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ABSTRACT 

This dissertation consists of three parts, each of them, progressively, contributing to 

the problem of great importance that satellite-based remote sensing of clouds. 

In the first section, we develop a fast radiative transfer model specialized for Visible 

Infrared Imaging Radiometer Suite (VIIRS), based on the band-average technique. VIIRS, 

is a passive sensor flying aboard the NOAA’s Suomi National Polar-orbiting Partnership 

(NPP) spacecraft. This model successfully simulates VIIRS solar and infrared bands, in 

both moderate (M-bands) and imagery (I-bands) spatial resolutions. Besides, the model is 

two orders of magnitude faster than Line-by-line & discrete ordinate transfer (DISORT) 

method with a great accuracy. 

The second and third parts are going to investigate the retrieval of single-/multi- 

layer cloud optical properties, especially, cloud optical thickness (τ) and cloud effective 

particle size (De) with different methods. By presenting the comparison between results 

derived from VIIRS measurements and benchmark products, potential applications of 

Bayesian and OE retrieval methods for cloud property retrieval are discussed. It has 

proved that Bayesian method is more suitable for single-layer scenarios with fewer 

variables with fast speed, while Optimal Estimation method is superior to Bayesian 

method for more complicated multi-layer scenarios. 
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NOMENCLATURE 

τ Optical Thickness 

De Particle Effective Diameter 

Qe Extinction Efficiency 

ρ Density 

σ Cross Section 

ε Underlying Surface Emissivity 

β Ratios of Absorption Optical Depths 

ωo Single Scattering Albedo 

g Asymmetry Factor 

CKD Correlated-K Distribution 

CRF Cloud Radiative Forcing 

GCM General Circulation Model 

LBLRTM Line-by-line radiative transfer model 

LUT Look-up Table 

SRF Spectral Response Function 

RTM Radiative Transfer Model 

OLR Outgoing Longwave Radiation 

TC4 Tropical Composition, Cloud and Climate Coupling 

TOA Top of Atmosphere 

VFRTM VIIRS fast radiative transfer model 
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1. INTRODUCTION 

1.1. The role of cirrus clouds in climate  

In daily life, cloud is one of the most common things, which could be seen nearly 

everywhere. Among all types of clouds, ice cloud, especially, thin ice cloud plays a major 

role in the earth’s surface and atmosphere radiation budget (Herman et al., 1980; 

Hartmann and Short 1980). Cirrus is a genus of ice cloud generally characterized by thin, 

wispy strands. Cirrus clouds are thin ice cloud, usually above 6000m, that can hardly be 

seen with the naked eye, and cover more than 20% of the earth (Liou, 1986; Stubenrauch 

et al., 2006; Iwabuchi et al., 2014). They are scientifically interesting because they allow 

most incoming sunlight to pass through, but help to contain heat emitted from the surface, 

so cirrus clouds exert a warming influence on Earth's surface, and have a powerful effect 

on local and global climate (Baran, 2012; Yang et al., 2015). By reflecting the incoming 

sunlight back to space and reducing the outgoing longwave radiation (OLR), cirrus cloud 

has presented two opposing radiative effects, cooling and heating, on the earth, which 

depends on many factors, including cloud lifetime, cloud amount, cloud optical thickness, 

cloud top height, cloud effective particle size, and cloud particle habit, as well as the 

distribution of water content within the atmosphere and low-layer water clouds or aerosols 

(Ackerman et al., 1988; Hartmann et al., 2001). Antagonism of the cirrus cloud arises a 

complicated problem to give a straightforward answer to the question that cirrus has a 

positive or negative effects on the earth surface cooling process. Generally, the net high 

and thin cirrus cloud has a positive net cloud radiative forcing (CRF) at the top of 
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atmosphere (TOA) (McFarquhar et al., 2000), meanwhile the CRF of thick cloud anvils 

can be negative (Jensen et al., 1994). So that, it is a big challenge to accurately reproduce 

the cirrus cloud associated radiative transfer process in global climate models, and better 

quantified cirrus cloud optical properties are necessarily needed.  

The formation and life time of cirrus cloud is determined by the distribution of 

water vapor and atmosphere dynamics (Newell et al., 1996), meanwhile cirrus cloud, in 

turn, has an effect on the re-distribution of atmosphere water vapor. Cirrus clouds are often 

observed near tropopause in tropics and over the water (Dessler and Yang, 2003), 

suggesting that cirrus cloud might be involved in the troposphere and stratosphere water 

vapor interaction (Hartmann et al., 2001). Overall, the influence of cloud on atmospheric 

radiation budget is still an unsolved puzzle, making it one of the hottest topics to measure 

the altitude and properties of cloud and to get information on the relationship between 

clouds and climate. To settle these problems, many observing satellites, like CloudSat and 

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) have 

been launched into the space. Besides, there are many scientific campaigns focusing on 

cirrus study, such as CRYSTAL- FACE (or, Cirrus Regional Study of Tropical Anvils and 

Cirrus Layers- Florida Area Cirrus Experiment, Jensen et al. 2004) and recent TC4 

(Tropical Composition, Cloud and Climate Coupling) experiments. These in-situ 

measurements provided the theoretical basis of cloud modeling and remote sensing. 

However, the limitation of high price and limited spatial and temporal sampling makes it 

impossible to study continuous cloud global distribution and optical properties with in-
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situ method. So that, satellite-based instruments become an absolutely necessary technique 

to study cloud.  

1.2. The role of multi-layer clouds in climate  

Apart from horizontally and vertically homogeneous cloud system, i.e. single-

layer cloud system, which is the most idealized model in radiative transfer simulation, 

multi-layer clouds are of great importance as well. Like cirrus cloud, multi-layer cloud is 

another kind of cloud raises concerns. Inferred from global water vapor profile data, it 

suggests that over 40% of the global cloud systems involves multi-layer clouds (Poore et 

al., 1995; Wang et al., 2000). Cloud vertical structures also affect the global atmospheric 

circulation through direct heating/cooling and latent heating (Webster and Stephens, 1980; 

Wang and Rossow, 1998). What’s more, cloud multi-layer structure also introduces a 

significant uncertainty in general circulation models (GCMs). Derivation of cloud 

properties is compromised when multi-layer clouds are presenting but single-layer clouds 

are assumed. For these compromised retrievals, i.e. treated as single-layer clouds, 

however, actually are multi-layer ones, the results usually lie between the layer properties: 

cloud heights lie lower than the upper layer and higher than the lower one; effective 

particle sizes are between water cloud droplets and ice cloud particles as well (Davis, et 

al., 2009). Considering the widely occurrences of multi-layer scenarios, it is of importance 

to derive an accurate representation of these clouds with the help of satellite-based 

observations.  
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1.3. Satellite based modeling and retrieving of clouds 

Satellite data can provide consistent measurements to infer the global distribution 

of clouds, and scores of retrieval methods have been developed to obtain cloud optical 

properties such as optical thickness(τ) and ice particle effective diameter(De) based on 

various satellite instruments over the past several decades. In order to obtain reliable 

retrieval results of cloud properties from satellite observations, we have to have a good 

understanding of the instrument characteristics and capabilities. In addition to that, a good 

understanding of microphysical and scattering properties of ice particles is also required 

by traditional visible and near-infrared (VNIR) based technique, if not, large uncertatinties 

could be introduced because of the variability of ice cloud particle shapes (Cooper et al., 

2006). Consistent thermal IR observations in both daytime and nighttime makes it not only 

possible to understand the complete cloud diurnal cycle, but also feasible to derive ice 

cloud optical properties because of the relatively insensitive to smooth or rough cloud 

particle surface and various ice particle shapes. Therefore, we are going to focus on using 

thermal IR measurements derive cloud properties. 

1.3.1. Microphysical properties of ice clouds 

Since properties of water cloud droplet can be perfectly reproduced by sphere 

model, here we will focus on ice cloud particles. From in situ aircraft observations, it has 

been determined that ice clouds are almost exclusively composed of nonspherical ice 

particles, including bullets, columns, and plates (Heymsfield and Platt, 1984). Therefore, 

the microphysical properties of ice clouds have to be understood before modeling the ice 
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cloud particles. Based on the assumption that cirrus clouds are plane-parallel and 

homogeneous. The geometric thickness of cirrus clouds is assumed to be thin enough to 

adapt to the needs of fast model; and the optical thickness cirrus clouds have to be thick 

enough to be detected by satellite instruments. 

According to in-situ measurements, there can be a large range of different sizes of 

ice cloud particles within the same cloud, ranging from a few micrometers to millimeters

(Auer and Veal 1970). However, it has been confirmed that the effective diameter (De) 

instead of exact cloud particle size distribution determines the radiative properties of 

clouds, such as extinction efficiency, asymmetry factor and so on (Hansen and Travis 

1974). The effective diameter (De) of an ice particle distribution is defined as follows: 

𝐷𝑒 =
3

2

𝑉𝑡𝑜𝑡𝑎𝑙

𝐴𝑡𝑜𝑡𝑎𝑙
 , (1.1) 

where 𝑉𝑡𝑜𝑡𝑎𝑙 and 𝐴𝑡𝑜𝑡𝑎𝑙 are the total volume and total projected area of ice particles within 

a certain volume of ice cloud. Expressed with particle size distribution format, the 

effective diameter (De) can be formulated as follows: 

𝐷𝑒 =
3

2

∑ 𝑉𝑖
𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

, (1.2) 

where 𝑉𝑖 and 𝐴𝑖 are the volume and projected area of different sizes of particles over the 

particle size distribution. In this study, the particles are assumed to a gamma distribution 

with a relative standard deviation of 0.1. Ice particle effective diameter (De) can also be 

described by two important quantities, ice wat content (IWC) and extinction coefficient 

(𝛽𝑒), as well. That is: 
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𝐷𝑒 =
3

2

𝐼𝑊𝐶〈𝑄𝑒〉

𝜌𝑖𝑐𝑒𝛽𝑒
 ,                                         (1.3) 

where 〈𝑄𝑒〉 is the averaged extinction efficiency and 𝜌𝑖𝑐𝑒 is the ice density. In order to 

better compare the optical thickness of ice cloud, we usually convert that to visible region 

(0.65 µm ) optical thickness, which can be derived as follows: 

𝜏λ = 𝜏vis
〈𝑄𝜆〉

〈𝑄𝑣𝑖𝑠〉
 ,                                    (1.4) 

where 〈𝑄𝜆〉 represents the averaged bulk extinction efficiency at wavelength λ and 〈𝑄𝑣𝑖𝑠〉 

is the averaged bulk visible region extinction efficiency, which is approximately a constant 

of 2. Both of 〈𝑄𝜆〉 and 〈𝑄𝑣𝑖𝑠〉 depend on the particle effective diameter De.  

As mentioned before, ice cloud particles are composed of nonspherical shapes, 

such as bullets, columns, plates and so on. Ice cloud particle shapes play an important role 

in identify the effective diameter De  of ice particles. Therefore, an unrepresentative shape 

of ice particle may result in consequential errors in cloud property retrieval. In this study, 

the Moderate Resolution Imaging Spectro-radiometer (MODIS) Collection 6 (MC06) ice 

cloud model (Platnick et al., 2017) is used, which adopts a single ice habit consisting of 

an aggregate of 8 hexagonal columns with severely roughened surfaces. The MC06 ice 

particle habit was chosen because it minimizes the differences in the 𝜏 retrievals between 

those from CALIPSO and the IR split-window method (Baum et al., 2014; Holz et al., 

2015). It should be noted that the linear polarization properties of this habit do not match 

well with those from POLDER/PARASOL (Baum et al., 2014), and further that the 

CALIPSO comparisons were limited to 𝜏 < 3 (Holz et al., 2015). Note that throughout this 

study, all optical thicknesses are related to a visible wavelength of 0.65 µm. 
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1.3.2. Bulk scattering properties of ice clouds  

Bulk scattering properties, or volumetric scattering properties, describe the 

scattering behavior presented by sufficiently small volume containing many individual 

particles, which can be derived by averaging the optical properties of individual particles 

over the particle size distribution and spectral response function for instrument bands. For 

example, the bulk scattering cross section is: 

 𝜎̅𝑠𝑐𝑎 =
∫ ∫ 𝜎𝑠𝑐𝑎𝑛(𝐷)𝐹(𝜆)

𝐷𝑚𝑖𝑛
𝐷𝑚𝑎𝑥

𝑆(𝜆)𝑑𝐷𝑑𝜆
𝜆2

𝜆1

∫ ∫ 𝑛(𝐷)𝐹(𝜆)
𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥
𝑆(𝜆)𝑑𝐷𝑑𝜆

𝜆2
𝜆1

,                  (1.5) 

where D is the ice particle size, n(D) is the particle number density, 𝑆(𝜆) is the spectral 

solar spectrum, and 𝐹(𝜆) is the spectral response function (Baum et al., 2005). 

