398 research outputs found

    Satellite-based Cloud Remote Sensing: Fast Radiative Transfer Modeling and Inter-Comparison of Single-/Multi-Layer Cloud Retrievals with VIIRS

    Get PDF
    This dissertation consists of three parts, each of them, progressively, contributing to the problem of great importance that satellite-based remote sensing of clouds. In the first section, we develop a fast radiative transfer model specialized for Visible Infrared Imaging Radiometer Suite (VIIRS), based on the band-average technique. VIIRS, is a passive sensor flying aboard the NOAA’s Suomi National Polar-orbiting Partnership (NPP) spacecraft. This model successfully simulates VIIRS solar and infrared bands, in both moderate (M-bands) and imagery (I-bands) spatial resolutions. Besides, the model is two orders of magnitude faster than Line-by-line & discrete ordinate transfer (DISORT) method with a great accuracy. The second and third parts are going to investigate the retrieval of single-/multi- layer cloud optical properties, especially, cloud optical thickness (τ) and cloud effective particle size (De) with different methods. By presenting the comparison between results derived from VIIRS measurements and benchmark products, potential applications of Bayesian and OE retrieval methods for cloud property retrieval are discussed. It has proved that Bayesian method is more suitable for single-layer scenarios with fewer variables with fast speed, while Optimal Estimation method is superior to Bayesian method for more complicated multi-layer scenarios

    A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land

    Get PDF
    Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target (DT) algorithm for GOSAT CAI was developed based on the strategy of the Moderate Resolution Imaging Spectroradiometer (MODIS) DT algorithm. When retrieving AOD from satellite platforms, determining surface contributions is a major challenge. In the MODIS DT algorithm, surface signals in the visible wavelengths are estimated based on the relationships between visible channels and shortwave infrared (SWIR) near the 2.1 µm channel. However, the CAI only has a 1.6 µm band to cover the SWIR wavelengths. To resolve the difficulties in determining surface reflectance caused by the lack of 2.1 μm band data, we attempted to analyze the relationship between reflectance at 1.6 µm and at 2.1 µm. We did this using the MODIS surface reflectance product and then connecting the reflectances at 1.6 µm and the visible bands based on the empirical relationship between reflectances at 2.1 µm and the visible bands. We found that the reflectance relationship between 1.6 µm and 2.1 µm is typically dependent on the vegetation conditions, and that reflectances at 2.1 µm can be parameterized as a function of 1.6 µm reflectance and the Vegetation Index (VI). Based on our experimental results, an Aerosol Free Vegetation Index (AFRI2.1)-based regression function connecting the 1.6 µm and 2.1 µm bands was summarized. Under light aerosol loading (AOD at 0.55 µm < 0.1), the 2.1 µm reflectance derived by our method has an extremely high correlation with the true 2.1 µm reflectance (r-value = 0.928). Similar to the MODIS DT algorithms (Collection 5 and Collection 6), a CAI-applicable approach that uses AFRI2.1 and the scattering angle to account for the visible surface signals was proposed. It was then applied to the CAI sensor for AOD retrieval; the retrievals were validated by comparisons with ground-level measurements from Aerosol Robotic Network (AERONET) sites. Validations show that retrievals from the CAI have high agreement with the AERONET measurements, with an r-value of 0.922, and 69.2% of the AOD retrieved data falling within the expected error envelope of ± (0.1 + 15% AODAERONET)

    Cross-Calibration of S-NPP VIIRS Moderate Resolution Reflective Solar Bands Against MODIS Aqua over Dark Water Scenes

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and 7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity

    Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument

    Get PDF
    NASA’s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) satellite mission is scheduled to launch in 2022, with the Ocean Color Instrument (OCI) on board. For the first time reflected sunlight from the Earth across a broad spectrum from the ultraviolet (UV: 350 nm) to the short wave infrared (SWIR: 2260 nm) will be measured from a single instrument at 1 km spatial resolution. While seven discrete bands will represent the SWIR, the spectrum from 350 to 890 nm will be continuously covered with a spectral resolution of 5 nm. OCI will thus combine in a single instrument (and at an enhanced spatial resolution for the UV) the heritage capabilities of the Moderate resolution Imaging Spectroradiometer (MODIS) and the Ozone Monitoring Instrument (OMI), while covering the oxygen A-band (O2A). Designed for ocean color and ocean biology retrievals, OCI also enables continuation of heritage satellite aerosol products and the development of new aerosol characterization from space. In particular the combination of MODIS and OMI characteristics allows deriving aerosol height, absorption and optical depth along with a measure of particle size distribution. This is achieved by using the traditional MODIS visible-to-SWIR wavelengths to constrain spectral aerosol optical depth and particle size. Extrapolating this information to the UV channels allows retrieval of aerosol absorption and layer height. A more direct method to derive aerosol layer height makes use of O2A absorption methods, despite the relative coarseness of the nominal 5 nm spectral resolution of OCI. Altogether the PACE mission with OCI will be an unprecedented opportunity for aerosol characterization that will continue climate data records from the past decades and propel aerosol science forward toward new opportunities

    Sharpening ECOSTRESS and VIIRS Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances

