516 research outputs found

    Development and Modelling of High-Efficiency Computing Structure for Digital Signal Processing

    Full text link
    The paper is devoted to problem of spline approximation. A new method of nodes location for curves and surfaces computer construction by means of B-splines and results of simulink-modeling is presented. The advantages of this paper is that we comprise the basic spline with classical polynomials both on accuracy, as well as degree of paralleling calculations are also shown.Comment: 4 Pages, 5 figures, IEEE International Conference on Multimedia, Signal Processing and Communication Technologies, 2009. IMPACT '0

    MatLab Simulink Modeling for Network-Harmonic Impedance Assessment: Useful Tool to Estimate Harmonics Amplification

    Get PDF
    The importance of the subject is given by the fact that harmonics are making their presence felt in electrical distribution networks, and the cheapest and most widespread solution for power factor correction is the capacitor banks. This chapter proves that the harmonic impedance is an efficient tool for assessing the state of distribution networks containing harmonics. The unfavorable operating conditions are anticipated based on the network harmonic impedance values, and the means of intervention are selected. Harmonic impedance monitoring and using it in expert systems for operating condition optimization will increase in the future. Power factor correction by shunt capacitor switching in electrical networks containing harmonics can lead to harmonics amplifications by harmonic voltage increasing and capacitors thermal overstressing by great values of the currents flowing through them. This chapter proposes a method for practical determination of harmonic impedance. Based on its values, a quick method is developed to anticipate the harmonic voltages and current amplifications that can occur when a shunt capacitor is installed for power factor correction. Amplification factors are calculated depending on the equivalent harmonic impedance of the network seen in the compensation bus. A distribution network containing harmonics is modeled using MatLab Simulink, and harmonic impedance is determined by simulation in different operating conditions. Using the values of the harmonic impedance and the capacitive reactance of the capacitor bank that is connected for power factor correction, the amplification of the harmonic voltages and currents is estimated by calculus. The results obtained by calculus are then compared with the values obtained by simulation after the connection of the capacitor bank to the network. In conclusion, the chapter proves that the network harmonic impedance is a useful tool to estimate the harmonics amplification caused by power factor correction using shunt capacitor banks

    Validation of a Mixed-Signal Board ATPG Method: The TCB case study

    No full text
    We present the validation protocol of our mixed-signal board ATPG method. First results confirm the method fitting well with maintenance test, board modeling stage adequacy and test data generation reliability. The essential need for user-defined dedicated test strategies is highlighted in order to ensure meaningful test process and full blackbox test

    Validation of a Mixed-Signal Board ATPG Method

    No full text
    International audienceThis paper presents the validation protocol of a mixed-signal board ATPG method. First results confirm the method fitting well with maintenance test, board modeling stage adequacy and test data generation reliability. The essential need for user-defined dedicated test strategies is highlighted in order to ensure meaningful test process and full blackbox test

    Modeling and Characterization of Power Distribution Networks with Installed Distributed Generation and Connected PHEVs

    Get PDF
    This thesis is focused on the modeling and characterization of power distribution networks with installed distributed generation and connected plug-in hybrid electric vehicles (PHEV). A PHEV charging/discharging (bidirectional) model has been developed in MATLAB®-Simulink. Installed photovoltaic systems with varying irradiance rates are modeled and characterized. Moreover, installed wind generators with varying wind speeds are modeled and characterized. Furthermore, the charging and discharging characteristics of connected PHEV are determined. The system characteristics are determined and investigated against the PHEV battery state of charge (SOC)

    Development of Simulink Model to Investigate Control Structure, Safety, and Stability of a Water Brake System at Main Engine in House 5 Laboratory: Warnemünde

    Get PDF
    A water brake loads the diesel engine will set desired work points and work curves. So that can find a safe point and control safety. After this, the essential system component will be created the model in block diagram and the block diagram will be simulated with Simulink. This requires a model of combustion machine and its control as well as break system and its control. The valve angle also affects the amount of flow or discharge of water which resides in the brake system. The amount of water flow in the brake system affects the amount of load that will be accepted by the main engine. The model is to be validated with measured data. To define load characteristics for a parallel operating visualization, these load characteristics are to be simulated. The results of the modeling were to know PI controller parameters to control the main engine. In the investigation, then simplify the process of modeling results are displayed in the form of a curve. Where in the curve we can see the performance of the engine and brake system so that the operation of the main engine will get maximum condition within safe limits

    Simulink modeling and design of an efficient hardware-constrained FPGA-based PMSM speed controller

    Get PDF
    The aim of this paper is to present a holistic approach to modeling and FPGA implementation of a permanent magnet synchronous motor (PMSM) speed controller. The whole system is modeled in the Matlab Simulink environment. The controller is then translated to discrete time and remodeled using System Generator blocks, directly synthesizable into FPGA hardware. The algorithm is further refined and factorized to take into account hardware constraints, so as to fit into a low cost FPGA, without significantly increasing the execution time. The resulting controller is then integrated together with sensor interfaces and analysis tools and implemented into an FPGA device. Experimental results validate the controller and verify the design

    MATLAB

    Get PDF
    Conventionally, the simulation of power engineering applications can be a challenge for both undergraduate and postgraduate students. For the easy implementation of several kinds of power structure and control structures of power engineering applications, simulators such as MATLAB/(Simulink and coding) are necessary, especially for students, to develop and test various circuits and controllers in all branches of the field of power engineering. This book presents three different applications of MATLAB in the power system domain. The book includes chapters that show how to simulate and work with MATLAB software for MATLAB professional applications of power systems. Moreover, this book presents techniques to simulate power matters easily using the related toolbox existing in MATLAB/Simulink
    corecore