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Abstract 

MODELING AND CHARACTERIZATION OF POWER DISTRIBUTION NETWORKS 

WITH INSTALLED DISTRIBUTED GENERATION AND CONNECTED PHEVs 

Santhosh Basineni 

Thesis Chair: Hassan El-Kishky, Ph.D., PE, MBA. 

The University of Texas at Tyler 

December 2012 

 

This thesis is focused on the modeling and characterization of power distribution 

networks with installed distributed generation and connected plug-in hybrid electric 

vehicles (PHEV). A PHEV charging/discharging (bidirectional) model has been 

developed in MATLAB®-Simulink. Installed photovoltaic systems with varying 

irradiance rates are modeled and characterized. Moreover, installed wind generators with 

varying wind speeds are modeled and characterized. Furthermore, the charging and 

discharging characteristics of connected PHEV are determined. The system 

characteristics are determined and investigated against the PHEV battery state of charge 

(SOC).  
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Chapter One 

Introduction 

1.1 Energy Demand and Supply 

 In general, nearly 67% of total electric energy comes from burning fossil fuels 

(coal, oil and natural gas), 13.4% comes from nuclear and the remaining 19.5 % comes 

from renewable energy resources (mainly from wind, solar, hydro) [1]. Generating the 

electrical energy in a remote place and transferring it long distance through transmission 

lines can increase power losses and cost per megawatt generation. Moreover, the use of 

electrical energy is increasing day by day. As a consequence, the generation of electric 

energy should be increased to meet growing demand.  

Increasing generation is not possible all the time, because of the ratings and 

specifications of the generating unit, transmission line capacity, rating of the transformer, 

protection equipment, etc. [2]. High demand and deficiency of the fossil fuels represent 

obstacles against the installation of more generation units. Replacing the existing plant 

with new equipment may have fatal impact on financial standing of power companies. 

Consumer demand can be met by improving the efficiency of the existing power 

system network. High Voltage Direct Current (HVDC) systems can improve the 

transmission line efficiency by up to 6% compared to High Voltage Alternating Current 

(HVAC) transmission system, GAS insulated sub-stations, super conductors (still in 

development stage) and wide area monitoring systems, stability of the power system will 
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increase by using the Flexible AC Transmission System (FACTS) devices (power 

electronic) [2]. 

Other paths to improve efficiency are distributed generation/micro grids, 

underground distribution lines, intelligent grid design, reduction of overall T&D 

(transformer and distribution) transformer MVA, energy storage devices, three phase 

design for distribution, ground wire loss reduction techniques. In addition, higher 

transmission operating voltages, voltage optimization through reactive power 

compensation, asset replacement schedule optimization, distribution loss reduction via 

distribution automation, power factor improvement, load management and power 

electronic transformers play a major role to improve the efficiency [2]. 

Plug-in hybrid electric vehicle (PHEV) is a new technology used to reduce the use of 

petroleum, decrease greenhouse gas emission and increase the fuel efficiency. Its 

potential impact highly depends on the design of energy storage system. Most of the 

current PHEVs and EV battery chargers are high power nonlinear devices. These 

chargers inject a significant amount of current harmonics into the grid. Therefore, it 

impacts the power quality and voltage profile of smart grids [3].  

There are so many different ways to improve the efficiency of the power system. The 

goal of this thesis is the modeling, simulation and characterization of the dispersed 

generation and PHEV (plug-in hybrid electric vehicle), integration of distributed 

generations (DGs) to the utility grid network with PHEV loads. This thesis also 

investigates the power quality of the power system network while connecting PHEV 

loads. 
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 1.2 Organization of Thesis 

This thesis is divided into six chapters; Chapter Two describes the early 

development of distributed generation and PHEVs. Chapter Three describes the 

simulation, modeling and integration of distributed generation to the utility grid. Chapter 

Four describes the modeling and simulation of PHEV battery connection to smart grids. 

Chapter Five presents the DG’s and the12-bus power system network with PHEV loads. 

Chapter Six presents the conclusions and directions for future work. 
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Chapter Two 

Background 

2.1 Distributed Generation 

 Distributed generation is also known as small, modular or dispersed generation 

depending on the power generation and size of the plant. Both the distributed generation 

(DGs) and large power plants are interconnected to the power system. Large power plants 

are connected to the transmission system far from the consumer. Whereas DGs are 

connected to the distribution system near to the load. For that reason, DGs are also called 

as on-site generators. 

2.2 Early Development of Distributed Generation 

 The origin of DGs goes back to the invention of light bulb by Thomas Edison in 

1879. The light bulb was powered by direct current. By the end of 1880s, Direct current 

transmission system was developed. The first commercial power plant was developed in 

1882 [3]. The load voltage dropped because of high resistance DC line directly feed to 

the load at load voltage. Therefore, DC generators are placed at each load to keep the 

load voltage balanced. 

 This DC transmission vanished with the invention of AC transmission by Tesla 

and practical transformer by William Stanley in 1886 [4]. AC became more popular for 

transmitting electric power due to the ability to step up voltage using transformers. 

Transformer will step up the voltage at the generation side and step down the voltage at 
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the receiving side according to the load voltage. Transmission line losses were 

significantly reduced by using the transformer at both supply and load ends.  

The life changing episode of electricity started with the development of power 

electronic devices [5]. Power electronics is one of the best ways to improve efficiency 

and reliability of the system, and control the power flow of the electricity in generation, 

transmission, and distribution. 

 Due to the following advantages distributed generation has become more popular 

[6]. 

 reduced air pollution 

 reduced use of fossil fuels 

  DGs reduce the cost for transmission lines (installed on-site) 

 improved the power quality 

 increased grid reliability 

The use of DGs can improve the power quality of the network in many ways. 

However it also depends on the type of the DG installed. DGs can further improve the 

voltage stability and decrease real and reactive power losses when located near the load. 

DGs have many advantages as well as some drawbacks. One of the main 

drawbacks of the DGs is the initial cost. Most of the alternative energy sources like wind 

generation [7] and PV cells [8]-[10], [17] need advanced technology. Another drawback 

of the DG is poor efficiency. Maximum power point tracking algorithm is used to 

increase the output voltage of the boost converter in the PV inverter [15], [18]. Net 
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metering allows the consumers to sell the excess power to the grid. Over 40 states in the 

U.S have net metering. 

2.3 Plug-in Hybrid Electric Vehicle Technology 

 The first stage of development in electrical vehicles started in 1832 [14]. 

Approximately electric vehicles have been in use from 1832 to 1920 [14]. Lack of 

adequate horse power, demand of long range and availability of petroleum resulted in the 

disappearance of electric vehicles. The second stage of development in electric vehicles 

started in 1966 [14]. In 1966, the U.S congress encouraged the production of the electric 

vehicles to reduce greenhouse gas emission [14].  

 There are two types of plug-in electric vehicles (PEV) that are available in the 

market, Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEV). 

