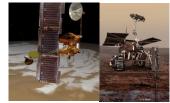
Overview of Past Lunar In Situ Resource Utilization (ISRU) Development by NASA

Gerald B. Sanders, NASA gerald.b.sanders@nasa.gov (281) 483-9066

www.nasa.gov

Presentation to ESA Workshop: Towards the Use of Lunar Resources July 3, 2018



ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create products and services for robotic and human exploration

Resources

- Traditional: Water, atmospheric gases, volatiles, solar wind volatiles, metals, alloys, sunlight, etc.
- Non-traditional: Trash and wastes from crew, spent landers and residuals, etc.

Resource Assessment (Prospecting)

Assessment and mapping of physical, mineral, chemical, and water resources, terrain, geology, and environment

In Situ Manufacturing

Production of replacement parts, machines, and integrated systems from feedstock derived from one or more processed resources

Resource Acquisition

Atmosphere constituent collection, and material/volatile collection via drilling, excavation, transfer, and/or manipulation before Processing

In Situ Construction

Civil engineering, infrastructure emplacement and structure construction using materials produced from *in situ* resources

Radiation shields, landing pads, roads, berms, habitats, etc.

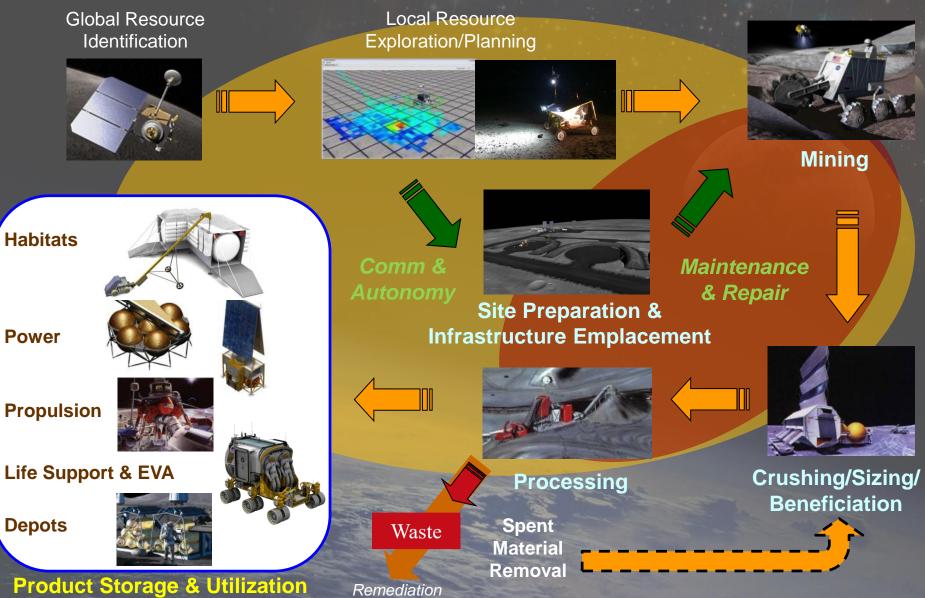

Resource Processing/ Consumable Production

Conversion of acquired resources into products with immediate use or as feedstock for construction & manufacturing

Propellants, life support gases, fuel cell reactants, etc.

In Situ Energy

Generation and storage of electrical, thermal, and chemical energy with *in situ* derived materials


Solar arrays, thermal storage and energy, chemical batteries, etc.

'ISRU' is a capability involving multiple elements to achieve final products

'ISRU' does not exist on its own. Must connect and tie to users/customers of ISRU products

Space 'Mining' Cycle: *Prospect to Product*

Resource Assessment (Prospecting)

ISRU Changes How We Can Explore Space

Mass Reduction

- >7.5 kg mass savings in Low Earth Orbit for every
 1 kg produced on the Moon or Mars
- Chemical propellant is the largest fraction of spacecraft mass

Risk Reduction & Flexibility Space Resource Utilization

- Number of launches & mission operations reduced
- Use of common hardware & mission consumables enables increased flexibility
- In-situ fabrication of spare parts enables sustainability and self-sufficiency
- Radiation & landing/ascent plume shielding
- Reduces dependence on Earth

Solves Terrestrial Challenges & Enables Space Commercialization

- Develops alternative & renewable energy technologies
- New additive construction
- CO₂ remediation
- Green metal production

- Provides infrastructure to support space commercialization
- Propellant/consumable depots at Earth-Moon L1 & Surface for Human exploration & commercial activities

Cost Reduction

- Allows reuse of transportation systems
- Reduces number and size of Earth launch vehicles

Expands Human Presence

 Increase Surface Mobility & extends

- missions
 Habitat & infrastructure construction
- Substitutes sustainable infrastructure cargo for propellant & consumable mass

Lunar Resource Prospecting & Mine Planning

- Terrain and surface feature mapping
- Surface/subsurface mineral and glass concentration & distribution mapping
- Solar wind & polar volatile concentration & distribution mapping

