
South Dakota State University South Dakota State University 

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional 

Repository and Information Exchange Repository and Information Exchange 

Electronic Theses and Dissertations 

2020 

Vicarious Methodologies to Assess and Improve the Quality of the Vicarious Methodologies to Assess and Improve the Quality of the 

Optical Remote Sensing Images: A Critical Review Optical Remote Sensing Images: A Critical Review 

Sakib Kabir 
South Dakota State University 

Follow this and additional works at: https://openprairie.sdstate.edu/etd 

 Part of the Electrical and Computer Engineering Commons, and the Remote Sensing Commons 

Recommended Citation Recommended Citation 
Kabir, Sakib, "Vicarious Methodologies to Assess and Improve the Quality of the Optical Remote Sensing 
Images: A Critical Review" (2020). Electronic Theses and Dissertations. 5006. 
https://openprairie.sdstate.edu/etd/5006 

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research 
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses 
and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional 
Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu. 

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=openprairie.sdstate.edu%2Fetd%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1192?utm_source=openprairie.sdstate.edu%2Fetd%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/5006?utm_source=openprairie.sdstate.edu%2Fetd%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


 

 

VICARIOUS METHODOLOGIES TO ASSESS AND IMPROVE THE QUALITY 

OF THE OPTICAL REMOTE SENSING IMAGES: A CRITICAL REVIEW 

page 

 

 

 

 

 

 

 

 

 

 

 

By 

SAKIB KABIR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirement for the 

Master of Science 

Major in Electrical Engineering 

South Dakota State University 

2020 



ii 

THESIS ACCEPTANCE PAGE  

 

 

This thesis is approved as a creditable and independent investigation by a candidate for 

the master’s degree and is acceptable for meeting the thesis requirements for this degree.  

Acceptance of this does not imply that the conclusions reached by the candidate are 

necessarily the conclusions of the major department. 

 

      

      

 

 

 

 

    

 

      Advisor       Date 

 

 

   

   

   

    

     

     Department Head      Date 

 

 

    

    

     Nicole Lounsbery, PhD  

Director, Graduate School     Date 

 

Sakib Kabir

Larry Leigh

Siddharth Suryanarayanan



iii 
 

 

ACKNOWLEDGEMENTS 

I would like to thank my advisor, Mr. Larry Leigh, for giving me the opportunity 

to work on this project. I appreciate his time, effort, and guidance to complete this 

thesis. I would also express my gratitude to Dr. Dennis Helder for guidance and 

encouragement to complete this task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

CONTENTS 

ABSTRACT………………………………...………………………….…………...…v 

INTRODUCTION……….…………………………………………………….…...….1 

IMAGE QUALITY OF EARTH OBSERVING SATELLITE……………………..…4 

QUALITY PARAMETERS AND METHODS….……………………………………9 

CONCLUSIONS……………….………………………...……………………….….67 

REFERENCES……………….…………………………….……………………..….68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

ABSTRACT 

 

VICARIOUS METHODOLOGIES TO ASSESS AND IMPROVE THE QUALITY 

OF THE OPTICAL REMOTE SENSING IMAGES: A CRITICAL REVIEW 

SAKIB KABIR 

2020 

 

Over the past decade, number of optical Earth observing satellites performing remote 

sensing has increased substantially, dramatically increasing the capability to monitor 

the Earth. The quantity of remote sensing satellite increase is primarily driven by 

improved technology, miniaturization of components, reduced manufacturing, and 

launch cost. These satellites often lack on-board calibrators that a large satellite 

utilizes to ensure high quality (e.g., radiometric, geometric, spatial quality, etc.) 

scientific measurement. To address this issue, this work presents “best” vicarious 

image quality assessment and improvement techniques for those kinds of optical 

satellites which lacks on-board calibration system. In this article, image quality 

categories have been explored, and essential quality parameters (e.g., absolute and 

relative calibration, aliasing, etc.) have been identified. For each of the parameters, 

appropriate characterization methods are identified along with its specifications or 

requirements. In cases of multiple methods, recommendation has been made based-on 

the strengths and weaknesses of each method. Furthermore, processing steps have 

been presented, including examples. Essentially, this paper provides a comprehensive 

study of the criteria that needs to be assessed to evaluate remote sensing satellite data 

quality, and best vicarious methodologies to evaluate identified quality parameters 

such as coherent noise, ground sample distance, etc.    
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1. INTRODUCTION 

Over the past few decades, technological advancement dramatically reduced 

the size and cost of microelectronics. This drives commercial companies to build and 

launch a constellation of satellites (e.g., planet cubesat constellation, SkySat 

constellation, etc. [1,2]) that are capable of image the entire Earth in a single day. 

These satellites are not only playing an important role in monitoring global 

environmental change but also detecting disasters such as forest fires, volcanoes, 

earthquakes and oil spills [3,4]. To use the data from any Earth observing satellites, 

accurate radiometric and geometric calibration, and high spatial quality, in terms of 

minimal blurring, aliasing, etc., should be ensured. For instance, crop health 

observation, yield prediction and ocean color monitoring require accurate radiometric 

quantity such as radiance or reflectance, meanwhile object identification in remotely 

sensed image sometimes requires high spatial resolution. Additionally, high geometric 

accuracy, specifically multi-temporal image-to-image registration accuracy, is 

essential to monitor the physical changes (e.g., changes in shoreline, ice sheet, etc.) in 

the Earth surface. Prior to launching any Earth observing sensor, usually radiometric, 

geometric, spatial, spectral parameters are characterized and calibrated. But launch 

stress can change the calibration parameters, requiring on-obit calibration which is 

typically performed during commission period following launch. However, in harsh 

space environment radiation and energetic particles can change the instruments 

calibration parameters in every possible time scale. These necessitates frequent 

calibration and performance monitoring throughout the operating lifetime of an 

imaging sensor. 

Typically, two approaches are used to calibrate and monitor remote sensing 

imaging system: on-board and vicarious approach (methods that utilizes Earth or 
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celestial body imagery). On-board calibration systems are usually used by the large 

government systems (e.g. Landsat series, Sentinels, etc.). One of the primary 

advantages of having on-board calibrators is frequent calibration opportunity. But 

many remote sensing satellites (e.g., planetscope, gaofen-1, etc.) often lack on-board 

calibrators, such as solar diffuser panel, calibration lamp, etc. Consequently, these 

satellites rely on vicarious techniques to assess and improve the image quality [5,6]. 

Additionally, small satellites (such as planetscope) modulation transfer function, 

which is one of the spatial quality indicators, can be lower than the larger optical 

imaging sensor due to their small optical system, and geometric calibration might be 

difficult due to the less knowledge of spacecraft attitude [7]. These constraints can 

impact the image quality in multiple domains: geometry, radiometry, spatial, etc. 

Consequently, quality assessment and improvement should be performed in every 

possible domain to ensure science grade data product.  

Previous attempts of the satellite image quality assessment and improvement 

underscored multiple aspects of data quality. For instance, in reference [8], Weaver 

proposes an analytical framework for appraising the efficacy of Earth observing 

satellite observations emphasizing on image quality criteria such as Signal-to-Noise 

Ratio, Modulation Transfer Function (MTF) and Ground Sampling Distance(GSD). 

Pagnutti et al. performed absolute and relative radiometric characterization of 

IKONOS sensor [9], and Helder et al. presented the geometric characterization of 

IKONOS using pre-marked artificial points [10]. In 2003, IKONOS spatial 

performance had been characterized through GSD and MTF analysis [11]. Three 

above mentioned work shows the image quality task by characterizing IKONOS 

sensor. But comprehensive image quality criteria and exhaustive list of vicarious 
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techniques to assess and improve the images of optical Earth observing satellite are 

yet to be reported.  

The main purpose of this article is to provide detail image quality criteria and 

best practice vicarious methodologies to assess and improve the quality of the optical 

Earth observing satellite images. This article is organized as follows. Section 1 

presents a brief introduction of the topic, current state of the research and main goal 

of this work. Section 2 discusses the quality tasks and presents image quality 

categories. Section 3 provides radiometric quality parameters along with their 

corresponding methods, and prioritization of the methods and examples. Section 4 

presents spatial quality parameters including vicarious techniques, and Section 5 

delineates geometric quality parameters and methods. Finally, Section 6 concludes the 

article. 
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2. IMAGE QUALITY OF EARTH OBSERVING SATELLITE 

In order to assess and improve the quality of remote sensing data, several 

aspects of the performance need to be examined while the satellite is operating in-

orbit. Those aspects can be divided into four categories: radiometry, spatial, spectral 

and geometry. Spectral response change (detector-to-detector) can induce striping, and 

also spectral calibration is necessary to perform accurate atmospheric correction for 

deriving surface product [12-14]. Spectral response is typically characterized pre-

launch only; however, it not impossible to assess or monitor on-orbit [15]. As an 

example, Terra MODIS on-orbit spectral calibration (using on-board calibrator) can 

be seen in [16], which suggest excellent stability in spectral characteristics. Since 

vicarious techniques are not common for this task, spectral quality will not be 

considered in this article. Radiometric, spatial, and geometric quality should be 

assessed and improved periodically since harsh space environment can degrade 

instrument performance. Consequently, these three categories have been explored in 

this article, and with a further break down of individual quality parameters being 

investigated, and best practices approaches to evaluate each quality parameter’s 

performance being presented. Figure 1 presents the outline of Earth observing satellite 

image quality task.  
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Figure 1. Outline of Earth observing satellite image quality  

 

2.1. Quality categories 

This section introduces radiometry, spatial and geometry quality categories, 

and corresponding quality parameters as shown in the figure 1. 

2.1.1. Radiometry  

“Radiometry is the science and technology of the measurement of radiation 

from all wavelengths within the optical spectrum” [17]. Remote sensing of Earth 

works based-on the propagated electromagnetic radiation to the remote sensing sensor. 

One aspect of remote sensing sensors performance is radiometric characteristics, 

which include: radiometric resolution or dynamic range, accuracy of radiometric 

quantity (reflectance or radiance) in absolute scale, radiometric response change over 

time, differentiable signal in presence of noise, etc. Radiometric resolution refers to 

the amount of information contains in each pixel, which is expressed in units of bits. 

In other words, radiometric resolution defines the sensitivity to the magnitude of the 

electromagnetic energy recorded by the imaging sensor, and it is decided prior to 

designing an imaging system. To understand the radiometric behavior of a space-
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borne system, the following set of key parameters need to be characterized. These 

include: 1) signal-to-noise ratio; 2) absolute radiometric calibration; 3) relative 

radiometric calibration; 4) radiometric stability; 5) artifacts; 6) linearity of the 

response; and 7) polarization sensitivity [18]. Out of seven quality parameters, 

linearity of the response and polarization sensitivity are characterized pre-launch; 

typically specialized onboard calibrators are required for on-orbit assessment of these 

two parameters, while vicarious approaches can be hard [19]. As example, MODIS 

and Landsat 8 polarization sensitivity have been measured using polarized light source 

and sheet polarizer, which can be seen in [20,21]. The main challenge of measuring 

the polarization sensitivity may be to provide polarized light to the focal plane. 

Polarization-sensitivity and linearity of response will not be considered in this article. 

This paper, in Section 3, presents the details and best practices for determining: 

absolute radiometric calibration, radiometric stability, relative radiometric calibration, 

signal-to-noise ratio, and artifacts. 

2.1.2. Spatial 

Spatial quality of a remote sensing satellite system relies on several aspects of 

imaging system. Spatial performance can be expressed in terms of ground sample 

distance (GSD), modulation transfer function (MTF), aliasing, light rejection and 

internal scattering, and ghosting [22]. The GSD describes the spacing between 

adjacent pixel centers, and MTF provides information about the blurring amount that 

arises because of the imaging components non-ideal behavior. These two parameters 

define the spatial resolution of a remote sensing system. Spatial resolution is one of 

the most important parameters for remote sensing application since it determines the 

amount details an image can provide [23]. Consequently, GSD and MTF estimation is 
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necessary to assess the spatial quality of the remote sensing data product. Aliasing 

phenomena arises due to the insufficient sampling rate, which is unable to record high 

frequency scene features [24]. Aliasing appears as patterns in the imagery that not only 

degrades the visual quality of the image but also reduces the precision of remotely 

sensed data. For those reasons, aliasing detection and removal is essential from 

satellite imagery. Light rejection and internal scattering is another spatial performance 

indicator, which is system design depended [25]. Ghosting becomes evident when 

unexpected signals come from outside the field-of-view of the sensor, result in 

degraded spatial image quality [26]. In Section 4 of this article, three spatial quality 

assessment parameters, namely MTF, aliasing and GSD, have been explored and best 

way of evaluation has been presented. 