Plug-in hybrid electric vehicle have two power systems. One is an internal combustion 

engine (IC) and the other is the battery energy storage system [14]. Battery electric 

vehicles have only one energy storage system. Both PEVs use the energy supplied from 

the grid. In the long run, vehicles cannot use only the battery power to run the vehicles 

because of the size and capacity limitations of the battery. PHEV is best suited for the 

vehicles because of both battery energy storage system and IC engine [11]-[13]. So, the 

vehicle will run either in electric mode or in the IC engine mode [14]. PHEV is a great 

way to integrate the transportation sector and electric sector [16]. The use of PHEVs is 

expected to significantly increase in the future and hence, large numbers of PHEVs may 

connect to the grid at a time. Some of the vehicles will be charging and some vehicles 

will be discharging at the same time. Better charger will be able to decrease injected 
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harmonics into the grid. The battery should support either charging or discharging 

according to the condition of battery and the power grid. 

 Integration of DGs to the utility grid is one of the advanced technologies to 

improve the power quality and to reduce the greenhouse gas emissions. Generally, most 

of the PHEVs will connect to the power grid at distribution side. Suitable battery charger 

for the PHEVs will decrease the losses into the grid.  DGs and PHEVs together will 

improve the efficiency and reliability of the system as well as reduce the fuel 

consumption rate of both systems [19], [20]. 
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Chapter Three 

Grid Connected Distributed Generations 

3.1 Introduction 

In this chapter a grid connected wind turbine induction generator, centralized 

photovoltaic (PV) cell, Multi string PV technology and 12-bus power system network 

were modeled in Matlab®Simulink. The specifications and ratings of the machines were 

selected according to the standard guidelines to design the distributed generators. All the 

models are tested under different weather and load conditions. 

3.2 Grid Connected Wind Turbine Induction Generators (WTIGs) 

 In most of the cases, distribution systems are unbalanced due to the asymmetrical 

line spacing and unbalanced loads. Therefore, all power network components are 

represented by a three phase system. The test power system network includes three 

squirrel-cage wind turbine induction generators. The stator of each generator is connected 

to a 60Hz three phase distribution network. The output voltage is regulated by controlling 

the pitch angle of the rotor. The pitch angle can control the nominal output voltage if the 

wind speed exceeds 8m/s [7].  

 One line diagram of the test power system network shows a 132KV, 60 Hz sub 

transmission network with short circuit capacity of 2500MVA feeding a 33KV 

distribution system with 132/33KV step down transformer. 
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Figure 3. 1 One line diagram of the distribution system with WTIG 

 

Three WTIG generators rated at 1.5MW, 3MW and 4.5MW, respectively under 

normal operating condition, and capacitive banks of 250KVar, 500KVar, and 1000KVar 

are connected at each generator to compensate the reactive power from WTIG to grid or 

grid to WTIG.  The generators are connected to the distribution network through 

575/33KV step-up transformer [7]. 

3.3 Modeling and Simulation of Test Power System Network 

 A three phase positive sequence grid network with 2.5MVA SSC was developed. 

Loads L1, L2, L3, and L4 are assumed to be constant. The 575/33KV step-down 

transformer and the 132/33KV step-down transformer are modeled by using the 

SimPowerSystems toolbox provided in the Matlab®Simulink. 

3.3.1 Wind Turbine Induction Generator 

  Wind turbine model was developed based on study state power characteristics. 

The output power (Pm) of the wind turbine can be given as follows. 

                                                                (   )
  

 
      
                                            (3.1) 
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Where A is turbine swept area (  ),   is air density (
  

  
) and    is the 

Performance coefficient of the turbine,       is wind speed (m/s)   is tip speed ratio of 

the rotor blade tip speed to wind speed,   is blade pitch angle.  Wind turbine shaft is 

connected to the synchronous generator. Stator of the induction generator is connected to 

the three phase distribution network as shown in the Figure 3.1.  

 

Figure 3.2: Block diagram of wind turbine induction generator 

 

Figure 3.2 shows a schematic diagram of the wind turbine induction generator. 

Squirrel cage type induction generator is used in this study to design the wind turbine 

induction generator. Rotor of induction generator is driven by variable pitch wind turbine 

and stator of induction generator is connected to 3-ɸ grid. Figure 3.3 shows the 

Matlab®Simulink model of the wind turbine induction generator. The data acquisition 

block read will acquire all output signals generated from the wind turbine induction 

generator (WTIG).  
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Figure 3.3: Matlab®Simulink model of wind turbine induction generator 

3.3.2 Matlab®Simulink Model of the Test Power System Network 

 Figure 3.4 shows the Matlab®Simulink diagram of the test power system network 

presented in Figure 3.1. The power system network was modeled in the phasor 

simulation. Grounding transformer should limit the fault current of the network. The data 

acquisition blocks acquire the data from the various buses in the network. Those blocks 

are connected to scope to measure the output waveform at each bus.  
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Figure 3.4 Matlab®Simulink model of the test power system network 

 

Figure 3.5 shows a sub-system of the wind farm shown in the figure 3.4. WTIGs 

are connected to buses 6, 7 and 8 (Figure 3.1) through step up transformers and those 

buses are connected to the buses 3, 4 and 5 through π-section transmission line models. 

Three loads L2, L3 and L4 are shown in the network. Shunt capacitances are provided at 

each bus to provide necessary reactive power compensation to the network. AC positive 
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sequence voltage and current protections are enabled for the WTIG to protect against 

unwanted disturbances.  

 

Figure 3.5 Matlab®Simulink model of the distribution network connected to WTIG 
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3.4 Simulation Results 

 The dynamic behavior of the WTIG, active and reactive power drawn/injected 

into the grid during the wind speed change is analyzed for constant wind speed and linear 

wind speed. 

3.4.1 Constant Wind Speed 

 

Figure 3.6 (a) Active power, (b) Reactive powers, (c) Wind speed, and (d) Pitch angel of the WTIG at 

constant speed 

Figure 3.6 shows the active and reactive power generated by the WTIGs at bus 6, 

7, and 8. A constant wind speed of 8m/s is applied to WTIGSs. The active power and 

reactive power generation of WTIGs are shown in the figure 3.5. WTIG-1 rated power is 

4.5MW at wind speed of 9m/s, generates 2.91MW at constant wind speed of 8m/s. The 

negative reactive power generation indicates that WTIG absorbs 1.291MVAR of reactive 

power at constant wind speed of 8m/s. WTIG-2 rated power is 3.0MW at wind speed of 

0 200 400 600
-2

0

2

4

6

(a)   Time ( sec )

A
c
tiv

e
 P

o
w

e
r 

(p
.u

)

0 200 400 600
0

2

4

6

8

(b)   Time ( sec )

R
e
a
c
tiv

e
 P

o
w

e
r 

(p
.u

)

0 200 400 600
7

7.5

8

8.5

9

(c)   Time ( sec )

W
in

d
 S

p
e
e
d
 (

p
.u

)

0 200 400 600
0

0.2

0.4

0.6

0.8

(d)   Time ( sec )

P
itc

h
 A

n
g
le

 

 
WTIG-1

WTIG-2

WTIG-3



 

15 

 

9m/s, generates 1.94MW, and observes 0.86VARs. WTIG-3 rated power is 1.5MW at 

wind speed of 9m/s, generates 0.98MW, and observes 0.43VARs. The pitch angle is 

controlled in order to limit the output voltage to its nominal value. Total power generated 

from the WTIG at 8m/s is less than the total load of the system. So the remaining power 

is observed from the grid.  

3.4.2 Linear Wind Speed 

 In this case-study linear change of wind speed is applied to the WTIGs. This type 

of wind speed change enables the WTIGs to inject active power into a network ranging 

from a minimum to a maximum value in a manner slow enough not to induce unwanted 

oscillations. 