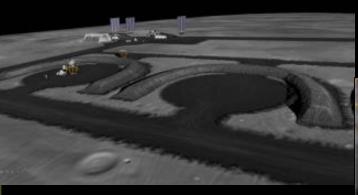
Mission Consumable Production

- Complete Life Support/Extra Vehicular Activity closure for Oxygen (O₂) and water (H₂O)
- Produce/regenerate Fuel Cell Reactants (in conjunction with Power)
- Gases for science and cleaning
- > Propellant production; O_2 and fuel (H_2 and/or CH_4) for robotic and human vehicles

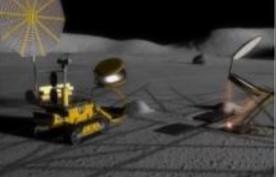
Site Preparation and Outpost Deployment/Emplacement

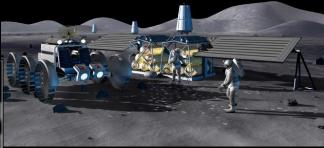
- Site surveying and terrain mapping
- Crew radiation protection (In-situ water production or bulk regolith)
- Landing area clearing, surface hardening, and berm building for Lunar Lander landing risk and plume mitigation
- Area and road clearing to minimize risk of payload delivery and emplacement

Outpost Growth and Self-Sufficiency


- Fabrication of structures that utilize in-situ materials (with Habitats)
- Production of feedstock for fabrication and repair (with Sustainability)
- Solar array, concentrator, and/or rectenna fabrication (with Power)
- Thermal energy storage & use from processed regolith (with Power)

Lunar ISRU Mission Capability Concepts


Resource Prospecting – Looking for Polar Ice Excavation & Regolith Processing for O₂ Production


> **Carbothermal Processing** with Altair Lander Assets

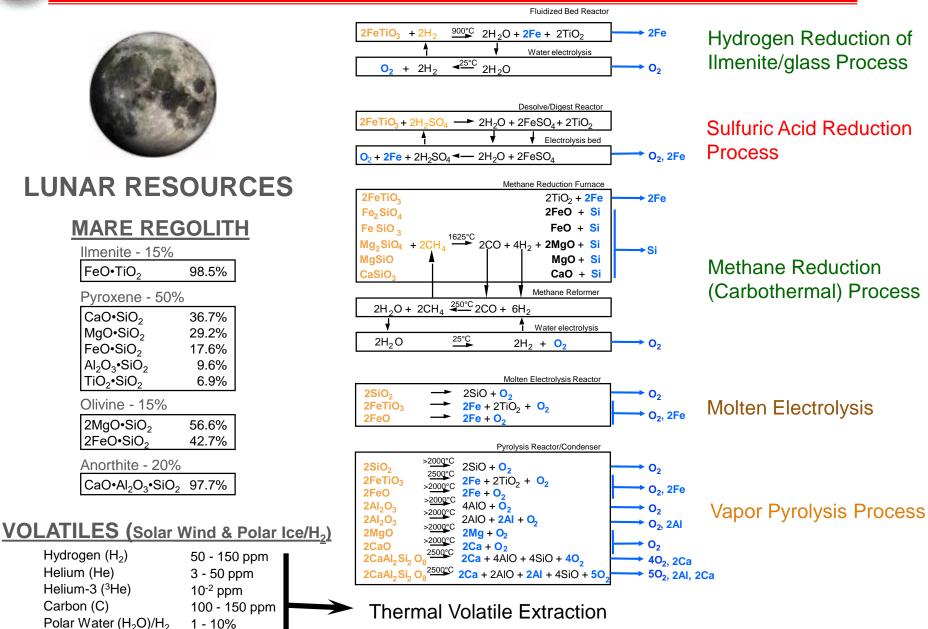
Landing Pads, Berm, and Road Construction

Thermal Energy Storage Construction

Consumable Depots for Crew & Power

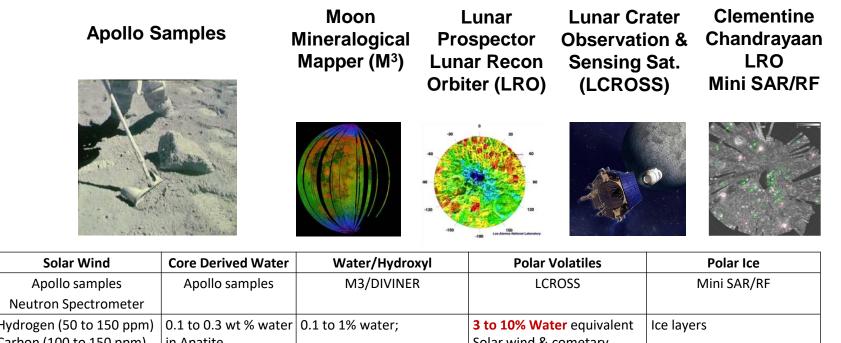
Identify and characterize available resources (especially polar region) that:

- Strongly influence mission phases, locations, and designs to achieve maximum benefit of ISRU
- Is synergistic with Science and space commercialization objectives
- Is synergistic with surface water characterization on Mars
- Demonstrate ISRU concepts, technologies, & hardware that reduce the mass, cost, & risk of human Mars missions
 - Excavation and material handling & transport
 - Volatile/hydrogen/water extraction
 - Thermal/chemical processing subsystems for oxygen and fuel production
 - Cryogenic fluid storage & transfer
 - Trash/Waste Processing in conjunction with Life Support
 - Metal extraction and fabrication of spare parts


Use Moon for operational experience and mission validation for Mars

- Pre-deployment & remote activation and operation of ISRU assets without crew
- Making and transferring mission consumables (propellants, life support, power, etc.)
- Landing crew with pre-positioned return vehicle or 'empty' tanks
- 'Short' (<90 days) and 'Long' (300 to 500 days) Mars surface stay dress rehearsals
- Develop and evolve surface exploration assets linked to ISRU capabilities that enable new exploration capabilities
 - Human and robotic hoppers for long-range surface mobility and global science access; power-rich distributed systems; enhanced radiation shielding, etc.
 - Repair, fabrication, and assembly techniques to mitigate mission risk and logistics mass.

