160 research outputs found

    Simultaneous estimation of super-resolved scene and depth map from low resolution defocused observations

    Get PDF
    This paper presents a novel technique to simultaneously estimate the depth map and the focused image of a scene, both at a super-resolution, from its defocused observations. Super-resolution refers to the generation of high spatial resolution images from a sequence of low resolution images. Hitherto, the super-resolution technique has been restricted mostly to the intensity domain. In this paper, we extend the scope of super-resolution imaging to acquire depth estimates at high spatial resolution simultaneously. Given a sequence of low resolution, blurred, and noisy observations of a static scene, the problem is to generate a dense depth map at a resolution higher than one that can be generated from the observations as well as to estimate the true high resolution focused image. Both the depth and the image are modeled as separate Markov random fields (MRF) and a maximum a posteriori estimation method is used to recover the high resolution fields. Since there is no relative motion between the scene and the camera, as is the case with most of the super-resolution and structure recovery techniques, we do away with the correspondence problem

    Published in IET Computer Vision

    Get PDF
    Abstract: Traditional shape-from-focus (SFF) uses focus as the singular cue to derive the shape profile of a 3D object from a sequence of images. However, the stack of low-resolution (LR) observations is space-variantly blurred because of the finite depth of field of the camera. The authors propose to exploit the defocus information in the stack of LR images to obtain a super-resolved image as well as a high-resolution (HR) depth map of the underlying 3D object. Appropriate observation models are used to describe the image formation process in SFF. Local spatial dependencies of the intensities of pixels and their depth values are accounted for by modelling the HR image and the HR structure as independent Markov random fields. Taking as input the LR images from the stack and the LR depth map, the authors first obtain the super-resolved image of the 3D specimen and use it subsequently to reconstruct a HR depth profile of the object

    Blur aware metric depth estimation with multi-focus plenoptic cameras

    Full text link
    While a traditional camera only captures one point of view of a scene, a plenoptic or light-field camera, is able to capture spatial and angular information in a single snapshot, enabling depth estimation from a single acquisition. In this paper, we present a new metric depth estimation algorithm using only raw images from a multi-focus plenoptic camera. The proposed approach is especially suited for the multi-focus configuration where several micro-lenses with different focal lengths are used. The main goal of our blur aware depth estimation (BLADE) approach is to improve disparity estimation for defocus stereo images by integrating both correspondence and defocus cues. We thus leverage blur information where it was previously considered a drawback. We explicitly derive an inverse projection model including the defocus blur providing depth estimates up to a scale factor. A method to calibrate the inverse model is then proposed. We thus take into account depth scaling to achieve precise and accurate metric depth estimates. Our results show that introducing defocus cues improves the depth estimation. We demonstrate the effectiveness of our framework and depth scaling calibration on relative depth estimation setups and on real-world 3D complex scenes with ground truth acquired with a 3D lidar scanner.Comment: 21 pages, 12 Figures, 3 Table

    Superresolution imaging: A survey of current techniques

    Full text link
    Cristóbal, G., Gil, E., Šroubek, F., Flusser, J., Miravet, C., Rodríguez, F. B., “Superresolution imaging: A survey of current techniques”, Proceedings of SPIE - The International Society for Optical Engineering, 7074, 2008. Copyright 2008. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insufficient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.This research has been partially supported by the following grants: TEC2007-67025/TCM, TEC2006-28009-E, BFI-2003-07276, TIN-2004-04363-C03-03 by the Spanish Ministry of Science and Innovation, and by PROFIT projects FIT-070000-2003-475 and FIT-330100-2004-91. Also, this work has been partially supported by the Czech Ministry of Education under the project No. 1M0572 (Research Center DAR) and by the Czech Science Foundation under the project No. GACR 102/08/1593 and the CSIC-CAS bilateral project 2006CZ002

