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Abstract: Traditional shape-from-focus (SFF) uses focus as the singular cue to derive the shape profile of a 3D
object from a sequence of images. However, the stack of low-resolution (LR) observations is space-variantly
blurred because of the finite depth of field of the camera. The authors propose to exploit the defocus
information in the stack of LR images to obtain a super-resolved image as well as a high-resolution (HR)
depth map of the underlying 3D object. Appropriate observation models are used to describe the image
formation process in SFF. Local spatial dependencies of the intensities of pixels and their depth values are
accounted for by modelling the HR image and the HR structure as independent Markov random fields. Taking
as input the LR images from the stack and the LR depth map, the authors first obtain the super-resolved
image of the 3D specimen and use it subsequently to reconstruct a HR depth profile of the object.
1 Introduction
One of the main objectives of computer vision is to extract
structural information from images. Techniques used for
computing shape can be classified broadly into two
categories: passive and active. Although active methods rely
on specialised illumination generated from an artificial light
source, passive schemes use the ambient light energy. A
wide range of cues have been exploited to infer shape of a
3D object from its 2D images. Under passive methods, with
monocular images, structure can be derived using occlusion
cues, texture gradient analysis [1, 2], photometric methods
[3, 4], focus [5] and defocus [6] information. Multiple
images captured with different relative positions of the
camera are used in stereopsis [7] and structure-from-motion
techniques [8]. Shape-from-focus (SFF) [5] is a passive
ranging technique used to estimate the structure of a 3D
object. It involves capturing a sequence of observations with
different portions of the 3D object coming into focus in
different images. The degree of focus is the only cue used to
estimate shape. Depth maps of a 3D scene are useful in
widely disparate areas such as medical imaging based
applications [9, 10], video matting [11], 3DTV [12, 13]
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and depth image-based rendering. In these applications, one
is also interested in viewing finer image details and subtle
variations in the shape profile of the 3D specimen.
However, in SFF, space-variant blurring degrades the high-
frequency information in the captured images. Also,
traditional SFF computes the structure of the 3D object at
the same resolution as the observations in the stack. Hence,
there exists a need to obtain a high-resolution (HR) image
of the 3D specimen as well as its shape profile at a higher
resolution than the captured observations.

The resolution of an image captured by a camera is limited
by the resolution of the sensor array.HR cameras are expensive
and the spatial density of photodetectors cannot be increased
beyond a limit when shot noise begins affecting the images.
Aliasing, blurring and noise degrade images captured with a
low-resolution (LR) camera. However, if a sequence of LR
images of the scene is available, using additional
information embedded in such multiple LR images, super-
resolution algorithms yield an HR image by performing de-
aliasing, deblurring and denoising. Several cues in LR
images have been explored by different works in the past for
super-resolution. Relative motion between the camera and
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the scene which gives rise to subpixel displacements among
the LR images has been used in [14–16]. In contrast,
motion-free super-resolution does not have any relative
displacements between the LR observations. The classic
paper of Papoulis [17] provides the theoretical foundation
for the techniques used in motion-free super-resolution.
Interestingly, it is shown in [18, 19] that blur in a sequence
of LR images can be used as a cue for super-resolution.
Recently, several researchers [20–22] have used learning-
based algorithms for super-resolution. Here, statistical
relationships between corresponding image regions in LR
and HR images are learned during the training phase and
these learned relationships are then used to predict minute
details for enlarging other LR images.

In recent literature, researchers have attempted to recover
the HR structure of 3D objects. However, most of these
works fall in the category of active ranging using laser
scanners [23–25]. Under passive methods, it has been
shown in [26] that it is possible to enhance the spatial
resolution of the recovered structure using photometric
cues. In [19], the depth from defocus technique is used to
simultaneously extract the HR image and the HR depth
profile. To the best of our knowledge, there has been no
prior attempt to estimate both the HR image and the HR
depth profile in SFF.