2.1.3. Geometry 

In remote sensing, geometry refers to the geometric precision which is 

measured by registration accuracy and geolocation accuracy which is also known as 

geodetic accuracy and cartographic registration [22,27,28]. Typically, two types of 

registration accuracy knowledge of an earth observing imaging system are realized; 

they are: band-to-band and image-to-image registration accuracy. The geolocation 

accuracy provides information about the geometric performance of the satellite in-

orbit. To clarify, it gives the positional offset between the actual position on the surface 

of the earth to the satellite determined position. Cartographic registration is known as 

geometric accuracy which is the measured positional offset between an actual location 

in the ground to that location in the geolocation corrected satellite image. In order to 

account for the geometric distortions, geometric calibration is performed prior to the 

launch of a spacecraft, but vibration during launch, moisture loss in vacuum and 
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variation in thermal environment can change the calibration parameters, requiring 

frequent on-orbit geometric calibration [29]. High geometric accuracy is required in 

numerous applications such as change detection, multi-sensor data fusion, 

classification, etc. [30-32]. Therefore, on-orbit geometric calibration is necessary to 

obtain high geometric quality remote sensing observation. This paper (in Section 5) 

delineates best practices for determining: registration accuracy (band-to-band and 

image-to-image) and geodetic accuracy. 
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3. QUALITY PARAMETERS AND METHODS 

This section presents radiometry (Section 3.1), spatial (Section 3.2) and 

geometry (Section 3.3) quality parameters, methods, and prioritization of the methods 

along with examples. 

3.1. RADIOMETRIC QUALITY 

This section presents radiometric quality parameters- absolute calibration 

(Subsection 3.1.1), radiometric stability (Subsection 3.1.2), relative calibration 

(Subsection 3.1.3), signal-to-noise ratio 165 (Subsection 3.1.4), artifacts (Subsection 

3.1.5), including methods and prioritization of the methods 166 along with examples. 

3.1.1. ABSOLUTE CALIBRATION 

Absolute radiometric calibration allows conversion of image digital numbers 

(DN) to physical units such as radiances. Since DNs from different sensors have no 

meaningful relation, conversion of image DNs to spectral radiances is crucial in 

remote sensing as it enables comparison between measurements from different 

sensors. Consequently, absolute radiometric calibration is essential to the remote 

sensing data user community. A remote sensing imaging sensor is calibrated prior-to-

launch in the laboratory and post-launch while satellite operating in-orbit. A space-

born satellite systems calibration may subject to changes due to the degradation of the 

electronic instruments over time, variation in filter transmittance and spectral 

response, etc., requiring frequent post-launch radiometric calibration.  

Numerous post-launch absolute calibration techniques have been developed 

over the past decades; they can be broadly classified as on-board and vicarious 

methods [33-43]. On-board absolute radiometric calibration technique relies on the 

calibration device such as calibration lamps. Vicarious absolute calibration 
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approaches rest on Earth-imagery, lunar observations, imagery of dense clouds, etc. A 

few widely used vicarious absolute calibration methods are: Absolute Pseudo-

Invariant Calibration Sites (APICS) models and/or Extended PICS Absolute 

Calibration (ExPAC) models, Radiometric Calibration Network 

(RadCalNet)/instrumented sites, cross-calibration, Traditional Reflectance-Based 

Vicarious Calibration (TRBVC), lunar observation-based absolute calibration, deep 

convective clouds. 

On-board calibrators (OBCs) are common in large government sensors 

(usually more than 1000 kg mass) such as the Landsat series, Sentinel 2A and 2B, 

Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, 

etc. But, many satellites, especially small satellites, do not contain OBCs; accordingly, 

they rely on scene-based vicarious absolute calibration methods. Every 

aforementioned absolute calibration method has its strengths, weaknesses, and 

accuracies, which define the suitability of the method for a given sensor.  

Table 1 provides the strengths, weaknesses and Système International (SI) 

traceability of six vicarious absolute calibration methods. The traceability of an 

absolute calibration method varies depending on the wavelength, atmospheric 

condition, number of observation used, etc. Typically, the traceability varies within 

the ranges shown in Table 1 (details can be seen in the associated references). 

Subsections 3.1.1 to 3.1.6. briefly describes the methods and their associated 

traceabilities, including examples and appropriateness for remote sensing satellite 

absolute calibration. 
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Table 1. Absolute Calibration Methods  

 

Methods 
Strengths Weaknesses Traceability 

APICS 

and/or 

ExPAC 

Model 

[33,41]   

Easy to implement 

Inexpensive 

Low atmospheric 

effect 

Stable 

Homogenous surface 

Requires PICS and/or 

EPICS data 

APICS – 

2% to 3% 

accuracy 

and 1% to 

2% 

precision 

ExPAC – 

1% to 2% 

accuracy 

(Visible to 

Shortwave 

Infrared 

bands) and 

1% to 2% 

precision 

 

RadCalNet 

[34,40] 

Open data  

Spatially 

homogenous site 

High temporal 

resolution 

Quality controlled 

and processed TOA 

reflectance data 

Fixed location 

Requires images of 

RadCalNet site 

BRDF effect not 

accounted for 

Railroad 

Valley –  

3% to 4% 

uncertainty 

La Crau – 

2% to 6% 

uncertainty 

Gababeb – 

3% to 4% 

uncertainty 

Baotou – 

4% to 4.5% 

uncertainty    

 

Cross-

Calibration 

[35] 

Inexpensive 

Open data from well 

calibrated sensor 

Multiple well 

calibrated sensors 

are on-orbit  

Simultaneous nadir 

overpass (SNO) approach 

requires concurrent scenes 

with well calibrated 

sensor  

Near coincident 

observation (NCO) 

approach requires scenes 

over stable target, which 

Uncertainty 

will vary 

depending 

on the 

“reference” 

sensor, 

number of 

observation, 

atmosphere, 

spectral 

response 
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can be harder to find in 

the Earth surface  

Multiple sources of 

uncertainty 

mismatch, 

scene pairs 

are SNO or 

NCO, etc.    

 

Traditional 

Reflectance-

based 

Vicarious 

Calibration 

(TRBVC) 

[36,42] 

Appropriately 

modeled 

atmospheric 

condition can give 

low uncertainty of 

measurement 

 

Independent method 

for calibrating 

satellite sensor 

(similar to 

instrumented 

RadCalNet approach 

but calibration can 

be performed over 

vegetative, desert, 

etc. target) 

Expensive due to the 

requirement of 

experienced field 

personnel and instrument 

Requires good ground 

instrument and ability to 

measure atmospheric 

conditions accurately 

Lengthy process 

1.5% to 

2.5% 

uncertainty 

Lunar 

Calibration 

[37] 

Stable 

No Atmosphere 

Imaging direction must be 

altered  

Satellite should be able to 

point the lunar surface and 

collect imagery  

5% to 10% 

uncertainty 

of USGS 

lunar 

calibration 

model    

Deep 

Convective 

Cloud 

(DCC)[38] 

Near Lambertian  

Little Atmosphere 

Difficult to find right type 

of cloudy image 

Works best for shorter 

wavelength channels 

About 5% 

uncertainty 

 

 

3.1.1.1. PICS Absolute Calibration Model 

Stable spectral characteristics, high reflectance, and minimal atmospheric 

effect makes PICS popular for radiometric calibration. Moreover, PICS based 
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calibration is one of the least expensive calibration methods since it only requires PICS 

imagery acquired by the to-be-calibrated sensor. Consequently, researchers have been 

using PICS data to monitor the temporal stability and cross-calibrate satellite sensors 

for long period of time [44-47]. However, usage of PICS as an absolute radiometric 

calibration target for earth observing satellite had not been explored until 2013. In 

2013, at South Dakota State University (SDSU), Helder et al. developed a Libya 4 

PICS model based on Terra MODIS and Earth Observation-1 (EO-1) Hyperion 

observations to show the potential of PICS for absolute calibration [48]. In 2014, 

Mishra et al. reported improvements of Helder’s Libya 4 PICS absolute calibration 

model [33]. The improved Libya 4 empirical model accuracy is between 2% to 3%, 

and precision is in between 1% to 2%. In 2019, Bipin et al. extended the work 

presented in [33] through applying the APICS model to five other PICS [49]. Results 

show that the model for Egypt 1, Libya 1 and Sudan 1 PICS has approximately 2% to 

3% accuracy and 1% to 2% precision. However, Niger 1 and Niger 2 model are less 

accurate (approximately 7%) with similar precision. One major drawbacks of 

traditional APICS model is that it is restricted to limited viewing geometry of ±20 

degrees, in other words, limited BRDF capability.  

Recently, PICS have been extended to cover vast portion of North Africa, and 

they are named as “clusters” [50]. At SDSU Image Processing Laboratory (SDSU 

IPLab), extended PICS absolute calibration (ExPAC) model has been developed for 

one of the clusters (namely cluster 13) with extensive BRDF capability that subdued 

the shortcomings of APICS model [41]. The ExPAC model shows around 4% 

accuracy in shorter wavelength bands (i.e., costal aerosol and blue band of Landsat 8) 

and 1% to 2% accuracy for higher wavelength bands (visible to shortwave infrared). 
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Precision or random variability of ExPAC model are in the same order as accuracy. 

Therefore, depending on the absolute calibration accuracy and precision requirement, 

solar and viewing condition of sensor while collecting imagery, and ability of 

collecting imagery, Libya 4, Libya 1, Egypt 1, Sudan 1 APICS model and/or SDSU 

IPLab ExPAC model can be used to perform absolute radiometric calibration of a 

satellite sensor. 

The APICS model, described in [33,49] by Mishra et al. and Bipin et al., was 

developed using Terra MODIS and Hyperion observations of PICS. Terra MODIS 

was selected as a source for absolute calibration because of being one of the best 

calibrated sensors with 2% uncertainty in Top-of-Atmosphere (TOA) reflectance scale 

[51], and Hyperion hyperspectral sensor was used as a source of hyperspectral profile 

due to its 3% to 5% accuracy and around 2% repeatability (prior to 2012 data) [52,53]. 

First step of developing the absolute calibration model is to cross-calibrate the 

Hyperion TOA reflectance to Terra MODIS TOA reflectance. The cross-calibration 

or scale factor was calculated with Hyperion and MODIS simultaneous nadir overpass 

scenes. An empirical BRDF model for solar zenith angle had been developed using 

nadir-looking Terra MODIS observations. As explained in [49], to account for the 

varying view zenith angle, a view zenith BRDF model was developed from spectrally 

cleaner (high transmittance and reflectance) Hyperion band.   

Nischal et al. expressed the absolute calibration model as follows [33]:  

𝜌𝑃𝐼𝐶𝑆(𝜆, 𝑆𝑍𝐴, 𝑉𝑍𝐴) =
𝑘(𝜆)×𝜌ℎ(𝜆)×𝑓𝐴(t)

1−(𝑆𝑍𝐴−300)×𝑚1(𝜆)−𝑉𝑍𝐴(𝜆)×𝑚2(𝜆)−𝑉𝑍𝐴2×𝑚3(𝜆)
            (1)     

Here, 𝜌𝑃𝐼𝐶𝑆  is the model predicted TOA reflectance.  𝜌ℎ(𝜆)  represents 

Hyperion TOA reflectance for the selected PICS. 𝑘(𝜆)  is the scaling factor to 
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normalize the Hyperion spectrum 𝜌ℎ(𝜆)  to MODIS. 𝑚1(𝜆)  represents the slope 

coefficient of the BRDF model for solar zenith angle normalization which is obtained 

from Terra MODIS observations. 𝑚2(𝜆) and 𝑚3(𝜆) are the linear and quadratic 

BRDF model coefficients derived from Hyperion data for view zenith angle 

normalization. SZA and VZA are the solar zenith and view zenith angle of the selected 

sensor, respectively. 𝑓𝐴(t) represents the atmospheric model which can be ignored 

since its effect is negligible [54]. 