Lunar Resources & Products of Interest



Global Assessment of Lunar Volatiles

	Solar Wind	Core Derived Water	Water/Hydroxyl	Polar Volatiles	Polar Ice
Instrument	Apollo samples	Apollo samples	M3/DIVINER	LCROSS	Mini SAR/RF
	Neutron Spectrometer				
Concentration	Hydrogen (50 to 150 ppm) Carbon (100 to 150 ppm)	0.1 to 0.3 wt % water in Apatite	0.1 to 1% water;	3 to 10% Water equivalent Solar wind & cometary volatiles	Ice layers
	Helium (3 to 50 ppm)	0 to 50 ppm water in volcanic glass	1-2% frost in shadowed craters	(CO, H2, NH3, organics)	
Location	Regolith everywhere	Regolith; Apatite	Upper latitudes	Poles	Poles; Permanent shadowed craters
Environment	Sunlit	Sunlit	Low sun angle Permanent shadow <100 K	Low or no sunlight; Temperatures sustained at <100 K	<100 K, no sunlight
Depth	Top several meters; Gardened	Top 10's of meters	Top mm's of regolith	Below 10 to 20 cm of desiccated layer	Top 2 meters

Development of Lunar ISRU Technologies & Systems

- Resource Characterization & Mapping
 - Lunar polar ice/volatile characterization
 - RESOLVE/Resource Prospector

Mission Consumable Production

- Oxygen Extraction from Regolith
 - Hydrogen Reduction
 - Carbothermal Reduction
 - Molten Oxide Electrolysis
 - Ionic Liquids
- Oxygen and Fuel from Mars Atmosphere
 - Carbon Dioxide Capture
 - Mars Soil Drying
- Water and Fuel from Trash
 - Steam Reforming
 - Combustion/Pyrolysis
- Water Processing
 - Water Electrolysis
 - Water Cleanup

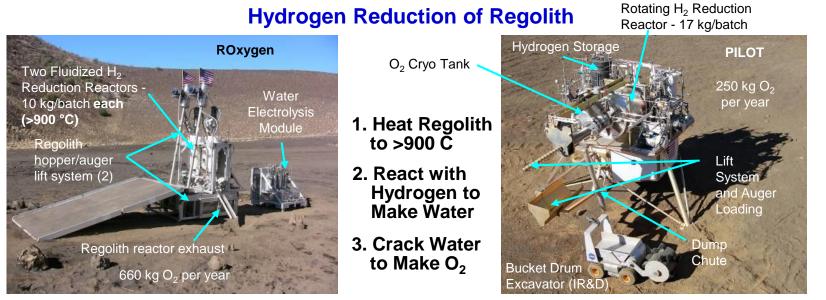
- In-Situ Energy Generation, Storage & Transfer
 - Solar Concentrators
 - Heat Pipes
- Civil Engineering & Surface Construction
 - Lunar Regolith Excavation
 - Lunar Regolith and Mars Soil Transfer
 - Lunar Regolith Size Sorting & Beneficiation
 - Lunar Regolith Simulant Production
 - Surface Preparation

NASA ISRU Soil/Water Extraction and Trash Processing Technology Development

- Sample drills and augers (JPL, ARC, SBIRs)
- Scoops and buckets (GRC, KSC, JPL, Univ., SBIRs)
- Auger and pneumatic transfer (KSC, GRC, SBIRs)

Water Extraction from Soils

- Closed soil reactors: fluidized & auger (JSC, SBIRs)
- Microwave soil processing (MSFC, JPL, SBIR)
- Open soil processing reactors (GRC)
- Downhole soil processing (MSFC, SBIRs)
- Capture for lunar/Mars soil processing (NASA, SBIRs)
- Water cleanup for lunar/Mars soil processing (KSC, JSC, SBIRs)


Trash/Waste Processing into Gases/Water

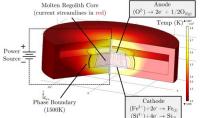
 Combustion, Pyrolysis, Oxidation/Steam Reforming (GRC, KSC, SBIRs)

