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Abstract 

 

The science of measuring depth from images at video rate using „defocus‟ has been 

investigated. The method required two differently focussed images acquired from a 

single view point using a single camera. The relative blur between the images was 

used to determine the in-focus axial points of each pixel and hence depth. 

The depth estimation algorithm researched by Watanabe and Nayar was employed to 

recover the depth estimates, but the broadband filters, referred as the Rational filters 

were designed using a new procedure: the Two Step Polynomial Approach. The 

filters designed by the new model were largely insensitive to object texture and were 

shown to model the blur more precisely than the previous method. Experiments with 

real planar images demonstrated a maximum RMS depth error of 1.18% for the 

proposed filters, compared to 1.54% for the previous design. 

The researched software program required five 2D convolutions to be processed in 

parallel and these convolutions were effectively implemented on a FPGA using a two 

channel, five stage pipelined architecture, however the precision of the filter 

coefficients and the variables had to be limited within the processor. The number of 

multipliers required for each convolution was reduced from 49 to 10 (79.5% 

reduction) using a Triangular design procedure. Experimental results suggested that 

the pipelined processor provided depth estimates comparable in accuracy to the full 

precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 

13.06msec, that is faster than the video rate.  

The defocused images (near and far-focused) were optically registered for 

magnification using Telecentric optics. A frequency domain approach based on 

phase correlation was employed to measure the radial shifts due to magnification and 

also to optimally position the external aperture. The telecentric optics ensured pixel 

to pixel registration between the defocused images was correct and provided more 

accurate depth estimates.      
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 2 

In the real world, objects are perceived in three dimensions (3D); length, breadth and 

depth. Humans observe 3D by utilising one or a combination of the available depth 

clues:- texture blur; edge blur, size perspective; binocular disparity; motion parallax; 

occlusion effects; and variations in shading [20]. The problem arises when the 3D 

objects are imaged by a photographic system. Here a 3D plane is mapped on to a 2D 

plane with reduced height and width information. The task of retrieving the depth 

information from one or more 2D images is an active research topic within the broad 

area of Computer Vision. The recovered depth information plays a vital role in 

Industrial and Medical applications such as component inspection, robotic 

manipulations, autonomous vehicle guidance, and 3D endoscopy.  

The image formation process provides a geometric correspondence between the 

points in the 3D scene and the 2D image. In Perspective Projection, the light rays 

from the object that pass through a pinhole aperture define the image. Here each 

point in the image corresponds to a particular point of the object. In Orthographic 

Projection, light rays parallel to the optical axis form the image. By hypothesis, it 

corresponds to perspective projection when the camera is at an infinite distance from 

the object, and the lens has an infinite focal length. Figures (1.1a) and (1.1b) explain 

perspective and orthographic projections, where the x, y plane lies perpendicular to 

the optics axis and the z direction along it. It is the x, y image plane that provides the 

data for the range calculation. 

Range acquisition methods can be broadly classified as optical and non-optical 

methods. Non-optical methods are based on (1) Mechanical; (2) Inertial; (3) 

Magnetic; and (4) Ultrasound. Together with LASERs they provide accurate single 

point depth measurements but require expensive computations and scanners to 

provide a dense depth map. On the other hand, 2D optical methods provide 

acceptable depth accuracy with a high possibility of recovering the shape (dense 

depth map) from images. Methods can also be broadly classified as Active or 

Passive. Active methods operate in a controlled environment aided by the use of 

either controlled energy beams (as in ultrasonic and in optical time-of-flight 

approaches) or using strip and grid lighting, and Moire fringe patterns (as in 

Contrived lighting based approaches) [20] [93]. These methods find usage in indoor 

laboratory and factory environments.  
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Figure 1.1a: Perspective Projection [53]                      Figure 1.1b: Orthographic Projection [53] 

 

Passive methods imitate the human biological vision system and therefore constantly 

search for „depth clues‟ within the acquired images. They are not limited to any 

environmental constraint and find usage in military, medical and industrial 

applications [20]. The research here has concentrated on passive optical depth 

recovery. A brief description of passive depth recovery is presented in the next 

Section. 

 

1.1. Passive Depth Recovery Methods 

 

Optical depth estimation techniques can be categorized as Monocular or Binocular. 

Monocular techniques allow depth estimation using a single camera by considering 

depth clues such as the relative size of the objects, the distribution of light and shade, 

movement parallax of subject and background, and by measuring the amount of 

focus or defocus [20] [40] [93]. Binocular vision techniques require at least two 

images acquired from different viewpoints. These images are compared and the 

disparity between the images is related to the actual depth. Depths from Stereo and 

Structure from Motion are examples of Binocular vision techniques. Shape from 

Shading, Shape from Silhouettes, Depth from Focus and Depth from Defocus are 

instances of Monocular vision techniques. 
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 1.1.1. Depth from Stereo 

 

A simple stereoscopic system requires two images captured from different 

viewpoints. The viewpoints are separated by a suitable distance so as to provide two 

disparate images. The depth information is recovered by calculating the disparity 

information between these images. The typical stereo system is shown in Figure 

(1.2). 

 

Figure 1.2: Depth from Stereo [20] 

 

The two images, Im1 and Im2 of the object P (see Figure (1.2)) are captured at two 

different viewpoints separated by a baseline distance B. If f is the focal length of the 

lens and d is the stereo disparity between the objects in the images, then the depth of 

the object z is inversely proportional to the disparity and is given by [20] 

d

dBf
z

)( 
  ----- (1.1) 

The major difficulty in stereo imaging arises when establishing the correspondence 

between the objects in the two images. This process requires unique matching points 

to establish a pairing relationship and proves uncertain when the scene under 

investigation has:- (1) uniform intensity; or (2) is prone to occlusion effects (missing 

part problem) [20] [93].  Stereo pair analysis based on edge data has been presented 

by Baker [94], where the correspondence problem was solved by using an edge 
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correlation procedure. Marr and Poggio [95] tackled the correspondence problem by 

considering a cooperative computational procedure. Their work was motivated by 

results of Julesz [96] on random-dot stereograms, which suggested that monocular 

vision does not provide any high level clue for disparity analysis [20], but in 1987 

Pentland re-examined monocular technique and suggested that blurred edges can 

provide valid depth clues [1]. Marr et al. [97] [98] presented an algorithm that was 

analogous to the low-level human biological system. The disparity information was 

obtained from the zero crossing of the edges extracted from the right and left images, 

and the correspondence problem was solved by using disparity matches of gross line 

structures [93]. Stereopsis is analogous to the human visual system. It can provide 

dense depth maps, since an entire frame can be processed and depth estimates can be 

recovered for each pixel. Further, the depth maps generated are reliable, since there 

is no mechanical movement involved in the whole process.  

 

1.1.2. Structure from Motion 

 

The method of recovering surface information using the relative motion between the 

object and the camera is referred to as Structure from Motion (SFM). It differs from 

stereo where the camera motion is restricted to a limited lateral displacement [20]. 

The common approach is to compute the observables such as points, lines, occluding 

contours and optical flow, and relate them to the structures and events in the space 

[20]. In feature based approaches, the point correspondences between the images are 

first computed. Next, the motion parameters are determined from the image 

coordinates by solving a set of equations. The estimated motion parameters specify 

the object distance. Williams [99] proposed a method where the planar objects were 

assumed to be oriented only in the vertical and horizontal directions. A segmentation 

procedure was first employed to define the extent of the planar regions, and later an 

optimization strategy was adopted to determine the distance. Prazdny [100] 

employed an optical flow method and recovered the instantaneous egomotion 

(observer motion) and the surface normal map. The surface normal map provided the 

required range information [20]. An illustration of shape recovery using SFM has 

been presented in [20]. Here the depth information was determined from five 

matching points that relate the image-space and the object-space. An optimization 

procedure was employed to solve the non-linear equations which provided the 
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required depth. Like stereo, SFM techniques also suffer from correspondence 

matching problems, and reliable depth maps are achieved only when accurate 

matching points are available. Further, these techniques require high resolution 

images to accurately determine the motion parameters. Additionally, SFM techniques 

are sensitive to the presence of noise in the observation and prove expensive in terms 

of storage and computation [20].  

 

1.1.3. Shape from Shading  

 

Shape from Shading (SFS) refers to the problem of extracting surface orientation 

from the gradual variation of brightness (shading) in the image [65]. Horn [53] 

discovered that the 3D shape of a surface can be recovered from a single image by 

considering the surface reflectance properties and the spatial distribution of the light 

sources. The brightness of the surface is described by the Bidirectional Reflectance 

Distribution Function (BRDF), which is the ratio of the radiance of the surface patch 

as viewed from the direction (θe,φe) to the irradiance resulting from illumination 

from the direction (θi,φi) (see Figure (1.3)). 

 

 

 

Figure 1.3: Structure from Shading [53] 

 

The reflectance map, R(p,q), describes how the target radiance varies with the 

surface orientation for a given source distribution. It also presents a relationship for 

3D shape recovery in terms of brightness (shading). This relation is expressed by 

Horn [53] in terms of image irradiance and is given by the equation,  

  Surface normal ň 

(θi,φi) 

(θe,φe) 
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R(p,q) = E(x,y) --- (1.2). 

Here p,q denote the slopes of the surface along the x and y directions, and E(x,y) 

denotes the intensity at points x and y. The idea is to first compute the reflectance 

map, R(p,q) of the scene and then determine the gradients p,q for each point along x 

and y for a set of R(p,q) = E(x,y) equations with different light source positions. The 

camera and the scene are kept stationary [93]. SFS techniques are divided into four 

main approaches:- minimization, propagation, local and linear. A detailed report on 

the performance of these techniques is presented in [65]. SFS techniques require a 

prior knowledge of the scene reflectance and hence are not suitable for arbitrary 

scenes whose reflectance is unknown. Moreover, these methods cannot recover 

absolute depth and thus depend on a hybrid algorithm (mostly combined with stereo) 

to generate a reliable depth map [20] [65]. Further, the shape information from 

shadow areas is not recovered and so additional information has to be provided via 

techniques such as Shape from Shadow [65]. 

 

1.1.4. Shape from Silhouettes  

 

Shape from Silhouettes (SFSh) is a method of reconstructing 3D models from the 

silhouettes of scenes acquired from different view points. A 2D silhouette is a set of 

close contours that outline the projection of an object onto the image plane. A 

general SFSh technique would segment the silhouette of the object under 

investigation from the rest of the image and use a combination of the silhouettes 

acquired from different views to provide a strong clue for image reconstruction.  

The object segmentation is achieved either by simple differencing or by a blue screen 

segmentation technique. Once the silhouettes are obtained, they are back-projected 

on to the 3D space to define the volume (shape). The intersection volume has been 

referred to as the visual hull by Laurentini et al. [101].  Most SFSh methods are 

based on the voxel-based data-structure approach described by Szeliski [102]. A 

method described in [106] reconstructed the 3D shape by: - (1) Obtaining a set of 

voxels (Octree) from SFSh [102]; (2) Generating the surface triangles using the 

marching cubes (MC) technique [103]; and (3) Estimating the surface normal. 

Though SFSh methods can recover the 3D surface from arbitrary objects without the 

any assumptions about the images, they fail to recover the shapes of regions such as 

cavities (eg. coffee cup handle) or holes, and hence required additional information 



 8 

to reconstruct these regions. An improved surface reconstruction algorithm that 

aggregated the local surfaces constructed by the 3D convex hull method has been 

presented by Shin and Tjahjadi [104]. They used the connectivity information of an 

octree and provided an improved surface reconstruction for the imperfect MC result. 

SFSh methods are particularly good when crude 3D models of the real world objects 

are required, and hence find usage in commercial 3D modelling packages [105]. 

However they suffer the drawback that the shape reconstruction could be affected by 

the type of the object and also by the camera position.  

 

1.1.5. Depth from Focus 

 

In Depth from Focus (DFF), the knowledge of the camera parameters is used to 

estimate the depth of an object. The sharpness of focus is measured on a sequence of 

images captured over a range of lens positions and related to the actual depth using 

the lens law [43]. A typical setup for estimating the range using focus is shown in 

Figure (1.4). 

 

 

 

Figure 1.4: Depth from Focus 

 

For an aberration free convex lens, when the object O at distance u from the lens is in 

focus, the image I is formed at a distance v on the image sensor. The relation 

between the focal length of the lens f, the object distance u and the image distance v 

is given by the lens law: 

vuf

111
  ---- (1.3). 
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In DFF, the idea is to obtain a sharply focused image by adjusting either the focal 

length f or the image distance v or both. The measured f and v are substituted in 

equation (1.3) to determine the object distance u. In practice, a series of images are 

captured by continuously varying the image distance and the sharpest image for each 

object is found by employing a focus measure operator. Jarvis [73] suggested three 

focus measures based on computational simplicity, effectiveness, consistency, and 

implementation feasibility. They are: - (1) entropy; (2) variance; and (3) sum 

modulus difference. Darrell and Wohn [39] employed Laplacian and Gaussian 

pyramids to measure the sharpness criterion. A pipelined processor capable of 

generating a depth map in 10sec was also presented. The other researchers who 

actively contributed to DFF are Subbarao [92], Grossman [4] and Nayar [75].      

Depth estimation using the focus criterion is a simple procedure that provides a direct 

relation to the actual depth using the lens law. It is monocular (only one camera 

position is involved) and hence does not suffer from the correspondence problem. 

Further, no additional hardware is required except for a computer controlled motor to 

adjust the lens position. DFF is essentially a search technique that requires the 

acquiring and processing of at least 10 to 12 images. This forms the fundamental 

weakness of the method since additional time is required to adjust the camera 

parameters before capturing each image. Further, during the entire period of 

adjusting the camera parameters the scene must remain stationary.  

 

1.1.6. Depth from Defocus 

 

The Depth from Defocus (DFD) technique is based on the inherent inability of a 

practical optical system to focus at all distances in a scene. When a point light source 

is in focus, all the rays radiated from the object that are intercepted by the lens 

converge at a point on the image plane. But when the point light source is not in 

focus, its image is not a point but a blurred circular disc of finite radius rb. The disc 

radius is a function of the lens parameters and the disc is referred to in the literature 

as the circle of confusion. The basic idea behind DFD is to measure the blur radius 

and relate it to the actual depth using the simple lens law. However in practice every 

point in the scene provides an overlapping blur circle and this complicates the 

calculation. Figure (1.5) shows a conventional DFD system. 
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Figure 1.5: Depth from Defocus  

 

In Figure (1.5), u refers to the object distance, v denotes the distance from the lens to 

the focused image, v0 refers to the distance between the lens and the image sensor, r0 

refers to the radius of the lens aperture and rb denotes the blur circle radius. From the 

lens geometry and the similarity of triangles, the blur circle radius is given as  

)1( 0
0 

v

v
rrb ---- (1.4) 

From the lens law, 
ufv

111
 . Substituting 

v

1
 in equation (1.4) gives the relationship 

between blur circle radius and the object distance as 

)
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00
uvf

vrrb  ---- (1.5) 

The blur radius rb can be either positive or negative depending on whether the object 

is in front or behind the focused plane. The ambiguity can be overcome by 

constraining the sensor distance v0 to be always greater than the image distance v. In 

this case the depth is recovered only if prior knowledge of the scene‟s characteristics 

is known. To overcome this constraint, researchers have suggested the use of two 

images acquired on either side of the focused image. These images (near and far-

focused) are identical except for the degree of blurring. The change in blur 

information is used to recover the depth information. Depth estimation is based on 

modelling the defocused image as the convolution between the focused image and 

the 2D Point Spread Function (psf) of the lens. Three different psf models have been 
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considered by researchers. They are: - (1) Gaussian; (2) Pillbox; and (3) Generalised 

Gaussian. A detailed review of the DFD techniques with their merits and demerits is 

presented in Chapter 2. Unlike DFF, the DFD methods do not search for the best 

focused image and hence require only a few images (usually 2) to provide a reliable 

depth map. Further, there is no correspondence matching problem as is attributed to 

the stereo and motion algorithms. DFD finds usage in applications where the imaging 

geometry prevents the use of multiple viewpoints. The limitations of DFD include 

[20]:- (1) Need for accurate modeling of the optical system; (2) Ensuring a sufficient 

amount of spectral information to measure the blurring between the images; (3) Edge 

bleeding due to windowing and (4) Need for accurate calibration of the camera 

parameters.  

 

Passive depth recovery methods have their own limitations and can suffer from one 

or more of the following drawbacks:-  

(1) Missing parts and the correspondence matching problem. Stereo and SFM 

techniques suffer from the above problem. Depth estimation is possible only 

at places where features are matchable, and thus require interpolation 

techniques to provide a dense depth map. Further, SFM techniques involve 

solving nonlinear equations by optimisation and thus require good initial 

guesses to arrive at a favourable solution. 

(2)  Controlled illumination requirement. SFS techniques do require 

environments which can offer control over the incident illumination. Since 

these techniques rely on accurate modelling of the surface reflectance, they 

are not suitable for complex natural scenes with arbitrary depths. Further, 

depth recovery is not possible for regions in shadow.  

(3) Computational complexity. All the methods explained above are 

computationally complex to an extent. For example in stereo, significant time 

is required to solve the correspondence problem. DFF techniques provide 

reliable depth estimation, but are inherently slow since they need to acquire 

and process at least 10 to 12 images. Further, additional hardware is also 

required to adjust the lens position.  
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DFD techniques do have their own limitation (refer to Section 1.1.6) but due to their 

simplicity in operation, they can compare favourably to other depth estimation 

methods. With passive illumination, they require a minimum of two images acquired 

from the same viewpoint to produce a dense depth map, and thus can be useful for 

real-time depth recovery systems and for auto-focussing applications. Moreover, 

Schechner and Kiryati [88] claimed that for the same physical dimension, the DFF 

and DFD systems do not completely avoid the occlusion problem, but they are more 

stable in the presence of such disruptions than stereo. In addition, DFD methods are 

robust, since they involve modelling a single 2D psf rather than two distinct 

responses as in stereo. Considering the advantages of the DFD technique over other 

optical range methods, this research work investigates the use of the passive DFD 

method to develop a real-time depth / shape recovery system. The novelty lies in 

designing the texture invariant broadband filters using the Two Step Polynomial 

Approach and implementing the DFD algorithm on a Field Programmable Gate 

Array. A detailed report is presented in later chapters. 

 

1.2. Organisation of the thesis 

 

Chapter 2:  Provides a detailed review of existing DFD techniques. The techniques 

were categorized based on: - (1) The method, active or passive; (2) The 

number of images required; and (3) The mode of operation. Further, the 

merits and the limitations of each technique along with the achieved 

depth accuracy are reported. A comparison Table based on the above 

categories is presented in Appendix 5. 

 

Chapter 3: Presents an algorithm to measure the magnification changes between 

two defocused images using the Fourier technique: Phase Correlation. 

The measured magnification variation was helpful in setting up the 

Telecentric optics. A brief review of the existing image registration 

techniques and the experimental results for shift detection in simulated 

and real images is presented in this chapter.  
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Chapter 4: Presents a novel design procedure that determines the rational filter 

coefficients by accurately modelling Watanabe and Nayar‟s 
M

P
 ratio 

curves [14]. The method referred as the Two Step Polynomial 

Approach determines the filter coefficients by considering the discrete 

M

P
 ratio space. A comparison study is presented to determine how well 

the filters designed by both the Watanabe and the Two Step Polynomial 

Approach fit the theoretical 
M

P
 ratio curves. Further, the depth 

estimation results for a single frequency test image and a real 

checkerboard image are presented. In addition, the chapter also 

investigates the effects of focal length, the aperture diameter, and the 

pixel size of the sensor on the rational filter‟s design, and on the 

working distance of a given experimental setup.  

 

Chapter 5:    Presents a hardware implementation of the DFD algorithm on the Virtex 

2P FPGA. A pipelined architecture with two separate channels was 

employed to implement the five filtering stages in parallel. Further, a 

procedure referred as the Triangular method was used to reduce the 

number of multipliers required for the convolution process. Finally, a 

comparison study is performed where the depth results from the 

pipelined processor are compared against the full precision Matlab 

output. 

 

Chapter 6:   Presents depth estimation results for 3D objects with natural textures. 

Again, a detailed statistical comparison is presented for the depth 

estimates obtained from Matlab and from the pipelined processor.  

 

Chapter 7: Summarises the contribution of the research work and presents some 

avenues for future research.  
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Introduction 

 

Depth from Defocus (DFD) methods like any ranging techniques can be broadly 

classified as Active or Passive. Active methods required an external illumination 

pattern to be projected under controlled environmental conditions on to the object 

that requires measurement, whereas Passive methods recover depth under ambient 

lightning conditions. However, if the scene under investigation has weak texture or is 

textures-less, then the only possibility is to employ an active illumination.  

Early methods [1] [2] [5] were based on single images, where the defocus 

information was obtained from the blur measurement. These techniques required 

prior knowledge of the scene and were sufficient enough to recover depth only at 

certain image contours [15]. DFD methods for arbitrary objects using multiple 

images (two or more) have been proposed by many researchers. These methods can 

be further classified based on the mode of operation as Spatial, Frequency, Wavelet 

or Statistical techniques. 

In this chapter an attempt has been made to categorize the available DFD techniques 

based on (1) The method, active or passive; (2) The number of images required, 

single or multiple images; and (3) The mode of operation, spatial domain, frequency 

domain, statistical, wavelets and other un-conventional techniques. Figure (2.1) 

illustrates pictorially the available DFD methods based on the above categories.  

The chapter first explains the Passive methods where an in-depth analysis of the 

DFD techniques is reported based on the proposed categories. Section 2.1.1 describes 

the single image passive DFD techniques and Section 2.1.2 describes the multiple 

image passive DFD techniques. Later, Section 2.2 describes the active methods 

which are classified as per the categories. A comparison chart is presented in 

Appendix 5, where the detailed information about the authors, their techniques, the 

merits and demerits of their method, and the achieved depth accuracy is reported. 
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Figure 2.1:  Pictorial representation of the available DFD methods based on the categories. 
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2.1. Passive Methods 

 

Passive DFD methods are attractive since they estimate the depth of the scene under 

the ambient conditions. They avoid the usage of any illumination patterns and hence 

are suitable for depth as well as shape recovery. The main disadvantage which is 

common to any passive technique is the requirement of a textured pattern since a 

texture-less object will „look the same‟ whether focused or unfocussed. This Section 

describes the available passive DFD techniques. 

 

2.1.1. Single Image Techniques 

 

Alex Pentland was the first investigator who employed „defocus‟ as a clue to 

estimate the depth of an object. He observed that Depth from Focus (DFF) 

techniques and auto-focussing algorithms employed an exhaustive search mechanism 

to find the „best‟ focussed image from a collection of 30 or more images. These 

techniques were time consuming and required sophisticated parallel hardware for 

effective operation. He realised that search for the best focused image was 

unnecessary and presented a novel method where the depth was estimated from a 

single image by measuring the error in focus; the focal gradient [1]. The amount of 

defocus (blurring) was related to the distance of the object from the focused image 

and the characteristics of the lens. The object depth D was measured using the 

relation, 

                                               
Ffv

fv
D




0

0 ---- (2.1) 

 

where, f was the focal length of the lens, v0 the distance between the lens and the 

image plane, F
 
the f-number of the lens

1
 and   the spatial constant of the 2D 

Gaussian psf of the defocused lens. The only unknown in equation (2.1) is   of psf 

which is a measure of the rate of change of image intensity at sharp discontinuities in 

the images (e.g. edges). A  Laplacian operator was employed and the zero crossing of 

the Laplacian provided the maximum rate of change of image intensity i.e. the edges. 

By using a linear regression model,   was estimated and substituted in equation 

(2.1) to obtain the object distance. Although the method looked simple it had two 

main disadvantages :- (1) The method required the prior knowledge of the scene 

 1.  Here F represents the f-number of a conventional lens. F=f/d where d is the aperture diameter.
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characteristics and hence could be used to measure depth only at step discontinuities; 

and (2) the ambiguity whether the image was formed in front or behind the plane of 

exact focus had to be overcome by a suitable scene setup. These demerits were later 

addressed by Pentland [1] [2] by considering two images of the same scene taken 

with different aperture settings. The algorithm had the potential to produce depth 

plane segmentation but was not accurate enough to produce a dense depth map. 

Grossman [4] has achieved an accuracy of 1.25cm using the above method. 

 

After Pentland, Subbarao and his research associates were the most active advocates 

of the DFD method. In 1988, Subbarao and Gurumoorthy [5] proposed a method 

similar to Pentland‟s [1] where the Line Spread function (LSF) corresponding to the 

psf of the lens was computed from a blurred edge. The spread of the LSF, measured 

from the second central moment (standard deviation distribution of the LSF) was 

linearly related to the inverse distance using the equation 

cmul  1   --- (2.2) 

where, l  was the spread of the LSF, m and c were the camera parameters and u
-1

 

the object distance. The approach differed from Pentland‟s in the computational 

simplicity of measuring the magnitude of the blurred edge and relaxed the 

assumption that the psf to be modelled was Gaussian. Here the psf was considered to 

be rotationally symmetric. The algorithm works well on isolated edges but causes 

depth estimation errors in the presence of other edges. 

 

Lin and Gu [69] proposed a model that estimated the blur by employing a histogram 

technique that measured the pixel intensity distribution of a single image. The 

estimated histogram was then related to the actual depth using a pre-calibrated 

mathematical model. Experimental results with real images suggested a RMS error 

less than 3% when the furthest point was at 1200mm. 

 

Namboodiri and Chaudhuri [67] proposed a statistical method based on the 

inhomogeneous reverse heat equation that estimated the blur information and depth 

perception using a single image. The model formulated the Gaussian psf in terms of 

the heat equation and related the blurring parameter  to the diffusion coefficient as 




tc
2  , where t is the time variable, c is the diffusion coefficient and   is the size 
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of the blur in terms of pixel units. The heat equation was inhomogeneous since the 

coefficient c and the time t are related to the depth location. The depth information 

was measured as a disparity between the observed image and the reconstructed 

image, and the estimated depth map was further refined using a Markov Random 

Field (MRF). Although the depth map was retrieved from a single image, it was 

actually similar to Favaro‟s multi-image diffusion method [68]. Theoretical results 

were not provided due to the ambiguity of whether the object was in front or behind 

the focussed image. 

 

2.1.2. Multiple Image Techniques  

 

With multiple image techniques, two or more images acquired with different camera 

settings are compared to provide the required depth estimate. The methods offer two 

main advantages over the single image technique: - (1) They avoid the extensive pre-

calibrated depth model required for single image techniques [69], since the 

ambiguity whether the object is in front or behind the focus plane has been 

overcome; (2) They do not require any prior knowledge of the scene and hence can 

be applied for arbitrary objects with any random shape. Further, the Section provides 

a sub-classification based on the core technique used. 

 

2.1.2.1. Frequency Domain Techniques 

 

Pentland‟s second approach [1] [2] was based on a multiple image frequency domain 

technique, where two images of the same scene captured using different aperture 

settings (smaller aperture to capture a focused image and a larger aperture to capture 

a defocused image) were used to estimate the amount of defocus. Since the aperture 

sizes were different, the same point on the scene was focused differently in the each 

image, leading to a difference in focal error between them. This focal error estimated 

over the entire image provided a dense depth estimate of the scene. The psf was 

modelled as a 2D Gaussian and the spatial constant   was measured by fitting a 

regression model to the Fourier Transform ratio of the focused image to that of the 

defocused image. The measured   was then related to the object distance using 

equation (2.1). 

 



 20 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Passive DFD optical setup based on Pentland‟s approach [1] 

 

In practice the images were first convolved with a 8x8 Laplacian filter and averaged 

using a 8x8 Gaussian filter to produce a „power image‟.  This provided an estimate of 

the power of the central spatial frequency of the Laplacian filter at each image 

location. The two transformed images were then compared and a look up-table was 

used to estimate the depth. The algorithm was implemented on a Datacube image 

processing system and included a beam splitter to capture two images simultaneously 

as shown in Figure (2.2). The system processed 8 frames per second with an 

accuracy of 6% standard error over a 1 cubic meter measurement volume. The 

accuracy was improved to 2.5% standard error by considering a Laplacian pyramidal 

architecture where the Fourier powers were estimated at several frequencies instead 

of single frequency. The disadvantage of the algorithm was its assumption that one 

of the images was taken using a pin-hole camera which was unacceptable as such a 

tiny aperture required a long exposure time and produced diffraction effects that 

were more pronounced as the width of the aperture was decreased [53]. 