    High-quality 3D shape measurement with binarized dual phase-shifting method

    Get PDF
    ABSTRACT 3-D technology is commonplace in today\u27s world. They are used in many dierent aspects of life. Researchers have been keen on 3-D shape measurement and 3-D reconstruction techniques in past decades as a result of inspirations from dierent applications ranging from manufacturing, medicine to entertainment. The techniques can be broadly divided into contact and non-contact techniques. The contact techniques like coordinate measuring machine (CMM) dates way back to 1950s. It has been used extensively in the industries since then. It becomes predominant in industrial inspections owing to its high accuracy in the order of m. As we know that quality control is an important part of modern industries hence the technology is enjoying great popularity. However, the main disadvantage of this method is its slow speeds due to its requirement of point-by-point touch. Also, since this is a contact process, it might deform a soft object while performing measurements. Such limitations led the researchers to explore non-contact measurement technologies (optical metrology techniques). There are a variety of optical techniques developed till now. Some of the well-known technologies include laser scanners, stereo vision, and structured light systems. The main limitation of laser scanners is its limited speed due to its point-by-point or line-by-line scanning process. The stereo vision uses two cameras which take pictures of the object at two dierent angles. Then epipolar geometry is used to determine the 3-D coordinates of points in real-world. Such technology imitates human vision, but it had a few limitations too like the diculty of correspondence detection for uniform or periodic textures. Hence structured light systems were introduced which addresses the aforementioned limitations. There are various techniques developed including 2-D pseudo-random codication, binary codication, N-ary codication and digital fringe projection (DFP). The limitation of 2-D pseudo-random codication technique is its inability to achieve high spatial resolution since any uniquely generated and projected feature requires a span of several projector pixels. The binary codication techniques reduce the requirement of 2-D features to 1-D ones. However, since there are only two intensities, it is dicult to differentiate between the individual pixels within each black or white stripe. The other disadvantage is that n patterns are required to encode 2n pixels, meaning that the measurement speeds will be severely affected if a scene is to be coded with high-resolution. Dierently, DFP uses continuous sinusoidal patterns. The usage of continuous patterns addresses the main disadvantage of binary codication (i.e. the inability of this technique to differentiate between pixels was resolved by using sinusoid patterns). Thus, the spatial resolution is increased up to camera-pixel-level. On the other hand, since the DFP technique used 8-bit sinusoid patterns, the speed of measurement is limited to the maximum refreshing rate of 8-bit images for many video projectors (e.g. 120 Hz). This made it inapplicable for measurements of highly dynamic scenes. In order to overcome this speed limitation, the binary defocussing technique was proposed which uses 1-bit patterns to produce sinusoidal prole by projector defocusing. Although this technique has signicantly boosted the measurement speed up to kHz-level, if the patterns are not properly defocused (nearly focused or overly defocused), increased phase noise or harmonic errors will deteriorate the reconstructed surface quality. In this thesis research, two techniques are proposed to overcome the limitations of both DFP and binary defocusing technique: binarized dual phase shifting (BDPS) technique and Hilbert binarized dual phase shifting technique (HBDPS). Both techniques were able to achieve high-quality 3-D shape measurements even when the projector is not sufficiently defocused. The harmonic error was reduced by 47% by the BDPS method, and 74% by the HBDPS method. Moreover, both methods use binary patterns which preserve the speed advantage of the binary technology, hence it is potentially applicable to simultaneous high-speed and high-accuracy 3D shape measurements

    Accurate depth from defocus estimation with video-rate implementation

    Get PDF
    The science of measuring depth from images at video rate using „defocus‟ has been investigated. The method required two differently focussed images acquired from a single view point using a single camera. The relative blur between the images was used to determine the in-focus axial points of each pixel and hence depth. The depth estimation algorithm researched by Watanabe and Nayar was employed to recover the depth estimates, but the broadband filters, referred as the Rational filters were designed using a new procedure: the Two Step Polynomial Approach. The filters designed by the new model were largely insensitive to object texture and were shown to model the blur more precisely than the previous method. Experiments with real planar images demonstrated a maximum RMS depth error of 1.18% for the proposed filters, compared to 1.54% for the previous design. The researched software program required five 2D convolutions to be processed in parallel and these convolutions were effectively implemented on a FPGA using a two channel, five stage pipelined architecture, however the precision of the filter coefficients and the variables had to be limited within the processor. The number of multipliers required for each convolution was reduced from 49 to 10 (79.5% reduction) using a Triangular design procedure. Experimental results suggested that the pipelined processor provided depth estimates comparable in accuracy to the full precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 13.06msec, that is faster than the video rate. The defocused images (near and far-focused) were optically registered for magnification using Telecentric optics. A frequency domain approach based on phase correlation was employed to measure the radial shifts due to magnification and also to optimally position the external aperture. The telecentric optics ensured pixel to pixel registration between the defocused images was correct and provided more accurate depth estimates

