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Abstract

While FPGAs are becoming mainstream in the deployment of datacenters and cloud
systems, they are mostly used as updatable ASICs. This thesis shows that it is feasi-
ble to achieve acceleration for runtime-only known problems using dynamically built
stream processing pipelines if we efficiently exploit the given FPGA resources and
utilize additional techniques such as resource elasticity.

To achieve this, the requirements for stream processing accelerators are researched
and an efficient dynamic stream processing protocol is proposed. Exemplifying our
approach to database query processing due to its key importance in the Big Data era,
a module library of the most used database operators is built. For this purpose, design
factors for building scalable streaming accelerators are discussed and efficient acceler-
ators for filter, sort, and join are proposed. Accelerators are fully decoupled from the
external infrastructure through a partially reconfigurable generic DMA module that
converts standard AXI interfaces into the proposed streaming protocol.

To improve the flexibility and throughput of the proposed system, resource elas-
tic techniques are discussed and applied to key accelerators. This allows a runtime
scheduler to fully tailor the execution pipeline to the runtime-only known problem and
available FPGA resources. The performance and overheads in the prototyped system
are evaluated and show that our approach is beneficial for FPGA acceleration.

Overall, with these contributions, this thesis shows stream processing acceleration
achieved by execution pipelines that are adapting, through using resource elasticity, to
the problem and available resources at runtime.
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Chapter 1

Introduction

Thesis statement: It is feasible to achieve acceleration for runtime-only known prob-
lems using dynamically built stream processing pipelines if we efficiently exploit the
given FPGA resources and utilize additional techniques such as resource elasticity.

1.1 Motivation

The famous Moore’s prediction about transistor scaling was targeting a relatively short
period of time [72]. However, for many decades the technological improvement has led
to the ever-increasing performance and complexity of computing systems with often
little-to-none architectural investments. While technology nodes keep improving to
this date, this process is expected to slow down as transistors keep approaching atom
sizes (a silicon atom is about 0.2nm in diameter).

The exhaustion of the free lunch era results in an increasing amount of real-world
performance originating from architectural and algorithmic improvements [39]. Tra-
ditional von Neumann architectures implemented in Central Processing Units (CPUs)
provide flexible control logic, but often lack throughput in solving large data problems.
Graphics Processing Units (GPUs) alleviate the problem by implementing a similar ar-
chitecture, but in a massively parallel fashion. However, GPU instruction sets often
implement simple operations, which results in large throughput for simple operations
on large-scale data.

On the other hand, dataflow solutions attract more attention in recent years. Application-
Specific Integrated Circuits (ASICs) can deliver the highest throughput and energy ef-
ficiency due to their optimized hardwired nature. However, modern technology ASICs
require a large initial investment and lack post-fabrication flexibility, which drives

15



16 CHAPTER 1. INTRODUCTION

ASIC approaches only economically viable for large-scale deployment. Moreover,
ASIC development is slow and cannot always keep pace with technological progress.

Field Programmable Gate Arrays (FPGAs) circumvent the sequential von Neu-
man bottleneck through a dataflow programming paradigm with a corresponding large
throughput and high energy efficiency while keeping initial investments relatively low
and allowing field-reprogrammability. In specialized large problems, both ASICs and
FPGAs do tend to show significantly higher performance than CPUs and GPUs, and
the small performance gap between ASICs and FPGAs is offset by using the most
advanced process nodes for FPGAs and the possibility to update the hardware in the
field [80].

The recent interest in FPGAs can also be observed in the recent acquisitions of
Altera by Intel [69] and Xilinx by AMD [41]. Both FPGA companies have products
co-designed with integrated ARM CPUs and reconfigurable fabric, but the aims of
integrating programmable fabric into mainstream compute products are also visible
in Intel’s Xeon Phi co-processor integration [101] as well as in AMD’s research into
providing reconfigurable Arithmetic Logic Units (ALUs) [4].

The ongoing extensive work in FPGAs targets various problems including machine
learning, edge computing, and big data acceleration [71, 15]. While FPGA deployment
is currently becoming mainstream, these devices are mostly used as updatable ASICs
in the sense that FPGA configuration is commonly only used at system start and with
accelerators that had been crafted for dedicated problems. The motivation of this thesis
is to allow a system to generate stream processing acceleration pipelines for problems
only known at runtime and by making the best use of the currently available FPGA
resources. Problems that can be implemented using operator modules can be accel-
erated by using partial runtime reconfiguration to build tailored execution pipelines at
runtime. This thesis researches the methods, concepts, and benefits of implementing
execution pipelines at runtime for FPGA acceleration of big-data problems. While the
here proposed concepts apply to a wide range of dataflow problems, this thesis will
exemplify the concept of stream processing on OLAP (Online Analytical Processing)
database queries due to their costly processing requirements. The OLTP (Online Trans-
action Processing) queries are handled by the co-processing software since they usually
operate directly on primary keys and have small complexity that cannot overcome ac-
celerator overheads [20]. As a dedicated feature, this work will accelerate database
queries that are only known at runtime as an example for dynamic stream processing.
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It also presents resource elastic techniques to build processing elements which signifi-
cantly improves flexibility for runtime query schedulers, maximizing performance for
a resource target only known at runtime.

1.2 The Big Picture

Traditional Database Management Systems (DBMS) are fully software-based. They
are responsible for all operations within a database including interfaces, data storage,
and parsing and execution of SQL queries. The critical path of large-data database
performance lies within the execution phase of complex queries. This makes databases
a clear target for FPGA acceleration.

1.2.1 Overview

FPGA acceleration of queries that are only known at runtime can be implemented
by over-provisioning of SQL operators and the activation only of the essential ones
upon query parsing. The SQL standard defines 376 reserved keywords, many of which
implement operators [44]. Thus supporting the entire SQL standard would require re-
serving static logic that can provide expensive operations such as logarithms, sin/cos,
division etc. Indubitably this will be rather resource-expensive and uneconomical due
to all possible SQL operator combinations. We highly anticipate that the dynamic con-
struction of the execution pipeline for database acceleration is the most advantageous
approach for general-purpose FPGA acceleration. In order to best utilize FPGAs, there
are numerous challenges to be considered:

Memory organization : Data movement poses a large overhead risk. Main memory
DBMS primarily store data in the system’s DRAM. This allows for low-latency
data availability. More traditional DBMS use mass storage devices for perma-
nent data storage and utilize the system main memory only for intermediate data
and caching. However, introducing external accelerators to a DBMS can also
introduce a new memory space. GPUs and FPGAs have separate accelerator
memories (where the host CPU is external) and overheads for data movement to
and from the host memory space have to be considered. Straight forward solu-
tions include FPGA acceleration where the host CPU is tightly integrated with
the FPGA and where both share the same main memory (such as Xilinx Zynq
FPGAs [125] and Intel Stratix 10 SX [43]). FPGA models that do not include
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a hardwired CPU (such as Xilinx Virtex FPGAs) can either achieve memory
uniformity by implementing a host CPU as a softcore with direct access to the
FPGA’s local DRAM or at least provide low-latency high-bandwidth memory
connection of the accelerator’s memory to the host CPU.

Efficient accelerators : The dynamic stream processing should be possible with a
resource cost that is comparable to dedicated non-reconfigurable accelerators.
The ideal accelerators have a wide datapath, large operating frequency, and im-
plement large utility. In this thesis, utility is defined as the amount of practical

computation performed per pass of the data through the accelerator.

Hardware layout and interfacing : The dynamic nature of the SQL queries in con-
junction with the complexity of database operations characterizes examples for
virtually all communication and integration requirements that exist in stream
processing systems. This requires careful consideration of the mechanisms that
enable multiple accelerators (operators) to co-operate while maintaining maxi-
mum energy efficiency and throughput. The system should not target a specific
device type, but rather should be an abstracted specification that can serve a wide
range of FPGA platforms. For this purpose, a mixture of standard and custom
approaches and interfaces need to collaborate.

Software-hardware co-design : The software components of the DBMS need ac-
curate models for accelerator capabilities and constraints in order to generate
execution plans that will meet query requirements. The software also requires
accurate cost models in order to optimize the stream processing pipeline im-
plementation. This enables factual prediction about any partial reconfiguration
overheads as well as for the expected execution time. Using these predictions,
the DBMS can fall back to software execution in cases when the input query is
not large or complex enough to benefit from FPGA acceleration. With this, the
heterogeneous CPU and FPGA system will generally perform better than a pure
CPU-based system and overheads for FPGA configuration and operation will
only be spent if this improves performance.

Figure 1.1 shows our query execution pipeline using a high-level block diagram.
In this project, hardware acceleration uses the FPGA Operating System (FOS) to re-
serve an acceleration slot and physical memory blocks and to partially reconfigure the
hardware if needed [115, 116]. Performing runtime partial reconfiguration poses an
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Figure 1.1: Multiple components from multiple systems interact to execute an SQL
query. The bulk of operations in this figure are implemented by integrated DBMS and
a hardware acceleration library.

overhead that needs to be evaluated against the possible acceleration benefits for a
given problem. However, it is not necessary that partial reconfiguration needs to take
place for every subquery accelerated in hardware as subqueries with the same opera-
tion (but different parameters) can subsequently reuse the same FPGA configuration if
supported through generic operator modules.

Succeeding execution, the DBMS needs to reevaluate the execution plans and re-
generate them if needed. Many SQL operators (such as join, filter, aggregate) can
change the sizes of intermediate tables, which will inevitably lead to the regeneration
of the execution plans in order to optimize the scheduler with the consideration of the
new details.

1.2.2 Hardware Accelerated Processing Elements

The hardware integration into the DBMS is through enabling a module library (see Fig-
ure 1.2 b) that implements various database operation execution units. Ideally, these
operators implement resource elastic techniques enabling trade-offs between resource
requirements and throughput/utility. This is implemented by providing module alter-
natives - multiple modules implementing the same database query operator, but with
varying size and computational limits. Additionally, operators could be implemented
to be composable at runtime. Composable accelerators extend their functionality by
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stitching together multiple smaller accelerator modules to serve a more complex oper-
ator or to provide operators with higher performance such that the smaller accelerators
appear logically as a single larger module. Such a technique is not applicable to all
SQL operations due to algorithmic restrictions. However, when applicable, it expands
the placement options for the runtime scheduler.

The stitchable modules implement a custom uniform interface between them that
is optimized for dynamic stream processing and resource elasticity. This custom in-
terface (denoted by the triangle-shaped edges in the modules in Figure 1.2 b) takes
into consideration many components and aspects of the system. For example, to ease
partial reconfiguration tools it is beneficial to eliminate asynchronous handshakes be-
tween modules. Additionally, they should be suitable to fit all needs posed for SQL
operators including careful consideration of the amount and size of data records and
their organization.

The hardware layer integrated within the DBMS requires tight arrangement be-
tween a host CPU and FPGA partially reconfigurable slots (see Figure 1.2 a). The
interconnect shown on the figure can be either: 1) extended in both PL-PS for FPGAs
that share a die with a host CPU (like Xilinx Zynq), 2) implemented only in PL for
softcore host CPUs, and 3) extended through PCIe to an external host CPU. In the
latter case, the FPGA memory space can be mapped for direct access from an external
host CPU using resizable Base Address Register (BAR) [1]. This does not necessary
solve overhead considerations associated with data movement but does provide seam-
less operation for such topologies.

State-of-art research suggests that the future of cloud deployment will implement
partially reconfigurable slots [117]. This is important since FPGAs employ a large set
of resources - not only FPGA fabric but also DRAM sizes, DRAM throughput, mass
storage and Ethernet. Cost efficiency will lead to cloud providers enabling partition-
ing of an FPGA chip to be used by multiple users due to the users’ varying resource
requirements and for enabling resource pooling of FPGA, memory, and I/O resources.
Our system targets the utilization of such partially reconfigurable slots. The hard-
ware layer needs to target standard interfaces, to allow for seamless integration and
deployment into academically and commercially managed FPGA systems. The most
commonly used standard interface in such systems is the Advanced eXtensible In-
terface (AXI) [5]. In our system, one of the modules needs to translate transactions
between a streaming interface and the standard interface (see DMA in Figure 1.2 b).
This module provides a high level of abstraction for the SQL operators by managing
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all physical data allocation and providing data permutation and data prefetching units.

The system targets to support multiple subqueries (including queries from different
users) at the same time by utilizing a shared datapath and encoding the data packets
within the PR region (see Figure 1.2 c-d). Traditionally, the aforementioned cloud
systems provide physical interfaces on only one side of the PR slot, thus we anticipate
a dual-direction datapath that turns around at the end of the PR slot. The direction of
the streamflow is inverted after all SQL operator modules (see Figure 1.2 e).

1.2.3 Hardware-Software Integration

The module library itself acts as an interface between hardware and software designers.
It allows the abstraction and cooperation by allowing the accelerator developers to
define numerous runtime aspects (see Figure 1.3):

Bitstream : Providing the already synthesized hardware eases the runtime system
by: 1) discarding any impact from the large hardware synthesis times, 2) ab-
stracting most complexity associated with hardware development, and 3) elimi-
nating the software developers’ need to interact with FPGA vendor tools.

Physical Specification : This parameter outlines the physical placement and footprint
of any accelerator synthesized for a particular FPGA family. Upon module li-
brary generation, the system can use string matching algorithms to find possible
accelerator placements [34]. This simplified representation of physical aspects
is then used by the runtime to find all possible execution plans. This placement
specification is also required for the module placement stage as a parameter to
the module relocation tool [89].

Cost function : The large importance of accurate models for cost evaluation offloads
their generation to the accelerator developer. Providing accurate models enables
the runtime scheduler to make decisions that maximize performance and effi-
ciency.

Driver : Drivers translate runtime user and meta data into module parameterization.
Thus it is key that the accelerator developer handles the task of producing the
lower level abstractions in the drivers and directions how the software developers
can integrate them into the higher layers.
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Figure 1.3: The module library is used as an interface between the accelerator devel-
opment/synthesis and runtime DBMS query execution.

1.3 Scope and Contribution

The proposed system comprises a complex hardware-software co-design problem where
the resource allocation problem is decided at runtime. This system, therefore, poses
numerous challenges to be solved. This work focuses on the functionality of the hard-
ware implementation by researching:

Dynamic Stream Processing Interface (Chapter 3) : We propose a custom inter-
face for inter-module communication within the streaming PR region. The pro-
posed interface satisfies all described module requirements for processing ele-
ment specifics about data sizes and stream requirements. The interface targets
shared multi-tenant environments by implementing standard external interfacing
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for integration with FOS [115, 116] and allows for seamless software integra-
tion by supporting memory-mapped register spaces within the partially recon-
figurable stream modules. DSPI enables complex accelerators such as merge

sorters to be implemented directly in the PR region, which has not been possible

in related work [135, 118]. DSPI achieves this with low wire and logic interface

overhead.

Module Library (Chapter 4) : This work introduces the key concepts in designing
scalable streaming accelerators with large utility (see Section 4.1). Using these
concepts and algorithmic requirements, we propose efficient designs for most
common compute operations as streaming modules with small resource require-
ments. Moreover, we present efficient approaches for the implementation of
filter and sort modules, which are the most widely used operators in database
query execution. Our large utility methodology enables us to execute the com-

plex filtering in TPC-H Query 19 using a single larger module, rather than 147

modules that are required in related work [135], resulting in 13× resource cost

improvement (see Section 4.3). Additionally, our large utility merge sorter im-

proves performance over state-of-art FPGA sorters [97, 83, 84] by implementing

more effective work in each pass of data through the chip (see Section 4.4).

Resource elasticity (Chapter 5) : While related work on resource elasticity relies
on straightforward parallelism provided natively by OpenCL and is limited to
monolithic problems [117], we propose the implementation of such techniques
with more complex workloads and requirements. This work showcases the tech-
niques and benefits for resource elasticity in streaming accelerators. It proposes
methods for resource-elastic designing of complex operators such as filter, sort,
join. Building multiple module alternatives enables flexibility for the runtime
schedulers allowing the minimization of major data runs and improving perfor-
mance. Additionally, we research the implementation of composable modules.
Designing modules to be composable further enhances the scheduler’s pipeline
alternatives, which often leads to improved performance. Abstracting the phys-
ical placement of subparts of a greater logical operator also enables the use of
multiple chained PR slots, including using multiple FPGA boards.
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Prototype Implementation and Evaluation (Chapter 6) : This thesis then builds the
implemented accelerators as resource elastic modules that can be partially recon-
figured. All modules achieve a streaming throughput of 19.2GB/s. The through-

put can scale up by increasing the datapath width and additional pipeline stages.

The work then evaluates FPGA fabric configuration times to enable precise cost
models and minimize the runtime overheads. The evaluation concludes by pre-
senting a case study using the TPC-H benchmark [108], where it saturates the
available DDR throughput and achieves 2.5− 5× higher performance than a
multicore system with PostgreSQL.

The researched topics provide solutions for the offline module library generation,
module interfacing, scalability, utility, and partially their runtime integration and man-
agement. The research of integrating the proposed hardware into existing DBMS and
exploring heterogeneous scheduling is currently ongoing by PhD candidate Kaspar
Mätas [66].

1.4 Publications

• Kristiyan Manev and Dirk Koch. Large Utility Sorting on FPGAs. In Interna-

tional Conference on Field-Programmable Technology (FPT) 2018

Researched and proposed a large utility sorter that is also incorporated into the
proposed database system (see Section 4.4). It minimizes the number of runs of
the data through the chip. This is particularly important for expensive operators
such as sorting. The methodology of designing large utility operators is also
researched in Section 4.1.

• Kristiyan Manev, Anuj Vaishnav, Charalampos Kritikakis, and Dirk Koch. Scal-
able Filtering Modules for Database Acceleration on FPGAs. In International

Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART)

2019

Researched the application of boolean normal forms for the case of database
filtering with complex requirements. Proposed large utility filter modules that
are incorporated into the proposed database system (see Section 4.3). This work
also discussed several accelerator interface requirements that have later been
incorporated into DSPI (see Section 3.3).
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• Anuj Vaishnav, Khoa Dang Pham, Kristiyan Manev, and Dirk Koch. The
FOS (FPGA Operating System) Demo. In International Conference on Field-

Programmable Logic and Applications (FPL) 2019

Researched and implemented RTL accelerators into FOS (the FPGA Operating
System), while the operating system was originally targeted mostly for acceler-
ating using High-Level Synthesis (HLS). This thesis utilizes FOS to implement
basic abstraction from low-level system components. The integration to FOS’
interfaces is implemented through the proposed DMA module (see Section 4.2).

• Kristiyan Manev, Anuj Vaishnav, and Dirk Koch. Unexpected Diversity: Quan-
titative Memory Analysis for Zynq Ultrascale+ Systems. In International Con-

ference on Field-Programmable Technology (FPT) 2019

Researched, implemented, and released to the public a benchmarking tool for
the state-of-the-art Zynq UltraScale+ systems. Together with co-authors utilized
the tool to profile and analyze the FPGAs targeted by FOS and developed a set of
guidelines for maximizing achieved memory performance. The work has been
used throughout the designing of the proposed database system as guidance for
efficient implementation of a credit-based system (see Section 3.1), accelera-
tors (see Chapter 4), and evaluation (see Chapter 6).

• Kristiyan Manev and Dirk Koch. Resource Elastic Database Acceleration. In
International Conference on Field-Programmable Logic and Applications (FPL)

2020

This work researched the achievable benefits from the application of resource
elastic techniques to available database operators. It showcases Pareto-Front
schedules that trade off between cost and effective throughput while targeting a
standard query benchmark [108]. This enables a runtime system to fully utilize
the available resources and maximize performance. This thesis expands on the
proposed resource elastic techniques and benefits in Chapter 5.



Chapter 2

Background

In this chapter, we outline the background in FPGA technology, databases, and database
acceleration. First, we describe the target FPGA fabric, software integration, and par-
tial runtime reconfiguration in Section 2.1. Section 2.2 introduces the concepts of
relational databases. Finally, Section 2.3 outlines the related work in database acceler-
ation.

2.1 Field Programmable Gate Arrays

FPGAs implement a 2D mesh of programmable resources with configurable intercon-
nect wires. Implementing our module library (see Chapter 4) often required careful
consideration of the underlying FPGA fabric to achieve higher efficiency or reduce
resource cost. The programmable FPGA primitives include 1) Configurable Logic
Blocks (CLB) which provide the main FPGA logic, 2) Digital Signal Processors (DSP)
which provide specialized arithmetic, 3) on-chip memories such as distributed mem-
ory, BlockRAMs, and UltraRAMs.

For the basic software layer in our database acceleration system, we use the FPGA
Operating System (FOS) [115, 116] on Xilinx Zynq UltraScale+ FPGA. More pre-
cisely, we target the largest FPGA that FOS currently supports (the Xilinx ZCU102).
To employ partial runtime reconfiguration we utilize tools such as GoAhead [13],
TedTCL [118], and BitMan [89].

27
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2.1.1 FPGA Primitives

Configurable Logic Blocks

The main processing resources in FPGAs are Lookup Tables (LUTs), which are lo-
cated in CLBs [124]. LUTs provide small memories to implement Boolean functions
by looking up truth tables for a given input. In Xilinx UltraScale+ (US+) FPGAs,
LUTs are implemented as two 5-bit address and 1-bit data memories with an optional
multiplexer. They can be configured as 5-bit input 2-bit data or 6-bit input 1-bit data.
Additionally, CLBs provide Flip-Flops (FF) to enable insertion of pipeline stages and
accelerated carry chains module that optimizes adder and multiplier implementations.

Digital Signal Processors

To improve the implementation of multiply operations, US+ provides dedicated columns
of DSP modules [127]. DSPs provide a hardwired multiplication operator followed by
a configurable Arithmetic Logic Unit (ALU) that implements addition, subtraction,
and all boolean operations. This feature can be used in various operating modules and
was utilized by our large utility arithmetic module (see Section 4.1.4).

FPGA on-chip memory

FPGAs usually do not have access to caches 1 but rather have Direct Memory Ac-
cess (DMA) by connecting to an external DDR memory controller or implementing a
DDR memory controller inside the FPGA. To optimize the implementation and execu-
tion of accelerators, FPGAs intend the use on-chip scratchpad memories that provide
precise access latency, high throughput, and relatively low capacity. Xilinx US+ pro-
vides three types of on-chip memories:

Distributed memory : A selective subset of the available LUTs in the FPGA fabric
are LUTM. The configurability of LUTM resources is a superset of those of
LUT resources. LUTM extend LUT providing a write port to the small 64×1-
bit or 32× 2-bit memories, thus enabling them to be used as small dynamic 8-
byte memories [124]. LUTMs have the advantage of an asynchronous read port,
which also enables direct asynchronous integration with compute. We utilize
LUTMs in our modules throughout the implementation of our module library,
but most notably to hold reference data in our filter module (see Section 4.3).

1Xilinx Zynq FPGAs can use the ARM APU caches through ACP AXI port
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BlockRAM : These memories are implemented in dedicated memory columns in the
FPGA fabric. They realize true dual-port 36 Kbit memories that are highly versa-
tile [126]. The two synchronous access ports have individual clocks and separate
programmable data width (i.e. the two ports can virtually treat the same memory
as a memory of different depth-width organisation). Moreover, the dedicated
resources support various address collision handling methods, built-in resources
for memory cascading, and converting the memory into a FIFO. BlockRAMs
are key components for implementing our sort and join modules. Also, we use
BRAMs to translate between the shell clock domain that provides the I/O infras-
tructure and the accelerator clock domain.

UltraRAM : Similarly to BlockRAMs, UltraRAMs are also implemented as dedi-
cated memory columns in Xilinx US+ fabric but are less versatile. They im-
plement a 288 Kbit memory as a 4096x72-bit memory [126]. The cascading
resources are applicable only for certain configurations and the provided two
access ports use a shared clock and execute sequentially, thus not supporting
address collision. Additionally, UltraRAM resources are only available in the
largest and most expensive FPGA chips and are in rather limited supply. How-
ever, in future implementations of our proposed system for such devices, most
of our components that utilize BlockRAMs will benefit from utilizing the larger
UltraRAMs.

The introduction order of the three types of memories is sorted in ascending order by
their capacity and descending order by their flexibility and availability. The inverse
proportionality between flexibility and capacity outlines the available trade-offs in the
selection of proper resources when designing FPGA accelerators.

The FPGA resources are organized into clock regions. In UltraScale+ devices, a
clock region defines a fixed height of 60 CLBs, 24 DSPs or 12 BlockRAMs.

Interconnect

In addition to the compute and memory resources, FPGAs provide a programmable in-
terconnect. The interconnect implements multiplexers for the available on-chip wiring
between compute and memory resources. The routing fabric is mostly homogeneous
regardless of the resources available which is important as this enables the synthesis
of partially reconfigurable modules that can also be relocated to different parts of an
FPGA than originally implemented.
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Figure 2.2: Xilinx Zynq UltraScale+ memory subsystem uses AXI interconnects be-
tween FPGA (PL) and hardwired memory controller [125, 5].

2.1.2 FPGA Operating System

The FPGA Operating System (FOS) proposes an Acceleration-as-a-Service (AaaS)
approach that can utilize heterogeneous compute [115, 116, 117]. It currently sup-
ports two FPGA boards: Xilinx Ultra96 and Xilinx ZCU102. As Figure 2.1 shows, on
ZCU102 FPGA, FOS implements 4 PR regions of one clock region height and iden-
tical size and resources. The system can also provide a combination of neighbouring
PR regions as larger a single larger PR slot [114]. FOS originally targeted only High-
Level Synthesis (HLS) to allow seamless programmability of the FPGA together with
the CPU [90, 112], however, FOS also supports the acceleration using RTL accelera-
tors [116]. FOS was used in this project as the foundation software layer for accelerator
integration (see Section 4.2).

2.1.3 Xilinx Zynq UltraScale+

Xilinx Zynq Ultrascale+ systems are being deployed for exascale computing [67], edge
hubs [59], and other embedded devices due to their tight and efficient integration of the
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ZCU102 Ultra96
FPGA XCZU9EG-2 XCZU3EG-1
BlockRAM36K 912 216
DSP 2,520 360
Logic Slices 34,260 8,820
Processing System Cortex-A53 + R5 Cortex-A53 + R5
APU Frequency up to 1.5GHz up to 1.5GHz
Level 1 Cache 32 KiB 32 KiB
Level 2 Cache 1 MiB 1 MiB
Bank Organisation 4 Bank Groups × 4 Banks each 2 Ranks × 8 Banks each
DDR Capacity 4GB 2GB

DDR throughput
2400 MT/s × 64-bit

= 19.2 GB/s
1066 MT/s × 32-bit

= 4.264 GB/s

Table 2.1: Platform specification for ZCU102 and Ultra 96 board.

host system with an FPGA fabric for acceleration. The Zynq UltraScale+ systems im-
plement a hardwired DDR memory controller into the Processing System (PS) part of
the die. The ARM system-on-chip, which consists of processors, AXI interconnects,
and the memory controller is identical for all Zynq UltraScale+ devices [125]. Fig-
ure 2.2 shows a simplified view of the connections between programmable logic (PL),
ARM Cortex-A53 (referred to as APU), and the memory controller. These connections
are also the key point of interest to FPGA developers. Zynq US+ devices provide eight
128-bit AXI ports, each capable of up to 300 MHz. They are divided into four types,
depending on their cache coherency:

High-Performance (HP) ×4 : no cache coherency

High-Performance Coherent (HPC) ×2 : I/O coherency

Accelerator Coherency Port (ACP) ×1 : I/O and L2 cache coherency

AXI Coherency Extension (ACE) ×1 : full coherency

In total, there are four types of memories available in Zynq Ultrascale+ systems: 1) in-
fabric memory (which consists of block RAMs and distributed memory), 2) Cortex-
A53’s level 1 and level 2 caches, 3) on-chip scratchpad memory (256KB on-chip
memory that is tightly coupled with the Cortex-R5 processor), and 4) off-chip DDR
memory. This means that depending on the application and the memory used, state
information is located inside the CPU, inside the scratchpad memory, inside the pro-
grammable logic, or in external RAM. There also exist other components between PL
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and the DDR memory controller (see Fig 2.2): Translation Buffer Unit (TBU), Multi-
plexers, a Display-port, a Full Power Domain DMA engine (FPD DMA), and Quality
of Service (QoS) buffers. These can potentially affect the behaviour and achievable
memory throughput of hardware accelerators. However, these are often not consid-
ered by the developer as they exist inside the ARM SoC and Xilinx’s Vivado does not
provide direct control over these components.