 

1.3.3. Remote sensing of cloud properties from satellite-based instruments 

So called “forward model” of satellite-based remote sensing, essentially, is a 

numerical solver of radiative transfer model: 

𝑌 = 𝐹(𝑥) ,      (1.6) 

In Eq. (1.6), x is a vector represents the input parameters of the radiative transfer model, 

including the bulk scattering properties of cloud described before and the surrounding 

environment parameters, such as surface temperature, atmosphere profile, and so on. Y is 

the satellite-based instrument observed radiances or brightness temperature. Function F 

represents the radiative transfer process.  
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 In contrast, the question of finding the best representation of the cloud bulk 

scattering properties or environment parameters given the observation is inverse problem 

(Rodgers, 2000). In radiative transfer field, remote sensing is used to solve this kind of 

“inverse problem”: 

𝑥 = 𝐹−1(𝑌)  ,      (1.7) 

In remote sensing problem, satellite measurements, Y, are given. From this point of view, 

an accurate radiative transfer model is the prerequisite of remote sensing problem, and 

remote sensing is one of the most important application of radiative transfer model.  

To specify the numerical radiative transfer model, there are many different ones 

based on various theories, such as discrete-ordinate method (Chandrasekhar 1960; 

Stamnes et al. 1988; Liou 1973), the Monte Carlo method (Plass and Kattawar, 1968) and 

adding-doubling method (Hansen and Hovenier 1971; Irvine 1968; Lacis and Hansen 

1974). Most of above mentioned methods are rigorous methods and have been 

implemented in either research or operational remote sensing program.  

A large number of satellite-based instruments have been launched into the space 

to study the global distribution of cloud and earth-atmosphere system energy budget, such 

as the Moderate resolution Imaging Spectroradiometer (MODIS), the Polarization and 

Directionality of the Earth's Reflectances (POLDER), and the Visible Infrared Imager 

Radiometer Suite (VIIRS). In the past decades, many passive sensor based methods using 

imagers and sounders can be divided into the following categories: (1) infrared(IR) split-

window methods using thermal infrared bands (Inoue, 1985, Parol et al., 1991); (2) solar-

reflection-based retrieval algorithms using a pair of visible and shortwave-infrared 
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(VSWIR) wavelength channels (Nakajima and King, 1990); and (3) other IR band based 

methods (e.g., Minnis et al., 2011; Heidinger et al., 2015;). The bi-channel solar-

reflection-based method uses VSWIR bands to derive cloud optical and microphysical 

properties only in daytime. Also, for thin ice clouds, such as cirrus, this VSWIR method 

may introduce large uncertainties because of the variability of ice cloud particle shapes 

(Cooper et al., 2006). Consistent IR observations in both daytime and nighttime makes it 

possible to understand the complete cloud diurnal cycle. In addition, the relatively 

insensitivity of split-window IR method to smooth or rough cloud particle surface and 

various ice particle shapes make it more feasible to derive ice cloud properties.  

 

1.4. Previous work and new solutions 

As previous sections mentioned, satellite-based remote sensing is capable to offer 

continuously spatial and temporal cloud global distribution and optical properties. Great 

achievement has been made with the help of recent advanced technologies, such as 

NASA’s “A-Train” satellite project. It has provided unprecedented access to better 

understand clouds. The “A-Train” satellite project consists of six polar- orbiting satellites 

flying one after another within a short time delay (Stephens et al., 2002; Anderson et al. 

2005). With the help of nearly simultaneous data from those satellites, comprehensive 

information concerning dust, aerosols, clouds, atmospheric profiles, and radiative field 

quantities can be obtained. Take this opportunity, many problems, like climate change, 

cloud feedback (Chepfer et al., 2008), and effects of aerosols (Yu et al., 2006), have been 

studied from an unprecedented perspective. During the time, a number of very useful 
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clear-sky fast radiative transfer models have been developed (Moncet et al. 2004; Liu et 

al. 2006). Meanwhile, to some degree, a little fewer fast radiative transfer models for 

cloudy-sky were available (Wei et al., 2004). It is the “A-Train” constellation that provides 

an unprecedented chance to compare nearly simultaneous retrievals with different 

instruments, like MODIS and POLDER.  

Suomi National Polar-orbiting Partnership (Suomi NPP), which was originally 

named NPOESS Preparatory Project (NPP), is named after Verner E. Suomi, widely 

recognized as the "Father of Satellite Meteorology."  It is the first next generation polar-

orbiting satellite in the JPSS (The Joint Polar Satellite System) series, and is considered 

to be a part of future possible “J-Train” constellation, the successor of “A-Train” 

constellation. VIIRS onboard NPP has an even higher spatial resolution compared with 

MODIS, which is considered to have a potential to provide opportunities to improve our 

understanding of clouds.  

 

1.5. Dissertation organization 

This dissertation is organized as following three major sections. In section 2, we 

are going to present a VIIRS specialized fast radiative transfer model based on band 

average and correlated-k distribution (CKD) techniques. In section 3, we will discuss the 

simpler problem: optical properties of single-layer cirrus clouds with different retrieval 

methods. In section 4, we will take a step forward to talk about multi-layer clouds optical 

property retrieval. Then real case study will be analyzed as supporting evidence.  
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2. FAST INFRARED RADIATIVE TRANSFER MODEL BASED ON

CORROLATED-K DISTRIBUTION METHOD FOR VIIRS BAND-AVERAGED 

SIMULATION 

2.1. Background 

At any point in time, on average, two thirds of the Earth experiences cloud cover, 

and with the inclusion of sub-visible cirrus clouds, this number increases to nearly 73% 

(Stubenrauch et al, 2013). Though globally distributed, clouds are more prevalent over 

ocean than land, with cirrus clouds, in particular, found at all latitudes with no regard to 

season or land cover (Fu and Liou, 1993). On a global scale, cirrus accounts for 20-30% 

of all cloud cover, but in the tropics where they are the most prevalent, that cloud cover 

percentage increases to at least 60-70% (Fu and Liou, 1993; Meyer, 2004; Baran, 2009). 

With cirrus clouds high in the troposphere and temperatures at the tropopause colder than 

-50°C, cirrus clouds are made up almost exclusively of nonspherical ice crystals of various 

shapes, sizes, and roughnesses. Baumgardner and Baran show via in-situ measurements 

that hexagonal columns, plates, and bullet-rosettes are the most common ice crystal habits 

found within cirrus clouds (Baumgardner et al., 2005; Baran, 2009). 

Viewing cirrus clouds in the longwave (far) infrared (IR) portion of the 

electromagnetic spectrum may hold the key to understanding the radiative effects of cirrus 

clouds. The best method for understanding the radiative effects of cirrus clouds is to obtain 

and analyze the brightness temperatures (BT) or the measure of the amount of Top of 

Atmosphere (TOA) radiance in a given area. Formally, BT is “a descriptive measure of 
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radiation in terms of the temperature of a hypothetical blackbody emitting an identical 

amount of radiation at the same wavelength.”  

By simulating and analyzing BT and brightness temperature difference (BTD), 

dependencies on optical thickness (τ) and effective diameter size (De) arise and the 

accuracy of the RTM can be tested. Having an RTM that can be used for operational 

applications such as remote sensing data retrievals, cloud cover maps, or data assimilation 

is imperative. Zhang et al. showed the importance for an RTM to be computationally 

efficient and accurate, as well as applicable to a variety of conditions (Zhang et al., 2007). 

The fast infrared radiative transfer model (FIRTM-AD) used here was developed using 

the adding-doubling principle. Using a vertically inhomogeneous, multilayer, plane 

parallel atmosphere, the FIRTM-AD is a clear sky model that can also account for 

molecular absorption and an RTE solver that accounts for multiple scattering in cloud 

layers are developed. The development of a fast RTM (FRTM) by Wang et al., 2011 that 

uses parametrizations (such as CKD) to minimize computational effort for high-spectral 

radiance simulations, is helpful for operational needs. Liu et al. 2014 study develops an 

FRTM that uses CKD to minimize computation time for gaseous absorption and places an 

emphasis on simulating VIIRS data while allowing for application to other imagers. By 

creating a CKD model for each spectral channel associated with VIIRS, gaseous 

absorption could be calculated quickly for each channel. Transmissivities for the clear sky 

case were calculated using a US Standard Atmospheric Profile, along with MODIS 

Collection 6 cloud habit. Results are averaged over the spectrum using spectral response 

functions (SRF).  
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This study develops a specialized VIIRS IR band fast RTM for cloudy-sky, using 

correlated-k distribution theory based band-average and precomputed look-up table (LUT) 

techniques to reduce the computational burden. The atmospheric molecule transmissivity 

and cloud optical properties are key factors for the RTM, dealt with correlated-k 

distribution method and LUT technique, respectively. This work is mainly based on (Liu 

et al., 2015). Section 2.2 describes the approach of gaseous transmissivity, and section 2.3 

discusses the cloud optical properties. Section 2.4 describes the simulator itself and 

validation of the RTM. comparison between simulated results and observations are 

described in section 2.5. Section 2.6 will summarize the study.  

 

2.2. Approach of gaseous transmissivity 

Compared with line-by-line rigorous calculation, like LBLRTM (Clough et al., 

1992), the most distinguished advantage of CKD method is the hard-to-match high 

efficiency to compute the atmospheric molecule absorption. Instead of integration the gas 

transmissivity over highly variable spectral space, CKD method just calculates a 

counterpart of that over a less changed absorption coefficient space, shown in Figure 2.1. 

The spectral absorption coefficient (K) of gas versus wavenumber is plotted in Figure 

2.1(a), which is highly variable. The accuracy of spectral absorption coefficient depends 

on the resolution of line-by-line calculation wavenumber grid. The finer the wavenumber 

grid is, the higher accuracy of spectral absorption coefficient will be. However, the 

sequence of the spectral absorption lines does not affect the effective transmissivity with 

a given spectral resolution, and thus, instead of integrating over the spectral space, spectral 
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absorption coefficient can be expressed as a function of cumulative probability(g), Figure 

2.1(c) (Liu et al., 2015). The gaseous transmissivity (Tgas) is: 

𝑇𝑔𝑎𝑠 =
1

∆𝜈
∫ 𝑒−𝑘(𝑣)𝑢𝑑𝜈 = ∫ 𝑒−𝑘(𝑣)𝑢𝑘𝑚𝑎𝑥

𝑘𝑚𝑖𝑛∆𝜈
𝑓(𝑘)𝑑𝑘, (2.1) 

where k(v) is the gas spectral absorption coefficient at wavenumber v, and u is the path 

length; f(k) is the normalized probability distribution function for k(v). Define the 

cumulative probability function g(k) as: 

𝑔(𝑘) = ∫ 𝑓(𝑘′)𝑑𝑘′
𝑘

𝑘𝑚𝑖𝑛
, (2.2) 

So that, combine (2.1) and (2.2), 

𝑇𝑔𝑎𝑠 = ∫ 𝑒−𝑘(𝑔)𝑢𝑑𝑔
1

0
, (2.3) 

Thus, the spectral absorption coefficient can be described by a function of g, 

instead of wavenumber v. This approximation process is called k distribution method, 

shown in Figure 2.1(c). Since this conclusion is based on the hypothesis of idealistic 

homogeneous atmosphere, implementation of CKD method for realistic inhomogeneous 

atmosphere requires that the order of absorption line strength is the same for all levels. 
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Figure 2.1 Example of the correlated-k process of mixed gas absorption lines for the 

VIIRS M14 (8.55μm) channel. (a) Absorption coefficient as a function of wavenumber 

(cm-1) for mixed gas of H2O, O3, and N2O with the ratio of the three gases being 

1:0.1:0.001. (b) Spectral response function. (c) Absorption coefficient as a function of 

cumulative probability (g) for the mixed gas with the spectral response function.  