 

Subbarao [6] relaxed Pentland‟s requirement of a pinhole aperture and recovered 

depth by considering two images (which may or may not be in focus) acquired with 

different camera settings. The depth was recovered by changing: - (1) The distance 

between the lens and the image detector; (2) The focal length of the lens; and (3) The 

aperture diameter. The ratio of the Power Spectral Density (PSD) over a small local 
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area was employed to estimate the spread parameter ( 1, 2)  of the two defocused 

images. These were then related to the inverse of the actual depth by equation (2.2). 

Experiments proved that the computed   was strictly a monotonic function between 

two set intervals and provided accurate depth results for nearby objects. For far away 

objects the method provided qualitative information.  

 

In [7] [10], Subarao and Wei employed the DFD technique for autofocus 

applications. The method referred to as DFD1F, was based on computing the one 

dimensional Fourier coefficients as opposed to two dimensional and hence provided 

computational advantage and robustness for practical applications. The approach was 

based on the accurate calibration of the psf which was computed from the LSF of 

blurred step edges as explained in [5]. In actual practice, the estimated blur parameter 

   was used as an index for a look-up table that provided a calibrated psf, modelled 

either as a Gaussian or a Pillbox. It was reported, that for low levels of blur the 

Gaussian psf model provided better results than the Pillbox, and for higher blur 

levels the Pillbox proved more accurate. The algorithm was implemented on their 

SPARCS camera system, and provided an accuracy of 3.7% RMS error for auto-

focusing applications over a distance of 0.6m to infinity. For ranging application, the 

RMS error was 4% at 0.6m and linearly increased to 30% at 5m distance. 

 

In 1995, Xing and Shafer [50] [54] used a large bank of Moment filters to estimate 

the depth information of the scene. Moment and Hyper-geometric filters were narrow 

band and hence estimated the spectral power at a large number of individual 

frequencies. The recursive properties of the filters allowed the effects of finite width 

windows and fore-shortening (caused by non-stationary transformation between two 

images) to be explicitly analysed and eliminated [54]. Two variants of their 

algorithm were proposed: - (1) Moment filters without slope estimation (MFF1); and 

(2) Moment filters with slope estimation (MFF2). Both the techniques were 

compared with Subbarao‟s frequency domain method [6]. It was reported that the 

RMS error of the estimated depth map using Subbarao‟s method was 4 times higher 

than that of MFF1 and 27 times higher than MFF2. Though the method provided 

good accuracy, from the computational perspective, since the filters required more 

logic support, the method was not suitable for real-time depth estimation [14]. 
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In 1998, Watanabe and Nayar [14] provided an improvement to the existing methods 

[1] [2] [6] [50] by considering the normalised 
M

P
 ratio of the defocused images 

(amplitude ratio between the difference of the amplitude of the defocused images to 

the sum) instead of the conventional amplitude ratio.  A set of broadband filters were 

designed in the frequency domain that accurately modelled the 
M

P
 ratio curves. 

Since the filters were broadband in the frequency domain they were narrow-band in 

the spatial domain and hence suitable for real-time implementation. A Pillbox psf 

model was considered for the implementation and four 7x7 2D texture invariant 

filters (including a pre-filter) were designed to effectively retrieve the depth 

information. It was reported that the depth detection error was less than 1% 

irrespective of the texture frequency. The depth accuracy was between 0.5% and 

1.2% with respect to the distance from the lens. Though real-time implementation 

was not presented, the authors have claimed that by using their customised Datacube 

MV200 pipeline processor, the algorithm can deliver six depth maps of size 512 x 

480 pixels in one second.  

 

The magnification variation between the defocused images was addressed by 

Watanabe and Nayar [41] by employing telecentric optics. An aperture stop was 

introduced at the front focal plane of the lens and a FFT phase based local shift 

detection method was employed to detect the magnification changes. The 

magnification was reduced to 0.03% from 3% (reported by Subbarao in [8]) by 

employing the telecentric aperture. 

 

Raj and Staunton [87] proposed a technique based on Phase Correlation [28] [29] 

[30] to determine the magnification change between the defocused images. The 

method considered the magnification change within the sub-block as a local 

translation problem and estimated the shift by inverse transforming the normalised 

Cross Power Spectrum. The approach was more practical and robust to noise than 

Watanabe‟s method which determined the shift by fitting a plane to the noisy phase 

data [29]. 
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Recently, Favaro and Duci [64] proposed two methods that exploited the results of 

Fourier analysis and Singular Value Decomposition (SVD) in the frequency domain 

to estimate the depth and the radiance of the scene. In their first method they 

considered the psf as a 3D Gaussian function and represented the imaging model as a 

convolution between the 3D psf and the transformed volume density (depth 

estimate). The method required a dense set of defocused images, usually more than 

100 and employed deconvolution techniques [47] to estimate the depth. The 

maximum achievable accuracy for the given setup conditions can be determined 

directly from the model which was based on the camera settings, the number of input 

images and the resolution of the image. The second method considered the linearity 

of the imaging model and employed the SVD in the frequency domain to estimate 

the depth based on a least squares solution. The method required less than 5 

defocused images and was stated to be efficient for practical purposes. For both the 

methods the radiance of the scene was reconstructed from the additional information 

provided from the geometry and photometry of the imaged scene. Though theoretical 

results were not provided, the authors have compared the results with their existing 

algorithm based on the least squares solution described in [66]. The depth maps and 

the radiance of the scene were recovered reasonably accurately. 

                                                                                                                                    

2.1.2.2. Spatial Domain Techniques 

 

In 1993, Ens and Lawrence [12] proposed a Spatial domain technique based on a 

matrix regularization approach to recover depth information from two defocused 

images. Their method was stated as an alternative approach to that of the inverse 

filtering methods advocated by Pentland in [1] [2], where windowing effects are 

more pronounced. They approached the problem by identifying the psf, h3(x,y) such 

that  

),(),(),( 231 yxhyxhyxh   --- (2.3) 

where   h1(x, y) and h2(x, y) are the psfs of the two defocused images and  h3(x,y) is 

the convolution ratio of the defocused operators h1(x,y) and h2(x,y) or the extra 

defocus that is required to make h1(x,y) equal to h2(x,y). The estimated h3(x,y) 

provided a unique indicator of the required depth. The authors presented three 

methods to recover h3(x,y), where their most general solution, iteratively searches for 
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the best pattern of h3(x,y) from a pre-computed lookup table that minimized the 

objective function  

min)],(),(),([
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Here i1(x,y) and i2(x,y) are the two defocused images. The lookup table was derived 

based on the theoretical or experiment models of the psf. Results with theoretical psf 

models resulted in an RMS error of 1.7% in terms of distance but reduced to 1.3% 

when an experimental psf was used. The disadvantages of the method are that it was 

based on a smoothness assumption and it was computationally intensive [8].  

 

An improved psf measurement technique was proposed by Claxton and Staunton 

[49]. The method employed a knife edge technique, where a super resolution Edge 

Spread Function (ESF), obtained by imaging a knife edge on a light box was 

differentiated to provide a more accurate model of the psf. The method proved 

simple and effective for shift invariant DFD models since the psf was averaged over 

the entire length of the edge. Three different psf models (Pillbox, Gaussian and 

Generalised Gaussian) were considered, and it was observed that the Generalised 

Gaussian model performed better over a wide working range with different aperture 

settings. The mean square error (MSE) of the fit of the psf using the Generalised 

Gaussian model was 8 times better than the Gaussian model and 14 times better than 

the Pillbox model. 

 

Subbarao and Surya [8] actively employed their Spatial Domain Convolution/ 

Deconvolution Transform (S Transform) to effectively recover the depth information 

of an object in the spatial domain. Their method referred as „S‟ transform method 

(STM) required only two or three blurred images and provided results that were 

comparable to Depth from Focus techniques. The forward „S‟ transform expressed 

the defocused image as a two variable cubic function using Taylor‟s series (equation 

(2.5)), and the inverse „S‟ transform (deconvolution operation) which provided the 

focussed image was obtained by subtracting a constant times the Laplacian of the 

blurred image from the blurred image, as given in equation (2.6) 
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                               ),(
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),(),( 22 yxgyxgyxf    --- (2.6). 

Here, g(x,y) is the defocused image, f(x,y) the focused image, hm,n is the rotationally 

symmetric psf,   the second central moment of the point spread function  and 2  is 

the Laplacian operator. In practice the images captured using different camera 

settings (as explained in [6]) were approximated as focussed images within a small 

neighbourhood of 9x9 pixels and expressed as 

                               ),(
4

1
),(),( 1
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111 yxgyxgyxf    --- (2.7), and  

                             ),(
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222 yxgyxgyxf   --- (2.8). 

The depth was obtained by comparing the approximated focussed images as given by 

2 2 2 2 1
2 1 2 1

( , ) ( , )1
( , ) ( , ) ( ) ( )

4 2

f x y f x y
f x y f x y  


    --- (2.9). 

where 2

1  and 2

2  refer to the second central moment of the psf, and f1(x,y) and 

f2(x,y) refer to the approximated focused images. The initial assumption that the 

focused image should be modelled as a cubic polynomial was relaxed by using a 

generalized „S‟ transform which incorporated the use of smoothing filters proposed 

by Meer and Wiles [11]. The estimated   was then linearly related to the inverse 

distance as given by the equation (2.2). Two versions of STM were implemented. In 

STM1, the diameter of the aperture was fixed and two images were taken by 

changing the lens position. The percentage error in terms of distance was about 2.3% 

at 0.6m and it linearly increased to about 20% at a 5m distance. In the STM2 the lens 

position was fixed but the diameter was changed and the RMS error estimated was 

similar to that of STM1. In the case of 3D objects the error depended on the shape 

and appearance of the objects. For objects with small depth variations STM 

calculates the average distance of the objects in the scene. Results on auto-focusing 

experiments suggested that STM performed better and faster for medium levels of 

blur, and the DFDIF [7] method proved more effective for higher levels of blur [10]. 

 

A continuation of Subbarao work was carried out by Ziou and Deschenes [15] [21]. 

They approached the problem through a local image decomposition technique using 

higher order Hermite Polynomials, and demonstrated that any coefficients of the 

Hermite Polynomial that were computed from a more defocused image can be 
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expressed as a function of the partial derivatives of the other image. Their 2D model 

involved the calculation of blur difference   which was obtained by solving four 

mathematical equations and determining the „best  ‟ through error analysis. The 

estimated   was then related to the inverse object distance as given in equation 

(2.10).  
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where z  is the object distance,   is the blur difference between the defocused 

images and v, F, f , k are the camera parameters. Tests were performed on step edges, 

line edges and on junction like L, V, T, Y and X, and compared with Subbarao „S‟ 

Transform method [8]. It was observed that the latter method was capable of 

estimating the blur only at line edges. At step edges and on junctions the „S‟ 

Transform failed since Laplacian of Gaussian was zero at these points [23]. The 

RMS error reported  for a planar object whose furthest point was at 125cm  and the 

nearest at 115cm was 2.21% against 4.22% for Subbarao‟s „S‟ Transform method. 

The depth densities for the methods are 97.4% and 85.3% respectively. Considering 

the spatial errors involved in camera movements while image acquisition, Deschenes 

et al. [22] extended their Hermite Polynomial model to include the spatial shifts; 

horizontal, vertical, zooming and 2D motion. The RMS error reported was 1.68% 

with a depth density of 100%.  An improvement of the above method was proposed 

in [61] where the spatial shifts and the zoom disparities were simultaneously 

computed along with the blur using a Homotopy based approach with several higher 

order derivatives calculated for the image. 

 

In 2004, Simon et al. [58] proposed a method similar to Subbarao [5], where the 

spread parameter   of the Gaussian psf was estimated by considering the ratio 

between the sharp and the blurred edges of the images (gradient ratio). A generalised 

model was proposed to estimate the gradient ratio for entire thick and thin edges. A 

Prewitt edge detector was employed to determine the gradient ratio and the direction 

of the edge. The spread parameter   computed from the gradient ratio, was later 

related to the depth. The main drawback for the method was the acquisition of a 

sharp image which required additional lighting conditions. This problem was later 

addressed by them in [59] where three blurred images were used to recover the 
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spread parameter; however this introduced additional complexity in the image 

acquisition and increased the processing time of the algorithm.  

 

Leroy et al. [60] extended the work of Simon et al. [58] [59] and proposed a simpler 

algorithm which required only two defocused images. Their work was based on 

Subbarao [8] and Deschenes [15] [21] [22], where the magnitude of the Laplacian 

gradient at the edges for step, ramp or roof was computed to determine the depth. 

Though real-time implementation was not presented, the authors have stated the 

algorithm could compute a depth map of 800 x 600 pixels in 23ms. The maximum 

mean depth error reported was 20.05mm between a range of 790mm and 990mm. 

The main drawback of the method was the influence of the edge density and the 

characteristic of the image textures on the accuracy of the estimated depth. It was 

stated in [60] that the edges with high density provided more accurate depth results. 

 

In 2007, a neural network based technique was suggested by Jong [81] which 

estimated the spread parameter   of the Gaussian psf in the spatial domain. The 

model was based on a supervised learning network that employed the Radial Basis 

Function (RBF). The RBF was preferred over a Back Propagation network (BPN), 

since it provided a better approximation to a continuous function [82]. Experiments 

were performed on edges with objects placed between 220mm and 355mm. A 5% 

error relative to the object distance was reported. 

 

The above mentioned techniques (except Favaro‟s and Chaudhuari‟s) considered the 

imaging model as a linear shift invariant system and expressed the defocused image 

as a convolution between the focused image and the shift invariant psf [53]. 

However, Tu et al. [83] proposed a technique based on inverting the shift variant blur 

model in the spatial domain to recover the depth and the focussed image from two 

defocused images. The method was an extension of Subbarao‟s „S‟ Transform 

approach [8] for shift invariant blur models, and incorporated Subbarao‟s Rao 

Transform [84] [85]. It was developed primarily for image restoration, and used a 

linear integral equation. The algorithm was based on an exhaustive search strategy to 

find the „best shape‟ parameter that minimises an error function. Experiments with 

simulated images suggested a maximum error of 3% with respect to the distance. 
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Though experiments were performed on real images, the theoretical details about the 

depth accuracy were not presented. 

 

2.1.2.3. Statistical Techniques 

 

Rajagopalan and Chaudhuri [48] applied the Space Frequency Representation to the 

problem of DFD. Their approach was to determine the shift variant blur parameter by 

calculating the blur difference of the defocused image using the complex 

spectrogram (CS) and pseudo-Wigner distribution (PWD). Since the complex 

spectrogram and Wigner distribution estimated the blur independently of the 

neighbouring pixels, the recovered depth map was quite noisy with large depth 

discontinuities. Hence a variation approach with smoothness constraint was proposed 

where the degree of smoothness of the estimated blur at each pixel was governed by 

a regularisation parameter. Experiments showed that the algorithm provided a 

smooth depth map with less depth variations. The RMS error reported was 4.84% for 

the scene whose farthest point was at 115cm from the lens surface. In 1999, they 

proposed an algorithm [19] where the shift variant blur parameter was modelled as a 

Markov Random Field (MRF) and the depth information along with the focused 

image was simultaneously recovered from a pair of defocused images. The algorithm 

was based on minimization using the Simulated Annealing technique and the 

recovered depth map was compared with Subbarao‟s Fourier domain method [6]. It 

was observed that the Fourier method estimated a noisy depth map with a RMS error 

of 5.76cm compared to the proposed method were the RMS error was only 3.02cm. 

However, in terms of speed the proposed method was less suitable for practical 

purposes, since it incorporated minimization techniques. 

 

 In 2003, Rajan and Chaudhuri [18] extended their earlier results based on MRF to 

recover depth estimates at higher spatial resolution, thereby generating a super- 

resolved image of the scene. They modelled two separate MRFs: - (1) To represent 

the shift variant blur parameter; and (2) To represent the intensity field. Again the 

Simulated Annealing technique was used to simultaneously recover the Maximum a 

Posteriori (MAP) estimates of the high resolution spatially variant blur and the super- 

resolved image. Experimental results showed an RMS error of 1.76cm equivalent to 

a ranging error of 1.96% when the farthest block was at 96.6cm. 
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In 2000, Favaro and Soatto [44] developed an iterative algorithm based on the 

minimization of Information Divergence between the defocused images. It recovered 

both 3D shape and the radiance for the scene. They extended the results of Ceizar 

[46] and Snyder et.al [47], and analyzed equifocal imaging models where the psf was 

considered to be translation invariant. The minimization was done using a descent 

method, and it was observed that the Information Divergence decreased for any 

kernel model satisfying the positivity and smoothness constraint. Though theoretical 

results were not provided, the depth maps generated were quite dense as the iteration 

progressed. In [45], Favaro and Jin considered the 3D shape and radiance recovery as 

an infinite dimensional optimization problem, and recovered the global shape of an 

object instead of the depth. This proved an improvement in terms of computation 

since the radiance of the overlapping regions was not required to be recomputed. 

Their algorithm was not restricted to equifocal imaging models where the scene to be 

recovered was assumed to be parallel to the focal plane. This was claimed as an 

advantage over other existing models [1] [2] [8] [14] where the psf was assumed to 

be translation invariant.  

 

Favaro and Soatto [17] [36] proposed a novel algorithm based on matrix 

multiplication which was relatively insensitive to the psf, and recovered the 3D 

geometry and radiance of the object. In one of their models, if the complete 

characteristic of the psf was known then the orthogonal operators required for the 3D 

geometry were computed using functional Singular Value Decomposition (SVD) of a 

small window of 7x7 or 9x9 pixels of the defocused images. If the characteristics of 

the psf were unknown, then the orthogonal operators were obtained by a learning 

process, from a collection of blurred images acquired over a finite dimensional 

range. The two main features of the algorithm were its robustness to noise and its 

feasibility for parallel implementation. It was also efficient in the way that 

orthogonal operators obtained from set of simulated images can be effectively used 

to recover depth of real objects. Experiments were carried out between distances of 

520mm and 850mm with 51 equifocal planes simulated with randomly generated 

scenes. The known psf variant of the algorithm provided an average depth estimation 

error of 31mm and when an unknown psf variant of algorithm was used, the depth 

error was reduced to 27mm. For 3D objects, the authors have provided visual depth 
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maps comparable to the depth maps recovered using Watanabe‟s method [14] with 

no accuracy information. 

 

In 2003, Favaro et al. [68] proposed a novel algorithm to estimate the depth by 

inferring the diffusion coefficient of an anisotropic heat equation. The method 

employed a forward heat equation that determined the diffusion (match) required 

between the two defocused images. A gradient regularisation technique was used to 

estimate the diffusion coefficient that provided a dense depth map (one-to-one) of the 

scene. Later, texture mapping was adopted to recover the radiance of the scene.  The 

shape and the radiance estimated were quite favourable, and one variant of their 

algorithm was used for an application which involved the 3D shape segmentation of 

the scene.  Namboodiri and Chaudhuri [78] analysed Favaro‟s diffusion model and 

stated two main drawbacks:- (1) The model cannot handle a departure from the 

Gaussian blur model assumption in the case of self-occlusions; and (2) The diffusion 

coefficient was assumed to be a convex function. Further, the gradient regularisation 

employed by Favaro resulted in overly smooth depth estimates [79]. Subsequently, 

the drawbacks were addressed by Namboodiri and Chaudhuri [78], where a 

stochastic blur model was incorporated into the heat diffusion equation to handle the 

variations (due to lens and aperture deformation) from the standard Gaussian blur 

model. Experiments with real images suggested better results than Favaro‟s [68] at 

self-occluded points.  

 

In 2007, Namboodiri and Chaudhuri [80] used the linear diffusion heat model in the 

frequency domain and proposed an “Extended Defocus Space Model” that presented 

the equivalent means of estimating the depth from the known lens parameters either 

using DFD or DFF techniques. The model provided poor depth estimates at 

homogeneous regions and necessitated a suitable regularization function. These 

demerits were later addressed in [78], where the Markov Random Field was used to 

model the diffusion coefficient, ensured robustness and spatial regularisation of the 

estimated depth. 
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2.1.2.4. Wavelet based Techniques 

 

Wavelet transforms were used to recover the depth estimates by Hor et al. in [55] 

and Choi et al. in [56] [57]. The method was considered as an alternate to the 

frequency and spatial domain approaches, since they suffer either from windowing 

problems (as in frequency domain approach [12]) or from frequency uncertainties (as 

in spatial domain approaches [55]). In wavelet analysis, the spatial and frequency 

content variations are localised in the phase domain and hence maximum resolution 

is obtained both in space and in frequency [55]. 

 

Hor et al. [55] considered the defocus as a spatially variant blur model and proposed 

spatial variant transform analogues to the Fourier transform model. The modulated 

Gaussian function was chosen as the mother wavelet and the standard deviation 

extracted after applying the wavelet transform was used to measure the depth of the 

scene. Though quantitative results have not been provided, the method recovered the 

visual depth map quite favourably. 

 

In [56] [57], Choi et al. estimated the blur parameter   of the Gaussian psf by 

considering the ratio of wavelet powers of the defocused images. Parseval‟s theorem 

was employed to measure the energy (power) using the wavelet coefficients which 

were outputs of the wavelet transform [56]. The estimated power ratio later provided 

the required depth information when substituted into their design model. 

Experimental results with a slanted planar object demonstrated that the recovered 

depth using wavelets had a lower RMS error of 0.8181cm when compared to 

methods such as Fourier, Spatial and Laplacian, where the RMS errors were 2.119 

cm, 1.3251cm and 1.8517cm respectively. The working range of the experiments 

was between 150cm and 180cm. 

 

2.1.2.5. Fuzzy Logic based approach 

 

A fuzzy logic DFD method was suggested by Swain et al. [86] to improve the 

accuracy of the depth estimates. The model required two inputs: - (1) The focus 

quality, which determined the amount of defocus present in the images; and (2) The 

focus error, which measured the difference in focus between the corresponding 
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points in the image. A Sobel edge detector was employed to measure the focus 

quality (method was referred as Tenengrad), and a 3x3 Laplacian operator was used 

to calculate the focus error. The images after applying the Laplacian operator were 

normalised for brightness and compared to provide the required depth estimates. The 

measured depth estimates were fed to a fuzzy logic algorithm which provided the 

necessary depth corrections. The membership functions of the fuzzy logic algorithm 

are carefully determined through trial and error. Experiments reported a depth error 

of less than 1.5% over a working range of 2133mm to 3352mm. The following 

drawbacks were reported: - (1) Test images should contain high frequencies; (2) The 

window selected for depth estimation should have a single depth and (3) The 

membership function of the fuzzy logic set was required to be tuned for different 

camera settings, which was time consuming and based on trial and error. 

 

2.1.2.6. Reverse Projection Correlation principle for Depth from Defocus 

 

In 2006, McCloskey et al. [62] approached the DFD problem by considering the 

correlation between the adjacent pixels of the blurred images. Their motivation was 

based on the observation that the pixel transfer function increases as the scene gets 

further away from the plane of focus. This resulted in an increase in the correlation 

between the adjacent pixels. The change in correlation coefficient (CC) between the 

adjacent pixels was measured and a look-up table was used to relate the CC to the 

blur radius of the scene. Later, the blur radius was related to the actual depth using 

the equation (2.1). For experiments, the authors have constructed a look-up table by 

considering 25 pairs of images acquired with different combinations of depth and 

viewing angle, and the change in CC was quantized into bins of width 0.005. The 

RMS error in terms of absolute depth for the simulated images was between 0.4% 

and 0.8%. For real images, the change in CC was determined from an image window 

of 51x51 pixels. The authors have presented a 1D cross Sectional view of the 

estimated depth with no theoretical information about the accuracy. 
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2.1.2.7. Depth Estimation by change in Zoom 

 

Depth estimation based on a change in the zoom settings of the lens was proposed by 

Baba et al. [63]. They observed that a change in zoom resulted in a change in blur 

circle radius similar to the variations in focal length and aperture of the lens.  A thin 

lens zoom model was proposed that related the effective focal length and the 

effective aperture diameter of the lens. I.e. the relation between zoom and the focus 

was described in terms of effective focal length, and the relationship between zoom, 

focus, and aperture was described in terms of effective aperture diameter. From their 

model, they observed that the estimated blur width changed in proportion to the 

square of the effective focal length which was in-turn related to the zoom control 

value. In experiments with scenes having single depth, the object was at 1250mm 

and the blur width was measured from 192 images, with 4 aperture levels, 8 focus 

levels and 6 zoom levels.  The mean distance estimated was 1236mm with a high 

standard deviation of 27.4mm. For multi-zoom images where the depth was 

estimated from the change of blur width from a continuous change in zoom, the 

mean depth estimated was 1233mm with a reduced standard deviation of 19.8mm. 

Experiments with multiple targets placed at several depths resulted in a maximum 

error of 1945.9mm when the target was at 3000mm. The experimental results 

provided by the authors were based on measuring the blur width at the edges of the 

objects and details about their dense depth recovery were not presented.  

 

2.2. Active DFD Methods 

 

Active DFD methods are effective when depth analysis is performed on weak or 

texture-less surfaces. The idea is either to project an illumination pattern on to the 

object under investigation and measure the defocus by comparing with the focused 

pattern, or by modeling a filter that responds to the single dominant frequency of the 

projected pattern. Though active methods provide accurate depth measurements they 

need controlled illumination and sophisticated pattern fabrication techniques. This 

Section describes existing DFD methods based on active illumination. 

 

Pentland et al. [3] pioneered active DFD, where a standard slide projector was used 

to project a structured light pattern on to the object that required measurement. To 
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avoid distortions, the light source was projected along the optical axis and a video 

camera was used to capture the blurred images. Depth was estimated by comparing 

each point of the defocused pattern to the known focused pattern, and a lookup table 

was used to relate the energy within the blurred region (hump energy) [3] to the 

radius of the blur circle rc , as shown in Figure (2.3).   

With active illumination, a 0.5% RMS error was reported for 64 x 64 resolution 

depth maps. A stroboscopic extension to active DFD was constructed to measure 

depth of fast moving objects, where the strobes replaced the slide projector. These 

strobes were synchronized with the video camera such that alternate frames were 

illuminated with structured light and white light. An example of depth recovery of a 

rolling golf ball was presented in [3]. The RMS error of 5% was reported for this 

experiment. 

 

 

 

Figure 2.3: Active DFD method based on Pentland [3] (left) ray diagram, (right) optical setup 

 

Nayar et al. [13] developed a prototype range sensor based on active illumination 

that generated 512 x 480 depth maps at 30 frames per second with an accuracy of 

0.3% relative to the object distance. The illumination pattern was accurately 

determined using optimization techniques that maximised the accuracy and 

robustness of the depth estimation. The designed pattern was then fabricated on to 

the sensor using micro-lithographic technique. The pattern developed was a 

checkerboard with a horizontal and vertical period of tx and ty, such that tx= 4px and 

ty= 4py. Here px and py are the CCD pixel pitch in the horizontal and vertical 

directions. A 5x5 Laplacian kernel was used as a tuned focus operator that responded 
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to the single dominant frequency (1/tx,1/ty) corresponding to the  pattern frequency. 

The depth was estimated using the normalized ratio (ratio to the difference of 

amplitude to the sum of amplitude of the defocused images) and a loop-up table was 

employed to relate the normalized depth to the actual distance. A detailed description 

about the hardware implementation using a MV200 Datacube pipelined processor 

and the experimental results are presented in [13]. Further, the illumination pattern 

was incorporated into a Microscopic Shape from Focus system [74] [75], and was 

effectively used to recover the shape of a silicon substrate with 13µm features, and 

solder joints that were 150µm high and 100µm wide.            

 

Ghita and Whelan [70] [76] developed a video rate sensor based on active 

illumination that processed 10 frames of size 256 x 256 pixels in a second. The 

imaging setup was considered to be linear shift invariant and the blurring effect was 

modeled as the convolution between the focused image and the Gaussian psf. A 

linear interpolation technique along with a strip grids pattern of density 10 lines/mm 

was employed to avoid the expensive fabrication technique required to determine the 

illumination pattern described in [13].  The performance of a Laplacian kernel (4 and 

8 neighborhood), and Watanabe‟s rational filters (3x3 and 7x7) [14] as focus 

operators was investigated, and it was reported that the Laplacian (4) and rational 

filters of size 3x3 provided more linear depth estimate compared to the  rational 

filters of size 7x7 and the Laplacian (8). The lowest accuracy achieved was 3.4% 

normalized with respect to the distance. In [77] a bin picking system based on this 

active DFD technique was presented. 