Commonly used FPGAs are the Xilinx ZCU102 (XCZU9EG) due to the large in-
terest for exascale deployment [3] and the Ultra96 (XCZU3EG) due to its wide avail-
ability and low cost. Table 2.1 lists the key characteristics of their memories.

2.1.4 Partial Runtime Reconfiguration

The concept of building a pipeline at runtime to tailor to the needs for a specific prob-
lem has existed for decades [119, 37]. Building custom pipelines at runtime requires
the utilization of the partial reprogrammability capabilities of the FPGAs. Runtime
reprogrammability has also led to the proposal of DPGAs, which are FPGAs that can
hold multiple bitstreams at once and allow for very fast context switch [23, 24]. Al-
though PR techniques and applications have been studied for so long, vendors have
yet to provide solutions to many remaining challenges. For example, Xilinx supports
tools for partial reconfiguration that split the design into fixed PR region and static
part [128]. Every minor change in the static part (e.g., updating an IP) is followed by
the requirement that all PR modules have to be resynthesized. Additionally, all PR
modules cannot be relocated at runtime to other PR regions with the same resource
footprint. This drives vendor tools unsuitable for our system.

This work utilizes GoAhead [13] together with a TCL library [118] to define PR in-
terfaces and guide place & route tools to produce relocatable modules with predefined
interfaces implemented as floating wires in a regular pattern. The module bitstreams
get relocated using BitMan [89]. Using these tools allows for the definition of an in-
terface to be used for dynamic module stitching at runtime.

2.2 Relational Databases

Relational databases have been proposed for the first time more than half a century
ago [22] and are the most widely used organisation of data in databases since. Re-
lational databases organize the data into a grid of columns (also called fields) and
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rows (also called records, tuples). All rows in a table hold the same types of data and
those types are defined by the columns of the table. The term relational expresses how
multiple tables within the database can be retrieved in a linked manner. Tables in re-
lational databases tend to have one column that holds the table’s primary key, which
is highly utilized in data storage, ordering, and row identification. Some tables also
implement one or multiple columns storing secondary keys, which form relations to
the primary keys of other tables (thus relational database).

Although database queries can be implemented using imperative languages [47],
most relational Database Management Systems (DBMS) use the widely accepted Struc-
tured Query Language (SQL) standard [44] as an interface to the database. The lan-
guage provides constructs to insert, retrieve, modify, and delete records as well as
change the structures and relations of tables. However, the available systems that im-
plement SQL do not fully follow the standard as they introduce custom query operators
and/or do not support all definitions of the standard [44, 107, 82]. The large query com-
plexity is apparent when observing the wide range of operators and constructs in the
SQL standard [44] as well as the complex FSM required for its parsing [94]. However,
our system can focus on accelerating the most used and compute-intensive operators in
analytical subqueries, while other operations will be executed in software. Typically,
mandatory operators in analytical subqueries on relational databases are restriction and
join with other common operators being sort, aggregate, and arithmetic. The proposed
system accelerates restrictions by researching a large utility filter module (see Sec-
tion 4.3). In terms of join, we focus on accelerating equi-joins, since they are typically
utilized in relational databases to join tables by their primary and secondary keys (see
Section 4.5). Sorting is part of the SQL toolset and is often used in order to present
the query results in a specific order. However, sorting is a vastly important opera-
tion in big-data query execution, since it is a required step in sort-merge-join which
is more scalable than hash-join [110]. Additionally, grouped aggregations are suitable
for sort-aggregate implementation on FPGAs [26]. Since sorting is a costly operation,
but it is widely required in query acceleration, this work researches the field of large
utility high-performance FPGA sorting (see Section 4.4). Finally, the use of arith-
metic is present within result delivery as well as calculating filter conditions. Arith-
metic modules are not complex when implemented in streaming systems as they are
straightforward to be pipelined and have no feedback loops. However, the large utility
methodology for implementing general operators such as arithmetic is also researched
in this work (see Section 4.1.4).
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For evaluation, we select the TPC-H decision support benchmark due to its broad
industry-wide relevance, queries operate on large volumes of data, and are more com-
plex than most OLTP transactions [108]. TPC-H is an online benchmark where sys-
tems may not optimize the DBMS for specific queries prior to their execution [79].
TPC-H is a widely accepted benchmark and the most notable argument against TPC-H
is that it is a difficult benchmark for query optimizers due to its uniform data distri-
bution [79]. However, this work does not look into query optimizers and, in terms
of operator acceleration, the uniform data distribution can only give an advantage to
hash-based operators, which we do not implement.

Our system currently lacks integration of parser and optimizer, thus we select a
single query that we parse manually to be implemented in a dynamic stream processing
system (see Section 6.3). TPC-H Query 19 is ideal to test the proposed system as it
has medium to strong complexity for aggregation, join, and expression calculation. It
also requires the cooperation of all identified major operators: filter, join, arithmetic,
aggregate, and sort. At the same time, it is straightforward to parse with no major
optimisations for subqueries [17], which does not put us in advantage or disadvantage
due to our manual query parsing.

2.3 Database Acceleration

CPU

In general, traditional software implementations of DBMS can be compute-bound de-
pending on query complexity. To solve this, researches have been exploring the uti-
lization of Single Instruction Multiple Data (SIMD) co-processors of modern CPUs.
SIMD accelerators provide a great increase in computational resources. Utilizing
(4-16)-way SIMD co-processor has resulted in up to 3.3× higher performance than
conventional CPUs in executing database queries [134, 21, 91]. However, these ap-
proaches optimise mostly for selected workloads and tend to put high stress on the
CPU caches which can prevent their scalability to wider SIMD vectors.

Another approach to increase the performance of traditional CPUs is by utilizing
manycore systems for database acceleration [49, 109]. Similar to SIMD, these algo-
rithms are suitable for acceleration for a subset of database operators. Not all tradi-
tional optimizations can be applied to SIMD and manycore implementations because
algorithms with large control overhead or shared global structures may not optimally
map to parallel implementations (e.g., hash table generation).
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GPU

GPUs provide greater memory bandwidth, parallelism, and compute resources than
CPUs. However, similarly to CPU SIMD, GPUs suffer from selective adaptability
of algorithms to implement. As accelerators with local memory, GPUs can suffer
from large data movement between memory spaces. Bingsheng He proposed a GPU
query executor that achieved up to 30% speedup on TPC-H over an optimized CPU
implementation [38]. GPUs can also use the system main memory directly, but mostly
fully streamed algorithms have to be used to maximize the benefits [50].

FPGA

The research on database acceleration using FPGAs looks back on a two-decade-long
history [85, 99]. Traditionally never changing queries could be accelerated using FP-
GAs by synthesizing optimized hardware for a particular query. For instance, Glacier
can compile queries into synthesizable VHDL code that can be used to generate a
hardware accelerator for a given query [73, 74, 75]. Malazgirt et al. propose using
high-level synthesis tools to compile SQL queries into FPGA bitstreams [60]. Xil-
inx also supports the Vitis Database Library, which allows the implementation of SQL
queries as C++ code that then gets implemented using HLS [133]. Similar methods or
handwritten RTL code can result in an energy-efficient and high-throughput design for
a particular query. However since large designs take hours for synthesis, this approach
is not applicable for the acceleration of queries known only at runtime.

Another approach is to implement static accelerators that can be initialized with pa-
rameters at runtime to accelerate common query operations. IBM’s Netezza platform
provides a commercial storage system, where FPGAs are integrated between mass
storage devices and host servers and enable data restriction, (de)compression, and re-
ordering operations [29]. Similarly, Swarm64 augments PostgreSQL [107] to utilize
FPGAs for data permutation, (de)compression, and filtering [106]. These approaches
have been very promising due to the limited I/O of mass storage. With the recent roll-
out of cheap and fast NVMe SSDs, however, the significantly larger FPGA costs are
rendering this approach less economically viable. Xelera is another company that pro-
vides commercial acceleration in the field, but they focus only on database analytics
and data hashing [56, 122]. Sukhwani et al. propose a CPU+FPGA query execution
system, where the FPGA accelerates data (de)compression as well as restriction op-
erations [104]. Ibex is a proposed storage engine that can accelerate restriction and
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grouping operations before parsing the requested database tables to the software [121].
Casper et al. propose a system that implements acceleration for sort and merge join
operations as well as field masking and reordering [19]. Salami et al. propose the
AxleDB system which implements filter, sort, join, and aggregate modules forming a
stream processing ring [98]. This approach for query acceleration can lead to good
throughput and energy-efficiency results when the queries are fit for acceleration but
usually tends to provide limited parameterization. Additionally, statically reserved re-
sources lead to imbalances between reserved resources and required query operations
at runtime. This approach also increases challenges with designing a system that can
support most of the available SQL operators, as it requires statically placing and rout-
ing hardware for every supported SQL operation. In summary, static solutions com-
monly intend to incorporate an over-provisioning of resources that we can overcome
using reconfigurable accelerators.

2.3.1 Dynamic Database Acceleration on FPGAs

The idea of building execution pipelines at runtime from dynamically implemented
modules is relatively new [40]. The ReCoBus allowed the dynamic building of stream
processing pipelines at runtime by placing encapsulated modules implementing the
custom interface [53, 52]. It allowed the execution pipeline to be constructed using
modules of varying number, size, and placement [81]. Techniques such as providing
module footprint variants have been proposed to minimize the external fragmentation
when dynamically building execution pipelines [120]. The GoAhead project took over
in providing a toolchain to support implementing partially reconfigurable modules for
dynamic pipeline building [13].

In 2012, Jensen proposed a stream processing system to accelerate database data
filtering and string matching by building the execution pipeline at runtime from dy-
namic modules [48]. Meanwhile, Dennl et al. proposed a similar system for arith-
metic, compare, and boolean operators [25]. Later, Dennl et al. added aggregations
to the system [26]. Becher et al. introduced merge join, linear sort, and merge sort to
the system and showcased the achieved high energy efficiency [11]. Becher et al. also
proposed the use of a bloom filter to decrease the number of records prior to join oper-
ations [16, 12]. Later Ziener et al. proposed a full system that also adds hash joins and
other support modules [135]. The complete system proposes merge sort, merge join,
and hash join as part of the static system and four PR regions that can accommodate
arithmetic, boolean, compare, aggregate, linear sort, and reorder PR modules.
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Most recently, Vesper proposed another approach for a dynamic database acceler-
ation system [118]. Vesper introduced means to encode virtual streams that allow the
reuse of the PR datapath for time-multiplexing, thus can stream several different tables
in the same run. The work is mostly focused on the partial reconfiguration aspects of
such a system and does not provide designs and evaluations for most database aspects
and operators.

2.3.2 Discussion

FPGAs have been shown to provide database acceleration. Dynamic stream process-
ing is the state-of-art approach for executing runtime-known problems, while utilizing
runtime-known resource pools. Despite the advances in dynamic stream processing,
we identify three key areas that need improvement:

Dynamic stream processing interfacing: A significant constraint of the system pro-
posed by Ziener et al. [135] is the passive stream interface between operators
that is not able to support multiple stream sources simultaneously or PR modules
with active operation (see Section 3.2.3). This forces the authors to implement
merge sort, merge and hash joins in an overprovisioned manner as part of the
static system. Since these key operators are part of the static system, the authors
also have to implement multiple fragmented PR regions around them, instead
of one large PR region. This allows the placed PR modules to work on either
the inputs or outputs of the static accelerators. While Vesper [118] proposes a
method of encoding streams and achieves multiple active modules, the work is
still insufficient to support all main operators (e.g., it cannot support merge sort
operator). We solve these challenges by proposing a new Dynamic Stream Pro-
cessing Interface (DSPI, see Chapter 3). DSPI satisfies the requirements of all
main operators (see Section 3.2.2). What is more, state-of-art work in dynamic
database acceleration [135, 118] have not proposed means for straightforward
software integration, while DSPI enables seamless memory-mapped register in-
tegration (see Section 3.3.4).

Module library: In the state-of-art system proposed by Ziener et al. [135], the method-
ology of implementing small operators as PR modules leads to large internal
fragmentation, while often queries that suit FPGA acceleration are complex
queries with large operator requirements. We propose improved accelerators
with incorporated large utility methodology during design and implementation (see
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Chapter 4). This methodology is suitable for general operators (see Section 4.1),
but also for specialized operators such as our proposed DNF filter module (see
Section 4.3), which lets us improve both resource requirements and achieved
throughput (see Section 4.3.4). While the authors in related work [135] exem-
plify an 8-way static merge sorter, we enable a 64-way merge sorter (8× more
sequences merged at once) implemented as a PR module in a part of a FOS
ZCU102 PR slot (see Section 4.4). Additionally, they propose an one-to-many
join module, and while this is sufficient for most real-world queries, this thesis
proposes a many-to-many merge join operator (see Section 4.5).

Elastic operators: The concept for resource elastic operators has been briefly dis-
cussed by Vesper [118]. However, while a topology for resource elastic merge
sort operator is proposed, it is ambiguous how to integrate it into the system us-
ing the proposed PR interface. What is more, the proposed merge sorter achieves
small utility and is fragmented into three different PR modules (buffer, linear
sort, and tree sort). State-of-art work on resource elasticity has been targeting
monolithic problems with forced OpenCL workgroup parallelism [114, 117].
However, the presented approaches are not suitable for dynamic stream pro-
cessing and especially for database acceleration with its heterogeneous opera-
tor and data requirements. This thesis enables the application of resource elas-
tic techniques to dynamic stream processing exemplified on database accelera-
tion (see Chapter 5). It discusses the approaches for achieving resource elas-
ticity in stream processing (see Section 5.1) and the expected benefits (see Sec-
tion 5.1.3). Finally, the work applies the techniques to three common database
operators: 1) filter (see Section 5.2), 2) sort (see Section 5.3), and 3) join (see
Section 5.4). Resource elasticity will then allow a runtime system to allocate
available resources to the operators such that the system maximizes overall per-
formance. For example, we can stitch three resource elastic 64-way merge sort
operators in ZCU102 FOS slot and achieve 192-way merge sorting (see Sec-
tion 5.3.3), while the system proposed by Ziener et al. [135] exemplifies only an
8-way static merge sorter (24× fewer sequences merged at once).



Chapter 3

Dynamic Stream Processing Interface

This chapter introduces a PR-capable dynamic interface to be used by processing el-
ements for seamless operation and integration when stitched at runtime. First, we
evaluate the hardware capabilities and accelerator requirements:

• FPGA acceleration is commonly bottlenecked by the memory subsystem. To
maximize our understanding for efficient memory use and achieve large effective
memory bandwidth, we study quantitatively the memory subsystem of our target
FPGA family (see Section 3.1).

• Stream processing accelerators have a large range of interface requirements such
as data rates and stream addressing capabilities. We study these requirements to
aid the design of capable interface (see Section 3.2).

With the consideration of our findings, we propose our interface and protocol for dy-
namic stream processing in Section 3.3.

3.1 Memory Analysis of Modern FPGAs:
Requirements and Expectations

Xilinx Zynq Ultrascale+ systems are being deployed for exascale computing [67], edge
hubs [59], and other embedded devices due to their tight and efficient integration of
the host system with acceleration fabric. With the extensive growth of the FPGA fab-
ric in the recent generation of programmable chips, many acceleration problems have
their computational needs saturated. On the other hand, most accelerated problems

40
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nowadays suffer from a lack of sufficient memory throughput or substantially large la-
tency [32, 95, 100, 63]. This challenge holds true especially for streaming applications
where the achieved external throughput is key to acceleration. The main causes of data
starvation in most systems are not necessarily the lack of corresponding hardware re-
sources and capacity, but insufficient awareness of the underlying system components
when designing for FPGA acceleration. Due to many abstraction layers including
caches, naturally, the software community in computer sciences has grown to be less
aware of the organisation and complexity of the underlying memory systems. How-
ever, this is not the case when utilizing hardware resources such as FPGAs, where
developers tend to have direct access to softcoded or hardcoded implementations of
DRAM controllers. Providing this control can often backfire due to the large com-
plexity of these subsystems [28]. Due to the lack of relevant studies of the memory
organisation, performance and best practices for the state-of-art FPGA systems (Xilinx
Zynq UltraScale+), it was of necessity to research the field [63].

Overall, an accelerator developer usually expects the following behaviour from the
memory system:

1. Same type of AXI ports should show the same performance behaviour.

2. Increasing burst size should improve both read and write performance until it
saturates (a logarithmic-like relation).

3. Increasing the number of AXI ports to memory should increase total memory
throughput linearly or sub-linearly.

4. Memory behaviour should be similar across different boards with the same mem-
ory controller except for the highest throughput achievable from the DDR mem-
ory available on a particular board.

5. Multiplexing in the PL and PS should exhibit similar throughput behaviour ex-
cept for the higher latency overhead posed by the soft-logic AXI multiplexing.

6. Sequential memory access patterns should provide considerably higher perfor-
mance than random access patterns.

3.1.1 Experimental Setup

In our experiments, we consider two widely available Zynq UltraScale+ boards - a
ZCU102 Evaluation Board and an Ultra96. Our prime objective for evaluation is the
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DDR memory alone as in most cases caches are useful only for the CPUs due to their
small size. This is because using on-chip memory as a scratchpad memory in the pro-
grammable logic (PL) commonly provides better control, throughput and latency for
accelerators than caches. Furthermore, the memory performance can become more
unpredictable due to the interference caused by applications running on CPUs and the
accelerators in PL. The goal is to examine memory effects that preliminary relate to
accelerators located in the PL part of the system but that operate on DDR memory
connected to the ARM SoC. We, therefore, do not examine any caching effects. The
analysis of available bandwidth from the Cortex-A53 and Cortex-R5 cores have al-
ready been researched [8].

Appendix A.3 shows our detailed analysis of the memory subsystem. We describe
the hardware and experimental setups. Then we run the experiments and collect and
analyse the results.

3.1.2 Experimental Results: Conclusions and Best Practices

To extensively study individual parameters, our evaluation is based on synthetic and
real-world applications with varying parameters such as the number of AXI ports,
combinations of AXI ports, burst sizes, frequency, access patterns, address space or-
ganisation, multiplexing in PL vs PS, and Quality of Service. In general, our findings
show that 1) 4 out of 6 common assumptions about memory behaviours do not hold and
the remaining 2 do only in certain circumstances (see Section 3.1 and Appendix A.3),
2) the achievable peak throughput is 92.5% and 75% of the theoretical DDR through-
put for Ultra96 and ZCU102 respectively, and 3) the default memory behaviour across
boards, as well as the AXI ports of the same type on same board, can be very different.
Moreover, a case study showed that just by performing our general conclusions (listed
below) for memory optimization, an accelerator performance can be improved as much
as 46% [63]. This shows that optimising the memory for the cloud and edge environ-
ments, as well as embedded systems in general, is of prime importance. In particular,
the following general conclusions can be drawn for when working with Zynq Ultra-
Scale+ systems:

• Using all AXI HP ports does not always guarantee the highest read and write
throughput. Some AXI combinations perform better than others.

• The same ARM DDR controller chip and AXI interface on different boards can
lead to different memory behaviours based on the pre-programmed QoS and
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priority settings. It is recommended to set these parameters explicitly for the
applications.

• Read operations are prioritised heavily over write operations. While this does not
necessarily hurt performance, having read-bound accelerators with write-bound
accelerators will put the latter at a major disadvantage.

• On average, 128 and 192 Byte bursts often provide near peak throughput.

• Multiplexing AXI in programmable logic (PL) with AXI SmartConnect IP can
provide better performance distribution than multiplexing in the ARM SoC at
the cost of higher latency and use of FPGA logic (28% for Ultra96).

• Using large burst sizes reduces the throughput overhead of multiplexing AXIs in
PL to almost negligible.

• Using higher frequency in programmable logic allows better utilisation of mem-
ory throughput but the benefits depend on AXI combinations and DDR memory
characteristics.

• It is desirable to use large burst sizes for accelerators in multi-tenant environ-
ments for minimal throughput overhead due to rapidly changing access patterns
at the DDR controller.

Considering these results, the designers of multi-tenant FPGA shells are forced
to take action about careful management of not only DRAM allocation, but also al-
location and management of the available memory bandwidth. We show that it is
relatively easy to implement an accelerator that steals or corrupts the available per-
formance for other users in an unmanaged environment. We use these results for the
implementation of accelerators and efficient packing of the database data into memory
transactions. The results have also contributed towards improving the FPGA Operating
System (FOS) [116, 117], which our system targets.

The complete set of results (4800 data points of 50 seconds runtime each) and the
released benchmark are publicly available1 in order to allow the research community to
exploit our observation for, in many cases, free performance tuning in terms of FPGA
logic.

1Graphs, data, hardware, and tutorial located at github.com/kmanev/ZynqUSp-AXI-Speedtest
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Figure 3.1: Due to high diversity in operations, there are stream modules that can
generate any of {0, 1, Many(M)} output packets from {0, 1, Many(N)} input packets.

3.2 Stream Processing Elements I/O Requirements

Processing Elements (PEs) that operate on streamed data can have a range of inter-
face requirements. Key considerations need to be taken in order to accommodate ac-
celerators with varying consumer and producer rates of records and specific data re-
quirements. Evaluation of possible operators based on effective data rates and stream
capability requirements is fundamental for the definition of an efficient and effective
dynamic interface.

3.2.1 Rates of Produced and Consumed Data

One method to classify modules is by observing their data consumption and generation
rates in the system. Considering the case of provisioning an equal throughput capacity
on the input and output sides of each module, data-bound modules can be input-bound,
output-bound, or balanced (equally bound on both input and output interfaces). Addi-
tionally there exist operators that are fully data-dependent and their behaviour can be
approximated prior to execution mostly by using profiling data. Common groups of
modules with respect to their I/O ratio are shown in Figure 3.1. The figure expresses
classification based on how many output records are generated per amount of input
records.

There are seven identified input-to-output ratios:

Zero-to-Zero (0:0) Modules that do not consume or produce data packets. Instead,
their functionality is to observe all packets passing through.

Example: Performance Monitoring Unit (PMU), statistics collection
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One-to-One (1:1) : Modules that require stream inputs, apply computation to the
streamed data and pass the data to the output. Some of these operators (filter,
arithmetic, permutation) can stream the data through while applying their corre-
sponding computation by implementing static pipeline stages. Their integration
into a streaming system is rather trivial due to the lack of requirements for com-
plex internal data management. Others (sorting) also do have a constant ratio
between consumed and produced data but might require more complicated in-
ternal data structures and computation. This is caused by the blocking nature of
many sort operators.

Example: arithmetic, filter, permutation, sorting

Zero-to-Many (0:M) : Modules that generate data based on initialization parame-
ters. They do not require stream inputs during runtime. Such modules can have
arbitrary complexity depending on their functionality.

Example: random data generation, prime number sequences

One-to-Many (1:M) Modules that generate 1 or more output packets per input packet.
Such modules are output-bound. Generally, these modules need to implement
internal buffering mechanisms for incoming input packets to avoid data hazards
in scenarios of output congestion.

Example: SQL UNION ALL

Many-to-Zero (N:0) Modules that consume all data, compute and then the data is not
needed to be forwarded to the output. At the end of execution, the host CPU
retrieves the results by reading the module’s memory-mapped registers.

Example: Global SQL aggregations: count, min, max, average

Many-to-One (N:1) Modules that consume 1 or more input data packets, compute
and output a single data packet. Such modules are input bound and need to
buffer input sequences only if the module is compute-bound.

Example: Group by SQL aggregations: count, min, max, average

Many-to-Many (N:M) Modules with highly unpredictable ratios. The I/O ratios of
these modules are data-dependent. Generally, they will need to buffer input
packets to avoid data loss in cases of output congestion.

Example: SQL Join
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3.2.2 Amount of Tables Addressed by Accelerator Modules

On the contrary of how much data do modules produce or consume, we can sort them
by how many tables do they produce or consume. It is not of any significance for this
classification whether these tables are the input tables, result tables, intermediate tables
stored in volatile memory, or intermediate tables that only exist as such in the form of
direct streams between different computations.

Modules that do not produce data naturally work on zero output tables and similarly
if they do not consume data they work on zero input tables. These cases are not of
interest in the current grouping as they do not pose a large implementation challenge.

One-to-One (1:1) Almost all modules fall into this group. Naturally, even modules
that have strictly data input- or output-bound behaviour usually still work on
only one table.

Example: aggregations, arithmetic

Two-to-One (2:1) A very prominent special case is the combination of two input ta-
bles into one output table.

Example: merge join

One-to-Two (1:2) Another special case can be observed for splitting a table into two.
This can be observed in the filter operation. The reason why the filter allows
the splitting of the input table in two is that this enables a filter module to act
as a selector for the application of further operations, rather than simply a data-
omitting processing element.

Example: filter

Many-to-One (M:1) One of the more difficult cases is having a large number of tables
that a module operates on. Very wide merging can be observed in large utility
merge sorting and can stretch to thousands of tables [61].

Example: merge sort

One-to-Many (1:M) This scenario poses difficulty similar to the previous one. Very
wide splitting can be observed in the hashing phase of streamed hash joins and
can also reach thousands of hash collision tables. Additionally, it is observed in
widely used algorithms such as k-means clustering.

Example: hash join (hashing phase), k-means clustering
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As observed in this classification, there are special cases that require careful consid-
erations to handle. More prominently the M:1 and 1:M cases can reach up to thousands
of intermediate tables. The interface definition needs to consider all special cases and
enable their seamless operation and integration.

3.2.3 Active and Passive Stream Modules

When observing the behaviour of processing elements, a pattern for data consum-
ing and producing emerges. We can quantify operators into two distinct classifica-
tions: 1) active modules that do produce and/or consume data streams, and 2) passive
modules that do not drive the data stream.

Active Modules

Active modules implement data-dependent functions. These modules need to be aware
and keep track of aspects of their corresponding streams of interest and control the
smooth dataflow by managing the provided control signals. Many database operators
fall in this group: sort, join, aggregate. One key aspect in the implementation of these
operators is that they require local buffers to hold a certain amount of input data before
their algorithms produce an output. These modules are considered to be the main
drivers of the data movement in a streaming region. Another characteristic of active
modules is that their operation can be compute-bound, which requires dataflow control
between communicating modules to accommodate for the computation speeds.

Passive Modules

These modules execute their operations at the interface speed. Examples include arith-
metic, filter, permutation. Designing these operators as passive allows for many re-
source optimisations. Usually, these modules do not need to be aware of details about
the dataflow, rather they simply apply their operation on their stream(s) of interest.

