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Abstract

The importance of the subject is given by the fact that harmonics are making their pres-
ence felt in electrical distribution networks, and the cheapest and most widespread solu-
tion for power factor correction is the capacitor banks. This chapter proves that the
harmonic impedance is an efficient tool for assessing the state of distribution networks
containing harmonics. The unfavorable operating conditions are anticipated based on the
network harmonic impedance values, and the means of intervention are selected. Har-
monic impedance monitoring and using it in expert systems for operating condition
optimization will increase in the future. Power factor correction by shunt capacitor
switching in electrical networks containing harmonics can lead to harmonics amplifica-
tions by harmonic voltage increasing and capacitors thermal overstressing by great values
of the currents flowing through them. This chapter proposes a method for practical
determination of harmonic impedance. Based on its values, a quick method is developed
to anticipate the harmonic voltages and current amplifications that can occur when a
shunt capacitor is installed for power factor correction. Amplification factors are calcu-
lated depending on the equivalent harmonic impedance of the network seen in the com-
pensation bus. A distribution network containing harmonics is modeled using MatLab
Simulink, and harmonic impedance is determined by simulation in different operating
conditions. Using the values of the harmonic impedance and the capacitive reactance of
the capacitor bank that is connected for power factor correction, the amplification of the
harmonic voltages and currents is estimated by calculus. The results obtained by calculus
are then compared with the values obtained by simulation after the connection of the
capacitor bank to the network. In conclusion, the chapter proves that the network har-
monic impedance is a useful tool to estimate the harmonics amplification caused by
power factor correction using shunt capacitor banks.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

Harmonics are making their presence felt in electrical distribution networks due to both the

use of nonlinear devices in the consumers’ area and the high development of distributed

generation [1, 2].

The harmonics of the electrical networks have negative effects like increasing active power

losses, resonance over voltages, increasing the potential of the transformers’ neutral point, over

currents in three-phase networks which can lead to difficulties regarding the protection relay

selectivity, and capacitor banks overstressing. The effects of some types of loads like office

equipment, air conditioning units, lighting devices, motor drives, and household equipment

are presented in [3]. This study discusses the influence of capacitor banks on the network

harmonics conditions.

Connecting a capacitor bank to the electrical network leads to the resonance phenomena, which,

superimposed over the harmonic current flow on frequencies close to the resonance frequency,

result in high harmonic voltage values at the capacitor terminals and high harmonic currents

flowing through the capacitor bank. Over voltages lead to insulation overstressing, and high

currents produce a capacitor bank heating that is also reflected in insulation damage [4, 5].

There are many methods for network harmonic impedance determination, which are

presented in many literature works [6–12]. Even the operation of switching the capacitor bank

can be used for harmonic impedance measuring [13], and online determination of the har-

monic impedance is the subject of many works [14, 15]. One problem that is less noticed in

these works is how to determine the phase of the complex harmonic impedance.

This chapter presents a method, which uses the network harmonic impedance like a tool to

anticipate the harmonic condition amplifications in the case of reactive power compensation

by capacitor banks.

In order to reach this objective, Section 2 presents a method to determinate the complex

harmonic impedance. In order to find the phase of the impedance, the series–parallel circuit

transformation is used. A mathematical model to anticipate the harmonic currents and voltage

amplification, based on the harmonic impedance values, when a capacitor bank is connected to

the network, is also described in Section 2. The mathematical model is validated, in Section 3,

by a MatLab Simulink simulation for an electrical distribution network that comprises a bus

with a capacitor bank installed for power factor correction. The results obtained by simulation

are compared with those obtained by calculus from the mathematical model. Section 4 pre-

sents, step by step, how the distribution network is implemented on a Matlab Simulink model.

Section 5 comprises the conclusions of the chapter.
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2. Amplifying harmonic conditions assessment

2.1. Determination of the network harmonic impedance

The simplest method for harmonic impedance measurement supposes the changing of net-

work status. The disturbance can be created by switching a network component in the bus

where the network harmonic impedance must be measured. The main steps of this method are

as follows [16]:

1. Voltage and current waveforms recording before the disturbance.

2. Changes are then made to the status of the network.

3. Voltage and current waveforms recording after the disturbance.

4. Network harmonic impedances determination:

Zk ¼
Uk�pre �Uk�post

Ik�pre � Ik�post

(1)

where Uk�pre and Ik�pre are the pre-disturbance harmonic voltage and current, and Uk�post and

Ik�post are the post-disturbance harmonic voltage and current.