    Modeling and applications of the focus cue in conventional digital cameras

    Get PDF
    El enfoque en cámaras digitales juega un papel fundamental tanto en la calidad de la imagen como en la percepción del entorno. Esta tesis estudia el enfoque en cámaras digitales convencionales, tales como cámaras de móviles, fotográficas, webcams y similares. Una revisión rigurosa de los conceptos teóricos detras del enfoque en cámaras convencionales muestra que, a pasar de su utilidad, el modelo clásico del thin lens presenta muchas limitaciones para aplicación en diferentes problemas relacionados con el foco. En esta tesis, el focus profile es propuesto como una alternativa a conceptos clásicos como la profundidad de campo. Los nuevos conceptos introducidos en esta tesis son aplicados a diferentes problemas relacionados con el foco, tales como la adquisición eficiente de imágenes, estimación de profundidad, integración de elementos perceptuales y fusión de imágenes. Los resultados experimentales muestran la aplicación exitosa de los modelos propuestos.The focus of digital cameras plays a fundamental role in both the quality of the acquired images and the perception of the imaged scene. This thesis studies the focus cue in conventional cameras with focus control, such as cellphone cameras, photography cameras, webcams and the like. A deep review of the theoretical concepts behind focus in conventional cameras reveals that, despite its usefulness, the widely known thin lens model has several limitations for solving different focus-related problems in computer vision. In order to overcome these limitations, the focus profile model is introduced as an alternative to classic concepts, such as the near and far limits of the depth-of-field. The new concepts introduced in this dissertation are exploited for solving diverse focus-related problems, such as efficient image capture, depth estimation, visual cue integration and image fusion. The results obtained through an exhaustive experimental validation demonstrate the applicability of the proposed models

    Accurate depth from defocus estimation with video-rate implementation

    Get PDF
    The science of measuring depth from images at video rate using „defocus‟ has been investigated. The method required two differently focussed images acquired from a single view point using a single camera. The relative blur between the images was used to determine the in-focus axial points of each pixel and hence depth. The depth estimation algorithm researched by Watanabe and Nayar was employed to recover the depth estimates, but the broadband filters, referred as the Rational filters were designed using a new procedure: the Two Step Polynomial Approach. The filters designed by the new model were largely insensitive to object texture and were shown to model the blur more precisely than the previous method. Experiments with real planar images demonstrated a maximum RMS depth error of 1.18% for the proposed filters, compared to 1.54% for the previous design. The researched software program required five 2D convolutions to be processed in parallel and these convolutions were effectively implemented on a FPGA using a two channel, five stage pipelined architecture, however the precision of the filter coefficients and the variables had to be limited within the processor. The number of multipliers required for each convolution was reduced from 49 to 10 (79.5% reduction) using a Triangular design procedure. Experimental results suggested that the pipelined processor provided depth estimates comparable in accuracy to the full precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 13.06msec, that is faster than the video rate. The defocused images (near and far-focused) were optically registered for magnification using Telecentric optics. A frequency domain approach based on phase correlation was employed to measure the radial shifts due to magnification and also to optimally position the external aperture. The telecentric optics ensured pixel to pixel registration between the defocused images was correct and provided more accurate depth estimates.EThOS - Electronic Theses Online ServiceUniversity of Warwick (UoW)GBUnited Kingdo
    corecore