3.3 Proposed Dynamic Stream Processing Interface

The definition of the Dynamic Stream Processing Interface (DSPI) is key to enabling a
variety of operators from the database query execution field to be mapped into partial
reconfiguration streaming regions. Moreover, the general concepts behind the structure
of the DSPI should allow for mapping virtually any other application that is suitable
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Figure 3.2: DSPI dataflow topology: credit allocation instructions move in the direc-
tion output-to-input (right to left), while streamed data moves in the opposite direc-
tion (left to right). Purple represents credit allocation links, while orange represents
streamed data links.

for stream processing. To solve the problem, many fundamental requirements need
to be considered in designing the interface as well as the modules: 1) data rates (see
Section 3.2.1), 2) table addressing needs (see Section 3.2.2), 3) general behaviour and
concepts of memory subsystems (see Section 3.1.2 and Appendix A.3), and 4) un-
complicated software integration. Ziener et al. proposed and implemented a dynamic
interface for database acceleration [135], however, the dataflow management is fully
external to the modules, thus it allows only for passive partially reconfigurable mod-
ules (see Section 3.2.3). Vesper proposed a concept for such an interface where the
partially reconfigurable modules can control the dataflow using stall signals [118].
This allows for active modules to be implemented. However, precise management of
stall signals has to be considered in order to avoid data hazards due to a module stalling
while incoming data is in flight. Moreover, this approach does not fit all requirements
that modules can have (see Section 3.2.2) as it does not support operators that can
address many tables (most notably merge sorting).

3.3.1 Dataflow Topology

The proposed interface uses the concept of virtual streams where the same physical
wires are used to transfer multiple logical data streams. The proposed interface im-
plements a shared datapath that enables many data streams to be mapped using virtual
streams. At runtime, the modules can be programmed to operate only on specific
streams while passing through all other data to the succeeding part of the PR region.
The dataflow model is similar to a Kahn process network [31]: consuming opera-
tors have to report any free space in their input buffers and producing operators listen
to these reportings and produce output data accordingly. This is composed using a
streaming topology that requires the active modules (see Section 3.2.3) to request data
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to the preceding active modules in the system on the same stream. The requesting is
done through an Instruction (described in Section 3.3.6) sub-interface that is routed in
the opposite direction of the main datapath. This behaviour is shown in Figure 3.2,
which implements the same example as from Figure 1.2. The request signals propa-
gate unchanged through all modules on the way to their targeted module (which can
include the input from DDR).

3.3.2 DSPI Signal Definition

Table 3.1 lists the physical definition of DSPI. A reset signal propagates only in the
direction from the DMA module towards the other accelerator modules. Data trans-
action signals propagate from the DMA module towards the module that reverses the
direction and back to the DMA module. The four Instruction signals propagate the
same route and opposite direction as data.

Transactions

The transaction type (depicted as Type in Table 3.1) signal is a two-bit bus that im-
plements a 1-hot encoding (for 0-cost decoding) selection between data and control
packets. The definition of the bus signals changes based on whether data or control
transaction is selected. Additionally, control packets can have two ways of addressing
a target module: relative and absolute. Absolute addressing uses the same methods
for module identification as normal data transactions. It is used, for example, to mark
the end of stream (EOS) whenever all data of a stream has been processed. Addi-
tional use is to provide direct memory access to partially reconfigured modules in
the stream pipeline (see Section 3.3.5). The challenge is how are modules initialized
with parameters after bitstream reconfiguration. Different bitstreams could have dif-
ferent codes hardcoded in order to distinguish the target for control transactions, but
this would not work if the same bitstream is used multiple times in a resource elas-
tic fashion. For this reason, DSPI allows relative addressing in control transactions.
Relative addressed packets address the modules depending on their physical position
in the pipeline (see Section 3.3.4). Independently of the data and control transactions,
the system implements Instruction transactions in the opposite of the stream’s direc-
tion (see Section 3.3.6).
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Signal name
Width,

bits

Example
width,

bits
Definition & encoding

clk 1 Operational clock
rstn 1 Cascading reset
Data X×32 512 Data
Last 1 Indicates last clock cycle of packet

transaction

Type 2

Indicates packet type:
00 - Idle
01 - Data transaction
10 - Control transaction

StreamID Any 4 Enumerates the virtual streams
ChunkID Any 5 Enumerates the data transfer cycles

within a packet
ChannelID Any 10 Secondary enumeration of streams

solving for many-stream problems
State Any 32 State encoding between modules.

Suitable for transferring intermediate
states in resource elastic chains.

Instruction
Type 3

Indicates control type:
000 - Idle
010 - Request
011 - Skip
101 - Repeat
110 - Restart
111 - Finish

Instruction
StreamID Same as StreamID Targeted virtual stream

Instruction
ChannelID Same as ChannelID Targeted virtual channel

Instruction
Parameter Any 16 Parameter of the instruction

Table 3.1: Signal definition of our Dynamic Stream Processing Interface (DSPI). The
interface definition and usage examples can also be found at https://github.com/
kmanev/DSPI.

https://github.com/kmanev/DSPI
https://github.com/kmanev/DSPI
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3.3.3 Data Transactions

Data transactions carry the streams’ contents through the operating modules (e.g.,
stream table records in database systems). When Type selects data transaction, there
are six signals that encode the data, routing, and state information:

Data : The main datapath that holds the transferred contents is a multiple of 32 bits
in order to provide easy integration with software and also with hardware re-
sources (e.g., a Xilinx BRAM36K can be arranged as 1024x32 memory).

Last : A single bit denoting the last clock cycle of a multi-clock-cycle packet transfer.

StreamID : The data bus is shared for all operators placed in the PR slot (orange ar-
rows in Figure 3.2 represent different data virtual streams sharing the datapath).
The StreamID is used by modules to identify the currently transferred packet
and determine whether they apply their operation to the streamed data (which
can also mean consuming the packet). Thus it is used to label: 1) which module
consumes the packet, 2) which module produced the packet, 3) what are the data
types in the packet, and 4) which modules apply their operation to the data.

ChunkID : Considering applications such as databases, most real-world problems
work on records that are significantly larger than any achievable datapath width.
Thus, it is needed to utilize multiple clock cycles when streaming such data.
ChunkID is used to enumerate the different chunks of data transferred. The
modules can use that to selectively apply their operations in different chunks of
the transferred record. Additionally, even if modules apply their operations to
all chunks in order to increase utility, they can use ChunkID in order to select
between various operation parameters.

ChannelID : In most systems, the number of utilized virtual streams will typically be
smaller than what StreamID can encode. However, stream operators can have
requirements for the data being split into hundreds or thousands of streams (see
Section 3.2.2). ChannelID extends StreamID by further providing enumeration
for virtual streams/tables. While StreamID defines the type of data, origin, and
destination, ChannelID enumerates hundreds or thousands of additional virtual
streams/tables that share the same StreamID parameters.

State : This bus is used for sharing custom intermediate data states between composed
modules in a resource elastic chain (see Chapter 5).
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Algorithm 1 Relative address handling in operating modules
1: if ChannelID != 0 then
2: ChannelID← (ChannelID - 1)
3: Output packet
4: else
5: switch Operation do
6: case Read 32-bit :
7: Data← registers[State]
8: Output packet of type Read 32-bit Response
9: case Write 32-bit :

10: registers[State]← Data
11: case ...

3.3.4 Module Memory-Mapped Registers

Memory mapping of module registers is the most common solution to ease the software-
hardware collaboration and integration. The proposed interface enables memory-mapped
registers by utilizing relative addressing. To mark a control transaction as being rela-
tively addressed, the most significant bit of ChunkID is set HIGH. The rest of ChunkID
are used to further identify what is the sub-type of the transaction. Transaction exam-
ples include read a 32-bit register, write a 32-bit register, read a 64-bit register, write
a 64-bit register. There are twelve more encodings left unused that can be mapped to
any other custom relatively-addressed control transaction needed by the target system.
In this type of control packets, the Data and StreamID signals can be used to transmit
the actual payload.

The addressing is done using the ChannelID and State signals. ChannelID en-
codes which module is addressed, while State provides the register address within the
module. When the DMA module converts a read/write request from the host CPU,
ChannelID encodes the position of the target module in the PR slot (0,1,2 etc.). Op-
erating modules then use that as a counter and decrement it every time such a packet
passes through until the value becomes zero (see Algorithm 1). In the case of memory-
mapped registers read operation, the module returns the data in a read response control
packet that has absolute addressing towards the DMA, while write operations require
no acknowledgement.

To further optimise modules we omit any multiplexing on the wide datapath and
vertical routing in these operations. This is done by replicating the transferred data
along the full height of the interface (i.e. for a 32-bit write operation, we set the 512-
bit datapath to have 16 copies of the write data). This way only the DMA module
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would need to master the full datapath, while all other modules can selectively choose
any 32/64-bit integer. Of course, while this solves the issue for register write operation,
it would not solve the same problem in read responses. To solve the problem for read
responses, we use ChannelID to encode which 32/64-bit integer of the datapath holds
the actual data response, and the DMA implements a 32/64-bit 16/8:1 multiplexer. This
enables small operators to mitigate any data positioning costs by using any data field
on the datapath for both read and write register operations.

3.3.5 Module Direct Memory Access

Direct memory access may be required by many operators that need large amounts
of intermediate storage. For example, hash join operators might build hash tables in
DDR memory. The proposed interface enables memory-mapped registers by utilizing
absolute addressing. To mark a control transaction as being absolute addressed, the
most significant bit of ChunkID is set to LOW. The rest of ChunkID are used to further
identify what is the sub-type of transaction. Example transactions include read 32-bit
register response, read 64-bit register response, End of Stream (EOS), 512-bit DMA
read, 512-bit DMA write, 512-bit DMA read response. There are ten more encodings
left unused that can be mapped to any other custom transactions needed by the target
system. In this type of control packets, the Data, StreamID signals can be used to
transmit the actual payload.

The direct memory read/write control packets use the Data bus to hold the bulk of
the data. The optimisation described in Section 3.3.4 can be reused in direct memory
access as well. For read operations, the module marks StreamID that will later be used
in the read response packet generated by the DMA module. ChannelID is used for read
length for operations that span across multiple cycles (i.e., memory read burst length).
For write operations, StreamID is unused. ChannelID is potentially used as an input to
the wide data field multiplexers in the DMA module. The length of write transactions
is defined by asserting Last signal in the last clock cycle of the write data transfer.
Additionally, the State signal is used to hold the target memory address.

3.3.6 Dataflow Instructions

DSPI enables systems where active modules (see Section 3.2.3) produce and consume
credits based on Kahn Process Networks (KPN) semantics [31]. This credits based
network is similar to PCIe protocol [57] and also the AXI protocol [5]. One major
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difference over the AXI protocol is the lack of stall mechanisms in DSPI. In order to
reduce interface overheads, there is no busy indicator in DSPI. Similarly to KPN, the
modules request data only when they have sufficient storage available in input buffers
or they have the ability to process the data at line speeds. Since this can have a latency
impact compared to a more aggressive approach (like AXI) when accessing external
memory, the DMA module needs to provide data prefetching which will eliminate
large DDR access latencies. On the other hand, when modules allocate credits to other
modules in the PR region, then the latencies are typically in the range of less than ten
clock cycles and this poses no data starvation hazard.

The stream instructions are implemented by using only four signals (see Table 3.1).
StreamID and ChannelID are used as metadata that enumerates the receiving module of
the instruction. The instruction parameter signal provides size to the instructions (i.e.
how many times is the instruction executed). It enables the combining of multiple
instructions of the same type which greatly reduces the stress on the instruction sub-
interface path. DSPI enables five instructions to control stream flow:

Request : This is the most commonly used instruction to control the flow. It allocates
credits to preceding modules on a particular virtual stream. Modules that operate
at line speeds and have IO data rates that do not increase the size of output
data compared to input data (1:1, N:0, and N:1 in Section 3.2.1) can allocate
credits freely based only on the credits they have (example of such module is
aggregation). Other modules would typically need to ensure sufficient free input
buffer space before allocating credits. Request instructions use the instruction
parameter to announce the number of credits allocated.

Skip : This instruction is used to move ahead in the stream without streaming the data
itself. It does not interfere with credit allocation, rather it moves data pointers
such that they skip ahead. A stream is a continuous flow of data and a module
can choose to skip certain elements and continue processing with the proceeding
data. Skip instructions use the instruction parameter to announce the amount of
skipped data records.

Repeat : Similarly to the skip instruction, repeat does not conflict with the credit
system. This instruction is used to announce the need to restream the last data
elements. A module can choose to rewind a certain number of elements and con-
tinue processing with the restreamed data. Repeat instructions use the instruction
parameter to announce the number of repeated data records.
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Restart : This instruction announces the need to repeat the streamed data from the
beginning of the data sequence. It does not utilize the instruction parameter.
Modules can have the need to operate on a data stream in multiple runs, thus
they can announce this instruction to restart the corresponding stream.

Finish : This instruction announces that a module has completed computation on a
particular virtual stream and its streaming can be dropped. Stopping the data
flow on a particular virtual stream could also be implemented by stopping credits
allocation. However, announcing the finish instruction allows for full awareness
in other modules of the global state, possibly enabling relevant functionality or
optimisations. Similarly to restart, this instruction does not utilize the instruction
parameter.

The need for instructions

The implemented instructions in DSPI allow for full flexibility over moving stream
pointers and allocation of credits. This allows DSPI to be used for general stream
processing applications beyond database acceleration. The database acceleration ex-
ample showcases the use of the available instructions. Since the request instruction is
used for credit allocation, all active modules need to implement its usage. The other
instructions have more limited usage but are key nevertheless.

The skip instruction can be utilized when accelerating queries that have SQL OFF-

SET, which is an SQL command to skip a certain number of records. This SQL com-
mand is largely used when organizing query results into multiple pages and the SQL
query is re-executed with a different OFFSET value for each requested page.

The repeat instruction is key when implementing merge join operator (see Sec-
tion 4.5.1). Due to the module’s limited buffer sizes, the repeat command is used to
allow the module to join streams that are highly skewed with large amounts of repeat-
ing keys. When the module detects the overwriting of skewed keys in its buffers, it
can use the repeat command to reacquire the overwritten keys for joining proceeding
records (see Section 4.5.1.

The restart instruction is key when implementing the merging phase of hash join
operator (see Section 4.5.2). Due to the nature of the operator, it requires to stream the
whole temporary table of hash collisions for a certain hash value in order to join them
with the other stream. For this purpose, the collision tables would need to be fully
streamed multiple times and this requires that they are properly restarted each time.
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The finish instruction is key when accelerating queries that have SQL LIMIT, which
is an SQL command to output only a certain number of records. Additionally, modules
can announce that they have finished computation on a certain stream. For example,
when the merge join module already receives an end-of-stream packet on one of the
two merged streams, it can announce on the other stream that data is no longer needed
to be streamed.

3.3.7 Evaluation

The interface is a key component that is often overlooked. The optimal design needs to
accommodate all possible use cases while maintaining minimal resource requirements.
Table 3.2 shows an overview of key features, capacities, and costs of DSPI compared
to two other interfaces proposed in the state-of-art related works.

Features

All stream interfaces allow for passive modules as they require no special control.
However, active modules have certain requirements to be allowed to control the dataflow.
Ziener et al. utilize a PR region that has external dataflow control, which prevents using
active modules [135]. Thus this forces modules such as sort, join to be implemented
in the FPGA static system leading to overprovisioning or underutilization issues. On
the other hand, Vesper proposes flow control using stall signals [118]. This allows for
each module to announce its readiness to receive data. However, utilizing stall wires
limits the maximal number of possible virtual streams. DSPI mitigates this issue by
adopting the widely used credit-based system, providing instrumentation for module-
driven flow control. Provided ability for bulk allocation minimizes the stress on the
credit system.

Modules require assigning of execution parameters at runtime. Vesper [118] pro-
poses a hardware mechanism to stream in module parameters in a special initialization
phase. This feature does enable runtime setting of parameters, but does not allow for
result extraction and requires an additional layer of drivers for software integration. On
the other hand, DSPI provides a mechanism that allows for memory-mapped registers
inside the PR modules. This eases the integration process, allows for register readback,
and even allows for register operations during the actual stream processing runtime.
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Ziener et al.
[135]

Vesper [118] DSPI

PR-ready ✔ ✔ ✔

Passive modules ✔ ✔ ✔

Active modules ✗ ✔ ✔

Multiple streams ✗ ✔ ✔

Direct memory access
from modules ✗ ✔ ✔

Maximum number of streams — 16 16×1024
Memory mapped registers

in modules ✗ ✗ ✔

Proposed/achieved
datapath width, bits 128 256 512

Control overhead, bits — 99 87

Data-to-control ratio — 2.6 5.9

Table 3.2: Comparison between proposed DSPI and the proposed interfaces in related
work. Active modules can regulate data movement, while passive modules cannot (see
Section 3.2.3). Requirements for the number of streams are of high complexity for
some operators (see Section 3.2.2).
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Wire cost

The proposed stall mechanisms in the state-of-art related work [118] do not scale due
to the requirement of one additional wire per additional virtual stream. On the other
hand, DSPI has logarithmic wire complexity, thus the proposed example implementa-
tion allows for 1024× more virtual streams while maintaining smaller wire overhead.
Additionally, the proposed interface can be easily extended with minimal overhead
increase. Moreover, due to the optimised nature of the interface and modules, DSPI
manages a 2.26× better data-to-control wire ratio.

Logic cost

The stall mechanisms in related work [118] require early stalling to prevent losing data
items that are in flight in pipeline stages from source to destination modules. This early
stalling will result in the underutilization of the available module buffers. Alternatively,
the modules could implement hazard avoidance by providing a banking mechanism of
in-flight data whenever the destination module decides to flag the corresponding stall
signal. The proposed credit-based system in DSPI omits such stall mechanisms and
their associated costs and limitations.

Since the interface will be used in each module, its implementation cost should
be minimal. The explicit mitigation of any handshaking protocols in DSPI enables
modules to pass data/control packets freely at minimal cost while utilizing fully the
provided input buffers of active modules. Thus in DSPI all modules can selectively
implement or omit interface functionality and the corresponding logic overhead. The
only mandatory implementation is lines 1-3 from Algorithm 1 to allow relative ad-
dressing of modules. All other presented control packet requirements and encodings
can be implemented as needed. Thus if features such as direct memory access are not
used by a module, the module can simply omit all associated logic for producing and
consuming the direct memory access control packets. This does not affect the other
modules since if an operation is not implemented to be recognised then the module
can simply pass through data unchanged to the module’s output side.

Another consideration in DSPI is the simplicity of decoding transactions in the
FPGA logic. For example, the type signal in the interface definition only uses a one-
hot encoding that requires only a single LUT input for enabling operation.
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3.4 Conclusion

DSPI is an efficient and versatile protocol for dynamic stream processing modules
that can be stitched at runtime. It implements a credit system methodology where PR
modules allocate tokens, which enables precise dataflow control leading to maximiz-
ing buffer usage and efficiency. The interface is adaptive and most functionalities are
selectively omitted by every module to minimize overheads, with only one feature be-
ing mandatory (see Section 3.3.4). While state-of-art system proposed by Ziener et
al. [135] does not support active modules instantiation in the PR region and requires
the presence of static accelerators, DSPI utilizes virtual stream encoding and enables
all operators to be implemented in the PR region. DSPI also achieves 13% fewer
control wires when compared to state-of-art stream processing interface [118]. While
minimizing the wire and logic overhead costs of DSPI, it achieves the addressing of
1024× more virtual streams (see Section 3.3.7). It also enables key functionality such
as easing software integration when using memory-mapped registers inside the PR
modules.

We use DSPI to implement our stitchable accelerator modules (see Chapter 4). This
interface allows us to implement a dynamic merge sort module (see Section 4.4), which
would not have been possible when using existing interfaces. Moreover, we utilize
DSPI to enable resource elastic modules (see Chapter 5). For example, composable fil-
ter module utilizes the DSPI State bus to pass intermediate data between modules (see
Section 5.2). A composable merge sort module utilizes the DSPI ChannelID bus in
a cascading fashion to merge more sorted sequences at once (see Section 5.3). Addi-
tionally, the deliberate avoidance of asynchronous signals in DSPI allows for seamless
partial reconfiguration boundary crossing (see Section 6.2).



Chapter 4

Module Library

This chapter introduces the key design factors for implementing scalable streaming ac-
celerators with large utility. To minimize resource requirements and maximize through-
put, we implement modules in a thin and tall form factor (see Section 4.1). We also
provide efficient implementations with large utility for the key database operators:

• We implement a filter module that utilizes standard Boolean normal form to
evaluate Boolean expressions (see Section 4.3).

• We implement a dual-phase sorting strategy of using a linear sort module to
generate sorted sequences, followed by one or multiple stages of merge sorting
to produce the final sorted result (see Section 4.4).

• We implement a merge join module that can perform many-to-many join opera-
tions (see Section 4.5).

Considering their key role in FPGA acceleration, we implement these modules with
considerations for resource elasticity, which we describe in Chapter 5.

The proposed system is exemplified on the ZCU102 FOS platform and our custom
streaming protocol is adapted to the standard FOS AXI interface through our DMA

module (see Section 4.2). The system was also designed with consideration of Xilinx
Virtex FPGAs of the current and next generations that provide more FPGA resources
and higher memory bandwidth through DDR4 memory channels. By utilizing a PR
region of two clock regions height and targeting 512-bit datapath and 300 MHz op-
erating frequency, this system provides sufficient high speeds to utilize most FPGA
memories and exemplifies the high scalability of the design. The described modules
are implemented in our system prototype and evaluated against a TPC-H case study in
Chapter 6.

60
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4.1 Design Factors

While FPGAs can greatly accelerate many algorithms, FPGA operation is also associ-
ated with overheads. When the FPGA and the host CPU share the same address space,
any data movement overheads are omitted. This is, of course, limited to when the tar-
get data is already available in RAM. The overheads imposed from external storage
have the same impact when accessed for CPU, GPU, or FPGA acceleration. Thus, the
overhead of any external data movement is not key in designing accelerators and must
be handled rather at a system-wide level.

Compute capacity

FPGAs suffer from configuration overheads, which can render dynamically reconfig-
urable systems inferior. In order to instantiate an FPGA design to accelerate a problem,
the host system needs to ensure that the provided FPGA benefits will overcome the
associated overheads. Ideal targets for FPGA acceleration consist of operations that
will result in a compute-bound software execution. In such cases, modules with low
computational capabilities tend to need multiple instances in order to satisfy the larger
problem requirements, thus increasing the overall resource cost. We anticipate that
it is beneficial to provide module designs that enable more complex behaviour (e.g.,
filter module that can compare multiple fields in parallel, rather than comparing only a
single field).

Module scalability

One of the key benefits of FPGA acceleration is the ability to implement dataflow ac-
celerators with deep, complex, and customizable processing pipelines. However, for
achieving FPGA acceleration, we also need to provide high streaming throughput. Ac-
complishing a high throughput requires both high operational frequency and a wide
datapath. Designs, even in modern FPGAs, achieve about 100-300 MHz, which is a
low frequency compared to modern CPUs’ 4-5 GHz. To compensate for the relatively
low frequencies, the designs need to implement a wide datapath (several hundred to
thousands of wires) to show performance improvements. Often designing scalable
modules can be non-trivial and its achievability varies depending on the target algo-
rithm and the design approach. We target the implementation of scalable modules,
meaning that our modules are able to operate on such wide datapaths, while also meet-
ing our high operating frequency target (300MHz in our prototype system).
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Utility

Many large problems require several runs through the FPGA chip (e.g., sorting). Com-
pletely independently of throughput, the total execution time scales linearly with the
number of data runs through the chip. Additionally, often external throughput is a
limiting factor for FPGA acceleration. Therefore minimizing the number of runs is
of utter importance to increasing the effective speedup. Stitching more operators in
one run will benefit the minimization of the total number of runs, however, that is lim-
ited by the amount of available resources. On the other hand, increasing the amount
of compute capacity per amount of resource requirements will allow for higher com-
pute per FPGA run and minimize the total number of runs. In this thesis, we define
utility as the amount of useful compute accomplished per unit I/O. Therefore, utility
is a key measurement for designing and evaluating modules and their suitability for
acceleration.

4.1.1 FPGA Resources

Understanding the organization of the FPGA resources and the resource footprint of
the synthesized PR modules is beneficial to achieving high scalability and utility. As
described in Section 2.1.1, the FPGA fabric provides diversity in available on-chip
compute and memory resources. However, this diversity is highly organized (see Fig-
ure 2.1) as all resources within a column are equal. In fact, the fabric of Xilinx Zynq
UltraScale+ FPGAs is organized into double-columns that consist of two columns (one
CLB column and one CLB, BlockRAM, or DSP column) with an interconnect column
inbetween (see ①⑤②, ④⑤③ etc. in Figure 2.1). Double-columns provide a more
generalized view of the FPGA resources. Additionally, the switch matrices in Xilinx
FPGA interconnect provide a general routing architecture with identical wires to other
switch matrices, independently from the type of the surrounding FPGA resources. Us-
ing these regular identical wires is suitable for straightforward wire interface definition
for PR modules.

All compute and memory FPGA resources of the ZCU102 can be described by
three types of double columns: 1) LUTM+LUT (■M), 2) LUTM+DSP (■D), and 3) Block-
RAM+LUT (■B ). Additionally, there are specialized columns that implement I/O pins (■I/O )
but considering their position and functionality, they are not of interest to the stream
processing system. Figure 4.1 visualizes the available double-column resources in
the ZCU102 board (featuring a Xilinx ZU9EG FPGA). The targeted PR slot by the
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database system consists of a DMA module that is located next to the standard FOS
PR interface. This module provides interface translation between the AXI master and
AXI slave ports that the FOS system implements and the custom DSPI interface on the
other side where the actual accelerators are to be placed. The accelerator part of the PR
slot implements three equal large resource footprint blocks (■B■D■M■M■B■D■M■D■M■M) with
an additional column at the end that can be used for reversing the stream direction.

4.1.2 Shape, Resources, Positions for Proposed Modules

Figure 4.1 outlines module resource targets in the form of strings to be mapped as a
string matching problem for module placement planning [34]. Resource targets have
various possibilities for placement inside the PR region. Thus we study also how
many place positions does each target module footprint have. Most available resources
in our target device and PR slot map in three different placement locations, due to
being a unique substring in the three large repeating patterns (■B■D■M■M■B■D■M■D■M■M).
This regular pattern, however, does not necessarily correspond to other devices of the
same family (like Xilinx VU9P) or future FPGA fabrics, thus it is important to gen-
erate resource footprint graphs for the target family and study the available module
footprints and their placement options. Xilinx VU9P FPGA is widely utilized in data-
centers (e.g., in Amazon AWS F1 instances [2]). VU9P devices provide more diverse
and targeted resource footprints. For example, the largest resource footprint with no
dedicated blockRAMs on ZCU102 is ■D■M■D■M■M, while on VU9P it is ■M■M■M■M■M■M■M■D■M .
Future prototypes of certain large modules, such as our filter module (see Section 4.3),
on datacentre FPGAs will not underutilize the BlockRAM resources (reserve Block-
RAM resources without utilizing them for compute).

Resources

The available resources of the proposed slim modules are rather scarce, especially
when compared to the total amount of resources available in the large modern FPGAs.
Table 4.1 shows the primitives available in the three available basic double columns.
The resources available are scarce when taking into account the width of the targeted
datapath. Providing only a single pipeline stage on both stream directions requires
1,198 Flip-Flops, which is a considerable amount.
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Pattern Positions LUT LUTM Flip-Flop BRAM DSP
■M 15 1,920 960 3,840 0 0
■D 9 960 0 1,920 24 0
■B 6 960 960 1,920 0 48

■B■D 6 1,920 960 3,840 24 48
■D■M 9 2,880 1,920 5,760 0 48
■M■M 6 3,840 1,920 7,680 0 0
■M■B 6 2,880 960 5,760 24 0
■M■D 3 2,880 1,920 5,760 0 48

■B■D■M■M■B■D■M■D■M■M 3 14,400 7,680 28,800 48 144

Table 4.1: Available FPGA resources in common module layouts.