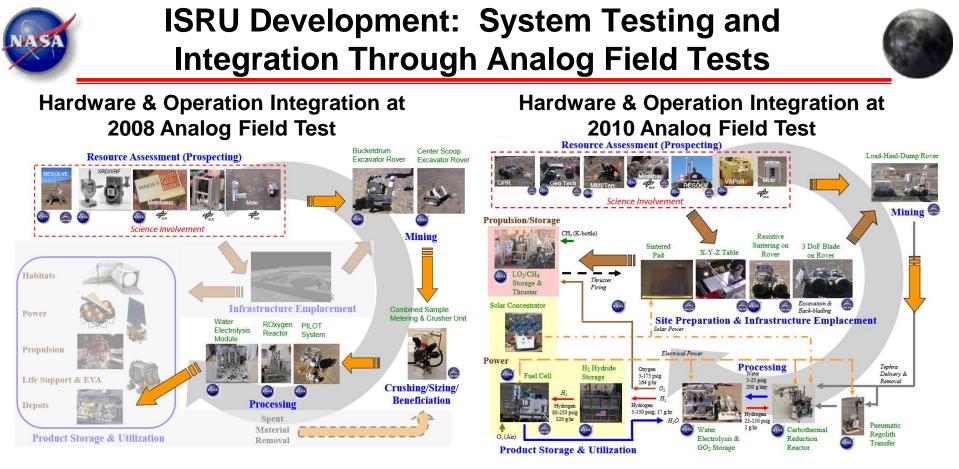
Lunar Processing – Oxygen & Metal Extraction

Carbothermal Reduction of Regolith

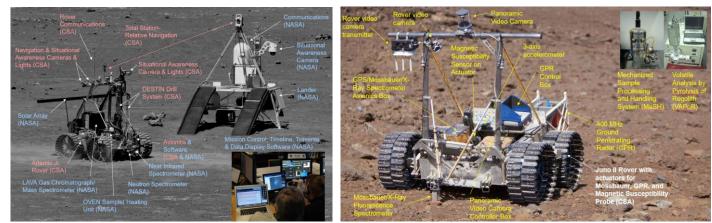
Solar Concentrator & ____ Fiber-optic Cables

Regolith Reduction Chamber


Pneumatic Lift System and Auger Loading

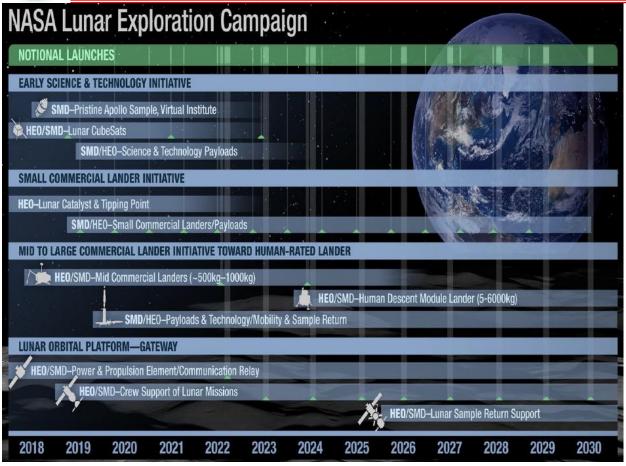

- 1. Melt Regolith to >1600 C
- 2. React with Methane to produce CO and H₂
- 3. Convert CO and H₂ to Methane & Water
- 4. Crack Water to Make O₂

Molten Electrolysis of Regolith

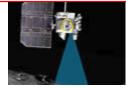


- 1. Melt Regolith to >1600 C
- 2. Apply Voltage to Electrodes To Release Oxygen

Lunar Polar Volatile & Mineral Prospecting at 2012 Analog Field Test


Significant advancement from 2006 to 2010

TRL increase in ETDP	At Start	At End	Delta	
System Level				
Lunar Volatile Characterization (RESOLVE)	1	5	4	Advanced since 2010
H ₂ Reduction of Regolith	2-3	5	2-3	
CH₄ Reduction of Regolith	2-3	5	2-3	
Molten Oxide Reduction of Regolith	2	3	1	
Trash Processing for Water/Methane Production	2	2-3	0-1	Advanced since 2010
Subsystem Level				
Regolith Transfer & Handling				
Regolith Transport Into/Out of Reactor	2	5	3	
Beneficiation of Lunar Regolith	2-3	2-3	0-1	
Size Sorting of Lunar Regolith		2-3	0-1	
Oxygen Extraction From Regolith				
H ₂ Reduction of Regolith Reactor	3	5	2	
Gas/Water Separation & Cleanup	2	4-5	2-3	Advanced since 2010
CH₄ Reduction of Regolith Reactor	3	5	2	
CH₄Reduction Methanation Reactor	3-4	4-5	1-2	
MOE of Regolith Anode/Cathode	1-2	3-4	2-3	
MOE of Regolith Molten Mat'l Removal	1-2	3	1-2	
MOE Cell and Valving	2-3	3	0-1	
Water/Fuel from Trash Processing				
Trash Processing Reactor		2-3	0-1	Advanced since 2010
In-Situ Energy Generation, Storage, and Transfer]
Solar Thermal Energy for Regolith Reduction		5	3	
		•		


Lunar ISRU-Related Missions

Science/Prospecting Cubesats (SLS EM-1 2018)

- Lunar Flashlight: Near IR laser and spectrometer to look into shadowed craters for volatiles
- Lunar IceCube: Broadband InfraRed Compact High Resolution Explorer Spectrometer
 - LunaH-MAP: Two neutron spectrometers to produce maps of near-surface hydrogen (H)
 - Skyfire/LunIR: Spectroscopy and thermography for surface characterization
 - **NEA Scout:** Multispectral camera for NEA morphology, regolith properties, spectral class