16 

Figure 2.2 shows the performance of CKD method calculated VIIRS bands 

transmissivity and TOA brightness temperature bias compared with LBLRTM+DISORT 

results with 42 typical atmospheric profiles at wavelength 8.55 μm, 10.76 μm, 12.01 μm 

(M14, M15, and M16), provided by Atmospheric and Environmental Research (AER) 

Radiative Transfer Working Group. Figure 2.2 illustrates the accuracy of CKD results for 

clear-sky scenarios, indicating that the relative errors in transmissivity are less than 0.3% 

for the worst cases. Generally, large errors happen when profile has high content of low 

layer water vapor. In this validation process, all profiles are divided into 50 layers, 1 km 

thick respectively. The gas transmissivity computed by the CKD method will be used to 

simulate brightness temperatures under cloudy conditions. 
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Figure 2.2 CKD models for VIIRS were validated using 42 typical profiles throughout 

the world provided by AER.com. The upper panels show the generally low bias between 

the rigorous LBLRTM +DISORT method results and fast CKD method results. The lower 

panels show that relative errors between the LBLRTM results and CKD method are also 

low. 

2.3. Cloud optical properties 

Clear-sky scenarios are the simplified models, while cloudy-sky cases, for both 

liquid and ice clouds, are required by simulations. A set of cloud particle single-scattering 

properties at individual sizes and wavelengths, or wavenumbers, has been averaged over 

the VIIRS channel SRFs and assumed particle size distributions. 
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For liquid cloud particles, the single-scattering properties are derived with Lorenz-

Mie theory (Mie, 1908) with the size distribution assumed to be gamma distribution, and 

the effective variance equals to 0.1 (Hansen and Travis, 1974). For ice phase clouds, this 

study uses the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 

(MC06) ice cloud model (Platnick et al., 2017), which adopts a single ice habit consisting 

of an aggregate of 8 hexagonal columns with severely roughened surfaces. The MC06 ice 

particle habit was chosen because it minimizes the differences in the 𝜏 retrievals between 

those from CALIPSO and the IR split-window method (Baum et al., 2014; Holz et al. 

2015). It should be noted that the linear polarization properties of this habit do not match 

well with those from POLDER/PARASOL (Baum et al. 2014), and further that the 

CALIPSO comparisons were limited to 𝜏 < 3 (Holz et al. 2015). Note that throughout this 

study, all optical thicknesses are related to a visible wavelength of 0.65 µm. 

The effective diameter (De) of an ice particle distribution is defined as follows: 

De =
3

2

∑ Vi
N
i=1

∑ Ai
N
i=1

, (2.4) 

where Vi and Ai are the volume and projected area of different sizes of particles over the 

particle size distribution. In this study, the particles are assumed to a gamma distribution 

with a relative standard deviation of 0.1. 

2.4. VIIRS simulator and validation 

This study will focus on VIIRS IR bands. Wang et al. 2011 and Wang et al. 2014 

are the theoretical basis to simulate the TOA brightness temperature for this model. 

Similar to the FRTM developed by Wang, look-up tables of cloud properties with various 
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optical thickness and effective diameter pairs are pre-calculated to reduce the computation 

burden of cloud layer effects, including the reflectance, transmittance and emissivity. The 

CKD technique discussed in section 2.2 is used to calculate the atmospheric gas absorption. 

Generally, the TOA brightness temperature difference (BTDs) between fast model 

rigorous LBLRTM+DISORT method are smaller than 0.3K. As for the computational 

efficiency, fast model is about 3 orders of magnitude faster than the rigorous method with 

32 streams.  

Latest DISORT code (DISORT 2.0 beta) is used as control group rigorous method 

as well as the module to calculate the look-up tables for fast band-averaged optical 

properties. To validate the simulator at the IR channels, Figure 2.3 illustrates the 

brightness temperature differences (BTDs) given by the simulator and the 

LBLRTM+DISORT at three IR channels (M14, M15, and M16). The BTD is defined as: 

BTD =  BTSimulator– BTLBLRTM+DISORT,                               (2.5) 

Figure 2.3 shows validation of CKD models for VIIRS using 42 typical profiles 

same as Figure 2.2. The upper panels show the TOA brightness temperatures between the 

rigorous LBLRTM +DISORT method results and fast CKD method results. The lower 

panels show the TOA brightness temperature differences between the LBLRTM results 

and CKD method. Different colors refer to different sets of optical thickness and effective 

diameter pairs. Each panel of Figure 2.3 is based on a surface albedo of 0.02 and viewing 

zenith of 20° under 42 typical profiles and 18 cloud optical properties pairs. The bias in 

the BTDs are smaller than 0.3 K and decrease to less than 0.1 K for optically thick clouds. 

With the spectral resolution being 0.1 cm-1, 32-stream DISORT simulations were carried 
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out for each VIIRS channel, and the simulator is approximately 20,000 times faster than 

the LBLRTM+DISORT. Need to mention that the validation results in Figure 2.3 are 

based on ice clouds. Water cloud scenarios indicate similar performance as ice ones which 

is not shown.  

 

 

Figure 2.3 CKD models for VIIRS were validated using 42 typical profiles same as 

Figure 2.2. The upper panels show the TOA brightness temperatures between the rigorous 

LBLRTM +DISORT method results and fast CKD method results. The lower panels show 

the TOA brightness temperature differences between the LBLRTM results and CKD 
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method. Different colors refer to different sets of optical thickness and effective diameter 

pairs.  

 

2.5. Comparison with VIIRS observations 

VIIRS case study granule is selected over ocean to avoid land based biases. After 

looking at the GOES-West satellite IR imagery for clouds and convection, the frame of 

temporal reference was selected to be a nighttime granule on June 21, 2014. The exact 

temporal and spatial information for the areas being studied can be found in Figure 2.4. 

 

Figure 2.4 Temporal and spatial information for granules (NOAA, cited 2016) 

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

is used to create atmospheric profiles as input for the RTMs. The grid is a reduced 1.25° 

x 1.25° horizontal spatial resolution with vertical pressure over 42 levels ranging from 

1000 hPa to 0.1 hPa with data collected every three hours. The MERRA products used are 

air temperature, ozone mixing ratio, geopotential height, and specific humidity.  
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SNPP (Suomi National Polar-orbiting Partnership), the first mission for the Joint 

Polar Satellite System (JPSS), serves as the bridge between the old (i.e., Aqua and Terra) 

and new generations of NOAA and NASA satellite programs. VIIRS, onboard SNPP, is 

the largest instrument on SNPP and is categorized as a whiskbroom scanning radiometer 

that observes the Earth’s surface in a cross-track direction 

To make comparisons to observation, latitude, longitude, satellite viewing zenith 

angle, τ, De, and BTs are taken from VIIRS_SDR data sets, and COP and cloud top heights 

were collected from VIIRS_IPNG data sets. The data for surface temperature is taken from 

MERRA lowest layer air temperature. Fill values and NaN values are removed from the 

data sets so as not to cause erroneous results. Once the fill values are removed, the input 

can be used to simulate the BT values that VIIRS observed. Plots of the observed and 

simulated BT values are created for analysis. Comparing the simulated BTs to those 

observed by the VIIRS sensor provides a validation of the accuracy for the fast model. 

The comparison is shown in Figure 2.5.  

 

Figure 2.5 Comparison between observed (left) and simulated (right) brightness 

temperatures. 
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Figure 2.5 Continued. 

 

The coldest values represent high cloud tops, where there may be thunderstorms or 

high cirrus clouds, and the warmest values represent lower cloud tops. The simulated BTs 

have good agreement with the observed BTs. The structure of storms is the same, and 

values are comparable. This result shows that not only is it possible to simulate BT at high 

resolutions on a large scale, but that the result is highly accurate. This could lead to strong 

improvements of global cloud retrieval and a better understanding of the effects of clouds 
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on the global energy budget as well as an improvement to their contribution in global 

climate models. 

 

2.6. Conclusions 

Clouds are an important part of the balance of the global energy budget. Cirrus clouds 

are not represented well within the breakdown of the global energy budget because so 

much is still unknown about their spatial and temporal distribution and their contribution 

of warming from the positive climate feedback. With a combination of remote sensing 

techniques and RTMs, BTs of clouds can be simulated, and cloud optical properties can 

be derived.  

 The rigorous LBLRTM + DISORT method simulation result is used to produce 

“benchmarks” to compare to those of the VFRTM to provide a measure of accuracy. 

Accuracy is well kept, which is proved by both idealized typical profile scenarios and real 

case study. Validation and case study show that error is a little higher for the clear sky 

cases than the cloudy sky cases. For the cloudy sky cases, error decreases when cloud 

optical thickness increases. BTD analysis is done for a pixel level comparison. This 

provides a test of accuracy at a much higher spatial resolution than MODIS products. All 

fill values from COP and BT data are removed prior to running the VFRTM. The results 

of the simulation are very good, showing high agreement between simulated and observed 

BT values. Overall, the VFRTM is found to be highly accurate and is validated for further 

use such as global cloud retrievals to help improve the global energy budget and global 

climate models.  
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3. SINGLE LAYER CLOUD PROPERTIES RETRIEVAL FROM VIIRS INFRARED 

MEASUREMENTS 

3.1. Background 

The intent of this study is to compare and assess three different methods to infer 

ice cloud optical thickness (𝜏) and effective diameter (De) from VIIRS solar and infrared 

(IR) measurements. Two of these methods are based on the statistical Bayesian and 

optimal estimation (OE) methods, developed specifically for use with the infrared (IR) 

window channels at 8.55 µm, 10.76 µm, and 12.01 µm, referred to as M14, M15, and M16, 

respectively. In general, the inference of 𝜏 and De from passive satellite-based imager 

measurements fall into the following categories: (1) infrared (IR) split-window methods 

using thermal IR bands (Inoue, 1985, Parol et al., 1991); (2) solar-reflection-based 

retrieval algorithms using a pair of visible and shortwave-infrared (VSWIR) wavelength 

channels (Nakajima and King, 1990); and (3) other IR-based methods (e.g., Minnis et al., 

2011; Heidinger et al., 2015;). The bispectral solar-channel method uses VSWIR bands to 

simultaneously derive cloud optical and microphysical properties. One of the limitations 

of this approach is that, for optically thin ice clouds, large uncertainties may be introduced 

for several reasons: (a) the single-scattering properties depend on the overall particle 

habits (or shapes), surface texture (i.e., the degree of surface roughness), and other 

morphological characteristics (e.g., fractures, bubbles, scalloping, and impurities), (b) the 

bulk single-scattering properties require knowledge of the particle size distribution and 

the vertical structure of cloud microphysical properties (e.g., Stephens et al., 2002; Cooper 

et al., 2006; Garrett et al., 2009; ), and (c) the sensitivity of the relevant radiative transfer 
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processes to surface temperature, spectral emissivity and albedo. Since consistent ice 

cloud properties are desired from the retrieval process regardless of solar illumination, 

increasing attention has been given to use of IR observations (e.g., Garrett et al., 2009, 

Heidinger et al., 2010, Holz et al., 2015). The theoretical basis of this method is that within 

the IR bands, the brightness temperatures (BTs) and brightness temperature differences 

(DBTs) between two wavelengths are primarily determined by both 𝜏 and De. Another 

benefit of IR measurements is that the higher amount of particle absorption, relative to the 

visible and SWIR wavelengths, decreases sensitivity to the degree of surface roughness as 

well as habit. However, the range of possible 𝜏 retrievals is more limited for IR 

measurements than for solar reflectance channels (Chiriaco et al., 2004).  

