531 research outputs found

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (R²=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (R²=0.68) and -25% (R²=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukünftiger Kohlenstoffbilanzen sind wichtig für das Verständnis des globalen Klimawandels und sind auf genaue Messungen von Stoffflüssen zur Berechnung der Produktivität des Erdökosystems angewiesen. Die Produktivität der Biosphäre unserer Erde wiederum ist abhängig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen Biosphäre, aus Satellitendaten abzuleiten, mit deren Hilfe man die Produktivität unseres Erdsystems computergestützt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfügbare photosynthetisch aktive Strahlung (PAR) im Wellenlängenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst präzise Informationen aus dem globalen FAPAR zu gewährleisten, erklärte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestützte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine Unsicherheitsabschätzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjährigen, 10-minütigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in Süddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusätzlichen meteorologischen und phänologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden für die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen Lichtverhältnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. Für diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des Verhältnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, müssen „four-flux“ FAPAR-Messungen durchgeführt werden, d.h. zusätzlich Messungen der PAR Albedo des Blätterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen für die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, Blattfärbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natürliche saisonale Schwankungen aufgrund der phänologischen Entwicklung der Wälder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die über phänologisch erklärbare Schwankungen hinausgehen. So bestätigten die in situ Beobachtungen eine signifikante Überschätzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von über 60° und um bis zu 0,05 bei Vorkommen gefärbter Blätter der Laubbäume. Die Ergebnisse bestätigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten über 5 ms-1 äußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der Abschätzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht überschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfällig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des Blätterdachs bei der „two-flux“ FAPAR-Messung nicht berücksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grüne Blätter, kann die „two-flux“ FAPAR-Messung für die Validierung von satellitengestützten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien häufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt überschreiten auch unter Berücksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschätzte (d.h. negative Werte für die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (R²=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (R²=0,68) bzw. -25% (R²=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren Komplexität beider Ökosysteme zurückgeführt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut überlegt sein sollte, da die Überschätzung von FAPAR während eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter Berücksichtigung der Unsicherheiten der Bodendaten erfüllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen Variabilität von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestützten FAPAR-Produkten ist abhängig von der Komplexität des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestütztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der räumlichen Variabilität, wurde am borealen Standort erzielt, für den die Komplexität des Ökosystems unter Berücksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfällt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine Wissenslücke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukünftigen Validierungsstudien auch berücksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen für die Durchführung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestützte FAPAR-Beobachten validieren und zukünftig verbessern zu können

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (R²=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (R²=0.68) and -25% (R²=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukünftiger Kohlenstoffbilanzen sind wichtig für das Verständnis des globalen Klimawandels und sind auf genaue Messungen von Stoffflüssen zur Berechnung der Produktivität des Erdökosystems angewiesen. Die Produktivität der Biosphäre unserer Erde wiederum ist abhängig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen Biosphäre, aus Satellitendaten abzuleiten, mit deren Hilfe man die Produktivität unseres Erdsystems computergestützt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfügbare photosynthetisch aktive Strahlung (PAR) im Wellenlängenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst präzise Informationen aus dem globalen FAPAR zu gewährleisten, erklärte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestützte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine Unsicherheitsabschätzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjährigen, 10-minütigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in Süddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusätzlichen meteorologischen und phänologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden für die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen Lichtverhältnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. Für diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des Verhältnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, müssen „four-flux“ FAPAR-Messungen durchgeführt werden, d.h. zusätzlich Messungen der PAR Albedo des Blätterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen für die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, Blattfärbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natürliche saisonale Schwankungen aufgrund der phänologischen Entwicklung der Wälder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die über phänologisch erklärbare Schwankungen hinausgehen. So bestätigten die in situ Beobachtungen eine signifikante Überschätzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von über 60° und um bis zu 0,05 bei Vorkommen gefärbter Blätter der Laubbäume. Die Ergebnisse bestätigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten über 5 ms-1 äußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der Abschätzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht überschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfällig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des Blätterdachs bei der „two-flux“ FAPAR-Messung nicht berücksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grüne Blätter, kann die „two-flux“ FAPAR-Messung für die Validierung von satellitengestützten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien häufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt überschreiten auch unter Berücksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschätzte (d.h. negative Werte für die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (R²=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (R²=0,68) bzw. -25% (R²=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren Komplexität beider Ökosysteme zurückgeführt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut überlegt sein sollte, da die Überschätzung von FAPAR während eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter Berücksichtigung der Unsicherheiten der Bodendaten erfüllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen Variabilität von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestützten FAPAR-Produkten ist abhängig von der Komplexität des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestütztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der räumlichen Variabilität, wurde am borealen Standort erzielt, für den die Komplexität des Ökosystems unter Berücksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfällt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine Wissenslücke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukünftigen Validierungsstudien auch berücksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen für die Durchführung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestützte FAPAR-Beobachten validieren und zukünftig verbessern zu können