Korea Pathfinder Lunar Orbiter (KPLO) - 2020

 ShadowCam Map reflectance within permanently shadowed craters

Commercial Lunar Payload Services (CLPS)

 Request for Proposals for 50, 200, and 500 kg class payload missions

Dev. & Advancement of Lunar Instrumentation (DALI)

 Request for Proposals for science instruments & ISRU experiments

Space Commercialization & Mining

Promote Terrestrial Involvement in Space & ISRU: Spin In-Spin Out

Private Industry

Resource Prospecting

Commercial Cargo & Crew

SpaceX Dragon2

Boeing CST-100

ULA Cislunar 1000 Vision

Use lunar derived propellants

Satellite Servicing

Government Interest & Legislation

US Space Law & Directives

H.R. 2262-18

"CHAPTER 513—SPACE RESOURCE COMMERCIAL EXPLORATION AND UTILIZATION

*\$51303. Asteroid resource and space resource rights

"A United States citizen engaged in commercial recovery of an asteroid resource or a space resource under this chapter shall be entitled to any asteroid resource or space resource obtained, including to pessess, own, transport, use, and sell the asteroid

US Space Resource Act

Public Law 114-90 114th Congress

An Act

To facilitate a pro-growth environment for the developing commercial space industry Nov. 25, 2015 by encouraging private sector investment and creating more stable and predictable regulatory conditions, and for other purposes. [H.R. 2262]

US Commercial Space Launch Competitiveness Act

59501

Presidential Documents

Space Policy Directive-1 of December 11, 2017

Reinvigorating America's Human Space Exploration Program

Space Directive 1

NASA NextSTEP Broad Agency Announcements

Crew habitats

Luxembourg Space Law

Power & Propulsion

Studies

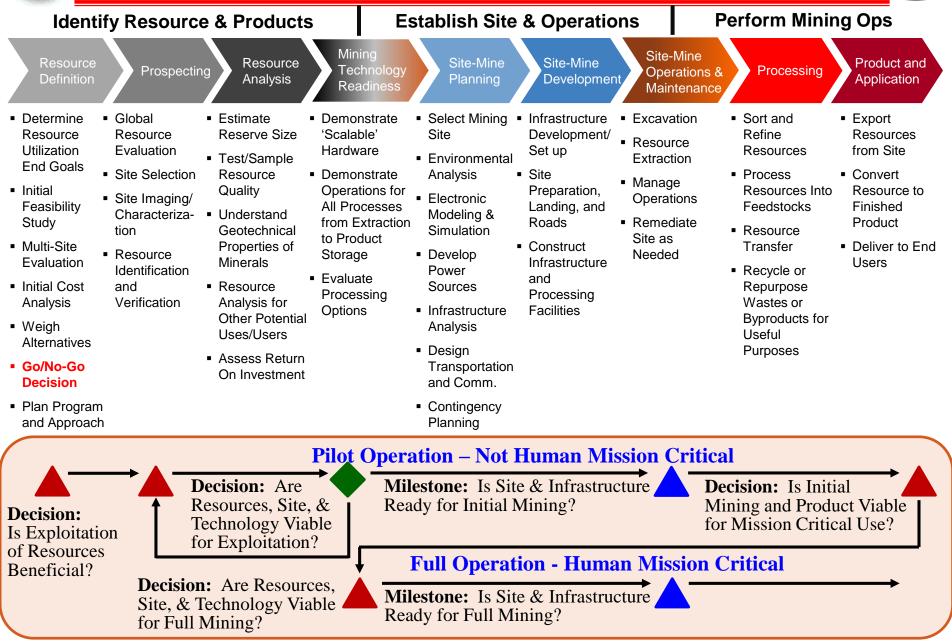
It's not about being able to do ISRU. It's not about having the most efficient ISRU system.

It is about achieving the benefits of ISRU for a reasonable cost, mass, and risk.

Thank You

Questions?

Main Natural Space Resources of Interest for Human Exploration


Moon Mars Asteroids Uses Hydrated Soils/Minerals: Drinking, radiation Icy Regolith in Subsurface Water Permanently Gypsum, Jarosite, Regolith on C-type shielding, plant growth, (Hydrogen) **Shadowed Regions** Phylosilicates, Polyhdrated Carbonaceous cleaning & washing (PSR) Sulfates Chondrites Making Oxygen and Hydrogen Subsurface Icy Soils in Solar wind hydrogen Mid-latitudes to Poles with Oxygen Oxygen Minerals in Lunar Carbon Dioxide in the Minerals in Regolith Breathing atmosphere (~96%) Regolith: Ilmenite, on S-type Ordinary Oxidizer for Propulsion and Enstatite and Power Pyroxene, Olivine, Anorthite Chondrites CO, CO₂, and HC's Carbon Dioxide in the Hydrocarbons and Fuel Production for Carbon in PSR atmosphere (~96%) Tars (PAHs) in **Propulsion and Power** (Gases) Solar Wind from Regolith on C-type Plastic and Carbonaceous Sun (~50 ppm) Petrochemical Chondrites Production Minerals in Lunar Minerals in Mars Soils/Rocks In situ fabrication of Minerals in Regolith Iron: Ilmenite, Hematite, Regolith/Rocks on parts **Metals** Iron/Ti: Ilmenite Magnetite, Jarosite, Smectite S-type Stony Iron Electical power generation and Silicon: Pyroxene, Silicon: Silica, Phyllosilicates and M-type Metal Olivine, Anorthite Aluminum: Laterites, Asteroids transmission Magnesium: Aluminosilicates, Plagioclase Magnesium: Mg-sulfates, **Mg-rich Silicates** Al: Anorthitic Carbonates, & Smectites, Mg-rich Olivine Plagioclase