Figure 3.7 shows the real and reactive power generations of WTIGs for a linear 

change of wind speed 8m/s to 11m/s. At a lower wind speed of 8m/s, the real power 

generation and reactive power consumption of WTIG-1 are 2.91MW and 1.29MVAR, 

respectively. However at a wind speed 11m/s, the real and reactive powers are 4.5MW 

and 2.19MVAR, respectively. Hence if the wind speed increases, the real and reactive 

power increases. The corresponding values for WTIG-2 and WTIG-3 for wind speed 

8m/s to 11m/s are1.94MW, 1.01MVAR and 0.98MW, 0.43MVAR, respectively. 

Moreover, for wind speed 11m/s, the corresponding values are 3MW, 1.46MVAR and 

1.5MW, 0.73MVAR. The pitch angle was varied in order to limit the power to its 

nominal value as shown in Figure 3.7. 
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Figure 3.7 (a) Active power, (b) Reactive powers, (c) Wind speed, and (d) Pitch angel of the WTIG at 

linear change of wind speed 

3.5 Modeling and Simulation of Photovoltaic Generation 

3.5.1 Photovoltaic Cells 

Generally, photovoltaic cells (PV) convert solar energy into electricity. PV cells 

are made of semiconductor materials. The materials used in PV cells are mono-crystalline 

silicon, poly-crystalline silicon and Gallium Arsenide (    ), Cadmium Telluride 

(    ) and copper indium Diselenide (       ). Mono-crystalline silicon is the best 

model using one diode where the poly-crystalline silicon modeled by using two diode 

equivalent circuit. A typical PV cell generates voltage in the range of 0.5V for an input 

irradiance of 1 W/m2 at      [8]. The power producing by a one PV module is not 

sufficient to meet a required commercial or residential load. Several PV cells are 
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integrated and connected together, called PV modules. Parallel modules will increase the 

output current and series modules will increase the output voltage. Practically, several PV 

modules will have to be connected in series and parallel to increase the output power, 

called PV array. First, PV cells are connected in series to produce the output voltage and 

then all the PV modules are connected in parallel to allow the system to produce more 

current. A typical PV cell module is made up of around 36 or 72 cells connected in series.  

3.5.2 Characteristics of PV Cell 

Figure 3.8 shows an equivalent model of a typical PV cell, where,          is the 

PV cell current,     is the equivalent parallel resistance and    is equivalent series 

resistance. The equivalent circuit of an ideal PV cell is represented by a current source in 

parallel with a diode. The output of the current source is directly proportional to the light 

falling on the PV cell [9]. 

IPV, Cell

       Rsh

Rs

+

-

      
       Idiode

 

Figure 3.8 Equivalent circuit of a PV cell 

  

Applying Kirchhoff’s law to the above circuit, under ideal conditions; 

Series and parallel resistance are zero in ideal condition [9]. 
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                                                                                                                               (3.2)                                                                                                    

                                                                       [   (
   

     
)   ]                           (3.3) 

Where, 

        : The current generated by the solar irradiance [A]. 

      : The Shockley diode equation [A]. 

       : The reverse saturation or leakage current of the diode [A]. 

q: Electron charge [1.602 *      C]. 

T: Temperature of the p-n junction diode in Kelvins 

α: The diode ideality constant which lies between 1 and 2 for mono-crystalline silicon. 

Equation 3.3 is for idea conditions. It does not represent the I-V characteristics of 

practical PV array. A practical circuit composed of several PV modules will require the 

addition of series resistance (        ) and parallel resistance (         ). Adding of 

   and    the equation 3.3 becomes [9] 

                                                              [   (
       

    
)   ]  

      

  
                      (3.4) 

 The current generated by the solar module is dependent on the solar irradiance 

and it also depends on the temperature  

                                                         (          )
 

  
                                                  (3.5) 
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Where    is the temperature coefficient of   , G is the irradiance in W/   and    

is irradiance at standard operating condition. 

Diode saturation current can be expressed as 

                                                       
           

   [
          

    
]  

                                                     (3.6) 

‘     ’ is open circuit voltage,       is the short circuit current,             is 

the thermal voltage of the module with    cells connected in series.  

If the cells are composed of    series connections of PV modules, then  

                                                                                                                            (3.7) 

                                                                                                                              (3.8) 

If the cells are composed of    parallel connections of PV modules, then 

                                                                 (
  

  
)                                                       (3.9) 

                                                                 (
  

  
)                                                    (3.10) 

All practical PV cells have higher values of    and lower values of    for giving 

more output power and fill factor [17]. 

Fill factor in PV inverter is defined for “judgment of efficient cell operation” [16]. 

                                                         
    

       
                                                                   (3.11) 
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3.5.3 Efficiency of PV Cell 

The efficiency of a PV cell is defined as the ratio of peak power to input solar 

power. Where,    is the voltage at peak power     is current at peak power,   is solar 

irradiance, and   is the area on which solar irradiance falls. 

                                                            
       

 (
  

  
)  (  )

                                                          (3.12) 

3.5.4 Maximum Power Point Tracking (MPPT) 

 When a PV array is directly connected to a load, the operating point is seldom at 

the MPPT. Generally a power converter is needed to adjust the power flow from PV array 

to load. Different types of algorithms are used to perform the MPPT like perturb and 

observe algorithm and incremental conductance algorithm etc. [15].  

PV array is connected to the grid by an inverter. Whenever the output power of 

the PV array is less than the load, then the grid supplies power to the load. If the PV array 

output power is greater than the load, then it can supply the power to the load and excess 

power will be delivered to the grid.  PV system can be used as stand-alone, installed on 

site, or grid connected system. 

3.5.5 Types of PV Inverters 

There are three important inverter technologies are shown below [10] 

1. single power processing inverter 

2. dual power processing inverter 

3. multi stage inverter 
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Figure 3.9 Types of PV inverters 

 

Figure 3.9 (a) shows a single power processing stage inverter. It handles MPPT, 

voltage amplification, as well as grid current control. Figure 3.9(b) shows a dual power 

processing inverter, where the DC-DC converter handles the MPPT and DC-AC inverter 

handles the grid current control. Voltage amplification is handled in both converters. 

Figure 3.9 (c) shows a multi stage inverter, where each PV string is connected to a 

separate DC-DC converter and the output of both converters connected to DC-AC 

inverter. Grid voltage is controlled by DC-AC inverter and MPPT is controlled by DC-

DC converters. Voltage amplification is handled in all the converters.   
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3.6 Matlab®Simulink Modeling of PV Technology 

3.6.1 PV Array 

 

Figure 3.10 Mathematical model of photovoltaic cell 

 

A Photovoltaic cell module was developed based on equations 3.1 to 3.9. The 

model shows current source in parallel with a diode, series resistance (  ) and parallel 

resistance (  ) represents a single PV cell, Fig. 3.10. 
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Figure 3.11 Circuit diagram of the boost converter 
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Figure 3.11 shows the circuit diagram of the boost converter. The output of PV 

array is connected to a boost converter to boost the voltage from normal unregulated DC 

voltage to a fixed DC voltage. The output voltage of the boost converter can control by 

controlling the duty cycle of the IGBT switch [18]. 