We now make several observations which can be exploited
to obtain the HR image and the structure of the 3D object at
a higher spatial resolution in SFF. First, the rich information
embedded in the space-variant blur of the stack of LR images
is unutilised for shape reconstruction. Second, in SFF, the
sum modified Laplacian (SML) operator [5] is used to
obtain the depth estimates of every point independent of
the depth values of the neighbouring points. Third, we
note that real-world objects generally have smooth depth
profiles, and hence, there exist local spatial dependencies of
depth values. Traditional SFF does not take this factor into
account. Moreover, the behaviour of the focus measure
profile is sensitive to the texture in the local region of the
object. This results in erroneous estimates of depth at
smooth regions where the scene lacks texture. Fourth, we
observe that the depth estimates in traditional SFF are
obtained by Gaussian interpolation of a few values near the
peak of the focus measure profile, which can also introduce
errors.

In this paper, we expand the scope of the traditional SFF
method to enable reconstruction of an HR image of the
underlying 3D object as well as the HR depth map, given
its LR depth profile and a few LR observations chosen
from the stack. As in motion-free super-resolution, we
take advantage of the natural defocus cue in the stack of
LR observations to perform super-resolution. To
incorporate the local smoothness of the greyscale intensity
values and the depth values in the reconstruction of the
HR image and the HR depth map, we model them as
separate and independent Markov random fields (MRFs).
Comput. Vis., 2008, Vol. 2, No. 2, pp. 50–59
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Depth computation in traditional SFF is vulnerable to
low-texture regions in the images of the stack. However,
since we model the HR image and the HR depth profile
of the 3D specimen with MRFs, we are able to
incorporate spatial dependencies and hence mitigate this
effect provided the scene lacks texture only locally. An
algorithm which computes the HR image and the HR
depth map simultaneously would be computationally very
expensive. In SFF, the depth map of the 3D object can be
constructed at the same resolution as the captured
observations in the stack. This LR depth map can be used
to obtain the HR image in the first step, which is
subsequently used to obtain the HR depth map of the
underlying 3D object. Thus, we can super-resolve the
focused image of the 3D specimen and its depth map in
separate steps. We use the same LR observations from the
stack to compute the HR image and the HR depth map.
Since, in SFF, a large number of LR observations are
readily available, we attempt super-resolution by higher
magnification factors by using more images from the stack
in the proposed framework.

2 Defocus blur, focus measure
and LR depth map
Blurring occurs naturally because of the point spread function
(PSF) of a real aperture camera. In the literature, the PSF of
a camera is usually modelled by a 2D Gaussian function [27,
28] with standard deviation s (also called the blur
parameter). A real aperture camera follows the lens law and
thus brings object portions at a certain depth into focus. A
3D object induces space-variant blurring and different points
on it will come into focus at different depths from the camera
lens. The spatial distribution of the blur in relation to
the depth at a point on the 3D object is given by
s ¼ rRv((1=wd)� (1=D)) where wd is the working distance
of the camera, D the distance of the object point from the
lens, v the distance of the lens from the image plane, R the
radius of the aperture of the lens and r a camera constant.

The basic idea behind the SFF method is to locate the
respective positions of best focus of all points on the 3D
object as it is translated relative to a real aperture camera,
in order to derive its shape. The working principle of the
traditional SFF scheme [5] is shown in Fig. 1. The 3D
object, whose shape is to be estimated, is placed on a
translational stage which moves in the vertical direction in
steps of Dd. The initial position of the stage is denoted
by the reference plane. The optics of the camera defines a
‘focused plane’ wherein all the points will be perfectly
focused on the sensor plane. The distance of the focused
plane from the lens plane is wd. The separation between
the reference and the focused planes is dr. The distance
between the translating stage and the reference plane is d.
Distances wd, dr and d are known. As the object is moved
vertically, at each step an image is captured in which
barring a small portion of the object, other regions are
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defocused to varying degrees because a real aperture camera
cannot bring all the points of a 3D object into focus at the
same time.