Note: Rare Earth Elements (REE) and Platinum Group Metals (PGM) are not driving Resources of interest for Human Exploration

ISRU Implementation Life Cycle

Phased Approach to ISRU Architecture Incorporation

Current approach is to utilize phased approach to incorporate ISRU with minimum risk to mission success

Resource Prospecting/ Engineering Validation & Utilize/Full Implementation Human % Vijvouvering Validation % Vijvouvering Validation % Vijvouvering Validation % Vijvouvering Validation % Vijvouvering %

Purpose

- Characterize local material/resources; evaluate terrain, geology, lighting, etc.
- Demonstrate critical technologies, functions, and operations
- Verify critical engineering design factors & environmental impacts
- Address unknowns or Earth based testing limitations (simulants, micro/low-g, contaminants, etc.)
- ExoMars
- Resource Prospector
- Mars 2020
- Lunar Cubesats

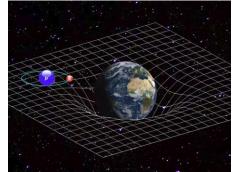
Purpose

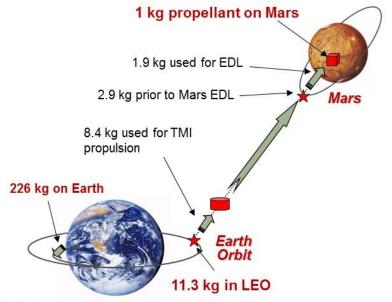
- Enhance or extend capabilities/reduce mission risk
- Verify production rate, reliability, and long-term operations
- Verify integration with other surface assets
- Verity use of ISRU products
- Mars Surface Pathfinder
- Lunar short stay

Purpose

- Enhance or enable new mission capabilities
- Reduce mission risk
- Increase payload & science capabilities

- Mars DRA 5.0
- Evolvable Mars Campaign
- Lunar Outpost


Every 1 kg of propellant made on the Moon or Mars saves 7.4 to 11.3 kg in LEO Potential 334.5 mT launch mass saved in LEO = 3 to 5 SLS launches avoided per Mars Ascent


Mars mission

- Oxygen (O_2) only 75% of ascent propellant mass: 20 to 23 mT
- O_2 /Methane (CH₄) 100% of ascent propellant mass: 25.7 to 29.6 mT Regeneration of rover fuel cell reactant mass

Trash to O_2/CH_4 1000+ kg of propellant

5	A Kilogram of Mass Delivered Here	Adds This Much Initial Architecture Mass in LEO	…Adds This Much To the Launch Pad Mass
1 Verson	Ground to LEO	-	20.4 kg
	LEO to Lunar Orbit (#1	4.3 kg	87.7 kg
	LEO to Lunar Surface (#1	7.5 kg	153 kg
\wedge	LEO to Lunar Orbit to Earth Surface (#1#4#5; e.g., Orion Crew Module)	9.0 kg	183.6 kg
4	Lunar Surface to Earth Surface (#3->#5; e.g., Lunar Sample)	12.0 kg	244.8 kg
LEO Lunar Destination Orbit	LEO to Lunar Surface to Lunar Orbit (#1#3#4; e.g., Ascent Stage)	14.7 kg	300 kg
Lunar Surface Lunar Rendezvous Earth Surface	LEO to Lunar Surface to Earth	19.4 kg	395.8 kg