The split-window method has been implemented to produce retrievals of thin ice 

cloud properties in operational products from the Visible Infrared Imaging Radiometer 

Suite (VIIRS) satellite sensor (JPSS, 2014a). However, the IR split-window method has 

its own inherent shortcomings as well. The top-of-atmosphere (TOA) BT depends on (a) 

the underlying surface temperature even if an optically thin cloud is present in the vertical 

column, (b) the cloud macrophysical properties (cloud top height/pressure/temperature, 

multiple-layer or single-layer cloud configuration), (c) the atmospheric profiles of 

temperature and humidity, and (d) atmospheric trace gas concentrations. These factors 

must be known a priori to successfully simulate the radiation field.  

In this paper, VIIRS products used are from NOAA VIIRS Intermediate Products 

(IPs) (JPSS, 2014a; JPSS, 2014b). BTs in three VIIRS moderate resolution bands at 8.55, 

10.76 and 12.01μm are used to derive 𝜏 and De based on the cloud mask and cloud top 
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heights, in addition to atmospheric profiles and surface temperatures from the Modern-

Era Retrospective Analysis for Research and Applications (MERRA) dataset, which 

combines both numerical model results and observational data (Rienecker et al, 2011). 

The Bayesian and OE methods are applied using the same datasets and radiative transfer 

model.  Retrievals are performed for ice cloud pixels meeting two requirements: (1) cloud 

top height greater than 6 km in the VIIRS IP cloud-top-property product (IVCTP) (JPSS, 

2012), and (2) single-layer ice cloud in the VIIRS IP cloud-mask product (IVCMO) (JPSS, 

2014a).  

This chapter provides nighttime solutions to supplement the daytime-only retrieval 

product and subsequently investigates the advantages and disadvantages of three retrieval 

methods. Section 3.2 describes the basic forward model approach, section 3.3 discusses 

details of the retrieval methods, section 3.4 analyzes a case study including comparisons 

of the retrievals, and section 3.5 summarizes our findings. 

 

3.2. VIIRS fast radiative transfer model (VFRTM) 

The VIIRS Fast Radiative Transfer Model (VFRTM; Liu et al., 2015) is used to 

simulate the TOA (top of the atmosphere) IR radiances and brightness temperatures. The 

VFRTM assumes that clouds are plane-parallel, but can simulate both single- and 

multiple-layer clouds in a given column. VFRTM minimizes the computational burden 

with a channel-averaging technique (Liu et al., 2015) and computes the gas 

transmissivities using a correlated-k distribution technique (Fu and Liou, 1992). The ice 

cloud emissivity, transmissivity and reflectance functions are provided from pre-
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calculated look-up tables (LUTs) that include these properties over a range of viewing 

angles, cloud heights, 𝜏, and De values (Wang et al., 2011). Computations assume that the 

microphysical and optical properties of each pixel are homogeneous, while the cloud layer 

temperature decreases linearly with height. Rayleigh scattering is neglected at these IR 

wavelengths.  

Figure 3.1 summarizes the methodology of the correlated-k distribution approach 

for computing background atmospheric gas transmissivities in VIIRS band M14 (8.55μm). 

The gas spectral absorption coefficients of a mixture of H2O, N2O, and O3 are shown in 

Figure 3.1a, where the mixture mass density ratios of H2O, O3, and N2O are 1:0.1:0.001, 

respectively. Subsequently, the absorption coefficient of the mixed gas is weighted by the 

M14 normalized spectral response function (SRF) in Figure 3.1b. Figure 3.1c presents the 

sorted effective absorption coefficient as a function of the cumulative probability function 

(g), which ranges from 0 to 1. In cumulative probability function (g) space, the band-

averaged absorption coefficient becomes a smooth function instead of the previous 

serrated pattern, and can be approximated by 4 to 16 piecewise linear functions to obtain 

as much accuracy as the original serrated line with about 1000 or more coefficient values.  
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Figure 3.1 Example of the correlated-k process of mixed gas absorption lines for the 

VIIRS M14 (8.55μm) channel. (a) Absorption coefficient as a function of wavenumber 

(cm-1) for mixed gas of H2O, O3, and N2O with the ratio of the three gases being 

1:0.1:0.001. (b) Spectral response function. (c) Absorption coefficient as a function of 

cumulative probability (g) for the mixed gas with the spectral response function.  

(b) 

(c) 

(a) 
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This study uses the Moderate Resolution Imaging Spectroradiometer (MODIS) 

Collection 6 (MC06) ice cloud model (Platnick et al., 2017), which adopts a single ice 

habit consisting of an aggregate of 8 hexagonal columns with severely roughened surfaces. 

The MC06 ice particle habit was chosen because it minimizes the differences in the 𝜏 

retrievals between those from CALIPSO and the IR split-window method (Baum et al., 

2014; Holz et al. 2015). It should be noted that the linear polarization properties of this 

habit do not match well with those from POLDER/PARASOL (Baum et al. 2014), and 

further that the CALIPSO comparisons were limited to 𝜏 < 3 (Holz et al. 2015). Note that 

throughout this study, all optical thicknesses are related to a visible wavelength of 0.65 

µm. 

The effective diameter (De) of an ice particle distribution is defined as follows:  

𝐷𝑒 =
3

2

∑ 𝑉𝑖
𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

,                                          (3.1) 

where 𝑉𝑖 and 𝐴𝑖 are the volume and projected area of different sizes of particles over the 

particle size distribution. In this study, the particles are assumed to a gamma distribution 

with a relative standard deviation of 0.1.  

Figure 3.2 is an example showing how the extinction efficiency, Qe, varies with De in 

the M14, M15, and M16 VIIRS bands. The spectral average in any channel is obtained by 

weighting the SRF over the bandwidth. Generally, Qe has the smallest values in VIIRS 

band M15 relative to the other two bands, and for M15 and M16, Qe displays a monotonic 

relationship with De.  
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Figure 3.2 Extinction efficiency(Qe) of ice particles as a function of effective particle 

diameter for VIIRS bands M14, M15, and M16 centered at 8.55, 10.56, and 12.01μm, 

respectively. Each effective diameter is computed as the average for a simulated cloud 

pixel with the stated mean effective particle diameter and a relative standard deviation of 

0.1. 

 

We now evaluate the feasibility of ice cloud retrievals of 𝜏 and De using the 

VFRTM through a sensitivity study based on a range of assumed ice cloud optical and 

microphysical properties. A U.S. standard atmosphere (Sissenwine et al., 1962) is assumed, 

with a surface and cloud-top temperature of 300 K and 240 K, respectively. The satellite 

viewing zenith angle is set to 10, and the surface albedo is assumed to be 0.02 to represent 
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an ocean surface. Figure 3.3 shows simulated TOA BT and DBT values with changing 𝜏 

and De pairs. Each of the five colored solid lines represents specific De value ranging from 

10 µm to 100 µm. For each De, the optical thickness increases from 0 to 50. Figure 3.3 

shows that TOA BTDs are highly sensitive to relatively small particle sizes (De <70μm) 

and over an optical thickness range from 0.2 to 6. In general, BTs vary from approximately 

250K to 300 K when 𝜏 decreases from 6 to 0, whereas the DBT ranges are limited to only 

several K even when De changes from 10 µm to 100 μm, which is a more limited dynamic 

range. Therefore, the retrieved 𝜏 is more accurate than the retrieved De  under these 

conditions. 

 

Figure 3.3 IR split-window brightness temperature differences, for an ice cloud 

which cloud-top temperature = 240K, surface temperature = 300K, view zenith = 10°, in 

the U.S. Standard atmosphere, unit of De (solid lines) is micrometer. 
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3.3. Retrieval methods 

3.3.1. Bayesian retrieval algorithm 

The Bayesian retrieval algorithm used in this study was designed originally to derive 

cloud ice water path (IWP) with the Submillimeter-Wave Cloud Ice Radiometer (SWCIR). 

This sensor was developed by the Jet Propulsion Laboratory (JPL) to fly on the NASA 

DC-8 aircraft (Evans et al., 2002). However, this algorithm can be used to derive the 

properties of interest to this study, i.e., 𝜏 and De. The Bayesian retrieval method uses a set 

of pre-determined 𝜏 and De pairs, and then computes the BTs in real-time for the relevant 

LUTs along with atmospheric profile and cloud geometric information. Finally, by 

integrating over the points in the LUT with Bayes theorem, cloud optical properties can 

be derived. Bayes theorem can be stated mathematically as follows: 

𝑝𝑝𝑜𝑠𝑡(𝑥|T) =
𝑝𝑓(T|𝑥)𝑝𝑝(𝑥)

∫ 𝑝𝑓(T|𝑥)𝑝𝑝(𝑥)d𝑥
  ,                         (3.2) 

where x is the cloud property vector (here, the vector elements are pairs of 𝜏 and De used 

to simulate TOA BT); T is the vector of 3 TOA BT measurements in the VIIRS M14, M15, 

and M16 bands; 𝑝𝑝(𝑥)  is the prior probability density function of cloud property 𝑥 ; 

𝑝𝑓(T|𝑥)  is the conditional probability of BT given the cloud property vector 𝑥 ; and 

𝑝𝑝𝑜𝑠𝑡(𝑥|T) is the posterior probability density function of the cloud property given the 

TOA BT measurements. The prior probability density function 𝑝𝑝(𝑥) is based on previous 

research of cirrus cloud property retrievals. The uncertainty of the cloud spatial and 

temporal distribution is normalized to 1.  
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The retrieved cloud property vector 𝑥𝑟𝑒𝑡 is calculated by integrating over the entire x 

space to find the weighted average value: 

𝑥𝑟𝑒𝑡 = ∫ 𝑥𝑝𝑝𝑜𝑠𝑡(𝑥|𝑇)𝑑𝑥.                                                         (3.3) 

 

In practice, this integral process is replaced by summing over the defined 𝑥 vector: 

𝑥𝑟𝑒𝑡 = ∑ 𝑥𝑖𝑝𝑝𝑜𝑠𝑡(𝑥𝑖|𝑇) .                                                         (3.4) 

 

The conditional probability density function p𝑓(T|𝑥) is the probability density of the 

TOA BT vector given defined cloud properties; i.e., the probability of a TOA BT 

measurement (T) given forward RTM simulations (R) of the atmospheric and cloud 

parameters. We assume a normal distribution function to represent the probability of each 

observed BT value: 

𝑝𝑓(𝑇|𝑥) = ∏
1

√2𝜋𝜎𝑗
2

exp (−
(𝑇𝑗−𝑅𝑗(𝑥))

2

2𝜎𝑗
2 )𝑀

𝑗=1  ,                                   (3.5) 

 

where 𝑇𝑗 is the BT vector for band 𝑗 (here, VIIRS band M14, M15, or M16); 𝑅𝑗(𝑥) is the 

VFRTM simulated result for band 𝑗; and 𝜎𝑗  is the standard deviation for band 𝑗 . We 

assume that the uncertainty 𝜎𝑗 is due entirely to measurement errors. The measurement 

errors are assumed to be unbiased and the range of calibration errors is on the order of 0.3 

K or less (Moeller et al., 2013). The measurement errors are assumed to be 0.3 K for all 

three bands and are independent of each other. Given this formulation, the conditional 
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distribution probability, 𝑝(𝑇|𝑥), approaches zero when the BT vector value is far from the 

simulated values.  Within the cloud property space, the Bayesian algorithm interpolates 

between the given points that agree approximately with the measurements. By combining 

(1) and (3), 𝑥𝑟𝑒𝑡 may be simplified to  

𝑥𝑟𝑒𝑡 =
∑ 𝑥𝑖𝑝𝑓(𝑇|𝑥𝑖)

∑ 𝑝𝑓(𝑇|𝑥𝑖)
  .                                                            (3.6) 

The 𝑥𝑖 values are distributed according to the pre-determined 𝜏 and De  provided in a LUT.  