When the 3D object is placed on the translational stage
which is at the reference plane as shown in Fig. 1, the blur
induced by a point on the object in the reference frame is
governed by blur parameter s0 which is given by
s0 ¼ rRv((1=wd)� (1=D0)) where D0 is the distance of the
object point from the lens when the stage is at the reference
position and wd is the working distance of the camera, that
is, 1=wd ¼ (1=f )� (1=v). The stage is moved vertically by a
distance of mDd to capture the mth LR frame. For the same
point on the 3D object, the blurring induced in the mth
frame can be expressed by the blur parameter sm which is
given by sm ¼ rRv((1=wd)� 1=(D0 + mDd )). The change
in magnification across the stack of LR observations is
assumed to be negligible so that there are no errors because
of registration. Eliminating the common term wd from the
above expressions for sm and s0 we obtain

sm ¼ s0 þ rRv
1

D0

�
1

D0 + mDd

� �
(1)

The product rRv, in the above equation can be found using an
appropriate calibration procedure.

As the translating stage is moved vertically in steps of Dd,
for the mth frame we can also express the blur parameter for a
3D point whose image pixel coordinates are (k, l ) as
sm(k, l ) ¼ rRv((1=wd)� (1=(wd � mDd þ d (k, l )))). Here,
d (k, l ) is the distance by which the stage must be moved
from the reference plane to bring point (k, l ) into focus. If
the separation between the stage and the reference plane is
such that d ¼ d (k, l ), then this point satisfies lens law, and
will appear in perfect focus. Note that under this condition,
the blur parameter becomes zero, as expected (assuming the
effects of optical aberrations to be negligible).

Figure 1 Schematic of traditional SFF
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In order to find where a point on the 3D specimen comes
into focus, in traditional SFF, a focus measure profile [5] is
computed, using the SML focus measure operator, for
every pixel in the image sequence as the translational stage
moves in finite steps of Dd. The focus measure at a point
(k, l ) in an image I is usually computed using the SML
operator defined as

F (k, l ) ¼
XkþW

m¼k�W

XlþW

n¼l�W

OL(m, n) for OL(m, n) � T1 (2)

where T1 is a threshold value, 2Wþ 1 the size of the
window around the point (k, l ) and OL the modified
Laplacian defined in the discrete domain as OL(m, n) ¼

j2I (m, n) � I (m � a, n) � I (m þ a, n)j þ j2I (m, n) �
I (m, n � a) � I (m, n þ a)j. Here, a is a variable spacing
between the image pixels used to compute the derivatives.
For all our experiments, we chose the value of a as 1. The
focus measure profile for the pixel at (k, l ) is obtained by
plotting the value of F(k, l ) computed for every image
captured in the stack of observations starting from the
reference frame. The final estimate of the depth d at (k, l )
is arrived at by using Gaussian interpolation of a few values
near the peak value of the focus measure profile. It is to be
noted that the blurring induced at the point (k, l ) is zero
when the translating stage is at a height of d from the
reference plane. Thus, the focus measure profile is helpful
in knowing when the point (k, l ) comes into focus. The
values of d calculated for all the points of the 3D object
and denoted as d yields the LR depth map, that is, the
shape of the object is at the same spatial resolution as the
captured frames in the stack.

3 Image super-resolution
In this section, we explore the possibility of obtaining an
image of the underlying 3D object in SFF in which all
pixels are simultaneously in focus and the spatial resolution
is higher than the frames of the stack. The idea is to use
the defocus information in the captured images of the 3D
object as a cue for computing the HR image.