In order to present the comparison of the absolute calibration model predicted 

and measured reflectances of Landsat 8 Operational Land Imager (OLI) over Egypt 1, 

Bipin et al. illustrated the NIR band (Band 5 of Landsat 8 OLI) reflectance which can 

be seen in Figure 2. Figure 3 shows percentage difference between OLI measurements 

and model predictions along with the accuracy and precision of the model predicted 

TOA reflectances. The accuracy, which is described by Root-Mean-Squared-Error 

(RMSE), and precision, which is described by Standard Deviation, between 

measurements and predictions are about 0.88% and 0.87%, respectively. This results 

are within the accuracy (3%) and precision (2%) of Nischal’s Libya-4 PICS model. 

Visual observation of Figure 2 shows that model predicted reflectances follow 

seasonal variations of actual measurement to a certain extent. 
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Figure 2. Egypt 1 model predicted (black asterisk) and Landsat 8 OLI observation 

(magenta circle) [49]. 

 

Figure 3. Percentage difference of Egypt 1 model and Landsat 8 OLI 

observation [49]. 

Above explained Egypt 1 model accuracy depends on Terra MODIS and 

Hyperion calibration uncertainty as the model was developed from Terra MODIS and 
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Hyperion observations, and Landsat 8 OLI calibration uncertainty. Atmosphere, 

instrument response deviation, and higher order BRDF could be the factors for 0.87% 

random uncertainty or precision between model prediction and Landsat 8 observation. 

This uncertainty cannot be eliminated but its effect can be reduced by taking multiple 

measurements. Typically, the precision or random uncertainty decreases by 1 √𝑁⁄ , N 

being the number of observation or measurement [55].  

High absolute radiometric accuracy and precision of the APICS and ExPAC 

model makes them practical methods for absolute calibration of an in-orbit satellite 

sensor; accordingly, researchers have been using the APICS model for many years. 

For instance, Barsi et al. and Helder et al. used the Libya 4 APICS model for Sentinel 

2A Multi Spectral Imager (MSI) and Landsat 8 OLI absolute radiometric calibration 

in recent years [54,56]. At this time, APICS and ExPAC models have been proven as 

compelling absolute calibration method for Earth observing satellite sensor. However, 

improved BRDF capability of ExPAC model over APICS model makes ExPAC model 

more attractive compare to exiting APICS model. Consequently, ExPAC model would 

be a better option for calibrating (in absolute radiometric scale) any space-borne 

remote sensing satellite. 

3.1.1.2. Radiometric Calibration Network 

The Radiometric Calibration Network (RadCalNet) is a network of 

instrumented radiometric calibration sites, which has been developed for calibrating 

multiple sensors to a common reference. The Committee on Earth Observation 

Satellites (CEOS) Working Group on Calibration and Validation (WGCV) Infrared 

and Visible Optical Sensors Subgroup (IVOS) implemented RadCalNet and publicly 
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opened the data in June 2018 [57]. Currently, RadCalNet sites are located in Railroad 

Valley Playa in the US (RVUS), LaCrau in France (LCFR), Gobabeb in Namibia 

(GONA), and Baotou in China (BTCN). BTCN calibration site contains two 

categories of targets: artificial reflectance targets, which are suitable for high spatial 

resolution sensor (e.g. within 10m) and desert target, suitable for moderate spatial 

resolution satellites (e.g. Landsat satellite at 30 m) [58]. In RadCalNet, traditional 

refelectance-based vicarious calibration approach (details in Section 3.1.4) has been 

automated to obtain high temporal resolution calibration (compare to traditional 

vicarious approach). Automatic instrumentation of RadCalNet provides bottom-of-

the-atmosphere (BOA) measurements and estimate of propagated TOA reflectance 

and their associated uncertainties. Among the sites, the RVUS and GONA site show 

high accuracies in TOA reflectance measurement with 3% to 4% uncertainties, 

whereas LCFR and BTCN site are less stable, and their respective uncertainty varies 

from 2% to 6% and 4% to 4.5% [34,39].  

Open data, spatially homogenous sites, measurement every 30 minutes from 

9:00 to 15:00 local standard time, frequent stability monitoring, quality controlled and 

processed TOA reflectance makes RadCalNet a suitable method for absolute 

radiometric calibration of an on-orbit satellite sensor viewing the sites. Hence, 

numerous satellites are being calibrated using publicly available RadCalNet dataset 

[59-62]. However, there is a reported limitation of how to use these data as they are 

provided only at nadir view, causing viewing angle effect on non-nadir viewing sensor 

[34]. To address this issue, Bouvet et al. suggested an approach based-on simulating 

off-nadir TOA reflectances for matching the viewing angle of the sensor of interest 

[40].  
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RadCalNet data can be obtained from this [63] web portal. Calibration of a 

sensor of interest using RadCalNet consists of following steps:  

1. RadCalNet TOA reflectance and uncertainties are extracted from the 

above-mentioned web portal for the same dates and times as the sensor of 

interest imaging the selected site. 

2. Calculate test sensor TOA reflectance for the chosen site, including 

uncertainties.  

3. Interpolate the RadCalNet TOA reflectances at sensor overpass time to 

account for the time differences between two measurements explained in 

step 1 and 2. 

4. In order to match the spectral resolution of the sensor to RadCalNet TOA 

reflectance, interpolate RadCalNet TOA reflectance (at 1 nm) to selected 

sensor TOA reflectance. 

5. Normalize RadCalNet TOA reflectance to the corresponding multispectral 

value of the selected sensor for direct comparison: 

                    𝜌𝑅 =
∑ 𝜌𝜆×𝑅𝑆𝑅𝜆

𝜆2
𝜆1

∑ 𝑅𝑆𝑅𝜆
𝜆2
𝜆1

                                   (2) 

where 𝑅𝑆𝑅𝜆  represents the relative spectral response function of the sensor of 

interest, 𝜌𝜆  is the hyperspectral TOA reflectance of RadCalNet site, 𝜆1 and 𝜆2 are 

the minimum and maximum wavelengths of the band at 10 nm steps. 𝜌𝑅  is the 

RadCalNet-predicted TOA reflectance in the specific sensor band. 
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6. Compare the output (step 2) from selected sensor and RadCalNet TOA 

Reflectance (step 5) and calculated associated uncertainties.  

Jing et al. applied the above steps to compare the predicted TOA reflectance 

of three RadCalNet sites—RVUS, LCFR and GONA—with Landsat 7, Landsat 8, 

Sentinel 2A and 2B observation [34].  

In conclusion, RadCalNet is very promising method for remote sensing 

satellite absolute radiometric calibration. This method of absolute calibration can be 

performed from one cloud free image of RadCalNet site acquired by the test sensor. 

But multiple images should be used to obtain lower calibration uncertainty as random 

uncertainty decreases with the increase of number of observations.  

3.1.1.3. Cross-Calibration 

Cross-calibration is one of the post-launch absolute calibration methods where 

a sensor is calibrated against a well-calibrated satellite sensor, which is typically 

referred as “reference” sensor. Currently, there are multiple well-calibrated sensors 

operating on orbit, Landsat 7, Landsat 8, Sentinel 2A and 2B, and MODIS, to name a 

few. Image data of all the mentioned sensors are free to use, which makes this method 

less expensive compared traditional reflectance-based vicarious approach (details are 

in Section 3.1.4). Primary weakness of this method can be the requirement of SNO or 

NCO scene pairs. Additionally, there will be multiple sources of uncertainty regardless 

of SNO or NCO approach, which has been delineated in forthcoming text. Despite of 

some inevitable drawbacks, possibility of calibrating a sensor against a well-calibrated 

sensor can be an option for absolute radiometric calibration when multiple well-
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calibrated sensor offering open highly accurate (in radiometric scale) scientific 

observations. 

A typical step to perform cross-calibration can be: i) reference sensor selection, 

ii) cross-calibration approach selection, and data selection based-on the approach, iii) 

spectral response mismatch correction, iv) cross-calibration gain and bias estimation, 

and v) uncertainty estimation.  

First step of cross-calibration is to select a well calibrated reference sensor. In 

order to choose a reference sensor, a few parameters such as radiometric accuracy, 

spatial resolution, temporal resolution can be considered.  

         Table 2. Sensor characteristics and accuracy [51,64-66] 

Satellite Accuracy 
Spatial 

Resolution 

Temporal 

Resolution 

MODIS ~ 2% 250m to 1000m 
1 to 2 days 

Sentinel 2A, 2B < 3% to 5% 10m 
5 days 

Landsat 7 ~ 5% 30m 16 days 

Landsat 8 < 3% 30m 16 days 

 

Table 2 provides radiometric accuracy in TOA reflectance scale, spatial 

resolution and temporal resolution of Landsat 7, Landsat 8, Sentinel 2A, Sentinel 2B 

and MODIS. The sensors are built to meet or exceed these accuracies; in most cases, 

they exceed these absolute radiometric accuracy specifications. Among the five 

sensors, MODIS appears to be the most radiometrically accurate, and it images the 

Earth every 1 to 2 days. However, the spatial resolution of MODIS is very low (250m 

to 1000m) which suggests the requirement of large regions of interest for cross-

calibration. Two high spatial resolution Sentinel sensors each have revisit time of 10 
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days, but their absolute published radiometric accuracy is between 3% to 5%. Even 

though Landsat 7 and 8 images the Earth at same spatial and temporal resolution, 

Landsat 8 provides observation on the order of 3% or less published accuracy in TOA 

reflectance scale. Therefore, Landsat 8 and/or Sentinel sensors could be selected as 

“reference” sensor for cross-calibrating a satellite sensor. 

Second step of cross-calibration can be the selection of approach to follow for 

performing cross-calibration between two sensors. Cross-calibration usually 

performed by two approaches: (i) using simultaneous nadir overpass observations, 

and/or (ii) using near-coincident observations, from to-be-calibrated and reference 

sensor.  

3.1.1.3.1. Simultaneous Nadir Overpass (SNO) Approach 

Simultaneous observations are referred as SNO event, which occurs when both 

the reference and to-be-calibrated sensor images a target at the same time. Since the 

observations are obtained simultaneously, direct comparison between the 

measurements (such as image digital number or radiometric quantity, e.g. reflectance, 

radiance) will give the absolute calibration parameters, gains and biases. Compare to 

NCO approach, this cross-calibration method introduces low absolute calibration 

uncertainty, due to the concurrent scene pair usage, resulting in consistent view and 

solar geometry between two sensors (details can be seen in Subsection 3.1.3.3). But 

SNO event between a well-calibrated sensor and to-be-calibrated sensor can be 

infrequent.    
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3.1.1.3.2. Near Coincident Observation (NCO) Approach 

NCO approach of cross-calibration relies on observations acquired at different 

time (e.g., minutes, hours, days apart) by the reference and to-be-calibrated sensor. 

Different image acquisition time can arise multiple disparity which are independent 

of sensors inherent radiometric response difference. These disparities include 

atmospheric condition, solar geometry, target feature variation, etc. Consequently, in 

order to employ NCO approach, the calibration target should be stable in terms of 

radiometric response and atmospheric condition and should have nearly Lambertian 

nature to reduce the differences due to the sun position change. Desert sites 

accommodate some of these characteristics such as stable atmosphere and radiometric 

response, spatial uniformity, which make them suitable target for cross-calibration 

[67,68]. In order to perform radiometric stability monitoring (details are in Section 

3.2) and absolute radiometric calibration, researchers have identified more than twenty 

such desert sites; they are popularly known as PICS [69-72]. These traditional PICS, 

usually referred as Libya 4, Sudan 1, Niger 1, Libya 1, etc., have been used in many 

studies to perform cross-calibration [35,73-75]. Recently, Shrestha et al. [76] cross-

calibrated Landsat 8 OLI and Sentinel-2A MSI using coincident and near coincident 

scene pairs of cluster 13 (one of the EPICS). At SDSU IPLab, a novel technique of 

cross-calibration, namely trend-to-trend cross-calibration, has been developed that 

utilizes the near coincident observations over some portion or different portions of the 

EPICS [30]. Continental footprint of EPICS provides much more frequent possibility 

of near-simultaneous imaging by the reference and to-be-calibrated sensors, and hence 

higher NCO cross-calibration opportunity over EPICS compared to traditional PICS 

based cross-calibration.  
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Evidently, there will be higher possibility of near coincident observations than 

SNO event from a reference and to-be-calibrated sensor, but the aforementioned 

disparities in NCO approach can result in higher cross-calibration uncertainties 

(details can be seen in forthcoming text) compare to SNO event based approach. 