 

A neural network based depth detection technique with added illumination was 

proposed by Li Ma and Staunton in [71]. In their algorithm, the object was first 

isolated from its background and the depth was estimated using a three layered 

neural network designed using the Back-Propagation algorithm. A multi-resolution 

segmentation algorithm, which included three sub-modules (image pyramid 

formation, linkage adaptation and unsupervised learning) were effectively used to 

segment the object from its background with an error of 0.637%. Though the model 

was trained with checkerboard images, it also effectively recovered the depth map of 

images with natural textures. High resolution data was used by the authors to 

maximize the depth accuracy. 
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2.3. Discussion 

 

The chapter provides a classification of DFD techniques based on the method used 

and the mode of operation. Most approaches consider blurring as a linear shift 

invariant process (frequency and spatial domain) and represent the defocused image 

as the convolution of the focused image with the psf of lens. The blur information 

was then retrieved by the deconvolution process either in the frequency or spatial 

domain, and then related to the actual distance using the appropriate depth model. 

These methods offer an advantage in terms of computation and simplicity in 

implementation of the algorithm. The other methods (mostly statistical methods) 

consider the blurring as a shift variant process and retrieve a unique depth value not 

only along the optical axis but also along the x and y directions of the scene under 

investigation. These methods prove efficient since they simultaneously retrieve depth 

and the radiance of the scene, but are not suitable for practical purposes since they 

are based on error minimisation techniques which require extensive computations. 

Since the objective of this research was to develop a real-time depth estimation 

system that can be effectively implemented on a Field Programmable Gate Array 

(FPGA) with a usage in medical and industrial applications, the DFD methods 

require two images to recover the depth and hence be useful for real-time depth 

estimation. In terms of accuracy, DFD methods are comparable to DFF techniques 

[8] and require less processing time.  Simon et al. [58] [59] suggested a three image 

technique where the blur parameter was recovered from three blurred images, but 

this in-turn introduced additional complexity in the image acquisition process  and 

also failed to show  good depth results [60]. After an in-depth analysis into different 

methods, the technique described by Watanabe and Nayar [14] based on the use of 

texture invariant broadband filters was chosen for implementation. Though the filters 

were designed in the frequency domain, the algorithm can be implemented in the 

spatial domain by employing five 2D convolutions and thus should be suitable for 

real-time implementation. In terms of accuracy, the maximum RMS error reported 

was 1.2% with respect to distance (which was better than comparable methods), with 

a depth detection error of less than 1% irrespective of the texture frequency. The 

main drawback of the method was the requirement for a less complicated procedure 

to model the rational filters for any given defocus condition. This problem was 
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subsequently addressed in this research work where a novel method referred as the 

„Two Step Polynomial Approach‟ was employed to design the rational filters (refer 

to chapter 4). To provide a good accuracy comparison with Watanabe‟s filters the 

algorithm was based on the Pillbox psf model, rather than Gaussian or Generalised 

Gaussian suggested by Claxton and Staunton [49]. Further the Pillbox psf model is a 

good approximation of a more blurred image [49] and also provided better depth 

results for highly blurred images as stated by Subbarao [7] [10]. The 1D equation for 

each of the three psf‟s are presented in Chapter 4. New research presented in this 

thesis also addresses: - (1) An algorithm to estimate the magnification variations 

between the defocused images (Chapter 3); and (2) The implementation of the DFD 

algorithm on the Virtex 2P FPGA (Chapter 5). Experimental results and comparison 

with Watanabe‟s filters are provided in these chapters.  
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Introduction      

 

One of the fundamental tasks in Image Processing is to acquire a set of images which 

are registered with each other but in practice this is not always possible since 

changes in image acquisition parameters cause misalignment. In order to compare 

the acquired images, the shift, rotation and scaling between the images needs to be 

determined. Once these differences have been estimated they can be used to correct 

the position of one image relative to the other. In this chapter a new method is 

described which was devised to effect this, as problems arise with standard methods 

when images have been defocused. To increase the accuracy of the depth estimation, 

the defocused images (near and far-focused) must be registered to compensate for 

magnification, and in practice, translation. Since the depth measurement method was 

based on Watanabe and Nayar [41], an optical method using telecentric optics was 

used to correct the magnification changes. This method requires the precise 

placement of an external aperture at the front focal plane of the lens. The method is 

readily suitable for real-time depth estimation since it avoids the use of any 

interpolation technique for registering the image and is achieved using a setup prior 

to depth estimation. The chapter discusses an effective technique based on Fourier 

analysis to measure the magnification changes between the near and the far-focussed 

images. Section 3.1 provides an overview of the various image registration 

techniques, followed by telecentric optics (Section 3.2) in which a comparison is 

provided between the conventional lens and telecentric lens model. Sections 3.3 and 

3.4 explain the algorithm for image magnification measurement and finally Section 

3.6 provides experimental results for simulated and real images. 

 

3.1. Overview of the Image Registration Techniques  

 

3.1.1. Correlation Techniques 

 

The Correlation technique provides a statistical measure between the image and its 

template. It is useful in template matching applications [24] [25]. For example let 

 yxI ,  be the principal image and  yxT ,  be the template that needs to be matched 

then the 2D normalized Cross Correlation function can be found using the equation: 
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If the original image and the template were identical and were translated by a spatial 

shift (i,j), then the normalised Cross Correlation function, C(u,v) would include a 

peak at the spatial location (i,j) indicating a match. Hence by computing C(u,v) over 

all possible coordinates, the similarity measure between an image and its template 

can be determined. A related statistical measurement, which is advantageous when 

absolute measurement is needed, is the correlation coefficient. It measures the 

similarity between the template and the original image on an absolute scale ranging 

from -1 to +1. A registration algorithm incorporating correlation would first 

determine the cross correlation at each transformation and then relate the largest 

measure as an indication to the similarity between the images [25]. Barnea and 

Silverman [26] proposed the Sequential Similarity Detection Algorithm [SSDA] 

which provided an improvement over the conventional method. In their algorithm the 

similarity measure was determined by computing the absolute differences between 

the pixels of the two images that needed to be compared. A threshold based 

sequential search method also was introduced to reduce the number of required 

computations. Although the correlation technique is widely used in image 

registration, it has limitations. In cases where images taken with different brightness 

levels are to be registered, the peak of the normalised Cross Correlation is not 

uniquely defined causing ambiguity in the matching process. Furthermore, the 

computation cost is directly related to the number of transformations (translation, 

rotation, angle), which makes this method computationally expensive. For these 

reasons, methods based on Fourier Transforms and Point Matching are generally 

preferred [25]. 

 

3.1.2. Fourier Domain Techniques 

 

When Fourier domain techniques are used for image registration, the images are 

transformed to the frequency domain and the mathematical properties of the Fourier 

Transform are used as parameters for the image registration algorithms. By using the 

Fast Fourier Transform the computation time for an image of size n x n is reduced 
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from O (n
4
) to O (n

2
log (n)) thus making it ideal for real-time application. Usually 

the Fourier techniques are based on the shift property of the Fourier Transform i.e. if 

a function is shifted in the positive direction by an amount a, the amplitude of the 

Fourier spectrum remains the same but changes are present in the phase component. 

Each frequency component of the spectrum is delayed in phase by an amount 

proportional to the frequency i.e. the higher the frequency, the greater is the change 

in phase angle. The linear change of phase with the frequency is given by the 

constant a2 , where a represents the shift. Hence the greater the shift, the greater is 

the rate of change of the phase for a given frequency [27]. This property of the 

Fourier Transform can be applied to determine the shift between two similar images. 

Kuglin and Hines [28] proposed a method called Phase Correlation to align images. 

In principle if the images f1 and f2 differ by a shift (x0, y0) then f2 can be expressed as  

2 1 0 0( , ) ( , )f x y f x x y y         --- (3.2) 

the corresponding Fourier domain relationship is   

0 02 ( )

2 1( , ) * ( , )
j x y

F e F
      

    --- (3.3) 

where F1 and F2 are the Fourier Transforms of the images  f1 and f2 , and 0 02 ( )j x y
e

   
 

is the phase shift. They define the normalised Cross Power Spectrum of the two 

images as  
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where F
*
 is the complex conjugate of F. 

If the images acquired differ only by a translation, then their Fourier Transforms 

have the same magnitude and the phase component of the normalised Cross Power 

Spectrum, is equivalent to the phase difference between the images. The Inverse 

Fourier Transform of the normalised Cross Power Spectrum results in an impulse 

function that is approximately zero everywhere except at the displacement. The x 

(horizontal) and y (vertical) shift of the impulse is used to register the two images. 

Figure (3.1) shows the original image and its shifted variant. Here the shift induced 

was, x = 50 and y = 100 pixels. Figure (3.2) illustrates the results computed by the 

Phase Correlation function where a sharp distinct peak is seen at the location 50, 100 

pixels (x, y axis). 
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Figure 3.1: Original Image (Right) and the Shifted Image (Left) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Resultant peak at 50,100 pixels computed using Phase Correlation Method 
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Foroosh and Zerubia [29] extended the Phase Correlation technique to sub-pixel 

levels. They stated that the signal power of the Phase Correlation function for a 

down-sampled image is not concentrated in a single discrete peak but rather in 

several coherent peaks mostly adjacent to each other [29]. They have also reported 

that the Phase Correlation method provides a distinct sharp peak at the point of 

registration, whereas standard Cross Correlation yields several broad peaks and the 

main peak is not always centred at the right point. Further, due to whitening of the 

signals by normalisation, Phase Correlation methods are more robust to noise that are 

correlated with the image functions such as uniform variations in illumination, 

offsets in average intensity and fixed gain errors due to calibration. Takita and 

Muquit [30] employed an analytical function fitting technique to establish the 

position of the peak. It was reported in their paper that the Phase Correlation method 

could estimate displacements between images with an accuracy of 1/100 pixel when 

the image size was 100 x 100 pixels. 

 

 

 

Figure 3.3: Fourier Transform of the original Image (Left) and the Fourier Transform of the Rotated 

Image (Right) 
 

Rotation is invariant with the Fourier Transform hence rotating the image by an 

angle rotates the Fourier Transform of the image by the same angle [25] [37]. 

Suppose if an image f(x,y) is rotated by angle   then the Fourier Transform F(u,v) 

also rotates by a angle   and is given by  

)sincos,sincos()sincos,sincos(  vuvuFyxyxf  -- (3.6). 

Figure (3.3) shows the Fourier Transforms of the original image (left) and its rotated 

variant (right). It can be inferred from the Figures that the angle at which the image 

has been rotated can be determined by comparing the Fourier Transforms of both the 
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images. De Castro and Morandi [31] developed a two step approach to register 

images that are translated and rotated. The method first uses the polar coordinate 

variation of the Phase Correlation function to determine the angle of the rotation and 

then proceeds to find the translation shifts. A similar approach was reported by B.S. 

Reddy and B.N. Chatterji [32] to register images that are scaled, rotated and shifted. 

The algorithm provides accurate results to the second decimal place and computes 

the matching parameters irrespective of the amounts of translation, scaling and 

rotation. 

Though Fourier techniques exploit the mathematical properties of the Fourier 

Transform, they have their limitations. It is noted that Fourier domain techniques 

would render inaccurate results if the images have significant white noise spread 

across the entire frequency band, and since they rely on the invariant properties of 

the Fourier Transform they are applicable only to well defined transformations like 

rotation and translation. 

 

3.1.3. Points, Features and Elastic Models 

 

Point and feature based techniques can be used to register images with unknown 

misalignment [25]. The method works by identifying well defined features or points 

on the images, and uses interpolation techniques for registration. The control points 

can be corners, line intersections, identifiable landmarks, or anatomical structures 

that are recognisable within the image. Since these techniques require sophisticated 

search strategies, they are computationally expensive and can be demanding if many 

matching points are used. In one of the methods described in [33] the algorithm first 

determines all possible matching pairs for the given control point. Then accordingly 

the matching pairs are rated (weighted) as to how close they are to the actual 

displacement. Likewise the procedure is performed in parallel for all the control 

points and the matching pair which has the highest rating provides the optimum 

displacement. However it was reported in [33] and in [34] that the computational 

cost of the algorithm was O (n
4
), where „n‟ represents the number of control points 

defined in the system. In Elastic models, the registration is based on image structure 

matching [25]. The algorithm was based on an iterative principle and either adopts a 

piecewise Spline Interpolation technique based on feature mapping, or uses a cost 

function model to minimise the energy between the deformed image and the similar 
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image. Point and Elastic methods require clearly identifiable feature or matching 

points to accurately measure the transformation (rotational, scaling and translation) 

between the images, but would not be suitable for low accuracy images (here, 

defocused images) [35]. Moreover point based methods work well when the images 

have a smooth surface i.e. a scene with smooth depths, however if the scene has large 

depth variation, then occlusions are more likely and the matching accuracy between 

the images is low. Here, the objective is to measure the radial shifts due to 

magnification between two defocused (blurred) images, and thus a registration 

technique capable of measuring the shifts at low frequencies is an upmost 

requirement. Based on the survey [25] it was found that the Fourier techniques are 

specifically well suited for images with low frequency acquired under varying 

lightning or atmospheric conditions. Therefore a Fourier technique based on the 

Phase Correlation was employed to measure the magnification change between the 

two defocused images. The detailed algorithm is presented in Section 3.4. 

 

3.2. Image Magnification Measurement and Correction 

 

Change in the focus setting between the far-focused image i1 and the near-focused 

image i2 (see Figure 3.4) results in an undesirable change in magnification. It was 

reported in [41] that variations in magnification pose problems for vision techniques 

like Depth from Focus and Depth from Defocus, but was ignored since in practice 

the magnification change accounts for less than a 3% error [8]. Though registration 

can be improved either by camera calibration [38] or by image wrapping [39] 

techniques, these require computer controlled zoom lenses and very accurate image 

re-sampling methods. Furthermore, these techniques would introduce smoothing and 

aliasing. Due to the computational overhead these methods are not applicable for 

real-time depth estimation. Watanabe and Nayar [41] eliminated the magnification 

problem optically by converting a conventional lens into a telecentric optic. They 

introduced an aperture stop at the front focal plane of the lens and reported that this 

reduced the magnification between the images to 0.03%. They employed a FFT 

phase based local shift detection method to detect the magnification change between 

the images. A plane was fitted to the phases of the ratio of the spectra. The gradient 

of the plane provided an estimate of the shift between the images. Since this 

proposed research work aimed to determine depth in real-time, the optical method 
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using the telecentric optics was adopted to correct the magnification change between 

the images. A novel, practical and more robust technique using Phase Correlation 

[28] [29] [30] [31] is reported in Section 3.3 to determine the magnification change 

between the two defocused images and to optimally position the telecentric aperture.  

 

3.2.1. Conventional Image Formation Model 

 

The simple lens model consists of a single lens element with two refracting surfaces. 

The image formation model is based on the Gaussian lens law [40] with the 

assumption that the lens is „thin‟ (the physical vertex to vertex distance is usually 

1/10 of its diameter) and the aperture position coincides with the lens. Figure (3.4) 

shows the simple image formation model for the Depth from Defocus (DFD) 

application. 

 

 

 

     

 

 

 

 

 

 

 

Figure 3.4: Conventional Imaging model for DFD based on Gaussian Optics 

 

The energy flux (radiance) emitted from the point P at a distance d on the object side 

is mapped on to a point Q in the focussed plane if at a distance di. The relation 

between object distance d, image distance di and the focal length f is given by  

                                  
1 1 1

if d d
   --- (3.7) 

In the generalised model of the DFD [2] [14], where the image structure in unknown, 

depth is calculated from the amplitude ratio of the two defocused images i1 and i2 on 

either side of the focused image if. Hence for accurate depth estimation the images i1, 

i2 are needed to be registered in terms of magnification. In a conventional lens model 
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shown in Figure (3.4), as the image sensor is moved from defocused image i1 to the 

defocused image i2, the location of the point P is displaced along the Principal Ray R. 

This variation induces image magnification which manifests as a correspondence like 

problem in Depth from Defocus [42]. Watanabe and Nayar [41] [42] solved the 

magnification problem by using a telecentric optic as explained in the next Section. 

 

3.2.2. Telecentric Optics 

 

Telecentric Optics differs from the conventional model with an addition of an 

aperture stop placed either at the front focal or at the back focal plane. If the aperture 

stop is situated at the back focal plane then the entrance pupil will be at infinity and 

all the principal rays in the object space will be parallel to the optical axis. This 

system is termed as telecentric on the object side [43] and most commercially 

available telecentric lenses are constructed like this [41]. In DFD, regardless of the 

change in focus, the magnification between the defocused images needs to be 

constant. This is achieved by placing the aperture stop in the front focal plane, i.e. the 

exit pupil will be at infinity and the principal rays in the image space will be parallel 

to the optical axis, thus ensuring constant magnification between the two defocused 

images. This optical setup is termed as telecentric on the image side and is shown in 

Figure (3.5) [43]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Imaging model for DFD based on Telecentric Optics 

 

To determine the front focal plane of the lens the procedure described in [41] was 

used. The Focal Plane is the surface (plane) on which the image transmitted by the 
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lens is brought to sharp focus. To find the approximate position of the front focal 

plane the lens is held between the screen and a distant source, and the light energy 

from the distant source is made to enter through the rear end of the lens. A focused 

image is obtained by adjusting the screen. The plane passing through this location 

perpendicular to the optical axis is termed as the front focal plane. It is at this point 

the external aperture is placed so that the Principal Ray R’ becomes parallel to the 

optical axis. For the experiments a 50mm Nikon lens and 35mm Hannimar lens were 

converted to telecentricity. In both the cases the front focal plane resides outside the 

lens casing so fixing an external aperture was not the problem, but it can be for short 

focal length lenses. For the 50mm lens an external adjustable aperture was fixed to 

one end of a custom designed screw thread which is mounted on to the lens outer 

casing. The position of the aperture was adjusted by moving the screw thread 

manually. The front focal plane was determined based on the conventional procedure 

described above and was found to be at a distance of 25mm outside the lens surface. 

In the case of the 35mm lens the front focal plane was found to reside on the lens 

outer surface, so the external aperture was fixed closely to the lens outer surface. 

Figure (3.6) shows the 50mm and 35mm lenses which have been converted to 

telecentric by the introduction of an external multi-leaf adjustable aperture at the 

front focal plane. 

 

 

 

Figure 3.6: 35mm lens converted to telecentric (Left) and 50mm lens converted to telecentric (Right) 
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3.3. Extension of Phase Correlation Technique to Measure Image Magnification 

 

In this Section the results of Foroosh and Zerubia [29] were extended to estimate the 

magnification changes between the near and far-focussed images. Here the results of 

the Phase Correlation method explained in Section 3.1.2 are recalled. If the images f1 

and f2 differ by a shift x0, y0 then the normalised Cross Power Spectrum of the two 

images f1 and f2 with their Fourier Transforms, F1 and F2 is defined as  
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where F
*
 is the complex conjugate of F. 

The above expression can be solved for translation detection either:- (1) By directly 

working in the Fourier domain where a plane is fitted to the phase difference data 

and the gradient along the x and y directions provide the required shift; or (2) By 

inverse transforming the expression which results in an impulse function at some 

particular spatial coordinates. These coordinates give the shift required to register the 

two images. It was reported in [14] that Watanabe and Nayar applied the first method 

to determine the shifts between the defocused images. The defocused images were 

divided into sub-blocks of 64 x 64 pixels and the spectral ratio was computed for the 

individual sub-blocks. A plane was fitted to the phase data of the spectral ratio and 

the gradient of the plane provided the required shift. However, Foroosh and Zerubia 

in their general paper [29] reported that the above approach would render inaccurate 

shift results since it requires a plane to be fitted to the noisy phase data. In the 

proposed approach, the image was divided into sub-blocks and the magnification 

shift was estimated as a local translation problem within the individual sub-block. 

Here the radial shifts due to magnification were assumed to be constant within the 

individual sub-block and the centre pixel of the image coincides with the centre of 

the lens. The Fast Fourier Transform (FFT) was applied to the individual sub-block 

and then the normalised Cross Power Spectrum was calculated as per equation (3.7). 

To estimate the shifts, the second method was adopted where the inverse transform 

of the normalised Cross Power Spectrum provided the required spatial shift. It was 

found that this approach was more practical and robust to noise than the method 

adopted by Watanabe [29]. Based on the assumptions, it can be stated that 

theoretically when an image is magnified, the radial shift due to magnification at the 
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centre sub-block of the image is negligible or zero but when an image is translated 

and magnified the centre sub-block has a shift introduced equivalent to the 

translation shift induced by the lens system. Therefore the translation shift estimated 

at the centre sub-block can be used as a correction factor to estimate the radial shifts 

of the non-central sub-blocks. In practice, as the focus setting of the lens was 

changed to capture the near and the far-focused images, it was found that the lens 

introduced both translation and magnification shifts, so the algorithm described in 

Section 3.4 first estimated the collective shifts due to the magnification and 

translation for the individual sub-blocks. Later, the shift estimated at the centre sub-

block, termed the global translation shift was used to correct the translation shifts 

from the non-central sub-blocks. Once the translation was corrected, the radial shifts 

due to magnification are measurable.  

Finally to increase the accuracy of the system, the results were extended to sub-pixel 

estimations. Foroosh and Zerubia [29] have reported that the signal power of the 

Phase Correlation function is not concentrated at a single discrete sample point, but 

is distributed over several low resolution samples surrounding the nominal sub-pixel 

position of the actual peak. In this model, once the position of the maximum value 

low resolution sample was found, the sub-pixel displacements were computed by 

considering the signal power of the Phase Correlation function at each of the four 

samples surrounding the main peak. Suppose the maximum sample value was 

located at (0, 0) (see Figure (3.7)) then to determine the sub-pixel shifts along the 

horizontal axis ( x ), the signal power at the locations (1,0) and (-1,0) were 

compared. If the signal power at (1, 0) was greater than at (-1,0) then the sub-pixel 

displacement lies between the spatial coordinates (0,0) and (1,0). In this case to 

determine the sub-pixel shift these two signal powers (C(0,0) and C(1,0)) at these 

locations are substituted into equation (3.8) to compute the displacement( x ). This 

is a linear interpolation (proportionality). Detailed analysis of the equation (3.8) is 

presented in Appendix 7. Peak finding using higher order polynomial was not 

employed, since the signal power of the Phase Correlation function is not evenly 

distributed around the main peak as stated in [29] and also found by experiment as a 

part of this project. Basically there was not enough data‟s to enable a good fit. In 

equation (3.8), C(-1,0) is replaced by C(1,0) if its power is greater. Similarly, 

calculations are performed along the vertical axis ( y ) to locate the peak. 
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                       Figure 3.7: Sub-pixel shift measurement – a pictorial explanation 

 

So,   the sub-pixel displacements x  and y are given by [29] 

            
(1,0)

(1,0) (0,0)

C
x

C C
 


              and          

(0,1)

(0,1) (0,0)

C
y

C C
 


--- (3.8) 

The magnitude and the orientation of the shifts between the two defocused images 

are shown as a needle diagram (refer to Section 3.6), where the pixel positions of the 

individual sub-blocks of the original image are shown as dark dots and those of the 

magnified image are shown as light dots. For illustration purposes the magnitude of 

the shifts are multiplied by a factor of 5.  The next Section describes the algorithm to 

estimate the magnification change based on the proposed method. 

 

3.4. Algorithm for Magnification Estimation using the Phase Correlation 

technique [87] 

 

Step 1: The images (near and far-focussed) are divided into sub-blocks of size n x 

n. In the experiments the sub-blocks were of 65x65 pixels for simulated 

images and 150x124 for real images. 

Step 2: To avoid the effects of spectral leakage, the sub-blocks were multiplied 

with a 2D Hanning window prior to applying the FFT. 

Step 3: The FFT was applied to the individual sub-blocks and then the normalised 

Cross Power Spectrum was calculated using equation (3.7). 
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Step 4: By applying inverse FFT to the normalised Cross Power Spectrum, the 

integer shifts between two sub-blocks are determined. Later, the sub-pixel 

shifts ( yx  , ) are determined by considering the peaks adjacent to the 

main peak as described in Section 3.3. 

Step 5: Steps 2 to 4 are repeated for all individual sub-blocks in the image. 

Step 6: The shift at the centre sub-block termed as the global translation between 

the images is used as a correction factor to determine the shifts due to 

magnification in the non-central sub-blocks. 

Step 7: Once the translations have been corrected from the non-central sub-blocks 

the radial shifts due to magnification are easily visible and are measured in 

isolation. 

 

3.5. Design of Experiment 

 

In the experiment the pattern described in [41] and shown in Figure (3.8) was used. 

In general the texture pattern should have high energy at high spatial frequencies, 

and the image sub-block area should be larger than the periodicity of the pattern to 

avoid phase ambiguities [41]. The effect of the discontinuity at the sub-block border 

was reduced by applying a 2D Hanning window defined 

by
2
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Experiments were performed on simulated images with sub-pixel translation and 

radial integer shifts. Sub-pixel images were obtained for simulation by shifting and 

down-sampling a high resolution image. Radial integer shifts were obtained by 

indexing so that the shift at the centre sub-block was zero and the sub-blocks on 

either side of the centre block are progressively shifted by indexing so as to simulate 

the zoom effect. The shifts within a sub-block were assumed to be constant. 

By experiment it was found that using interpolation methods such as nearest 

neighbour, bilinear and cubic to generate scaled images resulted in an output image 

that was non-symmetric about the centre or smoothed by the transformation. These 

effects lead to errors while finding the peak in the Cross Power Spectrum and hence 

radial shifts were limited to integer pixel shifts.  
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3.6. Experiments with Real and Simulated Images 

 

In this Section the shift measurement results are presented for simulated and real 

images. The images considered were translated as well as magnified. Sections 3.6.1, 

3.6.2 and 3.6.3 discuss the results based on simulated images, and Section 3.6.4 those 

from a real image, both with and without the telecentric aperture. The shifts 

measured at each individual sub-block are shown in the form of a needle diagram. 

For each experiment the maximum error recorded along the row and column has 

been presented. 

 

3.6.1. Experiment on a Simulated Image with sub-pixel Translation  

 

The proposed algorithm was tested on images with sub-pixel shifts. The sub-pixel 

images were obtained from a high resolution image that was down sampled by factor 

ds. Then by shifting one low resolution image by s pixels with respect to the other 

image, shifts of the ratio s/ds pixels were introduced. By choosing appropriate values 

for s and ds, fractional shift can be introduced into the images. The two test patterns 

used in the experiment are shown in Figure (3.8), left shows the original image and 

the pattern shown in the right was shifted by -4 pixels along the row and -1.5 pixels 

along the column. 

 

                 

 

Figure 3.8:  Original image (Left) and the Shifted image (Right) 

 

Figure (3.9) shows the resultant shifts determined from the patterns. The dark dot 

represents the original image and the light square, the shifted image. The maximum 
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error recorded using the proposed algorithm was 0.1167 pixels along the row and 

0.1395 pixels along the column. The needle diagram illustrates the shifts after scaling 

by a factor of times 5 so that the direction can be more easily seen. 

 

 

 

 

Figure 3.9:  Shift Detected between the Patterns 

 

3.6.2. Experiment on Simulated Image with Radial Shift 

 

Image magnification causes the pixels to move radially outwards, so to determine the 

accuracy of the algorithm for magnified images simulations were carried on images 

that were radially shifted by indexing.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Estimated Radial shift 
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Figure (3.10) shows the measured shift estimated from the images shifted radially by 

indexing. The images were shifted by  4 pixels (row and column) in the sub-blocks 

near the border and  2 pixels (row and column) in the sub-blocks adjacent to the 

centre sub-block. The shift at the centre block of the image was zero. The maximum 

error recorded was 0.1815 pixels and 0.0787 pixels along the row and column 

respectively. Again the needle diagram illustrates the shifts after scaling by a factor of 

times 5. 

 

3.6.3. Experiment with sub-pixel Translation together with Integer Radial Shift  

 

Simulations were carried out on images with both sub-pixel translation and integer 

radial shift. Figure (3.11) illustrates the shift between the images that had a 

translation of -4,-1.5 pixels along the row and column respectively, and radial shifts 

of  4 pixels (row and column) in the sub-blocks near the border of the image and 

 2 pixels (row and column) in the sub-blocks adjacent to the centre sub-block. As 

discussed earlier, when an image is scaled and translated, the shift estimated at the 

centre block would measure the translation. In our experiment the shift estimated at 

the centre sub-block was -3.9475 and -1.4823 pixels indicating that the shift did 

indeed include translation.  

 

 

  

Figure 3.11: Translation and Radial Shifts Figure 3.12:  Estimated Radial Shifts after 

Translation correction                                                                                          
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The shifts due to magnification were determined after translations were removed 

from the individual sub-blocks and Figure (3.12) shows the radial shifts obtained 

after the translations had been removed. The maximum error recorded was 0.1815 

pixels along the row and 0.0318 pixels along the column. The shifts illustrated are 

multiplied by a factor of 5. 