Let there be p number of LR observations fym(i, j)g, each
of size M � M which are decimated, blurred and noisy
versions of a single HR image fx(m, n)g of size qM � qM.
If ym is the lexicographically arranged vector containing
pixels from the mth LR image of size M2

� 1 and x is the
lexicographically arranged vector containing pixels from the
HR image of size q2M2

� 1 then they can be related in the
following ways according to two commonly used
observation models in super-resolution. According to one
model used for super-resolution [29]

ym ¼ DHmxþ nm, m ¼ 1, . . . , p (3)

where Hm is the blur matrix of size q2M2
� q2M2, D the

decimation matrix of size M2
� q2M2 and nm the noise
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vector of size M2
� 1, assumed to be zero mean Gaussian

with variance s 2
h .

Another model that is also used in motion-free super-
resolution [18, 29] is given as

ym ¼ HmDxþ nm, m ¼ 1, . . . , p (4)

where Hm is the blur matrix of size M2
� M2, D the

decimation matrix of size M2
� q2M2 and nm the noise

vector of size M2
� 1. The observation noise is assumed to

be zero mean Gaussian with variance s2
h.

To recover the HR image and the HR depth map in SFF,
we exploit both these models to our advantage. We observe
that by using the degradation model of (4), it is possible to
obtain the HR image first. In the previous section, we
outlined the method of traditional SFF to obtain the LR
depth map. The blur parameter at every point of the object
in the reference frame image can be computed from this
recovered LR depth map. Using the relationship in (1), the
blur parameter s at each point of a defocused image, at any
position in the stack of frames, can then be computed. The
blur matrix Hm can now be constructed from the depth
map obtained using SFF and the relation between the blur
parameter s at each pixel across the stack of LR frames in
(1). The availability of the LR depth map in SFF enables
us to separate the tasks of super resolving the intensity field
and obtaining the HR depth map. Thus, we avoid a
simultaneous estimation of the super-resolved focused
image and the HR depth map, reducing significantly the
computational load.

3.1 MAP solution

The problem of reconstructing the HR image x is an ill-
posed inverse problem and some form of regularisation to
constrain the solution space is necessary. We propose to
derive an optimal estimate of the HR image as the
maximum a posteriori (MAP) estimate given by

x̂ ¼ argmax
x

P(xjy1, y2, . . . , yp) (5)

The MAP framework allows us to impose a priori constraints
on the HR image. Since statistical models can encode
contextual constraints in images in a natural way, we model
the original HR image as a MRF [30]. Specifically, we
model it as a Gauss Markov random field (GMRF). From
the Hammersley–Clifford theorem the joint distribution is
Gibbsian [31]. If the HR image is modelled as a GMRF,
then the prior distribution is given by

P(x) ¼
1

Z
exp �

X
c[C

Vc(x)

" #
¼

1

Z
exp �

X
c[C

(dTc x)
2

" #
(6)

where Z is the partition function, c a clique, C the set of all
cliques, V c(.) the clique potential function, dc a coefficient
Comput. Vis., 2008, Vol. 2, No. 2, pp. 50–59
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vector for clique c such that dTc x provides a measure of
smoothness of the image by computing discrete
approximations for first or second derivatives at each image
pixel.

The prior distribution of theHR image can also be written as

P(x) ¼
1

(2p)N
2=2

j(1=l1)Rxj
1
2

exp �
1

2
xT

Rx

l1

� ��1

x

( )
(7)

The matrix R�1
x ¼ DT

r Dr where Dr represents a one-step
forward difference operator. Matrix DT

r Dr can be
approximated as a circulant matrix which is the Laplacian
operator and is related to the operator dc discussed in (6) asP

c[C (dTc x)
2
¼ xTDT

r Drx.