The impedance Zk does not include the switched load.

Because the harmonic impedance determined using the expression (1) is parallel impedance, to

obtain the phase of the impedance, we have to transform the parallel schema into series

schema.

The series harmonic impedance can be determined using the following expression:

ZkS ¼ RS þ j � XkS (2)

The parallel harmonic impedance can be determined using the following expression:

1

Zkp

¼
1

Rp
þ

1

jXkp

(3)

Zkp ¼
1

jXkpþRp

jXkp�Rp

¼

jXkp � Rp

jXkp þ Rp
�

Rp � jXkp

Rp � jXkp

¼ j �
R2
p � Xkp

R2
p þ X2

kp

þ

Rp � X
2
kp

R2
p þ X2

kp

(4)

Knowing that:

Zkp ¼ ZkS ¼ RS þ j � XkS (5)
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Results:

RS ¼

Rp � X
2
kp

R2
p þ X2

kp

XkS ¼

R2
p � Xkp

R2
p þ X2

kp

(6)

We write now these parameters of the series impedance depending on the absolute value of the

harmonic impedance, which can be practically determined using (1).

Z2
kp ¼ Z2

kS ¼ R2
S þ X2

kS ¼

R2
p � X

2
kp

R2
p þ X2

kp

(7)

Using expressions (6) and (7), we can write the series resistance as follows:

RS ¼

Rp � X
2
kp

R2
p þ X2

kp

�
Rp

Rp
¼

Z2
kp

Rp
(8)

The value of the parallel resistance, Rp, from the expression (8) can also be practically deter-

mined; it is actually the value of the harmonic impedance corresponding to the resonance

frequency. Using the expression (7), the value of the series reactance can now be determined:

XkS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2
kS � R2

S

q

(9)

With the values of the series parameters of the harmonic impedance, we can now determine

the phase of the complex harmonic impedance:

φk ¼ arctg
XkS

RS

� �

(10)

2.2. Mathematical model of amplifying the harmonic conditions by reactive power

compensation

Switching shunt equivalent impedance in a network containing harmonics, conduce to more or

less influence on the harmonic conditions, depending on the character and the value of the

impedance.

Switching a shunt capacitor bank in order to improve the power factor in a bus of a distribu-

tion network containing harmonics can conduce to the amplification of the harmonic condi-

tions. This is possible only when the harmonic currents are flowing in the network, with the

frequencies close to the parallel resonance frequency. The resonance frequency occurs between

the capacitance of the capacitor bank and the equivalent inductance of the network.

Figure 1 presents the equivalent schema for the k range harmonic, for the cases before and after

the shunt capacitor impedance switching (ZkCB) in the point of common coupling (PCC).
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The notations used in Figure 1 are:

I
k
is the harmonic current provided by an equivalent fictive current source. It corresponds to all

the k range harmonic current sources existing in the network, and it produces the harmonic

impedance corresponding to PCC, Zknet, and the harmonic voltage drop U
k
.

The harmonic equivalent current source for k range (I
k
) does not change its value after

connecting the capacitor bank (CB) represented by the equivalent reactance, ZkCB.

In order to determinate the mathematical expressions that will be used, the harmonic imped-

ance “seen” in the PCC before the installation of ZkCB is separated in two components:

Zkload is the transversal impedance of the load existing before the disturbance, usually a load

impedance and

Zknet is the equivalent impedance of the rest of the network.

The harmonic voltage of k range in PCC is:

U
k
¼ I

k
� Zk ¼ I

kload
� Zkload (11)

in which: Zk ¼ Zknet Zkload ¼
Z
knet

�Z
kload

Z
knet

þZ
kload

�

�

�
.