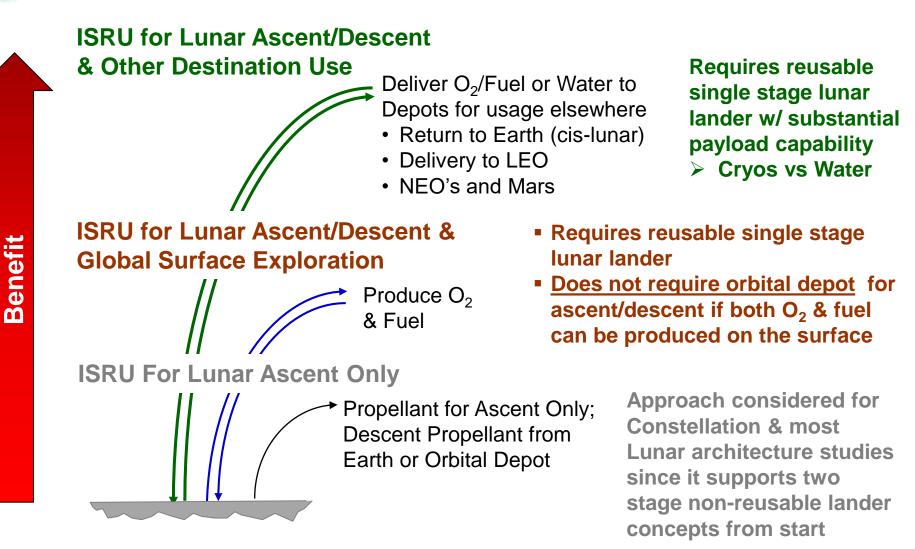
Estimates based on Aerocapture at Mars

ISRU has greatest influence at the site of the resource/production

- Transportation (propellant is the largest 'payload' mass from Earth)
 - Crew ascent from Moon/Mars surface
 - O_2 only provides up to 80% of propellant mass
 - $O_2^{-}/fuel full asset reuse and surface hopping$
 - Crew/Cargo ascent and descent from Moon/Mars surface reusable
 - Supply orbital depots for in-space transportation
 - Cis-lunar (L1 to GEO or LEO)
 - Trans-Mars
- Power (mission capabilities are defined by available power)
 - Nighttime power storage/generation
 - Fuel cell reactants increase amount and regeneration
 - Thermal storage
 - Mobile power fuel cell reactants
 - Power generation: in situ solar arrays, 'geo'thermal energy

Infrastructure and Growth

- Landing pads and roads to minimize wear and damage
- Structures and habitats

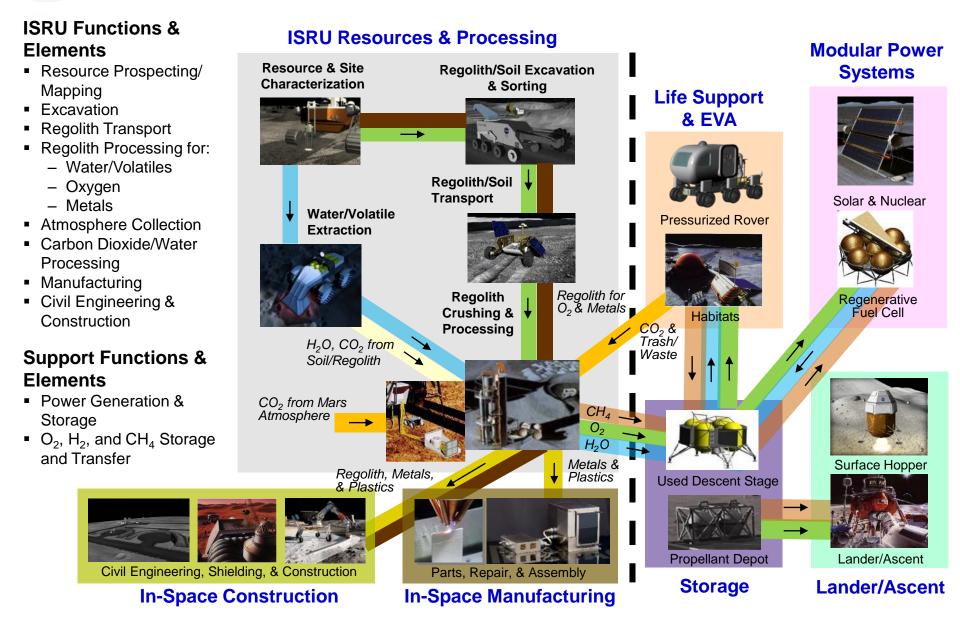

Crew Safety

- Radiation protection
- Logistics shortfalls (life support consumables, spare parts)

Benefit of ISRU Derived Propellants is a Function of Lander Design, Use, & Rendezvous/Depot Orbit

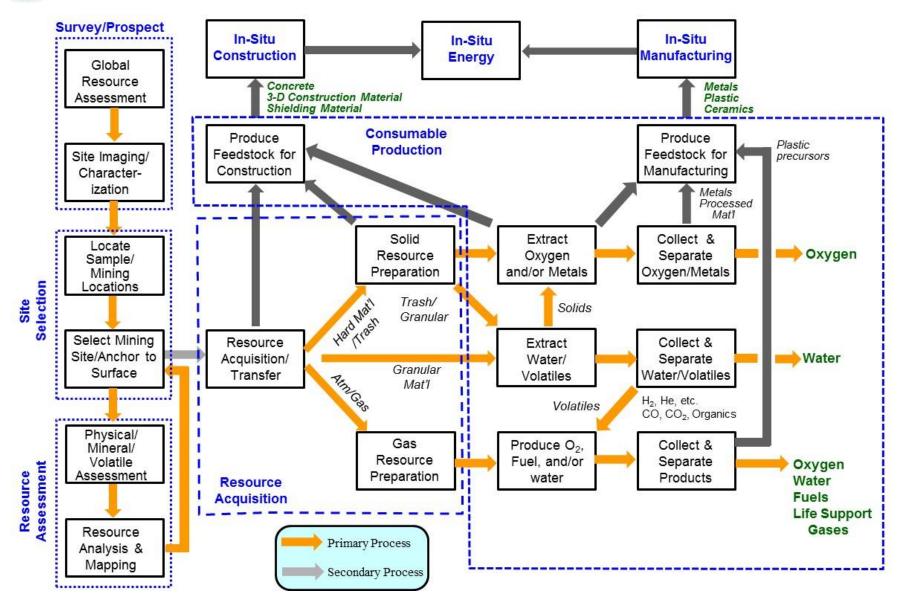
The greater the Delta-V of maneuvers performed by ISRU-derived propellants, the greater the benefit