3.1.1.3.3. Spectral Response Mismatch and Uncertainty of SNO and NCO 

Approach  

For both the SNO and NCO approach, spectral response mismatch should be 

corrected that can be the third step of cross-calibration. Often spectral response 

function of to-be-calibrated sensor and reference sensor exhibit differences. This 

difference should be accounted for to compare the sensors radiometric response. The 

process of correcting the spectral response differences is known as spectral band 

adjustment factor (SBAF) correction. The details of performing SBAF correction can 

be seen in [46]. The next step (step iv) is to estimate cross-calibration gain and offset 

through regression analysis of reflectances/radiances or digital numbers. Usually 

uncertainty is estimated and reported with cross-calibration gain and offset, which can 

be the fifth step of cross-calibration.  

Uncertainty arises in every cross-calibration step which contributes to the 

overall cross-calibration uncertainty. Few sources of uncertainties are inevitable, such 

as reference sensor calibration uncertainty, SBAF uncertainty, in both the SNO and 

NCO method of cross-calibration. Uncertainty due to site instability, solar and viewing 

geometry change (due to the time difference and/or positional difference of the sensors 

during image acquisition), atmospheric differences are the major sources of 

uncertainty in NCO method.  
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In order to explore the primary sources and major contributor/s of uncertainty 

of NCO based cross-calibration approach, over the years several researches had been 

carried out. For instance, Chander et al. investigated cross-calibration uncertainties 

due to different spectral response, spectral resolution, spectral filter shift, geometric 

misregistration, and spatial resolution; result shows that SBAF uncertainty is the 

dominant source of uncertainties [77]. In [78], Pinto et al. presented a way to evaluate 

SBAF’s inherent uncertainties using Monte Carlo simulation method, which can be 

exploited to estimate the SBAF uncertainty. As an additional example, while cross-

calibrating Sentinel 2A MSI with Landsat 8 OLI, Farhad delineates uncertainty 

analysis and shows that reference sensors calibration uncertainty, atmospheric 

variability, target non-uniformity and RSR difference are the major contributors to the 

overall uncertainty [73]. It is apparent that regardless of SNO event based or NCO 

based absolute cross-calibration, cross-calibration uncertainty would be greater than 

the reference sensors inherent uncertainty, and other sources of uncertainty will vary 

depending on the above mentioned factors and number of scene pairs used in cross-

calibration. From the above discussion, it is evident that SNO approach could be the 

“best” method when expecting lowest possible cross-calibration uncertainty. 

Li et al. presented cross-calibration of Sentinel 2 MSI with Landsat 8 OLI 

using NCO event over Saharan desert [79]. Figure 4 shows TOA reflectance 

comparison of Landsat 8 OLI and Sentinel-2 MSI after SBAF correction. Due to the 

scale issues cirrus band is shown at the bottom right corner. The black 1:1 line shows 

the agreement between OLI and MSI observations. The gains and offsets can be 

obtained through band-by-band linear regression. Details of the result is presented in 

[79]. 
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Employing the above explained approach, cross-calibration can be performed 

from one cloud free image pair (SNO or NCO event). Multiple scene pairs can 

decrease the cross-calibration uncertainty since random uncertainty decreases by 

square-root of number of scene pairs as long as there are no systematic errors in either 

of the to-be-calibrated or reference sensor. 

 

Figure 4. TOA reflectances of MSI and OLI. Cirrus band comparison is at 

lower right corner. [79] 

3.1.1.4. Traditional Reflectance-Based Vicarious Calibration 

Traditional Reflectance-Based Vicarious Calibration (TRBVC) is a post-

launch absolute calibration method that relies on in-situ measurements of surface 

reflectance and atmospheric condition while satellite images the calibration target. 

Possibility of low calibration uncertainty (upon appropriately modeled atmospheric 

condition and surface reflectance measurement), independent method for calibrating 

satellite sensor (similar to instrumented RadCalNet approach but TRBVC can be 
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performed over vegetative, desert, etc. target) are some of the advantages of TRBVC 

method [80]. TRBVC approach not only requires ground instruments to measure 

target reflectance and atmospheric condition but also requires experienced field 

personal, which can be expensive and labor-intensive. Since this approach hinges on 

deploying field personal to take measurement, this method can be lengthy in contrast 

to the automated RadCalNet approach. Consequently, this method of absolute 

calibration is less attractive compare to APICS/ExPAC model, RadCalNet and cross-

calibration for frequent monitoring a satellite system. However, frequent field 

campaign will give SI traceable knowledge (independent of on-board calibrators) of 

absolute radiometric accuracy, and hence a greater degree of comprehension about an 

in-orbit sensor. Therefore, traditional reflectance-based vicarious calibration is one of 

the options to monitor absolute calibration of an earth observing satellite.     

Traditional reflectance-based vicarious calibration can be performed through 

following way [80,81]: i) surface bidirectional reflectance factor (BRF) calculation, 

ii) atmospheric measurements, and iii) TOA spectral radiance propagation. The 

surface reflectance is measured by transporting a portable hyperspectral 

spectroradiometer across the entire site in a predetermined pattern, and reference panel 

measurements are taken throughout entire site at predetermined points. Ratio of site 

measurement and reference panel measurement gives BRF of the site. In order to 

determine atmospheric transmission and radiance, an automated solar radiometer is 

used that tracks the sun throughout the day and measures the incoming solar irradiance 

extinction due to atmospheric absorption and scattering. Finally, surface BRF and 

atmospheric measurements are used as inputs to MODerate resolution atmospheric 

TRANsmission (MODTRAN) or Second Simulation of a Satellite Signal in the Solar 
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Spectrum (6S) radiative transfer code. From the MODTRAN or 6S predicted TOA 

radiance or reflectance of the test sensor gain can be calculated as: 

            𝐺𝐿,𝜆 =
𝐷𝑁𝜆̅̅ ̅̅ ̅̅ −𝑏𝜆

𝐿𝜆
  or 𝐺𝜌,𝜆 =

𝐷𝑁𝜆̅̅ ̅̅ ̅̅ −𝑏𝜆

𝜌𝜆
                    (3) 

where 𝐺𝐿,𝜆 and 𝐺𝜌,𝜆 are the gains for a specific spectral band, 𝐿𝜆 and 𝜌𝜆 are 

the band-integrated MODTRAN or 6S predicted TOA radiance and reflectance, 

respectively, 𝐷𝑁𝜆
̅̅ ̅̅ ̅̅  represents average DN for all the pixels of the test site measured 

by the test sensor for a given band and 𝑏𝜆 is the average offset for a given band.  

Czapla-Myers et al. presents results of Landsat 8 OLI reflectance-based 

vicarious calibration performed by University of Arizona (UA), South Dakota State 

University (SDSU) and NASA Goddard Space Flight Center (GSFC) at test sites in 

Nevada, California, Arizona and South Dakota, USA [82]. In this study, both UA and 

GSFC used desert sites, whereas SDSU took measurements over vegetation target to 

obtain BRF. To show the consistency between OLI measurement and vicarious 

ground-based method, both reflectances and radiances have been calculated and 

percentage difference is obtained as: percent difference = (Measured – OLI)/OLI, 

where Measured represents ground-based TOA radiance/reflectance measurement and 

OLI is the Landsat 8 OLI TOA radiance/reflectance measurement. Figure 5 shows the 

percentage difference in TOA spectral radiance and reflectance of eight OLI spectral 

bands [82]. UA and SDSU results for coastal aerosol (443 nm) and blue band (483 

nm) appears to be off by about 5% due to very low surface reflectance and atmospheric 

effects. However, band 3 to band 8 shows consistency between two types of sites, and 

OLI agrees within the uncertainties of vicarious calibration method, which are on the 
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order of 2.5% to 3.0%. The vertical bars associated to each point represents 1σ 

standard deviation of the measurements. 

 

Figure 5: Percentage difference [82] (a) TOA spectral radiance (b) TOA 

spectral reflectance 

The test site surface BRF calculation is one of the components of reflectance-

based approach, and the uncertainty of BRF calculation is dominated by reference 

panel characterization. Uncertainty in atmospheric characterization, MODTRAN or 

6S calculation, and solar zenith angle measurement are the other major contributors to 

the total uncertainty. The in-situ vicarious absolute calibration uncertainty can be 

between 1.5% and 2.5% depending on the wavelengths, measurement device, 

operators, etc. [42]. And precision of the reflectance-based vicarious approach in the 

mid-visible wavelength range is between 2.5% and 3.5% [83].  

3.1.1.5. Lunar Calibration 

The moon, our closest celestial neighbor, is an exceedingly stable reflector of 

sunlight, and its reflectivity observed by the on-orbit satellite depends on lunar angles 

and orientation. Collection of lunar imagery rest on the ability of an Earth overserving 
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satellite to change the imaging direction and pointing the moon surface from Earth 

orbit. The positional relationship between sun-moon-satellite also defines the 

capability of a satellite to capture moon image. Lack of atmosphere, similar dynamic 

range as Earth scenes, no maintenance requirement unlike RadCalNet or in-situ 

traditional vicarious calibration site, are a few of the advantages of moon as a 

radiometric calibration source [84]. In order to exploit the potential of moon as a 

calibration target, in 2005 at United States Geological Survey (USGS), Kieffer et al. 

developed a lunar irradiance model based on observations by the RObotic Lunar 

Observatory (ROLO) [85]. In spite of having numerous advantages of lunar 

calibration approach, it is not typically used for absolute calibration due to 5% to 10% 

model uncertainty in absolute scale [37]. Complex satellite-sun-moon positional 

relationship and orientation of the moon and its phase makes developing absolute 

calibration model (better than current accuracy level) very challenging. Currently, 

there are three projects on-going at National Institute of Standards and Technology 

(NIST), National Physics Laboratory (NPL) and NASA Langley Research Center to 

improve the absolute calibration accuracy significantly [86-88]. The low absolute 

accuracy of the current lunar model and requirement of changing earth imaging 

direction are the major constraints of using lunar calibration model. Therefore, 

development of new accurate lunar model will make this absolute calibration method 

a future viable option for Earth observing satellite. 

3.1.1.6. Deep Convective Clouds 

Extremely bright Deep Convective Clouds (DCC) have nearly Lambertian 

reflectance and are situated at the top of the atmosphere, specifically at the tropopause 

where atmospheric effect is minimal, which make them a potential target for 
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radiometric calibration [89]. Consequently, radiative transfer model or a reference 

sensor such as SCIAMACHY or MODIS have been used in the past to predict DCC 

reflectance and perform absolute calibration [90,91]. However, absolute calibration 

accuracy from DCC are at 5% level [38], and DCC are usually identified using thermal 

bands. Furthermore, this calibration method is typically used for low resolution larger 

footprint sensor. Many satellites do not have thermal bands, and many of them are 

medium-to-high spatial resolution sensors (less than 30m). Nonetheless, DCC method 

for satellite needs investigation to ascertain its suitability for absolute radiometric 

calibration. 

3.1.2. Radiometric Stability 

Radiometric stability of an imaging instrument is a measure of how the 

instrument’s radiometric response changes over time. It is one of the important quality 

parameters since the radiometric stability of an imaging instrument defines the 

detectability of very small Earth surface change. In order to ensure sensors radiometric 

stability, numerous precautionary measures are taken in sensor development, 

launching, and space operation step. In spite of taking these necessary steps, in harsh 

space environment, radiometric response of an imaging sensor can change due to 

temperature variation, voltage level change, radiation in the space in every possible 

time scale, requiring on-orbit assessment. To assess the on-orbit sensor’s radiometric 

stability performance, two different types of radiometric stability have been monitored 

in numerous studies; they are: i) short-term, and ii) long-term radiometric stability 

[66,92-95]. There is no clear definition of short-term stability and long-term stability. 
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 Short-term stability can be referred as stability in radiometric response within 

a single orbit. Short-term stability is assessed exploiting on-board calibrators, 

specifically stimulation lamps [92,96,97]. Stability characterization in a single orbit 

from Earth or celestial scenes has not been reported yet. Thus, short-term stability of 

a satellite cannot be characterized from Earth/celestial scenes at this time. Long-term 

stability can be referred as stability in radiometric response beyond single orbit. 

Sometimes it is reported as sensor degradation or drift per year [22,94,98,99]. Long-

term radiometric stability is typically monitored using OBCs, lunar and PICS 

observations [43,54,100,101]. In absence of OBCs, PICS image-based and lunar 

observation-based methods are the practical options for a remote sensing satellites 

long-term stability assessment. Next subsection explains the long-term stability 

characterization approaches for an Earth observing satellite.  

3.1.2.1. Long-term stability 

This subsection delineates three long-term radiometric stability assessment 

techniques, and their strengths and weaknesses.  

