429 research outputs found

    Application of coupled-wave Wentzel-Kramers-Brillouin approximation to ground penetrating radar

    Get PDF
    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the signal generated by the interaction of the emitted pulse with the environment, we developed and implemented a novel time-domain version of the coupled-wave Wentzel-Kramers-Brillouin approximation. We compared our solution with finite-difference time-domain (FDTD) results, achieving a very good agreement. We then applied the proposed technique to two case studies: in particular, our method was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in Russia, and for the simulation of GPR probing of the Moon surface, to detect smooth gradients of the dielectric permittivity in lunar regolith. The main conclusions resulting from our study are that our semi-analytical method is accurate, radically accelerates calculations compared to simpler mathematical formulations with a mostly numerical nature (such as the FDTD technique), and can be effectively used to aid the interpretation of GPR data. The method is capable to correctly predict the protracted return signals originated by smooth transition layers of the subsurface dielectric medium. The accuracy and numerical efficiency of our computational approach make promising its further development

    In-Situ Radar Observation of Shallow Lunar Regolith at the Chang’E-5 Landing Site : Research Progress and Perspectives

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (Grant No. 42241139 and 42004099), the Opening Fund of the Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences (No. LDSE202005), the National Innovation and Entrepreneurship Training Program for College Students (No. 202310590016), the Fund of Shanghai Institute of Aerospace System Engineering (No. PZ_YY_SYF_JY200275), and the Shenzhen Municipal Government Investment Project (No. 2106_440300_04_03_901272).Peer reviewedPublisher PD

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    DISCUS - The Deep Interior Scanning CubeSat mission to a rubble pile near-Earth asteroid

    Full text link
    We have performed an initial stage conceptual design study for the Deep Interior Scanning CubeSat (DISCUS), a tandem 6U CubeSat carrying a bistatic radar as main payload. DISCUS will be operated either as an independent mission or accompanying a larger one. It is designed to determine the internal macroporosity of a 260-600 m diameter Near Earth Asteroid (NEA) from a few kilometers distance. The main goal will be to achieve a global penetration with a low-frequency signal as well as to analyze the scattering strength for various different penetration depths and measurement positions. Moreover, the measurements will be inverted through a computed radar tomography (CRT) approach. The scientific data provided by DISCUS would bring more knowledge of the internal configuration of rubble pile asteroids and their collisional evolution in the Solar System. It would also advance the design of future asteroid deflection concepts. We aim at a single-unit (1U) radar design equipped with a half-wavelength dipole antenna. The radar will utilize a stepped-frequency modulation technique the baseline of which was developed for ESA's technology projects GINGER and PIRA. The radar measurements will be used for CRT and shape reconstruction. The CubeSat will also be equipped with an optical camera system and laser altimeter to sup- port navigation and shape reconstruction. We provide the details of the measurement methods to be applied along with the requirements derived of the known characteristics of rubble pile asteroids.Comment: Submitted to Advances in Space Researc

    Surface Permittivity Estimation of Southern Utopia Planitia by High-Frequency RoPeR in Tianwen-1 Mars Exploration

    Get PDF
    China’s Tianwen-1 successfully landed in the southern Utopian Planitia of the Martian surface on 15 May 2021. The Zhurong Rover, equipped with a high-frequency full polarimetric Rover Penetrating Radar (RoPeR), traveled 1921 m to investigate the shallow geological structure and material composition of the Martian weathered layer. In this study, we propose a new processing strategy to estimate surface relative permittivity using the HH and VV reflections of the high-frequency RoPeR data. This new strategy is based on the induced field rotation (IFR) effect, which occurs when orthogonally polarized electromagnetic (EM) waves propagate into an uneven surface with incident angles. Three-dimensional time-domain finite-difference simulations were performed using random surfaces with various relative permittivities under the same geometry as the Zhurong Rover. Polarimetric alpha angle versus relative permittivity was then calculated based on the simulation results. At the same time, direct coupling (DC) removal, bandpass filtering, and channel calibration were performed on the real RoPeR data, and clear surface reflections were extracted. The surface reflection amplitudes of the HH and VV were then obtained and the polarimetric alpha angle was calculated. Finally, relative permittivity was estimated through the relationship obtained from the simulation results. The average value of the relative permittivity estimated by the proposed approach is 3.292, with a standard deviation of 0.235. This result is consistent with that obtained by orbiting radar systems and the low-frequency RoPeR system. This study will contribute to the further signal processing and accurate interpretation of real radar data captured by way of RoPeR on Mars

    Overview of Past Lunar In Situ Resource Utilization (ISRU) Development by NASA

    Get PDF
    The presentation gives an overview of past NASA work on lunar in situ resource utilization during the Constellation Program from 2005 to 2010 with some updates since then. The presentation is based on charts created from past and recent presentations

    Long-Short-Term Memory in Active Wavefield Geophysical Methods

    Get PDF
    The PhD thesis discusses the application of Long Short-Term Memory (LSTM) networks in active wavefield geophysical methods. In this work we emphasizes the advantages of Deep Learning (DL) techniques in geophysics, such as improved accuracy, handling complex datasets, and reducing subjectivity. The work explores the suitability of LSTM networks compared to Convolutional Neural Networks (CNNs) in some geophysical applications. The research aims to comprehensively investigate the strengths, limitations, and potential of recurrent neurons, particularly LSTM, in active wavefield geophysics. LSTM networks have the ability to capture temporal dependencies and are well-suited for analyzing geophysical data with non-stationary behavior. They can process both time and frequency domain information, making them valuable for analyzing Seismic and Ground Penetrating Radar (GPR) data. The PhD thesis consists of five main chapters covering methodological development, regression, classification, data fusion, and frequency domain signal processing.The PhD thesis discusses the application of Long Short-Term Memory (LSTM) networks in active wavefield geophysical methods. In this work we emphasizes the advantages of Deep Learning (DL) techniques in geophysics, such as improved accuracy, handling complex datasets, and reducing subjectivity. The work explores the suitability of LSTM networks compared to Convolutional Neural Networks (CNNs) in some geophysical applications. The research aims to comprehensively investigate the strengths, limitations, and potential of recurrent neurons, particularly LSTM, in active wavefield geophysics. LSTM networks have the ability to capture temporal dependencies and are well-suited for analyzing geophysical data with non-stationary behavior. They can process both time and frequency domain information, making them valuable for analyzing Seismic and Ground Penetrating Radar (GPR) data. The PhD thesis consists of five main chapters covering methodological development, regression, classification, data fusion, and frequency domain signal processing

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples
    • 

    corecore