    CEOS Land Surface Imaging Constellation Mid-Resolution Optical Guidelines

    Get PDF
    The LSI community of users is large and varied. To reach all these users as well as potential instrument contributors this document has been organized by measurement parameters of interest such as Leaf Area Index and Land Surface Temperature. These measurement parameters and the data presented in this document are drawn from multiple sources, listed at the end of the document, although the two primary ones are "The Space-Based Global Observing System in 2010 (GOS-2010)" that was compiled for the World Meteorological Organization (WMO) by Bizzarro Bizzarri, and the CEOS Missions, Instruments, and Measurements online database (CEOS MIM). For each measurement parameter the following topics will be discussed: (1) measurement description, (2) applications, (3) measurement spectral bands, and (4) example instruments and mission information. The description of each measurement parameter starts with a definition and includes a graphic displaying the relationships to four general land surface imaging user communities: vegetation, water, earth, and geo-hazards, since the LSI community of users is large and varied. The vegetation community uses LSI data to assess factors related to topics such as agriculture, forest management, crop type, chlorophyll, vegetation land cover, and leaf or canopy differences. The water community analyzes snow and lake cover, water properties such as clarity, and body of water delineation. The earth community focuses on minerals, soils, and sediments. The geo-hazards community is designed to address and aid in emergencies such as volcanic eruptions, forest fires, and large-scale damaging weather-related events

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    Estimating the fraction of absorbed photosynthetically active radiation from multiple satellite data

    Get PDF
    The fraction of absorbed photosynthetically active radiation (FAPAR) is a critical input parameter in many climate and ecological models. The accuracy of satellite FAPAR products directly influences estimates of ecosystem productivity and carbon stocks. The targeted accuracy of FAPAR products is 10%, or 0.05, for many applications. This study evaluates satellite FAPAR products, presents a new FAPAR estimation model and develops data fusion schemes to improve the FAPAR accuracy. Five global FAPAR products, namely MODIS, MISR, MERIS, SeaWiFS, and GEOV1 were intercompared over different land covers and directly validated with ground measurements at VAlidation of Land European Remote sensing Instruments (VALERI) and AmeriFlux sites. Intercomparison results show that MODIS, MISR, and GEOV1 agree well with each other and so do MERIS and SeaWiFS, but the difference between these two groups can be as large as 0.1. The differences between the products are consistent throughout the year over most of the land cover types, except over the forests, because of the different assumptions in the retrieval algorithms and the differences between green and total FAPAR products over forests. Direct validation results show that the five FAPAR products have an uncertainty of 0.14 when validating with total FAPAR measurements, and 0.09 when validating with green FAPAR measurements. Overall, current FAPAR products are close to, but have not fulfilled, the accuracy requirement, and further improvements are still needed. A new FAPAR estimation model was developed based on the radiative transfer for horizontally homogeneous continuous canopy to improve the FAPAR accuracy. A spatially explicit parameterization of leaf canopy and soil background reflectance was derived from a thirteen years of MODIS albedo database. The new algorithm requires the input of leaf area index (LAI), which was estimated by a hybrid geometric optic-radiative transfer model suitable for both continuous and discrete vegetation canopies in this study. The FAPAR estimates by the new model was intercompared with reference satellite FAPAR products and validated with field measurements at the VALERI and AmeriFlux experimental sites. The validation results showed that the FAPAR estimates by the new method had slightly better performance than the MODIS and the MISR FAPAR products when using corresponding satellite LAI product values as input. The FAPAR estimates can be further improved with the LAI estimates from the presented model as input. The improvements are apparent at grasslands and forests with an 8% reduction of uncertainty. The new model can successfully identify the growing seasons and produce smooth time series curves of estimated FAPAR over years. The root mean square error (RMSE) was reduced from 0.16 to 0.11 for MODIS and from 0.18 to 0.1 for MISR overall. Application of the presented model at a regional scale generated consistent FAPAR maps at 30 m, 500 m, and 1100 m spatial resolutions from the Landsat, MODIS, and MISR data. As an alternative method to improve FAPAR accuracy, in addition to developing FAPAR estimation models, two data fusion schemes were applied to integrate multiple satellite FAPAR products at two scales: optimal interpolation at the site scale and multiple resolution tree at the regional scale. These two fusion schemes removed the bias and resulted in a 20% increase in the R2 and a 3% reduction in the RMSE as compared with the average of the individual FAPAR products. The regional scale fusion filled in the missing values and provided spatially consistent FAPAR distributions at different resolutions. The original contribution of this study is that multiple FAPAR products have been assessed with a comprehensive set of measurements from two field experiments at the global scale. This study improved the accuracy of FAPAR using a new model and local pixel based soil background and leaf canopy albedos. High FAPAR accuracy was achieved through integration at both the temporal and spatial domains. The improved accuracy of FAPAR values from this study by 5% would help to decrease an equal amount of uncertainty in the estimation of gross and net primary production and carbon fluxes

    Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites:TL-LUE Parameterization and Validation

    Get PDF
    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR

    Validation of PROBA-V GEOV1 and MODIS C5 & C6 fAPAR Products in a Deciduous Beech Forest Site in Italy

    Get PDF
    [EN] The availability of new fAPAR satellite products requires simultaneous efforts in validation to provide users with a better comprehension of product performance and evaluation of uncertainties. This study aimed to validate three fAPAR satellite products, GEOV1, MODIS C5, and MODIS C6,against ground references to determine to what extent the GCOS requirements on accuracy (maximum 10% or 5%) can be met in a deciduous beech forest site in a gently and variably sloped mountain site. Three ground reference fAPAR, differing for temporal (continuous or campaign mode) and spatial sampling (single points or Elementary Sampling Units¿ESUs), were collected using different devices: (1) Apogee (defined as benchmark in this study); (2) PASTIS; and (3) Digital cameras for collecting hemispherical photographs (DHP). A bottom-up approach for the upscaling process was used in the present study. Radiometric values of decametric images (Landsat-8) were extracted over the ESUs and used to develop empirical transfer functions for upscaling the ground measurements. The resulting high-resolution ground-based maps were aggregated to the spatial resolution of the satellite product to be validated considering the equivalent point spread function of the satellite sensors, and a correlation analysis was performed to accomplish the accuracy assessment. PASTIS sensors showed good performance as fAPARPASTIS appropriately followed the seasonal trends depicted by fAPARAPOGEE (benchmark) (R2 = 0.84; RMSE = 0.01). Despite small dissimilarities, mainly attributed to different sampling schemes and errors in DHP classification process, the agreement between fAPARPASTIS and fAPARDHP was noticeable considering all the differences between both approaches. The temporal courses of the three satellite products were found to be consistent with both Apogee and PASTIS, except at the end of the summer season when ground data were more affected by senescent leaves, with both MODIS C5 and C6 displaying larger short-term variability due to their shorter temporal composite period. MODIS C5 and C6 retrievals were obtained with the backup algorithm in most cases. The three green fAPAR satellite products under study showed good agreement with ground-based maps of canopy fAPAR at 10 h, with RMSE values lower than 0.06, very low systematic differences, and more than 85% of the pixels within GCOS requirements. Among them, GEOV1 fAPAR showed up to 98% of the points lying within the GCOS requirements, and slightly lower values (mean bias = ¿0.02) as compared with the ground canopy fAPAR, which is expected to be only slightly higher than green fAPAR in the peak season.The ground data collection was partially funded by the FP7 ImagineS project (FP7-SPACE-2012-311766) and the dataset acquired is available online (http://www.fp7-imagines.eu/). We thank the project H2020 Ecopotential (grant agreement No. 641762) for financial support on the site activities.Nestola, E.; Sánchez-Zapero, J.; Latorre-Sanchez, C.; Mazzenga, F.; Matteucci, G.; Calfapietra, C.; Camacho, F. (2017). Validation of PROBA-V GEOV1 and MODIS C5 & C6 fAPAR Products in a Deciduous Beech Forest Site in Italy. Remote Sensing. 9(2). https://doi.org/10.3390/rs90201269

    Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Get PDF
    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties). We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations

    Boreaalisen metsän lehtialaindeksin ja sen sitoman fotosynteettisesti aktiivisen säteilyn arviointi