3.1.2.1.1. Lunar observation-based method  

As explained in Section 3.1.5, stable sunlight reflectivity and little-to-no 

atmospheric distortion between satellite orbit to moon makes lunar based stability 

assessment an attractive approach. Lunar irradiance measurement over time explains 

the temporal behavior of the imaging sensor. USGS lunar model is also used for 

stability monitoring due to better than 1% [85] relative precision for any phase angle 

within ±90 degrees [102,103]. Thus, lunar based method can be utilized in absence of 

OBCs or as a secondary method to track OBCs degradation. As explained herein 
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[103], to perform lunar based stability assessment, a few corrections must be applied; 

they are: distance corrections, oversampling correction, phase angle corrections, 

libration corrections, and noise reduction correction. Lastly, lunar irradiance time 

series is calculated and assessed for radiometric stability. Over the years, this method 

of long-term stability assessment has been applied to several satellites such as Landsat 

8, MODIS, SeaWiFS, PROBA-V [66,101-103]. These satellites have exploited 

different frequency of observations (for instance, once or twice in a lunar cycle). The 

required number of observations hinges on amount of trend to-be-detected over a time 

span (details are in the forthcoming texts). But, number of moon imagery collection is 

limited by the different lunar phases. 

3.1.2.1.2. PICS Based Radiometric Stability Monitoring   

Earth surfaces that exhibit minimal change over time are usually referred as 

invariant targets. Multi-temporal image data over those invariant targets explains the 

temporal behavior of the imaging sensor, i.e. the long-term radiometric stability of the 

sensor. For being a pseudo-invariant calibration site or PICS, according to several 

investigators [81,104-106], a target should have some properties such as: temporal 

stability, spatial uniformity, Lambertian nature, located away from waterbodies, urban 

and industrial areas. Even though Earth surfaces do not contain all the mentioned 

properties, a few Earth imaging targets exhibit some of the properties, allowing many 

researchers to use PICS for monitoring long-term radiometric stability of remote 

sensing satellite sensor. PICS based stability monitoring method is utilized as a 

standalone approach [44,107,108], or along with OBCs and lunar based method 

[95,100,109]. In harsh space environment, not only sensor can degrade but OBCs also 

can degrade over time, requiring another method to track the performance of both the 
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sensor and the on-board calibrator. Lunar approach is used sometimes as a secondary 

method; but to capture lunar image, imaging direction of the satellite system must be 

altered, many satellites do not have the capability to maneuver the instrument. 

However, PICS based method can be easy to implement and low cost since it requires 

collecting routine imagery of the target and expertise to analyze the observations. 

These makes PICS based method an attractive option, as a standalone approach or as 

a secondary method to OBCs, for assessing long-term stability of a spaceborne 

imaging system. Therefore, PICS can be used confidently for post-launch long-term 

radiometric stability assessment of a satellite sensor.   

Over the past few decades numerous PICS have been used to monitor temporal 

degradation of on-orbit imaging sensor. Almost all the exploited PICS are from twenty 

North African and Saudi Arabian desert sites recommended by Cosnefroy et al. in 

1996 [69]. A lot of research have been carried out in the past decades aiming to find 

new invariant calibration target/s, especially in global scale rather than Africa and 

Arabia [72,110,111]. As mentioned earlier, recently, Shrestha et al. extended PICS 

(EPICS) to all of north Africa through developing cluster approach [50], and Hasan et 

al. showed 3% temporal uncertainty of cluster 13, which shows the potential of cluster 

for long-term stability monitoring [112]. The key advantage of EPICS-based stability 

monitoring is the ability to assess radiometric stability from daily/near daily 

observation, but temporal uncertainty of EPICS can be higher than traditional PICS 

observation.  

In 2019, Bacour et al. shows that twenty desert PICS identified by Cosnefroy 

et al. is still “optimal” [72]. At CEOS IVOS-19 meeting, six of the twenty PICS have 

been selected as pseudo-invariant standard “reference” calibration target [113]. They 
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are popularly known as [114]: Libya 4, Libya 1, Mauritania 1, Mauritania 2, Algeria 

3, and Algeria 5. Details of these six PICS, including latitude and longitude, altitude, 

and climatological parameters, can be seen in [115]. For many years’ numerous 

researchers are exploiting six CEOS endorsed PICS to monitor the calibration trend 

of remote sensing satellite. Among all the PICS, Libya 4 appears to be the most stable 

site, with 1% to 1.5% temporal uncertainty [116]. Consequently, Libya 4 is the most 

frequently used PICS. Out of six CEOS PICS, two of the Mauritania sites exhibited 

more than 3% temporal uncertainties in Landsat 7 ETM+ observations [33], which 

may be because of their closeness to the West African coast line [98]. Therefore, one 

must be cautious about selecting these two PICS for stability monitoring.  

PICS based long-term stability assessment approach consists of few simple steps. The 

following steps of trending have been adopted from [44]:  

1. Site selection: depending on the requirements and constraints, such as 

temporal stability, amount of trend to-be-detected, Lambertian nature, etc., 

PICS should be selected.  

2. Region of Interest (ROI) selection: spatially homogenous ROI must be 

selected from the chosen PICS scenes. For example, six CEOS PICS ROI 

extent can be seen in [115], and SDSU IPLAB ‘optimal’ ROI coordinates 

(at Libya 4, Libya 1, Sudan 1, Egypt 1, Niger 1, Niger 2) are shown in 

[117]. 

3. TOA reflectance or radiance calculation: at sensor reflectance or radiance 

should be calculated using calibration parameters. 



36 
 

 

4. Outlier rejection: cloud contaminated TOA reflectance or radiance must be 

ignored.  

5. BRDF normalization: to remove the seasonality, BRDF normalization 

should be applied.  

6. Trend detection: plotting BRDF normalized TOA reflectance or radiance 

and observing the change over time. 

Barsi et al. applied the above mentioned steps to Libya 4, Algeria 3 and Sudan 

1 PICS data from Sentinel-2A MSI, aiming to observe the stability of the sensor over 

time [54]. Figure 6 illustrates the lifetime trend of coastal aerosol band for the three 

PICS. At Libya 4 PICS, Sentinel-2A MSI coastal aerosol band shows - 0.14 ± 0.73 (± 

2σ) %/year drift, which is displayed in figure 7. The slope over time for all the other 

bands is also calculated and presented in figure 7 to assess the temporal stability, and 

result shows general agreement among three sites within 2-sigma uncertainty in seven 

MSI bands. 

 Figure 6: The lifetime trend of Sentinel-2A MSI at three PICS [54]. 
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Figure 7: The lifetime trend of 7 Sentinel-2A MSI bands at three PICS [54]. 

The amount of trend that can be detected rests on several factors such as time 

span of the dataset, temporal frequency of the data, temporal variability in the data, 

autocorrelation in the data, etc. [118-120]. These factors vary, to a certain extent, 

depending on the capability of the imaging sensor, atmospheric condition while 

collecting the imagery, length of the dataset at certain PICS. Natural variability of the 

target, which is attributed to temporal variability, impedes the ability to detect 

statistically significant trend. Only statistically significant calibration trend detection 

is possible when to-be-detected trend surpasses the natural variability of the PICS. 

Since all the aforementioned factors are atmospheric condition, temporal resolution 

and length of available dataset dependent, the minimum trend detectability will vary 

accordingly. This article presents the approach of detecting the minimum trend, 

considering ‘known’ temporal variability, autocorrelation, and length of the dataset. 

Alternatively, necessary minimum data record length can also be determined, knowing 

the amount of minimum trend to-be-detected. 
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According to Weatherhead et al. [121,122], number of years (N) to detect a 

trend of magnitude ω0 at the 95% confidence level and with 50% probability can be 

estimated by: 

               N = (
2σ𝑁

|ω0|
√

1+∅

1−∅
)

2/3

                            (4) 

where, σ𝑁 is the variability in the monthly averaged data time series and ∅ is 

the 1-month lag autocorrelation in the monthly averaged data. This equation can be 

used to determine: (i) length of the data necessary to detect a trend of certain 

magnitude, and (ii) magnitude of the trend that can be detected by a specific time span 

of dataset. The unit of σ𝑁 and ω0 must be same; for instance, if one expect ω0 in 

percentage, σ𝑁  must be expressed in percentage, dividing it by the mean of the 

monthly averaged time series data. 

The above explained approach has been applied by Bhatt et al. [123] to detect 

statistically significant minimum trend in VIIRS Libya 4 monthly observation. 

Recently, in 2019, Hasan et al. shows trend detection possibility using temporally rich 

cluster 13 and traditional Libya 4 PICS observations [112]. 

PICS based radiometric stability is a proven ability to monitor long-term 

stability of a remote sensing sensor through normal Earth observation-based trend 

detection. Therefore, for the sensors without on-board calibrators and capability to 

collect lunar imagery, PICS based long-term radiometric stability monitoring can be 

the primary approach.   
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3.1.3. Relative Radiometric Calibration 

The process of quantifying radiometric response variation in each detector 

relative to each other is known as relative radiometric calibration. In an ideal situation, 

each detector of a camera system should give exactly same output when they are 

exposed to same amount of electromagnetic radiation. But ideal state does not exist 

due to minute variations in detector manufacturing, variability in electronic gain and 

offset, and differences in spectral and linear responses. Consequently, every detector 

in a linear array imaging system exhibits different behavior causing noticeable striping 

artifacts in collected imagery. In order to address the above-mentioned problems, 

imaging sensor is usually characterized in a simulated space environment prior to 

launch. But launch stress, ultraviolet radiation and temporal degradation are a few of 

the factors that can cause the non-uniformity in detector response while satellite is 

operating in-orbit. Hence, in-orbit relative radiometric calibration and correction must 

be performed to ensure high quality image data. Over the years, numerous methods 

have been employed to remove the detector level artifacts. They can be classified into 

two broad categories: i) on-board and ii) Earth scene-based method. On-board 

calibrators, such as lamps or diffuser panels, are used in several remote sensing system 

as a uniform radiance source for detector-to-detector non-uniformity characterization 

[51,66,124]. In absence of on-board calibrators or as a method to monitor on-board 

instrument degradation, Earth imagery-based methods are utilized to quantify 

detector-to-detector response variation. Yaw or side-slither maneuver and lifetime 

statistics are two of the popular vicarious approaches for on-orbit relative radiometric 

calibration of linear array imaging system from Earth scenes [125,126]. The strengths 
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and weaknesses of these two methods along with target type has been presented in 

table 3 (details can be seen in subsection 3.3.1 and 3.3.2). 

Table 3. Relative calibration methods 

Methods Strengths Weaknesses Target Type 

Yaw or Side-

Slither Maneuver 

[125,127-129]  

Can be time 

efficient compare 

to statistics 

approach 

 

One cloud free 

acquisition may be 

enough 

Satellite should 

have the capability 

to maneuver 

 

Loss of normal 

image data 

Requires uniform 

imaging target 

Visible and near 

inferred band: 

Greenland and 

Dome C of 

Antarctica  

 

SWIR band: 

Sahara Desert and 

Arabian Peninsula 

sites 

Lifetime Statistics 

[126]  

 

No need to 

maneuver 

 

Normal Earth 

scene-based 

approach 

Requires 

substantial number 

of images 

Any surface type  

 

3.1.3.1. Yaw or Side-Slither Maneuver 

The pushbroom imager, which is a linear detector array, scans the imaging 

target one row at a time during the movement of the spacecraft that forms an image 

with each column of the image is generated by a single detector. On the other hand, in 

side-slither maneuver process, the focal plane of the system is rotated ninety degrees 

on its yaw axis, and the imaging direction is parallel to the direction of the spacecraft 

rather than perpendicular normal pushbroom imaging operation. Thus, every detector 

of the array images the same area of the ground and measures the identical amount of 

electromagnetic radiation. But, obtaining ideal side-slither scan requires perfectly 

parallel spacecraft and array position, no optical distortion, etc. The roll, pitch and yaw 
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stability of the spacecraft should be maintained at a certain extent to minimize the 

ground variability of the projection of each detector [125]. More details of side-slither 

or yaw-axis maneuver technique can be seen herein [130]. 

Capability to maneuver, loss of normal image data, and uniform imaging target 

requirement are the primary constraints of collecting appropriate data for detector-to-

detector non-uniformity characterization. However, no-requirement of on-board 

hardware and more time efficient than some of the traditional methods are a few of 

the major strengths of side-slither technique for relative radiometric calibration [131]. 