3.3.2. Optimal estimation (OE) algorithm 

The OE method is an efficient inversion method (Rodgers, 2000; Iwabuchi et al., 2014) 

with the ultimate goal of deriving an optimized solution from observations given certain 

constraints. Similar to the Bayesian method, the TOA BTs for VIIRS channels M14, M15, 

and M16 are the input variables for retrievals of optical properties 𝜏 and De. The cloud 

property vector x, the measurement vector y, and the model parameter vector p are defined 

as follows: 

𝑥 = [𝜏, 𝐷𝑒]        (3.7a) 

𝑦 = [𝑇14, 𝑇15, 𝑇16]      (3.7b) 

𝑝 = [𝑣𝑧𝑛, 𝜖, 𝑇𝑠𝑢𝑟𝑓 , 𝐻𝑐𝑙𝑜𝑢𝑑]     (3.7c) 

The cloud property vector 𝑥 is exactly the same as vector 𝑥 in the Bayesian method; 

the measurement vector 𝑦 corresponds to the vector T, which is renamed to be consistent 

with common statistics notation. The model parameter vector p includes the satellite 

viewing zenith angle (𝑣𝑧𝑛), underlying surface emissivity (𝜖), surface temperature (𝑇𝑠𝑢𝑟𝑓) 

and cloud top height (𝐻𝑐𝑙𝑜𝑢𝑑). The problem may be formulated in the form 
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𝑦 = 𝐹(𝑥, 𝑝) + 𝑒 ,      (3.8) 

where 𝐹 is the forward radiative transfer model (RTM) and 𝑒 is the system error from all 

sources, including measurements, forward RTM and model parameters.  

The optimized solution is given by minimizing a cost function J: 

𝐽 = [𝑦 − 𝐹(𝑥, 𝑝)]𝑇𝑆𝑦
−1[𝑦 − 𝐹(𝑥, 𝑝)] + (𝑥 − 𝑥𝑎)𝑇𝑆𝑎

−1(𝑥 − 𝑥𝑎) ,   (3.9) 

where 𝑥𝑎 is the a priori vector, and 𝑆𝑎 and 𝑆𝑦 are the error covariance matrices of the a 

priori and the whole system, respectively. For cloud property retrievals, 𝐽 is assumed to 

be dominated by the system error term since prior uncertainties may be very large.  The 

goal is to minimize the 𝑆𝑦 term. Minimization of this cost function is a nonlinear least 

squares fitting problem; the Levenberg-Marquardt iteration method (Levenberg, 1944; 

Marquardt, 1963) is chosen for use in this study. Our testing indicates that 6 iterations of 

the simulation results and the Jacobian matrices are sufficient to obtain convergence.  

The system error 𝑆𝑦 in Eq. (3.9) comes primarily from three different sources: the 

uncertainty in measurements, uncertainty in the forward RTM, and the uncertainty in 

model parameters. These three components are formulated as follows: 

𝑆𝑦 = 𝑆𝑦,𝑚 + 𝑆𝑦,𝑓𝑤𝑑 + 𝑆𝑦,𝑝 .     (3.10) 

The three terms Sy,m, Sy,fwd, and Sy,p are the error covariances of the measurements, forward 

RTM, and model parameters, respectively. The range of calibration bias is assumed to be 

on the order of 0.3 K or less (Moeller et al., 2013), and as with the Bayesian formulation, 

the measurement errors are set to 0.3 K for all three bands and are assumed to be 

independent of each other. Gaussian distributed random noise is added to the model 

parameters.  



 

 37 

Forward RTM and parameter errors (𝑆𝑦,𝑓𝑤𝑑  and 𝑆𝑦,𝑝) are derived from a large 

number of VFRTM simulations in conjunction with the line-by-line radiative transfer 

model (LBLRTM) and the discrete ordinate radiative transfer model (DISORT) 

simulations for 42 typical atmospheric profiles, different 𝜏 and De pairs, and a range of 

viewing angles. From the simulations, the model parameter RMS error is within the range 

of 0.2 K to 0.9 K for both clear-sky and cloudy-sky scenarios that were derived assuming 

the U.S. standard atmospheric profile. The 𝜏 ranges from 0.01-20, and De ranges from 10-

100μm. Generally, the RMS error decreases with increasing optical thickness and is not 

very sensitive to De. By comparing each contribution in Eq. (3.10), 𝑆𝑦,𝑓𝑤𝑑 contributes the 

least to total 𝑆𝑦, while 𝑆𝑦,𝑝 is the largest error component for all three VIIRS bands. Figure 

3.4 shows the contribution proportion of the three different errors to the final 𝑆𝑦. Here, the 

measurement error diagonal matrices (𝑆𝑦,𝑚), indicating the covariance of the measuring 

error, is defined as follows: 

𝑆𝑦,𝑚 = [

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

],     (3.11) 

where  𝜎𝑗  values are the standard deviations for the VIIRS bands. 𝑆𝑦,𝑓𝑤𝑑  and 𝑆𝑦,𝑝  are 

derived in the same way. Specifically, 𝑆𝑦,𝑝 consists of four components: viewing zenith 

angle uncertainty, surface emissivity uncertainty, surface temperature uncertainty, and 

cloud position uncertainty: 

𝑆𝑦,𝑝 = 𝑆𝑦,𝑣𝑧𝑛 + 𝑆𝑦,𝑒𝑝𝑠 + 𝑆𝑦,𝑆𝑇 + 𝑆𝑦,𝐶𝐻   (3.12) 
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In Figure 3.4, the largest component is model parameter error for all the three bands, and 

the uncertainty of band M16 is the largest. 𝑆𝑦,𝑓𝑤𝑑  is essentially negligible. The 

contributions from measurements and the forward RTM are relatively small compared 

with model parameters.  

 

Figure 3.4 Fractions of the components of measurement-model errors in 𝑺𝒚. 

 

3.3.3. Control group method based on solar channel retrievals and IR algorithms 

As stated before, the dual-channel method is one of the classic retrieval methods 

(Inoue, 1985; Nakajima and King, 1990; Liou et al, 1990). The JPSS approach uses 
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combinations of radiances of the VIIRS 3.7, 8.55, 10.76 and 12.01m channels to infer 

cloud temperature and IR emissivity (JPSS, 2013b; JPSS, 2014b). Based on the cloud 

macrophysical properties, 𝜏 and De are inferred. The specific scheme used in the NOAA 

products depends on whether the target granule is considered day or night, and whether 

the pixel is of ice or liquid water phase.  Here, VIIRS Cloud Optical Properties (IVCOP) 

is used as control group result. 

3.4. Case study 

A granule over the Pacific Ocean that consists of primarily ice clouds is chosen for 

detailed analysis (see Figure 3.5). Figure 3.6 shows the false color image of this granule 

composed of VIIRS bands M14 (8.55μm in red, component increases with decreasing 

signal), M16 (12.01μm in green, component increases with decreasing signal), and M14-

M15 (8.55-μm BT minus10.76-μm BT in blue). Bright yellow pixels indicate regions 

completely covered by cirrus clouds. Greyish-green pixels show partial cirrus cover and 

dark pixels indicate little or no ice cloud. Figure 3.7 shows the cloud mask and cloud phase 

from the VIIRS IP dataset, IICMO, which shows that about one third of the granule is 

occupied by ice clouds. 
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Figure 3.5 Case study granule geographic overlap. 
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Figure 3.6 False color image composed of VIIRS bands M14 flipped brightness 

temperature (8.55μm in red, component increases with decreasing signal), M16 flipped 

brightness temperature (12.01μm in green, component increases with decreasing signal), 

and M14 minus M15(10.76μm) DBT (in blue). 
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Figure 3.7 Cloud mask and cloud phase from the VIIRS IPs (IICMO). (top) Cloud 

mask. (bot) Cloud phase. 
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The VIIRS JPSS SDR products provide the level 1B data, including BTs in bands M14, 

M15, and M16 (JPSS, 2013a). Table 3.1 shows the location of the granule. The VIIRS 

datasets also provide TOA brightness temperatures, cloud mask, and other pertinent 

information such as the viewing geometry. Cloud top temperatures and heights at a 

horizontal resolution of 750m are obtained from the VIIRS IP dataset (IVCTP). As noted 

earlier, the NOAA cloud products in the control group are available for comparison. 

 

Table 3.1 Case study granule geographic information 

Temporal(Geographic Overlap) 

Start Date: 2014-06-21 10:38:57 End Date: 2014-06-21 10:44:37 

Seconds: 340 Direction: Descending 

Spatial(Geographic Overlap) 

Lower-left: 4.10, -151.64 Upper-right: 19.30, -118.93 

 

 

Based on the OE method (Section 3.3.2), cloud top heights are inferred for the ice 

phase pixels and are assumed to be plane-parallel so that the VFRTM can be used to 

simulate the cloudy radiances. MERRA data provide atmospheric profiles and surface 

temperatures at a spatial resolution of 1.25°, and temporal resolution of 3 hours. The sea 

surface temperature is derived from the MERRA surface air temperature using a linear 

interpolation technique. The IR sea surface emissivity is assumed to be constant at 0.02 
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over the ocean. The ice cloud properties are retrieved for all pixels deemed to be ice 

according to the VIIRS cloud phase. Any pixel with a missing value in measurement is 

discarded. A pixel is accepted for further analysis if it then satisfies the following three 

conditions: (1) cloud top height higher than 6 km in the VIIRS IP dataset, IVCOP; (2) 

single-layer cloud pixel determined in VIIRS IP dataset, IVCMO; (3) DBT for (M14 

minus M16) greater than 0.5K.  

The control group cloud optical thickness and effective size are shown in Figure 8 for 

comparison. Inspection of Figure 3.8 indicates that optically thin ice clouds are widely 

distributed over the granule. The results obtained with the Bayesian method (Section 3.3.1) 

and OE method (Section 3.3.2) are shown in Figure 3.9. Based on the results in Figs. 3.8 

and 3.9, it may be seen that all three methods are able to infer cloud properties for optically 

thin clouds, i.e. 𝜏<1.0. Some minor differences may be due to the presence of mixed-phase 

or multi-layer clouds. 

Figure 3.10 shows comparisons of control group simulations with the Bayesian and 

OE retrieval results and observed VIIRS M14 (8.55μm) BTs. The simulated and retrieved 

BTs closely agree. Moreover, Figure 3.10 shows that, apart from the convective area, the 

brightness temperature differences between reproduced BTs and observations are slightly 

different, with the values generally less than 0.5K. Channels M15(10.76) and 

M16(12.01μm) show similar or even better performance than the M14 channel. These 

results demonstrate the consistency of the retrievals. 
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Figure 3.8 Control group retrieved (top) cloud optical thickness (𝜏) and (bot) effective 

particle diameter (De). 
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Figure 3.9 Retrievals performed with (a,b) the Bayesian method and (c,d) the OE 

method (a,c) cloud optical thickness (𝛕) and (b,d) effective particle diameter (De), 

respectively.  

 

(a) 

(b) 
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Figure 3.9 Continued.  

 

 

 

 

(c) 

(d) 
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Figure 3.10 Comparison between the (d) observed and (a-c) simulated brightness 

temperatures at the VIIRS M14 (8.55μm) channel. (a) Control group; (b) Bayesian 

method; (c) OE method.  

(a) 

(b) 
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Figure 3.10 Continued.  

 

 

 

(c) 

(d) 
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A more quantitative evaluation of the pixel level cloud property comparisons is 

shown in Figure 3.11, which shows joint histograms of the control group retrieval 

(VSWIR) with the Bayesian or OE retrievals for the ice cloud pixels with 𝜏< 4. The 

derived 𝜏 has a correlation coefficient of 0.94 for the Bayesian method and 0.92 for the 

OE method. For the De retrieval, the correlation between each test group and the control 

group is much weaker, with correlation coefficients of 0.64 for the Bayesian method and 

0.32 for the OE method. To better understand the retrieved De distribution, probability 

density functions, or PDFs, of De are shown in Figure 3.12. The figure indicates that the 

OE method infers larger values of De than those from the Bayesian method. The Bayesian 

method 𝐷𝑒 distribution is highly concentrated around 50μm, while the OE distribution of 

De has a larger variation. Neither method closely matches the control group De distribution. 