 

3.6.4. Experiments with Real Images  

 

Images were captured using a PULNIX TM-765 monochrome camera and 50mm 

manual lens. The pattern was placed at a distance of 824mm from the lens and two 

defocused images, near-focussed at 767mm and far-focussed at 874mm were 

captured. Two sets of experiments were performed. In the first experiment the 

telecentric aperture was removed and the magnification changes between the near 

and the far-focused images were determined. Figure (3.13) shows the near and far- 

focused images and Figure (3.14) illustrates the resultant magnification before and 

after translation correction. 

 

 

Figure 3.13: Near and far-focussed Images 
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Figure 3.14: Resultant shifts before translation correction (Left) and the Resultant shift after 

translation correction (Right) 

 

The needle diagram on the left of Figure (3.14) indicates the collective shifts due to 

magnification and translation present in the optical setup as the focus setting is 

changed from the near-focused to the far-focused position. It should be noted that 

when the global translation is removed from non-central sub-block the radial shifts 

due to magnification are visible (Figure (3.14 right)) and can be measured in 

isolation. The maximum absolute shift recorded was 4.4865 pixels along the column 

and 4.8387 pixels along the row. The shifts recorded are shown in Table 3.1. In the 

needle diagram (Figure (3.14)) the pixel positions in the original image are shown as 

dark dots and those in a magnified image are shown as light squares. The shifts 

shown are multiplied by a factor of 5. 

 

Shift measured 

along 

Global 

Translation 

Recorded 

Min shift 

recorded 

Max shift 

Recorded 

Mean shift 

Recorded 

Row in pixels 2.3881 0.0458 4.8387 2.5991 

Col  in pixels -3.3921 0.0917 4.4865 2.9027 

 

Table 3.1: Shifts recorded on a conventional DFD lens systems 
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Figure 3.15: Resultant shift before translation correction (Left) and Resultant shift after Translation 

correction (Right) 
 

In the second experiment the conventional lens was converted into a telecentric by 

placing an external aperture of diameter 6.5mm at the front focal plane of the lens. 

The positions of the near and far-focused images remain the same. Again the needle 

diagram on the left of Figure (3.15) represents the collective shift due to 

magnification and translation. Here since the lens system was converted into 

telecentric, the shifts present are mainly due to translation and when the global 

translation has been corrected the radial shifts due to magnification are easily 

noticeable (Figure (3.15 right)). The shifts recorded after the inclusion of the aperture 

stop are recorded in Table 3.2. It can be seen that the shift estimated at the centre 

sub-block in the both the experiments are almost equivalent proving that the centre 

sub-block estimates the global translation. However the shifts due to magnification 

have been reduced from pixel to sub-pixel levels by introduction of the telecentric 

aperture. 

 

Shift measured 

along 

Global 

Translation 

recorded 

Min shift 

recorded 

Max shift 

Recorded 

Mean shift 

Recorded 

Row in pixels 2.4143 0.0077 0.8194 0.1380 

Col  in pixels -3.3645 0.0156 0.1524 0.0571 

            

Table 3.2: Shifts recorded on a Telecentric DFD lens system 
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Conclusion 

 

In this chapter an optical method using telecentric optics has been proposed to 

correct the magnification changes between the near and far-focused images (Section 

3.4). A simple and robust technique using Phase Correlation was reported to estimate 

the radial shifts due to magnification between the two defocused images. From the 

experiments, for a conventional defocus model, the measured maximum absolute 

radial shift was 4.48 pixels along the column and 4.83 pixels along the row, but on 

inclusion of telecentric optics the maximum shift was reduced to 0.1524 pixels and 

0.8194 pixels respectively. It can be clearly seen that the inclusion of an aperture 

stop at the front focal plane ensures that the Principal Rays on the image side are 

parallel to the optical axis, and the magnification change between the near and the 

far-focused images have been considerably reduced. Reducing the shifts due to 

magnification to less than a pixel ensured pixel to pixel registration between the near 

and far-focused images was correct, and increased the accuracy of the recovered 

depth. In practice the registration algorithm was used to position the aperture 

correctly at the front focal plane, and to provide a translation correction factor to the 

depth recovery program. In the next chapter a novel procedure to determine the 

coefficients for the Rational filters has been explained and then the implementation 

of the DFD algorithm. 
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Introduction 

 

 The chapter describes a simple and efficient procedure to determine the filter 

coefficients to accurately model the 
M

P
 curves described in Section 4.2. The filters 

provide a fast practical processing of the depth information. The method referred to 

as the Two Step Polynomial Approach determines the filter coefficients by 

simplifying the 
M

P
 ratio into a Linear Model and Cubic Error Correction Model. 

Since the method avoids the use of iterative minimisation techniques, it requires 

minimal computations when compared to Watanabe‟s [14] method. Furthermore, for 

a given defocus condition, the validity of the model has been verified by comparing 

the modelled 
M

P
 ratio (obtained from the designed filters) with the theoretical 

M

P
ratio obtained from the 2D discrete 

M

P
ratio space. It must be noted that 

Watanabe and Nayar [14] have not verified their model which they have designed by 

another method. Experimental results with simulated and real images have been used 

to illustrate that the filter coefficients determined by the new method estimated the 

depth to a higher accuracy than Watanabe filters.  

The chapter first describes the principle of DFD based on the optical setup described 

in [14] and then proceeds with an explanation of the 
M

P
 curves. Here the 

M

P
curves 

described by Watanabe and Nayar have been used, but the filter coefficients have 

been determined using the new Two Step Polynomial Approach described in Section 

4.3. A detailed comparison of filters designed by the Two Step Polynomial Approach 

and Watanabe and Nayar‟s approach is provided in Section 4.5. A new single 

frequency test image method has been used. Section 4.7 and 4.8 provide the 

experimental results for both real and simulated images and Section 4.9 reports the 

options available to increase the working distance for a given experimental setup. 



 62 

4.1. Principle of Depth from Defocus 

 

       Depth from Defocus (DFD) is a technique where the defocus parameter is used 

as a clue to estimate the distance of an object. In the generalised model of the DFD 

[2] [14], where the image structure in unknown, depth is calculated from the 

amplitude ratio of the two defocused images i1 and i2 on either side of the focused 

image if. Here i1 refers to the far-focused image and i2 to the near-focused. In a 

conventional lens system the energy flux (radiance) emitted from the point P at a 

distance d   in the object side is mapped on to a point Q in the focussed plane if  at a 

distance di. The relation between object distance d, image distance di and the focal 

length f  is given by the lens law as 

                                  
1 1 1

if d d
   --- (4.1) 

 

 

         

 Figure 4.1a: Conventional DFD Optical Setup        Figure 4.1b: DFD system based on Telecentric 

optics [14] 

 

To recover depth from an object as described in [14], the algorithm requires the 

defocused images i1 and i2 to be separated by a known physical distance of 2e. In 

Figure (4.1a) the sensor planes on which the two defocused images are formed are 

separated from the focused image by a distance  e1 , where , the normalised 

depth ranges between -1 for the far-focused image and +1 for the near-focused 

image. For accurate depth estimation the defocused images i1 and i2 need to be 

registered in terms of magnification (or zoom), but in a conventional lens model 

shown in Figure (4.1a) as the image sensor is moved from defocused image i1 to the 

defocused image i2, the location of the point P is displaced along the Principal Ray R, 
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which induces image magnification. To obtain constant magnification between the 

defocused images, a DFD system with a telecentric optics shown in Figure (1.4b) 

was used. The principle of telecentric optics has been presented in chapter 3.  

The light intensity at any point in the images i1 and i2 can be modelled as the 

convolution of the focussed image if with the corresponding point spread function 

(psf) h(x,y). Theoretically for a defocused lens under geometric optics the psf can be 

modelled either as a Gaussian, Pillbox or Generalised Gaussian. For notation 

simplicity the mathematical equations of the psf are illustrated in 1D. 

(1) Gaussian [49]  

2

2

1 1 ( )
( ) exp

22
g

x x
h x



 
  

 
---- (4.2) 

where    the standard deviation and the psf is centred at x x       

(2) Pillbox [49] 

 
1

( ) ( ) ( )
2

ph x u x u x 


    ---- (4.3) 

where   is the radius of the Pillbox  

(2) Generalised Gaussian [49]  
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where x  refers to the mean,   to the standard deviation,  () to the gamma function 

and p to the power of the function required. The function takes the Gaussian psf 

when  p = 2 and a Pillbox when p = . 

Here since the depth estimation algorithm was based on Watanabe‟s method [14], it 

was assumed that the images were defocused by the Pillbox psf. In the Spatial 

domain the 2D Pillbox psf can be modelled as    

                        )(
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where z (  ez  1 ) denotes the distance between the sensor plane and the 

focussed image if , Fe (
'e

f
F

a
  for a telecentric lens ) represents the f number of the 
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lens, and )(r is the rectangular function that takes the value 1 if 
2

1
r  and 0 

otherwise. Here x, y are the coordinates in the horizontal and vertical directions.  

The frequency domain equivalent of equation (4.5) can be expressed using the Bessel 

Function of order one [14] given by  

                   )(
2

),;,(),( 22

1
22

vu
F

z
J

vuz

F
FzvuHvuH

e

e
e 







----- (4.6) 

where J1(r) denotes the first order Bessel Function and u, v are the frequencies in the 

horizontal and vertical directions respectively. The spatial and frequency plots of the 

defocus function are shown in Figures (4.2) and (4.3) for in-focus and out-of-focus 

cases respectively.  

 

 

Figure 4.2: Defocus function (in-focus) - Spatial (Left) and 1D frequency domain model (Right) 

 

 

                 

Figure 4.3: Defocus function (out-of-focus) - Spatial (Left) and 1D frequency domain model (Right) 
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So, the defocused image i1 can be modelled as the convolution of the focused image 

if(x,y)   with the 2D Pillbox function h1(x,y) and equations (4.7) and (4.8) represent 

the spatial and frequency domain equivalents of the defocused image i1. 

1 1( , ) ( , )* ( , )fi x y i x y h x y -------------- (4.7) 

),(),(),( 11 vuHvuIvuI f ---------------- (4.8) 

  Similarly the defocused image i2 can be modelled as  

2 2( , ) ( , )* ( , )fi x y i x y h x y --------------- (4.9) 

),(),(),( 22 vuHvuIvuI f ---------------- (4.10) 

From the above equations the spectra of the images are different. These are analysed 

to produce the 
M

P
 ratio that can be used to determine the in-focus axial position of 

each pixel and hence the depth. 

 

4.2. Normalised 
M

P
 Ratio  

This Section describes the importance of the 
M

P
 ratio and based on the results of 

Watanabe and Nayar [14], the 
M

P
curves were reproduced for a wide range of radial 

frequencies over the normalised depth range of -1 to +1. Earlier methods based on a 

frequency domain approach [1] [6] [50], estimated the depth by considering the 

amplitude ratio of the near and far-focussed images I1 and I2 at the particular radial 

frequency 22 vufr  . Watanabe and Nayar [14] provided an improvement to the 

existing ratio by considering the ratio of the difference in amplitude of the defocused 

images to the sum of the amplitudes of the defocused images. The ratio is termed the 

normalised 
M

P
 ratio, where M represents the difference in amplitudes of the 

defocused images and P represents the sum. This estimated the depth with a higher 

accuracy. Furthermore, since the ratio is independent of image intensity, the 

estimated depth is more stable than with the earlier techniques [1] [50]. 
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So, spatial domain:
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Now substituting the value of I1 and I2 from equation (4.8) and (4.10) in the 

frequency domain equation, and dividing through to remove If we have  
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This 
M

P
 ratio is independent of image intensity. 

From equation (4.11) it can be inferred that the 
M

P
 ratio is directly related to the 

normalised depth  , and the depth at a particular radial frequency can be determined 

by considering the 
M

P
 ratio of the two defocused images.  

 

 

Figure 4.4: 
M

P
 ratio vs. Normalised Depth   

 

Figure (4.4) shows the theoretical relationship between the 
M

P
 ratio and the 

normalised depth   at different radial frequencies. Here the Pillbox psf function was 

modelled as the first order Bessel function, J1(z), where  ez  1 . From the plot it 

can be inferred that as the radial frequency increases, the 
M

P
 ratio loses its 

Radial Frequency increases in the 

direction of the arrow 
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monotonic property. The maximum frequency below which the 
M

P
 ratio was found 

to be monotonic was
e

F
f e

r 61.0 .  Monotonicity ensures that each 
M

P
 ratio maps 

onto a unique depth. From the numerical analysis of the first order Bessel function, it 

was noted that the first zero crossing occurs on the horizontal axis at 3.83171 as 

found in [53], which is equivalent to
z

Fe22.1 , where  ez  1 , but in practice, by 

using the rotationally symmetric Pillbox psf model, the maximum radial frequency 

below which the 
M

P
 ratio is monotonic has increased by a factor of 1.2  of the 

maximum frequency i.e. 0.73 e
r

F
f

e
 . The simulated results demonstrate the 

relationship between the 
M

P
 ratio and the normalised depth   at different radial 

frequencies. It is evident that a unique depth estimate is available for each individual 

frequency and the depth information can be recovered from the 
M

P
 ratio, provided 

the response of the designed filters accurately models the 
M

P
 curves. Hence in the 

next Section a procedure based on a Two Step Polynomial Approach is described to 

effectively determine the filter coefficients capable of accurately modelling the  
M

P
 

curves. 

 

4.3. Design of Rational Filters by a Two Step Polynomial Approach  

 

From the 
M

P
 ratio plot (Figure (4.4)), it can be inferred that for every radial 

frequency there is a unique 
M

P
 curve which was found to be monotonic below the 

radial frequency 0.73 e
r

F
f

e
  and the normalised depth can be determined directly 

from the plot provided the amplitudes of the defocused images I1 and I2 are known. 

The objective was to design a 7x7 spatial filter kernel capable of accurately 
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modelling the 
M

P
 ratio for all possible radial frequencies, i.e. determining a kernel 

which was insensitive to object texture frequency. In practice the designed filter 

would accurately model the 
M

P
 ratio for each frequency thereby providing a depth 

estimate for every individual pixel. Earlier methods suggested the use of narrow band 

filters [50] to estimate the power at a large number of individual frequencies, but 

since the interest lies in real-time depth estimation, this approach seems to be 

impractical as these filters require more logic support. The second approach is to 

design broadband filters [14] which are insensitive to the image texture frequency. 

Since these filters are broadband only a few coefficients are required, so extensive 

computation can be avoided, and this method can be used for real-time depth 

computation. To clarify the contribution provided by this work, the 
M

P
 curves 

described by Watanabe and Nayar [14] were implemented directly, but the filter 

coefficients were determined using the novel Two Step Polynomial Approach. Step 1 

involves modelling the linear filters by fitting a linear model to the theoretical 
M

P
 

ratio and Step 2 determines the correction filter by computing the error between the 

theoretical and the linear model, and fitting a cubic function to it. This results shown 

in the later Sections prove that the above model estimates the depth map with a 

higher accuracy than Watanabe‟s filters. 

 

4.3.1. Design procedure using the Two Step Polynomial Approach 

 

This Section describes the procedure based on polynomials to determine the filter 

coefficients. Since the model was based on the 
M

P
ratio, it required the knowledge of 

the psf of the defocused lens, so for a range of  (normalized depth) values, the psf 

was pre-computed using the Pillbox psf model. In the design model the range of the 

normalized depth   was from 0 to 0.99. So based on the earlier assumption, the 

Pillbox psf was modelled in the frequency domain using the equation 
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Here z (  ez  1 ) denotes the distance between the sensor plane and the focused 

image if , Fe (
'e

f
F

a
  for a telecentric setup ) represents the f number of the lens, 

J1(r) denotes the first order Bessel Function, and u, v are the frequencies in the 

horizontal and vertical directions respectively. 

Once the psf‟s had been computed, the two dimensional 
M

P
 space was discretized 

into 2
n
 equally spaced frequency samples below the folding frequency of 0.5 1pixel , 

and the 
M

P
ratio was computed for all possible radial frequencies fr  over the 

normalised depth range   using the equation 
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






  --- (4.13). 

Hence the two dimensional 
M

P
 space has been transformed into a two dimensional 

M

P
 ratio space, where a unique 

M

P
 ratio exits for each radial frequency fr and the 

normalized depth   (see Figure (4.5)). Hitherto the two dimensional 
M

P
 ratio space 

will be referred as the discrete 
M

P
 ratio space. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: 2D discrete M

P
 ratio space. 
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To proceed with the filter design, the 
M

P
 ratio was modelled as a linear combination 

of the three filters, Gm1. Gp1 and Gp2 (equation (4.14)) as described in [14].   

So, 31 2

1 1

( , ) ( , )( , ; )

( , ; ) ( , ) ( , )

Gp u v Gp u vM u v

P u v Gm u v Gm u v


 


   ---- (4.14) 

The above model can be simplified and rewritten as a Linear Model and an Error 

Correction model as  
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 where 
( , ; )

( , ; )

M u v

P u v




 represents the theoretical 

M

P
ratio,  
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vuM
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linear model 
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M u v

P u v




 represents the Error correction model 

3

1

2

),(

),(


vuGm

vuGp
.  Here  ,   denote the actual and the estimated depth, and u, v are the 

frequencies in the horizontal and vertical directions respectively. 

Now, consider the Linear Model = 
),(

),(

1

1

vuGm

vuGp
. The model can be considered as a 

straight line passing through the origin and can be represented using the linear 

function Axy   where the gradient at a radial frequency ( )rA f  is equal to ratio 

1

1

( )

( )

r

r

Gp f

Gm f
 and 22 vufr  . To proceed, the Linear Model requires knowledge of:- 

(1) The gradient functions, ( )rA f  at each radial frequency; and (2) The response of 

either   Gm1 or Gp1.  To compute the gradient, ( )rA f  the discrete 
M

P
 ratio space can 

be utilised since it provides a unique 
M

P
 ratio for each normalized depth 

corresponding to a particular radial frequency. Hence to determine ( )rA f at a radial 

frequency, fr1, where 2 2

1rf u v  , a linear function, Axy   was fitted to the 
M

P
 

ratios over the normalised depth range, = 0 to 0.99 for the corresponding radial 

frequency fr1. Thus by considering all possible radial frequencies, ( )rA f  was 

computed for each discrete radial frequency in the 
M

P
 space. Now, the frequency 



 71 

response of either Gp1 or Gm1 must be predefined. Since the required filter needs to 

possess a band-pass filter characteristic together with rotational symmetry [14], the 

response of Gp1 was modelled as a Laplacian of Gaussian (LOG) based on the 

equation  

2 2

1( ) ( ) exp(1 ( ) )r r
r

spread spread

f f
Gp f

f f
  , --- (4.16) 

where 
spreadf = 0.4fnyquist. Here the constant 0.4 was used as it ensures an acceptable 

width of the LOG filter. Note: to avoid the divide by zero problem, the second filter, 

Gm1 was not modelled as band-pass. Once the frequency response of Gp1 and 

( )rA f are determined, the response of Gm1 can be determined with ease 

as 1

1

( )
( )

( )

r
r

r

Gp f
A f

Gm f
 . Here the only unknown 1( )rGm f  can be calculated from the 

gradient as 1
1

( )
( )

( )

r
r

r

Gp f
Gm f

A f
 . The filter Gm1 designed based on the Linear Model 

has the characteristics of a low pass filter together with rotational symmetry. Thus by 

employing the Linear Model, the frequency response of the filters Gp1 and Gm1 have 

been modelled. The next Section discuses the Error Correction model where the 

frequency response of the filter Gp2   has been modelled. 

 

4.3.2. Error Correction Model 

 

In this Section the response of the filter Gp2 was modelled by considering the error 

between the theoretical 
M

P
 ratio, 

( , ; )

( , ; )

M u v

P u v




 and the Linear Model,

);,(

);,(
'

'





vuP

vuM
. 

So, 
''' '

''' '

( , ; ) ( , ; ) ( , ; )
( , ; ) ( )

( , ; ) ( , ; ) ( , ; )

M u v M u v M u v
Error u v abs

P u v P u v P u v

  


  
   =

3

1

2

),(

),(


vuGm

vuGp
--(4.17) 

It can be inferred that the Error Correction Model =
3

1

2

),(

),(


vuGm

vuGp
 can be modelled as 

a cubic function, 
3Cxy  , where the gradient C at a particular radial frequency fr 

corresponds to the ratio 2

1

( )

( )

r

r

Gp f

Gm f
, hence by computing the 

gradient, ( )rC f  2

1

( )

( )

r

r

Gp f

Gm f
, the frequency response of the filter Gp2 can be 
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determined. To compute the gradient a cubic function, 3Cxy   was fitted to the 

absolute error between the theoretical 
M

P
 ratio and the Linear Model. Once the 

gradient has been computed for all possible radial frequencies in the 
M

P
 space, the 

response of filter Gp2 can be determined directly from the gradient itself since the 

response of Gm1 has been determined earlier. Thus Gp2 can be modelled as 

2 1( ) ( ) ( )r r rGp f C f Gm f . Once the filters had been modelled, a higher order 2D 

polynomial was fitted to the respective models to smooth their frequency response. 

After experimentation the optimum polynomial order used in the design was found to 

be 12. Figure (4.6) shows the frequency responses of 1D version of the designed 

filters. 

 

 

Figure 4.6: 1D plot of the designed rational filters 
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4.3.3. Model Verification 

 

The designed model was verified by working backwards to determine how well the 

designed filters fit the theoretical 
P

M
 ratio. At this point it needs to be mentioned 

that Watanabe and Nayar [14] have not done any verification of their designs and 

since the numerical results for their 32 x 32 frequency samples were not available, 

comparison of the results was not feasible at this stage. Comparisons can be done 

only on the estimated depth maps as described in a later Section. However a rough 

comparison with their filters was done by transforming their 7x7 spatial kernels into 

32 x 32 frequency responses. The results are presented in Section 4.5.  

To provide a useful comparison with Watanabe‟s filters, the kernel size (ks) and the 

number of frequency samples were chosen as per [14]. The designed filters were 7x7 

with eight fold symmetry (as Watanabe‟s) and hence the number of independent 

filter coefficients required to provide the desired frequency response was 10. This 

was further reduced to 6 for a 5x5 kernel (refer to Section 5.2 for details). Having a 

5x5 eight fold symmetric filter would be advantageous in-terms of computation, but 

6 independent coefficients were too small to provide the desired frequency response 

[14], and hence lead to poor mapping of the 
P

M
 curves. Increasing the kernel size 

would provide filters with smoother pass-band response, but this in-turn may 

increase the overall processing time of the application. Therefore the optimum kernel 

size was chosen as 7.  

In the verification process, the frequency band up to which the 
P

M
 ratio was 

monotonic was determined. Here, to enable a useful accuracy comparison with 

Watanabe [14], the results were based on the defocus condition pixels
Fe

e
307.2 . 

By using the table provided in Appendix 3, the following results were calculated: - 

(1) The distance between the near and the far-focussed images was 2 e ; (2) The 

effective focal length was Fe ; (3) The minimum frequency below which the response 

is suppressed by the pre-filter was min rf ; and (4) The maximum frequency below 
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which the 
M

P
 ratio is guaranteed monotonic was max rf . The results are summarised 

in Table 4.1.  

 

 

Defocus condition 

e 

in 

pixels 

 

Fe 

1

2
min

s

fr
k

pixel


 

1

max 0.73
Fe

fr
e

pixel



 

 

Max blur diameter 

   
2

0.73 s

e
k

Fe

pixel

  

pixels
Fe

e
307.2

 focal length f = 

50mm 

Kernel size ks=7 

Aperture 

diameter=6.5mm 

17.746 7.6923 0.2857 0.3164 4.1614 

 

Table 4.1: Calculated values for the defocus function of 2.307 pixels 

 

From the Table it can be inferred that for the defocus condition pixels
Fe

e
307.2 , 

the frequency range lies between 10.2857 0.3160rf pixel  . A Matlab program 

was written to plot the theoretical 
P

M
 ratio, the Linear Model and the Error 

Corrected Model for a range of frequencies and normalised depth values. Figure 

(4.7) shows the plots of the theoretical 
P

M
 ratio, Linear Model and the Error 

Corrected Model. The mean square error estimates between the theoretical 
P

M
 ratio 

to the Linear Model, and the theoretical 
P

M
 ratio and the Error Corrected Model, for 

different radial frequencies are provided in Table 4.2. It can be inferred that the 

filters devised by the new method fit well with the theoretical ones. More results with 

simulated and real images are presented in later Sections. 
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Figure 4.7: Model Verification Plot 

 

 

 

Radial frequency in  

1pixel  

MSE between Th.M/P ratio and 

Linear Model 

MSE between Th.M/P ratio and 

Error Corrected Model 

0.3141 0.0703 0.0636 

0.3125 0.0630 0.0533 

0.3078 0.0499 0.0397 

0.2965 0.0296 0.0266 

 

Table 4.2: Comparison of MSE between Linear Model and the Error Corrected Model 
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4.3.4. Summary of the algorithm for Rational Filter Design based on the Two Step 

Polynomial Approach 

 

The procedure to determine the 7x7 filter coefficients capable of modelling the 

response of the Gm1, Gp1 and Gp2  is as follows:- 

 Pre-compute the psf for a range of normalised depth using the Pillbox psf 

equation given in equation (4.6). 

 Discretize the 
P

M
 space into n2 equally spaced samples up to the nyquist 

critical frequency ( fnyquist) of 0.5 1pixels , and determine the discrete 
P

M
 

ratio space by computing the 
P

M
 ratio at each radial frequency and 

normalised depth, .  In the model, n = 5 and   was varied between 0 and 

0.99. 

 Consider the Linear Model, 
);,(

);,(
'

'





vuP

vuM
 =  

),(

),(

1

1

vuGm

vuGp
 and determine the 

gradient 1

1

( )
( )

( )

r
r

r

Gp f
A f

Gm f
  by fitting a linear function of the form, y =Ax to 

each radial frequency in the discrete 
P

M
 ratio space. 

 Model the response of ),(1 vuGp  as a rotationally symmetric LOG filter [14] 

with a spread factor of spreadf = 0.4fnyquist. So that 

2 2

1( ) ( ) exp(1 ( ) )r r
r

spread spread

f f
Gp f

f f
   [the constant 0.4 ensures an acceptable 

width for the LOG filter] 

 Once the gradient and the frequency response of filter Gp1 are determined, 

the response of the filter 1Gm  can be modelled from the gradient as, 

)(

)(
)( 1

1

r

r
r

fA

fGp
fGm  . 

 To ensure a smooth transition along with minimum depth error, a higher 

order 2D polynomial with a weighting function described in [14] was fitted to 

the response of the filter 1Gm . The polynomial takes care of the DC value at 
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zero frequency which would otherwise need to be added as in the previous 

method. The weighting function used is described in the Appendix1. 

 To determine the response of the filter Gp2, the error between the Theoretical 

P

M
 ratio and Linear 

'

'

P

M
 was modelled as cubic function, 3Cxy    where the 

gradient, 2

1

( )
( )

( )

r
r

r

Gp f
C f

Gm f
  and 22 vufr  . 

 Once the gradient, ( )rC f  has been determined the response of the filter Gp2 

can be modelled directly from the gradient as Gm1 has been determined 

earlier. So from the gradient, 2 1( , ) ( ) ( , )rGp u v C f Gm u v . Again a higher 

order polynomial was fitted to smooth the response. 

 Finally the 7x7 filter coefficients are obtained by inverse Fourier 

transforming the frequency response of the designed filters as described in 

Section 4.4.2. 

 

4.4.    Pre-processing and Spatial Transformation of the filters 

 

This Section discusses the need for a pre-filter and the transformation of the 2
n
 x 2

n 

frequency samples into the corresponding 7x7 spatial coefficients. Once the spatial 

equivalents of the designed filters have been determined, depth can be resolved by 

convolving the defocused images with their respective kernels as described in            

Section 4.6. 

 

4.4.1. Pre-filter 

 

The purpose of the pre-filter is to remove the DC component, and the high frequency 

components which violate the monotonic requirement of the 
P

M
ratio. The images 

are pre-filtered before the rational filters are applied.  Since 1Gm  is a low pass filter, 

any DC component would propagate into the depth algorithm causing uncertainties 

in the estimation. The pre-filter needs to be a band-pass filter with rotational 

symmetry. From [14] it was found that equation (4.16), used to design the filter 1Gp  

can also be used to design the pre-filter if the spread factor peakf = 0.74fmax, where 
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fmax =0.264 1pixels . More details are provided in Appendix2. The magnitude 

response of the pre-filter is shown in Figure (4.9). It should be noted that the 

response of the pre-filter is not rotationally symmetric, but can be further refined if 

its kernel size is larger. This non-symmetry does not affect the depth estimation, 

since the 
M

P
 ratio mainly depends on the filters Gm1, Gp1 and Gp2. These filters are 

8 fold rotationally symmetric [4 fold symmetry with 2 fold refection symmetry] and 

thus provide uniform sensitivity to textures in all directions. Further the sharp 

transition of the pre-filter at the lower stop-band and the increase in the width of the 

pass-band has provided a smooth roll-off when compared with Watanabe‟s filters. 