In this model, the incremental conductance algorithm [15] is used to track the 

maximum power output.  The output of the MPPT algorithm was subtracted from initial 

duty cycle, which is given to IGBT gate through PWM generator. The gate drive circuit 

is as shown in the Figure 3.12. 

 

 

Figure 3.12 Gate control circuit of IGBT converter 
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The output of boost converter is fed to a 3-phase, three level voltage source 

inverter by a DC link. The DC link capacitor acts as a buffer between the input DC power 

and output inverter. DC link voltage is kept constant all the time. The DC link voltage 

will subtract from a fixed value, and a PI controller is used to control the DC link voltage. 

Figure 3.13 shows, a 3-Φ three level voltage source inverter. Figure 3.14 shows, a 

gate control circuit of 3- phase bridge inverter. Power factor correction (PFC), DC 

voltage regulator and current regulator are modeled for gate control of the inverter. PWM 

generator is used to control the switching time of the gate control circuit. The output of 

the inverter is connected to the 60Hz utility grid via a 3 phase step up transformer. 

     A B C
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Figure 3.13 3- Φ three level bridge inverter 
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Figure 3.14 Gate control circuit of inverter 

 

PV cell input current varies based on input solar irradiance. The output of PV 

array is connected to a boost converter, where the gate circuit of the boost converter is 

controlled by MPPT (incremental conductance) algorithm. A DC link is placed between 

boost converter and the 3-phase bridge inverter. The gate control circuit of the inverter 

circuit is controlled by a voltage regulator, a current regulator, and a PFC. Finally, the 

output of the inverter is connected to the utility grid via step up transformer. 

Figure 3.15 shows, a Simulink diagram of PV array connected to the utility grid. 

The simulation was developed using the discrete simulation tool provided in the 

Matlab®Simulink toolbox.  All scopes are shown in the scopes and measurements block. 
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Figure 3.15 Simulink diagram of the grid connected PV system 

 

3.6.2 Simulation Results  

 

Figure 3.16 (a) Solar irradiance, (b) PV array output voltage, (c) PV array output power, and (d) PV array 

output current 
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 Figure 3.16 shows, the simulation results of solar irradiance, PV array output 

voltage, output current and power. Initially, output voltage of PV array is zero. Constant 

irradiance of 330 W/m2 is applied to the PV array. The output voltage and current is 

increase from zero to maximum. The output power of PV array is increased with respect 

to the voltage and current. PV array is generating 30KW of power. 

 

Figure 3.17 Measurements of (a) Boost converter duty cycle, (b) Diode current of PV array, and (c) VSC 

voltage 

 

 Figure 3.17 shows the duty cycle of the boost converter, the diode current of PV 

array, and voltage at the voltage source converter. Initially, the duty cycle of the boost 

converter is taken as 0.5. The MPPT algorithm calculated the necessary correction for the 
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duty cycle i.e. 0.48, to get the maximum output from the boost converter. The output 

voltage of VSC is increased at the duty cycle 0.48.  

 

Figure 3.18 (a) Current at the utility grid, (b) Power at the utility grid 

 

 Figure 3.18 shows simulation outputs of the current and power at the utility grid. 

30KW, 20KV power is transferring from PV inverter to the grid. Initially, output power 

of PV array is zero. Voltage Source Converter (VSC) is absorbing power from the grid, 

after few seconds PV array starts generating power with the applied irradiance, and 

transferring power to the utility grid.  Current transients will present in the initial stage of 
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simulation as shown in Figure 3.18 (a).  The harmonics will reduce, when the PV array 

starts generating power at MPPT. 

Voltage Harmonic Distortion 

 

Figure 3.19 Voltage harmonic distortions at the utility grid 

 

Current Harmonic Distortion 

 

Figure 3.20 Current harmonic distortions at the utility grid 

 Figures 3.19, and 3.20 show the voltage harmonic distortion and the current 

harmonic distortion at the utility grid. PV array injected 0.04% of voltage harmonic 

distortion and 5.79% of current harmonic distortions into the utility grid. 
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3.7 Simulation of PV Array with Multi Stage Inverter 

 The block diagram of multi stage inverter PV technology is shown in Figure 3.21. 

The outputs of two PV arrays are connected to separate DC-DC converters, and the 

converters are connected in parallel. The Perturbs & observes technique is used to control 

the gate circuit of boost converters. The output of DC-DC converter is connected to an 

inverter by a DC link.  

 

Figure 3.21 Multi stage PV technologies 

 

3.7.1 Matlab®Simulink Modeling of Multi Stage PV Technology 

Figure 3.29 shows the Matlab®Simulink model of a Multi stage PV inverter. 

Measurements and scopes sub-system shows, scope of PV converter, inverter, grid 

voltages and currents. The simulation was developed by using the discrete simulation tool 

provided in the Simulink. Capacitor banks are used to control the reactive power flow 

and voltage stability at the utility grid. 
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Figure 3.22 Matlab®Simulink model of the multi stage PV inverter 
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3.7.2 Simulation Results 

 

 

Figure 3.23 Measurements at PV1 and PV2 (a) Solar irradiance, (b) Output voltage, (c) Current, and (d) 

Output power 

 

Figure 3.23 shows, the simulation results of solar irradiance, PV1 and PV2 output 

voltage, output current and power. Initially, output voltage of PV1 and PV2 is zero. 

Constant irradiance of 173.3 and 173.4 W/m2 is applied to the two PV arrays. The output 

voltage and current is increase from zero to maximum. The output power of PV1 and 

PV2 is increased with respect to the voltage and current. PV1 is generating power of 

15KW at 260V and PV2 is generating power of 15KW at 195V. 
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Figure 3.24 Measurements of (a) Diode current of PV array, (b) Boost converter duty cycle, and (c) VSC 

voltage 

Figure 3.24 shows the duty cycle of the boost converters, the diode current of PV 

array, and voltage at the voltage source converter. Initially, the duty cycle of the boost 

converters are taken as 0.5 and 0.6. The MPPT algorithm calculated the necessary 

correction for the duty cycle i.e. 0.51 and 0.52, to get the maximum output from the boost 

converter. The output voltage of VSC is increased at after correcting the duty cycle of the 

boost converter. 

Figure 3.25 shows the current, and power at the utility grid. 30KW at 260V is 

transferring from PV inverter to the utility grid. Initially, output power of PV1 and PV2 is 

zero. Transients will present in the initial stage of simulation as shown in Figure 3.25 (a).  

The harmonics will reduce, when the PV array starts generating power at MPPT. 
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Figure 3.25 (a) Current at the utility grid, and (b) Power at the utility grid 

 

The voltage harmonic distortion at the utility grid is as shown in Figure 3.26. PV1 

and PV2 are injecting 3.02% of total voltage harmonics into the grid. Figure 3.27 shows 

the current harmonic distortion at the utility grid, 4.37% of current harmonic distortions 

are injected by the PV1 and PV2. 

 

Figure 3.26 Voltage harmonic distortions at the utility grid 

 

20 40 60 80 100 120 140
-10

0

10

20

30

(a)   Time ( sec )

C
ur

re
nt

 (
 A

 )

0 50 100 150
-50

0

50

100

(b)   Time ( sec )

P
ow

er
 (

 K
W

 )



 

35 

 

 

Figure 3.27 Current harmonic distortions at the utility grid 

3.8 12-Power System Network 

A one line diagram of 12-bus power system network is as shown in Figure 3.28 

[20]. It consists of three distribution generators at bus 5, 6, 9, and loads at bus 2, 5, 6 and 

9. PV inverters are connected to the utility grid via step down transformer. Three PV 

inverters supply power to the loads. If the power of three PV generators is less than the 

total load, then utility grid will supply power to the load. Three PV generators supply 

power back to the grid when total generation is greater than the load demand.  