Module shape

Ideally, small operators have a small resource impact. While data streams horizontally
through the two clock regions height of the targeted PR slot, the width of the modules
is considerably smaller than their height. Figure 4.2 illustrates the available module
shapes depending on the resources utilized. That figure preserves the visual ratios
of the resource representation as shown in Xilinx Vivado. The clear pattern of slim
tall modules restricts the possibilities of vertical data movement in the modules with
a smaller resource footprint. This requires additional consideration when implement-
ing modules that target small resource impacts. State-of-art work implemented simple
modules (such as arithmetic, comparison, boolean evaluation) using vertical multiplex-
ers for both the input fields and the output field [135]. This design was feasible for the
targeted system, which consists of only four 32-bit data fields in the PR region as their
multiplexing was more relaxed. However, the design does not scale well and vertical
multiplexing has to be avoided as much as possible when targeting wide datapaths.

4.1.3 Module Resource Footprint Variants

Building the PR region using presynthesized modules also results in a packing prob-
lem. A bad solution to this packing problem results in a fragmented PR region that is
underutilized because of resources left unused between modules.

There exist multiple sources for module placement constraints. Depending on the
executed subquery, the most notable constraint is for preserving the order of chained
operations. However, in cases of multiple stream chains (e.g., two streams operated by
chains of modules before a join operator) the module placement can be more relaxed as
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Figure 4.2: Resource shapes of common strings in their original aspect ratio in Xilinx
Vivado device view: ① - ■B■D■M■M■B■D■M■D■M■M, ② - ■B■D, ③ - ■D■M, ④ - ■M■B , ⑤ - ■M■D, ⑥ -
■M■M. Modules are thin and high. Data streams are horizontal. The vertical movement
of data should be minimized to prevent congestion of vertical routing resources.

there are no ordering constraints between the modules from the different stream chains.
Since most resource strings can have rather limited placement positions, in order to
enable optimized module packing, the system might require the implementation of
modules with the same utility into multiple different resource strings (i.e. physically
implemented modules offering the same function but with a different resource column
layout). Increasing the implemented number of resource strings that are targeted for a
module configuration, increases the number of possible module placement positions.
This can lead to a reduction in fragmentation and ultimately to elimination of data runs
through the FPGA (if more FPGA resources can contribute to an acceleration task)
which effectively increases performance.

The optimal choice of resource footprint variants of a module is a process that
is dependent on factors such as the module resource requirements. We can utilize a
Pareto-Front approach by identifying the nonoptimal module footprints. If a module
can be placed and routed for a certain resource placement string X, all possible resource
placements where X is a substring, are not on the Pareto-Front and can be omitted.
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Figure 4.3: Resource graph in targeted ZU9G PR region.

This can be looked up in a graph that implements a resource tree of the available
substrings in a PR region. When finding a successful placement, all ancestor nodes
in the tree are suboptimal. Implementing all Pareto-Front placements of a module can
be achieved with Algorithm 2. Figure 4.3 implements the resource tree of the ZU9G
PR region (ZCU102) that visualises the resource substrings of module footprints. The
same tree would have to be created when targeting PR regions in other FPGA devices.

4.1.4 Designing for Optimal Operators

Most compute modules in such systems have little resource requirements relative to
the capabilities of modern FPGAs and implement into slim module footprints. Ziener
et al. propose arithmetic, compare, aggregate, and boolean modules that require only
two double columns to place [135]. This is achieved due to the narrow datapath of only
four integers, where the ALU is easily accessed by all four integers. Naive or cascaded
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Algorithm 2 Function to search all Pareto-Front placement positions (R) for a module
configuration S

1: f unction Place (S)
2: R← NULL
3: Sort all resource strings by length
4: Push all resource strings in Q
5: while(not Q.empty())
6: X ← Q.pop f ront()
7: B← Place&Route(S,X)
8: if B placed successfully then
9: R.push(B)

10: foreach Y in Q
11: if Y is ancestor of X then
12: Q.pop(Y )
13: return R

multiplexer implementations (see Figure 4.4 a-b) are feasible with such limited datap-
ath width. However, as the datapath width scales up to achieve higher throughput, the
naive design results in vertical wiring congestion which requires making the module
wider (and underutilizing logic resources) to accommodate the routing. Cascading the
multiplexing of the input fields results in a scalable solution. However, it still results
in an increased footprint when increasing the datapath width until it saturates.

Distributed computing modules

Although the small module footprints’ lack of vertical data movement results in a lack
of flexibility, the number of available FPGA primitives is still in the range of thousands.
A module with a resource footprint ■M■M still provides 3.8K LUTs and 7.6K FFs, while
many 32-bit operations require only tens of LUTs to implement. Thus implementing
a single 32-bit operation in a module using two double columns results in only 1% of
the resources to be used for the targeted compute functionality.

We anticipate that the use of modules implementing distributed computing along
the wide datapath is well suited for reconfigurable stream processing. Figure 4.4 c-d
visualise the concept of distributing the compute logic inside a slim module. Adopting
this methodology results in multiple benefits:

No vertical wiring : This approach moves the compute to the data, which removes
the need for vertical wiring. As already described and visualized, this leads to a
decreased module resource footprint.
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Figure 4.4: Examples for alternatives for designing compute modules with datapath
width of 8 integers: a) naive: unscalable due to high vertical wiring, b) cascaded
multiplexing: medium vertical wiring, c-d) distributed computing: no vertical wiring.

Increased utility : By replicating the ALU, the module enables multiple data fields to
receive operation simultaneously and thus increasing the module’s utility. Repli-
cating the ALU has no negative resource impact for most operations. For ex-
ample, considering 16 32-bit data fields (for 512-bit datapath) and 15 addition
operators of 32 LUTs each results in only 12.5 % LUT utilisation for the com-
pute and 13.5 % LUT utilisation for the output multiplexing for a total 26%
utilisation for a ■M■M resource footprint.

Additionally, we can decrease the module library size. Implementing a module for
every possible arithmetic, compare, and boolean operation results in a major increase
in the number of bitstreams in the module library. This is worsened when we antic-
ipate the module place and route for multiple resource footprints (see Section 4.1.3).
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However, due to the small nature of the core compute elements, packing them in multi-
functional ALUs is also feasible. This has also the benefit of further increasing the
utility by allowing simultaneously applying different operations on the different fields.
Xilinx DSP blocks implement ALUs with addition, subtraction, multiplication, and
logical operators where the operation can be selected at runtime [7]. Furthermore, Xil-
inx DSP blocks are spread along the vertical direction of the resource column, thus all
data fields have access to different DSP blocks with no vertical routing. This allows the
implementation of an arithmetic module targeting footprints with DSP columns ( ■D )
to achieve efficient, programmable operation with large utility.

The methodologies for distributing the core computation over the datapath do not
apply for complex algorithms (e.g., sort, join) or complex computations (e.g., division).
These special cases should be handled by proprietary modules where corresponding
optimisations and design concepts are to be handled on a per-module basis.

4.2 DMA Module

While the proposed system requires support from a custom dynamic interface (see
Chapter 3), it also aims to utilize standard slots in multi-tenant systems (e.g., FOS).
This is achieved using our DMA module (see Figure 4.5). It is the first-most placed
module, communicates with the external infrastructure, and provides abstractions of
multiple details:

Addressing : Streaming operators require the abstraction of data positioning in main
memory or within mass storage devices. To do this, the DMA module needs
to convert credit allocation commands (see Section 3.3.6) into generated stream
packets onto the PR datapath.

Stream states : The DMA abstracts the state of the tables in memory. Such an exam-
ple is keeping track of the remaining records in a stream and issuing correctly
control packets such as End-of-Stream (EoS). Additionally, DMA implements
the DSPI-defined instructions for controlling the data streaming such as the Fin-

ish command which causes an immediate EoS.

Memory mapped registers : DSPI supports relative addressing to enable memory
mapping of registers located inside the PR modules (see Section 3.3.4) and the
DMA module needs to implement the translation of AXI accesses on its slave
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port to such relative addressed stream packets. What is more, the module pro-
vides cascaded multiplexing for 32/64-bit read response data incoming from the
PR region as well as multicasting of the write data.

Direct memory access : Since DSPI also allows modules to selectively request direct
access to external memory-mapped memories, the DMA module needs to handle
and track those as well to satisfy the requirements of the master AXI protocol.
Eventually, if narrow DMA operations are implemented, they can reuse the same
multiplexing that is provided for the memory-mapped register operations.

4.2.1 Data ordering

Additionally to abstractions, the DMA provides important data organisation functions.
The utilized accelerators can have a wide range of data positioning requirements:

Data positioning : Modules implementing certain complex operators such as sort/join
would often require specific positioning of keys within the wide datapath to
omit global routing thus providing more optimal resource utilization. However,
chances are that the incoming data from off-chip memory does not have the data
positioned as required, thus the data needs to be reordered.

Data duplication : Certain modules might require data duplication. For example, if a
query has a complex filter requirement that implements multiple data compares
over a certain field, then this field might need to be duplicated to accommodate
for distributed compare PEs along the datapath. Additionally, data might need
to be duplicated in cases where it will be used and overwritten (e.g., by an arith-
metic module).

Data projection : Often queries will be targeting only a small subset of the fields of a
table. To remove the overheads of moving excess data that is unused, it needs to
be omitted prior to 1) entering the PR region, or 2) writing back of intermediate
tables in DDR.

Vesper proposes the use of a Benes network to solve this problem [118, 14, 103] as it
achieves a significant reduction in vertical wiring compared to fully populated cross-
bars. However, while this approach provides for perfect data reordering, it is not clear
whether it can satisfy data duplication requirements together with data repositioning
in time and space. Also, it imposes extra difficulty for software to generate routing
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Figure 4.5: DMA module converts between AXI and DSPI protocols and provides
the abstraction of physical data to the accelerator modules. Multiplexing in space is
achieved in both input and output directions through a crossbar. Multiplexing in time
is implemented through fine-grained runtime programmable pointers for reads/writes
to the data buffers. Note: this is a logical representation and physically the data busses
spread throughout the full vertical height of the module.

parameters. On the other hand, Ziener et al. implement two fully populated crossbars
on both sides of a BlockRAM column [135]. This approach requires larger vertical
routing overhead but provides full flexibility of data reordering and duplication. At the
moment, the proposed DMA module implements a single fully populated crossbar and
a single BlockRAM column to multiplex in space and time for both read and write di-
rections (see Figure 4.5). This solution does provide for all possible data reordering. It
also satisfies all possible data reorderings when there is also duplication requirement,
but sometimes requires additional chunks in the streamed record in the PR region,
which can have a negative performance impact in certain corner cases. One major ad-
vantage is the ease at which the crossbar routing (see Figure 4.5) is programmed by the
software. Each 32-bit data word is abstracted as a network packet with programmable
buffer read offset and packet routing destination.

The crossbars hold their route data into BlockRAMs to also enable distinct mul-
tiplexing information for each supported stream and chunk (16× 32 = 512 unique
crossbar configurations in the proposed example).
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Data prefetching

Modern DDR technologies provide relatively low access latencies (see Section A.3),
however, they still pose a performance hazard if not handled correctly. As already
described, the DMA module utilizes BlockRAMs to enable time multiplexing (see
Figure 4.5). It also uses these BlockRAMs to fire multiple DDR read operations si-
multaneously. This results in the filling of the pipelines between the DMA module
and the DDR memory controller, thus fully utilizing the capabilities of the controller
without creating idle cycles. Additionally, since the system implements a streaming
application where the forthcoming data is at known positions, the DMA module also
provides and handles data prefetching. This majorly minimizes the serve latencies for
data requests from compute modules in the PR region.

4.3 Filter

Despite restriction being obligatory operation in virtually any database system, its ac-
celeration using FPGAs is seldomly examined. This work proposes an efficient solu-
tion for database restriction that provides high utility and scalability by utilizing Dis-
junctive Normal Form (DNF) solvers for Boolean expression evaluation [92, 64]. The
proposed filter is also resource elastic (see Section 5.2).

4.3.1 Compare Operations

A stream processing module that applies restriction would need to compare or match
the data elements to a set of pre-initialized reference values. Arithmetic compare re-
quires the support of six main operations: c ∈ {<,≤,=, ̸=,≥,>}. Previous works put
forward modules that each used a single hardwired operation to execute. Although
this suits well a low throughput system as proposed in [135], it would be impractical
for application in our system, as we aim for larger datapath sizes and provide optional
computation on every 32-bit data element in a record. We propose and implement two
hardwired compares (see Figure 4.6 b) and use their results to evaluate a pre-initialized
selection of compare operations using Algorithm 3.

We propose the use of distributed memory (using LUTM) to hold the reference
values as well as the operations to be performed for each data element in each func-
tional ID position (see Figure 4.6 a). Additionally, the module can implement multiple
compare operations for every data element by replicating the compare elements.
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Algorithm 3 Derive Boolean result of a 32-bit compare: X {OP} RefVal
1: bLT ← (X < Re fVal)
2: bEQ← (X = Re fVal)
3: switch Operation do
4: case <: bRes← bLT ∧¬bEQ
5: case ≤: bRes← bLT ∨bEQ
6: case =: bRes← bEQ
7: case ̸=: bRes←¬bEQ
8: case ≥: bRes←¬bLT
9: case >: bRes←¬bLT ∧¬bEQ

4.3.2 Boolean Expression Evaluation

The compare operations produce a true or false response, but in the cases of complex
WHERE expressions using multiple compares, we have to evaluate multiple true/false
responses through a Boolean expression. Different methods for Boolean evaluation
in restriction operations have been proposed, such as using a look-up-table [121, 58,
105], a hardwired Boolean operator tree with programmable nodes [104], or providing
dedicated modules for the Boolean operators [135]. These approaches are not designed
to deal with many input literals (complex Boolean expressions) and/or literals that
are evaluated over multiple clock cycles (as needed for larger records). For example,
using big LUTs for evaluation is limited as it requires 2N bits to store the look-up
table and a method for dividing the problem into multiple smaller LUTs has not been
discussed in [121]. A Boolean programmable tree of operations limits the flexibility of
the enabled queries to be accelerated because it is unable to process Boolean results that
are generated in different clock cycles (from data in different chunks of a record) [104].

As a solution to this problem, we propose a design that adopts Disjunctive Normal
Form (DNF), as a representation of the Boolean expression [92]. DNF comprises
clauses that are aggregated with an OR operation where each clause consists of AND-
ed positive or negative propositional variables (literals) that result from the undertaken
compare and match operations.

A literal in a clause has three possible programmable states for each of the clauses:
positive literal, negative literal, or not existing in this clause. Thus this requires param-
eter storage of two bits per functional ID to encode the usage of a literal in a clause
and then logic to evaluate the result from a compare PE. We propose the use of a sin-
gle LUTM as a look-up table with inputs being the function selector (5 bits) and the
resulting bit from the compare PE, and producing a 1-bit result that states whether the
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Figure 4.6: Architecture of the proposed module for 4 32-bit data elements and 8 DNF
clauses. The design utilizes FPGA LUTMs (see Section 2.1.1) to hold reference data.

particular literal satisfies the particular clause as shown in Figure 4.6 c. These literals
are then evaluated using static AND and OR trees as shown in Figure 4.6 c-d. When the
literal does not exist in the particular DNF clause, it is initialized to produce a Boolean
result of 1 for both result states from the compare. With these optimizations, we shrink
the logic utilization of the DNF structure to requiring only 1 LUTM per literal and an
optimized hardwired Boolean reduction tree.

4.3.3 Support for Large Data Types

The here proposed system is aimed at computing 32-bit data elements, but large databases
in the big-data era have to compute with a large amount of 64-bit data variables as
well (e.g., keys in large relational databases). Therefore we also propose native sup-
port for 64-bit data restriction operations by utilizing the 32-bit compares and passing
their results to the corresponding operation evaluators of their neighbour data element
where the most significant 32-bit value of the 64-bit variable is located. With this, we
support 64-bit compares without increasing the amount of data computation compared
to the 32-bit alternative, by introducing only slightly more complex Boolean logic to
evaluate such 64-bit compares. Algorithm 4 shows the logic integrating both 32 and
64-bit support.

To support larger data types than 64 bits, we split the corresponding data types
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Algorithm 4 Derive Boolean result of a 64-bit compare: X {OP} RefVal
1: HbLT ← (XHigher < Re fValHigher)
2: HbEQ← (XHigher = Re fValHigher)
3: LbLT ← (XLower < Re fValLower)
4: LbEQ← (XLower = Re fValLower)
5: if 32bit Operation then
6: switch Operation do
7: case <: bRes← HbLT ∧¬HbEQ
8: case ≤: bRes← HbLT ∨HbEQ
9: case =: bRes← HbEQ

10: case ̸=: bRes←¬HbEQ
11: case ≥: bRes←¬HbLT
12: case >: bRes←¬HbLT ∧¬HbEQ
13: else if 64bit Operation then
14: switch Operation do
15: case <: bRes← HbLT ∨ (HbEQ∧LSbLT )
16: case ≤: bRes← HbLT ∨ (HbEQ∧ (LbLT ∨LbEQ))
17: case =: bRes← HbEQ∧LbEQ
18: case ̸=: bRes←¬HbEQ∨¬LbEQ
19: case ≥: bRes← HbEQ?(¬LbLT ) : (¬HbLT )
20: case >: bRes← HbEQ?(¬LbLT ∧¬LbEQ) : (¬HbLT )

into multiple 64-bit data types before the generation of the DNF clauses and incorpo-
rating the relation of the sub-types into the logical expression. For example, 128-bit
X < Y can be implemented by using the 64-bit higher(H) and lower(L) parts of the
values similar to the support of 64-bit values from Algorithm 4: X < Y = (X H <

Y H)∨ ((X H == Y H)∧ (X L < Y L)). Strings can be of very large sizes, but most
operations would be comparing for an exact match, thus utilizing the == operator,
which implements a logical AND of the compared subparts (Line 17 in Algorithm 4).
Consequently, AND Boolean operations result in a single DNF clause, and hence do
not increase the complexity of the DNF logical evaluation.

4.3.4 Evaluation

Synthesizing the module to support 32 DNF clauses and 4 compare PEs results in a
module footprint (see Section 4.1) of ■B■D■M■M■B■D■M■D■M■M . This is the largest module
configuration, providing sufficient filter capacity to execute the filtering requirements
in all TPC-H queries. The filter also achieves resource elastic module alternatives that
require significantly smaller resource footprints as described in Section 5.2.
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Resources

Distributed memory, which is used to hold initializing data for the compares and the
DNF propositional variables Boolean evaluation, requires most resources. Since in
the filter design we instantiate directly the LUTMs that told reference data, we can
model precisely the LUTM requirement for a specific filter configuration. For a module
working on N 32-bit data elements, with J compare PEs per data element, and handling
K DNF clauses, the LUTM cost scales as follows:

LUT M = In f rastructureOverhead +N× J× (K +16+2)

where (K+16+2) is a result of the K clause solvers, 16 LUTMs for compare reference
values and 2 LUTMs for compare types. As expected, the module utilization scales

linearly with datapath width.

Throughput

The module synthesizes successfully for the target of 512-bit datapath and 300 MHz
operation frequency. The wide datapath showcases the design’s ability to scale. This
leads to an effective streaming throughput of 19.2 GB/s. The module sustains one pro-

cessed chunk per clock cycle. Considering that any off-chip memory will be required to
support this throughput for both read and write operations, this leads to aggregated I/O
requirement of 38.4 GB/s. This throughput is sufficient to fully utilize most modern
FPGA systems. In cases of higher throughput targets, increasing the datapath width
will result in a linear increase in throughput. Moreover, the minimized critical path
allows for the introduction of additional pipeline stages in most computational sub-
modules, thus allowing for an increased frequency target, which also scales linearly
with throughput.

Utility

The more operations executed per module the better the utility for the given mod-
ule (see Section 4.1). The proposed filter module can be placed alone to execute the
restriction and Boolean evaluation operations in all queries from the TPC-H benchmark
including Q19 [108, 68]. Q19 is the most complex in terms of compare operations and
Boolean evaluation. It implements 28 different compare operations, including a text
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field that is compared to 12 different reference values. The approach of implement-
ing a single field operation per module (as presented in state-of-art work [135]) can
implement only a single 32-bit compare or 2:1 Boolean reduction operations per mod-
ule. This leads to the requirement of at least 74 compare modules to implement the 28
integer and string compare operations (some string comparisons require multiple com-
parator modules). Using the 2:1 Boolean reduction modules, the system would need at
least 73 modules to gather the results of the 74 compare elements. This requires at least
147 modules in total, each of which utilizes two CLB columns (1,280 6-bit LUTs). In
total, 188,160 6-bit LUTs will be needed to place all modules to implement that filter,
which most probably will result in the need for multiple major data runs through the
chip. Since the number of data runs scales linearly with runtime, this significantly re-
duces effective performance. When utilizing our large utility approach, we can place
a single large filter module that accelerates the full query filtering. Our largest mod-
ule uses 7,675 6-bit LUTs (24.5× less than related work) in practice and its module
resource footprint (■B■D■M■M■B■D■M■D■M■M) reserves 14,400 6-bit LUTs (13.06× less than
related work [135]). Other than the 13× improvement in resource cost, our module
implements the filter operation with only one pass of the data through the chip, max-
imizing the effective performance. By all means, a module reserving 14,400 LUTs is
relatively large and not all queries have complex filter requirements, thus we also syn-
thesize smaller filter modules with smaller utility and resource cost (see Section 5.2).

The Boolean expression of Q19 simplifies to 24 DNF clauses. A single module
currently supports up to 4 compares per data element and up to 32 DNF clauses eval-
uation. The capacity of 32 clauses is sufficient to implement Q19, but the issue oc-
curs from the 12 consecutive compares with different reference values over one col-
umn (P CONTAINER). This can be solved by utilizing the duplication capabilities of
the DMA module (see Section 4.2) and replicating that particular field by placing it
two more times in the streamed packets. This results in the field being present a total
of 3 times in the streamed packets and the filter module supports up to 4 unique com-
pares on each replica, thus achieving the total 12 required compares for the Q19 filter.
However, replicating the field can incur a loss in effective throughput. Additionally,
adapting DNF solvers is naturally suitable for resource elastic integration. Using the
module in resource elastic fashion enables implementing Q19 without data replication
required. This is described in Section 5.2.
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4.4 Sorting

Sorting is one of the most widely studied and applied algorithms in the history of
computers [51]. The large attention on the sorting problem has led to many works even
including works that try to achieve the slowest sorting speed [18]. Naturally, sorting
has also been targeted for hardware acceleration for more than half a century [10, 9,
78, 76].

4.4.1 Sorting for Database Acceleration

Sorting is a rather costly operation. Database systems in software deploy optimizations
as often as possible to avoid sorting. For example, software-based database query ex-
ecutors tend to avoid the usage of merge-join and merge-group-by operations by utiliz-
ing hash-based approaches. The hash implementations are suitable for CPU execution
due to multiple factors:

Caches : The caches in modern CPUs are optimized to hide large latencies from semi-
random accesses such as those when looking up hash collisions.

Large control-flow throughput : The high operational frequency (several GHz) of
CPUs enables them to work with rather small data types at a time while still eval-
uating to a significant throughput achieved. This also enables CPUs to benefit
from tailored optimizations utilizing their flexibility (e.g., quick address evalua-
tion and access).

Multicore : Whilst the generation of hash tables requires thread synchronized ac-
cesses, the hash table inference is easily implemented using manycore solutions.
The high level of parallelism benefits this approach for CPUs.

In general, modern CPUs are highly optimized for small random memory accesses and
do provide high throughput when utilizing parallelism.

However, hash tables are not ideally suited for FPGA implementation. Whilst FP-
GAs do provide high throughput computation and memory accesses, they have to be
utilized in a different manner than CPUs to achieve the best efficiency in accelerator
designs. As described in Section 3.1, FPGA memory subsystems require significant
burst sizes to accommodate for the lack of caches and achieve high throughput. This
does not apply well to the small random accesses that are needed for the generation
and inference of hash tables. Additionally, the most optimized FPGA accelerators
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still work at an order of magnitude lower operational frequency than CPUs and ac-
commodating for high throughput requires a rather wide datapath. This results in less
flexibility for semi-random access approaches inside algorithm implementations.

Thus, on FPGAs, algorithms such as join and group-by tend to be more suitable uti-
lizing merge approaches. Using high-throughput hardware sorting followed by merge
join or group-by algorithms avoids small random memory accesses, keeping all data
processing in a stream fashion, also making the approach suitable for future stream
throughput increase.

4.4.2 High-Throughput Sorting on FPGAs

In recent years, the topic of high-throughput sorting has emerged again with the pub-
lishing of the Parallel Hardware Merge Sorter by Song et al. [102]. It was then extended
by, Mashimo et al. proposing the High-Performance Hardware Merge Sorter [65], fol-
lowed by Saitoh et al. proposing the Massive Merge Sorter (MMS) [96] and the Very
Massive Sorter [97]. Most recently, Papaphilippou et al. proposed the Fast Lightweight
Merge Sorter (FLiMS) [83, 84].

These sorters achieve very high sorting throughputs that are significantly larger
than current memory technology can sustain. When targeting a particular platform,
the need to increase utility at the cost of throughput is rather obvious as long as the
throughput of sorting can sustain the memory throughput.

4.4.3 Algorithm for Sorting on FPGAs

Sorting of data that is larger than the available on-chip memory cannot be done with
a single run of the data through the chip. This is by definition, due to the need for
any algorithm to have seen all values at least once before any sorted output can be
produced. The state-of-art approach for FPGA sorting is to split the runs into a single
linear-sort run followed by merge-sort runs [54].

Linear phase

The purpose of the initial sorting run is to convert unsorted data into sorted sequences (L-
way Linear Sort in Figure 4.7). The utility of linear sorters is depicted by the size of
the sequences they can produce. The number of output sorted sequences is the total
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number of elements (N) divided by the utility of the linear sorter (L):

Number = ⌈N/L⌉;Size = L

Larger sequence sizes result in a smaller number of sequences, which consecutively

results in fewer merge stages. The utility of the linear sorters is mostly bound by the
available on-chip memory allocated to the linear-sort module. Utility scales linearly
with BlockRAM requirement.

Merge phase

Following the phase of linear generation of sorted sequences, the hardware utilizes
merge sorting to merge them into larger sequences (E-way Merge Sort in Figure 4.7)
The utility of merge sorters is depicted by the number of sorted streams they can merge
at once. The number of required FPGA runs scales logarithmically with the number of
sorted sequences: number o f runs = logE Sorted sequences. More sequences merged

at once results in a smaller number of runs which increases effective performance.

Sorting complexity

Our algorithm can map the sort problem in space (through the utility of the hardware
modules) and time (through the number of hardware runs). This paragraph considers
the cooperation of a L-way linear sorter and an E-way merge sorter. Considering the
following example: sorting of N elements of size P each using hardware running at
frequency F and sorting R elements per clock cycle. In every linear and merge stages
the whole data has to be streamed through, thus when they operate with the same rates,
they have the same runtime:

Tlinear = Tmerge =
N ·P

F ·R ·P
(4.1)

The total execution runtime of a sorting sequence comprising of a linear sort phase and
multiple merge sort phases is equal to:

Ttotal = Tlinear +
logE

N
L

∑
i=1

Tmerge (4.2)
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Combining 4.1, and 4.2 we can calculate the total sorting execution time as follows:

Ttotal =
N ·P

F ·R ·P
+ ⌈logE

N
L
⌉ · N ·P

F ·R ·P
= ⌈1+ logE

N
L
⌉ · N ·P

F ·R ·P
(4.3)

The sorting throughput is bound by the equation of constants F ·R ·P, which requires
2 ·F ·R ·P external memory throughput to fully saturate the sorters’ input and output
ports. Otherwise, the problem becomes memory-bound and is limited by the available
external throughput T :

Ttotal ≈
N ·P

T
· ⌈1+ logE

N
L
⌉ (4.4)

Achieving a time complexity:

O(N · logE
N
L
) (4.5)

Although, in theory, the time complexity evaluates to O(N logN) (in Bachmann–Landau
notation [6, 55]), in practice, the runtime can be greatly optimized by increasing the
utilities (L and E) of the linear and merge sorters which will each have a logarithmic
performance impact.