Results of the component of the harmonic current distributed through Zkload:

I
kload

¼ dload�I k
(12)

where

dkload ¼
Zk

Zkload

(13)

We can also write:

I
k
¼ I

kload
�
Zkload

Zk

(14)

Figure 1. The equivalent circuit: (a) before the capacitor connection; (b) after the capacitor connection.
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After the shunt capacitor bank connecting, ZkCB, supposing that the harmonic current sources

and the harmonic impedance of the network do not change, we can write:

U
∗

k
¼ I

k
� Z

∗

k
¼ I

∗

kload
� Z

∗

kload
(15)

Consulting expressions for the harmonic impedance corresponding to PCC after the reactive

power compensation (ZkCB switching):

Z
∗

k
¼ Zk ZkCB ¼

Zk � ZkCB

Zk þ ZkCB

�

�

�

�

(16)

The total transversal impedance:

Z
∗

kload
¼ Zkload ZkCB ¼

Zkload � ZkCB

Zkload þ ZkCB

�

�

�

�

(17)

From (15), we have the following result:

I
∗

kload
¼ I

k
�

Z
∗

k

Z
∗

kload

(18)

Using the expression of I
k
for the regimen before the reactive power compensation, ZkCB

(expression (14)):

I
∗

kload
¼ I

kload
�
Zkload

Zk

�
Z
∗

k

Z
∗

kload

(19)

or

I
∗

kload
¼ FIload � Ikload (20)

where the notation FIload represents the load current amplification factor, pursuant to the

reactive power compensation, ZkCB:

FkIload ¼
Zkload

Zk

�
Z
∗

k

Z
∗

kload

(21)

Using expressions (16) and (17) in (21), we obtain:

FkIload ¼
Zkload þ ZkCB

Zk þ ZkCB

(22)

So, knowing the impedances Zk and ZkCB from the initial regimen, and the initial load har-

monic current (I
kload

), we can find the final load current I∗
kload

and also the harmonic voltage in

PCC after the capacitor bank connection ZkCB:
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U
∗

k
¼ I

∗

kload
� Z∗

kload
(23)

The harmonic voltage amplification factor in PCC is calculated by the following expression:

FUk
¼

U
∗

k

U
k

¼
Z
∗

k

Zk

¼

Z
k
�Z

kCB

Z
k
þZ

kCB

Zk

¼
ZkCB

Zk þ ZkCB

(24)

and

FUk
¼

U
∗

k

�

�

�

�

U
k

�

�

�

�

¼
ZkCBj j

Zk þ ZkCBj j
(25)

The total harmonic distortion (THD) of the PCC voltage after connecting to the capacitor bank

must be lower than the highest value:

THDU
∗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

k¼2

U
∗2
k

s

U1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

k¼2

FUk
:Ukð Þ2

s

U1
≤THDUmax (26)

In addition, the voltage in PCC must be lower than the highest value imposed by the capacitor

bank manufacturer, usually 10% over the nominal voltage.

Knowing the voltage bus in PCC and the capacitor bank reactance, we can also check if the

current trough in the capacitor bank is lower than the highest value imposed by the capacitor

bank manufacturer, usually 30% over the nominal current:

ICB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

k¼1

I
2
kCB

s

≤ ICBmax (27)

3. Simulation results, discussions

In order to estimate the changes regarding the harmonic conditions in a bus of a network, due

to the installation of transversal impedance, it means to determinate the new harmonic volt-

ages and harmonic currents, using the initial state of the network.

The validation of the mathematical model was done on a distribution electrical network

comprising three voltage levels: 20, 6, and 0.4 kV, respectively. The configuration of the

network and the main characteristics of its elements are presented in Figure 2.

To simulate the permanent normal operating conditions, the MatLab Simulink soft is used.

The harmonic regimen was obtained using harmonic current sources for the harmonics 5, 7,

and 13, in three of the busses of the network (noted 1, 2, 3)—the load busses. These harmonic

sources model the nonlinear components of the loads.
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For the validation of the mathematical model, bus no. 3 was selected.