Additionally these constraints have relaxed the specifications of the correction filter 

Gp2, allowing it to have a sharper transition (refer to Section 4.5) and lower 

attenuation at DC. This enabled a good fit to the theoretical 
M

P
 ratio. 

 

4.4.2. Design of 7x7 Spatial Kernels 

  

The frequency response of the filters have a total of 2
n
 x 2

n 
samples, where n = 5 in 

the proposed model. Transforming them directly into the spatial domain and 

convolving them with the image would result in a computationally expensive 

process. It was found from [52] that when the filter is 8 way symmetric and has 10 

degrees of freedom, it would require a minimum of 10 distinct spatial coefficients to 

provide the desired magnitude response. Hence the frequency samples were down 

sampled by a factor „m‟ (here m = 4) and inverse Fourier transformed. It was 

observed that filter coefficients along the border were redundant and the central 7x7 

coefficients are the required spatial coefficients that generate the desired frequency 

response. An example set of the 7x7 filter kernels and their respective magnitude 

responses are shown in Figures (4.8) and (4.9). 
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   gm1 = 

-0.0001    0.0038    0.0146    0.0201    0.0146    0.0038   -0.0001

    0.0038    0.0277    0.0834    0.1197    0.0834    0.0277    0.0038

    0.0146    0.0834    0.2629    0.3884    0.2629    0.0834    0.0146

    0.0201    0.1197    0.3884    0.5770    0.3884    0.1197    0.0201

    0.0146    0.0834    0.2629    0.3884    0.2629    0.0834    0.0146

    0.0038    0.0277    0.0834    0.1197    0.0834    0.0277    0.0038

   -0.0001    0.0038    0.0146    0.0201    0.0146    0.0038   -0.0001

 
 
 
 
 
 
 
 
 
 
 

 

     gp2 =

    0.0008   -0.0008   -0.0036   -0.0038   -0.0036   -0.0008    0.0008

   -0.0008   -0.0029    0.0019    0.0062    0.0019   -0.0029   -0.0008

   -0.0036    0.0019    0.0059   -0.0025    0.0059    0.0019   -0.0036

   -0.0038    0.0062   -0.0025   -0.0277   -0.0025    0.0062   -0.0038

   -0.0036    0.0019    0.0059   -0.0025    0.0059    0.0019   -0.0036

   -0.0008   -0.0029    0.0019    0.0062    0.0019   -0.0029   -0.0008

    0.0008   -0.0008   -0.0036   -0.0038   -0.0036   -0.0008    0.0008

 
 
 
 
 
 
 
 
 
 
 
  

 

 

     gp1 =

-0.0022   -0.0079   -0.0170   -0.0229   -0.0170   -0.0079   -0.0022

   -0.0079   -0.0323   -0.0477   -0.0444   -0.0477   -0.0323   -0.0079

   -0.0170   -0.0477    0.0362    0.1412    0.0362   -0.0477   -0.0170

   -0.0229   -0.0444    0.1412    0.3340    0.1412   -0.0444   -0.0229

   -0.0170   -0.0477    0.0362    0.1412    0.0362   -0.0477   -0.0170

   -0.0079   -0.0323   -0.0477   -0.0444   -0.0477   -0.0323   -0.0079

   -0.0022   -0.0079   -0.0170   -0.0229   -0.0170   -0.0079   -0.0022

 
 
 
 
 
 
 
 
 
 
 

 

 

pre-filter = 

-0.0020   -0.0434   -0.0307   -0.0096   -0.0307   -0.0434   -0.0020

   -0.0434   -0.0541   -0.0107    0.0231   -0.0107   -0.0541   -0.0434

   -0.0307   -0.0107    0.0633    0.1098    0.0633   -0.0107   -0.0307

   -0.0096    0.0231    0.1098    0.1616    0.1098    0.0231   -0.0096

   -0.0307   -0.0107    0.0633    0.1098    0.0633   -0.0107   -0.0307

   -0.0434   -0.0541   -0.0107    0.0231   -0.0107   -0.0541   -0.0434

   -0.0020   -0.0434   -0.0307   -0.0096   -0.0307   -0.0434   -0.0020

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.8: Derived filter kernels for the defocus condition of 2.307 pixels 
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Figure 4.9: Magnitude responses of the designed filters for defocus condition of 2.307 pixels 

 

4.5. Comparison with Watanabe and Nayar Filters 

 

This Section provides a detailed comparison between the filters designed by the Two 

Step Polynomial Approach and those designed by Watanabe and Nayar [14]. The 

7x7 filter coefficients are transformed into their 32x32 equivalent frequency samples 

(frequency response) and verified as to how well they fit the theoretical 
M

P
 ratio. 

Figure (4.10) shows the plot of the theoretical 
M

P
 ratio, Watanabe‟s Model, and the 

Two Step Polynomial model. Here the maximum frequency applicable for the 

defocus condition pixels
Fe

e
307.2  was used (refer to Table 4.1). Figure (4.11) 

shows the RMS error plots for Watanabe and Nayar‟s model and for the Two Step 

Polynomial model for all the frequencies within the applicable range. The RMS error 

was lower for the Two Step Polynomial method particularly as the normalised depths 

approaching, and hence the design was better than Watanabe and Nayar‟s filter. 
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Figure 4.10: Normalised depth vs. Theoretical M/P 

ratio for both the models 

 

Figure 4.11: RMSE between Theoretical    

                  M/P ratio for both the models 

 

In the next step, the normalised magnitude and phase responses of the designed 

filters are compared with Watanabe and Nayar‟s filters. The 1D magnitude response 

(see Figure (4.12)) of the linear filters Gm1 and Gp1 for both the models are quite 

similar but there is a considerable dissimilarity in the response of the correction filter 

Gp2. It is noted that the Gp2 designed by the new model has a sharper transition 

(from pass band to stop band) and a higher DC magnitude compared to Watanabe‟s 

model. The DC does not propagate in the depth estimation since the pre-filter 

suppresses any frequency response below the minimum cut-off frequency. Moreover 

the pre-filter designed by the new method has a smooth roll-off in the transition band 

compared to sharp transition of Watanabe‟s pre-filter which can propagate a ringing 

effect [52]. 
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Figure 4.12: Magnitude and Phase response of Gm1, Gp1, Gp2 and Pre-filter. 
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Finally the depth maps generated by both the filters have been compared using a 

circular sinusoidal test pattern (see Figure (4.13a)) with a wavelength of  = 3.2 

pixels (the maximum frequency applicable for the defocus 

condition pixels
Fe

e
307.2 ) and the normalised depth of  = 0.99. The depth maps 

generated using both the models are shown in Figure (4.13b). The mean depth error 

and standard deviation for the Two Step Polynomial model was 0.0454 and 0.0128, 

and for Watanabe‟s model 0.3615 and 0.2008 respectively. From the standard 

deviation results it can be inferred that the depth map generated by the new filters is 

smooth compared to Watanabe‟s and the relative non-circularity of the Watanabe‟s 

filters have resulted in a less planar pattern in the depth map. 

 

  Figure 4.13a:  Single frequency sinusoidal test pattern near-focused (Left) far-focused (Right) 

 

 

 

Figure 4.13b: Depth map estimated using the filters designed by the proposed method (Left) 

 and from Watanabe‟s filters (Right) 
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4.6. Algorithm for Depth Estimation 

 

The algorithm described in [14] was used to estimate the depth using the filters 

designed by the Two Step Polynomial Approach. Here the far and the near-focused 

images were added, subtracted, and then convolved with the pre-filter to remove DC 

as well as high frequency components. The low pass filter gm1 was convolved with 

the subtracted image and LOG filter, gp1 and the correction filter, gp2 were 

convolved with the added image. To avoid uncertainties due to division by zero, the 

images underwent a smoothing process by local averaging, and the depth map was 

recovered using the Newton-Raphson method. Finally to ensure smoothness, the 

recovered depth map was post-filtered by a 9x9 median filter. The experimental 

results with simulated and real images are presented in the next Section. 

 

4.7. Experimental Results with Simulated Images  

 

In order to verify the design model, sinusoidal patterns with a single spatial 

frequency and different normalised depth values ( ) were developed (see Figure 

(4.14)). Since the defocus condition used for the simulation was pixels
Fe

e
307.2 , 

the usable frequency range lay between 10.2857 0.3160fr pixel   (see Table 4.1) 

and therefore the wavelength   lies between3.2 3.5pixels  . The normalised 

depth range used was between 0.1 and 0.99. To produce a depth staircase, the single 

frequency test images were defocused using the Pillbox psf model in a way that for 

every 40 pixel along the horizontal axis there was a step change in depth. This 

simulation enabled the estimated depth map to be viewed as a 3D staircase structure. 

Experiments were performed on two test images with wavelength of  =3.5 pixels 

and 3.2 pixels. The estimated depth maps are shown in Figure (4.15). The resolution 

of the images used was 400 x 400 pixels, but for illustration purposes, depth maps 

from a local area of 38 x 38 pixels are shown. The linearity and the smoothness of 

the depth estimated by the filter coefficients designed by the proposed method and 

Watanabe‟s model are compared in Figure (4.16a) and Figure (4.16b). It can be 

inferred that for wavelength  = 3.5 pixels, which corresponded to a lower radial 

frequency, fr = 0.2857, the depth map estimated by both the filter models are 

reasonably linear but for a lower wavelength of 3.2 pixels (higher radial frequency fr 
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= 0.3125), the filter coefficients designed by the Two Step Polynomial Approach 

provided a smoother and more accurate fit to the actual depth than Watanabe‟s 

filters. This increase in accuracy can be attributed to the new design model which fits 

more closely to the theoretical 
M

P
 ratio (refer to Figures (4.10) and (4.11)). The 

statistics were calculated from a local area of 17x371 pixels which fitted well along 

each individual step.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14:  Single frequency sinusoidal test pattern with wavelength  = 3.5 pixels 

 

 

 

 

Figure 4.15: Depth Map for  = 3.5 pixels (Left) and the depth map for  = 3.2 pixels (Right) 
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Figure 4.16a: Actual vs. Estimated depth at different 

normalised depths using filters designed by Two Step 

Polynomial approach and filters designed by Watanabe 

 

Figure 4.16b: Standard Deviation plot at 

different depths for both the design models    

 

To verify the invariance of the filter coefficients to the image texture, a textured 

pattern devised by Watanabe [14] was used and the original pattern was defocused 

using the Pillbox psf to simulate a 3D staircase structure as explained earlier. The 

near and far-focussed images along with the gray depth map are shown in Figures 

(4.17) and (4.18).  

 

Figure 4.17: Near and far focussed images                                         Figure 4.18: Gray scale depth map 
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Figure 4.19a: 3D view of the estimated depth  Figure 4.19b: 1D plot of the estimated depth 

using filters designed by both the models. 

 

 

 

Figure 4.20a: Actual vs. estimated depth for filters 

designed by both the models 

Figure 4.20b: Standard deviation plot at 

different depths for both the models. 

                                   

Figure (4.19a) shows the estimated depth in 3D, and Figure (4.19b) shows the depth 

estimated at different normalised depths for the filters designed by the new method 

and those designed by Watanabe and Nayar. The linearity and the smoothness of the 

depth estimates for both the models are compared in Figures (4.20a) and (4.20b). It 

can be inferred that the filter coefficients designed by the new method are invariant 

to texture and provide a better fit to the actual depth than Watanabe‟s filters. In the 

next Section, experiments are performed on real images and the accuracy of the 

depth estimated using the designed filters are reported. 
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4.8. Experiments to determine the accuracy of the designed model  

 

 In this Section the accuracy of the designed filters was determined by using them to 

measure a known distance. In experiments 1 and 3 the results are compared with 

Watanabe and Nayar‟s filters and in experiments 2 and 4, since the defocus setting 

was changed from that of Watanabe‟s, a new set of filter coefficients was 

determined. In all the experiments the depth estimation results along with RMS error 

plots are provided. For these experiments a checkerboard image was used as the test 

pattern. Experiments with natural textures are presented in chapter 6. 

 

 4.8.1. Experiment 1- with defocus condition 2.307 pixels 

 

The apparatus included a 50mm photographic quality lens with an external aperture 

diameter set to 6.5mm, and a monochrome camera with a CCD sensor of pixel size 

7.4 x 7.4 m . To enable a useful accuracy comparison with Watanabe [14], the 

defocus condition was set to pixels
Fe

e
307.2 . Based on Appendix3, the working  

range was calculated to be 56mm, this is quite short but it is limited by the pixel size 

of the camera and the aperture set. A larger pixel size or a narrower aperture would 

have provided an increase in the working distance. The far-focussed image was set at 

800mm and the near-focussed at 744mm. A checkerboard pattern was moved along the 

optical path between these points and a pair of defocused images was recorded at 

every 10mm interval. The normalised mean depth was calculated and mapped to the 

real world coordinates using the Gaussian lens law.   

 

Figure 4.21a: Actual Distance vs. Estimated Dist. (mm)       Figure 4.21b: Act. Dist. vs. RMSE (mm) 
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Figure (4.21a) shows the plots of the actual and the estimated depth. For these 

results, a centre offset correction was performed to compensate for the experimental 

error while determining the centre of the compound lens. A detailed description is 

given in Appendix 4. The RMS error plot for the depth range is shown in Figure 

(4.21b). The RMS error for the new method was 0.6122% at the far-focussed and 

0.6516% at the near-focussed planes, and for Watanabe the errors were 0.9321% and 

0.98425% respectively. From the plots it is seen that the depth estimates are 

reasonably linear but the filters designed using the Two Step Polynomial Approach 

provided a better fit to the actual depth compared to the Watanabe filters.  

 

4.8.2. Experiment 2 - with defocus condition 2.3587 pixels 

 

In the second experiment the working distance was extended to 140mm by setting a 

smaller aperture of 2.27mm. The far-focussed and the near-focussed images were at 

800mm and 660mm respectively, and the defocus condition based on Appendix3 

was 2.3587
e

pixels
Fe

 . The parameters are summarised in Table 4.3 and a new set 

of filter coefficients were designed and used for depth estimation. For this defocus 

condition there were no Watanabe‟s results available for comparison. 
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
 

 

Max blur 
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2
0.73 s

e
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Fe
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
 

2.3587
e

pixels
Fe

  

Focal length, f =50mm 

Kernel size ks=7 

Aperture diameter=2.27mm 

51.891 22 0.2857 0.3107 4.7174 

 

Table 4.3: Calculated values for the defocus condition 2.3587
e

pixels

Fe

  
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Figure 4.22a: Actual Distance vs. Estimated Distance 

(mm)   

 

Figure 4.22b: Actual Distance vs. RMSE 

(mm) 

 

Again the square pattern was moved in steps of 10mm along the optical axis and the 

normalised depth was calculated from the two defocused images. Figure (4.22a) 

shows the plot between the actual and the estimated depth, and the plot in Figure 

(4.22b) shows the RMS error estimated at the individual distances. The RMS error 

with respect to the distance from the lens was between 0.8310% and 1.8427%. The 

increase in RMS error can be attributed to the increase in working distance and to the 

decrease in aperture size which results in darker images. The sharp increase in RMS 

error at distances of 790mm and 690mm coincides with the theoretical model as 

shown in Figure (4.11). The distance of 730mm corresponds to the centre of range 

where normalised depth was zero. 

 

4.8.3. Experiment 3 - with defocus condition 2.307 pixels 

 

In the third experiment a 35mm photographic lens was used and the external aperture 

set to 4.55mm giving the defocus condition pixels
Fe

e
307.2 . Here the results were 

compared with Watanabe‟s filters. The working distance calculated based on the 

procedure in Appendix3 was 107mm; the far-focussed image was set at 800mm and 

the near-focussed image at 693mm. The normalised depth was calculated at 10mm 

intervals. Figure (4.23a) shows the plots of the actual and estimated depths for 

Watanabe‟s filters, and for the filters designed by the new method. The RMS error 
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(refer Figure (4.23b)) was plotted with respect to the distance from the lens with 

values between 0.8291% and 1.3496%, and for Watanabe‟s filters the error was 

between 0.8691% and 1.5301%. From the plots it can be inferred that the filters 

designed by the Two Step Polynomial method provide a closer fit to the actual depth. 

The results are corrected for centre offset. 

 

 

 

Figure 4.23a: Actual vs. Estimated Distance (mm) 

 

Figure 4.23b: Actual Distance vs. RMSE 

(mm) 

               

 

When compared with the results in experiment (1) (Section 4.8.1), the defocus 

condition was the same, but a different lens was used with different working ranges. 

In each case the estimated depth was linear with the step number, and the RMS error 

followed a similar shape. However the RMS error was higher for the 35mm lens with 

a working range of 107mm when compared to a 50mm lens with a working range of 

56mm. Here it should be observed that the increase in working range by decreasing 

the aperture size has had a considerable effect on the accuracy of depth estimation. 

This led to an investigation of the available options to increase the working range for 

a given experimental setup. The detailed description is presented in Section 4.9. 
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4.8.4. Experiment 4- with defocus condition 2.3944 pixels 

 

In the final experiment a 35mm lens was used but the working distance was extended 

to 200mm by using a smaller aperture of 2.2mm. The far and near-focussed images 

were at 800mm and 600mm, and the defocus condition calculated based on 

Appendix3 was 2.3944
e

pixels
Fe

 . The rational filters were redesigned for the 

parameters summarised in Table 4.4. 
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2.3944
e

pixels
Fe



Focal length, f =35mm 

Kernel size ks=7 

Aperture 

diameter=2.2mm 

38.310 16 0.2857 0.305 4.78 

                      

Table 4.4: Calculated values for the defocus condition 2.3937
e

pixels

Fe

  

 

The normalised depth was calculated at 20mm intervals. Figure (4.24a) shows the 

plots of the actual and the estimated depths, and plot (4.24b) shows the RMS error 

estimated for individual distances. The maximum RMS error recorded was 7.3%. 

This large RMS error could be due to the smaller aperture used to increase the 

working range and also due to the focal error that might be present in the lens used. 

In order to clearly show linearity of the depth estimation with respect to the actual 

depth, the results have been corrected for both focus offset and centre offset. 
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Figure 4.24a: Actual Distance vs. Estimated Distance 

(mm) 

Figure 4.24b: Actual Distance  vs. RMSE 

(mm) 

 

 

4.9. Effect of focal length, f-number of the lens and the pixel size of the sensor on 

the Rational filter design and Working distance 

 

The depth estimation error varied significantly between experiments 1 to 4 of Section 

4.8, so the effect of focal length, f-number of the lens and the pixel size of the sensor, 

on the defocus condition and working distance were investigated. Numerically, the 

appropriate working distance for two different lenses (35mm and 50mm), two 

different CCD sensors with pixel size 7.4µm and 13µm, and several different 

aperture settings were calculated. Figures (4.25a) and (4.25b) show the appropriate 

working distance for a camera with a pixel size 13µm against different f-numbers 

when the focal length was 50mm and 35mm respectively. Similarly Figures (4.26a) 

and (4.26b) show the appropriate working distance for a camera with a pixel size of 

7.4µm against different f-numbers when the focal length was 50mm and 35mm 

respectively. In each case the results were simulated with the far-focussed image at 

800mm and the arrowed dotted line parallel to the horizontal axis represents the 

minimum frequency (2/ks where ks=7) below which the frequency response would be 

suppressed by the pre-filter.  
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Minimum frequency 

 

 

 

Figure 4.25a: Working Distance for a 50mm lens with 

pixel size of 13µm against different aperture settings 

Figure 4.25b: Working Distance for a 35mm 

lens with pixel size of 13µm against 

different aperture settings 

 

Minimum frequency 

 

 

 

Figure 4.26a: Working Distance for a 50mm lens with 

pixel size of 7.4µm against different aperture settings  

Figure 4.26b: Working Distance for a 35mm 

lens with pixel size of 7.4µm against 

different aperture settings  
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From the plots it can be inferred that the working distance can be increased by:- (1) 

Reducing the aperture size; (2) Reducing the focal length of the lens; and (3) By 

using a CCD sensor with a larger pixel size. Since the depth experiments were based 

on a pixel size of 7.4µm, the options 1 and 2 were practically verified and the 

parameters based on Appendix 3 are summarised in the previous Section. A 1D 

comparison of the normalised frequency responses of the filters designed for:- (1) 

Defocus condition of 2.307 pixels (Watanabe‟s defocus condition) used in 

experiments 1 and 3; (2) Defocus condition of 2.3944 pixels used in experiment 4; 

and (3) Defocus condition of 2.358 pixels used in experiment 2 are shown in Figure 

(4.27). It can be observed that though the filters have been designed for different 

experimental setups (based on different f-number or focal length), their frequency 

responses have a similar shape. From the calculations based on the method in 

Appendix 3, it can be inferred that whenever the working distance was at the 

maximum range, the defocus condition
e

Fe
 always lies close to 2.3 pixels, and hence 

the rational filters designed for defocus condition say 2.3
e

pixels
Fe

  can be 

effectively used to recover depth of an object in any setup (different f-number or 

focal length) provided the maximum working distance is used. 

 

 

 

Figure 4.27: Magnitude plots of Gm1, Gp1, Gp2, and Pre-filter (left to right) designed for different 

experimental setups 
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Figure 4.27: (continued) Magnitude plots of Gm1, Gp1, Gp2, and Pre-filter (left to right) designed for 

different experimental setups 

  

4.9.1. Discussion  

 

From the experiments, it was found that when the f-number of the lens was close to 8 

the maximum RMS error over a range of 56mm for the 50mm lens was 0.6516% and 

for the 30mm lens over a range of 107mm was 1.3496 %. It was evident from 

experiments (2) and (4) that an increase in working distance achieved by decreasing 

the aperture size (increasing the f-number) leads to erroneous depth estimation. Thus 

it can be concluded that there is a lower optimum limit for the aperture diameter. 

Based on the experiments, an f-number close to 8 provided acceptable depth 

accuracy over a wide working distance. 

Increasing the working distance by reducing the focal length does have some 

practical problems with locating the front focal plane of the lens and converting it for 

telecentricity. In the case of the 50mm lens the front focal plane was 25mm outside 

the lens, and for the 35mm the front focal plane was on the lens outer surface. So 

converting the lens to telecentric by fixing an external aperture was not complicated. 

But for the case of a standard 16mm or 25mm lens the front focal plane can reside 

within the lens. For a complex photographic lens with many elements, converting the 

lens to be telecentric would require fixing an additional convex lens within the lens 

casing as mentioned in [41]. If a custom designed wide angle lens were 

manufactured in a way that their front focal plane resides outside the lens casing then 

using a lower focal length lens to increase the working distance would be a good 
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option. Finally, by having a camera CCD array with a larger pixel size allows an 

increased working distance. From the plots in Figure (4.25) and (4.26) it can inferred 

that for  a 35mm lens with an aperture setting of f-number 8 the working distance for 

a camera with a pixel size of 7.4µm was 120mm, but this was increased to 210mm 

when a camera with pixel size of 13µm is used. Hence by using a camera with a 

larger pixel size (approximately twice) the working distance for the given setup can 

be increased by almost 100mm.  

 

Conclusion 

 

In this chapter a new method was proposed for determining the 7x7 filter coefficients 

described by Watanabe and Nayar [14]. The procedure was based on two steps: 

Step1: fitting a linear model to the 
M

P
 ratio and Step 2: determining the error 

between the actual and the linear model and fitting an error correction model. The 

designed model was verified by comparing it with the theoretical 
M

P
 ratio, and it 

was observed that the filters determined using the new model fitted the 
M

P
 ratio 

more closely than the filters designed by Watanabe‟s model. The designed filters 

were tested with real checkerboard images and compared with Watanabe‟s filters. 

The maximum RMS error for the defocus condition pixels
Fe

e
307.2  over the 

working range of 107mm was 1.349% for the filters designed by the Two Step 

Polynomial Approach and 1.53% for the filters designed by Watanabe and Nayar. 

Later, filter coefficients were designed for different setup conditions and useful 

suggestions were provided about the choice of aperture, focal length, and CCD 

sensor size that would enable a good depth recovery over a wide working distance.  
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Thus it can be concluded that the filters designed by the Two Step Polynomial 

Approach:- 

 Provide a better fit to the theoretical 
M

P
 ratio since they are directly derived 

from the 2D discrete 
M

P
 ratio space. 

 The depth estimated using the filters provides a smooth and flat depth map 

thereby increasing the depth accuracy. 

 And finally the method based on the Two Step Polynomial Approach is quite 

simple as filter coefficients for different defocus conditions can be derived by 

just modelling the psf. 
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Introduction 

 

In this chapter a novel design procedure has been described to implement the 

proposed DFD algorithm on a Field Programmable Gate Array (FPGA). The FPGA 

is a semiconductor device containing an array of logic blocks that can be configured 

as per the designer‟s requirement. They are broadly classified as Fine Grained and 

Coarse Grained. Fine Grained are made up of small gates, transistors, or small macro 

cells, while coarse grained are made up of bigger macro cells which contain flip-

flops, and look up tables (LUT), which constitute the combinatorial logic function. 

Since their introduction in 1985, FPGAs have become increasing important to the 

electronics industry. They have the potential for higher performance and lower 

power consumption than microprocessors. When compared with Application 

Specific Integrated Circuits (ASICs), they offer lower non-recurrent engineering 

costs, reduced development time, easier debugging, and reduced risks [89]. 

 Here the FPGA considered for implementation belongs to the Xilinx Virtex 2ProX 

family of devices. The architecture of the Virtex 2P device, the Xilinx University 

program board (XUP), and the programming techniques considered for 

implementation are discussed in Section 5.1. In Section 5.2, a design procedure, 

referred to as the Triangular method is employed to perform the 2D convolutions by 

exploiting the symmetry of the designed filters. Section 5.3 describes the 

implementation architecture of the DFD algorithm on the FPGA and Section 5.4 

provides a detailed analysis of the test pattern and the bit-widths considered for the 

design model. Finally, Sections 5.5 and 5.6 provide the experimental results of the 

depth recovered by the designed model that has been implemented on the FPGA. 

Further, the Sections also provide a detailed comparison between the depth maps 

recovered using a desktop PC employing Matlab, and the depth maps recovered 

using a fixed width pipelined processor implemented on FPGA. The results prove 

that the processor can indeed generate depth maps comparable to Matlab‟s output. 
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5.1. Architecture overview of the Virtex 2ProX device 

 

The Virtex-2ProX family of devices are user-programmable gate arrays with various 

configurable elements and embedded blocks, optimized for high-density and high-

performance system designs [90]. The architecture of the device is shown in Figure 

(5.1) and it includes:- (1) Embedded IBM PowerPC 405 RISC processor blocks that 

can be clocked up to 400 MHz; (2) Configurable Logic Blocks (CLB) that provide 

functional elements for combinatorial or synchronous logic implementation; (3) 

Programmable Input Output Block (IOB) (Ultra-Select IO) that provide high speed 

interfaces between the FPGA pins and the internal configurable logic; (4) Block 

Select RAM (Block RAM) provides pre-defined memory blocks that can be as large 

as 18Kb (Kilo bits). They can be configured either as Single Ports or Dual Ports 

Memory modules; (5) Dedicated Embedded Multiplier blocks of width 18 x 18 bits; 

(6) Digital Clock Manager (DCM) provides support for clock distribution, delay 

compensation, clock multiplication and division; and (7) An Embedded High Speed 

Serial Trans-receiver (Rocket IO) provides Giga bit transfer rates. 

Several development boards incorporating Virtex 2P FPGA devices and peripherals 

were available for use in the project. The XUP board (Xilinx University program) 

was considered the most suitable due to its ease of use and connectivity. The features 

available on the XUP board are explained in the next Section. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Architecture of Virtex 2PX device [90] 
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5.1.1. Xilinx University Program Virtex 2Pro (XUP 2VP) Development Board [91] 

 

The XUP-2VP development board produced by Digilent Inc was used to implement 

the DFD algorithm on the FPGA. The board employs a Virtex-2P XC2VP30 FPGA 

with 30,816 Logic Cells, 136 18-bit multipliers, 2,448Kb of block RAM, and two 

405 PowerPC Processors. It has slots for DDR2 SDRAM (double-data-rate 

synchronous dynamic random access memory) and a Compact Flash Card. It can be 

interfaced to an external device either through RS232, SATA, 10/100 Ethernet or 

using USB 2. The board also provides support for Two 2x20 right-angle female 

sockets, a 100-pin Hirose FX2 connector, Audio in/out, VGA and PS/2 connectors. 