4.4.4 Merge Sorting on FPGAs

Traditional FPGA Merge Sorting

Most software algorithms for sorting are not easily applicable in hardware as they
often require much conditional execution and random memory accesses. Merge sort,
on the other hand, is a very promising approach for sorting in hardware. This holds in
particular for external sorting where the problem is too large to fit into RAM and where
the problem and even temporary data is commonly stored in mass storage (e.g., SSDs).
The naive implementation of a hardware sequence merger utilizes a balanced binary
tree structure with almost no control logic (see Figure 4.8 a). The comparing cells are
implemented with processing elements that can sort when meeting two conditions: the
output FIFO is not full and both input FIFOs hold data to sort. If these conditions are
met, sorting takes place from the input FIFOs and (lets say) the smaller value will be
pushed into the output FIFO. The FIFO buffer sizes do not have to be large because
they basically decouple operation from control such that no global control is needed
and each sorting cell is self-timed and controlled by the output and input FIFO fill
levels. Each stage k of such a tree consists of 2k FIFOs and 2k−1 compare units. Thus,
an E-way merge sorting tree consists of 2E−2 FIFOs and E−1 comparators.
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< < < <

< <

<

<

a) Traditional merge sort tree

<

<

b) Proposed merge sort

Figure 4.8: Traditional merge sorters (a) implement a tree of cascaded FIFOs and
comparators. Proposed sorter (b) shares the compare elements in each stage (level of
the tree) as well as compacts the FIFOs into larger blocks with shared read/write ports.

Traditional Merge Sorter Advantages

• This basic approach uses only little control logic and is easy to implement.

• Only fast local communication between processing elements is needed because
every sorting cell is connected to at most three other cells in the binary tree.

• The critical path includes essentially only the key comparison and a 2:1 MUX.

Traditional Merge Sorter Disadvantages

• The linear complexity growth of the proposed binary tree makes it unfeasible for
implementing a design that merges a large number of sequences.

• For FPGA implementations, this design intends to under-utilize the FIFOs be-
tween the stages that would either be implemented using BRAM or distributed
memory primitives (e.g., SRL16 primitives in the case of Xilinx FPGAs) that
could hold much more entries than actually needed.

• When starting the sorting process, all buffers at the input side will request data at
the same time which requires a large amount of resources for the input buffers.
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Optimisation

When analyzing a traditional E-way merge sorter, we can observe the following char-
acteristics which we will exploit for an improved implementation:

• In the steady state where all FIFOs are full, then whenever one output record is
read, only one empty token will be replaced from each of the tree levels.

• Consequently in each level of the tree, only one compare unit is active as well as
one (input) FIFO pull request and one (output) FIFO push request. This means
that it must be possible to implement the sorter cell and the FIFOs using shared
compute and memory resources.

• Additionally, a load unit that would be in charge to fill the input FIFO buffers
will at most receive one refill request per cycle which implies that we don’t need
any complex multi-channel arbitration scheme.

Considering these observations leads to an efficient merge sorter design that shares
compute and memory resources within sorter tree levels [46, 111, 61].

It should be mentioned that the observations apply to decision trees in general
and that much of the work presented in this thesis can serve as design patterns for
implementing such trees efficiently on FPGAs.

4.4.5 Utility of Merge Sorting

Although this work is exemplified for an in-memory database, future works might tar-
get databases of sizes significantly larger than available DDR memory or large prob-
lems that are not in the database field. Thus this section presents the major importance
of utility for general problems of very large data sizes.

Because external sorting has to work on data from mass storage devices where
access (throughput and latency) is relatively expensive (as compared to memory or
even on-FPGA data access), it is of paramount importance to minimize the number
of major runs. We use the term major run to express a major sorting step where the
entire problem is read from mass storage, then processed and finally written again (to
the same or another) mass storage device. A major run may include one or more minor

runs through local memory (e.g., DDR memory) that work on smaller problems. For
example, unsorted data may be read from disk, then passed through a linear sorter
that works entirely with on-FPGA memory, followed by an intermediate small merge
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sorter step through DDR memory which produces a temporary merged sequence that is
merged again by another run through the chip before writing the generated sequences
finally to disk.

If we assume for the previous example a system that is providing an aggregated
disk throughput that allows reading or writing the entire problem in time T , then we
need for sorting at least the time 2 × T × number o f runs. Similarly, the energy
needed for sorting is mostly depending on the problem size and the number of major
runs. Because sorting cannot deliver a result before all input records had been seen
by the sorter at least once, external large problem sorting cannot be accomplished in a
single major run. Consequently, most external sorting approaches aim for two major
runs where in a first run large sorted sequences are generated that are merged (ideally)
in just one final major run. Therefore, external sorting through mass storage devices
takes at least the time 4 × T (for two major runs requiring disk read and disk write).

In order to perform large problem sorting in just two runs (or a few runs), the goal
is not that much to deliver high throughput per run (as long as we can saturate the mass
storage or memory throughput), but on the utility per run.

Because after each major and minor run the produced sorted sequence gets longer,
in particular, the final merge step needs attention as this sort step is normally to be
accomplished with orders of magnitude less memory than needed to store the entire
problem. As a practical example, let us assume that we want to sort a problem that is
1 TB in size and that the first major run generated 1024 sequences that are each 1 GB
long (on disk). When using a high utility merge sorter able of merging those 1024
streams in a single run, RAM is only needed to buffer mass storage access. However,
when considering a minor temporary run using a 32-way sorter cascaded with another
32-way sorter (for effectively sorting 32×32 = 1024 streams), this run would require
memory to store at least 1 TB / 32 = 32 GB in addition to the memory needed for buffer-
ing mass storage access, which would be more DDR memory capacity than available
on most FPGA boards.

For big data sorting on FPGAs, merge sorters with a large number of merged se-
quences are highly beneficial for the subsequent runs. Even Intel’s and Xilinx’s new
FPGA devices with embedded fast HBM memory [27, 131, 130] would not help here
because for external sorting: 1) we are I/O bound by the mass storage devices and
2) the limited (HBM) memory sizes available cannot fit the problem. For example, as
discussed above, to sort 1 TB using 32-way sorter, we need 32 GB of DRAM only for
intermediate data storage which is more than all current HBM sizes available.
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4.4.6 Large Utility Merge Sorter

Top Design

The proposed design of an E-way merge sorter consists of log2 E sorter cells. Each of
these sorter modules is in charge of all the sorting in one of the stages of a traditional
hardware merge sorter implementation. The cells are arranged in a linear fashion,
meaning that cell k (implementing stage k) communicates only with the adjacent cells
k+1 (referred to as the previous cell) and k−1 (referred to as the next cell).

Sorting Cell

Assuming steady state, every stage k of the sorter consists of a single sorting cell that
represents the 2k−1 compare units and 2k FIFOs. While a single combined compare
unit can be used for the sorter cells, we need at least two FIFO elements, because it
requires the content of two different FiFOs for the compare. This imposes an imple-
mentation requiring at least two random access memories for mapping the buffered
data as shown in Figure 4.9.

Logical FIFOs

The logical FIFOs provide an abstraction layer that implements a first-in-first-out mem-
ory with parameterized depth, width, and the number of channels. The module maps
multiple channels to a single shared (simple dual-port) memory. This uses the observa-
tion that for all left and right FIFOs in the traditional merge tree there is only a single
aggregated read per input branch and a single aggregated write operation needed per
clock cycle. To implement the actual logical FIFOs, we use two additional memo-
ries (i.e. essentially register files) for holding the read and write pointers per channel.
The dual-ported memory buffer uses then a concatenation of the channel identifier and
the corresponding pointer for addressing (as we use powers of two for logical FIFO
sizes). With this, a push writes data into the corresponding buffer followed by an in-
crement and update of the corresponding write pointer register file entry. Respectively,
a pop command results in an increment of a read pointer (given by the requested virtual
channel).
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Sorting cell architecture
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Figure 4.9: The sorting cells of the large utility sorter use two virtual banks of FIFOs.

Synchronization

In the traditional tree design, each compare cell checks for space in its output buffer.
However, continuous polling on all channels is not easily possible when sharing one
buffer for multiple mapped FIFOs. To overcome this, upon pop command, stages
generate refill requests to their previous stage. This means that in each stage of the tree
only one input FIFO channel will be pushed and that results in a corresponding refill
request to the previous stage. For a refill request, the corresponding FIFO identifier is
passed to the previous cell.

Initial and Steady States

The previously described scheme demands that the data buffers are already full. We,
therefore, incorporated an initializing phase that fills all sort stages in order before
changing to full streaming mode.
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Flags

The implementation of the proposed design adds one flag bit to each record (which can
most of the time fit into the parity bit of the used BlockRAM buffer). The flags indicate
if a record is finished and not valid. With this, the sorter terminates if all sequences
signal being finished. This also allows the sorter to have channels that stay empty and
allows us to disable individual channels if not all can be used simultaneously (e.g.,
using only 1000 channels from 1024-way merge sorter), hence making the sorter more
generic.

Communication and Stalling

The proposed design does not use request buffers between sorting stages. The sorter
cells themselves consume only relatively few resources (usually less than 800 LUTs),
which allows them to be placed closely together and consequently with small wiring
delays. Not considering request buffers inside the sorting cells results in constant re-
quest serve time. However, there are three stalling sources that are considered.

Firstly, the input side of the design may be stalled by the load unit (e.g., due to
any disk or external memory congestion). The second stall source is respectively at
the output side of the sorter. The design could also stall internally if any of the stages
experience data starvation for a specific channel. The forward stalling is implemented
using a propagating stall signal. Any cell can also backward stall the design by simply
not issuing requests to the previous cells. The first two stalling sources cannot be
bypassed, and are ’desired’ in a sense that they mean that the design fully utilizes the
available memory throughput of the used hardware. The third stalling source can be
eliminated if buffer sizes in each stage are big enough 1 to handle fully skewed data
without causing data starvation in any stage. If this is not ensured, the design needs
additional logic to check whether a request can be served and otherwise stall the sorting
in the hazardous stages.

4.4.7 Evaluation and Graysort Case Study

Evaluating the very large utilities requires (E ≥ 512) more BlockRAMs than available
in the targeted ZCU102 PR slot, thus we also evaluate the design on a Xilinx Virtex
FPGA. Placing and routing the sorter for Xilinx VC709 board achieves utility (E) of

18 tuples per virtual channel per stage is sufficient. This results in a significantly large storage
requirement in the larger stages (hundreds to thousands of virtual channels).
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Figure 4.10: Merge sort integration with DSPI. The module inputs many (tens to thou-
sands) virtual streams and merges them to one. It utilizes only one DSPI StreamID,
but many ChannelIDs to enumerate virtual streams.

up to 8192 whilst maintaining slice resource requirement under 4K and a frequency
above 200 MHz [61]. A case study sorting 4GB of graysort records [33] achieves
81% (75%) of peak dual DDR3 throughput while merging 1024 (2048) sequences in
a single run [61]. For the DDR3 memories on the VC709, we need 2.8 KB memory
bursts to achieve 81% of the theoretical DDR throughput. The VC709 design requires
very large amounts (E × 2.8 KB) of on-chip memory to simply buffer the read oper-
ations. The modern ZCU102 DDR4 achieves 98.5% of maximal AXI performance
requiring bursts of only 192 Bytes (see Section 3.1). This greatly reduces the required
on-chip memory to buffer read operations and allows us to fit a sorter in the limited
small PR modules.

4.4.8 Large Utility Merge Sort for DSPI

The ideal design for a merge sorter to be placed in a streaming system should omit
direct memory access handling from the sort module. Thus the stream implementation
of the proposed merge sorter utilizes the ChannelIDs of the proposed DSPI (see Fig-
ure 4.10 and Section 3.3.2). The DMA module handles the addresses, sizes etc. of the
sorted sequences that are to be merged, providing a full abstraction for the merge sort
module.

Building the merge sort module as a DSPI streaming module for E = 64 maps to a
■B■D■M■M■B■D■M■D■M■M resource footprint (see Section 4.1). While the authors in state-of-
art related work exemplify an 8-way merge sorter built as a static module [135], our
proposed large utility sorter achieves 64-way merging (8× more sequences merged
at once) as a relatively small PR module. In another database engine, AxleDB [98],
a static 16-way merge sorter operating at 3.2 GB/s requires 33K LUTs, 34K Flip-
Flops, and 33 BlockRAMs, while the proposed 64-way (4× better) sorter operating
at 19.2 GB/s (6× better) requires only 6K LUTs (5× better), 7.5K Flip-Flops (4.5×



4.5. JOIN 91

better), and 35 BlockRAMs. The module is bound by the available BlockRAMs in the
targeted PR region, while the module utilizes only 41% and 25% of the LUTs and Flip-
Flops respectively. The achieved resource footprint allows the module to be placed
into three different positions. The sort module is suited for resource elastic operation
as described in Section 5.3. Achieving E = 64 with such a small resource requirement
is non-trivial, however, the key advantage of the implementation is its scalability with
respect to the fabric memory allocated to buffer a larger amount of record data. This
module would benefit from implementation to Xilinx Virtex devices [130], where the
design would be able to utilize UltraRAMs [129] to buffer the inputs and achieve
significant improvement in the number of merged sequences.

4.5 Join

Hash-joins are the preferred target approach for software due to the high memory ac-
cess flexibility enabled by CPU caches. This is due to the random access pattern of
the hash table generation and possibly hash table inference. On the other hand, sort-
merge joins provide sequential accesses to external memory when joining, which is
significantly more suitable for FPGA platforms. Thus merge joins are more suitable
when paired with optimized sorting algorithms. Additionally, often the data is stored
sorted by the relation keys and/or is requested to be delivered in a sorted manner, thus
in these situations, there is no sorting overhead for implementing merge joins. On the
other hand, if considering small tables where the hash tables can fit in the provided
on-chip memories, then the random accesses to off-chip memory are eliminated, thus
providing line-speed hash-join. This is of course seldom the case when targeting large
database problems and in such cases, software query execution would likely outper-
form FPGA acceleration (due to the reconfiguration overheads). In general, hash-join
tends to outperform sort-merge join with small problem sizes, but is less scalable than
sort-merge join (due to handling of hash collisions) and sort-merge join achieves higher
performance on large problem sizes [110]. The sort-merge join approach can be bene-
ficial even in software execution when considering near memory execution [70].
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Figure 4.11: A many-to-many merge join has to be able to map multiple records from
stream B per record from stream A. Stream A moves only in the forward direction,
while stream B might need to use DSPI and roll back in order to recheck join keys.

4.5.1 Merge Join

Casper et al. proposed a merge-join network that evaluates in parallel 4 elements
from each of the two streams thus producing up to 16 joined results per clock cy-
cle [19]. Papaphilippou et al. adapted a high-throughput sorting algorithm to build
a high-throughput merge-join with late materialization techniques [86]. Although
these approaches achieve a very high join throughput, our system can satisfy off-chip
throughput by producing only one joined record per clock cycle. Additionally, the
implementation of algorithms that produce a variable amount of output records im-
pose more stress on buffering and have significantly larger resource requirements for
the core compute algorithms. Thus we propose an optimized merge-join module that
consumes and produces one record per clock cycle.

Although one-to-one and one-to-many joins are the most widely used ones (e.g., in
all queries in TPC-H [108]), for completeness, we implement a merge join that can also
perform many-to-many joins. Figure 4.11 a depicts an example for a many-to-many
merge join dataflow. In one-to-one/many merge joins, the records from both streams A
and B are examined in a fully sequential order (no relations between records will cross
in Figure 4.11 a), which negates the need for local scratchpad memories. In many-to-
many joins, however, while stream A is accessed in a fully sequential manner, stream
B forces a more complex record access pattern when dealing with key collisions. Most
notably, in successive repeating keys from stream A, the lookup pointers in stream B
have to be able to be reset to the start of the last unique sequence. Figure 4.11 b shows
that we can always keep the current lookup pointer in FIFO A at the front. However,
we need full access to the records in FIFO B as the record pull and record reads are
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Figure 4.12: Merge join integration in DSPI. The module uses two different DSPI
StreamIDs as inputs and merges them into one StreamID output.

completely data dependent. In cases of successive keys in B, we only move the current
read pointer in case the data will be re-read to match for another key from A. Then the
PE will only pull from FIFO B when ai > b j.

The challenge in managing many-to-many merge joins is an edge case when two
or more consecutive records from stream A have the same key α and there are more
records in stream B with key α than fit inside FIFO B. We handle this edge case by
utilizing the Repeat instruction of DSPI (see Section 3.3.2). The module finishes all
join matches with ai by requesting all matching records from stream B. Then if the
new ai (the old ai+1) key holds the same value, a Repeat instruction is fired for stream
B. Then the module can proceed to request again the already streamed records from B
and match them to the new key from A. Noting that repeat instructions at the moment
are only used as a hazard avoidance mechanism, as they pose a large latency and a sys-
tem stall. The DMA needs to recalculate DDR addresses, flush all prefetched records
and re-request records from DDR. Calculating the repeat parameter requires additional
consideration in certain module combinations, for example, if the merge join module
operates on the output from a filter module. Our filter module can split a table into two
virtual tables (for valid and invalid data) and the merge join module can count both.

Merge join in DSPI

The merge join module in our system uses two different DSPI StreamIDs as inputs and
merges them into one StreamID output (see Figure 4.12). We build the design for our
system with FIFO sizes for streams A and B of 512 and 1536 chunks respectively. The
depth is measured in chunks rather than records since the module is runtime param-
eterizable for record sizes and data merge behaviour. Upon a successful join of two
records, the module can reorder data fields in time (i.e., selectively move data fields
in different ChunkIDs). This allows for more complex integration of the joined record
and positioning data appropriately to meet the requirements of any following modules.
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It also can omit data fields or even whole chunks from the output if they are no longer
needed. Building the module results in ■B■D■M■M■B■D■M■D■M■M resource footprint (see Sec-
tion 4.1). Utilization analysis shows that it is bound by BlockRAMs, while LUTs and
FFs are utilized only at 32% and 17% respectively.

4.5.2 Hash Join

For our prototype system (see Chapter 6), we implemented the proposed merge join
operator. However, we also propose methods for integrating hash join modules into our
streaming system by utilizing mechanisms in the proposed DSPI protocol and DMA
module. Hash joining implements a relatively straightforward algorithm. It is divided
into two stages of operation that execute sequentially and share intermediate data in
the form of a hash table:

hash table generation : The first step is to fill a hash table with one of the two input
tables (let’s call it table A). This is done by applying a hash function to the keys
and using the resulting hash as a bucket selector. When two keys have the same
hash result (hash collision), their records are allocated to the same bucket.

hash table lookup : Once all the data from table A is streamed and hashed, then the
processing element needs to stream the other table (table B) and find matching
keys. This is done by utilizing the same hashing algorithm and looking up the
corresponding bucket in the generated hash table. All entries from the bucket
have to be compared to the candidate from table B.

The intermediate hash table data must naturally be stored in off-chip memory due to
its potentially larger sizes than available on-chip memory [121, 45]. In software, buck-
ets (collections of hash collided records) are stored in the form of linked lists. This
allows for a flexible and efficient memory allocation but results in dynamic jumping
when looking up the data to find matches. This solution has been proposed in hard-
ware as well, where linked lists are stored in FPGA BlockRAMs with associated DDR
addresses for bulk data [35, 135]. However, storing any kind of individual entry for
every hashed record in on-chip memory is unfeasible for large problem sizes. Even
storing only one DDR address and length per bucket limits the number of buckets to
only thousands.

Ideally, we want a hash algorithm that distributes hash values in a uniform way [93].
Hash computing complexity is negligible with respect to modern FPGA fabric capabil-
ities. With uniform distribution, hashing millions of records into thousands of buckets
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still inevitably results in thousands of collisions per bucket, which poses a sufficiently
large lookup complexity in the second stage of a hash join operator.

Direct memory access

Traditionally, FPGA hash join implementations hold DDR pointers into local scratch-
pads. Implementing such algorithms is feasible in our system due to the support for
direct memory access from the streaming PR modules (see Section 3.3.5).

Streamed hash tables

On the other hand, our system also supports addressing thousands of tables. We can uti-
lize this by assigning buckets directly as streamed tables of records (see Figure 4.13):

hashing phase : The hashing phase (see Figure 4.13 a) is simply implemented by
applying the hash function to the keys of the first streamed table (table A). The
result from the hash is then used to select a virtual channel. The module does
not need to build any kind of hash tables, since these tables (buckets) are handled
already by the DMA module as streams.

joining phase : In the second phase of the stream, hash join (see Figure 4.13 b), the
module streams in data from the second table (table B). The data enters a FIFO,
where it will wait for the readout of the associated bucket. To read the bucket, the
key is hashed and the result is fed as a virtual stream selector into an instruction
targeted to the DMA module. It actually requires two instructions: first it needs
to restart the corresponding virtual stream and then it can request data from it.
Restarting the stream (see Section 3.3.2) will bring the read pointer back to the
beginning of the bucket.

When the bucket is streamed as table A, it enters another dedicated FIFO. The
output of the two FIFOs is then joined together by comparing the records’ keys.
Whenever the DMA module (and other modules) finish reading/computing data
on a virtual stream, they then send an End-of-Stream packet. The hash join
module uses this EoS packet as a mark of the end of a bucket and pulls the front
of the B FIFO, thus moving stream B forward.

With the proposed approach, we abstract any challenges with the bucket storage on off-
chip memory and take advantage of the DMA module, whose main function is to track
the physical off-chip representation of streams. This is key to implementing module
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b) stream hash join, lookup/join phase
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portability, as the join module implementation remains the same across different FPGA
targets. The DMA module is responsible to store and readback the buckets as streams
and can vary between systems depending on the memory handling parameters. If the
FPGA operating system allows hardware memory allocation, the bucket streams can be
stored as a linked list of large (Kilobytes/Megabytes) blocks, which implemented in the
DMA module will be reused for all data streams in the system. Furthermore, the DMA
module eventually can also implement the direct usage of non-volatile memories, thus
allowing for huge amounts (larger than any available DDR size) of intermediate table
storage.

4.6 Conclusion

This chapter introduced a new methodology to implementing thin and tall partially
reconfigurable modules by adopting design factors such as minimizing their vertical
wiring. The presented concept includes a major increase in flexibility and utility for
achieving a more versatile module library. The chapter introduced state-of-art designs
and implementations for the most used functions in database systems:

DMA module : We implement a DMA module that is used to decouple our DSPI
from standard AXI master and slave interfaces. This module provides address
handling, data permutation to abstract these challenges from our streaming ac-
celerators. Additionally, the DMA module provides stream prefetching in order
to minimize serve times and maximize effective throughput.

Filter : We implement a filter module that utilizes standard Boolean expression repre-
sentations (Disjunctive Normal Form) to provide flexible and efficient hardware
design (see Section 4.3). Our large utility approach results in 13× fewer re-
sources when executing on TPC-H Q19 than related work [135], while achieving
both higher streaming and effective throughputs (see Section 4.3.4).

Merge sort : We propose and implement a highly optimized large utility merge sorter
module that, depending on the allocated FPGA resources, achieves up to thou-
sands of merged sequences at once. State-of-art related work on dynamic database
acceleration implements an 8-way merge sorter as a static module, while our
64-way merge sorter (8× better utility) is PR-capable (see Section 4.4.3). Gen-
erally, other FPGA sorting research focuses on large throughput, but once DDR
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bandwidth is saturated, their resource-costly designs are impractical (see Sec-
tion 4.4.2). Increasing the number of sequences that a module can merge at once
results in a reduction of the number of required runs, leading to an increased
real-world sorting performance. We anticipate this is key for FPGA sorting and
database acceleration (see Section 4.4.5).

Join : While state-of-art related work proposes a static one-to-many merge join [135],
we implement a PR-capable many-to-many merge join. Additionally, we show
how different operators can be integrated and orchestrated in our streaming sys-
tem through the proposed hash join streaming modules.

State-of-art research implements merge sort, hash join, and merge join operators as
static accelerators [135]. However, this could lead to overprovisioning or underpro-
visioning of compute resources depending on the target query. We show that it is
possible to build these operators as partially reconfigurable modules, thus benefiting
from the dynamic aspects of such a system. Not only does this allow us to only re-
serve the compute resources if they will be utilized, but also we enable the runtime
system to trade-off between performance and resource usage by applying resource
elasticity. Chapter 5 proposes the implementation of resource elastic techniques in the
key modules of our module library. Prototyping the modules in Chapter 6 shows they
achieve the target operating frequency of 300MHz (the speed required to saturate a
DDR4 memory channel operating at a 512-bit datapath) and that accelerators operate
at stream speeds. Overall, all proposed designs are scalable, process one chunk per

clock cycle, and achieve our target throughput of 19.2GB/s.



Chapter 5

Resource Elastic Module Library

In this chapter, we describe the concepts, methods, and benefits of implementing re-
source elastic modules for our library. We do this by implementing composable mod-
ules with module alternatives, which allows a runtime scheduler to tailor the execution
pipeline to the accelerated problem and the available resources, which are only known
at runtime (see Section 5.1). We then exemplify the techniques by applying them to
three key operators from our module library presented in Chapter 4 to propose:

• A composable DNF filter with module alternatives (see Section 5.2) that can
trade-off between filtering capacity, throughput and resource requirements.

• A linear sorter and our composable merge sorter both with module alterna-
tives (see Section 5.3) that can trade-off between throughput and resource re-
quirements.

• A merge join module and its module alternatives (see Section 5.4) that can trade-
off between join capacity and resource requirements.

5.1 Resource Elastic Techniques

While traditional CPU scheduling has mainly been fixated on scheduling in the time di-
mension, FPGAs provide spatial resources where we need to schedule as well. While
CPUs can provide time slots of different length for the different tasks, FPGAs can
schedule modules of varying resource requirement, throughput, utility. Resource elas-
ticity is a technique to provide alternative execution plans to the runtime scheduler

99
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which significantly improves placement flexibility, often resulting in improved effec-
tive performance [62, 114, 117]. In runtime systems that manage multiple FPGA PR
slots, resource elasticity can be materialized into two approaches [117]:

Implementation alternatives utilize synthesis of modules with different utilities and
targeting different resource footprints (see Figure 5.1 a). In FOS, this results
in modules that can utilize 1,2,3, or 4 neighbouring FPGA PR slots. The al-
ternatives implement the same function but allow for various techniques to be
applied to achieve linear or superlinear performance scalability. For example,
often enlarging a module implementation would allow for larger local scratchpad
memories, extending local data reuse and resulting in superlinear performance
improvement for certain algorithms (such as large matrix multiplication).

Replication allows a single module to be placed into multiple PR slots (see Fig-
ure 5.1 a). This approach is proposed for FOS by providing parallel execution
for data-parallel OpenCL workgroups [77]. Replication of OpenCL compute
kernels in FOS can provide multiple benefits. First of all, FOS can change dy-
namically the execution kernels. The addition of replicated single-slot module
poses a significantly smaller reconfiguration overhead than changing the bit-
stream in multiple PR slots. Secondly, the spatial dynamic allocation would
eventually cause fragmentation challenges. With module replication, the mod-
ules placement positions can be abstracted as long as they all have access to the
same processed data. An example situation is whenever a slot is released and the
selected operation for further acceleration does not occupy a neighbouring slot
to the freed one. In that situation, the runtime system can use module replication
to bypass the fragmentation and avoid large overheads of FPGA-wide module
relocations.