Load changing and power electronics switches inject harmonics into grid, 

affecting the power quality. Throughout the simulation, loads are assumed to be constant, 

input solar irradiation is assumed constant, and initially the system voltage is stable. 

Distribution line parameters and load details are shown in table 3.1 and 3.2. 

             Table 3.1 Distribution line details                 Table 3.2 Load details 

 

 

 

 

line Distance Voltage Power Ra-

in (Km)  (kv) ting (KVA)

B1-B2 20 120 250

B2-B4 10 25 100

B2-B4 10 25 100

B2-B12 15 25 100

B4-B6 10 25 100

B3-B5 10 25 100

B9-B10 10 25 100

B10-B11 25 25 100

B11-B12 25 25 100

Bus no. RloadKW Q (KVAR)

Bus 2 200 30 L load

Bus 5 10 10 C load

Bus 6 10 10 C load

Bus 7 4.00E+01 20 L load

Bus 8 40 20 L load

Bus 9 10 10 C load
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Figure 3.28 One line diagram of 12-bus power system network 
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3.8.1 Matlab®Simulink Model of the 12-bus IEEE Test Power System Network 

 

Figure 3.29 Matlab®Simulink model of 12-bus power system network 

 

Figure 3.29 shows, Matlab®Simulink model of the12-bus test power system 

network. The simulation was performed by using discrete simulation tool. T-section lines 

are considered to model distribution network. Measurements and scopes sub-system 

shows all scopes generates in the simulation. Simulation results are shown in section 

3.8.2. 
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3.8.2 Simulation Results 

 

Figure 3.30 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 1, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 1 

 

Figure 3.31 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 2, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 2 
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Figure 3.32 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 3, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 3 

 

Figure 3.33 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 4, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 4 
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Figure 3.34 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 5, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 5 

 

Figure 3.35 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 6, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 6 
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Figure 3.36 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 7, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 7 

 

Figure 3.37 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 8, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 8 
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Figure 3.38 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 9, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 9 

 

Figure 3.39 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 10, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 10 
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Figure 3.40 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 11, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 11 

 

Figure 3.41 (a) 11
th

 and 13
th

 order voltage harmonic distortions at bus 12, and (b) 11
th

 and 13
th

 order current 

harmonic distortions at bus 12 
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Figure 3.42 Voltage harmonic distortions at the grid 

 

 

Figure 3.43 Current harmonic distortions at the grid  

 

 The grid is observing power of 260KW from the distribution network. The grid 

can supply any amount of power, if the distribution system needed. If the power 

generated by the DGs greater than the connected loads, then it can supply power back to 

the grid. Bus 2 is transferring power of 10KW from distribution system to the grid. PV 

generators are connected to bus 5, 6 and 9. Each PV invertor is generating power of 

100KW. Bus 3, 4 and 10 are transferring power from the PV inverter to the distribution 

network. Bus 7 is observing power of 30KW and bus 8 is observing power of 90 KW. 

Bus 11 and 12 are transferring power of 10KW from distribution system to the grid. 

Voltage and current harmonic distortions for 12-buses are shown in the Figure 

3.30 to 3.41. Initially the system is in transient state; high voltage and current harmonic 
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distortions are presented at the generator buses. Capacitive bank are connected at the 

generator buses to improve the voltage stability and provide reactive power support to 

distribution system. High voltage harmonic distortions are presented at the load buses 2, 

7 and 8. After few seconds, the system comes into stable state. 

 Figure 3.42 and Figure 3.43 shows total voltage and current harmonic distortion at 

the utility grid. Simulation results shows, voltage harmonic distortion at the grid is 1.42% 

and current harmonic distortion at the grid is 4.69%. Maximum 5% of harmonics are 

allowed to connect distributed generation to the grid. When the grid is off, distributed 

generation will supply power to the load. So, the system reliability will improve. 
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Chapter Four 

Electric Vehicle Battery Charger for Smart Grids 

4.1 Introduction 

 Most of the U.S oil products are imported from other countries. Nearly, 93% of 

petroleum, 3% of natural gas and 4% of renewable energy was used in the transportation 

system in 2011. The domestic production of petroleum continuously decreases while the 

use steadily increases. Using alternative fuels such as renewable energy resources can 

greatly reduce the use of petroleum. 

Hybrid electric vehicle (HEV) technology is a great way to improve the fuel 

economy. HEV’s use battery based energy storage system to store the energy generated 

during regenerative breaking. A typical HEV can reduce gas consumption by 30% 

compared to conventional vehicles [11]. Plug-in hybrid electric vehicle (PHEV) is a 

hybrid electric vehicle with the ability to charge the energy storage system from the 

utility grid. The main advantage of the PHEV is that the vehicle will no longer depend on 

only one fuel. PHEV is an advanced technology which will integrate the energy and 

transportation system together to improve the efficiency, reduce fuel usage and improve 

the system reliability [16]. The usage of PHEV is expected to increase; the success of 

PHEV however will depend on both grid and the charging equipment. 

The charging equipment plays a significant role in the PHEV technology. Energy 

Storage System (ESS) must charge or discharge without affecting the power quality of 

the utility grid. Another important issue is the time required to charge the battery where it 
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depends on the amount of energy stored in the ESS. A lithium-ion battery pack provides 

good operating characteristics under various operating conditions and the charger should 

provide or receive balanced, constant and fast power flow to or from the grid [13]. This in 

turn contributes to improve the voltage stability of the system. 

 In this chapter, a 3-phase bi-directional battery charger is developed for PHEV 

connected to the grid. A control strategy is developed and applied to a simple system 

configuration to verify whether it allows bi-directional power flow from/to the grid. The 

power should flow from Grid to Vehicle (G2V) when the battery is charging and from the 

Vehicle to Grid (V2G) when it is discharging. Throughout the operation, the voltage 

stability and the power quality should be maintained. ESS can act as an energy storage 

system to the grid. It will charge in the off-peak times and deliver power to the grid in the 

peak times (if needed!). 

4.2 Battery Models 

 

Figure 4.1 Lithium-ion battery model 
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 A lithium-ion battery is considered to model the ESS for a PHEV. Lithium-ion 

battery has low self-discharge characteristics, highly reliable and requires low 

maintenance [12]. The circuit diagram of the lithium-ion battery is as shown in the Figure 

4.1. 

4.2.1 Matlab®Simulink Model of the Lithium-ion Battery 

 Figure 4.2 shows the Simulink model of a lithium-ion battery.  

 

Figure 4.2 Matlab®Simulink model of the lithium-ion battery 

 

Some assumptions were made to develop an accurate battery model. The internal 

resistance (R) of the battery is assumed constant during charging and discharging and it 

doesn’t vary with the amplitude of the current. The parameters calculated from the 

discharge curve are assumed constant during charging mode. Capacity of the battery does 

not change with the amplitude of the current [11]. 
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The minimum voltage of the battery is 0V and maximum voltage of the battery is 

2*E0 (nominal battery voltage). The minimum capacity of the battery is 0Ah and 

maximum current of the battery is      [11]. 