Using the degradation model in (4) and assuming that the
the noise processes are independent, we have

x̂ ¼ argmin
x

Xp
m¼1

kym �HmDxk2

2s2
h

þ l1

X
c[C

(dTc x)
2

" #
(8)

where a first-order MRF neighbourhood has been assumed.
Here, l1 is the regularisation factor which is typically tuned
to derive the best estimate of x. The number of LR
observations, p, used in the objective function depends upon
the upsampling factor. For super-resolution by a factor of q,
the number of frames chosen from the stack is q2. We
remark that in SFF, since a large number of LR frames are
naturally available in the stack, we can attempt super-
resolution by higher factors. The above cost function is
convex and hence a simple minimisation technique such as
gradient descent can be applied to find the estimate of x. At
the nth iteration, the gradient of the cost function is given by

grad(n) ¼
1

s 2
h

Xp
m¼1

DTHT
m(HmDx(n) � ym)þ l1Q

(n) (9)

where Q(n)
¼

PqM
i¼1

PqM
j¼1 2[4x

(n)(i, j)� x(n)(i, j � 1)�

x(n)(i, j þ 1)� x(n)(i � 1, j)� x(n)(i þ 1, j)]

One can use a more complicated model such as the
discontinuity adaptive MRF but a carefully chosen low value
of l1 in the GMRF model will preserve edges reasonably
well. Matrix DT spreads equally the LR pixel intensity value
at corresponding pixel locations in the HR image. Matrix Hm

is computed using the LR depth map obtained by the
traditional SFF method [5] and the relation among the s

values across the stack of LR images given in (1). The
estimate of the HR image at the (nþ 1)th iteration is

obtained as x(nþ1)
¼ x(n) � b grad(n) where b is the step size.

The iterations continue until kx(nþ1)
� x(n)k , threshold.
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4 HR depth map
The fundamental motivation for obtaining the HR structure
is to enable visibility of finer details of the shape of the 3D
object. Recently, there has been a need to obtain the HR
depth map in applications such as video matting [11].
Laser scanners which produce high-quality range maps are
expensive and slow. The ability to obtain an HR depth
map in near real-time could aid several applications. In
medical applications, an HR depth map could prove useful
in creating virtual reality-based models of complex surgical
procedures [9, 10]. An accurate HR depth map could also
benefit non-invasive diagnostic procedures in automated
vision-based inspection applications. In graphics and
animation, HR depth maps can aid in realistic depiction of
the scene.

The LR depth map of the 3D object computed in
traditional SFF suffers from errors because of various
reasons. This method does not take into account spatial
dependencies of the depth estimates. It is expected that
natural objects have depth variations which are locally
smooth. However, in SFF, depth estimates are computed
using the SML focus measure operator, independent of
depth values of neighbouring points. The behaviour of the
focus measure profile is dependent on local texture and can
yield erroneous shape estimates at smooth regions. Gaussian
interpolation of a few values near the peak of the focus
measure profile is used to obtain the final shape estimate;
but this is not an ideal way to fill up missing information.
Note that data from the captured frames are not used to
guide the estimation of depth in SFF. In this work, we seek
to obtain an HR depth map of the 3D object. As described
in Section 2, a point on the 3D object comes into focus
when the separation between the translating stage and the
reference plane is d . The structure of the 3D object, in SFF,
is computed by estimating the quantity d for all points on
the specimen. The spatial resolution of the depth profile, d ,
estimated in SFF, is the same as the LR images of the stack.
Here, we choose to obtain the depth profile at a higher
spatial resolution.

Consider p number of LR observations fym(i, j)g, each of
size M � M which are decimated, blurred noisy versions of
a single HR image fx(m, n)g of size qM � qM, obtained by
the method outlined in the previous section. If ym is the
lexicographically arranged vector containing pixels from
the mth LR image of size M2

� 1 and x is the
lexicographically arranged vector containing pixels from the
HR image of size q2M2

� 1 then the degradation model
that we use to obtain the HR depth map is given by

ym ¼ DHm(d)xþ nm, m ¼ 1, . . . , p (10)

where Hm(d) is the blur matrix of size q2M2
� q2M2, D the

decimation matrix of size M2
� q2M2 and nm the zero mean

noise vector of sizeM2
� 1. The observation noise is assumed

to be zero mean Gaussian with variance sh
2. Since we seek to
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compute the HR depth map, we use the above degradation
model, where the HR blur map acts on the HR image.