While the concepts of resource elasticity remain the same, one does not simply apply
the resource elastic solutions presented for FOS into a streaming system. FOS largely
targets OpenCL [77] workloads for their ability for heterogeneous CPU+FPGA execu-
tion [113]. OpenCL splits the problem into workgroups that share no global state, thus
allowing for straightforward parallelism. This allows for easy management for imple-
mentation alternatives and replicated modules in FOS. Such workload properties and
benefits, however, are not present and applicable in streaming systems. Our system
presents the same two approaches for resource elastic application, but with different
considerations for integration, evaluation, and management.
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5.1.1 Resource Elastic Module Alternatives

Since module compute kernels tend to scale either linearly or superlinearly, providing
larger module alternatives can be highly beneficial. Similarly to FOS, we examine
the implementations of modules with different tradeoffs between resources and util-
ity/performance (see Figure 5.1 a). FOS targets four PR slots thus considering only
four possible module alternatives. On the other hand, we target relatively fine-grained
partial reconfiguration thus enabling tens to hundreds of possible module sizes and
placements. However, most module sizes and placements will not be scenarios on the
Pareto-Front (see Section 4.1.3) thus can be omitted. This means we will only include
the smallest modules that deliver a specific performance or utility in our operator ac-
celeration library. Let us consider this approach as a string matching problem. The
larger the substring (module resource footprint), the fewer times it will occur in the
search string (PR slot resources). This results in a disadvantage for increasing module
resource footprints because often it results in a reduced number of possible bitstream
placement positions. However, as long as a module alternative is on the Pareto-Front,
its presence in the module library can only be beneficial. The runtime scheduler will
omit the use of any unoptimal configurations depending on the runtime requirements.
Thus, increasing the number of module alternatives can only enable alternative ex-
ecution plans to the runtime scheduler and in the worst-case scenario results in no
performance change.

Pareto-Front

Most often, implemented modules for such a system will have coarse-grained control
over utility. This results in a synthesis process where we adjust utility and observe
the resulting module footprint, rather than develop a specific utility to meet a certain
resource footprint. However, fine-grained adjustments to the utility can result in a
relatively small resource impact. Considering that our atomic double-column resources
provide about 1-2K LUTs, we expect that small utility adjustments can result in an
unchanged resource footprint but different internal fragmentation. In such cases, we
can consider the Pareto-Front of the possible module alternatives and omit all modules
that are not on the front. We show an example of this when implementing our resource
elastic filter module (see Section 5.2.1).
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Figure 5.1: a) FOS utilizes four slots to accelerate OpenCL workgroups in resource
elastic fashion by using module replication (to provide parralel execution) and imple-
mentation alternatives (to improve throughput). b) The proposed stream processing
execution utilizes FOS slots in a fine-grained manner. All modules operate at stream
speeds but utilize module alternatives to trade-off between effective throughput/utili-
ty/capacity and resource requirement (see accelerator B). Additionally, module com-
posing allows accelerators to implement larger logical function (the two instances of
accelerator B working as one logical operator).

5.1.2 Resource Elastic Composing

Similarly to the module replication in FOS, we propose methods for composing com-
patible modules to increase performance (see Figure 5.1 b). FOS implements such
techniques to provide execution parallelism, ideally resulting in increased throughput.
However, our system has a defined streaming throughput (19.2 GB/s in our example
system) and does not naturally benefit from parallelism. However, we can extend the
effective functionality of our modules by placing multiple instances sequentially in
our streaming system. Enabling such functional extensions, module kernel functional-
ity has to be considered during design and implementation. Often modules would need
to implement intermediate data state transfers to allow for function extension. DSPI
provides numerous ways for intermediate state transferring between modules. Most
notably, DSPI provides a State bus (see Section 3.3.2) that can be used to pass any
encoded intermediate state of the record between resource elastic modules. The used
virtual stream of a data packet can also encode the data state, origin, and destination
which can also be used to extend functionality.

Smaller modules have greater placement flexibility, thus their use results in a de-
creased external fragmentation and a globally improved resource utilization. Providing
such modules will increase the scheduler with more placement flexibility for the run-
time system. The runtime can decide to pick multiple smaller composable modules as
an alternative to one large module if it cannot be placed due to fragmentation.
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5.1.3 Resource Elastic Stream Processing Advantages

Streaming modules can vary greatly in their operation, thus also allowing for different
characteristics to be targeted for improvement by resource elasticity. Many character-
istics also have a varying impact that is only known at runtime, such as problem sizes
and operation complexities.

One of the main benefits of resource elasticity is the ability to trade-off between
key module parameters including utility, throughput, compute capacity, total runtime
and resource requirements. This holds for both single-user and multi-tenancy scenar-
ios. The trade-off parameters depend on the specifics of the module operation and
implementation. The total runtime is a function of utility, throughput, and capacity
and how do they satisfy the runtime problem:

utiltiy : The increase of modules utility results in more work performed per unit mem-
ory I/O, thus leading to increased performance for memory-bound problems.

throughput : Modules can vary the achieved effective throughput. Although DSPI
runs at a fixed communication bandwidth, the effective throughput can vary if
modules require data field replication, thus increasing the number of clock cycles
per transferred tuple. Additionally, modules can potentially delay the generation
of output packets (effectively producing empty cycles). Limiting the allocated
FPGA resources for a module could lead to a requirement of multiple clock
cycles to produce an output packet. In such a case, the kernel processing uses
local scratchpad memories to decouple its input from its output while processing.

capacity : Stream operations require a certain amount of processing elements. If
modules do not meet the required processing capacity, this can lead to effectively
increasing the runtime. This is due to the need for additional runs of the data
through the FPGA to achieve the targeted operation. Note that our dynamic
stream processing approach foresees an execution in multiple runs if resource
requirements exceed the currently available resources.

The applicability of these parameter trade-offs is dependent on the core operation of the
targeted module. However, careful module design can elevate the benefits of allowing
the runtime to selectively optimize the execution pipeline.
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Decoupling PR slots

Another major benefit of composable resource elastic modules is that they enable the
operation extension from different PR slots. When targeting acceleration in large-scale
systems such as datacenter settings for warehouses and data analytics, systems could
utilize multiple PR slots for processing element placement. These PR slots can then
be composed such that the DSPI output of one is the DSPI input of the next one. This
also includes cases with inter-FPGA PR slot composing. Our solution for seamlessly
stitchable operation extension permits the utilization of fabric across multiple PR slots.
This is otherwise implementable by using off-chip memory to decouple operations,
which can further bottleneck an already-memory-bound system.

5.2 Resource Elastic Filtering

Filtering operations comprise data comparison followed by Boolean evaluation. Sim-
ilarly to other operations, the complexity of the filtering operation is only known at
runtime. Traditional solutions to this problem have been to overprovision compute
resources, however since the runtime system knows the problem, the solution can be
heavily tailored to the problem. Our proposed filter module that utilizes DNF boolean
evaluation (see Section 4.3) benefits from both types of resource elastic approaches.
The DNF boolean evaluation comprises DNF clauses that implement computational

capacity (i.e., the runtime system must implement at least the number of DNF clause
capacity than the problem requires). This further emphasises the need for the ability
to tailor the amount of DNF clause capacity placed at runtime. Similarly, the num-
ber of comparison processing elements implements a second computational capacity.
However, in the latter case, we can trade-off between throughput and capacity. The
streaming throughput is, of course, fixed to line rate transactions at a fixed clock fre-
quency. However, we allow the replication of certain data fields to be able to benefit
from an increased number of compare PEs. By replicating data, we might need to
increase the number of transactional clock cycles (number of chunks) for a particular
record, thus decreasing the effective throughput.
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Figure 5.2: Any DNF filter module can compute the global result by incorporating the
results from previously placed DNF modules. All DNF filter modules implement a
specific number of AND clauses and the OR-reduction of all clause results is global.

5.2.1 Filter Module Alternatives

We can build multiple module alternatives by synthesizing our parameterized filter
module with different computational capacities and resulting in different resource re-
quirements:

Compare PEs : We can change the number of parallel compare elements per data
field. Each compare element imposes not only the resource overhead for the
comparison itself, but also can hold unique compare reference values.

Clause capacity : Each DNF clause has to implement solving for all literals that result
from the compare elements. Each literal implements one of 3 states for each
DNF clause.

Although we can implement any arbitrary capacity that fits the FPGA resources, we
restrict our implementation to three common cases for each parameter. We build a total
of nine modules with 8, 16, and 32 DNF clause capacity and 1, 2, and 4 compare PEs
per field. All module alternatives work at line speeds (filtering one record chunk per

clock cycle).

5.2.2 Filter Composing

Large DNF problems can be split into multiple buckets of DNF clauses and evaluated
by different module instances. For this, we need to modify our initially proposed de-
sign (see Figure 4.6) to accommodate for the passing of an intermediate DNF global
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Smallest DNF clause Compare PEs LUT LUTM Flip-Flop
resource footprint capacity

■M■D■M■M 8 1 per field 2,655 1,313 3,171
(16 total)

■D■M■D■M■M 8 2 per field 3,656 1,761 3,285
(32 total)

■D■M■M■B■D■M■D 8 4 per field 5,635 2,657 3,513
(64 total)

■D■M■D■M■M 16 1 per field 2,866 1,441 3,301
(16 total)

■D■M■D■M■M 16 2 per field 4,059 2,017 3,415
(32 total)

■M■B■D■M■D■M■M 16 4 per field 6,295 3,169 3,643
(64 total)

■D■M■D■M■M 32 1 per field 3,326 1,697 3,560
(16 total)

■D■M■M■B■D■M■D 32 2 per field 4,927 2,529 3,674
(32 total)

■B■D■M■M■B■D■M■D■M■M 32 4 per field 7,675 4,193 3,902
(64 total)

Table 5.1: Filter module resource requirements. Not all modules are on Pareto-Front:
the two underlined configurations (8 clauses, 2 compare PEs and 16 clauses, 1 com-
pare PE) share the same resource requirements with a more capable configuration (16
clauses, 2 compare PEs) that provides superset utility in both dimensions.

state. DNF implements a global OR operation of the results of all AND clauses. This
naturally lets us split a DNF boolean expression into multiple modules as each module
implements a certain number of AND clauses and then uses a global bit for the result-
ing OR reduction (see Figure 5.2). This intermediate value is streamed on the State

bus of DSPI (see Section 3.3.2). All modules can be parameterized whether to use that
intermediate state and/or to materialize the whole evaluation by optionally splitting the
stream into two virtual streams: 1) a stream of all records that satisfied the conditions,
and 2) a stream of all records that did not satisfy the conditions. This enables the filter
module chain to be also used as a splitter of a stream for further use selection based on
a condition.
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5.2.3 Evaluation

The resulting FPGA resource utilization from the nine implemented filter module al-
ternatives is presented in Table 5.1. All module alternatives are bound by their LUTM
utilization, which is (in most cases) larger than 50% of the total LUT requirements.

Module alternatives

The utility of a filter module alternatives is defined in the two-dimensional space:
1) DNF clause capacity and 2) compare PEs per field. The results from the eval-
uated filter configurations show that four filter modules alternatives share the same
resource footprint ( ■D■M■D■M■M ). While we observe that our LUTM utilization trends
match our prediction from Section 4.3.4, the difference in two of the configurations is
insignificant and still results in the same module bounding box. The two underlined
configurations in Table 5.1 (8 clauses, 2 compare PEs and 16 clauses, 1 compare PE)
are not on the Pareto-Front, since they share the same resource requirements with a
more capable configuration (16 clauses, 2 compare PEs) that provides superset utility
in both dimensions. On the other hand, another configuration (32 clauses, 1 com-
pare PE) also shares that footprint, but is also on the Pareto-Front, since it achieves
higher clause utility than the other configurations. Noting that while the two under-
lined configurations are unoptimal in the example system, on different FPGA fabrics
or a system with different DSPI bus sizes, these utility configurations might achieve
different Pareto-Front results. It is up to the runtime scheduler to utilize the available
module alternatives to their full potential for building efficient execution pipelines.

Module composing

All implemented module variants also implement composability resource elasticity.
What is more, different filter module alternatives can be composed together, which is
an important property since the compare operations in a set of filter clauses can be
unbalanced. We can demonstrate the concept by example. Let us consider an example
filter operation: (A= 5)OR (B> 10 AND B< 15) and modules with only 1-2 compare
PEs per field and 1-2 DNF clause capacity for simplicity. We then can have multiple
module schedule alternatives to implement the operation:

Single large module : We can use a single large module implementing 2 DNF clauses (one
for A = 5 and one for B > 10 AND B < 15) and 2 compare operations per
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field (to accomodate the two different reference values for B). In this case, no
data replication is required.

Two small modules : Alternatively, we can compose two small modules implement-
ing 1 DNF clause and 1 compare operation each. In this situation the module
implementing the (B > 10 AND B < 15) clause will need a replicated B field
to be streamed into two different compare PEs. This replication can potentially
lead to a decreased effective throughput if it results in an increased number of
chunks for the streamed record.

Composite : Finally, we can utilize the ability to compose different module alterna-
tives. We do this by using one filter module with 1 DNF clause and 1 compare
PE, and a second filter module with 1 DNF clause and 2 compare PEs. In this sit-
uation the first module implements (A = 5) and the second module implements
(B > 10 AND B < 15). Both modules do not require any data replication and
work at full system throughput.

The different DNF clause requirements can be of arbitrary diversity when consider-
ing real-world filter examples and module alternatives could achieve varying resource
footprints on different FPGAs. Then the runtime scheduler can optimize at runtime
by exploring available execution configurations for a particular problem and select the
most advantageous pipeline.

Filtering in multiple runs

A filter operation requires module(s) to achieve certain compare compute and Boolean
evaluation capacities. The fallback mechanism to implementing larger compare capac-
ity has already been discussed - replicating data fields to map to additional (in space
and time) compare PEs. However, the DNF clause capacity has to also implement a
mechanism to extend the functionality to adapt to problems of large complexity. Using
our filter modules, we can split the DNF clauses to be evaluated in multiple runs of
the data through the chip. This provides a method for implementing the evaluation of
Boolean expressions of arbitrary complexity. To implement this, the last composed fil-
ter module materializes the intermediate DNF OR-reduction in each data run through
the FPGA. This splits the data into two tables: 1) a table holding already validated
records, and 2) a table holding records that are not yet validated. In all consecutive
runs, only the second table is streamed through for validation using the remaining
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DNF clause parameters. This approach is also suitable for implementing SQL LIMIT

functionality, as it might stop searching for valid records once it has reached the desired
results limit.

5.3 Resource Elastic Sorting

We propose and implement resource elastic variants of both the linear and merge sorter.
For the linear sorter, we implement module alternatives, while for our large utility
merge sorter, we implement both module alternatives and module composability.

5.3.1 Sort Module Alternatives

Linear Sort Module Alternatives

The linear sort phase of our sorting design benefits from the increase of local scratch-
pad memories to allow for the building of larger sorted sequences (L in Figure 4.7).
As described in Section 4.4.3, increasing L results in a reduction of the total sort run-
time. We synthesize module alternatives for our linear sort with two different utilities:
1) L = 512, and 2) L = 1024. This enables them to input arbitrarily ordered data and
produce sorted sequences of 512 or 1024 sorted records. Both module alternatives

work at line speeds (producing one sorted record per clock cycle). At the implementa-
tion target clock speed of 300MHz and a 512-bit datapath, this corresponds to a peak
sort throughput of 19.2GB/s if all fields can be used.

Merge Sort Module Alternatives

The merge sort phase of our sorting design benefits from the increase of local on-
chip memory to accommodate more merge stages and results in more simultaneously
merged sequences (E in Figure 4.7). As described in Section 4.4.3, increasing E min-
imizes the total sort runtime. We evaluate three utility configurations for our merge
sorter: 1) E = 32, 2) E = 64, and 3) E = 128. They enable the simultaneous merg-
ing of 32, 64, or 128 presorted sequences of data. As described in Section 4.4.7, we
have implemented the presented sorter kernel for up to E = 2048. However, it utilized
a full Virtex FPGA, while in this system we have limited FPGA resources available.
All three module alternatives achieve the 300MHz target frequency in our system and

produce one sorted record per clock cycle.
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Figure 5.3: Resource elastic merge sort module that can be composed to increase
utility. Each module has its own set of input DSPI ChannelIDs to enumerate virtual
streams. All modules use ChannelID = 0 to pass intermediate sorted data for resource
elastic integration.

5.3.2 Merge Sort Composing

We implement a composable merge sort module. To do this, we add an additional
merge stage in our module (see Figure 5.3). The additional merge stage is also cou-
pled with two FIFOs in order to decouple inputs and outputs. This is important in
order to implement our proposed credit system (see Section 3.3.1). The latency be-
tween credit allocation and data receiving can vary arbitrarily depending on the tar-
geted system. It will usually be negligible if only one PR slot is utilized and there
are no stream links between PR slots/FPGAs. However, increasing the sizes of these
buffers can be used for the elimination of any latency impact on the globally merged
stream (i.e., ChannelID = 0). Meanwhile, the sorted sequences can be sourced locally
when utilizing multiple FPGAs.

The first-most placed merge module does not utilize this additional merge stage,
but all subsequent modules utilize it to merge their local output with the global sorted
output. Then, the number of the merged sequences is the total sum of the utilities of
all placed merge modules.

In our proposed design, one of the virtual input channels of the first of the com-
posed merge modules must be on ChannelID = 0. This is because this virtual stream is
then used to pass intermediate sorted data between modules (see Figure 5.4). The con-
secutive merge modules can actually use any arbitrary allocation of the available (in
our case 1,024) virtual channels.
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Figure 5.4: Merge sort integration with DSPI. The purple and orange arrows represent
the data and instruction ports of the utilized virtual channels. The modules input many
virtual channels and merge them into one. Each module has its own set of input DSPI
ChannelIDs to enumerate virtual channels. All consecutive modules use ChannelID =
0 to pass intermediate sorted data for resource elastic integration.

Smallest Sequence LUT LUTM Flip-Flop BRAM
resource footprint size (L)
■B■D■M■M■B■D■M■D■M■M 512 9,531 3,635 9,113 35.5

■B■D■M■M■B■D■M■D■M■M■B■D■M■M 1024 14,269 5,603 10,739 70.5

Table 5.2: Linear sort module resource requirements.

5.3.3 Evaluation

Stable sorting is key for database acceleration since it is required for sorting tables for
more than one field. Both sorters and all their module alternatives implement stable
sorting.

Module alternatives

The implementation results of both the linear and the merge sorters demonstrate that
they are bound by the number of allocated BlockRAMs. Table 5.2 shows the resource
requirements of the linear sorter. Notice that while the second implementation pro-
vides twice the utility, it maps to only a 40% longer resource string. It requires twice
the amount of BlockRAMs and can map to a string with one additional BlockRAM
column ( ■B ).

Table 5.3 shows the resource requirements of the merge sorter. Similarly to the
linear sorter, the resource string size scales sublinearly with utility. Again, this is due
to the module being bound by the amount of the allocated BlockRAM columns.
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Smallest Number of LUT LUTM Flip-Flop BRAM
resource footprint ways (E)

■M■B■D■M■D■M■M 32 5,835 3,108 7,159 17.5
■B■D■M■M■B■D■M■D■M■M 64 5,922 3,084 7,471 34.5

■B■D■M■M■B■D■M■D■M■M■B■D 128 6,719 3,374 7,886 68

Table 5.3: Merge sort module resource requirements.

The throughput impact of the utility of our sorters is presented in Section 4.4.3. The
presented module alternatives enable us to trade-off between allocated FPGA resources
and achieved sort throughput.

Module composing

Due to being BlockRAM bound, as the allocated string for our merge sort module
increases, the LUT(M) utilization decreases. This is why we implement the composing
FIFOs using FPGA distributed memory (LUTM). This results in a free (in terms of
FPGA resources) composing functionality (except for the smallest module alternative,
which is LUT-bound).

Composing multiple of our merge sort modules increases the total merge utility
achieved. In fact, we can compose using any arbitrary combination of merge sort
module alternatives together. The achieved merge utility is the sum of the merge utilities

of all composed modules. The presented 64-way merge sorter can be placed 3 times in
the ZCU102 FOS PR slot, to achieve a total of 64+64+64 = 192 sequences merged
at once.

5.4 Resource Elastic Joins

We propose and implement resource elastic module alternatives for our many-to-many
merge join module. As shown in Figure 4.11 b), the merge join module uses two
local scratchpad memories (represented logically as FIFOs) to search for join matches.
As described, FIFO A is only used to hide latencies between credit allocation and data
arrival. However, FIFO B is traversed in a fully data-dependent manner and data can be
overwritten if the number of consecutive colliding keys is larger than FIFO size. This
is a rarely occurring situation if considering real-world data. However, it is important
to maintain data correctness, thus it implements a fallback solution of flushing and
repeating input data sequence. In such a case, performance is largely sacrificed when
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Smallest FIFO A FIFO B LUT LUTM Flip-Flop BRAM
resource footprint depth depth

■B■D■M■D■M■M 512 512 4,138 1,483 4,692 16
■B■D■M■M■B■D■M■D■M■M 512 1536 4,499 1,563 4,751 32

■B■D■M■M■B■D■M■D■M■M■B■D 1024 3072 4,939 1,723 4,813 64

Table 5.4: Join module resource requirements.

flushing the previous modules up to the DMA module, recalculating addressing and
re-streaming the data. The depth of the FIFOs in our merge join module is an example
of a computational capacity with an undesirable fallback solution. We can trade-off
between this compute capacity and FPGA resources. We synthesize three module
alternatives that vary the depth of these buffers. All three module alternatives work at

line speeds (computing one join candidate pair per clock cycle). When no consecutive
rows hold colliding keys, the join module operates at line speeds. Upon each unique
key collision, the module requires two additional empty clock cycles (one to find the
end of the collision sequence and one to roll back the pointers in FIFO B for re-match).
Thus the data throughput is data dependent but in our experiments achieves near peak
stream throughput.

5.4.1 Evaluation

Table 5.4 shows the utilization of the three considered module alternatives. The module
is bound by the allocated BlockRAMs (except the smallest module alternative, which
is LUT-bound). The presented sizes of FIFO B show the number of record chunks that
can have key collisions before the module initiates repeat sequence. However, this only
happens in scenarios of many-to-many joining. Most often the smallest module will
suffice, as most real-world problems implement one-to-one or one-to-many relations.

5.5 Conclusion

Resource elasticity is a technique to provide alternative execution plans to the run-
time scheduler which significantly improves placement flexibility, often resulting in
improved effective performance. This chapter introduced the two principles that form
resource elasticity: 1) building module alternatives, and 2) composing modules to im-
plement larger functionality. While the first principle has similarities to the approaches
in FOS [117], our composable modules are a new approach for the resource elasticity
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concept. Related work has been targeting monolithic problems with forced OpenCL
workgroup parallelism [114, 117]. However, these practices are not directly applicable
to different problems and execution requirements. Dynamic Stream Processing is an
example of a dynamically built runtime where the execution pipeline can be of arbitrary
complexity. Additionally, the problem of database query execution is not a monolithic
problem with data-dependent operators (e.g., sort) that eliminate any naive parallelism.
This thesis proposes module composing to combine the operation of multiple module
instances and achieve larger utility and throughput. This comes at the cost of more
module instances, thus results in the trading off between accelerator utility/throughput
and resource cost. This allows the runtime system to spend extra resources at that part

of the problem that will yield overall best performance for the given cost target.

We showed how to apply the proposed accelerator composing to our module li-
brary, which allows us to maximize utility and performance for our cost target. For
example, while related work utilizes 8-way merge sorting [135], we proposed 64-way
PR merge sorter (see Section 4.4). However, utilizing our resource elastic compos-
ing we can place three PR modules sequentially in a ZCU102 FOS slot and achieve
192-way merge sorting (24× more sequences merged at once than related work).

We also show that the two resource elastic techniques can work together with cases
where we compose the final PR slot configuration by utilizing different module alter-
natives. Applying resource elastic techniques to our modules allows the runtime system

to trade-off between resource requirements, throughput, utility, and computational ca-

pacity. Providing this resilience to a runtime scheduler allows for the identification
of the most beneficial execution strategies, resulting in improved performance for a
runtime-only known problem and resource target. The proposed resource elastic mod-
ules have been prototyped and evaluated in Chapter 6.



Chapter 6

System Prototype and Evaluation

In this chapter, we describe and evaluate the concepts, benefits and overheads of the
integration of our DSPI and our resource elastic module library into a prototype system.
We aim to answer the following questions:

• What is the overhead of partial runtime reconfiguration when building the dy-
namic execution pipeline from our resource elastic module library?

• How to physically implement our partially reconfigurable modules interfaced
with our DSPI using existing tools for recent FPGA architectures and what is
the resulting performance?

• What are the resulting properties and performance of the full system and how
does it compare with standard software query execution?

To answer these questions, we first quantify the FPGA reconfiguration overheads for
each of our modules, since this is a key component in our cost models to be used by the
runtime scheduler (see Section 6.1). Then we utilize PR tools to build our module li-
brary into bitstreams and we evaluate the resulting performance (see Section 6.2). The
chapter ends with a case study targeting a standard workload (TPC-H [108]) that eval-
uates the achieved benefits from integrating our custom DSPI, modules, and resource
elasticity into a capable system that accelerates query execution (see Section 6.3).

6.1 Partial Reconfiguration Speed

Accurate cost-modelling is key for efficient scheduling and performance maximiza-
tion. The required model does not only accommodate parameters such as throughput

115
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and utility but also costs such as resource requirements and reconfiguration overheads.
While we have described the achieved throughput, utility, and resource requirements
of the presented modules, we also need to study the partial reconfiguration overheads.
To enable that, we need to look into how Xilinx UltraScale+ FPGAs reconfigure the
fabric.

6.1.1 Fabric Configuration

Xilinx UltraScale+ FPGAs implement the runtime bitstream configuration by writing
to individually addressable frames [88, 125]. We know the size of these frames thus we
can accurately calculate the configuration overhead of modules. Configuring a frame is
done by writing 93 32-bit words, thus each frame contains 372 Bytes of configuration
data [125]. FPGA configuration is uniform across the device based on the configured
resource type. A single clock region height of resources results in a fixed number of
configuration frames:

CLB : CLBs implement the slices holding LUTs and Flip-Flops. A single column of
clock region height implements 60 CLBs and requires 16 frames of configuration
data which is about 6KB.

Wire interconnect : The wire interconnect implements routing multiplexers in the
middle of each of our atomic double-columns. Single clock-height column im-
plements 60 interconnect switch matrices and requires 76 frames of configura-
tion data which is about 28KB.

BlockRAM : Single clock-height column implements 12 BRAM36Ks and requires 6
frames of configuration data for configuration and routing which is about 2.2KB.
Additionally, the BlockRAM’s internal data can be initialized through the config-
uration by using 256 additional frames (which results in 172% of the configured
BlockRAM contents).

DSP : Single clock-height column implements 24 DSPs and requires 8 frames of
configuration data which is about 3KB.

Additionally, every configuration burst also has a fixed overhead of 515 words [125].
Using this quantification of the bitstream sizes per resource footprint, we calculate the
configuration runtimes. Writing frames can be done by utilizing the Internal Configu-
ration Access Port (ICAP) [123], which achieves a theoretical configuration speed of
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800 MB/s [88] and about 770 MB/s in practice when using Xilinx ZU9EG FPGA (the
same chip as used in our system prototype) [87]. Table 6.1 shows the resulting frame
sizes and configuration speeds for various module footprints.