The error source associated with the OE method leads to potentially large uncertainties 

into the retrieval. Moreover, the Bayesian method deals with only measurement error, 

while the OE method incorporates a more comprehensive consideration of error sources, 

including RTM and model parameter errors. As a result, the OE method does not perform 

as well as the Bayesian method.  When we eliminate the effects of the two additional error 

sources from the OE method, retrieval results similar to the Bayesian counterparts can be 

derived as shown in Figure 3.13.  
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Figure 3.11 Joint histograms of the control group and test groups retrievals for the case: 

(a, c) optical thickness, (b,d) cloud particle effective diameter. 

 

(a) 

(b) 
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Figure 3.11 Continued. 

 

(c) 

(d) 
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Figure 3.12 Probability distribution function of the control group (red) and test groups 

retrievals for the case: (black) Bayesian method, (yellow) OE method. 
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Figure 3.13 Joint histograms of the control group and OE method retrievals for optical 

thickness with measurement error only. 
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3.5. Conclusions 

A Bayesian method and an OE method based on VIIRS IR bands (M14, M15, and 

M16, or 8.55 µm, 10.76 µm, and 12.01 µm, respectively) are compared to the classic solar 

wavelength bispectral method to derive the optical and microphysical properties of 

optically thin ice cloud (optical thickness, 𝜏, and ice particle effective diameter, De). Prior 

conditions about cloud height, atmospheric profile and underlying surface temperatures 

are provided by ancillary data sources, including VIIRS IP datasets and MERRA. The ice 

cloud scattering properties used in this study are based on the severely roughened 

aggregate of solid columns ice particle, the same as that adopted for the MODIS Collection 

6 ice cloud product (Platnick et al., 2017). The VIIRS Fast Radiative Transfer Model 

(VFRTM) is uses a correlated-k distribution method for atmospheric absorption and a pre-

calculated LUT of the ice cloud transmission and scattering properties as a function of 

optical thickness, cloud height, and effective particle size.  

The VFRTM error contributes very little to the final uncertainty. The uncertainty of 

the model parameters (including errors in cloud top height, surface emissivity, and 

temperature) has the greatest contribution to cloud property retrieval errors. Among those 

factors, we find that the accuracy of the cloud height and the underlying surface 

temperature heavily influences the associated error in the retrieval of 𝜏 and De. Generally, 

𝜏 retrievals have a much higher correlation with the control group retrieval, while much 

lower correlations are found with De retrievals.  

Our conclusions are as follows. First, both the OE and Bayesian methods are useful 

for inferring cloud optical thickness based on split-window IR measurements. We note 
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that the Bayesian method is approximately two times more efficient computationally than 

the OE method retrieval. An advantage of the OE method is that it provides more 

information useful for quality control because it produces several diagnostics related to 

retrieval quality (Iwabuchi et al., 2014). The Bayesian and OE methods have a significant 

advantage relative to the bispectral VSWIR LUT method that they can potentially be 

adapted to higher degrees of freedom, specifically, inadequate model assumption 

scenarios such as multilayer clouds or water-phase clouds. A subsequent paper will 

present a multilayer cloud derivation using the Bayesian and OE retrieval methods using 

multiband IR observations. 

 

  



 

 57 

4. MULTI-LAYER CLOUD PROPERTIES RETRIEVAL FROM VIIRS INFRARED 

MEASUREMENTS 

4.1. Background 

Clouds are of significant effects on global climate patterns as a result of a 

complicated interaction with solar and terrestrial radiation process (Herman, et al., 1980; 

Hartmann and Short, 1980) (Poore et al., 1995).  Horizontally and vertically homogeneous 

cloud system, i.e. single-layer cloud system, is the most idealized model in radiative 

transfer simulation. Derivation of cloud properties is compromised when multi-layer 

clouds are presenting but single-layer clouds are assumed. For these compromised 

retrievals, i.e. treated as single-layer clouds, however, actually are multi-layer ones, the 

results usually lie between the layer properties: cloud heights lie lower than the upper layer 

and higher than the lower one; effective particle sizes are between water cloud droplets 

and ice cloud particles as well (Davis et al., 2009). Inferences from global water vapor 

profile data suggest that 40% of all global cloud systems involve multi-layer clouds (Poore 

et al., 1995; Wang et al., 2000). Considering the widely occurrences of multi-layer 

scenarios, it is of importance to derive an accurate representation of these clouds with the 

help of satellite-based observations.  

Detection and microphysical property retrieval are two respects of remote sensing 

of multi-layer clouds. Much work has been conducted on cloud detection. By calculating 

differences or ratios of visible, near-infrared(NIR), and thermal infrared (IR), 

characteristic signals can be isolated to detect the presence of multi-layer or multi-phase 

clouds (Nasiri and Baum,  2004; Joiner  et al., 2010; Wind et al., 2010). With the help of 
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the absorption characteristics of 0.94µm atmospheric water vapor channel, which is very 

sensitive to upper layers of cloud, along with CO2 bands, it is possible to derive two above-

cloud precipitable water retrievals, the difference of which, in conjunction with additional 

tests, provides a map of where multilayered clouds might potentially exist (Wind et al., 

2010). Moderate Resolution Imaging Spectroradiometer (MODIS) bands, 1.38- and 1.65-

µm near-infrared bands, can also be used to detect overlapped cloud systems (Pavolonis 

and Heidinger, 2004). Both of aforementioned algorithms can be applied at pixel level. 

Some other methods based on statistics theory require clear-sky or single-layer cloud 

measurement accessible as auxiliary quantities (Nasiri and Baum, 2004). The retrieval of 

multi-layer cloud properties is not axiomatic, even for confirmed multi-layer scenarios, 

because multi-layer cloud properties are greatly dependent on the relative characteristics 

of the layers. A thick upper layer will tend to cover the signal from a lower layer. Therefore, 

the main objective of current algorithms is to detect multilayered cloud scenes that are 

optically thin ice cloud overlying a lower-level water cloud. Meanwhile, errors that 

retrieval results turn out to be abnormally large water droplets also arise if it fails to detect 

multilayer cloud when upper cloud is too thin to dominate the upwelling radiance (Wind 

et al., 2010). In terms of mentioned earlier, cloud detection is of great importance in remote 

sensing of multi-layer clouds. 

Cloud detection has attracted much attention as described above.  In this paper, I 

will focus on multi-layer cloud microphysical property retrieval, especially two-layer 

cloud cases. It is based on an optimal estimation (OE) method and a Bayesian method. In 

principle, I will apply near-infrared and thermal infrared measurements, i.e. M13 
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(4.05µm), M14(8.55µm), M15 (10.76µm) and M16 (12.01µm) bands, from Visible 

Infrared Imaging Radiometer Suite (VIIRS) into aforementioned retrieval algorithms. 

Cloud essential microphysical properties, cloud optical thickness (𝜏) and effective particle 

diameter (De), will be derived simultaneously. The OE method output, let alone cloud 

properties mentioned before, is the cost function J, a measure of to what degree the 

retrieval results fit to the actual observations. Just like the discussion in my previous paper 

(Ding et al, 2017), both OE method and Bayesian method could be applied to single-layer 

cloud retrieval. The main difference between single-layer cloud retrieval and multi-layer 

cloud one is that homogeneous single-layer clouds, generally, has lower uncertainty in 

property retrieval, while multi-layer clouds trend to have higher uncertainty, i.e. greater J 

value for OE method.  

As we known that, errors from model parameter have a great effect on the retrieval 

(Ding et al, 2017). It is important to ensure the accuracy of model parameter vector p, 

including the satellite viewing zenith angle( 𝑣𝑧𝑛 ), underlying surface emissivity( 𝜖 ), 

surface temperature(𝑇𝑠𝑢𝑟𝑓), cloud top height(𝐻𝑐𝑙𝑜𝑢𝑑), and atmospheric profiles. We use 

the measurements from VIIRS moderate resolution bands as inversion basis. The Cloud–

Aerosol Lidar and Infrared Path- finder Satellite Observation (CALIPSO) satellite 

equipped with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) provides 

𝐻𝑐𝑙𝑜𝑢𝑑. The Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

data are used for atmospheric profiles. The interested pixels are limited to the CALIOP–

VIIRS collocated pixels. In order to better simulating the surface emission, instead of 

constant surface emissivity for all bands, we use the Fresnel reflectance to derive the ocean 
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surface emissivity, which is based on the assumption that the ocean water refractive 

indices are dependent on sea surface temperature (Newman et al., 2005).  

This study provides infrared band measurements based solutions to investigates 

the advantages and disadvantages of two retrieval methods, OE method and Bayesian 

method. The optical thickness and effective particle diameters are retrieved from the 

brightness temperatures in VIIRS IR bands at center wavelengths of 3.70, 4.05, 8.55, 10.76, 

and 12.01µm. Because the resolution of VIIRS moderate band measurements is 750 m by 

750 m, it is required to make the retrieval algorithm efficient enough to rapidly process 

data with acceptable, well-quantified uncertainties.  

This chapter is organized as following sections. Section 4.2 describes the basic 

forward model approach and improvement compared with previous paper, section 4.3 

discusses theoretical basis and details of the retrieval methods, section 4.4 is a sensitivity 

study based on synthetic measurements simulated with specified perturbed model 

parameters, section 4.5 evaluates the pixel level retrieval results by comparing with 

collocated CALIPSO retrievals, and section 4.6 summarizes our findings. 

 

4.2. VIIRS fast radiative transfer model (VFRTM) 

As my previous chapter mentioned, VFRTM is a one dimensional, single-/multi- layer 

cloud supported Radiative Transfer Model (RTM) specialized for simulating VIIRS 

observations. Channel-averaged technique is implemented in the model to minimize the 

computational burden. Besides, the correlated-k distribution (CKD) technique (Fu and 

Liou, 1992) is adopted to compute the background atmospheric gases transmissivities; The 
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microphysical and optical property of the whole cloud layer has assumed to be 

homogeneous, while the cloud layer temperature decreases linearly with height. And the 

Rayleigh scattering is neglected at these IR wavelengths.  

The Moderate Resolution Imaging Spectro-radiometer(MODIS) Collection 6 (MC06) 

ice cloud products (Platnick et al., 2017) are used as the ice particle model, which adopts 

a single ice habit consisting of an aggregate of 8 hexagonal columns with severely 

roughened surfaces. The MC6 ice particle habit was chosen because it minimizes the 

differences in the 𝜏 retrievals between those from CALIPSO and the IR split-window 

method (Baum et al., 2014; Holz et al. 2015). Note that throughout this study, all optical 

thicknesses are related to a visible wavelength of 0.65 µm. The effective diameter (De) of 

an ice particle distribution is defined as follows: 

𝐷𝑒 =
3

2

∑ 𝑉𝑖
𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

,                                          (4.1) 

where 𝑉𝑖 and 𝐴𝑖 are the volume and projected area of different sizes of particles over the 

particle size distribution.  

Liquid water droplet model adopts water sphere with refractive index follows 

Segelstein, D., 1981 (Segelstein, 1981). In this study, both liquid water and ice particles 

are assumed to a gamma distribution with a relative standard deviation of 0.1. Figure 4.1 

and Figure 4.2 are showing ice cloud particle and liquid water droplet single scattering 

properties. Figure 4.1 shows the extinction efficiency of cloud partcles vary with particle 

effective diameters. We can see that, generally, ice cloud extinction efficiency(Qe) is 

lowest at VIIRS band M15 and almost unaffected with size changes, while water cloud Qe 
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in M15 band changes a lot depending on the effective diameter and has good relevance to 

particle size. And, according to Figure 4.2, for both ice and liquid clouds, single-scattering 

albedo is relatively high at band M13 compared with other three bands at the small size 

area, which reveals that scattering is of importance at mid-wavelength infrared (MWIR). 

The same for M14 band at middle size region.   