The transversal impedance that will be installed has a capacitive character, and it corresponds

to 0.3 MVAr capacitive reactive power on the fundamental frequency. The installation of a CB

for power factor correction or the voltage control is an operation with a high impact for both

the network and the capacitors. If the network contains harmonics, the effect of connecting a

capacitor bank will be harmonic conditions amplification and capacitors thermal overstressing

risk.

The ampleness of both effects can be anticipated using the state values of the network before

the installation like it was proved earlier.

The amounts obtained by MatLab simulation before the installation of the CB are presented in

Table 1. The notation represents the equivalent impedance of the linear component of the load.

By the successively installation of a CB having 0.3 MVAr capacitive reactive power, the values

obtained using the method presented in this chapter, respectively, by MatLab simulation, are

written in Tables 2 and 3.

The simulation was deliberately done for a case with high harmonic conditions—see the values

in Table 1. It results in THDU ¼ 20% for the bus 3, before the reactive power compensation. For

the bus 3, where is connected also a load, for the current absorbed by this, we have

THDI ¼ 19%. We only concentrate on the linear component of the load connected in bus 3.

From Table 3, we observe that after the reactive power compensation, the voltage THD in the

Figure 2. The electrical distribution network used to validate the mathematical model.

k Zk Zk load Uk (V) THDU Ik load (A)

Zkj j (Ω) Phase (deg) Zk loadj j (Ω) Phase (�)

1 1.633 51.06 22.76 18.43 3182 0.2 15.75

5 6.376 62.21 23.946 86.18 430.34 13.92

7 8.542 57.2 23.972 87.27 524.09 14.00

13 13.58 39.74 23.992 88.53 376.01 17.75

Table 1. The values from steady-state operation before the capacitor bank switching.
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bus 3 will increase to 24.11%. This is due to the high distortion of the current that will flow

through the capacitive impedance after its installation.

Comparing now the values obtained by calculus (Table 2) with the values measured in

MatLab (Table 3), we observe a good proximity.

4. MatLab implementation of the proposed model

MatLab Simulink simulation software is frequently used in a large area of engineering fields

like communications, electrical engineering, mechanical engineering, digital image processing,

and others, both for research and education [17, 18].

k FUk
U

∗

k
(V) THDU

∗ FkIload I
∗

kload
(A) THDI

∗

load
I
∗

kCAP
(A)

1 1.01 3215.9 0.241 0.967 135.1 0.457 26.799

5 1.29 430.27 1.76 24.52 17.928

7 1.56 524.06 2.622 36.72 30.5708

13 0.88 376.16 2.43 43.27 40.7543

Table 2. The values calculated after the capacitor bank switching.

k U
∗

k
(V) THDU

∗ I
∗

kload
(A) THDI

∗

load
I
∗

kCAP
(A)

1 3216.0 0.2411 135.18 0.4573 26.8

5 430.31 24.526 17.93

7 524.09 36.728 30.57

13 376.01 43.268 40.73

Table 3. The values obtained by MatLab simulation after the capacitor bankswitching.

Figure 3. The electrical distribution network implemented in MatLab Simulink before the reactive power compensation.

MatLab Simulink Modeling for Network-Harmonic Impedance Assessment: Useful Tool to Estimate Harmonics…
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In this chapter, the proposed mathematical model was validated using Matlab Simulink. The

electrical network presented in Figure 2 was modeled in Simulink, Figure 3, as follows:

The electrical system was modeled using a 110-kV three-phase balanced source having Y

grounded connection.

The electrical overhead lines (OHL) and cables are modeled using three-phase PI section lines.

The line parameters resistor (R), inductor (L), and capacitor (C) are specified as positive- and

zero-sequence parameters that take into account the inductive and capacitive couplings

between the three-phase conductors, as well as the ground parameters. This method of speci-

fying line parameters assumes that the three phases are balanced.

A three-phase two windings transformer model is used for all the transformers of the network.

The connection of the windings is Y grounded for high voltage (110 kV) and D for medium

voltage (20 and 6 kV). The parameters can be written in pu units or SI units. Changing the

Units parameter from pu to SI, or from SI to pu, automatically converts the parameters

displayed in the mask of the block.

The loads are modeled using parallel R L C circuits defined by active and reactive powers.