6.1.2 Bitstream Compression

Bitstream compression is often implemented by simply omitting the empty frames in
a certain bitstream configuration. Since frames can be written arbitrarily, the config-
uration ports can skip writing certain frames. In our system, an anticipated example
is the expensive BlockRAM content frames. If a module does not use BlockRAMs or
does not have initial values stored, all of the content frames can be skipped. For ex-
ample, writing an empty ■B column to implement route-through mode of our custom
DSPI (see Section 6.2.3) results in 0.332ms configuration runtime. However, consid-
ering we do not need to use any of the BlockRAMs when we skip writing the content
frames, we write only 196 frames. This reduces the configuration data from 263KB to
only 72KB, thus reducing the configuration time to 0.094ms (3.5× faster). The same
principles can be applied to modules that don’t use initial data in their buffers (which is
the case currently for all of our accelerators) and modules that don’t use BlockRAMs
whatsoever (e.g., filter).

6.1.3 Module Configuration

Using the bitstream knowledge from Section 6.1.1, we calculate exact configuration
speeds for the proposed accelerators in this thesis. All of the modules hold no initial
BlockRAM data, which lets us compress their bitstreams (see Section 6.1.2). Table 6.2
shows the resulting bitstream frames and configuration runtimes for various module
alternatives. The configuration uses ICAP at 200MHz [123, 88]. It is possible that in
the future the configuration port’s speed can be increased by increasing its operating
frequency. On older FPGA families, the configuration ports on FPGAs have achieved
very large operating frequencies (550MHz on Xilinx Virtex-5) [36], however, this topic
is not yet sufficiently researched for our target device family (Xilinx UltraScale+).

Our evaluation results show low configuration overhead times for our modules.
Most of the considered module alternatives configure in runtimes less than 1 millisec-
ond. Considering a use case where we want to reconfigure all modules in our PR region
except our DMA module (which remains the same for all runs of our system). In that
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Resource Logic BlockRAM Bitstream Configuration
footprint and Routing Content size, time, ms

Frames Frames Bytes
■M 216 0 80,352 0.103
■B 196 512 263,376 0.332
■D 200 0 74,400 0.096

■B■D 396 512 337,776 0.425
■D■M / ■M■D 416 0 154,752 0.196

■M■B 412 512 343,728 0.432
■M■M 432 0 160,704 0.203

■B■D■M 612 512 418,128 0.525
■D■M■D 616 0 229,152 0.289

■D■M■M / ■M■D■M 632 0 235,104 0.296
■M■B■D 612 512 418,128 0.525
■M■M■B 628 512 424,080 0.533

■B■D■M■D 812 512 492,528 0.618
■B■D■M■M 828 512 498,480 0.626
■D■M■D■M 832 0 309,504 0.389

■D■M■M■B / ■M■B■D■M / ■M■M■B■D 828 512 498,480 0.626
■M■D■M■M 848 0 315,456 0.397

■B■D■M■D■M 1028 512 572,880 0.719
■B■D■M■M■B 1024 1024 761,856 0.955
■D■M■D■M■M 1048 0 389,856 0.490

■D■M■M■B■D / ■M■B■D■M■D 1028 512 572,880 0.719
■M■M■B■D■M 1044 512 578,832 0.726

■B■D■M■D■M■M / ■D■M■M■B■D■M 1244 512 653,232 0.819
■B■D■M■M■B■D 1224 1024 836,256 1.048

■M■B■D■M■D■M / ■M■M■B■D■M■D 1244 512 653,232 0.819
■B■D■M■M■B■D■M 1440 1024 916,608 1.148
■D■M■M■B■D■M■D 1444 512 727,632 0.912
■M■B■D■M■D■M■M 1460 512 733,584 0.920
■M■M■B■D■M■D■M 1460 512 733,584 0.920

■B■D■M■M■B■D■M■D 1640 1024 991,008 1.241
■D■M■M■B■D■M■D■M 1660 512 807,984 1.013
■M■M■B■D■M■D■M■M 1676 512 813,936 1.020

■B■D■M■M■B■D■M■D■M 1856 1024 1,071,360 1.342
■D■M■M■B■D■M■D■M■M 1876 512 888,336 1.113

■B■D■M■M■B■D■M■D■M■M 2072 1024 1,151,712 1.442

Table 6.1: The speed for partial reconfiguration for modules depends on resource foot-
print. All footprints with the same resources inside (but different order) have the same
configuration data size and speed.
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Module (alternative) Configuration Bitstream Configuration time, ms
[Resource footprint] Frames size, Bytes

Filter (DNF=8, CMP=1)
[■M■D■M■M] 848 315,456 0.397

Filter (DNF=8, CMP=4)
[■D■M■M■B■D■M■D] 1444 537,168 0.674

Filter (DNF=16, CMP=2)
[■D■M■D■M■M] 1048 389,856 0.490

Filter (DNF=16, CMP=4)
[■M■B■D■M■D■M■M] 1460 543,120 0.681

Filter (DNF=32, CMP=1)
[■D■M■D■M■M] 1048 389,856 0.490

Filter (DNF=32, CMP=2)
[■D■M■M■B■D■M■D] 1444 537,168 0.674

Filter (DNF=32, CMP=4)
[■B■D■M■M■B■D■M■D■M■M] 2072 770,784 0.966

Linear Sort (L=512)
[■B■D■M■M■B■D■M■D■M■M] 2072 770,784 0.966

Linear Sort (L=1024)
[■B■D■M■M■B■D■M■D■M■M■B■D■M■M] 2900 1,078,800 1.351

Merge Sort (E=32)
[■M■B■D■M■D■M■M] 1460 543,120 0.681

Merge Sort (E=64)
[■B■D■M■M■B■D■M■D■M■M] 2072 770,784 0.966

Merge Sort (E=128)
[■B■D■M■M■B■D■M■D■M■M■B■D] 2468 918,096 1.150

Merge Join (FIFO 512; 512)
[■B■D■M■D■M■M] 1244 462,768 0.581

Merge Join (FIFO 512; 1536)
[■B■D■M■M■B■D■M■D■M■M] 2072 770,784 0.966

Merge Join (FIFO 1024; 3072)
[■B■D■M■M■B■D■M■D■M■M■B■D] 2468 918,096 1.150

DMA Module
[■B■D■M■D■M■D■M■M■B■D■M■M] 2488 925,536 1.159

Table 6.2: The speed for partial reconfiguration for modules depends on resource foot-
print. Modules and their alternative utility parameters are described in Chapters 4-5.
Configuration times are reported for default FOS ICAP configuration speeds [88].
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case, all possible configuration schedules require a maximum of 2.9 milliseconds to re-
configure. In contrast, we can calculate the configuration time of a whole FPGA, which
is the case with static designs. The bitstream size of a Xilinx XCZU9EG (ZCU102’s
FPGA) is 26.5MB [125] (19.2 without the BlockRAM contents). Configuring the
entire FPGA requires 33.141 (24.094) milliseconds. This is 8.3−11.4× larger config-
uration overhead when compared to placing our small efficient modules.

6.1.4 Module Relocation

The tool BitMan [89, 88] provides methods for relocating rectangular segments of bit-
streams. We use BitMan to relocate our synthesized module alternatives and their re-
source footprint variants to their final placement destinations. However, the overheads
of module relocation are relatively high when considering the time for FPGA fabric
configuration. BitMan reports an average relocation function call time of 13ms [88],
while most modules reconfigure in less than 1ms with default speeds. Considering
that we place multiple small modules, ideally, we prefer to avoid this overhead. This
can be achieved by relocating the modules offline, prior to runtime. This increases the
size of our bitstream library, however, our modules are of relatively small bitstream
size (between 300KB and 1.1MB) when compared to the system memory that most
FPGA systems provide. Additionally, most footprint variants have only three possi-
ble destination placements (see Figure 4.2), thus the bitstream library does not grow
substantially in size. Using this approach, we can avoid module relocation overhead at
runtime.

6.2 Partially-Reconfigurable Module Library

In order for our modules to be stitchable, we need to define not only the functionally
of our DSPI but also the physical interface. This is implemented by binding the wires
of the interface to selected positions. For this purpose, we define the physical connec-
tions of DSPI’s bus signals to utilize specific wires along the vertical axis. Similarly
to Vesper [118], we utilize the horizontal wires of size 2 along the east and west edges
of our modules. The resulting module bitstreams implement the module’s kernel in a
bounding box with the DSPI interface implemented as floating (unconnected) wires on
the east and west borders of the module.
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Figure 6.1 shows the anticipated behaviour: The two modules in Figure 6.1 a-b can
be relocated and placed next to each other. As shown in Figure 6.1 c-d, when they are
placed next to each other, their interface wires automatically connect based on their
bound placement during synthesis.

6.2.1 Implementing the Stichable Module Library

In order to synthesize modules to be stitchable, we use a series of tools and our DSPI
functional and physical definitions. The implementation process involves the following
steps:

• We synthesize the targeted module alternative using Vivado 21.1 in Project mode.
This ensures that vendor tools apply their synthesis optimisations. This also pro-
vides us with the resource requirements (i.e., LUTs, BRAMs, and DSPs) which
is used to define the size of module bounding boxes (i.e., resource footprint).

• We fix the positions of the interface wires using TCL commands that are gener-
ated by GoAhead [13] to ensure correct external connectivity.

• We forbid the use (block) of all possible wires leaving the module, except the
already defined interface wires. This is done using the TedTCL library [118].
This ensures that no internal wire of the module will ever have segments outside
of the module’s rectangular bounding box.

• We place and route the design using Vivado 20.1. Using the vendor tools ensures
optimal resource and wire allocation, and also precise timing analysis.

Most steps execute quickly (minutes) with the most time-demanding step being the
blocking of the wires around the module (requiring about 30 minutes). For the place
and route, we use two external banks of sources and sinks for the interface wires (see
Figure 6.2). This helps place the internal logic of the module close to the bounding box
border, thus improving achieved setup timing. The resulting synthesized module (see
the rectangular bounding box in the middle of Figure 6.2) can then be cut and relocated
using BitMan [89] to placement positions in the reconfigurable region that provide the
resource footprint of the module. We can then apply this synthesis process to the
designed modules for our module library. Figure 6.3 shows three module bitstreams
for three different resource footprint targets. It can be seen that independent of module
placement or resource footprint, all modules implement the same physical interface on
their east and west borders.
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Figure 6.2: Filter (DNF=8, CMP=1) synthesized as a partially-reconfigurable module
with module footprint ■M■D■M■M . The filter module is implemented in the rectangu-
lar box in the middle. On the left and right sides of the figure, two banks of source
and destination LUTs are placed to act as neighbour modules during implementation.
While some of the interface wires look ’scrambled’ outside of the PR module, at the
border of the module all interface wires are constrained at exact positions (which is
also visible in the figure).
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a) b) c)

Figure 6.3: Example bitstream results: a) Filter (DNF=32, CMP=4) synthesized at
■B■D■M■M■B■D■M■D■M■M , b) Filter (DNF=16, CMP=2) synthesized at ■D■M■D■M■M , c) Fil-
ter (DNF=8, CMP=1) synthesized at ■M■D■M■M . The modules are implemented in a
bounding box that contains all routing and logic, except the interface wires that are on
the east and west borders.
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6.2.2 Throughput

The example DSPI configuration (see Section 3.3.2) implements a 512-bit datapath
width. All our modules synthesize successfully with that configuration and meet tim-
ing constraints set for 300MHz. Running timing analysis on the filter modules shows
that when constrained to 300MHz, their placed and routed implementation achieves
351-375MHz (different depending on the module alternative). The identified critical
paths are global signals such as enable/reset that also have high fanouts. State-of-art
FPGA accelerator solutions (such as Xilinx Alveo U200/250 or Intel D5005 boards)
provide 64-bit 2400MT/s DDR4 memories. These memories provide 512-bit inter-
faces running at 300MHz to the FPGA fabric. Running our system results at 19.2 GB/s

streaming throughput and the ability to saturate two DDR4-2400 memories (one for

inputs and one for outputs). Future implementations of the system could target wider
datapath such as 1024-bits, however, global signals will require additional inserted
pipeline stages to meet our timing targets.

6.2.3 DSPI in Atomic Resource Columns

Although implementing module resource footprint variants and module alternatives
significantly minimizes external fragmentation, there might still be a need for empty
resource columns between placed modules. This case requires special consideration, as
when a resource column is empty, it still is required to route the DSPI stream through.
For this purpose, we implement modules that route DSPI through. They are of atomic
width for all resource footprint possibilities (■M, ■B , ■D) and can be used to bridge holes
that result from external fragmentation. Figure 6.4 a shows the routing in our ■M atomic
module. The DSPI’s physical definition utilizes specific wires such that the FPGA’s
interconnect can choose to either route the wire to a Flip-Flop or route-through on the
exact same wire.

If the distance between two modules is significantly large, then the long imple-
mented wire chains may not meet our tight timing constraints for 300MHz. In these
cases, the system needs to insert pipeline stages on the DSPI. For this purpose, we
need to also implement our atomic module with a pipeline stage for the DSPI signals.
Figures 6.4 b-c show the routing in our proposed atomic modules with pipeline stages.
They implement either a pipeline stage on the east-to-west stream or the west-to-east
stream.

Additionally, the scheduler can implement execution pipelines that do not utilize
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a)

b)

c)

Figure 6.4: DSPI route-through in atomic resource columns: the interface wires can
route through directly (a) or by first going through a pipeline stage (b-c). The green
and blue busses show the wires of streaming in east-west or west-east direction respec-
tively. The red wires show the interface path after a pipeline stage (in b-c).
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the full PR slot. In such cases, placing the required processing modules next to our
DMA module might leave a large empty region on the other side of the slot. To min-
imize configuration overhead we also provide an atomic module for early stream di-
rection reversing. That module does not implement any wire connections on its west
border, but only routes the input to the output on its east border.

6.3 Case Study: TPC-H

For detailed evaluation, we use the TPC-H decision support benchmark due to its
broad industry-wide relevance and queries that are more complex than most OLTP
transactions [108]. From all the queries of the TPC-H benchmark, Q19 is the most
intensive for expression calculations. The filter operation is complex and consists of
28 unique integer and string compares and a Boolean evaluation that simplifies to 24
DNF clauses. Other than strong benchmarking of expression calculation (see List-
ing 6.1), Q19 also has medium complexity for aggregation and join handling [17]. It is
an ideal test case to show the co-operation of the most used database operators (filter,
join, arithmetic, sort, aggregate) in the proposed Dynamic Stream Processing system.
Moreover, due to its complexity, it is the only query that Xilinx Vitis Database Li-
brary is unable to execute when utilizing two Xilinx Alveo U280 FPGA boards [133].
Therefore, by showing that our system can execute this query, we demonstrate the ver-
satility of our approach. While Q19 is a difficult query to execute, it is straightforward
to parse [17], thus, we do not artificially benefit from our manual query parsing in this
system prototype.

This case study targets a dual PR slot in the FPGA Operating System (FOS) [115,
116] on a Xilinx ZCU102 board.

The Stream Processing pipeline is clocked at 300 MHz, which is the highest sup-
ported frequency for the Xilinx Zynq AXIs (see Section 2.1.3). The DMA module is
connected to a High-Performance AXI port, which provides bandwidth of 4.8 GB/s
write and 4.8 GB/s read (see Section 3.1). We generate four versions of TPC-H with
four different Scale Factors (SF) of 0.01 (9.8MB), 0.1 (97.6MB), 0.3 (292.5MB), and
1 (975MB) to evaluate the performance scalability of our system with respect to data
size. To obtain software baseline performance, we use a powerful machine comprising
Intel Core i7-4930K processor with 64 GB DDR3-1333 main memory utilizing four
CPU memory channels. The machine operates using Ubuntu 18.04.4 LTS and uses
PostgreSQL 10.15 for TPC-H execution.
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1 select
2 sum(l_extendedprice* (1 - l_discount)) as revenue
3 from
4 lineitem ,
5 part
6 where
7 (
8 p_partkey = l_partkey
9 and p_brand = ’Brand#12’

10 and p_container in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
11 and l_quantity >= 1 and l_quantity <= 1 + 10
12 and p_size between 1 and 5
13 and l_shipmode in (’AIR’, ’AIR REG’)
14 and l_shipinstruct = ’DELIVER IN PERSON’
15 )
16 or
17 (
18 p_partkey = l_partkey
19 and p_brand = ’Brand#23’
20 and p_container in (’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)
21 and l_quantity >= 10 and l_quantity <= 10 + 10
22 and p_size between 1 and 10
23 and l_shipmode in (’AIR’, ’AIR REG’)
24 and l_shipinstruct = ’DELIVER IN PERSON’
25 )
26 or
27 (
28 p_partkey = l_partkey
29 and p_brand = ’Brand#34’
30 and p_container in (’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG PKG’)
31 and l_quantity >= 20 and l_quantity <= 20 + 10
32 and p_size between 1 and 15
33 and l_shipmode in (’AIR’, ’AIR REG’)
34 and l_shipinstruct = ’DELIVER IN PERSON’
35 );

Listing 6.1: TPC-H Query 19 [108] represents a complex query utilizing the most
widely used database operations, but with large operation complexity. It consists of
28 unique integer and string compares and a Boolean evaluation that simplifies to 24
DNF clauses. It challenges all of the most common database operators for acceleration:
filter, join, arithmetic, aggregate, and sort (sort is needed to implement the merge join
operation).
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a)

b)

c)

Filter

‘lineitem’ ‘part’

Join

Arithmetic

Sum

result

Filter

‘lineitem’ ‘part’

Merge join

Arithmetic

Sum

result

Sort

Filter

‘lineitem’ ‘part’

Merge join

Arithmetic

Sum

result

Sort

Filter

Figure 6.5: TPC-H Query 19 execution plans. All operations in the figure represent a
logical view, while the physical module implementation depends on the exact operation
parameters and data sizes at runtime. The runtime scheduler can tailor the query plans
for hardware acceleration: a) initially the basic parsed operations graph does not define
a type of join, b) for the join operator we use a merge join, which results in the need
to sort ’lineitem’ first, and c) sort is an expensive operation, but we can move the data
filtering for table ’lineitem’ to be processed before the sort to minimize sorting data.

6.3.1 Building the Execution Pipeline

The query plan in Figure 6.5 a represents a logical operator graph. The runtime host
system will decide the physical implementation and order for these operators. This is
done in iterations:

• Operators such as filter, arithmetic, sum each have their own module imple-
mentations and can be logically represented in a hardware acceleration graph.
However, the join module has different algorithms that can be used (merge join
or hash join). Selecting our merge join operator as a hardware accelerator target
also imposes the need to sort one of the join keys, thus we need to add a sorting
step as shown in Figure 6.5 b. The sort operator in our system is physically im-
plemented by two different phases that are data-dependent but has no alternative
algorithms, thus we do not have to evaluate it further in our logical graph.
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• The next critical step is to move any data minimization forward since our system
is memory-bound. Additionally, the sort operation is an expensive one, thus we
need to reduce the data beforehand. In this query, we have a filter operation that
is applied on records after the joining of the two tables. We can extract the valid
data states for table ’lineitem’ from the post-join filter into a new pre-sort filter
as shown in Figure 6.5 c. This way we will decrease the number of tuples that
need to be sorted.

We build the execution pipeline as follows:

• We start in order by placing the pre-sort filter together with the first phase for
sorting (a linear sorter) (see Figure 6.6 a). Sorting is a natural barrier for recon-
figuration, due to the inability to produce sorted records prior to observing all
input data. The sorter input data is of unknown size since it is an output of a
filtering operation. Therefore, we cannot extend the initial hardware run with
other operations, so we utilize the remaining FPGA resources by placing our
largest (in terms of both resources and utility) linear sort module alternative.

• After the first run, the filtered data is written back to DDR in pre-sorted se-
quences of 1024 records each. The system needs to finish the sorting process
using merge sort accelerators and at this point, the system knows the exact size
of the data to sort. Since the final merging run we consider merging of up to 64
sorted sequences (see Figure 6.6 c), we need to minimize the sequences to 64
or less prior to that run (see Section 4.4.3). Thus, if the number of sequences
that need merging is more than 64 (like in the SF=1 case), the system places
merge-sort-only intermediate runs (see Figure 6.7). In general, since sort is a
blocking operator which forces partial reconfiguration, we can utilize the sched-
uler to optimize the following merge runs according to the available resources
and the runtime-known compute problem (here defined as the number of sorted
sequences that require merging).

• Then we continue towards the join operation. We place a final merge sort mod-
ule (E=32 or E=64 depending on intermediate data), then we join, and finally,
we filter the joined data (see Figure 6.6 b-c). The two configurations imple-
ment the same operations, but by using our module alternatives, one of them
manages to avoid the configuration of three double columns (resulting in 0.3
milliseconds reduction). For the post-join filter module, we duplicate the data
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Figure 6.6: Execution pipeline for TPC-H Query 19 acceleration. The execution of
the query is done in multiple phases. First, we filter and linear sort (a) the input table
’lineitem’. Then we can have intermediate merge sort runs depending on the resulting
data size after the filter. Then we use either E=32 or E=64 merge sort (b-c) to finish
the sorting, join with table ’part’ and filter all resulting data. In the final run (d), we
solve the query’s arithmetic and execute the final aggregation.
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Figure 6.7: TPC-H case study: merge sort execution pipeline. In cases we need to
merge many sorted streams, we can place three of our resource elastic merge sort
modules to achieve E = (3×64) = 192.

field p container to accommodate for the twelve unique compare strings refer-
ence values. However, we manage to do this without a throughput reduction,
since we do not reserve new chunks in the streamed records (see Section 5.2).

• Finally, we place the arithmetic operations followed by a sum aggregation. The
arithmetic multiplier in this query multiplies two decimal fields and thus needs
to do a division at the end of the operation resulting in a larger module than the
other arithmetic modules.

At the end of each stage (writing back intermediate data to DDR), the programmable
crossbar in our DMA module omits the unnecessary data fields to improve perfor-
mance. For example, after we join and finish all data filtering, we only store two data
fields per tuple back to DDR to be used for the final arithmetic and aggregation. The
initial input data size in the SF=1 case is 975MB, while the intermediate data for the
final FPGA run is only 2KB (121 records of 16 bytes each).

6.3.2 Evaluation

Table 6.3 presents the measured runtimes of our proposed streaming system and our
baseline PostgreSQL running on an Intel i7 machine with four memory channels. Our
baseline machine achieves 1.8× higher performance in PostgreSQL than Xilinx’s In-
tel Xeon server base case, and even higher performance than hardcoding the query
using C++ [132]. We also implemented a Performance Monitoring Unit (PMU) in-
side our DMA module that tracks runtime and AXI transactions. This allows us to
do cycle-accurate time analysis, which is important so we can observe any overheads
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TPC-H
Proposed System

ZCU102 FPGA Board
1× DDR4-2400

Xilinx Baseline [132]
Intel Xeon E5-2690 v4

Our Baseline
Intel i7-4930K

4× DDR3-1333
Scale
Factor

PR,
ms

Execution,
ms

PostgreSQL 9.6,
ms

C++,
ms

PostgreSQL 10.15,
ms

SF=0.01 6 2.076 - - 22.8
SF=0.1 6 21.707 - - 73
SF=0.3 6.3 62.034 - - 188
SF=1 7.5 207.837 983 596 538

Table 6.3: Evaluation results of prototype system on TPC-H Query 19 [108]

in the system. For our baseline results, we execute every TPC-H configuration in our
PostgreSQL ten times and consider only the minimal achieved runtime.

Latency

Our latency results for the FPGA acceleration measure both FPGA acceleration run-
time and FPGA partial reconfiguration latency (see Figure 6.8). In all four configura-
tions, our proposed system achieves between 2.46× and 2.62× faster runtime when
compared to software execution. We analyze the two main components that increase
our execution latency:

FPGA reconfiguration : As described in Section 6.3.1, our system implements the
query in three FPGA runs for SF=0.01, 0.1, 0.3, and uses one additional FPGA
run for SF=1.0 for merge sorting. This additional run adds an additional recon-
figuration stage. However, in that case, two consecutive runs use a placed merge
sort module as the first accelerator, thus the second of these runs can avoid the
overhead of replacing the merge sorter. The total reconfiguration latency in our
four runs is between 6.027 and 7.492 milliseconds. When correlating these num-
bers to our total execution runtimes, we observe that for smaller databases the
reconfiguration overhead is significantly larger than the actual execution run-
time. This was expected and discussed throughout this thesis: FPGA accelera-
tion is best targeted when the problem size is sufficiently large to amortise system
overheads. More precisely, in the SF=0.01 case, our reconfiguration overhead
amounts to 74.3% of the total execution runtime. This overhead is largely over-
come by increasing the database size: in the SF=1 case, our reconfiguration
overhead equates to only 3.4% of the total execution runtime.
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Figure 6.8: The total execution latency including both computation and FPGA fabric
reconfiguration overheads.

Acceleration latency : As discussed in Section 6.3.1, it is important to drop all data
that will not be needed for the following runs prior to DDR writing. We observe
the large impact of this optimisation. The largest of our two input tables is table
’lineitem’ which equates to 96.0% of the total initial input data. The first FPGA
run executes our initial filtering on that table and results in 95% of the total
execution latency. This is because, at the end of this initial run, most of the data
is omitted (both invalid records and unneeded data fields from the remaining
valid records) which results in less-demanding following runs.

Throughput

All our FPGA configurations are memory-bound and achieve the maximal available
throughput as measured in our quantitative memory analysis (see Section 3.1). The
currently proposed DMA module provides prefetching that is able to accommodate
for a total of 1024 clock cycle latency, which is sufficient to decouple the streaming
accelerators from the memory subsystem, while fully utilizing the available memory
bandwidth. However, database records and their intermediate forms tend to implement
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Figure 6.9: TPC-H case study: end-to-end throughput. We measure end-to-end
throughput as the ratio of the input table size and the total query execution time.

random data sizes, which can result in inefficient positioning in memory. For exam-
ple, the input records from table ’lineitem’ implement 39 32-bit integers. To achieve
near peak memory throughput utilization we use our memory subsystem evaluation to
program our DMA module that can access an arbitrary number of records as a single
packed burst. In our case study, we pack the records in groups of 8, 16, or 32 (de-
pending on their size) to force memory access burst alignment to larger boundaries
and achieve near-peak utilization.

To analyze the throughput between our proposed system and our PostgreSQL base-
line, we evaluate end-to-end throughput. We measure this metric as the ratio of the
total size of the two input tables and the total query execution time (including FPGA
reconfiguration). Figure 6.9 shows the tendency of end-to-end throughput increase
with respect to database size. The proposed approach in this thesis provides better
execution performance and high scalability with the increase of database size.

In our case study, our utilized system has limited memory resources (both in terms
of size and throughput) compared to our baseline machine. In Figure 6.10 we show the
ratio for memory throughput utilization. It considers the achieved end-to-end through-
put in our evaluation and the peak memory throughput of the two target machines. On
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Figure 6.10: TPC-H case study: system throughput utilization. We measure this
utilization as the normalized ratio of end-to-end throughput to peak system band-
width (the peak of the DDR4-2400 is 19.2 GB/s, High-Performance AXI port is
9.6 GB/s, while for our PostgreSQL baseline system is 42 GB/s).

the ZCU102 board, while the maximal DDR throughput is 19.2 GB/s, our accelera-
tors are constrained by the maximal 9.6 GB/s throughput of the 128-bit AXI operating
at 300MHz. Depending on the configuration, our system achieves 5.4− 11.4× better
utilization of the available DDR memory throughput. This efficient utilization of the
available memory throughput is enabled by the large utility of the proposed accelera-
tors. It showcases the importance to maximize the amount of practical work performed
each time the data is streamed through the FPGA.