In order to better simulate the process of underlying surface, we use temperature-

dependent sea surface albedo instead of constant surface albedo (Newman et al., 2005; 

Ding et al., 2017). In this way, the sea surface albedo is calculated from the Fresnel 

reflectance of a flat ocean surface, assuming that the seawater refractive index depends 

only on the temperature. This is because that the effect of dissolved salts has been proved 

to be negligible compared with temperature (Newman et al., 2005).  
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Figure 4.1 Extinction efficiency (Qe) of ice(upper) and water(lower) particles as a 

function of effective particle diameter for VIIRS bands M13, M14, M15, and M16 

centered at 4.05, 8.55, 10.56, and 12.01μm, respectively. Each effective diameter is 

computed as the average for a simulated cloud pixel with the stated mean effective particle 

diameter and a relative standard deviation of 0.1. 
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Figure 4.2 Similar to Figure 4.1, Single-scattering albedo (ωo) of ice (upper) and water 

(lower) particles as a function of effective particle diameter. 
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4.3. Retrieval methods 

This section provides the theoretical basis of multi-layer retrieval. Firstly, general 

principles and method feasibility will be presented; and then, specific implementation 

steps will be explained.  

 

4.3.1. Ratios of absorption optical depths (β)  

According to previous studies, ratios of absorption optical depths (β) between two 

different spectral bands(x, y) could be calculated with cloud emissivity (ec) from different 

bands (Paro et al., 1991; Heidinger et al., 2015). Then, the β value can be expressed as 

follows:  

𝛽 =
ln(1−𝑒𝑐,𝑦)

ln(1−𝑒𝑐,𝑥)
,                                 (4.2) 

Generally, β values can be approximately expressed by single scattering properties of 

single scattering albedo (ωo), the asymmetry factor (g) of the phase function, and the 

extinction efficiency (Qe). Then we can use bulk scattering properties, which are integrated 

over MC6 size distribution with single scattering properties for both ice and water cloud, 

to compare the behavior of different wavelength and different phases. This approximation 

is very accurate, and the relationship is shown as follows: 

𝛽 =
𝑄𝑒,𝑦(1−𝜔𝑜,𝑦𝑔𝑦)

𝑄𝑒,𝑥(1−𝜔𝑜,𝑥𝑔𝑥)
,                           (4.3) 

The spectral variation of the scattering properties for MC6 ice cloud and water 

cloud models at VIIRS M13 (4.05µm), M14 (8.55µm), M15 (10.76µm) and M16 
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(12.01µm) is shown in Figure 4.3. The β values shown in Figure 4.3 are the ratios of 

absorption optical depth with reference to 11µm, and the effective diameter is 40µm ice 

particle. The shaded areas are spectral response functions of M13, M14, M15, and M16, 

respectively. Solid lines show the scattering properties of ice cloud particles, while those 

dash lines represent water droplets.  

We can see that, extinction efficiency of ice particle generally smaller than water 

droplets for all bands, except M16. The difference is smallest at MWIR, and greatest at 

M15 area. As for β values, ice particles and water droplets perform opposite patterns for 

MWIR and thermal IR regions, which shows great feasibility to distinguish, even derive 

the optical properties of multi-layer clouds.  
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Figure 4.3 Spectral variation of the single scattering properties for ice (solid line) and 

water (dash line) particles over the spectral range of VIIRS bands M13-16, assuming an 

effective particle size of 40 μm. The shaded regions show the spectral response functions 

for bands M13-16. 

 

Figure 4.4 shows the variation of β values vary with effective size between band 

M14 and M15. Figure 4.5 shows the same plot for M15 and M16, and Figure 4.6 for M13 

and M15.  
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Figure 4.4 Variation of β computed using the VIIRS 10.76 μm and 8.55 μm channels 

as a function of effective diameter for cloud particles. 
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Figure 4.5 Variation of β computed using the VIIRS 10.76 μm and 12.01 μm 

channels as a function of effective diameter for cloud particles. 
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Figure 4.6 Variation of β computed using the VIIRS 10.76 μm and 4.05 μm channels 

as a function of effective diameter for cloud particles. 

 

According to the β values, the retrieval of ice and water cloud particles is feasible. 

As Figures 4.4-4.6 show, we find that the relationship between β values and particle 

effective diameters is monotonic. Based on these sensitivity test results, it can be asserted 

that ice and water cloud coexist scenarios can be retrieved, in other words, multi-layer and 

multi-phase cloud property retrievals can be derived with VIIRS multi-band 

measurements.  
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4.3.2. Bayesian retrieval algorithm 

The Bayesian retrieval method (Evans et al., 2002) uses a set of pre-determined ice 

and water cloud 𝜏 and De pairs, and then calculates various bands BTs in real time for the 

relevant LUTs with the help of corresponding atmospheric profile and cloud geometric 

information. Finally, by integrating over the points in the LUT with Bayes theorem, cloud 

optical properties can be derived. Bayes theorem can be stated mathematically as 

following: 

𝑝𝑝𝑜𝑠𝑡(𝑥|𝑇) =
𝑝𝑓(𝑇|𝑥)𝑝𝑝(𝑥)

∫ 𝑝𝑓(𝑇|𝑥)𝑝𝑝(𝑥)𝑑𝑥
,                           (4.4) 

where x is the cloud property vector (here, vector elements are pairs of ice and water cloud 

𝜏 and De used to simulate TOA brightness temperature); T is the vector of TOA brightness 

temperature measurements in the VIIRS bands; 𝑝𝑝(𝑥) is the prior probability density 

function of cloud property 𝑥; 𝑝𝑓(𝑇|𝑥) is the conditional probability of BT given the cloud 

property vector 𝑥; and 𝑝𝑝𝑜𝑠𝑡(𝑥|𝑇) is the posterior probability density function of the cloud 

property given the TOA BT measurements. The prior probability density function 𝑝𝑝(𝑥) 

is based on previous research of cirrus cloud property retrievals. The uncertainty of the 

cloud spatial and temporal distribution is normalized to 1.  

The retrieved cloud property vector 𝑥𝑟𝑒𝑡 is calculated by integrating over the entire x space 

to find the weighted average value: 

𝑥𝑟𝑒𝑡 = ∫ 𝑥𝑝𝑝𝑜𝑠𝑡(𝑥|𝑇)𝑑𝑥,                           (4.5) 

In practice, this integral process is replaced by summing over the defined 𝑥 vector: 

𝑥𝑟𝑒𝑡 = ∑ 𝑥𝑖𝑝𝑝𝑜𝑠𝑡(𝑥𝑖|𝑇),                           (4.6) 
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The conditional probability density function 𝑝𝑓(𝑇|𝑥) is the probability density of the TOA 

BT vector given defined cloud properties; i.e., the probability of a TOA BT measurement 

(T) given forward RTM simulations (R) of the atmospheric and cloud parameters. We 

assume a normal distribution function to represent the probability of each observed BT 

value: 

𝑝𝑓(𝑇|𝑥) = ∏
1

√2𝜋𝜎𝑗
2

exp (−
(𝑇𝑗−𝑅𝑗(𝑥))

2

2𝜎𝑗
2 )𝑀

𝑗=1  ,                                   (4.7) 

where 𝑇𝑗 is the BT vector for band 𝑗 (here, VIIRS band M14, M15, or M16); 𝑅𝑗(𝑥) is the 

VFRTM simulated result for band 𝑗; and 𝜎𝑗  is the standard deviation for band 𝑗 . We 

assume that the uncertainty 𝜎𝑗 is due entirely to measurement errors. The measurement 

errors are assumed to be unbiased and the range of calibration errors is on the order of 0.3 

K or less (Moeller et al., 2013). The measurement errors are assumed to be 0.3 K for all 

three bands and are independent of each other. 

4.3.3. Optimal estimation (OE) algorithm 

The OE method is an efficient inversion method (Rodgers, 2000; Iwabuchi et al., 

2014) with the ultimate goal of deriving an optimized solution from observations given 

certain constraints. Generally, OE method retrieval uses the same technique as previous 

paper stated (Ding et al., 2017), the major difference is to include MWIR bands to derive 

ice-water multi-layer cloud properties. 
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4.4. Retrieval algorithm evaluation 

To evaluate the performance of aforementioned retrieval algorithms, Bayesian and 

OE method, a sensitivity study based on synthetic measurements simulated with specified 

perturbed model parameters is conducted. The simulation process uses a set of cloud 

properties as control parameters, including τ, De, and 𝐻𝑐𝑙𝑜𝑢𝑑 for two layers (listed in Table 

4.1). The geometric thickness of each cloud is assumed to be thin enough within one layer 

as fast model requires. A standard mid-latitude summer profile (McClatchey et al., 1972) 

are assumed, the surface albedo is assumed to be constant to 0.02 and surface temperature 

is 298K. The synthetic measurements are perturbed 10,000 times by adding Gaussian 

distributed bias for 4 VIIRS bands, and the standard deviation is 0.3K. Other model 

parameters such as atmosphere temperature, surface temperature, water vapor content and 

other absorbing gas amount obey the Gaussian distribution as well. Standard deviations of 

those model parameter bias are shown in Table 4.1. All kinds of variable errors are 

assumed to be independent of each other. In order to better compare these two retrieval 

methods, only measurement error was considered for OE method, so that we can eliminate 

the effect of errors sourced from simulator and model parameters.  
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Table 4.1 Reference cloud properties of synthetic retrieval analysis 

 Variable Names Values 

Reference cloud properties Cloud optical thickness 
0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 5, 

10 

 Effective diameter (µm) 
10, 15, 20, 25, 30, 40, 50, 60, 

80, 100 

 Cloud top height (km) 5 (water), 10 (ice) 

Model parameters(errors) Surface temperature (K) 298K (0.5K) 

 Surface emissivity 0.98 (0.01) 

 Temperature profile Mid-latitude profile (1K) 

 Water vapor profile Mid-latitude profile (15%) 

 

Figure 4.7-4.11 are showing retrieval results and uncertainties for two different 

methods. The cross point of each solid cross marks the averaged retrievals with 10,000 

synthetic measurements. Different colors represent different effective diameters. The bars 

of solid cross are error bars, indicating the standard deviations of retrievals. The horizontal 

bars are standard deviations of tau, while the vertical bars are standard deviations of De, 

respectively. Reference cloud properties are shown as dashed line intersections. Figure 

4.7-4.10 are showing ice cloud property retrieval performance. Thin water cloud scenarios 

(τw = 0.3, Dew = 30µm), shown in Figure 4.7, have a relatively poor performance under 

thin ice cloud conditions, especially for τi smaller than 0.5. There is an interesting feature 

that Bayesian method retrieval trends to have greater optical thickness uncertainty and 

smaller cloud particle size uncertainty compared with OE method retrieval at thin water 

cloud scenarios. Figure 8 shows the averaged retrieval results, which highlight the retrieval 
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result pattern. Figure 9-10 are showing ice cloud property retrieval performance under 

thick water cloud scenarios (τw = 5.0, Dew = 80µm). We can see that, overall, both methods 

have a much better performance compared with previous thin water cloud conditions. 

Figure 4.11 is showing averaged optical thickness retrieval results for both ice and water 

cloud. The horizontal bars are standard deviations of ice cloud optical thickness, while the 

vertical bars are standard deviations of water cloud one, respectively. Generally, for the 

range of moderate thin clouds, i.e. tau from 0.5 to 5.0, bias of retrievals is negligible for 

both thin and thick water cloud scenarios. However, retrieval biases appear at very thin 

water cloud conditions, tau smaller than 0.3, and very thick, tau greater than 5, scenarios. 

And we can find that, for both methods, thick ice cloud will lead to a greater water cloud 

retrieval bias, while thick water cloud usually have a positive effect on ice cloud retrieval. 

Above mentioned retrieval performance illustrates that the sensitivity of IR observations 

to ice cloud optical thickness derivation decreases rapidly if the water cloud becomes 

optically thin, leading to a larger retrieval uncertainty. In addition to this, thicker ice cloud 

also obstructs the retrieval of lower water cloud. 
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Figure 4.7 Averaged ice cloud properties and corresponding uncertainties inferred 

from synthetic observations. The different colors indicate different reference De values. 