The side-slither technique has been shown significant improvement in image quality 

for RapidEye [125], Landsat 8 [128], Quickbird [129] and Pleiades-HR [132] sensor. 

In 2014, Pesta et. al. presented comparable relative gain correction in Landsat 8 OLI 

image using diffuser based and side-slither approach [128]. Therefore, this method of 

relative calibration can be used without any reservation. 

Radiometric and spatial uniformity, high signal-to-noise ratio, large enough 

area for sufficient amount of data are a few of the major criteria for side-slither 

imaging target selection for relative gain characterization. But all the bands are not 

bright in a single target, hence, different types of targets should be used for different 

band. For instance, visible and near inferred band can be calibrated using Greenland 

and Dome C of Antarctica [128], whereas Sahara Desert and Arabian Peninsula sites 

provide high enough spectral radiance for accurate relative gain characterization of 

SWIR band [125,127-129]. Theoretically one cloud free side-slither acquisition may 

be enough for relative calibration assuming sensor or detector is stable. 
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Linearity in detector response and uniform radiances to each detector are two 

of the major assumptions that must be fulfilled for non-uniformity characterization. 

Detector linearity can be assessed by finding the relationship between input radiances 

to the focal plane and detector output from the imaging system. At an onset, in side-

slither or “flat fielding” approach, homogenous flat-field areas are selected as 

appropriate target from bright images, and then each detector response is shifted to 

line up. Each of the detectors bias, which is calculated from dark images, is subtracted 

from the raw signal, and the relative gains are obtained by column averaging the bias 

eliminated side-slither collect and dividing by the average signal level of the scene 

[125]. Finally, these relative gains are applied to each detector’s offset removed 

output, which results in corrected images. 

Improvement due to relative gain correction should be assessed both 

qualitatively and quantitatively. Qualitative image enhancement can be evaluated by 

visual inspection, and quantitative improvement is usually apprised by calculating 

banding and streaking metrics. Banding is a phenomenon that appears due to the 

deviation of average array response from a group of detector’s response. Streaking 

becomes apparent in an image when a single detector’s response deviates strikingly 

from its neighboring detectors. These artifacts often become evident in fairly 

homogenous scenes at different radiance level. Banding and streaking requirements 

are usually established during the development phase of satellite system. Banding and 

streaking metric can be defined in multiple ways, QuickBird and Landsat 8 OLI 

banding and streaking equations are presented in [127,133]. 

Figure 8 shows an example of banding and streaking for the red band of a 

desert scene from QuickBird sensor [127]. Left figure presents radiometrically 
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corrected column averages which is used to calculate the banding, and right figure 

illustrates percentage streaking, which is less than 0.12%, for all the detectors in red 

band. The presented result for all the QuickBird bands met banding and streaking 

requirements.      

  Figure 8: Radiometrically corrected desert data and corresponding percent streaking 

[127]. 

From the above discussion, it is evident that side-slither maneuver is a well-

defined and established method of relative calibration. Therefore, this method can be 

a suitable option for relative gain estimation of an Earth observing satellite. If the 

satellite system lacks on-board calibrator or maneuver mechanism, then lifetime 

statistics approach can be utilized for relative radiometric calibration. 

3.1.3.2. Lifetime Image Statistics 

Lifetime image statistics relative radiometric calibration method relies on the 

modification of histogram observed from each individual detector in an imaging 

system and is applicable to push broom, whisk broom and frame cameras. Histogram 
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modification, which is an Earth imagery-based technique, is based on the assumption 

that all the detector sees the same image information in a statistical sense. This 

approach is valid for deriving the parameters (e.g., relative gains) from a single scene 

and application to an individual scene from whiskbroom sensors since it can be 

assumed that each detector of whiskbroom imaging sensor measures same signal 

levels in a statistical sense. The assumption might not be valid for a single scene from 

pushbroom sensors or frame cameras since every detector of a pushbroom 

instrument/frame imager does not see the same image information. However, this 

assumption can be used for pushbroom or frame sensors if the range of image data is 

extended over many scenes. Detector level non-uniformity characterization usually 

performed from multiple scenes over the course of the sensor’s lifetime. Relative gains 

used to be characterized using all the available data [126], but non-uniformity 

characterization from a subset of images provided acceptable result [134]. One 

advantage of this is that it allows frequent relative gain characterization which will 

provide useful knowledge about sensor degradation. Nowadays any Earth observing 

sensor generally collects several hundreds of scenes each day which indicates sheer 

volume of data should be queried for scene statistics, and that can take substantial 

amount of time. However, no requirement of on-board instrument, no need to 

maneuver, and usage of normal earth scenes are the major strengths of this relative 

calibration method. Consequently, in absence of on-board calibrators and yaw axis 

maneuver capability, statistics method is an option for remote sensing satellite relative 

radiometric calibration. 

Based on aforementioned assumption, Angal first presented relative gain 

characterization and correction of a pushbroom sensor called Advanced Land Imager 
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(ALI) [126]. Application of relative gains derived from 20,000 ALI scenes showed 

significant improvement in image quality. In 2010, Shrestha developed a method to 

identify best type of images for lifetime statistics approach based on image mean and 

standard deviation [134]. High mean and high standard deviation (HMHSD) images 

provided best result to estimate the relative gains, and algorithm requires less HMHSD 

scenes than normal scenes to stabilize the relative gain. Additionally, relative gain 

estimates based on mean statistics performed better compare to standard deviation 

based approach. This work also presented an approach to determine number of 

required scenes with a few incomprehension which suggested the requirement of 

future work. In 2017, Anderson et al. described a procedure for estimating relative 

gains from normally acquired high mean and low standard deviation (HMLS) Earth 

scenes [135]. Moreover, a method to obtain number of required scenes is also 

presented based on Landsat 8 OLI data, and minimum of 1200 HMLS images was 

used as a threshold to calculate relative gains for all OLI bands. Finally, the scene 

statistics result has been compared with diffuser result which is obtained from 

Greenland images, and statistics results outperformed the diffuser result qualitatively 

and quantitatively. From the work presented by Anderson et al. [135], it is evident that 

the HMLS earth scenes will be appropriate, and number of scene required can be 

calculated based on the presented approach. 

Relative radiometric calibration using statistics method can be performed in 

following way: i) detector-by-detector mean DN calculation and then bias subtraction 

for all the available scenes, ii) mean DN calculation for each detector from all the 

available scenes, iii) standard deviation calculation for each detector from all the 

available scenes, iv) global mean (from step 3) DN and global standard deviation 
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(from step 3) computation, and v) calculate relative gain dividing either mean DN 

from step 2 by global mean (step 4) or dividing standard deviation from step 3 by 

global standard from step 4. Relative gain correction can be applied in two of the 

following steps: i) subtract mean bias from the raw image data for each detector and 

ii) multiply the reciprocal of each detector’s relative gain by each of bias-corrected 

image pixel.  

The above explained relative calibration steps are followed to obtain relative 

gains for each detector, and afterwards, correction has been applied to the ALI Arizona 

acquisition, and the original and corrected images are illustrated in Figure 9 [136]. The 

Figure 9a shows the band 7 original image along with the stretched Sensor Chip 

Assembly (SCA) 3 image at the bottom. The vertical stripping artifacts are evident in 

the shown images. Figure 9b and 9c presents calibrated images using pre-launch 

coefficients and using relative gains, respectively. Stretched regions (at the bottom) in 

two of the Figures clearly show the stripping reduction. Compare to pre-launch 

coefficient, relative gain approach apparently provided better correction of detector 

level non-uniformity.         
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Figure 9: Relative gain applied on ALI Arizona scene [136] 

3.1.4. Signal-to-Noise Ratio  

Signal-to-noise ratio (SNR) is defined as the ratio of signal to the random 

variability of the signal which is known as “noise” of a system. It is a measure of 

useful information obtained by an instrument. In remote sensing, SNR is an image 

quality assessment indicator, and it evaluates radiometric performance of an imaging 

system. Noise is an inevitable part of any instrument; remotes sensing satellites are no 

exception. Thus, SNR of a satellite should be estimated to assess the quality of the 

data product. Since SNR usually varies with signal level, it must be reported in such a 

way that it clearly signifies the imaging quality of a sensor. For instance, SNR of two 

imaging system can be estimated under same illumination condition i.e. same radiance 

level, which will allow to compare the SNR from one satellite to another. As an 

example, Landsat 7 and 8 reports the SNR at typical and maximum radiances, which 

can be seen in [92]. Several sensors SNR have been estimated exploiting their 

corresponding on-board calibrators [137-139]. Over the years numerous Earth 
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imagery-based SNR estimation methods have also been developed for remote sensing 

sensors. Some of the popular earth imagery based SNR estimation method are known 

as homogenous area (HA) [140], local means and local standard deviations (LMLSD) 

[141] method. Each of the above-mentioned method has its strengths and weaknesses 

(summary can be seen in the table 4), which have been presented in the forthcoming 

subsections along with its appropriateness for remote sensing satellite SNR estimation.  

Table 4. SNR estimation methods 

Methods Strengths Weaknesses Target Type 

Homogenous Area 

[140,142]   

Relatively easy to 

compute 

 

Normal Earth 

scene can be used 

Almost impossible 

to find absolute 

homogenous  

surface in a 

satellite imagery 

dry lake, desert, 

snow, dense 

vegetation 

Local Mean and 

Local Standard 

Deviation [141]  

Can be automated 

 

Does not require 

large homogenous 

areas but many 

small homogenous 

regions. 

Noise must be 

mainly additive 

 

Image should 

contain many 

small homogenous 

area 

Target with many 

small homogenous 

area 

 

3.1.4.1. Homogenous Area Method 

One of the simplest SNR estimation approach relies on the calculated mean 

and standard deviation within a manually selected homogenous area. The ratio of the 

mean and standard deviation gives an estimate of SNR. A few of the strengths of this 

method of SNR estimation are: i) it is relatively easy (compare to complex statistical 

approaches) to implement, ii) it requires normal Earth scenes with homogenous area, 

and iii) it gives SNR from directly computed parameters (mean and standard 
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deviation) rather than from multiple steps of statistical outcomes. However, almost 

impossible to find absolute homogenous surface in a satellite imagery, inevitable 

atmospheric variability, manual selection of homogeneous region are the major 

weaknesses of HA method. Since manually selected homogenous area almost always 

contains image features, there is a possibility of SNR underestimation. But, as 

presented by Ren et. al. in [142], homogenous target such as dry lake, desert, snow, 

dense vegetation can give reasonable estimate of SNR. Moreover, river and forest have 

also been used to estimate SNR of different satellite sensor [143,144]. To report SNR 

at multiple signal level, several types of target should be used. The size of the 

homogenous area should not be very small since small homogenous area would not 

give the best estimate of SNR or too large because large area will increase surface and 

atmospheric variability, which will underestimate the SNR [142]. The accuracy of this 

method might vary depending on surface type used to estimate SNR. SNR of Landsat 

8 reflective bands using HA method over dry lake, desert, snow, dense vegetation 

shows over estimation on the order of 50 to 250 SNR and underestimation on the order 

of 20 to 50 SNR (at Landsat 8 OLI typical radiances, mentioned earlier), which suggest 

the shortcomings of this method compare to on-board approach [142]. Nevertheless, 

this method can be an option for the satellite systems without OBCs. 

3.1.4.2. Local Means and Local Standard Deviations Method 

Local means and local standard deviations (LMLSD) is an earth imagery-

based SNR estimation method which exploits the fact that remote sensing images 

usually contain numerous small homogenous areas. In 1993, Gao presented this 

method [141], and showed that estimated SNR by LMLSD is similar to the SNR 

estimated by HA method. This process of SNR estimation can be automated, and it 
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does not require large homogenous areas but many small homogenous regions. 

However, this method had developed assuming that noise in the images are mainly 

additive, which must be investigated first before proceeding with this method. One 

way to inspect the assumption is to plot the calculated local means and local standard 

deviations within the small homogenous blocks. If majority of the local means are 

clustered around a single standard deviation, then it can be said that the noise is mainly 

additive. 