Construction of the HR depth map is also an ill-posed
inverse problem. Regularisation in the form of a priori
constraints on the solution is used to obtain an estimate of
the HR shape profile. Real-world objects, in general, have
smooth depth variations. To incorporate spatial
dependencies of the depth estimates on neighbouring
points, we model the HR depth map d by a GMRF and
obtain an MAP estimate of the HR depth map. Using
Bayes’ rule, we can write

P(d jy1, y2, . . . , yp) ¼
P( y1, y2, . . . , ypjd)P(d)

P( y1, y2, . . . , yp)
(11)

where y1, y2, . . . , yp are the p chosen observations from the
stack. Note that the same LR observations which were used
to obtain the HR image are chosen for reconstruction of the
HR depth map. By the Markovian property of MRF, the
probability of a pixel being assigned a particular depth value
depends only on the depth estimates of pixels in its
neighbourhood. We restrict ourselves to a first-order
neighbourhood. If the HR shape profile d is modelled as an
MRF, then the prior distribution is given by

P(d) ¼
1

Z
exp �

X
c[C

Vc(d)

" #
(12)

whereZ is the partition function, c a clique,C the set of all cliques
and Vc(.) the potential function associated with clique c. For a
first-order neighbourhood, we propose the following potential
function

X
c[C

Vc(d) ¼
XqM
i¼1

XqM
j¼1

[(d (i, j)� d (i, j � 1))2

þ (d (i, j þ 1)� d (i, j))2

þ (d (i þ 1, j)� d (i, j))2

þ (d (i, j)� d (i � 1, j))2] (13)

Assuming the noise process nm s to be independent in (10), and
from (11) and (13), the posterior energy function to be
minimised is given by

Up(d) ¼
Xp
m¼1

kym �DHm(d)xk
2

2s2
h

þ l2

X
c[C

Vc(d) (14)

The MAP estimate of the HR depth map can be obtained by
minimising Up(d). The parameter l2 must be tuned to arrive
at a good estimate of the HR depth profile of the 3D object.

Assignment of depth values to pixel locations is a
combinatorial optimisation problem. In recent literature,
graph cuts have been used to minimise objective functions
IET Comput. Vis., 2008, Vol. 2, No. 2, pp. 50–59
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arising in a wide variety of vision problems [32]. However, they
are proven to converge only on singly-connected graphs. Also, it
is not possible to compute the gradient with respect to d of the
cost function in (14). Hence, we use simulated annealing (SA),
a well-known optimisation technique that is known to converge
to the global minimum with probability one, to minimise the
above objective function. We present the computational steps
to obtain the MAP estimate of the HR depth profile using
the SA algorithm in Fig. 2.

We obtain the LR shape profile from the traditional SFF
[5] method and interpolate it to the size of the HR grid. This
forms the initial estimate of the HR depth map d . The initial
temperature in the SA algorithm is denoted by T0. A linear
cooling schedule was used in our simulations. The parameter
deciding the cooling schedule is d. The number of iterations
used for the annealing and the Metropolis loops are given by
Al andMl, respectively. The variance of the Gaussian sampler
for d i, j is denoted by s 2

d
.

Importantly, it is to be noted that, when d i, j is perturbed,
it is not necessary to compute the new posterior energy
function Up[d(new)] over the entire HR grid, but only
over a small posterior neighbourhood around the point
(i, j) as shown in [28]. By using this well-known fact of
locality of the posterior neighbourhood, it is possible to
successfully employ the SA algorithm.
Comput. Vis., 2008, Vol. 2, No. 2, pp. 50–59
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5 Experimental results
To demonstrate the effectiveness of the proposed algorithm, we
present results obtained using images acquired by an LV150
Nikon industrial microscope. The lens objective was 2.5�,
for which the working distance wd ¼ 8.8 mm, focal length
f ¼ 80 mm and depth of field ¼ 48.9 mm.