There are six clock sources, a 100MHz system clock, 75MHz clock for Serial 

Advanced Technology Attachments (SATA), a 32MHz clock for System ACE 

interfaces, a dual footprint through-hole  for user supplied alternate clock, an external 

clock for Giga-byte transceivers, and a high speed clock for an expansion module. 

Figure (5.2) shows a picture of the board as displayed on the Digilent website. 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2:  XUP 2VP Development Broad [91] 
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Though the board provides support for various peripherals, the manufacturer has not 

provided many of the driver files required to employ them in the design module, 

hence for this implementation, an external SRAM (Static RAM) was used to store 

the defocused images and the PowerPC was used as an interface between the User-IP 

(custom designed DFD application) and the desktop PC. It needs to be mentioned 

that the operation of the User-IP was independent of the PowerPC and also 

controlled by the common system clock. 

 

5.1.2. Block diagram illustration of the internal architecture of XUP 2P board 

 

Figure (5.3) shows the internal block diagram of XUP 2VP board as per the EDK 

10.1 (Embedded Development Kit provided by Xilinx) architecture.  

 

 

 

Figure 5.3: Block Diagram - Internal architecture of XUP 2VP board 

 

From the diagram it can be seen that the PowerPC (PPC) controls the peripherals and 

as per the design requirement, the peripherals are connected to the PowerPC through 

the Processor Local Bus (PLB). The Base System Builder (BSB) tool provided by 

the EDK was used to add the required peripherals to the design module. Since the 

project employed the PPC module as an interface between the desktop PC and the 

XUP 2VP board 
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User-IP, initially only the inbuilt UART module was selected through the BSB tool. 

Later, the User-IP that defined the custom designed DFD application was added to 

the PLB bus. The high video rate of the DFD calculation meant that the User-IP had 

to execute independently of the PPC. I.e. the application was controlled by the 

system clock rather than by the PPC. The input data from the external SRAM 

connected synchronously into the Pipelined Architecture (see Figure (5.8)), where 

the filter convolution operations were performed based on the Triangular method 

explained in Section 5.2. The output (recovered depth per pixel) was then stored in 

the inbuilt RAM module provided on the chip, and then transferred to the desktop PC 

through the UART interface. It should be noted that the User-IP incorporating the 

DFD program executes at a video rate (at least 25fps), but the interface between the 

XUP board and desktop PC is non real-time. Further, investigation is underway to 

employ a Data Acquisition board (DAQ) to capture images directly from a camera 

system, process them and finally display the depth map on a TV monitor at the video 

rate. The next Section provides a brief discussion about the programming techniques 

considered to implement the DFD algorithm. 

 

5.1.3. Programming Techniques 

 

In this Section two different programming techniques are discussed that exploit the 

internal architecture of the Virtex 2P FPGA device, and that enable parallel 

execution of the DFD application. The first approach discussed was a „C‟ based 

Multi-threaded architecture incorporating the Xilinx Xilkernel and the Power PC 

(PPC), and the second was based on the Hardware Descriptive Language, VHDL. 

Xilinx Xilkernel is a software based embedded processor kernel provided by Xilinx 

EDK that can be customised for the design requirements. The kernel provides 

features like multi-tasking, priority-driven pre-emptive scheduling, inter-process 

communication, synchronization facilities, and interrupt handling. Additionally, a 

large collection of standard „C‟ based libraries are available for programming 

purposes along with functions to accesses the peripherals. For the proposed DFD 

application, to estimate depth output at each pixel, the algorithm required five 2D 

convolutions to be performed in parallel. Hence a multithreaded architecture, based 

on Xilkernel can be employed to compute the convolutions. However, since the 

execution time for each thread primarily depended on the scheduling capability of 
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the Xilkernel, which in-turn depended on the overheads present on the PPC, 

elaborate programming techniques were required to achieve complete 

synchronisation between the threads. Hence a processor independent language was 

chosen to program the DFD application. 

VHDL (Very High Speed Integrated Circuits Hardware Descriptive Language) is a 

commonly used language for FPGA implementation. It has constructs to handle 

parallelism inherent in fast hardware designs and can implement synthesizable logic 

functions without the intervention of a programmable microprocessor. VHDL can be 

used to describe an electronic device at different levels of abstraction. The 

Behavioural level represents the working model of the device without any details 

about the clock and the delays present within the logic gates. The RTL (Register 

Transfer level) has an explicit clock and the designed module operates based on the 

clock cycle but with no detailed delay analysis below the clock cycle provided. The 

Gate Level description provides a network of gates and registers that constitute the 

designed module and provides information relating to the actual delays associated 

with each logic element. To implement a hardware design, the programmer has to 

describe the designed module in the behavioural abstraction level, and then the 

synthesis tool generates the netlists (network of gates and registers) that implement 

the functionality of the described model. The project employed the Xilinx ISE 10.1 

design suite to synthesise the netlist targeted for the XC2VP30 Virtex 2P device, and 

later, the generated netlist was added as a module (User-IP) to the PowerPC using the 

EDK provided by Xilinx. Finally, using the dedicated software, the generated bit-

stream was downloaded to the FPGA. 

 

5.2. 2D Convolution that exploits the symmetry of the designed filters 

 

Depth recovery based on the proposed method [14] required five 2D filtering 

operations to be performed in parallel, and these filtering operations were performed 

in the spatial domain using 2D convolution. The filter coefficients (kernel) were 

rotated by 180 degrees (flipped) and placed over a small image sub-block and the 

convolution output was calculated using the 2D convolution equation,  
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Figure 5.4:  Example of 2D Convolution Operation 

 

To understand the convolution operation, an example has been provided. Consider a 

7x7 image sub-block that needed to be convolved with the 3x3 kernel as shown in 

Figure (5.4). To compute the convolution output at the image coordinates 

Inputimage(1,1), the kernel, h(i,j) was  flipped and  placed over the 3x3 image sub-

block keeping the centre pixel of the image sub-block aligned with the centre 

coefficient of the kernel, h(0,0) as shown in Figure (5.4). The convolution output, 

y(1,1) was calculated from 
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To compute the convolution result for the next pixel, the kernel window was slid 

over the next 3x3 image sub-block and the output was calculated by replacing the 

corresponding image coordinates in the above equation. Hence to determine the 

convolution output for the entire image, the kernel must be slid over each pixel of the 

image and the convolution result has to be computed based on equation (5.2). In 

terms of hardware realisation, each convolution output based on a 3x3 kernel 

required 9 multipliers and 8 adders, and the computation process can be demanding 

if the kernel size is large. For the 7x7 kernel used in the proposed method for depth 

estimation (refer to chapter 4), each convolution output required 49 multipliers and 

48 adders, and  to implement five 2D convolutions in parallel, the  selected hardware 

must have enough logic support to accommodate 245 multipliers and 240 adders. 

However, the idea was to implement the DFD algorithm on a Virtex 2P FPGA, 

where only 136 inbuilt dedicated multipliers are available, different methods were 

investigated to reduce the required number of multipliers. If the designed filters are 

separable, the multipliers can be reduced by considering the 2D separable 

convolution equations as in [51], but here the designed filters were rotationally 

symmetric [52] rather than separable. Hence a design procedure was devised to 

exploit the symmetry of the filter coefficients and to implement the convolution 

operations with a reduced number of multipliers. The method referred to as the 

Triangular method is explained in the next Section. 

 

5.2.1. Triangular Method  

 

The objective was to reduce the number of multipliers required for the convolution 

operation by exploiting the symmetry of the designed filters. The definition of zero 

phase filters is given by J.S.Lim in [52]. A digital filter h(n1,n2) is  said to be zero 

phase if the frequency response H(w1,w2) is a real function such that  

H(w1,w2)=H
*
(w1,w2) where * refers to the conjugate. A zero phase filter, h(n1,n2), is 

symmetric with respect to a line through the origin and approximately half of the 

filter coefficients are independent. This symmetry is referred as the two fold 

symmetry. The filter coefficients: h(n1,n2)= h(-n1,-n2) ( see Figure  (5.5a))  and the  

frequency response is given by  H (w1,w2)= H(-w1,-w2). The number of independent 

filter coefficients that provide the desired frequency response depend on the 

symmetry of the designed filter. If the filter possesses four-fold symmetry, then 
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rotational symmetry can be achieved by considering the coefficients in a single 

quadrant. Given the coefficients of the first quadrant (Figure (5.5b)) the  rotationally 

symmetric four-fold filter has its  coefficients arranged as  h(n1,n2) = h(-n1,n2) = 

h(n1,-n2)= h(-n1,-n2) and the frequency response: H(w1,w2) = H(-w1,w2)= H(w1,-w2)= 

H(-w1,-w2). For example, a 5x5 rotationally symmetric filter, with four fold 

symmetry requires only 9 independent coefficients to provide the desired frequency 

response and thus provides a reduction in the number of arithmetic operation 

required for implementation. Similarly for an eight fold rotationally symmetric filter, 

the filter structure represents a four-fold symmetry about the origin and two-fold 

refection symmetry every 45 degrees. For the first quadrant the coefficients are 

arranged as h(n1,n2 )= h(n2,n1) and the response is given by H(w1,w2)= H(w2,w1). 

Hence a 5x5 rotationally symmetric filter with eight-fold symmetry would only 

require 6 independent coefficients to provide the desired response. The filter 

coefficients are arranged as shown in Figure (5.5c). The 7x7 kernels designed by the 

Two Step Polynomial Approach are Zero Phase, rotationally symmetric with eight 

fold symmetry ( see Figure (5.6a and 5.6b)), and  hence require only  10 independent 

coefficients  to provide the desired response. Therefore a design procedure was 

employed to compute the 2D convolutions by considering the independent 

coefficients present on the triangle (see Figure (5.7b)) of the eight fold symmetric 

filter. The next Section provides a detailed explanation of the Triangular method 

.  

 

 

 

 

 

 

 

 

 

(a) 5x 5 rotationally symmetric 

filters with 2 fold symmetry with 

req. independent coefficients 

(b) 5x 5 rotationally symmetric 

filters with 4 fold symmetry with 

req. independent coefficients 
 

(c) 5x5 rotationally symmetric    

filter with 8 fold symmetry 

and req. independent 

coefficients 
 

Figure 5.5:  Diagram showing the independent coefficients of a 5x5 rotationally symmetric filter 
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Figure 5.6a: Frequency response Original and 

Conjugate      

 Figure 5.6b: Rotationally Symmetric Low Pass 

filter   

 

 

5.2.2. Procedure - 2D Convolution based on the Triangular Method 

 

The convolution process based on the Triangular method is similar to the 

conventional method except the redundant filter coefficients are arranged to reduce 

the number of multipliers. As explained earlier, to compute a 2D convolution, the n x 

n kernel was placed over the n x n image sub-block and the convolution output was 

calculated based on equation (5.1). In the Triangular method the same procedure was 

adopted but the convolution operation was rearranged. For illustration purposes 

consider a 7x7 image sub-block shown in Figure (5.7a) that needs to be convolved 

with a rotationally symmetric, eight fold symmetric filter as shown in Figure (5.7b). 

In the Triangular method, pixels of the sub-block were added wherever possible 

before being multiplied with the corresponding filter coefficient. In the example 

considered, the pixel coordinates with the same colour are first added together and 

then multiplied with the corresponding filter coefficients having the same colour as 

shown in Figures (5.7a) and (5.7b).   

 

 

 

 

 



 110 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

Based on the conventional method, the convolution output for the centre pixel Im25 

can be determined as C25 = Im1*a+Im2*b+Im3*c+Im4*d+Im5*c+Im6*b+Im7*a 

+…….Im49*a, but in  this Triangular method since the redundant filter coefficients 

are taken in common and the convolution output was simplified and represented as 

C25 =a*(Im1+Im7+Im43+Im49)+b*(Im2+Im6+Im8+Im14+Im6+Im44+Im48+Im42)+ .. 

+ …j*Im25.   Here C25 represents the convolution output for the pixel Im25 and a, b, c 

… j represent the filter coefficients as shown in Figure (5.7b). As explained earlier, 

since the 7x7 kernel designed by the Two Step Polynomial Approach required 10 

independent filter coefficients to provide the required response, the convolution 

procedure based on Triangular method required only 10 multipliers against 49 

multipliers for the conventional method. Hence exploiting the symmetry of the 

designed filter would provide considerable saving in the required hardware. The 

general equations for implementing 2D convolution based on the Triangular method 

for 7x7 rotationally symmetric filter with eight fold symmetry are given below 

 A= a*(Im1+Im7+Im43+Im49) 

B= b*(Im2+Im6+Im8+Im14+Im36+Im44+Im48+Im42) 

C=c*(Im3+Im5+Im15+Im29+Im45+Im47+Im35+Im21) 

D=d*(Im4+Im22+Im28+Im46) 

E=e*(Im9+Im37+Im41+Im13) 

F=f*(Im10+Im16+Im30+Im38+Im40+Im20+Im12+Im34) 

G=g*(Im11+Im23+Im39+Im27) 

H=h*(Im17+Im31+Im33+Im19) 

Figure 5.7a: 7x7 Image sub-block  Figure 5.7b: 7x7 rotationally symmetric 

filter with 8 fold symmetry 
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I=i*(Im18+Im24+Im26+Im32) 

J=j*Im25 

Convoutput=A+B+C+D+E+F+G+H+I+J --- (5.3) 

Here Convoutput provides the required convolution output for the sub-block shown 

in Figure(5.7a) and A, B. C, D, E, F, G, H, I, J are the intermediate results that were 

implemented in parallel on the hardware. The generalised procedure of exploiting the 

symmetry of the filter coefficients to reduce the multipliers can be extended to two-

fold and four-fold rotationally symmetric filters as well. A four-fold symmetric filter 

required 16 independent coefficients and hence 16 multipliers were needed to 

provide the required convolution output. Similarly, a two-fold symmetric filter 

required 24 multipliers and so 24 equations must be implemented in parallel. The 

chapter proceeds with the next Section where a detailed description about the 

implementation architecture of the DFD algorithm is discussed. 

 

5.3. Implementation Architecture for the Depth from Defocus Application 

 

This Section describes the implementation procedure of the DFD calculation using a 

Virtex 2P FPGA. It is based on the proposed algorithm given in [14]. The far and the 

near-focused images are added, subtracted and then convolved with the pre-filter to 

remove DC as well as high frequency components. The low pass filter gm1 was 

convolved with the subtracted image and at the same time, the LOG filter gp1 and the 

correction filter gp2 are convolved with the added image. Later the convolved outputs 

were smoothed by a local averaging technique and the divider stage provided the 

required depth. The implementation represented a pipelined architecture with two 

parallel channels and five different stages. The two parallel channels process the 

added and the subtracted images, and the five stages are: - addition and subtraction; 

pre-filtering; rational filtering; smoothing; and divider. Here two depth outputs 

(Linear and Error corrected models) are shown for experimental reasons but in 

practice a look-up table would be employed to provide the depth estimates. The 

pictorial representation of the DFD algorithm is shown in Figure (5.8). 
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Figure 5.8: Two Channel five stage pipelined architecture 

 

The processing elements (PE) of the pipelined architecture can execute in parallel 

and the combinatorial logic blocks (adder, subtractor and multiplexers) within the PE 

are considered as separate components that can execute in parallel, and are 

synchronous with the system clock. The architecture can be termed as systolic since 

the input data (D0 to D4) advances into the designed module sequentially, and is 

controlled by the system clock as illustrated in Figure (5.9). As the input data 

progresses into each module, the corresponding operations are executed by the 

processing elements and the final output is obtained in a sequential manner based on 

the system clock. For every data input, there is a calculated depth output.  

 

 

 

Figure 5.9:  Illustration of the Systolic movement of the data
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The adder and subtractor stages were implemented using simple logic gates. 

Subsequently, the added and subtracted data proceeds to the pre-filter stage where 

the filter module was implemented using multiplier, adders, and shift registers to suit 

the design requirements. Since the architecture of the pre-filter and rational filter 

stages have similar structure but with different filter coefficients, a generalised 

architecture is presented to illustrate the filtering process. For simplicity, only a 

single processing element (PE) representing the filtering module is explained. It 

should be noted that the actual design incorporates 5 PEs to compute the five 2D 

convolution operations corresponding to each stage of the pipelined architecture. The 

filter module shown in Figure (5.10) consisted of 49 shift registers (SR), 6 RAM 

based FIFO blocks (first in and first output), 10 multipliers and 48 adders. The bit- 

width of each module depended on the required accuracy and the available logic. 

More details about bit-width selection are provided in Section 5.4. 

The shift registers were implemented using flip-flops and were arranged to form a 

2D array structure with 7 rows and 7 shift register blocks per row. The output of the 

7
th

 shift register (SR17) in the first row was connected to the input of FIFO 1, where 

it was delayed for the completion of the image row. The output from the FIFO 1 was 

then looped to the input of the shift register (SR21) in the next row. Likewise, the 

outputs of the 7
th

 shift register in each row were connected to the FIFO in the same 

row and the FIFO outputs are connected to the shift registers in the next row. This 

arrangement incorporating the shift registers and FIFO was a systolic array 

architecture, and the movement of the input data through the design module (shift 

registers and the FIFO) was synchronised to the common clock. The array when 

implemented on hardware stored a 7x7 sub-image that when multiplied by the pre-

stored coefficients and summed, provided the filtered output. The latency at each 

filtering stage depended on: - (1) The kernel size; (2) The horizontal resolution of the 

image; and (3) Any internal buffering present within the PE. Here, filtering 

operations were performed on test images of resolution of 400 x 400 pixels using a 

7x7 kernel and each PE required an internal signal buffering that corresponded to 3 

clock cycles. Hence the latency for a filtering process was 1207 clock cycles. A 

Table illustrating the latency present at each stage of the pipelined processor is 

provided in Section 5.5.   
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Figure 5.10:  Filter block module with Shift registers and FIFOs 

 

The pre-filter output then progressed into the rational filtering stage were the design 

architecture remained the same, but different filter coefficients were used. After the 

rational filtering stage, the filtered pixels advanced into the smoothing stage. The 

smoothing stage provided the required smoothing operation based on local 

averaging, and was implemented using a 5x5 systolic array incorporating shift 

registers and FIFOs. Finally the smoothed data advanced into the divider stage, the 

output of which provided the required depth estimate. The depth output from the 

divider was stored on an inbuilt dual port RAM and then transferred to the desktop 

PC through the UART interface. The next Section provides a detailed analysis of the 

test pattern and the required bit-widths at each stage of the pipelined DFD 

calculation. 
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5.4. Analysis – Test pattern and Computation of bit-widths at each stage of the 

Processor Module  

 

The chip area of the logic for the circuit required for the design module depended on 

the bit-width requirement at each stage of the pipelined architecture. Larger bit- 

widths provided an increase in accuracy of the depth estimation, but resulted in an 

overall increase in the number of logic circuits required and involved complex signal 

routing schemes, and longer delays through the critical data path. Efforts were taken 

to reduce the amount of logic required at each stage of the pipelined process thereby 

providing simple routing schemes with reduced delay. To calculate the optimum 

number of bits required at each stage, the design model required a test pattern that 

contained all possible frequencies within the applicable range of the defocus 

conditions. Here the defocus condition used was pixels
Fe

e
307.2  and the 

acceptable frequency range lay between 10.2857 0.3160rf pixel  where fr 

represented the radial frequency. The test patterns that were considered for 

simulation were the checkerboard pattern and the pattern devised by Watanabe and 

Nayar (see Figure (5.13)). The checkerboard patterns used for simulation had 

wavelength of 8 pixels (4 black and 4 white) and 10 pixels (5 black and 5 white). The 

power spectral density (PSD) plots for the patterns are shown in Figures (5.11a) and 

(5.12a). The patterns were treated as wide-sense stationary random processes and the 

PSDs of the patterns were computed by considering the Fourier Transform of the 

autocorrelation function. The patterns were defocused with a normalised depth  = 

0.5.  

 

Figure 5.11a: PSD of  the checkerboard pattern for 

wavelength 8 

Figure 5.11b: Estimated depth map showing                                                                        

the artefacts 
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Figure 5.12a: PSD of checkerboard pattern for 

wavelength 10 

Figure 5.12b: Estimated depth map without                                                                  

the artefacts 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13:  Watanabe‟s pattern 

 

 

 

Figure 5.14a: PSD of Watanabe‟s pattern                                       

 

Figure 5.14b: Estimated depth map without                                                                       

post-processing 
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From the PSD plot of the checker-board pattern with wavelength 8 pixels (Figure 

(5.11a)), it can be inferred that the spectral energy of the pattern was concentrated 

mostly at first at harmonic (0.125 1pixel ), and gradually reduced at the third 

(0.375 1pixel ) and the fifth, (0.625 1pixel ). Since the acceptable frequency range 

for the given defocus condition lies between 10.2857 0.3160rf pixel  , it can be 

verified that the given pattern has a low spectral energy within the acceptable range. 

However, when experiments were carried out with the test pattern, the designed 

filters were able to recover the depth map quite accurately but with a prominent 

artefact, that resembled the texture of the pattern (Figure (5.11b)). Further 

investigation revealed that even though the spectral energy was low within the 

acceptable range, the edges between the black and the white pixels provided 

considerable information, and the designed filters were able to recover the depth 

information using the defocused step edges in the two images. To verify this, a 

checker-board pattern with a period of 10 pixels was considered.  Again the spectral 

power (see Figure (5.12a)) was concentrated on the odd harmonics but since the 3
rd

 

harmonic (0.3
1pixel ) lies within the acceptable range for the defocus condition, the 

depth recovered by the filters showed no artefacts. The recovered depth was then 

smooth as shown in Figure (5.12b). Hence the designed filters were able to recover 

the depth by considering only the third harmonic that was present within the 

acceptable range. From the above investigation, it should be noted that for a checker-

board pattern, the spectral information is only non-zero at the edges, or as the single 

frequency sinusoids corresponding to the odd frequency harmonics. Alternatively, 

for the pattern devised by Watanabe and Nayar [14], spectral energy was spread over 

a broad range of frequencies within the acceptable frequency range of the defocus 

condition (see Figure (5.14a)). Hence this pattern was used as a generalised pattern to 

determine the bit-widths at each stage and also to provide a useful accuracy 

comparison between the Matlab output and the FPGA output.  

The filter coefficients designed by the Two Step Polynomial Approach were real 

valued numbers and hence to use them on the available hardware, they needed to be 

transformed into integers. Since multiplication and division operations can be 

effectively implemented on the hardware using shift and add operators, the filter 

coefficients were scaled by a factor of 2
n 

where n was chosen by comparing the RMS 

error estimates between the scaled variant of the frequency response of the filter 
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(computed after convolving with the impulse function) and the 64 bit Matlab output. 

Figure (5.15) shows the response of the pre-filter for four possible values of n and 

Table 5.1 illustrates the RMS error values. From the RMS error values the scaling 

factor of the filter coefficients was chosen to be 13 for both pre-filter and the rational 

filter coefficients. 

The generalised block diagram of the pipelined DFD architecture implemented on 

the FPGA is shown in Figure (5.16). Table 5.2 provides a comparison between four 

design models in terms of the bit-width requirement at each stage, the scaling factor 

of the filter coefficients, the percentage of logic required for the implementation of 

the model, and the RMS error between the 64 bit Matlab depth output and the 10 bit 

FPGA output.  Here, the final output from the pipelined processor was chosen to be 

10 bits (9 bit data with 1 sign bit), since the depth maps recovered from the patterns 

considered for the experiments fall within this range. Moreover, in-terms of accuracy 

and logic usage, the choice of having a 10 bit output seemed reasonable. Experiments 

were performed with the pattern shown in Figure (5.13) which was defocused for a 

normalised depth of 0.99. The variables A, B, C, D, E, F, G and H in Figure (5.16) 

represented the bit-widths at each stage of the pipelined architecture. From Table 5.2, 

it can be inferred that Model 3 required less logic support and also provided 

acceptable depth accuracy when compared with the 64 bit Matlab output; hence bit- 

widths related to Model 3 were chosen for the implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15:  Comparison between Matlab frequency response and the scaled frequency response of 

the pre-filter 

 

Frequency 
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Table 5.1:  RMS error for different scaling factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Generalised block diagram showing bit-widths at each stages of the pipelined processor 

 

Coefficient Scaling,  

n 

RMSE for a pre-filter of 

width 13 

2^12 0.69 

2^13 0.69 

2^14 3.31 

2^15 5.69 
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Table 5.2:  Bit-width requirement for the four models considered along with the chip area used, and 

the RMSE between Matlab and FPGA depth outputs 

 

 

 

 

 

 

 

Model  

 

 

 

Coefficient. 

scaling 

 

 

 

A 

bits 

 

 

 

B  

bits 

 

 

 

C 

bits 

 

 

 

D 

bits 

 

 

 

E 

bits 

 

 

 

F 

bits 

 

 

 

G 

bits 

 

 

 

H 

bits 

 

Chip 

area 

required 

by the 

logic as 

a % of 

chip 

area  

 

RMSE 

between 

Matlab 

and 

FPGA  

outputs 

 

 

Model 1 

Pre-filter - 

 2^13  

Rational 

Filter – 

2^13 

 

8 

 

16 

 

32 

 

16 

 

32 

 

16 

 

32 

 

32 

 

78% 

 

0.9505 

For 10 

bit  

output 

 

 

Model 2 

Pre-filter - 

 2^13  

Rational 

Filter – 

2^15 

 

8 

 

10 

 

23 

 

16 

 

32 

 

16 

 

32 

 

24 

 

59% 

 

0.9512 

For 10 

bit  

output 

 

 

Model 3 

Pre-filter - 

 2^13  

Rational 

Filter – 

2^13 

 

8 

 

13 

 

26 

 

16 

 

32 

 

16 

 

32 

 

20 

 

50% 

 

0.9505 

For 10 

bit  

output 

 

 

Model 4 

Pre-filter - 

 2^13  

Rational 

Filter – 

2^13 

 

8 

 

13 

 

26 

 

16 

 

32 

 

16 

 

32 

 

20 

 

50% 

 

0.9526 

For 8 bit  

output 
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5.5. Design of Experiment  

 

The proposed DFD algorithm was coded for the Virtex 2P FPGA using the Hardware 

Descriptive Language, VHDL. The behavioural and the structural models were 

synthesized using Xilinx ISE 10.1 and the generated net-list was targeted for the 

XC2VP30 Virtex device. The data clock frequency was chosen as 12.5 MHz since, at 

that rate, a 400 x 400 pixel resolution image can be processed within 25ms. The 

clock source also controls the systolic movement of the input data through the 

pipelined architecture enabling an output every 80ns. To provide parallel and 

synchronous movement of the input data through the two parallel channels of the 

designed module, a multiplexer module operating at twice the data clock rate was 

used to accesses the input data (defocused images) from the external SRAM. In a 

practical implementation, a two CCD sensor system would be employed to acquire 

the defocused images and hence would not require any image storage.  

Based on the results of the experiments with test patterns (Section 5.4), Model 3 was 

implemented on the FPGA and the bit-widths provided in Table 5.2 were used.  The 

shift registers were implemented using D flip-flops and FIFOs, and the pipelined 

divider modules were implemented using the modules provided by the Xilinx ISE. 

The output from the divider module was stored in the on-chip RAM and then 

transferred to the desktop PC through the UART interface. The delays present at 

each stage of the pipelined architecture were estimated using the simulation, and 

these are listed in Table 5.3. The delays listed contribute to the latency and not to the 

data throughput. The time taken to process a frame of 400 x 400 pixels was 13.06ms 

and hence a total of 76.56 frames of size 400 x 400 can be processed in one second 

and, thus the processor operates at video rate. Though the entire block diagram 

shown in Figure (5.8) was implemented on the Virtex 2P device, the depth 

measurements related to the linear depth model (  ) results have been displayed for 

the simulated and real images in the next Section. A combined depth result with 

linear (  ) and error corrected depth outputs (
3 ) would require the usage of a pre-

computed lookup table, the implementation of which is currently under study. 
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 Input Stage 

File /Ram 

Pre-filter 

Stage 

Rational 

Filter Stage 

Smoothing 

Stage 
Divider Stage 

Delay in 

clock cycles 

 

4 

 

1207 

 

1207 

 

802 

 

26 

 

Table 5.3:  Delays at each stage of the pipelined architecture based on the simulation report 

 

5.6. Experiments with Simulated and Real Images 

 

 The Section describes the detailed experimental analyses that were performed to 

estimate the accuracy of the depth measurements obtained from the pipelined 

processor described in Section 5.3. Here, for simulated images, the pattern devised 

by Watanabe [14] (shown in Figure (5.13)) was used as the test pattern. The reason 

for choosing the test pattern is explained in Section 5.4.  For simulated images, the 

Pill- box psf was used as the defocus operator. Section 5.6.1 illustrates the depth map 

resolved from the test pattern when defocused for the maximum normalised depth 

 = 0.99. Section 5.6.2 shows the depth map recovered from the pattern when 

simulated as a 3D depth staircase structure and Section 5.6.3 illustrates the depth 

map recovered from a real checkerboard image acquired using the defocused 

condition pixels
Fe

e
307.2 . For the simulated images, four different depth 

comparison results are provided:- (1) Matlab 64 bit post-filtered depth map which 

included both linear and error corrected depth estimates; (2) Matlab fixed point 

(truncated) post-filtered linear depth output where the bit-widths at each filter stage 

are set according to the FPGA bit-widths (refer to model 3 in Table 5.2); (3) FPGA 

10 bit linear depth output without  post-filtering;  and (4) FPGA 10 bit with post-

filtered output. For the real images a comparison between Matlab and FPGA output 

has been provided. Here a 9x9 median filter was employed as the post-filter. It 

should be noted that the post-filtering operation has been performed using Matlab. 
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5.6.1. Result for the Simulated Images defocused for the maximum normalised depth 

 

In this Section, the test pattern was contained in a plane perpendicular to the optical 

axis and defocused for the maximum normalised depth,  = 0.99. The near and the 

far-focused images are shown in Figure (5.17). The recovered 64 bit Matlab post- 

filtered depth map and the Matlab truncated depth output are shown in Figures 

(5.18a) and (5.18b) respectively. The 10 bit FPGA depth maps with and without the 

post-filtering operation are shown in Figure (5.19a) and (5.19b). The statistical 

results for the four different depth estimates are provided in Table 5.4. These results 

were calculated from a local area of 38x38 pixels obtained across the depth map.  