As explained in [141,145,146], first step of this method is to divide an image 

into small blocks of 3 × 3, 5 × 5,……, 21× 21 pixels. Afterwards, local means (LMs) 

and standard deviations (LSDs) are calculated for each block. Ratio of those LMs and 

LSDs are the estimated SNR for each block size. Histogram of the estimated SNRs 

for each block contains the SNR information of the entire image. The SNR at the peak 

of the histograms (when most of the peaks converges to a single SNR value) represent 

the SNR estimate of the image. This approach of SNR estimation had been applied to 

Gaofen-1, Landsat 8 OLI, Landsat 7 ETM+, Terra/Aqua MODIS observation, and the 

results have been compared to assess the performance of Gaofen-1 [146]. The 

estimated SNR of Gaofen-1 red and NIR bands are approximately 75 and 35, 

respectively, which can be seen in the figure 10.  

The accuracy of this method may be assessed from the estimated SNR of 

Landsat 8 OLI using LMLSD approach and OBC approach, assuming OBC approach 

represent actual SNR of Landsat 8 OLI. The LMLSD and OBC estimated SNR results 

presented in [146] and in [137] suggest that LMLSD method overestimated the SNR 

approximately by 50 to 100 at OLI typical radiances that is 14 to 40 W/(m2 sr μm), 

ranging from costal to NIR band.   
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Since this method of SNR estimation does not require scenes with large 

homogenous area, and it can be automated, this method can be an option for earth 

observing satellite SNR estimation. However, if the assumption of mainly additive 

noise dominant image is not met, another block counting approach presented in [157] 

can be used, which works well when the image noise is mainly multiplicative. 

Figure 10: SNR as a function of wavelength[146] 

3.1.5. Artifacts 

Since there were no clear standard definition of image artifacts, Roman-

Gonzalez defined artifacts as “artificial structures that represent a structured 

perturbation of the signal”[147]. Image artifacts can be generated from design 

problem/s, detector saturation, on-board processing unit error. It can also arise during 

the image compression and data transmission. Morfitt et. al. presents some of the 

Landsat 8 OLI artifacts; they are: spectral cross-talk, stray light, bright target recovery, 

impulse noise, coherent noise and radiometric uniformity [92]. Since coherent noise 

and striping noise (caused by radiometric non-uniformity) are present in almost all 

imaging system, they have been addressed in forthcoming subsections. 
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3.1.5.1. Striping Noise 

Striping noise is an anomaly in remote sensing images. It primarily occurs due 

to the inconsistent response of multiple detectors. As explained in Section 3.3, relative 

radiometric calibration and correction is performed to remove detector-to-detector 

non-uniformity, which result in reduced striping in the imagery. Even though relative 

gain correction reduces the striping artifacts, it is impossible to remove the striping 

completely due to the uncertainties in relative gain estimation method. Moreover, 

rapid space environment change affects the performance of the detector in-orbit that 

causes striping artifacts in the images. Since striping artifacts reduces data quality and 

limit the applications such as classification [148], object segmentation [149], and 

sparse unmixing [150], image should be de-striped before providing to the users. In 

order to identify or monitor the striping noise in the imagery, homogenous areas such 

as deserts, Greenland scenes or water bodies can be used. As mentioned earlier, 

relative calibration is not usually performed frequently, and it might leave a few 

degrees of striping. For that reason, an image de-striping algorithm can be applied to 

remove the striping artifacts. Based on the methodology, image de-striping algorithm 

can be divided into three categories; they are: i) statistics-based, ii) filter-based, and 

iii) variational de-striping method.  

As mentioned in section 3.3.3., statistics methods cannot be used to derive the 

parameters (e.g., gains) from a single scene of pushbroom/frame imager, requiring 

many images to meet the assumption of “each detector sees the same image 

information in a statistical sense”. Consequently, statistics method may not be 

appropriate for striping noise reduction since a frequently usable de-striping algorithm 

is expected. The filter-based methods are simple and computationally fast; but 
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sometimes image structures contain same frequency as stripes, thus filter-based 

method removes the scene contents which is the major disadvantage of this method 

[151]. Variational de-striping method reduces the limitation of filter-based method 

[152]. However, this method is not able to completely eliminate the limitation of scene 

content removal, and it might be complex and computationally slower than filter-

based approach [153]. Therefore, simple and computationally faster (compare to 

variational de-stripping approach) filter-based method can be appropriate for striping 

noise removal even though it occasionally removes image content. An example of 

striping noise removal from Landsat 7 ETM+ imagery using filter-based approach can 

be seen in [154]. 

3.1.5.2. Coherent Noise 

Multiple electromagnetic waves in any electronic instrument interfere with 

each other and create coherent noise. In remote sensing imagery, coherent noise (CN) 

appears as a periodic pattern at a frequency or at narrow frequency range. Figure 11 

shows coherent noise in Landsat 7 ETM+ level 1 band 3 image and Landsat 5 

Thematic Mapper (TM) level-1 band 5 image [155]. Coherent noise not only degrades 

visual image quality but also affects relative uncertainty of the data [92]. Moreover, 

presence of coherent noise causes error in atmospheric corrections when it performs 

using dark pixels [156] and  in water quality study [157]. Consequently, coherent 

noise should be characterized and removed from the image data. Coherent noise 

magnitude varies instrument by instrument, and typically it is reported as zero-to-peak 

or peak-to-peak noise magnitude in DNs. For example, CN magnitude in Landsat 4 

Multispectral Scanner (MSS), Landsat 5 TM, Landsat 7 ETM+ is measured about 0.6 

DN (zero-to-peak), about 0.5 DN (zero-to-peak) and about 3 DN (peak-to-peak), 
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respectively [158-160]. CN can also be reported in contrast level, which is the 

frequency domain noise amplitude normalized to the dynamic range of the image 

collected for CN characterization [92].  This type of noise is most visible in relatively 

homogenous areas of an image [159]. Therefore, night ocean scene, image of dark 

water bodies, shutter collect, or desert scenes would be appropriate to characterize 

coherent noise. Typically, periodic coherent noise is detected and removed in 

frequency domain. Finding the noise frequency/s is the first step of this process, and 

then an appropriate filter is used to remove the noise from the image [158].  

Figure 11: Coherent noise is (a) Landsat 7 ETM+ band 3 (left), and (b) Landsat 5 TM 

band 5 (right), level 1 data [155] 
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3.2. Spatial quality 

This section presents spatial image quality parameters and vicarious 

techniques to estimate 939 modulation transfer function (Section 3.2.1), identify 

aliasing (Section 3.2.2) and calculate ground sampling distance (Section 3.2.3).   

3.2.1. Modulation Transfer Function 

Modulation Transfer Function (MTF) is a spatial image quality evaluation 

metric that measures sharpness of the image generated by a linear, shift-invariant 

imaging system. MTF characteristics typically estimated prior to the launch of a 

remote sensing satellite; however, vibrations during launch, transition from air to 

vacuum, varying thermal state of the sensor and/or changes in material properties over 

time may change the MTF characteristics of the sensor [161]. Consequently, MTF 

estimation is necessary while an imaging system is operating on-orbit. Over the years 

numerous MTF estimation methods have been developed, and they can be divided into 

artificial (human-made) target- or natural target-based methods. They can also be 

divided based-on the properties of the target such as edge [162], pulse or line 

[163,164], and impulse method [165]. In this article, MTF estimation methods have 

been classified based-on the target properties. Table 5 presents the summary of the 

strengths and weaknesses of each method, including target types. Following 

subsections delineate the methods along with the advantages and disadvantages, and 

provide recommendations on the methods for remote sensing satellite MTF 

estimation. 
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Table 5. MTF estimation methods 

Methods Strengths Weaknesses Target Type 

Edge [162]  

Edge target can 

be found in the 

normal imagery 

Edge profile should be 

homogenous 

 

Edge should be 

straight otherwise 

edge alignment will 

be necessary 

Artificial edge: painted 

checkerboard, tarp 

made, parking lot, etc. 

 

Natural edge: 

Agricultural field 

boundaries, moon, 

sea/icefield transition, 

etc. 

 

Pulse or 

Line 

[163,164]  

Line spread 

function (LSF) 

can be obtained  

directly from the 

sensor output   

Requires knowledge 

of target width  

Homogeneity must be 

maintained throughout 

the pulse 

Bridges can be used as 

target for moderate 

spatial resolution 

sensor (10m to 60m) 

Impulse 

[165] 

Provide a full 2D 

estimate of Point 

Spread Function 

(PSF) 

 

Relatively easy to 

calculate MTF 

Point target and 

surrounding area must 

be uniform 

 

Several point sources 

are needed to obtain 

full 2D PSF 

Artificial target: convex 

mirror, spotlights, etc. 

Natural target: stars 

 

 

3.2.1.1. Edge Method 

Edge method exploits sharp edges in images acquired by a remote sensing 

sensor to estimate amount of blur in the imagery. Homogeneity in either side of the 

edge, to maintain low noise level, and high-contrast edge is expected to obtain 

reasonable estimate of MTF [166]. Moreover, edge should be straight to ensure that 

only system performance is estimated otherwise edge alignment will be necessary 

during data processing, and if possible, edge analysis in two directions (horizontal and 

vertical) from two perpendicular planes should be performed. Helder et. al. suggested 
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that the width of the edge should be between 6 to 10 pixel, and height should be greater 

than 20 pixel [165]. Additional details of the edge target requirement can be seen in 

[167]. Edge target can either be natural such as moon [168], agricultural field 

boundaries [169], sea/icefield transitions [170] or artificial such as painted concreate 

often designed as checkerboard pattern (can be seen in Figure 13a), tarp-made [171] 

or parking lot. Natural or artificial MTF target is selected based-on the trade-offs 

between sensor GSD, uniformity in bright and dark region, and line sharpness. Usually 

low-resolution sensor’s MTF is estimated using the edge of the moon as large MTF 

target is not available in Earth scene, and they are expensive to build [172-174]. Some 

of the artificial and natural MTF targets can be seen in the USGS test site webpage 

[175], however recent imagery (by looking at the Google Earth, Google maps, Bing 

maps) reveals that most of the artificial sites are not viable for MTF estimation at this 

time. Thus, in order to perform MTF estimation using edge method, one may have to 

construct an artificial target; the size of the MTF target will vary depending on the 

sensor GSD, and homogeneity in the bright and dark region and the line sharpness 

must be achieved for reasonable estimate of MTF. 

Figure 12b illustrates the steps to estimate MTF from an edge-target system 

response [176], and as explained by Helder et. al in [177], obtained edge spread 

function (ESF) is differentiated to get the line spread function (LSF), and normalized 

magnitude of the Fourier transform of LSF result in MTF.  
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Figure 12: (a) Checkerboard edge target [178] (b) steps to estimate MTF [176] 

3.2.1.2. Pulse or Line Method 

Pulse method utilizes a target made up of a bright area surrounded by dark 

areas which appears as a step pulse. In this method, input to the system is a step pulse 

and sensor output is referred as pulse response function (PRF). Ratio of the magnitude 

of Fourier transform (FT) of PRF and magnitude of FT of step pulse gives MTF. This 

method is known as pulse method since system input is a step pulse; however, when 

the width of the pulse is extremely narrow, this method can be referred as line method 

[164]. As an artificial or “human-made” target, tarp-build pulse and bridges had been 

used in the past to estimate the MTF [163,179]. A few requirements of the pulse target 

as are: pulse target must maintain homogeneity throughout the pulse and edges, and 

width of the pulse must be chosen carefully so that zero crossing point of the sinc 

function (FT of input step pulse) does not occur at Nyquist frequency [11]. In order to 

avoid that, Helder et. al. in [165] suggested 3 GSD as optimal. More details of the 

pulse target requirements can be seen in [167]. Since the zero crossing points are 

present in sinc function, and there almost certainly be noise in the system, division in 

Fourier space will produce error in MTF estimate at certain frequencies. Hence, care 

must be taken while performing this method. Despite the advantage of getting LSF 

directly from the sensor output, this method would be difficult to utilize since targets 
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are expensive to build, and it must be deployed effectively which will require 

experienced personnel. As mentioned in the edge method section, the artificial pulse 

target should be developed based-on sensor GSD; and uniformity and high contrast or 

sharpness between dark and bright region should be ensured for reasonable MTF 

estimation. As a natural target, bridges can be used for moderate spatial resolution 

sensor’s (10 meters to 60 meters GSD) MTF estimation [180].  