The solid vertical and horizontal bars indicate the averaged De and τ retrieval 

uncertainties, respectively. The averaged retrievals are located at the intersections of the 

solid bars. The reference cloud properties are located at the intersections of the dashed 

horizontal and vertical lines. The underlying cloud is thin water cloud, De = 30µm and τ 

= 0.3. (top) OE method (bottom) Bayesian method. 



 

 77 

 

Figure 4.8 Same as Figure 4.7, averaged retrieval results.  
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Figure 4.9 Similar to Figure 4.7, the underlying cloud is thick water cloud, De = 80µm 

and τ = 5.0. 
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Figure 4.10 Same as Figure 4.9, averaged retrieval results.  
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Figure 4.11 Averaged optical thickness retrieval results for both ice and water cloud. 

 

4.5. Case study 

The first dataset used are VIIRS JPSS SDR products, which provide level 1B data, 

including brightness temperatures(BTs) in all bands. The measurement errors are assumed 

to be unbiased and the equivalent range of calibration BT errors is on the order of 0.3 K 

or less (Moeller et al., 2013). The measurement errors are assumed to be 0.3 K for all 

bands and are independent of each other. Modern Era Retrospective Analysis for Research 

and Applications (MERRA) data provide atmospheric profiles and surface temperatures 

at a spatial resolution of 1.25°, and temporal resolution of 3 hours. The ocean surface 
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temperature is derived from the MERRA surface air temperature using a linear 

interpolation technique. The ocean surface albedo is computed with the Fresnel reflectance 

based on a surface temperature dependent flat ocean surface (Newman et al., 2005). The 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is onboard the platform 

named Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). 

CALIOP can receive 532 and 1064 nm backscatter signals. Since CALIOP is very 

sensitive to thin scattering media, such as thin ice cloud and aerosols, it can be used as a 

reliable reference. In this study, the CALIPSO/CALIOP 5km spatial resolution level-2 

cloud-layer products, “CAL_LID_L2_05kmCLAY” (version 3.30), are selected to 

provide comprehensive cloud information, such as the cloud altitude, and to select high 

and low clouds coexist pixels. To be specific, only geometrically ice clouds over water 

clouds are selected. Partly cloudy pixels and mixed phased cloud pixels reported in the 

“CAL_LID_L2_05kmCLAY” datasets are not considered. In this study, collocated 

LIDAR retrieval products from CALIPSO for whole year 2015 are used as evaluation. 

Figure 4.12 shows on example of collocated CALIPSO and VIIRS image. The grayscale 

granule image is the VIIRS M05 reflectance image and the red line indicates the overtake 

CALIPSO track. The CALIPSO 532 nm total attenuated backscatter image is showing 

cloud-atmosphere vertical structure in Figure 4.13. Figure 4.14-4.15 are showing feature 

type and cloud phase along the CALIPSO ground track shown in Figure 4.13.  
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Figure 4.12 The 0.672µm reflectance for a VIIRS granule at 1400 UTC 20151128. The 

red line indicates the associated CALIPSO/CALIOP ground track.  
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Figure 4.13 The CALIPSO 532nm total attenuated backscatter along the ground track 

line. The white lines indicate the eligible profiles. 
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Figure 4.14 Feature type along the CALIPSO ground track shown in Figure 4.13.  
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Figure 4.15 Cloud phase along the CALIPSO ground track shown in Figure 4.13.  

 

As previously stated, MWIR channels are used to derive optical properties, therefore, 

we use nighttime granules only to eliminate the influence from solar reflectance. The 

scatterplots in Figure 4.16 compare the CALIPSO retrieved cloud properties and 

aforementioned two methods with VIIRS M13-M16 bands retrieval results. Generally, 

MWIR-thermal IR retrieved cloud optical thickness values are systematically greater than 

CALIPSO counterpart ones, no matter ice cloud or water cloud, OE method or Bayesian 

method. There are approximately 90% of the ice cloud optical thickness values are smaller 

than 4.0, and the percentage of water cloud ones is about 60%. Besides, grid-like pattern 

appears on Bayesian method retrieved results. Figure 4.17 and 4.18 show the retrieval 

results with different VIIRS measurements. In Figure 4.17, there are M12 and M14-16, 
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while, for Figure 4.18, they are M12-M16, five bands. They all show similar patterns as 

Figure 4.16. The quantified retrieval performance details are shown in Table 4.2. By 

comparing the relative bias of all three measurement combinations, we find that, the 

combination consists of M12 and M14-16 is the best one to derive the multi-layer cloud 

properties. And, Figure 4.19 shows the distributions of both methods and CALIPSO 

retrieved cloud optical thickness. We can see that OE method retrieval result is highly 

correlated with CALIPSO retrieval, and the major difference is the amplitude of optical 

thickness normalized frequency, while Bayesian method leans to smaller optical thickness 

for both ice and water clouds. In this way, we can say that OE method is superior to 

Bayesian method in deriving multi-layer cloud properties.  

 

Table 4.2 Comparison of OE retrievals with Bayesian method retrievals 

Method Band RMSD(wat) R(wat) RMSD(ice) R(ice) 

OE method 

M12 & M14-16 0.8753 0.7226 0.1853 0.7908 

M13-16 0.8423 0.5546 0.4098 0.7297 

M12-16 0.8613 0.6155 0.2820 0.6917 

Bayesian 

method 

M12 & M14-16 1.8023 0.3175 0.2304 0.5526 

M13-16 1.1420 0.2462 0.5304 0.5769 

M12-16 1.7973 0.2833 0.2986 0.6107 
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Figure 4.16 A joint histogram of the IR retrievals and CALIPSO products using VIIRS 

M13-16 bands for eligible pixels in 2015: (a) Bayesian method ice cloud, (b) Bayesian 

method water cloud, (c) OE method ice cloud and (d) OE method water cloud. The 

correlation coefficient (R) and the RMS difference (RMSD) are also shown in text box. 

(a) 

(b) 
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Figure 4.16 Continued. 

(c) 

(d) 
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Figure 4.17 Similar joint histogram as Figure 4.16 using VIIRS M12-16 bands. 

(a) 

(b) 
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Figure 4.17 Continued. 

(c) 

(d) 
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Figure 4.18 Similar joint histogram as Figure 4.16 using VIIRS M12-16 bands. 

 

(a) 

(b) 



 

 92 

 

Figure 4.18 Continued. 

(c) 

(d) 
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Figure 4.19 Cloud optical thickness distribution given by the IR retrieval results and 

CALIPSO products. (top) ice cloud (bottom) water cloud. 
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Besides, since multi-layer cloud property retrieval is a high degree of freedom 

problem, it is usually a time-consuming process to solve this kind of problem. Therefore, 

we will have to take computational efficiency into consideration. Because of the 

theoretical basis of Bayesian method, it is required to traverse the pre-defined cloud 

property LUT, which results in an exponential computational burden increasing when the 

number of variables need to be solved linear increases. Meanwhile, OE method is 

relatively insensitive to the increasing number of variables. Thus, OE method is more 

suitable to solve this kind of high degree of freedom problem. For this case, OE method 

is about 20 times faster than Bayesian method. 

 

4.6. Conclusion 

Our study compares two multi-layer cloud property retrieval algorithms using VIIRS 

M-bands centered at wavelengths 3.7, 4.05, 8.55, 10.76 and 12.01µm. Cloud top height, 

atmospheric profiles and underlying surface information are obtained from MERRA 

dataset and CALIPSO L2 products as priori. The single-scattering properties of cloud 

particles and size distributions are the same as MC06. The fast RTM, VFRTM, is based 

on the CKD technique, which is very computationally efficient to support real-time IR 

brightness temperature calculations. Based on appropriate model parameters, including 

spectral surface emissivity, cloud top heights, surface temperature, and atmospheric 

profiles, both aforementioned MW-/thermal- IR methods can derive the multi-layer cloud 

optical thickness. A significant positive correlation can be recognized from both OE 

method and Bayesian, meanwhile, the root-mean-square deviation (RMSD) is limited to 
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a small value. Therefore, the four-band, M12 and M14-16, OE method is the most suitable 

method to derive cloud optical thickness under multi-layer scenarios, where the RMSD is 

generally less than 30%.  

By yearly case study, we find that the OE-IR method can be applied to multi-layer 

cloud optical thickness retrieval. Collocated comparison has demonstrated that the derived 

optical thickness from OE-IR method and that from CALIPSO product are significantly 

correlated. The retrieved results from OE-IR are slightly lean to larger values compared 

with CALIPSO products. Besides, OE-IR method has an advantage for the spatial 

distribution. Not like CALIPSO ground track pixels, OE-IR method can provide global 

cloud property retrieval. An advantage of the OE method compared with Bayesian method 

is that it is more computational efficient. Besides, OE method results are more continuous 

distributed, while Bayesian method results perform a grid-like pattern.  
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5. SUMMARY 

In section 2, by using correlated-k distribution, band averaged cloud property, and 

pre-calculated cloud property look-up table techniques, we developed a fast radiative 

transfer model specialized for VIIRS IR bands based on the rigorous LBLRTM+DISORT 

method to simulate the forward radiative transfer processing involved in cloud remote 

sensing for cloudy-sky scenarios. Thanks to the techniques mentioned above, the 

computational efficiency associated with the line-by-line process is substantially increased. 

Compared with rigorous method, fast VIIRS RTM (VFRTM) is much faster with a high 

accuracy, thus, it is feasible to apply VFRTM to cloud remote sensing. Let alone the 

portability to apply this method to other narrow band satellite instruments.  

With the help of VFRTM, we can efficiently derive the cloud properties given 

ancillary environment information. In section 3, we did the case study to retrieve cloud 

properties and analyze error sources with Bayesian method and Optimal Estimation 

method using VFRTM. We found that the VFRTM error contributes very little to the final 

uncertainty. The uncertainty of the model parameters (including errors in cloud top height, 

surface emissivity, and temperature) has the greatest contribution to cloud property 

retrieval errors. Among those factors, we find that the accuracy of the cloud height and 

the underlying surface temperature heavily influences the associated error in the retrieval 

of 𝜏 and De. Generally, 𝜏 retrievals have a much higher correlation with the control group 

retrieval, while much lower correlations are found with De retrievals. As for cloud property 

retrieval, firstly, both the OE and Bayesian methods are useful for inferring cloud optical 

thickness based on split-window IR measurements. We note that the Bayesian method is 
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approximately two times more efficient computationally than the OE method retrieval. An 

advantage of the OE method is that it provides more information useful for quality control 

because it produces several diagnostics related to retrieval quality (Iwabuchi et al., 2014).  

In section 4, we have tested the possibility of applying aforementioned method to 

multi-layer cloud retrieval. We used VIIRS M-bands centered at wavelengths 3.7, 4.05, 

8.55, 10.76 and 12.01µm, along with ancillary data, including Ccoud top height, 

atmospheric profiles and underlying surface information from MERRA dataset. Based on 

appropriate model parameters, including spectral surface emissivity, cloud top heights, 

surface temperature, and atmospheric profiles, both aforementioned MW-/thermal- IR 

methods can derive the multi-layer cloud optical thickness. A significant positive 

correlation can be recognized from both OE method and Bayesian, meanwhile, the root-

mean-square deviation (RMSD) is limited to a small value. Therefore, the four-band, M12 

and M14-16, OE method is the most suitable method to derive cloud optical thickness 

under multi-layer scenarios, where the RMSD is generally less than 30%. By yearly case 

study, we find that the OE-IR method can be applied to multi-layer cloud optical thickness 

retrieval. Collocated comparison has demonstrated that the derived optical thickness from 

OE-IR method and that from CALIPSO product are significantly correlated. The retrieved 

results from OE-IR are slightly lean to larger values compared with CALIPSO products. 

Besides, OE-IR method has an advantage for the spatial distribution. Not like CALIPSO 

ground track pixels, OE-IR method can provide global cloud property retrieval.  
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