 Experimental validation of the battery model shows a peak error of 5% (when 

State Of Charge (SOC)) in between 10% to 100%) for charge and discharge dynamics 

[11]. 

4.3 Bi-directional Battery Charger 

The bi-directional battery charger used in this study is developed as shown in the 

figure 4.1 [13]. 

 

Figure 4.3 Bidirectional battery chargers 

 

Figure 4.3 shows a bi-directional battery charger for plug-in hybrid electric 

vehicles. The battery draws power from the grid during off-peak times and delivers 
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power to the grid during the peak times. A DC link is placed between the DC-DC 

converter and inverter. 

The DC-DC converter converts the battery output voltage to a suitable input 

voltage for the inverter, i.e. the DC link voltage is fixed at one particular value that’s 

independent of the battery output voltage. The inverter converts constant DC values to 

suitable AC values to inject the sinusoidal currents and voltage into the grid with in the 

vehicle to grid operation (V2G) mode. The inverter in a reverse mode converts sinusoidal 

AC values to DC values, and then DC-DC converter converts fixed unregulated DC 

output of the inverter to regulated DC to charge the battery in grid vehicle operation 

(G2V) mode [13]. 

There are two modes developed according to charging and discharging of the 

battery. 

1. Charging: the power will flow from grid to the vehicle (G2V). 

2. Discharging: the power will flow from vehicle to grid (V2G). 

A bi-directional DC-DC converter is as shown in the Figure 4.4. Charging and 

discharging of the ESS can be determined based on the direction of the current. The 

battery will discharge when it’s current is positive (    >0) and it will charge when 

current is negative (    <0). 
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Figure 4.4 Bi-directional DC-DC converter 

4.4 Control Strategy 

The control strategy used in this study is explained below 

 The instantaneous output power P (t) is 

                                       ( )                                                           (4.1) 

Where    ,     and     are the output sinusoidal voltage and    ,     and     are 

the instantaneous sinusoidal currents [13] 

                                               
        

    
      

      
 [

    
    
    

]                                       (4.2)                          

Where          is the reference current for the control strategy and     
 ,     

  and 

    
  are the positive sequence fundamental voltages,        ,      are the battery 

voltage and current. 

The duty cycle of the DC-DC converter is calculated from Figure 4.4. 
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               (4.3) 

Solving the equation in the DC-DC converter, the duty cycle of the converter can 

be given by; 

                                          [            
               

  
    ]  

 

   
         (4.4) 

4.5 Matlab®Simulink Modeling of Bi-directional Converter 

 

 

Figure 4.5 Matlab®Simulink model of PHEV charger 

 

Figure 4.5 shows, a Simulink model of PHEV battery charger for grid connected 

electric vehicles. A battery is connected to the grid through bi-directional converter and 

inverter topology. Measurements and instrumentations are shown in the bottom portion of 

Figure 4.5. 
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The control strategies developed for the bi-directional converter, inverter circuit is 

as shown in the Figure 4.6 and Figure 4.7. 

 

Figure 4.6 Inverter control circuit 
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Figure 4.7 Bi-directional converter control circuit 

 

Current controller, voltage controller, and PFC techniques are applied in this 

study to reduce the voltage and current harmonic distortions in the grid. 

4.6 Simulation Results 

The simulation results show the charging and discharging characteristics of the 

simulated PHEVs connected to the grid. 

 

Figure 4.8 Battery voltage in discharge mode 
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Figure 4.9 Battery current in discharge mode 

 

Figure 4.10 Voltage at the utility grid 
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Figure 4.11 Current at the utility grid 

 

 

Figure 4.12 Voltage harmonic distortion 
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Figure 4.13 Current harmonic distortion 

 

Battery discharge mode voltage and current is shown in Figure 4.8 and Figure 4.9. 

The battery is discharging power into the grid at current 5.8Amps with the voltage of 

259.5Volts. Voltage and current at the grid is as shown in the Figure 4.10 and 4.11. 

Voltage and current are in phase in the grid to vehicle operation mode. In the vehicle to 

grid operation, the battery is injecting high voltage and current harmonics into the grid as 

shown in the Figure 4.12 and 4.13. 
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Figure 4.14 Battery voltage in charge mode 

 

Figure 4.15 Battery current in charge mode 
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Figure 4.16 Voltage at the utility grid 

 

Figure 4.17 Current at the utility grid 
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Figure 4.18 Voltage harmonic distortion 

 

 

Figure 4.19 Current harmonic distortion 

 

Battery charge mode voltage and current is shown in Figure 4.14 and 4.15. The 

battery is charging from the grid at current -2.3Amps with the voltage of 260Volts. 

Voltage and current at the grid is as shown in the Figure 4.16 and 4.17. Grid voltage and 

current are out of phase in charging operation mode. In the grid to vehicle mode, voltage 

and current harmonics injected by the battery is as shown in Figure 4.18 and 4.19. The 

battery is injecting 26.62% of voltage harmonics and 8.14% of current harmonics into the 

grid. 
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Chapter Five  

Grid Connected Distributed Generation with PHEV Loads 

5.1 Introduction 

 This chapter discusses power quality and voltage stability of the utility grid with 

multiple PHEV connected loads. Two test power system network models were simulated 

and presented in this chapter. The first model is a photovoltaic array supply power to the 

grid with a single PHEV load connected at the bus. The second model is a 12-bus test 

power system network with three DGs and PHEV loads connected to the utility grid.  

Both models are developed and simulated in the Matlab®Simulink environment as 

shown in sections 5.2, 5.3 and 5.4.  

 If the generating power of the DG is greater than the load of the system, then the 

PHEV can act as an energy storage system. If the generation of the PV is greater than the 

consumer load demand, then the consumer can sell power to the grid. Due to the non-

linear behavior of the power electronic switches, when a large number of PHEV’s are 

connected to the utility grid, a significant increase in harmonics in the system is 

measured. The battery charger model plays a vital role in the integration of grid and 

transport system. The general model for a PHEV battery charger given in chapter four is 

considered here to test the multiple PHEVs at various conditions. 
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5.2 Power Quality of Power System 

 Large power generation units will injects pure sinusoidal waveforms into the grid. 

Distribution networks are fed to the power system through transmission lines. Reactive 

power imbalance, voltage fluctuations, voltage transients, power electronic converters 

and harmonics will disturb the power quality of power system. Voltage transients and 

harmonic distortions are discussed in this thesis to find the power quality of power 

system. Distributed generation and PHEVs are connected to distribution network.  

 Distributed wind generation and PV inverter was designed to provide active 

power support to the grid. Reactive power support was provided at the distribution 

generation. PHEV loads are connected at various buses to observe the power flow from 

grid to vehicle and vehicle to grid. Power quality evaluation of distribution system with 

installed distribution generation and PHEV loads was observed under two different 

conditions. First, it is observed under normal operating (steady state) condition. Second, 

it is observed under transient condition. 