For the first experiment, we selected a gold ring which had
a human face engraved on its surface as the 3D object. A stack
of 150 LR frames was captured by translating the stage in
finite steps of Dd ¼ 0.025 mm. The LR images captured
were of size 75 � 75 pixels. The LR depth map of the 3D
specimen is derived using the traditional SFF [5] method
and the blur maps corresponding to the LR frames of the
stack are computed. Initially, we obtain the super resolved
image of the 3D specimen by selecting q2 LR observations
from the stack when the chosen magnification factor is q.
The initial estimate of the HR image is obtained using
bicubic interpolation of one of the LR images chosen from
the stack and is shown in Fig. 3a. Choosing four LR
images from the stack, frame numbers 85, 95, 130 and 140
and using b ¼ 1, l1 ¼ 0.001 and s 2

h ¼ 5, in the proposed
algorithm, we super-resolve the focused image by a factor
of 2, which is shown in Fig. 3b. The super-resolved image
of Fig. 3b is much superior than the interpolated image of
Fig. 3a. Various high-frequency components that were lost
in Fig. 3a are recovered in Fig. 3b.
Figure 2 SA algorithm for computation of the HR depth map
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Figure 3 Super-resolution of face image and depth map using the proposed method

a Initial estimate of the HR image obtained using bicubic interpolation for q ¼ 2
b Super-resolved image obtained using the proposed algorithm
c Greyscale image of the interpolated depth map from traditional SFF [5]
d Greyscale image of the HR depth map
Next, we obtain the HR depth map of the above specimen
for a magnification factor of q ¼ 2. Since we have already
obtained the HR image, we can use it to obtain the HR
structure. The initial estimate of the HR depth map, shown
in Fig. 3c, was obtained by upsampling the LR depth map
obtained from the traditional SFF method [5], by a factor of
2, using bicubic interpolation. The interpolated depth map is
not very good because the image size is small (only
75 � 75 pixels) and the depth variations are very fine. We
he Institution of Engineering and Technology 2008
next show how this result can be significantly improved
using the proposed approach. The objective function
proposed in (14) is minimised using the SA algorithm,
wherein, the values of the parameters are chosen as T0 ¼ 6,
A1 ¼ 200, Ml ¼ 10, sh

2 ¼ 5 and l2 ¼ 1 � 108. The
corresponding greyscale image of the estimated HR depth
map is shown in Fig. 3d. Comparing Figs. 3c and 3d, we
note that the proposed method is able to reconstruct the
details of the depth variations of the 3D specimen well. The
Figure 4 HR image and depth map for the specimen with f loral design

a HR image obtained using bicubic interpolation for q ¼ 2
b Super-resolved image obtained using the proposed algorithm
c Greyscale image of the interpolated depth map from traditional SFF [5]
d Corresponding greyscale image of the HR depth map
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regions on the face which are closer to the camera
appear brighter in the greyscale image of Fig. 3d. Various
features of the face can be discerned from this depth map. In
particular, note the eyebrows, eyelids, lips and the wrinkles
on the cheeks.

We next selected a metal object with a floral design
engraved on its surface. The object also contained several
intricately sculpted grooves indicating the dress covering
the leg of a goddess depicted as sitting on a lotus flower.
This 3D specimen was kept on the translating stage under
the microscope and a stack of 150 LR frames was captured
by moving the stage in steps of Dd ¼ 0.025 mm, relative to
the camera. The size of each captured LR image is
95 � 135 pixels. Using these LR images, the LR depth
map of the specimen was reconstructed by the traditional
SFF algorithm [5]. As explained in Section 2, using (1) the
blur maps corresponding to the LR frames captured in the
stack can be computed. In order to obtain an HR image
for an upsampling factor of q ¼ 2, four LR images, namely
frame numbers 30, 40, 50 and 100, were chosen from the
stack. Since we have earlier computed the blur maps
corresponding to these four LR space-variantly blurred
images, matrix Hm in (4) can be constructed to relate the
chosen LR images to the super-resolved image that we seek
to obtain. The initial estimate of the HR image is obtained
by upsampling one of the selected LR frames by a factor of
q ¼ 2. This is shown in Fig. 4a. Using the values of the
parameters as b ¼ 1, s2