    Get PDF
    The aim of this dissertation is to assess the accuracy of different ground reference methods used to validate satellite based leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) products. LAI and fPAR are strongly linked, although they principally and practically measure different properties: LAI quantifies the areal interphase between soil and atmosphere, whereas fPAR quantifies the energy available for photosynthesis. Until now, the development of remote sensing based methods to estimate LAI and fPAR in a boreal forest has been hindered by the scarcity of ground data, which is required to validate and develop existing algorithms. The aim of the first part of this dissertation was to assess the impacts of different methodological approaches to estimate LAI in boreal forests, and to validate satellite based LAI products. Results showed that the accuracy of ground based LAI estimates is sensitive to both the retrieval methods and sampling scheme used to collect the optical LAI data. The satellite based measurements of LAI demonstrated a large temporal variability in LAI. The second part of the dissertation focused on measuring and modeling fPAR in a boreal forest. A new scheme for measuring and modeling ground reference fPAR based on photon recollision probability was presented in this dissertation. Ground reference fPAR is usually estimated only for the forest canopy layer. This study is among the first ones to validate the new global satellite based fPAR product called GEOV1 using data of both the forest canopy and understory layers from boreal forests. Results showed that satellite based fPAR products may correspond better with the total fPAR, instead of only the forest canopy fPAR as has often been presumed.Tämän väitöskirjan tarkoituksena oli kehittää LAI:n ja fPAR:in maastomittausmenetelmiä ja arvioida nykyisten satelliittipohjaisten LAI- ja fPAR-tuotteiden toimivuutta boreaalisissa metsissä. Lehtialaindeksi (leaf area index, LAI) kuvaa lehtien toispuolista pinta-alaa maapinta-alaa kohden (m2/m2). Akronyymi fPAR on lyhennelmä sanoista fraction of absorbed photosynthetically active radiation (PAR) ja se kuvaa kasvillisuuden kykyä sitoa auringosta saapuvaa säteilyä. fPAR määräytyy LAI:n ja auringon kulman perusteella. LAI:ta ja fPAR:ia voidaan arvioida avaruudesta tehtävällä kaukokartoituksella ja mielenkiinnon kohteena voi olla esimerkiksi globaali ympäristön seuranta. Tällä hetkellä kaukokartoitusmenetelmien kehittymistä hidastaa maastoaineistojen puute, sillä maastoaineistot ovat välttämättömiä mallien tarkkuuden arvioinnissa. Koska LAI on yksi tärkeimpiä fPAR:iin vaikuttavia muuttujia, väitöskirjan ensimmäinen osio keskittyi LAI:n maastomittausmenetelmien tarkkuuden arviointiin. Ensimmäisen osan tarkoituksena oli selvittää, kuinka erilaiset LAI:n arviointitavat ja otanta-asetelmat toimivat boreaalisissa metsissä. Satelliitista mitattujen LAI-arvojen kelpoisuutta arvioitiin vertaamalla niitä maastossa mitattuihin arvoihin. Tulosten mukaan erilaiset LAI:n arviointitavat tuottavat systemaattisesti poikkeavia arvioita ja arvioiden tarkkuus riippuu paitsi käytetystä menetelmästä, myös maastomittausten otanta-asetelmasta. Tutkimuksessa havaittiin, että satelliitista mitattuihin LAI-arvoihin sisältyy paljon ajallista ja paikallista vaihtelua, joka johtuu osin satelliitin mittaaman signaalin saturoitumisesta. Väitöskirjan toinen osa keskittyi fPAR:in mittaamiseen ja mallintamiseen. Tutkimuksen aluksi esiteltiin uusi fPAR-malli, joka soveltuu laajojen alueiden fPAR-arviointiin. Mallin toimivuutta arvioitiin vertaamalla mitattuja ja mallinnettuja fPAR-arvoja toisiinsa. fPAR-mallin todettiin toimivan hyvin. Tämän jälkeen tutkittiin, kuinka hyvin nykyiset satelliittimittauksiin perustuvat fPAR-tuotteet vastaavat maastomittauksiin perustuvaa fPARia. Yleensä satelliittituotteiden toimivuutta arvioitaessa on keskitytty vain metsän latvuskerroksen sitoman säteilymäärän arviointiin, mutta tässä tutkimuksessa huomioitiin myös aluskasvillisuuden sitoma säteily. Tulokset osoittivat, että satelliittimittauksiin perustuva fPAR voi vastata paremmin metsikön latvuksen ja aluskasvillisuuden yhteenlaskettua fPAR:ia kuin pelkän latvuskerroksen fPAR:ia
    • …
    corecore