5.2.1 Steady-state Voltage Problems 

 The steady-state voltage problems involve over voltage or under voltage 

problems. Typically, the nominal voltage is 10% above or below rated voltage under this 

condition. Distributed generation is connected to the grid via a common bus. For proper 

operation, the voltage and frequency should keep constant at the nominal value. Reactive 

power support provided for distributed wind generation to control the voltage to its 

nominal value. 
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5.2.2 Transients in Power System 

 Transients can be defined as disturbance in the AC waveform evidenced by a 

sharp discontinuity in the output waveform. This may be additive or subtracted from the 

nominal waveform. Transients are short duration events, and it occurs when there is a 

sudden change in the voltage or current in a power system network. 

5.2.3 Harmonic Distortion 

 Harmonic distortion is the change in the supply wave form when compared with 

the fundamental waveform. Voltage harmonic distortions and current harmonic 

distortions will affect the power quality. Power electronic converts are the main reason 

for harmonics when subjected to distributed generation and PHEVs. 

5.3 Grid Connected Wind Turbine Induction Generator with PHEV load 

Grid connected wind turbine induction generator with PHEV loads was modeled 

to investigate voltage transients and harmonics injected by both wind turbine induction 

generator and PHEVs into the grid. Here the battery state of charge is considered for 

charging and discharging operation. If the battery state of charge is greater than 95%, 

then it deliver power to the grid, else it can absorb power from the grid. 

Initially, the battery state of charge was considered as 90%, so the grid is 

supplying power to the Battery Energy Storage System (BESS). One line diagram of test 

power system network was shown in Figure 3.1 (Chapter 3). PHEV loads are connected 

at bus 4 and 5. Simulink diagram of grid connected WTIG with PHEV loads is as shown 

in Figure 5.1. 
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Figure 5.1 Matlab®Simulink model of grid connected WTIG with PHEV loads 

 

Figure 5.2 Transient voltage at WTIG-1 
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Figure 5.3 Transient voltage at WTIG-2 

 

Figure 5.4 Transient voltage at WTIG-3 
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Figure 5.5 Transient voltage at load bus 1 

 

Figure 5.6 Transient voltage at load bus 2 
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Figure 5.7 Transient voltage at load bus 3 

 

Figure 5.8 Transient voltage at the grid 
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 Initial voltage transients at wind turbine induction generator, PHEV loads 

and grid is as shown in Figure 5.2 to 5.8. Initial operating characteristics and switching of 

reactive power compensator are the main reason for Voltage transients at the WTIG for 

first few seconds. Voltage at load bus1 shows the bus voltage without PHEV load, the 

voltage sags are because of high current will flow through the network in the starting 

stage. Load bus voltage at bus2 and bus3 shows the bus voltage with PHEV load. DC 

component and switching of high frequency power electronic converters are main reason 

for the voltage transients at the load buses. Resulting, voltage transients at the grid is as 

shown. 

 

Figure 5.9 Voltage at the WTIG-1 
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Figure 5.10 Voltage at the WTIG-2 

 

 

Figure 5.11 Voltage at the WTIG-3 
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Figure 5.12 Load bus 1 voltage 

 

Figure 5.13 Load bus 2 voltage 
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Figure 5.14 Load bus 3 voltage 

 

Figure 5.15 Voltage at the utility grid 

 

0 2000 4000 6000 8000 10000 12000
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time ( sec )

V
ol

ta
ge

 (
 p

.u
 )

0 2000 4000 6000 8000 10000 12000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time ( sec )

V
ol

ta
ge

 ( 
p.

u 
)



 

72 

 

 After a few seconds of starting operation, the system will come into stable 

operating condition. The steady state voltages at various buses are shown in Figure 5.9 to 

5.15. High voltage harmonics are presented at PHEV buses because of 8KHZ power 

electronic converters are connected to the system for charging and discharging operation 

of PHEV. 

WTIGs and PHEVs are injecting significant amount of voltage and current 

harmonics into the grid. These harmonics will disturb the power quality. Totally, both are 

injecting 81.11% of voltage harmonics and 69.61% of current harmonics into the power 

system (Figure 5.18 and 5.19). The distribution system is injecting voltage harmonic 

distortion of 4.29% and current harmonic distortion of 5.29% into the grid. The 

respective plots for voltage and current harmonic distortion are shown in Figure 5.16 to 

5.17. 

 

Figure 5.16 Voltage harmonic distortion at the grid 
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Figure 5.17 Current harmonic distortion at the grid 

 

 

Figure 5.18 Voltage harmonic distortion injected by WTIG and PHEV  

 

 

Figure 5.19 Current harmonic distortion injected by WTIG and PHEV 
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5.4 Grid Connected PV Inverter with PHEV load 

 A 100KW distributed generation and a PHEV load is connected to the utility grid. 

The output of the PV cell will vary with respect to the solar irradiance. Based on the 

output characteristics of PV and state of PHEV five cases are studied here [19].  

Case study 1: Generally during the night times, early morning times and during inclement 

weather or abnormal conditions the output power of PV is zero, and then the grid will 

supply power to the load. 

                                                  =0                                                                       (5.1) 

Case study 2: If     is greater than zero and less than the minimum value and SOC of 

the PHEV is greater than the threshold value then the PV and PHEV will supply power to 

the load. 

                                                                                                     (5.2) 

                                                                                                               (5.3) 

Case study 3: If the     is greater than zero and less than the minimum value and if the 

SOC of the PHEV is less than the threshold value then the PV and grid will supply power 

to the PHEV connected load. 

                                                                                                     (5.4) 

                                                                                                               (5.5) 

Case study 4: The PV power varies from minimum to maximum during day time so the 

PV can supply power to the connected load. 
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                                                                                 (5.6) 

Case study 5: If the power of the PV is greater than the maximum value, then PV will 

supply power to the load. 

                                                                                                               (5.7) 

The above five conditions are shown in table 5.1 

Table 5.1 Case study 

Case Condition State of PV State of PHEV State of Grid 

1       OFF OFF ON 

2           

             

      

ON ON OFF 

3           

             

      

ON OFF ON 

4           

        

ON OFF OFF 

5            ON OFF OFF 

5.5 Matlab®Simulink Model of Grid Connected PHEV 

 A 45Ah, 240V nominal voltage battery is considered to model the PHEV battery. 

The control circuit for bi-directional converter was modeled in chapter 4. The input 

irradiance of PV will vary from 0      to 1000    . The control circuit for 

photovoltaic system was modeled in chapter 3. Figure 5.20 shows the Matlab®Simulink 

models of the DG connected to the utility grid with PHEV load. 
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Figure 5.20 Matlab®Simulink modeling of grid connected PV with PHEV load 

 

5.6 Simulation Results  

Case study 1: Grid supplying power to the load. 

In this case PV and PHEV are not injecting any harmonics into the grid 

Case study 2: PV and PHEV supplying power to load. 
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 PV array output power is not enough to supply the load, so both PV and PHEV 

are supplying power to the load. 

 

Figure 5.21 Voltage at the boost converter 

 

 

Figure 5.22 Voltage at the VSC 
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Figure 5.23 Voltage harmonic distortion 

 

 

Figure 5.24 Current harmonic distortion at the utility grid 
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Case study 3: PV and grid supplying power to load. 

 

Figure 5.25 Voltage at VSC 

 

Case study 4 and 5: PV supplying power to load 

 

Figure 5.26 Voltage at VSC 
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The boost converter, voltage source converter, grid and load voltages for different 

case studies are plotted in Figure 5.21 to 5.26.  Voltage and current harmonic distortion 

for PV inverter connected PHEV with residential load is shown in Figure 5.23 and 5.24.  