6.3.3 Summary and Related Work

While the Xilinx Vitis Database Library utilizing dual Xilinx Alveo U280 FPGA
boards does not support the execution of TPC-H Query 19 [133], we show that us-
ing our dynamic approach we can accelerate this query. Since our system operates at
19.2 GB/s, it is memory-bound in ZCU102. It saturates the available 9.6 GB/s, which is
limited by the Zynq UltraScale+ High Performance AXI port (see Section 2.1.3). The
large throughput, efficiency, and scalability are highlighted better when we compare to



6.4. CONCLUSION 137

related work. Ziener et al. [135] utilize an FPGA board with 12 GB/s, but achieve a
stream throughput of only 2 GB/s (6× less than peak). Similarly, AxleDB [98] utilizes
an FPGA board with 15 GB/s DDR bandwidth, but achieves a processing throughput
of only 3.2 GB/s (4.7× less than peak). Related works cannot saturate DDR bandwidth
since the proposed systems are not scalable to wide datapaths and high frequencies (see
Section 4.1.4).

Throughout this thesis, we have presented and quantified the scalability and utility
of the proposed accelerators. For example, our DNF filter module prototype achieves
19.2 GB/s stream throughput and is guaranteed to process a chunk every clock cy-
cle (see Section 4.3). Cost scales linearly when increasing the datapath width and
stream throughput (see Section 4.3.4), while other approaches have exponential growth
for cost [121, 58, 105]. For example, the filter units in [58] achieve up to 0.297 GB/s
per filter unit, and their results are combined using a k : 1−bit look-up-table. In order
to achieve our 19.2 GB/s stream throughput using the filter units approach, the sys-
tem will need at least k = 19.2/0.297 ≈ 65 filter units. This results in a 65 : 1− bit

look-up-table, requiring 265 bits of on-chip memory, which is infeasible.

6.4 Conclusion

This chapter proposed methods for building our accelerators as PR-capable modules
and an analysis of the FPGA configuration overheads. Our PR modules connect when
placed next to each other through their DSPI implementations. When building the
runtime pipeline we can minimize the configuration overheads since the size of the
used portion of the PR slot can be decreased by early termination using a turn-around
atomic module. We show that the configuration overhead for building the execution
pipeline is relatively low at 0.5-3ms depending on the configuration.

We evaluate the built accelerators from our module library and they all meet 300MHz
operating frequency when synthesized for a wide datapath of 512 bits resulting in
19.2 GB/s throughput. Running our system at 19.2 GB/s streaming throughput enables

it to saturate two standard DDR4-2400 64-bit memories. Our accelerators are highly
scalable and have the potential to extend to wider datapath widths and still meet time
requirements if additional pipeline stages are inserted.

We implement a case study targeting TPC-H [108]. While Xilinx Vitis Database
Library utilizing dual Xilinx Alveo U280 FPGA boards does not support the accelera-
tion of TPC-H Query 19 [133], we can execute the query using our system. Our system
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is memory-bound and achieves near-peak throughput as expected from our quantita-
tive memory analysis (see Section 3.1). We compare against a baseline case utilizing
a powerful desktop machine with PostgreSQL and our approach achieves 2.5× higher
performance and more than 5× better utilization of available system memory through-
put.



Chapter 7

Conclusion

7.1 Summary

In this thesis, we proposed methods, concepts, and implementations to constructing a
dynamic stream processing system that implements the principle of resource elasticity
to optimize execution pipelines at runtime. This was demonstrated for database ac-
celeration where acceleration services (e.g., for sorting) had been served using partial
reconfiguration for using all the currently available resources for speeding up execu-
tion. The proposed system demonstrates: 1) a capable protocol for interfacing dynamic
modules (see Chapter 3) that reduces control wires by 13% compared to the previous
state-of-art (see Section 3.3.7), while enabling extended functionality such as direct
memory-mapped registers in dynamic modules (see Section 3.3.4) and our accelerators
can arbitrarily utilize multiple virtual channels for communication (up to thousands);
2) a library of large utility resource elastic modules that can be composed together to
implement higher logical functions while meeting our target streaming throughput of
19.2GB/s; 3) 2.5× faster execution and 5× better memory utilization in TPC-H when
utilizing a portion of a ZCU102 FPGA compared to PostgreSQL running on a high-end
Intel Core-i7 machine.

To do this, we introduced a new methodology for implementing thin and tall par-
tially reconfigurable modules by adopting design factors such as minimizing their ver-
tical wiring (see Section 4.1). The presented concept includes the major increase in
flexibility and utility for achieving a more versatile module library. We provided accel-
erator designs with good quality of results for the most used functions in database sys-
tems. Module alternatives allow the runtime scheduler to tailor the execution pipeline
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to the accelerated problem, minimizing external fragmentation and increasing perfor-
mance. Additionally, composable modules allow the scheduler to maximize utility and
flexibility at runtime for optimal performance to resource requirement trade-offs (see
Section 5.1). Our module library implements the most widely used database accelera-
tors.

We demonstrate our module design methodology with our filter module (see Sec-
tion 4.3). The module utilizes standard Boolean expression representations (DNF) to
provide flexible and efficient hardware design. Achieving the integration of many dif-
ferent compare requirements and Boolean expression functions together in one module
instance results in a large utility. For example, comparing that to the state-of-art ap-
proach [135] in dynamic stream processing of using small atomic modules for each
operation, we achieve 13× fewer resource columns required to filter TPC-H Query 19,
while enabling the filter to be executed with a single pass of the data through the chip,
thus also maximizing effective performance (see Section 4.3.4).

To expand the benefits of FPGA acceleration, we identify expensive operations
in database acceleration and design solutions for achieving high performance. One
such operation is sorting, thus we propose and implement a highly optimized large
utility merge sorter module (see Section 4.4) that, depending on the allocated FPGA
resources, achieves up to thousands of merged sequences at once, which is key for
performance gains (Section 4.4.3).

We analyze the benefits of resource elastic techniques and demonstrate their ap-
plication to various modules in our system (see Section 5.1). For example, we can
increase the utility and overall performance of our sort modules (see Section 5.3) or
increase the computational capacity for data filtering (see Section 5.2). Resource elas-
tic scheduling can also be used together with partial reconfiguration for blocking oper-
ators that split the activity of a processing pipeline in multiple phases (e.g., sorting) to
allow composing optimized sub-pipelines for each phase.

To enable the seamless integration of our modules, we propose the Dynamic Stream
Processing Interface (DSPI). We thoroughly examine the possible requirements of
streaming applications for data rates, stream organization, and accelerator functionali-
ties to achieve a highly efficient and versatile interface fit for dynamic stream process-
ing modules. It implements a credit-based system where PR modules allocate tokens,
which enables precise dataflow control leading to maximized scratchpad utilization.
The interface is adaptive and most functionalities are selectively omitted by every mod-
ule to eliminate logic overheads, with only a single key feature being mandatory (see
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Section 3.3.4). The interface minimizes wire overheads, while drastically extending
the achieved capabilities when compared to state-of-art research [118]. It also enables
key functionality such as relaxed software integration through memory-mapped regis-
ters inside the dynamic modules.

To adapt our system for deployment in managed environments, we target an ex-
ternal standard AXI interface [115, 116]. Thus, we design a DMA module (see Sec-
tion 4.2) that is used to decouple our DSPI from a set of standard AXI master and
slave interfaces. This module provides address handling, data permutation to abstract
these challenges from our streaming accelerators. Additionally, the DMA module pro-
vides stream prefetching in order to minimize serve times and maximize effective
throughput. We show how different operators can be integrated and orchestrated in
our streaming system through the proposed hash join streaming modules that carefully
utilize DSPI and our DMA module (see Section 4.5.2). Overall, considering the flow
and the instruction set of our DSPI protocol, the proposed DMA module implements a
complete abstraction layer.

In our prototype implementation, we build the modules such that they automat-
ically connect their interfaces when placed next to each other at runtime (see Sec-
tion 6.2.1). To evaluate the system, we implement a case study targeting the standard
TPC-H benchmark. Our system in particular allows accelerating the complex TCP-H
Query 19, which is commonly discarded in related work (see Section 6.3). We use the
resource elastic functionality of our module library to tailor the execution pipeline to
the exact query requirements and maximize throughput and resource utilization. We
show that our system can be scaled to high I/O datarates and we demonstrated this for
matching the peak DDR4 memory data rate. The results from running our prototype
system confirm the anticipated high performance and efficient resource utilization (see
Section 6.3.2). Additionally, the scalability of the proposed methods and designs in
our system allows for future scaling to match the ever-increasing FPGA capabilities.

7.2 Future Work

Next generation Xilinx FPGAs will bring major improvement in memory through-
put, and UltraRAM capacity and versatility [130, 129]. The utilization of future
FPGA technology will improve our system throughput and the capabilities of the
proposed module library, especially modules that benefit from large scratchpads and
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buffers (e.g., DMA, merge sort, linear sort). There are also three key identified ar-
eas that need additional research and development: 1) software integration, 2) module
library extension, and 3) automation of module implementation:

• Software integration:

– The researched topics provide solutions for the offline module library gen-
eration, module interfacing, scalability, utility, and partially their runtime
integration and management. However, the integration of our proposed
system into DBMS is required in order to provide a complete solution that
can be deployed at scale. The research of integrating the proposed hard-
ware into an existing DBMS and exploring heterogeneous scheduling is
currently ongoing by PhD candidate Kaspar Mätas [66]. This integration
includes the implementation of a scheduler that can find the most optimal
execution plans. Such scheduling poses a large complexity due to the wide
operator search space in our resource elastic module library. Additionally,
such integration will provide software fallback solutions for cases that do
not fit well for FPGA acceleration. This integration could pose hardware
challenges as well. For example, our DMA module implementation cur-
rently realizes a row-store database, while software DBMS might require
a column-store-capable DMA module [42]. In fact, the versatility of DSPI
also enables column-based operators, which is also a possible topic for fu-
ture research.

• Module library extension:

– We propose hardware implementation for the most widely used database
operators. However, the SQL standard defines 376 reserved keywords,
many of which implement operators [44]. To fully support all operators,
our module library needs to be extended with modules such as support for
all data types and conversion between them and complex operators such as
logarithm and trigonometry operators.

– Module optimisations can be applied to accelerate certain problems. This
can be achieved by research and implementation of specialized versions
of our modules and extension of our module library. Examples of such use
cases are sorting by multiple keys simultaneously and modules that process
multiple packed small records every clock cycle.
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• Automation of module implementation:

– The prototype implementation of our system includes multiple manual op-
erations when building module bitstreams. This does not allow us to fully
explore module resource footprint variants. The development of automatic
implementation toolflow will allow the completion of the module library
with bitstream variants, resulting in improving or eliminating any resource
fragmentation in the runtime execution pipeline.
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Appendix A

Xilinx Zynq UltraScale+: Quantitative
Memory Analysis

A.1 Hardware Setup

We have implemented and placed RTL modules in the Programmable Logic (PL).
These modules independently use the read and write ports of the 4 High-Performance
AXI ports. Our modules can simulate the placement of up to eight accelerators —
four write memory intensive (e.g., mandelbrot frame rendering) and four read memory
intensive (e.g., a MapReduce accelerator) or combinations of these. This as well fits
our problem of stream processing, as it simulates data-bound problems. However, we
do not constrain the ratios of read-to-write operations to 1:1 due to the wide variety
in data requirements of stream processing accelerators (see Section 3.2.1). Figure A.1
depicts the connection of these modules with the PS. Each test module is fully pro-
grammable from the host CPU, allowing us to change its state at runtime for adjusting
the number of operations, memory address spaces and burst lengths. To ensure there
are no conflicts between accelerators, we reserve a unique address space in the DDR
memory for each accelerator. All modules are instrumented with an integrated Perfor-
mance Monitoring Unit (PMU), which allows us to obtain real-time information about
read/write operations executed, active runtime, as well as average and maximum read
latencies. The PMU registers are memory-mapped and are controlled using the AXI
Slave as shown in Figure A.1.
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Figure A.1: Experiment setup for memory transaction handling on Xilinx Zynq Ultra-
Scale+ [63].

A.2 Experimental Setup

The base experimental setup consists of all AXI combinations configured to measure
read-only, write-only, and read-write performance for each setup. The test modules
are directly connected to the PS HP AXI ports without any additional interconnect as
an intermediary. Further, these modules are controlled from the CPU in bare-metal
mode to minimize memory overhead and interference caused by running applications
and an operating system. Moreover, our tests are long and free-running, i.e. each
configuration runs for 5 seconds before being stopped to capture the results. The long
period of execution includes many DDR refresh cycles, which tests for worst-case
scenario latencies. Every configuration is tested 10 times to minimize and quantify
errors.

The system runs with a global clock of either 100MHz or 300MHz in different test
scenarios. The read-only and write-only tests are executed for both ZCU102 and Ul-
tra96 at 300MHz to achieve maximum available single-AXI performances, while our
base read-write tests run at 300MHz and 100MHz on the ZCU102 and Ultra96 respec-
tively symbolising their most common use cases as datacentre FPGA and personal/IoT
FPGA respectively.

The ARM CPU cache line size is 64 Bytes in Zynq Ultrascale+ devices. Given
that the DDR memory controller is also supplied by ARM, we would anticipate that
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it is largely optimised to operate on memory accesses of this burst size. Moreover,
cache lines are always aligned in memory, which should also be considered when
using the DDR controller. In our experiments, small bursts (up to 512 Bytes) are
multiple of 16 Bytes and large burst sizes are always the multiple of the ARM cache
line size to ensure optimal operation of the DDR controller. Additionally, all of our
accesses are memory aligned to the burst size for the test (i.e. 16 Byte bursts will have
data aligned to 16-Byte boundaries). Data alignment and positioning is a common
technique that can overcome DDR controller alignment issues as well as optimal cache
line utilization from software [30]. The maximum achievable AXI burst size for a 128-
bit AXI configuration is 4 KiB, thus we evaluate AXI performance with configurations
of up to 4 KiB. Note that the DDR memory controller is capable of executing memory
requests out of order and has QoS modules that can define the order of requests to
the memory. In situations where the controller cannot select more optimal execution
ordering, read requests are prioritised over write requests [125].

We use a DDR controller configuration to map the DDR address space in Row-
Bank-Column fashion for our base case, which is the default and widely used con-
figuration in computing systems, as it results in bank interleaving when accessing
large sequential arrays of data. Additionally, we set the System Memory Manage-
ment Unit (SMMU) into by-pass mode for the accelerators to minimize the throughput
overhead caused by the Translation Buffer Units (TBU).

With these base settings, we exhaustively test every AXI and frequency combina-
tion for multiple different burst sizes to characterise memory performance under var-
ious scenarios. Individual changes are made in the base setup to evaluate the impact
of access patterns, multiplexing in PL and Quality of Service (QoS) in isolation (i.e.
keeping all other parameters constant).

A.3 Memory Subsystem Evaluation

We have evaluated eight primary areas: 1) peak performance, 2) performance of AXI
ports, 3) transaction frequency, 4) access patterns, 5) memory organisation, 6) mul-
tiplexing overhead in PL, 7) quality of service and 8) performance distribution im-
pact [63]. Based on our experiments we found that throughput scales linearly with
AXI width size and, hence, to quantify the maximum throughput achievable all the
experiments from here on use 128-bit AXI connections.
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Figure A.2: Available duplex throughput with respect to burst size in Bytes of single
AXI configuration in Ultra96 running at either 100MHz and 300MHz.

Figure A.3: Available duplex throughput with respect to burst size in Bytes of single
AXI configuration in ZCU102 running at either 100MHz and 300MHz.

Figure A.4: Available duplex throughput with respect to burst size in Bytes for multiple
AXI users in ZCU102 running at 100MHz.

Figure A.5: Available duplex throughput with respect to burst size in Bytes for multiple
AXI users in ZCU102 running at 300MHz.
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Peak Performance

To minimize switching between R/W operations, we evaluate the peak memory per-
formance provided by the boards using read-only and write-only test scenarios. Since
the DDR theoretical performance for ZCU102 is larger than the available throughput
of a single AXI port, we also include the test case using multiple AXI configuration
that achieves the largest throughput (using HP0, HP1 and HP3 simultaneously). We
observed that:

• The write-only throughput is larger than the read-only throughput with on aver-
age 11-13% higher write speed.

• At a burst size of 128 Bytes, the throughput reaches near maximum for all con-
figurations.

• Burst sizes using a multiple of 64 Bytes yield local peak performances except
for the burst sizes which are also multiple of 256 Bytes as they show decreased
throughput for various AXI ZCU102 read-only configurations.

The Ultra96 configuration uses a single AXI that issues sequential bursts on either
the read or write port. This avoids request multiplexing or changing between read
and write mode in the DDR controller, thus achieving a high maximum throughput of
92.5% of the theoretical DDR memory peak on the Ultra96. In contrast, the ZCU102
needs to utilise multiple AXI ports to achieve the highest throughput, which leads
to some multiplexing in the DDR controller between the requests and does not scale
linearly with the number of ports. The peak performance in ZCU102 was found at 128
Byte bursts, which is 75% of the theoretical peak for the DDR memory.

Note, contrary to the common assumption, using all AXI ports does not lead to

the highest throughput in either of the boards as HP1 and HP2 are multiplexed in the
PS (see Figure 2.2).

A.3.1 Performance of AXI Ports

We execute read/write base tests utilising all AXI combinations and burst sizes, to
observe their respective behaviours. The tests are executed at 100MHz and 300MHz
respectively for both Ultra96 and ZCU102.
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Standalone

When a single AXI port is accessing memory, both of its read and write ports typi-
cally utilise different memory regions, which can essentially lead to row pollution of
each other. We find that all AXIs in ZCU102 behave similarly, while HP0 in Ultra96
behaves differently than HP1-3 (see Figure A.2).

We can rationalise the behaviour discrepancy between the ports on Ultra96 by the
fact that HP0 shares its DDR connection with the DisplayPort that uses DDR mem-
ory for frame buffering. However, the same behaviour discrepancy is not observed
for ZCU102 which objects our explanation. Upon further examination, differences be-
tween the Quality of Service (QoS) configurations were found. However, this is highly
unexpected since according to technical documentation [125], the QoS module of HP0
does not influence the behaviour of the memory accesses of the DisplayPort. Overall,
we can conclude that 1) same type of AXI ports may not necessarily show same perfor-

mance behaviour and 2) after a point, increase in burst size may backfire depending

on port’s QoS settings.

The average read latency in all single AXI configurations on both boards was found
between 250 and 10,000 clock cycles and scales linearly with respect to burst size.

Combinations

When multiple AXIs perform memory requests on the same memory region, signifi-
cant row pollution might occur. The trends on Ultra96 are similar for all configurations
with at most about 20% difference between best and worst-performing configurations.
We found that the best performing configuration is the one including HP1-3. This con-
figuration also has balanced read/write distribution, but due to the multiplexing of HP1
and HP2 in PS, HP3 receives 50% of the available throughput, leaving HP1 and HP2
with only a 25% share for each. In all configurations with HP0 enabled, HP0 obtains
a significantly larger portion of the available throughput and read requests deliver at
least 20% more throughput than write requests. The ZCU102 in contrast always has
a balanced distribution between different AXIs (except HP1 and HP2, which share an
AXI port to DDR). Configurations HP0,1,3 and HP0,2,3 show oscillating throughput
behaviour with respect to the burst size. Whereas all two-AXI configurations except
HP1-2 achieve a more stable throughput trend, peaking at 128-Byte bursts to 11,600
MB/s and 320-Byte bursts to 12,640 MB/s. Notably, the more AXIs in a configuration,
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the higher the imbalance between read and write throughput, with 4 AXI combina-
tions and burst sizes of more than 128 Bytes, the write throughput reaches only 1% of
the total.

On the Ultra96 board, the average read latency of HP0 in all AXI combinations
is the same as standalone HP0. In configurations including HP0, all other AXI ports
experience an average latency increase of up to an order of magnitude higher than their
standalone cases. This is because the read port of HP0 is configured to a higher prior-
ity by default, which pollutes the read (and write) requests from all other AXI ports.
On the ZCU102, the average read latency in multiple AXI configurations increases to
about 2× for 3-AXI and 4-AXI configurations. In both devices, HP1 and HP2 face
up to a 2× latency increase over other AXI ports if they are simultaneously used in a
configuration.

We have not observed any large periods of AXI read unresponsiveness, which
might be caused by long DDR refresh procedures. The DDR controller manages to
hide the refresh cycles as (other than HP0, which is polluting the other AXIs in Ul-
tra96) we observe maximal AXI read inactivity of about 200-300 cycles in our tests.

A.3.2 Frequency

As both boards feature the same ARM SoC, the theoretical aggregated throughput be-
tween PS and PL is 12.8 GB/s (4 AXI ports at 2x1.6 GB/s each) when running the PL
at 100MHz. When we test the ZCU102 at 100MHz, we observe a peak performance
of 8,800 MB/s when operating all AXI ports at bursts of 384 Bytes. This is only
14% lower than the same configuration running at 300MHz but is 36% lower than
the HP0,1,3 and HP0,2,3 configurations running at 300MHz. Additionally, the read
requests take all the available AXI read ports throughput and the mentioned configura-
tion achieves 6.4 GB/s read throughput but only 2.4 GB/s write throughput. Since all
4 AXI read ports achieve their theoretical maximum of 1.6 GB/s, this reveals that the
HP1-HP2 multiplexing in PS is happening after clock domain crossing at a higher PS
frequency.

Whereas, running Ultra96 at 300MHz results in a major increase of throughput in
configurations including the use of HP0 except for burst lengths of 64B and 128B.
The distribution between throughput to the different AXIs is much more spread, as
HP0 reaches its peak performance of ≈3GB/s, while other AXIs in the configuration
achieve peaks of up to 200-600 MB/s only.

Overall, the higher frequency can translate to higher memory throughput depending
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on the AXI combinations and DDR memory chips available on the board. However,
even a 300MHz PL clock speed in the best case only gains 55.6% over the best case of

100MHz PL configuration in our experiments.

A.3.3 Access Pattern: Sequential vs Random

We also run the experiments using random access patterns to identify and measure
the loss of performance caused by the rapidly changing memory sections in a multi-
tenant environment. Note, here the access pattern implies address differences between
separate burst requests and that the memory accesses inside a particular burst request
are always sequential. For Ultra96 we observe a decreased throughput of up to 70% for
burst sizes of only 16 Bytes and up to 2-10% decrease for large burst sizes compared
to the best performing configurations from the base case. This is expected, since large
burst sizes compensate the associated overhead of switching rows in the DDR memory,
while for small bursts, the overhead is large relative to the work performed.

For the same experiment performed on the ZCU102, we observe less predictable
behaviour than Ultra96. All configurations in our random test provide at least 6% less
throughput than the peak configuration from the base case (see Figure A.9).

Overall, for multi-tenant systems, burst sizes of≥ 512 Bytes minimize the overhead

of changing access pattern in the DDR controller. When using small burst sizes it
is recommended to maintain sequential access patterns as much as possible for the
highest memory throughput. This also indicates that the DDR controller attempts to
perform bulk operations if possible.

A.3.4 Memory Organisation: Row-Bank vs Bank-Row

Since FPGAs provide a high degree of flexibility in how we organise and use the hard-
ware, customising the memory architecture along with hardware needs is an important
optimization avenue. Hence, we also ran experiments on Bank-Row-Column address
space organisation along with Row-Bank-Column in our DDR memory.1 To try and
utilise this to our advantage, we place the work memory regions of our test accelerators
into different banks, such that each of our accelerators takes two reserved banks - one
for read accesses and one for write accesses.

Running the experiment on ZCU102 resulted in a very minor difference in through-
put pattern compared to the Row-Bank-Column. Most points in our results are within

1By configuring the address map inside DDR settings for Zynq IP core.
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Figure A.6: Throughput distribution between AXI configurations on Ultra96. The
fairest distribution is when D = 1. Note, Write Only HP0-3 64B has a ratio of 5165
and is not captured entirely in the graph.

Figure A.7: Throughput distribution between AXI configurations on ZCU102.

Figure A.8: Read latencies measured on ZCU102.

Figure A.9: Throughput measurements on ZCU102 for various setup parameters.
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statistical error of around 0.5% compared to our base test results. The only notable dif-
ference in throughput is when using both HP1 and HP2, which yields about a 7% de-
crease in throughput for some burst lengths. These unexpected results on the ZCU102
might be explained by the DDR memory used, which is organised into bank groups
in which banks share pre-charge components and our experiment setup used 8 banks
that are organised into 2 bank groups symbolizing half of the DDR memory resources
available. Read latency does not change with respect to the base case (see Figure A.8).

Overall, changing the address space organisation mostly affects performance at

small burst sizes for selected ports (up to 31% improvement for Ultra96) and depends

on whether the memory is organised in bank groups or not. For large burst sizes, there
is no significant change in throughput behaviour. What is more, it can backfire if the
number of accelerators is higher than the banks available.

A.3.5 Quality of Service

Upon further examination of the AXI interconnect and DDR subsystem to identify
the cause of the difference in behaviour across different boards, we found that there
are differences in QoS buffer modes and R/W priorities. The mode for QoS can be
1) High Priority (low latency), 2) Best Effort (bulk transfers) and 3) Isochronous (reg-
ular, time-sensitive, e.g., audio and video traffic) [125]. On ZCU102, all HP AXI ports
share the same Isochronous mode and memory access priorities on both read and write
ports, whereas on Ultra96 AXI HP0 is in Isochronous mode while the other AXI ports
(HP1-3) are Best Effort and the write ports are assigned a higher priority than read
ports. Changing the mode and priorities on Ultra96’s AXI HP0 port to the same con-
figuration as the other Ultra96 HP ports, produced results where all AXI ports behave
similarly with slightly higher throughput, lowered average read latency, and more fair
AXI and R/W distributions (see Figure A.6). Note, despite having the same priorities
for read and write, in practice, we observed that ZCU102 AXIs and Ultra96’s HP0
prioritises read operations, while Ultra96’s HP1-3 have balanced R/W ratios. This is
due to the general DDR memory controller prioritisation of read over write operations.
This default prioritisation in the controller can be explained by the nature of most CPU
applications, where applications frequently stall for read operations before the actual
compute. However, one must note that different FPGA applications have different
access patterns and read-to-write ratios and they can utilize Block RAMs as internal
buffers and operate in a highly parallel or streaming manner.
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A.3.6 Performance Distribution

To understand the performance distribution in multi-tenant environments, we measure
the AXI distribution ratio D as Amax/Amin, where Amax is the throughput of the highest
performing AXI port and Amin is the throughput of lowest-performing AXI in a config-
uration. The results of the distribution are shown in Figure A.6 and Figure A.7. Most

configurations have an uneven distribution which implies that it is very easy to have

one accelerator steal all the bandwidth in a multi-tenant environment. Two configu-
rations stand out as possible options for multi-tenancy on Ultra96. 1) PL multiplexing
which achieves ideal distribution (D = 1) but is subjected to change if the accelerators
use different burst lengths. 2) Multiplexing in PS with the same QoS mode for each
AXI port. This ensures that the default high priority ports do not steal performance.
Note that for configurations involving both HP1 and HP2, the ideal distribution is
D = 2 as they are multiplexed in the PS and that activating DisplayPort or FPD DMA
components may affect the performance correspondingly of HP0 and HP3.

Conclusion

The conclusion of our memory analysis can be found in Section 3.1.2.
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