 

 

                    

  Figure 5.17:  Near and far-focused images of the pattern        

 

 

 

   Figure 5.18a:  Matlab 64 bit depth output                                       

                         with post-filtering 

Figure 5.18b:  Matlab truncated output with post-  

                       filtering         
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Figure 5.19a: FPGA depth map without post-

filtering 

 

Figure 5.19b: FPGA depth map with post-

filtering 

  

Statistical 

results from a 

local area of 

38x38 pixels.  

Matlab 64 bit 

post-filtered linear 

and error corrected 

output 

Matlab truncated  

post-filtered linear 

depth output 

FPGA  linear 

depth output 

without post- 

filtering 

FPGA linear 

depth output with 

post-filtering 

Mean 0.9743 1.0244 1.011 1.019 

Std. Deviation 0.0087 0.0706 0.238 0.0606 

Variance 7.5e-3 0.005 0.0566 0.0037 

 

Table 5.4: Comparison between Matlab and FPGA depth outputs 

 

Table 5.4 provides a comparison between the Matlab and the FPGA outputs. It can 

be inferred that the FPGA provided acceptable depth accuracy but the resolved depth 

map was not as smooth and flat as the Matlab 64 bit output. The reason can be 

attributed to:- (1) The FPGA output provides only the linear depth output whereas 

Matlab 64 bit output provides both linear and error corrected depth result; (2) 

Rounding errors present at each stage of the pipelined architecture and the scaling 

factor used to scale the filter coefficients; and (3) The lack of texture at the bottom 

part test pattern can be related to the unstable depth estimates that are clearly visible 

in the form of spikes on the recovered depth map. It can be also verified that the 

post-filtered output based on the median filter provided a smooth depth result. 

Currently, investigation is underway to implement a median filter on the FPGA. 
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5.6.2. Experiment with a simulated 3D scene 

 

In this experiment the test pattern was simulated as a 3D staircase structure with four 

different normalised depths. Again, the pattern was contained in a plane 

perpendicular to the optical axis and was defocused using the Pillbox psf.  The four 

normalised depths used were 0.2, 0.5, 0.8 and 0.99. Here 0.2 represented the nearest 

depth and 0.99 the furthest.  The near and far-focused images are shown in Figure 

(5.20). It should be noted that the test pattern was defocused such that the well 

textured top part represented the nearest depth. This was done to validate the 

accuracy of the depth estimates for the poor textures placed further away from the 

camera. The recovered 64 bit Matlab depth output and Matlab truncated output are 

shown in Figures (5.21a) and (5.21b) respectively. The FPGA outputs with and 

without the post-filtering process are shown in Figures (5.22a) and (5.22b). The grey 

scale depth outputs of Matlab and FPGA are shown in Figure (5.23). The statistical 

results obtained from a local area of 61x 361 pixels are provided in Table 5.5. 

 

 

 

Figure 5.20: Near and far-focused images 
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Figure 5.21a:  Matlab 64 bit depth map              

with post-filtering  

Figure 5.21b:  Matlab truncated depth map                                        

with post-filtering                                                

 

 

 

Figure 5.22a:  FPGA depth map without post 

filtering   

Figure 5.22b: Depth map with post filtering   

 

 

 

Figure 5.23: Gray scale post-filtered depth map estimated from Matlab (left) and FPGA (right) 
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Depth estimated 

from 
 Depth 1 = 0.2 Depth 2 = 0.5 Depth 3 = 0.8 Depth 4 = 0.99 

Matlab 64 bit 

post-filtered 

linear and error 

corrected output 

Mean 0.1931 0.4832 0.7830 0.9691 

Std.Dev. 0.0025 0.0048 0.0073 0.0118 

Var. 6.14e-5 2.32e-5 5.35e-5 1.4e-4 

Matlab truncated  

post-filtered 

linear depth 

output 

Mean 0.194 0.4979 0.83 1.09 

Std.Dev. 0.007 0.0115 0.027 0.102 

Var. 4.4e-5 1.3e-4 7.3e-4 0.0105 

FPGA  linear 

depth output 

without post- 

filtering 

Mean 0.1936 0.4983 0.8402 1.0146 

Std.Dev. 0.0326 0.0542 0.1064 0.446 

Var. 0.011 0.0029 0.0113 0.1994 

FPGA linear 

depth output with 

post-filtering 

Mean 0.1941 0.4976 0.8305 1.06 

Std.Dev. 0.0073 0.0114 0.0265 0.09 

Var. 5.29e-5 1.29e-4 6.97e-4 0.085 

 

 Table 5.5: Comparison between Matlab and FPGA depth outputs 

 

From the above Table, it can be inferred that for the normalised depths 0.2 and 0.5 

the recovered depth map from the processor was comparable to Matlab‟s 64 bit 

output, but for the depths at 0.8 and 0.99, the depth maps were quite noisy. As 

explained earlier, since the FPGA output provides only the linear depth estimates that 

do not accurately map the 
P

M
 curves at greater distances, this leads to the less 

accurate depth measurements. Further, the lack of enough texture at the bottom of the 

pattern and the errors due to rounding also add to the reduction in the depth accuracy. 

The post-filtered output clearly shows the 3D stair case structure which is 

comparable to the Matlab output. 

 

5.6.3. Experiment with a Real Checkerboard Image 

 

A checkerboard pattern was placed at a distance of 770mm from the lens and two 

defocused images were captured based on the defocused condition pixels
Fe

e
307.2 .  

The near-focused was at 800mm and far-focused at 744mm. The resolved depth 
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maps for the Matlab 64 bit output and for the FPGA output, with and without post- 

filtering operations are shown in Figures (5.24) and (5.25) respectively. Table 5.6 

provides a comparison between the Matlab and FPGA outputs obtained from a local 

area of 38 x 38 pixels. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Matlab 64 bit post-filtered depth map   

 

 

Figure 5.25: FPGA depth map without post-filtering (left) and with post-filtering (right) 

 

Depth output 

calculated from 38x38 

pixels 

Matlab 64 bit post-

filtered linear and error 

corrected output 

FPGA  linear depth 

output without post- 

filtering 

FPGA  linear depth 

output with post- 

filtering 

Estimated Depth in mm 769.129 768.883 769.095 

RMS error in mm 1.97 6.2929 1.969 

 

Table 5.6: Comparison between Matlab and FPGA depth outputs 
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The depth outputs without median filtering show a prominent artefact similar to the 

texture of the checkerboard pattern. The reason for these artefacts as explained in 

Section 5.3 was due to the low spectral power within the acceptable range of the 

defocus condition, and hence the depth has been recovered by considering the 

disparity between the edges. When the depth map was post-filtered the artefacts 

become less visible and provide higher depth accuracy as shown in Table 5.6. It can 

also be inferred from the Table that there is no significant difference between the 

FPGA and the Matlab results. More depth estimation results for arbitrary objects 

with natural textures are presented in the next chapter. 

 

Conclusion 

 

The chapter described a procedure to implement the DFD algorithm on a Virtex 2P 

FPGA device. The researched software program required five 2D convolutions to be 

processed in parallel and these convolutions were effectively implemented on the 

hardware using the Triangular method described in Section 5.2. Four design models 

were considered for implementation, and the model with acceptable accuracy and 

minimum logic usage was implemented as described in Sections 5.3 and 5.4. The 

synthesis report that describes the logic usage in terms of multipliers, RAM blocks, 

LUT etc. is presented in Appendix 6. The depth estimation results along with the 

comparison with the 64 bit Matlab outputs are provided in Section 5.6. It can be 

inferred from the results that the 10 bit FPGA outputs are comparable to the Matlab‟s 

64 bit outputs and that both required post-processing operations to restore the 

smoothness of the depth estimates. Currently, the hardware implementation of a 

median filter, optimised for speed is under study [72] [109]. The implemented model 

(Model 3) used 50% of the available chip logic, and processed a frame of size 400 x 

400 pixels in 13.06ms with an acceptable accuracy as presented in Table 5.2. The 

processing time and the errors due to rounding could be reduced further if more 

advanced FPGA devices (Virtex 4) were used.  
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Introduction 

 

The chapter provides the depth estimation results and 3D shapes that were recovered 

using the filters designed by the Two Step Polynomial Approach (refer to chapter 4). 

It should be noted that a similar experiment was presented in chapter 4, but these 

results were based on a real checkerboard pattern. Later, in chapter 5, it was observed 

that for a checkerboard pattern, the spectral information was present only at edges or 

as single frequency sinusoids. Hence to determine the depth accuracy and to verify 

the invariance of the filters to different textures, experiments were performed on 

natural objects with arbitrary textures. All these experiments are based on the 

defocus condition pixels
Fe

e
307.2 . A 50mm photographic quality lens with an 

external aperture diameter set to 6.5mm was used. The near and the far-focused 

images were at 800mm and 744mm. Based on Appendix3, the working range was 

calculated to be 56mm. To increase the depth accuracy a calibration procedure 

described in Section (6.1) was adopted. The Section also presents depth calculation 

results of a randomised textured pattern: sand paper, and a comparison between the 

depth estimates obtained using the filters designed by the Two Step Polynomial 

Approach and Watanabe‟s filters. The depth results related to non-planar objects are 

presented in Section 6.2. For all the experiments, the actual depth measurements and 

the corresponding measurement errors are also presented. Finally, Section 6.3 

illustrates the shape recovered from complex objects incorporating both arbitrary and 

homogeneous textures. These depth results include a 3x3 Gaussian smoothing 

operation. A comparison between Matlab depth outputs and FPGA depth outputs is 

also provided for Sections 6.2 and 6.3.  

 

6.1. Experiment with a random textured natural pattern: Sand Paper  

 

This Section provides depth estimation results of a natural sand paper pattern (Figure 

(6.1a)) contained in a plane perpendicular to the optical axis.  The pattern also served 

as the reference pattern to calibrate the system since the PSD plot (Figure (6.1b)) 

showed enough spectral density within the acceptable frequency range of the defocus 

condition. A simple calibration procedure was adopted to ensure that the estimated 

normalised depth falls within -1 and +1, where -1 referred to the far-focused image 
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and the +1 to the near-focused. To achieve this, the pattern was first placed at the 

farthest point and two images were captured: - (1) A focused image, corresponding 

to the furthest distance, 800mm; and (2) A defocused image, corresponding to the 

nearest distance, 744mm. The two images were processed and their depth estimates 

were analysed. If the normalised depth was -1, for image (1), then the calibration was 

perfect, else small adjustments are required. A similar experiment was carried out 

with image (2). In practice this one time calibration adjustment provided an increase 

in the accuracy of the depth measurements. It should be noted that for experiments in 

Sections 6.2 and 6.3, the sand pattern was used as the background. 

 

 

     

             Figure 6.1a: Sand paper pattern                   Figure 6.1b: PSD plot of the sand paper pattern  

 

To determine the accuracy of the setup, the sand paper pattern was moved along the 

optical path between 800mm and 744mm, and a pair of defocused images was 

recorded at every 10mm interval. The captured images were processed using the 64 

bit Matlab program. The normalised mean depth was mapped to real world 

coordinates using the Gaussian lens law.  The depth estimation results for the filters 

designed by the Two Step Polynomial Approach and for Watanabe‟s filters were 

compared, and shown in Figure (6.2a). The RMS error plot at each distance is 

presented in Figure (6.2b). From the plots it can be seen that the depth estimates for 

both the filters are reasonably linear. The RMS errors for the new filters were 

9.489mm and 6.8717mm at the furthest and the nearest distance respectively. These 

correspond to 1.186% and 0.9236% with respect to the distance compared to 1.547% 

and 1.258% for Watanabe‟s filters.  From these results it can be inferred that the 
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filters designed using the Two Step Polynomial Approach provided an improved 

accuracy compared to Watanabe‟s filters for these natural textures. The next Section 

provides depth results for 3D objects with natural textures. 

 

 

Figure 6.2a: Actual vs. Estimated distance (mm Figure 6.2b: RMSE vs. Actual distance (mm) 

 

 

6.2. Experiments with 3D structures 

 

This Section provides depth estimation results for real 3D objects with different 

natural textures. These objects were custom made to set dimensions and thus enable 

accuracy estimation. Sections 6.2.1 and 6.2.2 present depth measurements of single 

and multi-step staircase structures made from mild steel. Section 6.2.3 describes the 

3D shape recovered from a Cross like structure made from natural wood. For these 

experiments, three different depth comparison results are presented: - (1) Matlab 64 

bit post-filtered depth map which includes both linear and error corrected depth 

estimates; (2) Matlab fixed point (truncated) post-filtered linear depth output where 

the bit-widths at each filter stage are set to the corresponding FPGA bit-width (refer 

to model 3 in Table (5.2)); and (3) FPGA 10 bit post-filtered linear depth output. 
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6.2.1. Depth estimation results for the 3D, single step staircase structure 

 

A steel gauge of thickness 10mm was contained in a plane perpendicular to the 

optical axis and placed in a way to provide a sharp change in depth. The Sand paper 

was used as the background. Figures (6.3) and (6.4) show the scene under 

investigation along with the near and far-focused images.  

 

 

 

Figure 6.3: 3D view of the scene and its corresponding real image 

 

 

Figure 6.4: Near and far-focused images 

 

The recovered 64 bit Matlab post-filtered depth map and the Matlab truncated depth 

map are shown in Figure (6.5a) and (6.5b) respectively. The 10 bit post-filtered 

FPGA depth map is shown in Figure (6.5c). The statistical analysis corresponding to 

the local depth is provided in Table 6.1. 

Depth 1 

Depth 2 
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Figure 6.5a: 64 bit Matlab post-processed output  Figure 6.5b: Matlab truncated post-processed 

output 

 

 
 

Figure 6.5c: FPGA post-processed output 

 

 

 

Table 6.1: Comparison between Matlab and FPGA depth outputs 

 

 

Depth output from 

 

Results obtained from 

Depth1= 201x 141 pixels 

Depth2= 101x 201 pixels. 

 

Depth1: 

800mm 

  

Depth2: 

790mm. 

Matlab 64 bit post-filtered 

linear and error corrected 

output. 

Estimated distance in mm 810.57 793.604 

Error in mm +10.57 +3.604 

Matlab truncated  post-

filtered linear depth output 

Estimated distance in mm 810.803 794.269 

Error in mm +10.803 +4.269 

FPGA linear depth output  

with post- filtering 

Estimated distance in mm 810.803 793.936 

Error in mm +10.803 +3.936 
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From the above Table, it can be inferred that the pipelined processor provides depth 

measurements comparable to Matlab‟s depth output. It can be also verified that the 

designed filters are indeed texture invariant and can be effectively used to recover the 

depth information from natural textures as shown in Figures (6.5a, b and c). The 

percentage depth error using the FPGA processor was +1.35% at 800mm and +0.49 

% at 790mm. This error is comparable to Matlab 64 bit depth output.  

 

6.2.2. Depth estimation results for the 3D, Multi-step staircase structure 

 

In this experiment three mild steel gauges of thickness 10mm were placed to form a 

staircase structure as shown in Figure (6.6). The mild steel gauges have different 

reflectance patterns and hence different textures. The near and far-focused images 

are shown in Figure (6.7) and the resultant depth maps for the 64 bit Matlab post-

filtered depth map and the Matlab truncated depth map are shown in Figures (6.8a) 

and (6.8b) respectively. The 10 bit post-filtered FPGA depth map is shown in Figure 

(6.8c). Detailed statistical analysis corresponding to the local depth are provided in 

Table 6.2. 

 

 

 
 

 

Figure 6.6: 3D view of the scene and its corresponding real image 
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Figure 6.7: Near and far-focused images  

 

 

 

 

 

 

 

 

 

 

 

                   Figure 6.8a: 64 bit Matlab post-processed output 

 

 

 
 

Figure 6.8b: Matlab truncated post-processed 

output         

Figure 6.8c: FPGA post-processed output 
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Table 6.2: Comparison between Matlab and FPGA depth outputs 

 

It can be seen from the Figures that the depth estimates are fairly stable except at the 

edges and at regions of high reflectance, the homogenous texture as seen on Depth 3. 

The sharp spikes seen on the edges are mainly due to the shadowing effects that can 

be overcome with suitable lighting. The poor depth estimation at homogenous areas 

is a known drawback of passive depth measurement techniques which can be 

improved by using external illumination (Active method). The statistical results 

presented in Table 6.2 illustrate that the pipelined processor provides depth 

measurements comparable to the Matlab‟s 64 bit output. 

 

6.2.3. Depth estimation results for the 3D Cross Structure 

  

In this Section, a wooden Cross like structure was contained in a plane perpendicular 

to the optical axis as shown in Figure (6.9). The thickness at each leg of the cross are 

presented in Table 6.3. The near and far-focussed images are shown in Figure (6.10). 

The sand paper texture was used as the background.  

The depth results are shown in Figures (6.11 a, b and c). It can be verified, that the 

depth measurement using the pipelined processor was reasonably accurate and 

comparable to Matlab‟s output. The recovered shape was quite smooth and hence 

proves that the depth recovery using the designed filters has not been affected by the 

scene‟s texture. The depth measurement result for each leg of the wooden structure 

Depth estimated  

by 

 Results calculated  

from 301x70 pixels 

Depth 1 = 

800mm 

Depth 2 = 

790mm 

Depth 3 = 

780mm 

Depth 4 = 

790mm 

Matlab 64 bit 

post-filtered linear 

and error 

corrected output 

Estimated distance 

in mm 
811.96 795.6 780.353 770.46 

Error in mm +11.96 +5.6 +0.353 +0.461 

Matlab truncated  

post-filtered linear 

depth output 

Estimated distance 

in mm 
812.427 796.045 780.417 770.2535 

Error in mm +12.427 +6.045 +0.4175 +0.2535 

FPGA linear depth 

output with post- 

filtering 

Estimated distance 

in mm 
812.195 795.378 780.140 770.2535 

Error in mm +12.195 +5.378 +0.140 +0.2535 
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are presented in Table 6.3. The maximum depth error was +8.955mm at the furthest 

distance and -4.66mm at the nearest point. These results are comparable to the RMS 

error estimates for the sand paper pattern presented in Section 6.1. 

 

 
 

                       Figure 6.9: 3D view of the scene and its corresponding real image 

 

 
 

           Figure 6.10: Near and far-focused images 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

Figure 6.11a: 64 bit Matlab post-processed output 

 

 

Depth 1 

Depth 2 Depth 3 

Depth 4 
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Figure 6.11b: Matlab truncated post-processed 

output        

Figure 6.11c: FPGA post-processed output 

 

 

 

 

 

 
Table 6.3: Comparison between Matlab and FPGA depth outputs 

 

 

 

 

 

 

 

 

 

Depth estimated  by 

 Results calculated from  

Depth1=100x300 pixels 

Depth2&3=100x60 

pixels 

Depth4=100x150 pixels 

Depth 1 

= 

800mm 

Depth 2 = 

785.1mm 

Depth 3 = 

785.1mm 

Depth 4 = 

765.5mm 

Matlab 64 bit post-

filtered linear and 

error corrected output 

Estimated distance in 

mm 
808.95 792,94 791.61 761.642 

Error in mm +8.956 +7.842 +6.51 -3.858 

Matlab truncated  

post-filtered linear 

depth output 

Estimated distance in 

mm 
809.186 794.712 793.162 760.429 

Error in mm +9.186 +9.6125 +8.0629 -5.0709 

FPGA linear depth 

output with post- 

filtering 

Estimated distance in 

mm 
808.955 793.39 792.942 760.833 

Error in mm +8.955 +8.283 +7.842 -4.666 
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6.3. Shape recovery from complex scenes 

 

This Section provides depth estimation results for objects with arbitrary shapes and 

textures. Here, the depth results obtained from the pipelined processor are post- 

filtered using a 9x9 Median filter and then smoothed using a 3x3 Gaussian filter. As 

before, the post-filtering and the smoothing operations are performed using Matlab. 

Section 6.3.1 presents depth results related to a wooden object that resembles a 

temple and Section 6.3.2 shows the shape recovered from arbitrary scene made from 

sponge. These experiments provide a comparison process of the recovered shapes 

from the Matlab and FPGA processes. 

 

6.3.1. Shape recovery of the wooden temple 

 

The wooden temple shown in Figure (6.12) was placed perpendicular to the optical 

axis and two defocused images were captured. As before the far-focused image was 

at 800mm and near-focused at 744mm. The defocused images are shown in Figure 

(6.13). The depths recovered using Matlab and FPGA are shown in Figures (6.14a) 

and (6.14b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.12: Wooden temple used in the experiment 
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Figure 6.13: Near and far-focused images 

 

 
 

Figure 6.14a: Matlab depth map with  3x3 

Gaussian smoothing                                                                                                   

Figure 6.14b: FPGA depth map with 3x3 

Gaussian smoothing 

 
 

6.3.2. Shape recovery from a complex scene made from sponge 

 

The test scene made from a sponge and the corresponding defocused images are 

shown in Figures (6.15) and (6.16) respectively. The test scene, due to its 

homogenous texture, posed a challenge for a reliable depth estimation using the 

designed filters. The recovered depth maps using Matlab and FPGA are presented in 

Figures (6.17a) and (6.17b) respectively. 
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Figure 6.15: Sponge structure used in the experiment 

 

 

Figure 6.16: Near and far-focused Images 

 

 

Figure 6.17a: Matlab depth map with                               

                   3x3 Gaussian smoothing 

Figure 6.17b: FPGA depth map with 3x3 

Gaussian smoothing 
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The recovered depth maps clearly distinguish the objects placed at different depths 

and hence the homogeneity of the scene‟s texture does not seem to interfere with the 

depth recovery process. Though the depth maps are smoothed using a 3x3 Gaussian, 

there are still a few random bumps present in the final depth map. These could be 

minimised by increasing the bit-widths at each stage of the filtering process. Further, 

the depth accuracy can be improved by applying both the Linear and Error corrected 

models. 

 

Conclusion 

 

The chapter provided experimental results for 3D planar and non planar objects with 

natural textures. These results proved that the designed filters were indeed texture 

invariant and hence can be effectively employed for depth estimation and shape 

recovery of natural objects. The maximum % RMS error with respect to distance for 

a flat Sand paper texture was 1.18% for the filters designed by the Two Step 

Polynomial Approach and 1.54% for the Watanabe‟s filters (refer to Section 6.1). For 

3D objects the maximum absolute error measured was 12mm for the steel step 

gauge. Experimental results with 3D arbitrary objects (refer Section 6.3) suggested 

that further smoothing of the depth estimates using a 3x3 Gaussian filter provided a 

more reliable depth map. At present the post-processing (Median filtering and 

Gaussian smoothing) operations of the FPGA depth map were performed using 

Matlab. Steps are underway to implement these in hardware. Further, the depth maps 

presented in Sections 6.2 and 6.3 verified that the pipelined processor provided depth 

estimates comparable to Matlab‟s 64 bit depth output. The accuracy of the depth 

measurement can be improved by considering:- (1) An increase in the bit-widths at 

each filtering stage to reduce the rounding errors; and (2) Implementing a lookup 

table to compute the depth results based on both linear (  ) and error corrected depth 

( 3 ) outputs. These improvements require a larger chip area and hence more 

advanced FPGA device. 
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Introduction  

 

The report presents a monocular technique capable of estimating depth in real-time. 

The technique employed the passive variant of the DFD method, and recovered depth 

from two differently focused images. The research work can be categorized into 

three Sections: - (1) Estimation of Image Magnification using Phase Correlation; (2) 

The design of Rational filters using Two Step Polynomial Approach; and (3) FPGA 

Implementation of the DFD algorithm. The chapter summarises the research work 

and recommends avenues for further improvement.  

 

7.1. Estimation of Image Magnification using Phase Correlation  

 

The DFD method requires two images. The simplest way is to capture images with 

different focus settings, but this would result in an undesirable change in 

magnification between the defocused images. An optical method referred as 

telecentric optics was employed by Watanabe and Nayar [41] to reduce the 

magnification variations. In chapter 3, an algorithm using a Phase Correlation 

technique was employed to estimate the magnification change between the images 

and also to optimally position the telecentric aperture.   

 

7.1.1. Analysis and contributions of the research work 

 

Watanabe and Nayar [41] introduced an aperture stop at the front focal plane of the 

lens that provided an accurate registration between the two defocused images in-

terms of magnification. To estimate the magnification, they employed a FFT phase 

based local shift detection technique, which involved fitting a plane to the phase ratio 

of the spectra. However, Foroosh and Zerubia [29] in their general paper claimed that 

the above procedure would render inaccurate results since it was based on fitting a 

plane to the noisy phase data. Therefore a simple and a more robust method was 

required to estimate the magnification change. This problem was subsequently 

addressed in this research work where a novel method based on the Phase 

Correlation [29] [87] principle was adopted to estimate the magnification.  
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The algorithm considered the radial shifts due to magnification as analogous to the 

translation of a local sub-block. First the collective shifts due to magnification and 

translation for each individual sub-block was calculated and then the global 

translation estimated from the centre sub-block was used to correct the translations of 

the non-central sub-blocks. Once the translations were corrected the radial shifts due 

to magnification were visible and able to be estimated in isolation. Further, the 

accuracy of the system was increased by considering sub-pixel displacements along 

the x and y directions. A detailed description of the algorithm along with 

experimental results for simulated and real images are presented in Sections 3.4 and 

3.6 of chapter 3. From these experiments, for a conventional DFD system without an 

external aperture, the maximum absolute radial shifts measured were 4.48 pixels 

along the column and 4.83 pixels along the row, but reduced to less than a pixel 

(0.1524 and 0.8194 pixels) with the inclusion of the telecentric aperture. Hence, 

telecentric optics ensured pixel to pixel registration between the defocused images. 

In practice the algorithm was used to position the aperture correctly at the front focal 

plane and also to provide a translation correction factor for the given experimental 

setup. 

 

7.1.2. Future Work  

 

The procedure described to determine the focal plane in chapter 3 would only 

provide an approximate position of the front focal plane for a set distance (working 

range); since it involved manual adjustments of the screen that contained the screw 

thread and the multi-leaf adjustable aperture (refer to Figure 3.6). To increase the 

accuracy of determining the correct focal plane for different set distances, a 

motorised system is required that controls both the focus setting and the rotational 

moment of the screw thread. The idea here is to first determine the approximate 

position of the front focal plane using the conventional method, and then to measure 

the magnification shifts obtained from a sequence of images acquired on either side 

of the approximate position. In practice, this is achieved by slight adjustment of the 

screw thread from its approximate position, and capturing the two defocused images 

corresponding to the near and the far-focused positions. The images are processed for 

shift detection using the algorithm explained in chapter 3. The measured shifts would 

be plotted and the position of the screw thread corresponding to the minimum radial 
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shift would provide the optimal front focal plane. A pictorial description of the 

procedure is explained in Figure (7.1). The horizontal axis provides the information 

of the screw position and the vertical axis presents the estimated radial shifts. The 

optimum focal position can be accurately determined by considering the screw thread 

position corresponding to the minimum radial shift.  