3.2.1.3. Impulse Method 

MTF of an imaging system can also be estimated from the impulse response 

of the system; in this method, the input to the system is an impulse (hence the name 

“impulse method”), and output is a point spread function (PSF). Ratio of the Fourier 

transform of impulse and PSF then normalized to obtain corresponding MTF. Full 2-

dimenational (2D) PSF estimate from the system output reduces the complexity and 

uncertainty of calculating MTF, which is the main advantage of this method over edge 

and pulse method. However, the obtained PSF almost certainly be noisy that limits the 

accuracy of estimated MTF [181]. Impulse targets are nothing but a point source, 

which can be either artificially built or natural (e.g., stars). As an artificial target, 

researchers have been used active sources such as spotlight [182,183] and passive 

sources such as convex mirrors [165] as inputs to the imaging satellite. Stars have been 

used as a natural point target for several satellite’s MTF estimation [184-186], and 

MTF estimation using celestial targets has the advantage of lack of atmosphere and 

possibility of celestial scenes from any orbit. But locating the stars with appropriate 

spacing and changing the imaging direction of a satellite are the major constraints of 

using stars as point target. Even though artificial targets are expensive and time 

consuming to build, as shown by Rangaswamy [187] and Leger [182], these targets 
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are appropriate for high spatial resolution sensors MTF estimation. Compare to the 

edge and pulse method, impulse method can be advantageous since this method 

provide full 2-dimentional understanding of MTF, but several artificial point sources 

are needed to obtain full 2D MTF, which might be challenging task to accomplish. 

High spatial resolution satellites MTF can be estimated from either artificial or natural 

point target depending on the capability of the sensor and other factors such as cost 

and experienced personnel for target building. 

 

3.2.2. Aliasing 

Aliasing is one type of spatial artifacts that becomes evident due to low 

sampling rate. It can arise because of the under-sampling during analog-to-digital 

conversion and resampling. Insufficient sampling fails to capture high-frequency 

scene content: as a result, repeated patterns, such as jaggedness on line features, thin 

structures, edges, become prominent nearby high-frequency components [188,189]. 

These repeated patterns are known as aliasing artifacts, which reduces the image 

quality, and it affects every subsequent application that uses aliased data. For instance, 

impacts of spatial aliasing on data fusion are reported in [190], and sea-ice thickness 

measurement can be seen in [191]. Thus, in order to ensure high spatial quality data 

from Earth observing satellite, spatial aliasing should be detected and removed before 

giving the data to the user. Aliasing not only depends on spatial content of the scene 

but also sensor MTF [192]. Since aliasing hinges on image features, scenes that 

contains high frequency content i.e. numerous edges and lines will be appropriate to 

visually detect aliasing. However, there might be aliasing that is not visible in bare 

eye. In order to detect visible and invisible aliasing, Coulange et. al. proposed an 
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algorithm based on suspicious colocalizations of Fourier transform coefficients [193]. 

This method detects aliasing from only one image and reduces aliasing preserving 

high-frequency image details, which are the major advantages of colocalization 

approach over other frequency domain aliasing detection and correction approach 

presented in [189,194,195]. 

 

3.2.3. Ground Sampling Distance  

Ground Sampling Distance (GSD) is the center-to-center distance between 

adjacent pixels in an image. It is one of the most popular spatial quality indicators of 

a remote sensing sensor since it quantifies spatial resolution of an imaging system 

[196]. GSD provides information about the detectable objects in the imagery; just to 

clarify, low GSD will allow to see small objects in the images. Since all applications 

that make use of spatial image information require accurate information about GSD, 

GSD measurement is necessary for potential user of the data. GSD can be calculated 

from the relationship (𝐺𝑆𝐷 = 𝑝 ∙ 𝐻 𝑓 ∙ cos θ⁄ ) among detector pixel pitch “p”, focal 

length of the instrument “f”, altitude of the satellite, “H”, and look angle “θ” [197]. If 

altitude of the satellite or any other parameter is not known, then GSD can be estimated 

from an image using the known distance between two points on the ground. Number 

of pixel between the two points should be counted, and ratio of the distance between 

two points and number of pixel will give the GSD estimate [198]. 

 

 

 

 

 

3.3. Geometric quality  
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This section presents geometric quality parameters and vicarious techniques to 

assess registration accuracy (Section 3.3.1) and geodetic accuracy (Section 3.3.2). 

3.3.1. Registration Accuracy 

Registration accuracy of a spaceborne imaging system refers to closeness of 

intra-band and multi-temporal image-to-image pixel registration. Band-to-band and 

image-to-image misregistration create significant problem in change detection, spatio-

temporal fusion, classification accuracy, etc. Change detection is sensitive to image-

to-image registration error. In order to present the effect of image misregistration, Dai 

et al. showed that to attain less than 10% error in change detection, registration 

accuracy of less than one-fifth of a pixel is expected [30]. Over the years spatio-

temporal fusion techniques gained popularity since they can address the problem of 

coarse spatial and temporal resolution [199]. Research in [31] showed that image-to-

image registration error significantly impacts the spatio-temporal fusion accuracy 

between MODIS and Landsat 7 ETM+ images. Low band-to-band registration 

accuracy strikingly reduce image sharpness and leads to misclassification [32]. Impact 

of band-to-band misregistration in science data products is higher at non-homogenous 

area than the spatially homogenous target [200]. It is evident from the above 

discussion that the usage of remotely sensed data requires high band-to-band and 

image-to-image registration accuracy.  

3.3.1.1. Band-to-Band Registration Accuracy 

Band-to-band registration (BBR) accuracy is a measure of alignment among 

the bands of a scene acquired by an imaging sensor. As stated earlier, numerous 

applications require high BBR accuracy; consequently, BBR accuracy 
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characterization is one of the important quality parameters for any remote sensing 

system. There are a few reported methods of band-to-band calibration for remote 

sensing sensor. For instance, on-board calibrator is exploited for Terra MODIS intra-

band calibration [201], and the result from on-board calibrator is validated using a 

ground scene approach [202]. Absolute BBR accuracy of these two methods have not 

been reported. The measured band alignment deviation between on-board and ground 

scene approach is found to be approximately 20m on average for visible to NIR band 

of Terra MODIS. On-board calibrators are not an attractive option for this task since 

it increases the cost and complexities in the system. And ground scene approach 

requires constructing specific dark areas over bright target, details can be seen in 

[202]. Another BBR accuracy assessment approach utilizes lunar observation; but, 

lunar approach is primarily used for assessing the stability of BBR [203]. Stability of 

BBR has been assessed from lunar observations of MODIS and Visible Infrared 

Imaging Radiometer Suite (VIIRS), and uncertainty of MODIS lunar based and on-

board approaches are found to be in the same order (though actual uncertainty is 

unknown) [204,205]. Requirement of imaging direction change and correcting 

seasonal variations in moon’s appearance are a few of the major constraints of using 

lunar method. Additionally, this method is usually used for low spatial resolution 

larger footprint sensor. For those reasons, lunar based method is not a practical option 

for Earth observing satellite.  

Cross-correlation is an image feature-based BBR accuracy assessment 

approach. Easy to implement, computationally fast cross-correlation method works 

well for satellite images since satellite image patch contain sufficient signal without 

too much high frequency content [206]. Additionally, geometric, and radiometric 
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distortions are usually kept minimum in remote sensing dataset which is a requirement 

for cross-correlation approach. Thus, this method is being used for high resolution 

remote sensing sensors BBR accuracy assessment for quite a few years [28,207,208]. 

Minimum inter-band spectral difference is one of the major preconditions of cross-

correlation method. Consequently, cloud-free acquisitions of desert sites with little-

to-no vegetation are typically used for BBR accuracy assessment [207]. For instance, 

Landsat 8 OLI BBR accuracy had been measured using 18 cloud-free desert scenes 

[207], and Landsat 7 ETM+ BBR calibration had been performed from 27 Earth 

scenes scattered over several desert sites [208]. Based on the study in [207,208], it is 

obvious that quite a few cloud-free desert scenes are required to perform this method. 

Cross-correlation approach has been used to assess EO-1 ALI BBR performance and 

results have been compared with Landsat 7 ETM+ performance; the positional offset 

between ALI and ETM+ bands is found to be approximately 0.08 pixel (for 30m ALI 

and ETM+ bands) [28]. Absolute accuracy of cross-correlation approach has not been 

reported in any of the above-mentioned references. However, ALI and ETM+ 

comparison indicates the efficacy of cross-correlation approach. Therefore, cross-

correlation can be an approach for remote sensing satellites BBR accuracy assessment.    

3.3.1.2. Image-to-Image Registration Accuracy 

Image-to-image registration (IIR) accuracy is a measure of alignment among 

multi-temporal images of same target acquired by an imaging sensor. Image 

registration accuracy impacts every application that uses temporal remote sensing 

dataset. In order to improve the IIR accuracy, many methods of image registration 

have been developed over the past decades. They can be classified into two broad 

categories; they are: i) area-based and ii) feature-based method. Area-based 
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approaches compare spatial patterns of the intensity label in small image subsets [209], 

whereas feature-based methods are reliant on identification of salient spatial features 

such as edges or unique shapes [210,211]. One of the major disadvantages of feature-

based approach is that the target features might change over time which will lead to 

poor accuracy assessment. On the other hand, area-based method works without 

detecting prominent objects. Thus, it will not be affected by the change of image 

features. But area-based methods are computationally slower than feature-based 

approaches. Faster modern computers can overcome that problem. Therefore, one of 

the area-based methods such as image correlation [212] would be suitable for image 

registration accuracy assessment. Area-based image correlation approach is used to 

assess IIR accuracy of Landsat 7 ETM+ and Landsat 8 OLI; IIR accuracy of both the 

sensors are within 12m specification (for both the sensors), which might be an 

indication of the effectiveness of area-based method [207,208].    

3.3.2. Geodetic Accuracy 

Geodetic accuracy is usually referred in absolute scale, and it is a measure of 

geolocation accuracy of the image data created by the imaging system of a spacecraft 

[207]. Geolocation accuracy specifies the geometric performance of the satellite 

system operating in-orbit, and it is measured using highly accurate Ground Control 

Points (GCPs). These GCPs are located in the geometric calibration sites, and their 

actual coordinates are known. For instance, USGS EROS range in the city of Sioux 

Falls, South Dakota, USA has over 400 highly accurate GCPs which can be used to 

assess the geodetic accuracy of a space-borne imaging system [213]. Calibration site 

with highly accurate GCPs along with their coordinates and test image of that site from 

a satellite sensor are two of the requirements to assess geodetic accuracy. The steps to 
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measure the absolute geodetic accuracy is fairly simple which can be seen in [28]. 

Briefly, at first the GCPs should be identified in the test images, and locations of the 

identified GCPs are compared with their actual known locations. Then mean, root-

mean-squared, and standard deviation along- and across-track errors can be calculated 

for each of the tested scenes to compare scene-by-scene performances. The uncertainty 

of the GCP based approach depends on the number of control points used for 

estimating geodetic accuracy; however, the quantitative impact of number of control 

points to uncertainty is unknown [28].  

Another approach of absolute geodetic accuracy assessment uses the Global 

Land Survey (GLS) scenes that contains control points. The test sites with GCPs 

provides better accuracy compare to GLS control points. But test sites with highly 

accurate GCPs are not available in global scale. Consequently, GLS based approach 

can be an option to assess absolute geodetic performance of an Earth observing 

satellite. Landsat 8 absolute geodetic accuracy using GCP and GLS approach differs 

by about 30 meters; and GCP approach yields higher geodetic accuracy than GLS 

approach [207].  

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION 



67 
 

 

This article presents a critical review of image quality criteria and best 

vicarious methodologies to assess and improve the optical images of Earth observing 

satellite, exploring radiometric, geometric, and spatial quality categories. Knowledge 

of these quality categories is critical since the data user community expects to use 

radiometrically, geometrically and spatially accurate data. Signal-to-noise ratio, 

absolute calibration, relative calibration, radiometric stability, and image artifacts are 

found to be the primary on-orbit radiometry characterization parameters. Spatial 

quality of remote sensing images is defined by modulation transfer function, ground 

sampling distance and aliasing. Registration and geodetic accuracy are the geometric 

quality evaluation criteria for a spaceborne imaging system. Each of the parameters 

can be assessed or quantified by multiple methods. In this work, best quality 

assessment and improvement methods have been identified, including strengths, 

weaknesses, requirements such as type of images required, number of images required 

to perform the task, etc. Additionally, methods have been recommended based-on its 

strengths and weaknesses, and processing steps of the method are outlined along with 

example.  

As mentioned throughout this article, quality of Earth observing satellite 

generated observation is essential for every subsequent application. Therefore, 

presented complete review of remote sensing image quality and best practices of 

methods will help satellite owners and operators to decide which method of quality 

they will rely on, and data users to know about different quality criteria so that they 

are aware of the quality of scientific observation.  
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