technique and the node regeneration 

scheme, in fact, results in reducing the total wire length of the layout of the RTL 

structures. 

6.2 Directions for Future Research 

The research work undertaken in this thesis can be extended in several respects. 

One interesting area of investigation would be the development of high level synthesis 

techniques while taking into consideration other performance metrics for the 

interconnects such as power and area. In this thesis, a technique for the integration of the 

placement process into the scheduling and allocation tasks of the high level synthesis has 

been proposed. To the best of the auther's knowledge, there is no reported work in the 

literature in which the routing is incorporated into the process of high level synthesis. 

Due to the impact of the routing on the interconnect network of an architecture, it would 

worth exploring the integration of interconnect routing into the high level synthesis itself. 

Another interesting area of investigation could be the development of techniques 

for high level synthesis targeting the newly advanced 3D integrated technologies which 

offer a great promise in providing improvements in the overall circuit performance. The 

3D integrated circuits are fabricated by stacking multiple active device layers using wafer 

bonding with vertical interconnects for inter-layer communication. This recent progress 

in the fabrication of 3D integrated circuits has opened up the possibility of exploiting this 

technology to alleviate the problems related to power and interconnect delays resulting 
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from the deep-submicron technology. Hence, methodologies and techniques need to be 

developed to address the scheduling and resources allocation during high level synthesis 

for vertically integrated 3D systems. Also, the problem of integration of 3D-placemet into 

the high level synthesis must be dealt with in order to determine the location of individual 

processing units on a 3D placement and to identify the intra-layer and inter-layer 

interconnect delays. 
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