 

 

 

 

 

 

 

 

 

Figure 7.1: Pictorial representation for finding the optimum front focal plane 

 

7.2. Design of Rational filters by the Two Step Polynomial Approach  

  

DFD methods based on the frequency domain approach [1] [2] [6] estimate the depth 

by considering the amplitude ratio of the defocused images at a particular radial 

frequency. Watanabe and Nayar [14] provided an improvement. They considered the 

amplitude ratio between the differences of amplitude of the defocused images to the 

sum (
M

P
 ratio), and developed a set of broadband filters that accurately modelled the  

M

P
 ratio curves. The main advantages of this method were: - (1) Higher accuracy in 

depth estimation, the RMS error reported was 1.2% with respect to distance; (2) 

Invariance to scene texture; and (3) A feasible hardware implementation. The main 

drawback of the method was the complicated and poorly described design procedure 

to model the rational filters for any given defocus condition. It should be noted that 

none apart from Watanabe and Nayar [14] have either reproduced the filters or 

supplemented their work. Further, Watanabe and Nayar have not verified how well 

their designed filters fit the theoretical 
M

P
ratio curves, and have provided a set of 
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filters modelled for a single defocus condition pixels
Fe

e
307.2 . In this report, the 

above problems have been addressed. A novel method referred as the Two Step 

Polynomial Approach was employed to model the rational filters for any given 

defocus condition. The algorithm and the experimental results are presented in 

chapter 4. 

 

7.2.1. Analysis and contributions of the research work 

 

The design procedure based on the Two Step Polynomial model was simple and 

elegant, and provided a better fit to the theoretical 
M

P
 ratio than Watanabe‟s filters 

(refer to Sections 4.3 and 4.5). Tests with simulated single frequency sinusoidal 

patterns ( = 3.2 and  = 0.99) provided a mean depth error of 0.0454 and standard 

deviation of 0.0128 for the proposed method, and 0.3615 and 0.2008 for Watanabe‟s 

model. From the depth results shown in Figure (4.13b), it can be inferred that the 

proposed model generated a much smoother depth map. With Watanabe‟s filters, a 

predominant artefact was seen, which is mainly due to the non-circularity of the 

filters. Experiments with simulated textures have proved that the designed filters are 

indeed texture invariant, and that the filters designed by the new model provide a 

better fit to the actual depth ( refer to Section 4.7). Tests with real checkerboard 

patterns (for a defocus condition of 2.307 pixels) returned an RMS error of 0.6122% 

at the far-focused and 0.6516% at near-focused positions, for the proposed method. 

For Watanabe‟s filters these errors were comparatively higher; 0.9321% and 

0.98425% respectively (refer to experiment 1 of Section 4.8). For arbitrary natural 

textures (Sand paper) the errors were slightly higher (Section 6.1). For the filters 

designed by the Two Step Polynomial Approach the RMS error with respect to the 

distance was 1.186% at the far-focused and 0.9236% at the near-focused points, 

compared to 1.547% and 1.258% for Watanabe‟s filters. From these results it can be 

inferred that the filters designed by the proposed method estimated the depth with a 

higher accuracy. Moreover, the design procedure explained in Section 4.3 can be 

effectively applied for any defocus conditions by simply modelling the psf.  
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7.2.2. Future Work  

In chapter 4, the rational filter coefficients were obtained by modelling the 
M

P
 ratio 

as a linear combination of the three filters, Gm1. Gp1 and Gp2.    

Hence, 31 2
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

vuGm

vuGp
 represents the error correction model,  and   denote the actual and 

the estimated depth, and u, v are the frequencies in the horizontal and vertical 

directions respectively. Here, the 
M

P
 ratio was modelled as a cubic polynomial [14], 

and the filters coefficients were determined by considering the linear and the error 

correction models, described by the Two Step Polynomial Approach (Section 4.3).  

An improvement over the existing method would be to model the 
M

P
 ratio using a 

higher order polynomial. For example a fifth order polynomial (equation 7.2) would 

provide a much closer fit to the theoretical 
M

P
 ratio, but this would require an 

additional refinement filter Gp3. 

So, 5
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Now, the filter design procedure is based on: - (1) Determining the Linear filters Gm1 

and Gp1; (2) Determining error correction filter Gp2, by calculating the error between 

the actual and the linear model, and fitting a cubic error function to it; and (3) 

Determining the refinement filter Gp3, by fitting a fifth order polynomial to the error 

difference between the actual and error corrected model. Although the above model 

would provide an improvement to the depth accuracy, it would in-turn increase the 

overall processing time of the application. Further, from the point of implementation, 

the DFD algorithm would require more chip area, since the refinement filter Gp3 

requires additional logic.  
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The next improvement in the filter design would be to accurately measure the psf of 

the lens. Here, for the given defocus condition the discrete 
M

P
 ratio space was 

determined based on the Pillbox psf. However, Claxton and Staunton [49] observed 

that the Generalised Gaussian model provided a close fit to the actual psf of the lens. 

They reported that the psf model fitted using the Generalised Gaussian function 

performed 8 times better than the Gaussian psf and 14 times better than the Pillbox 

psf. Hence, the discrete 
M

P
 ratio space determined from a more accurate psf model 

could provide a considerable improvement in the depth accuracy. 

 

7.3. FPGA implementation of the DFD algorithm 

 

The objective of the research work was to develop a real-time depth recovery system. 

Pentland [3], Nayar [13], and Whelan [77] have developed video rate range sensors, 

that were based on Active DFD. Though real-time implementation was not 

presented, Leroy et al. [60] have claimed to have developed a passive range system 

capable of estimating an 800 x 600 pixel depth map in 23ms. The drawbacks 

reported were the influence of the image texture and the edge density on the 

recovered depth map. Therefore, a prototype passive DFD system which is 

insensitive to image texture, and can recover depth in real-time would ideally 

supplement the existing research. In chapter 5, the DFD algorithm based on [14] was 

effectively implemented on a Virtex 2P FPGA. The depth recovery results and their 

comparison to a full precision Matlab output have been presented in Sections 5.6, 6.2 

and 6.3.        

 

7.3.1. Analysis and contributions of the research work 

 

The DFD algorithm required five 2D convolutions to be processed in parallel. A two 

channel five stage pipelined architecture (shown in Figure 5.8) was effectively used 

to implement the DFD algorithm on the FPGA. The pipelined processor processed a 

depth map of 400 x 400 pixels in 13.06ms. The number of multipliers required at 

each stage of the filtering process was reduced from 49 to 10 (79.5% reduction) by 
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adopting the Triangular design procedure (Section 5.2.1). Four different design 

models were considered for implementation, and Model 3 (Section 5.4) was 

implemented since it provided acceptable depth accuracy with minimum chip usage 

(50%). Experiments with simulated and natural textures suggested that the pipelined 

processor provided depth maps comparable to Matlab‟s depth output. Further, since 

the designed filters were texture invariant, the recovered depth maps were less 

influenced by the scene‟s texture.    

 

7.3.2. Future Work  

 

The existing pipelined processor can be further improved to provide more accurate 

depth measurements. The suggested improvements are:- (1) To employ a pre-

computed lookup table that provides an error corrected depth result for each pixel, 

determined by combining the linear (  ) and error corrected depth outputs ( 3 ); (2) 

The rounding errors present at each stage of the pipelined processor can be reduced 

further by increasing the bit-widths at each filtering stage; and (3) The scaling factor 

and the bit-widths of the filter coefficients can be increased to provide a higher 

precision. Finally, the DFD program based on the pipelined architecture executes 

above video rate (13.06ms), but still the image acquisition and the display remain 

non-real-time. To enable a real-time depth recovery, a DAQ (Data Acquisition 

board) board capable of capturing and outputting image data at 12.5MHz is a 

requirement. The input video would comprise two channels for the near and far-

focused images. A beam splitter could be used with two CCDs and different path 

lengths (focus) to provide these (see figure (2.2)). The DFD process would operate at 

the video rate on the FPGA, and the depth output could be scaled and converted to 

video for display on a TV monitor. 

 

7.4. Overall Conclusion 

 

A DFD system capable of presenting depth information in real-time would find its 

usage in industrial and medical applications. In machine vision systems, DFD 

techniques can be used for segmenting objects based on the depth levels and also in 

controlling the movements of a robotic arm say on automatic welding inspection 
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system or in a computerized car assembly centre. In medical applications, a video 

rate DFD system could be employed in endoscopy and in tele-surgery (remote 

surgery). In an endoscopic application the DFD system would provide a complete 3D 

visual inspection of the internal organs. For example a visual inspection of a tumour 

through a normal endoscope would provide information about the size of the tumour 

(area information) but not its height. Using a 3D endoscope, the volumetric data of 

the tumour is available for analysis. This additional information would be helpful in 

identifying the nature of the tumour (malignant or benign) and planning its treatment. 

The other areas where a DFD system would find its usage include: - (1) 3D Face 

recognition systems for Biometric security checks; (2) Virtual reality systems to 

create 3D characters and for segmenting the objects from the background; and (3) 

Metrological systems to provide high precision measurements.   

To further increase the depth accuracy, a hybrid system incorporating the three main 

depth recovery techniques (Stereo, Focus and Defocus) can be employed. Subbarao 

et al. [107] has attempted a depth recovery system that integrated the above 

techniques. The algorithm first computed a rough estimate of the depth (intermediate 

depth map) using DFD and DFF. Later, stereopsis was used to provide a more 

accurate 3D shape of the object. The intermediate depth map efficiently reduced the 

overall computation time of the stereo algorithm, since the correspondence matching 

was reduced to a narrow image region determined by the approximate shape. The 

processing time required to compute a depth map of 640 x 480 pixels was about 

3min on a desktop PC, but this could be reduced further if dedicated hardware was 

used.  Abbot and Ahuja [108] have combined focus, camera vergence and stereo to 

develop a stereo-camera imaging system. Here DFF and camera vergence provided 

the coarse depth map (intermediate depth map), which was later refined by 

stereopsis. Although the integration of stereo, DFF and DFD can increase the 

accuracy of the depth estimates, more elaborate investigation is required to identify 

the relative strengths and weaknesses of the individual techniques. This, in turn, 

would pave the way in the future to develop a more robust depth measurement 

system.    
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Appendix 1 

 

Weighting Function used for the Rational Filters designed by the 

Two Step Polynomial Approach 

 

To ensure smoothness and to minimise the depth estimation error a 2D polynomial 

was fitted to the frequency response of the low pass filter Gm1, using the weighting 

function 
1

1

1

( )
( )

( ; ) ( )

r
m r

r r

KGm f
g f

P f Gp f



 -- (A11) described in [14], where K=1. 

 The filter Gp1 was modelled as a LOG filter, ))(1exp()()( 22

1

peak

r

peak

r
r

f

f

f

f
fGp  , and 

peakf = 0.4fnyquist. The added image ( ; )rP f   can be approximated as
1

( ; )r n

r

P f
f

  . 

Here the radial frequency 2 2

rf u v   and n the fractal dimension was 2.5. From 

the Linear Model Gm1 can be computed as, 1
1

( )

( )

r

r

Gp f
Gm

A f
  where A(fr)was the 

gradient function. 

Substituting the values in A11, we get 

2.51

1

1

( )
.

( )

( )

r
r

r

m

r

Gp f
f

A f
g

Gp f


 
 
  -- (A12) 

Cancelling the effect of Gp1 we get 
2.5

1
( )

r
m

r

f
g

A f
   -- (A13). 

Thus the frequency samples are weighted using 
1mg  to ensure smoothness, and 

with minimum depth error. 

For Gp2 all the coefficients were equally weighted at 1. 
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Appendix 2 

 

Pre-filter Weighting Function 

 

The pre-filter designed by Watanabe [14] was a LOG filter based on the equation  

2 2( ) ( ) exp(1 ( ) )r r
r

peak peak

f f
prefilter f

f f
  ,where 1max 0.246f pxiel and   

max0.4peakf f . By experimentation it was found that when the 1max 0.74f pxiel , 

the prefilter had a smoother transition compared to Watanabe‟s [14], and therefore 

largely avoided the Gibbs effect. 
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Appendix 3 

 

Necessary Conditions for Setting up the Working Distance for Depth 

Estimation using Rational Filter 

 Designed by a Two Step Polynomial Approach 
 

f    -    Focal length of the lens in mm 

Fe -    f-number of the lens 

d -     Diameter of the aperture in mm 

2e -    Distance between the near and far-focused images in mm 

pixsize- Pixel size of the camera (7.4μm for our AVT Guppy Monochrome camera 

and 13μm for Watanabe camera) 

ks – Size of the kernel (7 pixels) 

Diameter of the lens aperture d = 
f

Fe
 mm. 

Defocus condition (blur circle radius) = 
*

e

Fe pixsize
  pixels. 

Minimum Frequency that could be resolved by the filter
2

ks


1pixel . 

 

Maximum Frequency that could be resolved
*

0.73*
Fe pixsize

e


1pixel . 

 

Maximum Blur Circle Diameter, 
2

0.73
e

ks
Fe

 pixels . 

 

An increase in Fe   gives an increase in the working distance  

An increase in pixel size   gives an increase in the working distance  

A decrease in the focal length of the lens gives an increase in the working distance  
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Example Setup for the AVT Guppy with a 50mm lens for defocus condition 

2.307 pixels 

 

 

 

 

 

 

 

 

     

    Defocus  

   Condition 

 

e 

in 

pixels 

 

   Fe 

1

2
min

s

fr
k

pixel



 

1

max 0.73
Fe

fr
e

pixel



 

Max blur 

diameter 

2
0.73 s

e
k

Fe

pixel



 

 

Near 

Focuss

ed 

Distanc

e 

 

Far 

Focuss

ed 

distanc

e 

pixels
Fe

e
307.2

 

Focal length, f= 

50mm 

Kernel size ks=7 

Aperture 

diameter 6.5mm 

 

 

17.74

6 

 

 

7.692

3 

 

 

0.2857 

 

 

0.3164 

 

 

4.1614 

 

 

744mm 

 

 

 

 

 

 

800mm 
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Appendix 4 

 

Offset Correction 

 

An offset correction along the principal axis was required, since it was difficult to 

mark the exact centre of the compound lens, which is the origin to which the depth 

measurements refer.  The procedure here was to set the Far-Focussed object distance 

relative to a known scale using a slip-gauge and to estimate the depth at different 

distances within the depth of field. Once the relative depth measurement had been 

found a correction offset factor was calculated by fitting a straight line such that the 

midpoint of the depth of field had „zero‟ normalised depth. The correction factor can 

be positive or negative and in practice if the correction factor is positive the far-

focussed distance is increased and if it is negative decreased. Once the offset 

correction was completed the depth measurement experiment was performed and the 

results recorded. 
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Appendix 5 

Review of the DFD Techniques 

 

Single Image Passive DFD Methods 

 

Author Technique Accuracy, merits and 

demerits 

  

Pentland [1] 

Spatial Domain – Edge Based 

Used Laplacian to determine the maximum 

rate of image intensity at the edges 

 1.25 cm was reported by 

Grossman. Can recover depth only 

at edges and requires prior 

knowledge of the scene 

 

 

Subbarao and 

Gurumoorthy 

[5] 

Spatial Domain – Edge Based 

The spread of the line spread function 

(LSF), measured from the second central 

moment (standard deviation distribution of 

the LSF) was linearly related to the inverse 

distance 

Accuracy not reported. 

The method works well on isolated 

edges and causes depth estimation 

errors in presence of other edges. 

 

Lin and Gu [69] 

Spatial Domain – The amount of blurring 

was estimated from the distribution of  

pixel intensity estimated using a histogram  

 RMS error less than 3% when the 

furthest point was at 1200mm. 

Required a pre-calibrated 

mathematical model to relate the 

blur radius to the actual distance 

Namboodiri and 

Chaudhuri [67] 

 

Statistical Technique - based on 

inhomogeneous reverse heat equation that 

estimated the blur information and depth 

perception using a single image. 

Accuracy not reported. 

The results were compared to 

Favaro‟s multiple image diffusion 

model. 

 

 

Multi-Image Passive DFD Methods 

 

Author Technique Accuracy, merits and 

demerits 

Pentland [1][2] Frequency Domain- based on comparing 

the focal error between images taken with 

different aperture settings 

2.5% standard error over 1 cubic 

meter. 

Assumed one of captured image to 

be compete focused which required 

a pin-hole camera 



 161 

Subbarao  and 

his research 

associates [6] 

[7] [8] [10] 

Frequency Domain Approaches 

 

1. Based on estimating the spread 

parameter using Power Spectral Density. 

 

2. Based on calculating the 1D Fourier 

Coefficients as in 1D DFD method, where 

the blur parameter estimated from the LSF 

was used an index for a look-up table that 

provided a calibrated psf modelled either 

as Gaussian or Pillbox.  

Spatial Domain Approaches 

 

1. Based on STM ( Spatial Domain 

Convolution Deconvolution Transform) 

 

2,Based on inverting a Shift Variant Blur 

Model using Rao Transform  

 

1. Relaxed Pentland‟s requirement 

of a pinhole aperture and recovered 

depth by considering two images 

(which may or may not be focused) 

acquired with different camera 

settings.  

2. Accuracy of 3.7% RMS for auto-

focusing applications over a distance 

of 0.6meters to infinity. For ranging 

application, the RMS error was 4% 

at 0.6 meter and linearly increased 

to 30% RMS error at 5 meter 

distance 

 

1. Percentage error in terms of 

distance was about 2.3% at 0.6 

meter and it linearly increased to 

about 20% at the 5 meter distance. 

2. With simulated images suggested 

a maximum error of 3% with respect 

to the distance.  

Ens and 

Lawrence 

[12] 

Spatial Domain – Based on Matrix 

Regularization Approach 

RMS error of 1.3%. The 

disadvantages of the method are that 

it was based on smoothness 

assumption and it was 

computationally intensive 

Xing and Shafer 

[50] [54] 

Frequency Domain approach based on 

Moment and Hyper geometric narrow band  

filters  

Results were 27 times better than 

Subbarao‟s frequency domain 

approach. From the computational 

perspective, the filters required more 

logic support, hence not suitable for 

practical implementation. 

Watanabe and 

Nayar [14] 

Frequency  Domain Approach based on 

Rational Filters 

An improvement over the existing 

techniques was provided my 

considering the normalised M/P 

ratio. Four 7x7 texture invariant 

filters were designed to retrieve the 

depth. 

Magnification variations between 

the defocused images were corrected 
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using Telecentric optics  

Accuracy reported was between 0.5 

and 1.2% with respect to the 

distance from the lens. 

Can be implemented for real time 

depth estimation. 

Chaudhuri and 

his research 

associates [18] 

[19] [48] 

[78][79] 

 

Statistical Approach: 

1. Applied the Space Frequency 

Representation to the problem of depth 

defocus and modelled the shift variant 

blurring image using the complex 

spectrogram (CS) and pseudo-Wigner 

(PWD) distribution 

. 

2. Algorithm based on Markov Random 

Field (MRF) with Simulated Annealing 

Technique. 

 

1.RMSE reported was 4.84% for the 

scene whose farthest point was at 

115 cm from the lens surface 

 

2. Simultaneously recovered the 

depth information and the radiance 

of the scene. RMS error was 1.96%  

when the furthest distance was at 

96.6cm 

 3.Algorithm based on the linear diffusion 

heat model where the blurring related to 

the diffusion coefficient was modelled as 

using Markov Random Field 

Accuracy not reported but results 

with real images suggested better 

results than Favaro‟s model [68]  

  

Favaro and his 

research 

associates [44] 

[45][64]  

 

Statistical Approach: 

1.Iterative method based on Information 

Divergence 

2. Optimization method considering 3D 

shape and radiance recovery as a finite 

dimensional optimization problem 

3. Algorithm based on Matrix 

Multiplication using Singular Value 

decomposition (SVD). 

The depth map along with the radiance of 

the object was recovered. 

4. Algorithm based on Anisotropic 

diffusion heat equation. 

 

Fourier Domain Approach 

1.Based on modelling a 3D psf and 

applying SVD in the frequency domain  

 

 

1.No theoretical results were 

presented. 

 

2. Considered the blurring model as 

a shift variant process but no 

theoretical results were presented 

3. the depth error reported 27 mm 

for a scene placed between 520mm 

and 850mm 

4. Depth maps recovered are 

favourable and the algorithm can be  

employed for 3D shape 

segmentation 

 

No theoretical results  were 

presented  The depth and the 

radiance of the scene were 

recovered quite accurately  
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Deschenes and 

his research 

associates [15] 

[21] [22] [61] 

 

Spatial domain approach- based on 

Subbarao „S‟ transform method 

1.Model based on local image 

decomposition using higher order Hermite 

Polynomials 

 

 

 

 

2.Algorithm based on considering the 

spatial errors involved during image 

acquisition process 

3. Algorithm based on determining the 

magnitude of the blurred edges.  

 

1.Obervesed „S‟ transform was only 

capable of estimating depth at line 

edges and hence extended 

Subbarao‟s  work using Hermite 

Polynomials to estimate depth 

junction like L, V, T, Y and X . 

Accuracy reported was 2.21%  for a 

planar object whose furthest point 

was at 125 cm. 

2. Accuracy reported was 1.68% 

with depth density of 100. 

3. The maximum mean depth error 

reported was 20.05mm between a 

working range of 790mm and 

990mm with real time depth 

computation at 23ms.The main 

drawback of the method was the 

influence of the edge density and the 

characteristic of the image textures 

on the accuracy of the estimated 

depth. 

Simon and his 

research 

associates [58] 

Spatial domain method similar to 

Subbarao, by comparing the gradient ratio 

between a thick and a thin edge 

No theoretical results were provided 

but acquisition of a sharp image was 

required external lighting, this 

drawback was overcome by using 

three image, but this introduced 

additional complexity in image 

acquisition process 

Choi et al.  and 

Hor et al. [55] 

[56] [57] 

Algorithms were based on Wavelet 

transform  

Choi et.al  reported for planar 

slanted object the depth recovered 

using wavelets had a lower RMS 

error of 0.8181cm when compared 

to other methods; Fourier, Spatial 

and Laplacian., where the RMS 

errors were 2.119 cm, 1.3251 cm 

and 1.8517 cm respectively. The 

working range of the experiments 

was between 150 cm and 180 cm. 

Swain et al.  

[86] 

A method based on Fuzzy Logic was 

suggested to improve the accuracy of the 

Accuracy reported was depth error 

of less than 1.5% over a working 
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depth estimates. range of 7 feet (2133mm) to 11 feet 

(3352mm)  

Drawbacks (1) Test images should 

contain high frequencies (2) the 

window selected for depth 

estimation should have a single 

depth and (3) the membership 

function of the fuzzy logic are 

required to be tuned for different 

camera settings, which was time 

consuming and  based on trial and 

error. 

McCloskey et 

al. [62] 

Algorithm based on reverse correlation 

principle 

The RMS error in terms of absolute 

depth for the simulated images was 

between 0.4% and 0.8 %. Results 

with dense depth maps were not 

presented for real image.  

 

 

Baba et al. [63] Algorithm based on zoom changes  Experiments were performed only 

on edges,  with multiple targets 

placed at several depths provided a 

maximum error 1945.9mm when the 

target was at 3000 mm.  

 

Active DFD methods 

 

Author Technique Accuracy, merits and demerits 

Pentland and his 

research associates 

[3] 

Single image technique based on 

Frequency Domain, where the 

„hump energy „of defocused pattern 

was compared with the known 

focused pattern. 

RMS error of 0.5% was reported for 

planar stationary object and 5% for 

rolling golf ball example 

 Nayar and his 

research associates 

[13]  

Frequency domain Technique 

Two defocused images were used 

and the tuned focus operator 

(Laplacian) was employed to 

respond to the single dominant 

frequency of the projected pattern 

Accuracy of 0.3% RMS error with 

respect to distance. 

Involved extensive optimization and 

expensive fabrication techniques to 

determine the optimum  pattern 

Developed a real-time range sensor 
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capable of estimating depth at 30 

frames per second 

Ghita and Whelan 

[70] [76] 

 

Frequency domain Technique 

Based on Watanabe‟s method but 

employed interpolation methods 

and avoided the pattern fabrication 

method suggested by Nayar et.al. 

The lowest accuracy achieved was 

3.4% normalized with respect to the 

distance. A bin picking system based 

on active depth from defocus technique 

was presented 

 

Li Ma and Staunton 

[71] 

Method based on Artificial Neural 

Networks. 

The object was first isolated from 

its background and the depth was 

estimated using a three layered 

neural network designed using the 

Back-Propagation algorithm. 

The model was trained with 

checkerboard images but it effectively 

recovered the depth map of images 

with natural textures. High resolution 

data was used by the authors to 

maximize the depth accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 166 

Appendix 6 

 

FPGA Simulation Report based on Xilinx ISE 10.1 
 

============================================================

============= 

*                            Final Report                               * 

============================================================

============= 

Final Results 

RTL Top Level Output File Name     : topmod.ngr 

Top Level Output File Name         : topmod 

Output Format                      : NGC 

Optimization Goal                  : Speed 

Keep Hierarchy                     : NO 

 

Design Statistics 

# IOs                              : 65 

 

Cell Usage: 

# BELS                             : 21738 

#      GND                         : 32 

#      INV                           : 86 

#      LUT1                        : 686 

#      LUT2                        : 1668 

#      LUT2_L                    : 15 

#      LUT3                        : 2534 

#      LUT3_L                    : 28 

#      LUT4                        : 4948 

#      LUT4_D                   : 29 

#      MULT_AND            : 246 

#      MUXCY                    : 6013 

#      MUXF5                     : 43 

#      VCC                          : 32 

#      XORCY                     : 5378 

#      Flip-Flops/Latches     : 7609 

#      FD                          : 1695 

#      FDC                         : 319 

#      FDCE                        : 1210 

#      FDE                         : 1551 

#      FDP                         : 260 

#      FDPE                        : 1437 

#      FDR                         : 1092 

#      FDS                         : 45 

#      RAMS                       : 29 

#      RAMB16_S36_S36  : 29 

# Shift Registers                  : 34 

#      SRL16                       : 26 

#      SRL16E                      : 8 
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# Clock Buffers                    : 1 

#        BUFGP                       : 1 

#    IO Buffers                       : 32 

#         OBUF                        : 32 

#   MULTs                            : 120 

#   MULT18X18                   : 75 

#  MULT18X18S                  : 45 

============================================================

============= 

 

Device utilization summary: 

--------------------------- 

 

Selected Device: 2vp30ff896-7  

 

 Number of Slices:                           6899  out of  13696    50%   

 Number of Slice Flip Flops:            7609  out of  27392    27%   

 Number of 4 input LUTs:               10028  out of  27392    36%   

 Number used as logic:                     9994 

 Number used as Shift registers:       34 

 Number of IOs:                               65 

 Number of bonded IOBs:                33  out of    556     5%   

 Number of BRAMs:                         29  out of    136    21%   

 Number of MULT18X18s:              120  out of    136    88%   

 Number of GCLKs:                         1  out of     16     6%   

 

--------------------------- 

Partition Resource Summary: 

--------------------------- 

 

  No Partitions were found in this design. 

 

--------------------------- 

 

 

================================= 
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Appendix 7: Sub-pixel Estimation - Derivation 

Consider two images f1(x,y) and  f2(x,y) with a sub-pixel shift 0x

M
,

0y

N
obtained by 

down-sampling a high resolution image by factors M and N along x and y axes, then 

the normalised Cross Power Spectrum of the two images with their Fourier 

Transforms, F(u,v) and F(u,v)exp(-i(ux0+vy0))  is defined as [29]  

            
1 1

0 0

0 0

2 2
( , ) ( , )exp( ( , ))

M N

mn

m n

u m v m
C u v h u v i x y

M N

  

 

 
   --- (A7.1)  
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f

M Nh
u m v n

f
M N

 

  

 

 


 


 

The inverse transform of the of C(u,v) yields a Dirchlet function which closely 

approximates a sinc function [29]. Therefore, 

    
0 0

0 0

sin( ( )) sin( ( ))
( , )

( ) ( )

Mx x Ny y
C x y

Mx x Ny y

 

 

 


 
------------- (A7.2) 

Now if the signal power along the x-axis is concentrated between the coordinates 0,0 

and 1,0,  then  

0 0
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   Dividing A7.4 by A7.3, 

     
0 0

0 0

sin( ( )(1,0)

(0,0) sin( ) ( )

M x xC

C x M x

 

 





---------------- (A7.5) 

Rearranging  

0 0

0 0

(1,0)sin( ) sin( ( )

(0,0) ( )

C x M x

C x M x

 

 





 ---- (A7.6) 

using sin( ) sin sin cos sinA B A B A B    we get 0 0sin( ( )) sinM x x    , where 

M=1,2,3.. Taking x0 common we have     

 0 (0,0) (1,0) (1,0)x C C MC  --- (A7.7). Therefore the sub-pixel shift 

0 (1,0)

(0,0) (1,0)

x C
x

M C C
  


------- (A7.7) 
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