h ¼ 5 and l1 ¼ 0.003 in the
gradient descent algorithm described in Section 3.1, we
obtain the super-resolved image as shown in Fig. 4b.
Notice that in Fig. 4b several features that were invisible in
Fig. 4a become discernible. The separation between the
grooves on the petals of the lotus flower can be clearly
observed. The white dots in the region pointed out by a
white arrow in Fig. 4b also become visible.

Using the super-resolved image obtained above and the same
four LR images from the stack that were chosen to obtain it, we
reconstruct the HR depth map of this 3D object for a
magnification factor of q ¼ 2. We used identical values of the
parameters in the SA algorithm as described for the previous
experiment. The initial estimate of the HR depth map,
shown in Fig. 4c, was obtained by upsampling the LR depth
map of traditional SFF method [5], by a factor of 2, using
bicubic interpolation. The HR depth map is obtained using
the proposed algorithm and its corresponding greyscale
image is shown in Fig. 4d. The depth variations over the
petals of the flower are more clearly visible in Fig. 4d, as
compared with Fig. 4c. Note that in Fig. 4d, the regions on
the 3D specimen which are closer to the camera, such as the
petal in the central portion, appear brighter. In contrast, the
regions between the petals of the lotus, which are further
away from the lens, appear darker.

Next, we show the performance of the proposed algorithm
for obtaining the super-resolved image of the 3D specimen
by a higher magnification factor of q ¼ 3. Since the entire
Comput. Vis., 2008, Vol. 2, No. 2, pp. 50–59
: 10.1049/iet-cvi:20070072
stack of LR images is readily available to us, we select nine
LR frames from it. Using the parameter values as b ¼ 1,

s2
h ¼ 5 and l1 ¼ 0.03, we minimise the cost function in

(8). One of the nine selected LR images is upsampled by

Figure 5 HR image obtained for a higher upsampling factor

a HR image obtained using bicubic interpolation for q ¼ 3
b Super-resolved image obtained using the proposed algorithm

Figure 6 Greyscale image of the HR depth map
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q ¼ 3 (using bicubic interpolation) to obtain the initial
estimate of the HR image and is shown in Fig. 5a. The
super-resolved image is depicted in Fig. 5b. The intricate
details on the petals of the flower and the sculpted grooves
are much sharper and more clearly visible in Fig. 5b than in
Fig. 5a. The proposed algorithm for obtaining the HR
depth map was used with the same parameter values that
were used for the earlier specimen. The greyscale image
corresponding to the estimated HR depth map is given in
Fig. 6. The depth variations on the surface of the 3D
specimen can be clearly seen here. Since the magnification
factor of q ¼ 3 is high, the depth map estimated is slightly
jagged. However, it is interesting to see how the proposed
method is able to reconstruct the fine undulations in depth
even for this large upsampling factor.

6 Conclusions
We have proposed a method for obtaining a super-resolved
image and HR depth map given the LR space-variantly
defocused and noisy images in SFF. Using a two-step
approach and by modelling the HR image and the HR
shape profile of the 3D object as MRFs, we first obtained
an MAP estimate of the HR image and used it
subsequently to derive the HR depth map. Exploiting the
fact that in SFF the stack consists of several LR frames, we
also showed that it is possible to super-resolve the image
and the 3D structure even at higher magnification factors.
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