PHEV act as energy storage system. When the grid is off, PHEV can supply the power to 

the residential load. The harmonic analysis shows that PV and PHEV were injected 0.48 

% voltage harmonics and 26.82 % of current harmonics into the grid.  

 By considering this section, a 12-bus power system network model was developed 

with PV inverters and PHEV loads to study and analyze the harmonics injected by PV 

inverters and PHEVs into the grid. 

5.7 12-bus Power System Network with PHEV load 

 The 12-bus power system network with distributed generations and PHEV loads 

is shown in Figure 5.27. Three distributed generators are connected to the utility grid at 

bus5, 6 and 9. The input solar irradiance of the PV is considered as constant. Multiple 

industrial and domestic loads are connected to the utility grid as shown in the Figure 

5.21. In total, 15 PHEV loads are connected at bus2, 5 PHEVs are connected at bus3, 

bus4, and bus10.10 PHEVs are connected at bus 7 and bus 11. 

5.8 Matlab®Simulink Modeling 

 The Matlab Simulink model (Figure 5.21) shows 50 PHEVs connected to the 12-

bus power system network at various busses. Positive sequence voltages are considered 

throughout the simulation. 
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Figure 5.27 Three DGs connected to 12-bus power system network with 50 PHEVs 
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5.9 Simulation Results 

 

 

Figure 5.28 Voltage at the PV generator bus  

 

 

Figure 5.29 Current at the PV generator bus 
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Figure 5.30 Voltage at the PV generator 1 bus 

 

 

Figure 5.31 Current at the PV generator 1 bus 
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Figure 5.32 Voltage at the PV generator 2 bus 

 

 

Figure 5.33 Current at the PV generator 2 bus 
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Figure 5.34 Voltage at the bus 7 

 

  

Figure 5.35 Current at the bus 7 
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Figure 5.36 Voltage at the bus 8 

 

 

Figure 5.37 Current at the bus 8 
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Figure 5.38 Voltage at the bus 11 

 

 

Figure 5.39 Current at the bus 11 
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Figure 5.40 Current at the bus 12 

 

 

Figure 5.41 Current at the utility grid 
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Figure 5.42 Voltage harmonic distortion at the grid 

 

 

Figure 5.43 Current harmonic distortion at the grid 
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Voltage and current transients at various buses are shown in Figure 5.28 to 5.41.  Impulse 

response and voltage sags can observe in voltage and current wave forms from the 

Figures. As discusses earlier, multiple PHEVs are connected at various buses, some of 

the batteries are charging and other discharging randomly based on the direction of the 

current and initial state of charge. Because of non-linear behavior of power electronic 

switches, turn on, turn off of IGBT switches and sudden load variations will affect the 

power quality of the distribution system. A high switching frequency (8Kz) inverter 

circuits are used in this study to develop inverter circuit for PHEV. Initially, High voltage 

and high current harmonics will present at the PHEV buses and high voltage harmonics 

will present at the other load buses. During sudden load variations, power quality and 

voltage stability will disturb at the generator and load busses.  

 Voltage and Current harmonic distortion at the utility grid is shown in 

Figure 5.42 and 5.43. PHEVs and PV inverters are injected 48.81 % of voltage and 18.97 

% of current harmonic distortions into the utility grid. The voltage stability will increase 

by using the FACTS devices. Installation of suitable FACTS devices will improve the 

voltage stability, compensate the reactive power and reduce total harmonic distortion 

injected by the PHEVs into the grid. 

5.10 Grid Connected PHEV load with Distributed Wind and PV Generation 

  An IEEE 12-bus power system model was considered from Chapter 3. PV 

generation is connected to bus 6 and bus 9. Wind generation is connected to bus 5. Load 

values are considered from table 3.1 and 3.2. In addition, PHEV loads are connected at 

bus 2, 3, 4, 7, and 11. Matlab simulation was performed to investigate the voltage 

transients and harmonics injected by the WTIG, PV, and PHEVs into the grid. 
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Figure 5.44 Grid connected distributed generations with PHEV loads 

5.11 Simulation Results 

 

Figure 5.45 Voltage at the PV generator bus 
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Figure 5.46 Current at the PV generator bus 

 

 

Figure 5.47 Voltage at the WTIG bus 
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Figure 5.48 Current at the WTIG bus 

 

 

Figure 5.49 Voltage at the PV generator 1 bus 
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Figure 5.50 Current at the PV generator 1 bus 

 

Figure 5.51 Voltage at the bus 4 
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Figure 5.52 Current at the bus 4 

 

Figure 5.53 Voltage at the PV generator bus 3 
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Figure 5.54 Current at the PV generator bus 3 

 

 

Figure 5.55 Voltage at the PV generator bus 10 
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Figure 5.56 Current at the bus 10 

 

 

Figure 5.57 Voltage at the PV generator bus 7 
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Figure 5.58 Current at the bus 7 

 

 

Figure 5.59 Voltage at the PV generator bus 11 
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Figure 5.60 Current at the bus 11 

 

Figure 5.61 Voltage harmonic distortion at the grid 

 

Figure 5.62 Current harmonic distortion at the grid 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time (Sec.)

C
u
rr

e
n
t 

(A
m

p
s
)



 

100 

 

 Each PV generator is generating power of 100KW and WTIG is generating power 

of 1.5MW at 0.9pf. The respective voltages and currents at the load buses and generator 

buses are shown in Figure 5.45 to 5.59. PHEV is injecting high current harmonics into 

the grid. Initially, PV array injected high current harmonics into the grid and WTIG 

injected high voltage harmonics into the grid. Capacitive banks are provided at the WTIG 

and PV inverter to maintain the voltage in a limit for stable operation. After few seconds 

of operation, the system came into the stable state. The total harmonics injected by the 

wind, PV inverter and PHEV into the grid is 23.95% and 5.50%. 
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Chapter Six 

Conclusions and Future Work 

6.1 Conclusions 

 Integration of large share of renewable generation into the transmission grid will 

increase the generation cost. Power quality can be poor because of uncertain weather 

conditions. Therefore, integration of distributed generation to the utility grid will 

decrease cost, and greenhouse gas emissions. In addition, power quality will increase 

because DGs can also work as stand-alone systems. 

 This thesis described modeling, simulation of stand-alone DG system and grid 

connected DG system. Simulation results show, that there is significant improvement in 

the power quality while connecting wind generation and photovoltaic generation to the 

utility grid. 

 Bi-directional DC-DC converter was modeled to allow bi-directional power flow 

from/to the grid. Three level voltage source converters were modeled for PV generation 

and bi-directional battery charger. Power quality of power system was investigated while 

connecting PHEV to the utility grid. Chapter five investigated and characterized the 

power quality of power system while connecting WTIG with PHEV loads, PV with 

PHEV load, 50 PHEV loads and 3 distributed generations connected to the distribution 

system and WTIG, PV and PHEVs connected to the IEEE 12-bus power system network. 
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6.2 Future Work 

 The extension of this thesis could be modeling and integration of other distributed 

generation sources for the utility grid. The study and analysis of single phase and three 

phase topologies for bi-directional converter to reduce the total harmonic distortion 

injected by the battery charger and the power quality of power distribution network with 

other distributed energy resources and advanced PHEVs, can also be topics of future 

work. 
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