Only the elements corresponding to non-zero powers are displayed. In this example, the

reactive power of the loads is inductive reactive power.

This model is used for the steady-state operation condition before the capacitor bank

switching.

Figure 4 presents the MATLAB Simulink model of the electrical distribution network with the

capacitor bank for power factor correction connected in bus No.3. The capacitor bank is

modeled as a capacitive load defined by the capacitive reactive power.

A detail of the compensation bus is presented in Figure 5. Here, the harmonic current sources

for the 5th, 7th, and 13th harmonics are presented. These are ideal current sources having the

following parameters: peak amplitude, phase, and frequency. A three-phase measurement

Figure 4. The electrical distribution network implemented in MatLab Simulink after the reactive power compensation.
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Figure 5. Details of the compensation bus.

Figure 6. Harmonic impedance before the compensation.
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block for both voltages and currents are also inserted in the model. The user can choose phase-

to-phase or phase-to-ground measuring. Knowing the harmonic currents and harmonic volt-

ages, the total harmonic distortion (THD) factor both for voltage and current can be calculated.

The harmonic impedance of the network is measured using a dedicated block named “Imped-

ance Measurement” which measures the impedance in a bus of the network as a function of

the frequency (harmonic impedance). The harmonic impedance (magnitude and phase) is

displayed by using the appropriate tool from the Powergui block. The results obtained in the

two cases are presented in Figures 6 and 7.

In order to highlight the influence of the capacitor reactive power amounts on the values of the

harmonic impedance, the following compensation steps are considered: 0.2, 0.3, and 0.4 MVAr.

Corresponding to these steps of the capacitor reactive power, the resonance frequency is much

lower, while the reactive power increases: 404 Hz for 0.4 MVAr, 460 Hz for 0.3 MVAr, and

550 Hz for 0.2 MVAr. The results are presented in Figure 8.

The influence of the load active power is also interesting to study. For a constant reactive

power of compensation (0.3 MVar), the resonance frequency does not change, but the

Figure 7. Harmonic impedance after the compensation.

Figure 8. The influence of the amount of reactive power compensation.
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Figure 9. The influence of the amount of load active power.

Figure 10. Voltages waveforms in bus 3 after the capacitor bank switching.

Figure 11. Currents waveforms in bus 3 after the capacitor bank switching.
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amplification factor is changing. For different values of the load active power (1, 1.5, and

2.5 MW), the harmonic impedance has different values (22.8, 17.32, and 11.7 Ω) and the

resonance frequency has a constant value: 460 Hz. The results are presented in Figure 9.

Changes of the load reactive power do not influence the results of the harmonic impedance.

Scopes are installed for both voltage and current. The results for time-domain simulation for

one cycle (0.02 s), after switching the capacitor bank, are presented in Figure 10 for voltages

and in Figure 11 for currents.

5. Conclusions

The scope of this chapter consists in highlighting the importance of harmonic impedance study

in a bus of an electrical network with harmonics where a capacitor bank will be installed.

Capacitor bank switching leads to an amplification of the harmonic impedance for the fre-

quencies close to the resonance frequency.

The harmonic voltage amplification will lead to high values of voltage to the capacitor termi-

nals and the effect will be an electrical overstressing of the capacitor banks. Harmonic current

amplification will lead to high values of current trough the capacitor bank and the effect will

be a thermic overstressing of the capacitor banks.

A mathematical model for harmonic impedance determination is presented, and, based on its

values, anticipation of harmonic amplification is proved. A numerical example is presented for

a distribution network containing harmonics and capacitor banks for power factor correction.

The validation of the mathematical model was done by MatLab Simulink simulation. The

presented electrical distribution network is modeled using elements from the Library Browser

like: three-phase balanced source for electrical system modeling, PI section lines for overhead

lines and cables, three-phase two windings transformers, and three-phase loads. Harmonic

conditions are simulated using ideal current sources for different frequencies. Three-phase

measurement blocks are used for measuring harmonic voltages and currents, and harmonic

impedance is also measured using a dedicated block.

We observe a good proximity of the results obtained by calculus and by simulation, MatLab

Simulink being a useful tool for research and education in the field of power engineering.
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