    Get PDF
    Land surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g., 100 m for Landsat 8) than surface reflectance (SR) data collected from shortwave bands on the same instrument (e.g., 30 m for Landsat). Spatial sharpening of LST data using the higher resolution multi-band SR data provides an important path for improved agricultural monitoring at sub-field scales. A previously developed Data Mining Sharpener (DMS) approach has shown great potential in the sharpening of Landsat LST using Landsat SR data co-collected over various landscapes. This work evaluates DMS performance for sharpening ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST (~70 m native resolution) and Visible Infrared Imaging Radiometer Suite (VIIRS) LST (375 m) data using Harmonized Landsat and Sentinel-2 (HLS) SR data, providing the basis for generating 30-m LST data at a higher temporal frequency than afforded by Landsat alone. To account for the misalignment between ECOSTRESS/VIIRS and Landsat/HLS caused by errors in registration and orthorectification, we propose a modified version of the DMS approach that employs a relaxed box size for energy conservation (EC). Sharpening experiments were conducted over three study sites in California, and results were evaluated visually and quantitatively against LST data from unmanned aerial vehicles (UAV) flights and from Landsat 8. Over the three sites, the modified DMS technique showed improved sharpening accuracy over the standard DMS for both ECOSTRESS and VIIRS, suggesting the effectiveness of relaxing EC box in relieving misalignment-induced errors. To achieve reasonable accuracy while minimizing loss of spatial detail due to the EC box size increase, an optimal EC box size of 180–270 m was identified for ECOSTRESS and about 780 m for VIIRS data based on experiments from the three sites. Results from this work will facilitate the development of a prototype system that generates high spatiotemporal resolution LST products for improved agricultural water use monitoring by synthesizing multi-source remote sensing data

    Vicarious Methodologies to Assess and Improve the Quality of the Optical Remote Sensing Images: A Critical Review

    Get PDF
    Over the past decade, number of optical Earth observing satellites performing remote sensing has increased substantially, dramatically increasing the capability to monitor the Earth. The quantity of remote sensing satellite increase is primarily driven by improved technology, miniaturization of components, reduced manufacturing, and launch cost. These satellites often lack on-board calibrators that a large satellite utilizes to ensure high quality (e.g., radiometric, geometric, spatial quality, etc.) scientific measurement. To address this issue, this work presents “best” vicarious image quality assessment and improvement techniques for those kinds of optical satellites which lacks on-board calibration system. In this article, image quality categories have been explored, and essential quality parameters (e.g., absolute and relative calibration, aliasing, etc.) have been identified. For each of the parameters, appropriate characterization methods are identified along with its specifications or requirements. In cases of multiple methods, recommendation has been made based-on the strengths and weaknesses of each method. Furthermore, processing steps have been presented, including examples. Essentially, this paper provides a comprehensive study of the criteria that needs to be assessed to evaluate remote sensing satellite data quality, and best vicarious methodologies to evaluate identified quality parameters such as coherent noise, ground sample distance, etc

    Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017

    Get PDF
    The Global Climate Observing System (GCOS) has specified the need to systematically generate andvalidate Land Surface Temperature (LST) products. This document provides recommendations on goodpractices for the validation of LST products. Internationally accepted definitions of LST, emissivity andassociated quantities are provided to ensure the compatibility across products and reference data sets. Asurvey of current validation capabilities indicates that progress is being made in terms of up-scaling and insitu measurement methods, but there is insufficient standardization with respect to performing andreporting statistically robust comparisons.Four LST validation approaches are identified: (1) Ground-based validation, which involvescomparisons with LST obtained from ground-based radiance measurements; (2) Scene-based intercomparisonof current satellite LST products with a heritage LST products; (3) Radiance-based validation,which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity;(4) Time series comparisons, which are particularly useful for detecting problems that can occur during aninstrument's life, e.g. calibration drift or unrealistic outliers due to undetected clouds. Finally, the need foran open access facility for performing LST product validation as well as accessing reference LST datasets isidentified

    PACE Technical Report Series, Volume 4: Cloud Retrievals in the PACE Mission: PACE Science Team Consensus Document

    Get PDF
    Earth is a complex dynamical system exhibiting continuous change in its atmosphere, ocean,and surface elements. Nearly all (99.97%) of the energy driving these systems is linked to the Sun. Measurements of reflected sunlight contain a unique signature of wavelength-specific scattering and absorption interactions occurring between incoming solar energy and atmospheric (molecules, aerosols,clouds) and surface features Clouds can affect significantly both shortwave and long wave radiation, depending on altitude/vertical structure, thermodynamic phase, and optical properties. Low, warm, and optically thick clouds predominantly have a cooling effect, while high, cold, optically thin clouds can cause warming by absorbing warmer radiation emitted from the surface and lower atmosphere.When the net difference between outgoing and incoming solar radiation is matched by the net infrared radiation emitted to space, the Earth's climate is in radiative balance. While radiative forcing components (GHGs, aerosols - direct and indirect) contribute to a net radiative imbalance, climate sensitivity is ultimately determined by the contribution of various system feed backs. The role of cloud feedback in a warming climate is currently the largest inter-model uncertainty in climate sensitivity and therefore in climate prediction [Bony and Dufresne 2005]. A comprehensive understanding of current cloud propertiesand dynamic/microphysical processes requires a global perspective from satellites
    corecore