ISRU Impact on Exploration System Requirements


	Without ISRU	With ISRU		
	Propellant selection based on development cost and performance	Propellant selection based on ISRU products from available resources		
Propulsion	Propulsion cycle (pressure vs pump) based on development cost and performance	Production cycle based on influence of ISRU on Delta-V and reusability		
	Non-reusable or limited reusability with Earth supplied propellants and depots	Reusability with single stage landers possible		
	Air and Water recycling technologies and systems based on maximizing closure of oxygen and water loops	ISRU products can reduce the level of closure required, thereby reducing development cost and system complexity		
Life Support	Trash/waste processing aimed at maximizing water extraction and minimizing oxygen usage	Trash/waste transferred to ISRU to maximize fuel production and minimize residuals. Trash processing hardware can be minimized to some level of drying		
	Radiation and micrometeoroid shields based on Earth supplied materials. Storm closets to minimize mass impact	Regolith (piling or habitat burial) or in-situ water for greater radiation protection possible. This can change habitat layout and eliminate need for storm closets		
Habitat	Fully constructed on Earth. Hard shell or inflatable	In-situ shelters construction possible. Consumables for inflation		
	Self-contained thermal management	Use of thermal energy sharing with ISRU or creation of in- situ thermal storage for heat removal or usage		
Mobility	Mobility primarily based on science and human activities	Mobility based on high torque/low speed excavation and civil engineering needs		
WODIIIty	Full situational awareness and flexible navigation system	Simplified situational awareness and navigation required for ISRU applications		
	Self-contained units. Solar array and batteries	Distributed power generation and storage, esp. fuel cell reactant storage and regeneration		
Power	Fuel cell reactant based on regeneration technique alone	Fuel cell reactant based on in-situ resources available		
	Increase in power generation is a function of delivery from Earth	In-situ growth of power thru fuel cell consumable, in-situ thermal, and in-situ manufacturing		

ISRU Integrated with Exploration Elements

(Mission Consumables)



ISRU Capability-Function Flow Chart

Oxygen from Regolith

- Can be incorporated into the architecture from the start with low-moderate risk
 - Resource characteristics and parameters are reasonably well known
 - Multiple approaches for extraction possible; 2 demonstrated to TRL 4-5 for short periods of time
- Provides 75 to 80% of chemical propulsion propellant mass (fuel from Earth)
- Experience from regolith excavation, beneficiation, and transfer applicable to In Situ Manufacturing and Construction and Mars hydrated soil extraction

Water and Volatiles from Polar Regolith

- Cannot be incorporated into the architecture from the start with low-moderate risk
 - Resource characteristics and parameters are not well known
- Polar Water/Volatiles is "Game Changing" and Enables Long-term sustainability
 - Availability of water for propellants can strongly influence propulsion system design (propellant selection and reusability) and transportation architecture (depots, hoppers, lander reuse, etc.)
 - Provides 100% of chemical propulsion propellant mass
 - Reuse of cargo and human landers and transportation elements can reduce longterm mission costs and enable new mission concepts
 - Provides significantly more options for radiation protection, food production, etc. over what is available from lunar regolith

NASA should pursue both Development and Insertion of Oxygen from Regolith with Prospecting and Evaluation of Polar Ice/Volatiles for Long Term Sustainability

Key Programmatic Analogue Field Test Purpose

- Expand NASA and CSA partnership; Include other International Partners in analogues
- Expand integration of Science & Engineering for exploration, particularly with ISRU
- Link separate technology and system development activities
- Develop and enhance remote operations and mission concepts; introduce new technologies
- Evaluate parallel paths and competing concepts
- Be synergistic with other analogue test activities (past and future)
- Public Outreach, Education, and "Participatory Exploration"

Key <u>Technical</u> Analogue Field Test Purpose

- Stress hardware under realistic environmental and mission operation conditions to improve path to flight
- Improve remote operations & control of hardware for surface exploration and science
- Promote the testing of multiple surface and transportation systems to better understand integration and operation benefits and issues
- Promote use of common software, interfaces, & standards for control and operation (ISECG)
- Focus on interfaces, standards, and requirements (ISECG)
- Focus on modularity and 'plug n play' integration (ISECG)

Intrinsic Benefits of Field/Analog Testing

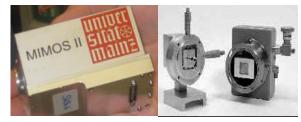
- Develop Scientists, Engineers, and Project Managers for future flight activities
- Develop International Partnerships
- Develop Teams and Trust Early
- Develop Data Exchange & Interactions with International Partners (ITAR)

1st ISRU Analog Field Test: 2008 (1 of 2)

Outpost-Scale O₂ from Regolith

Lunar Prospecting

- Scarab Rover
- RESOLVE
- TriDAR Vision System
- Tweels



- ROxygen H₂ Reduction
- Water Electrolysis
- Cratos Excavator

- PILOT H₂ Reduction
- Water Electrolysis
- Bucketdrum Excavator

Process Control & Science

- Moessbauer
- Mini Chemin XRD/XRF

Canadian Space Agency

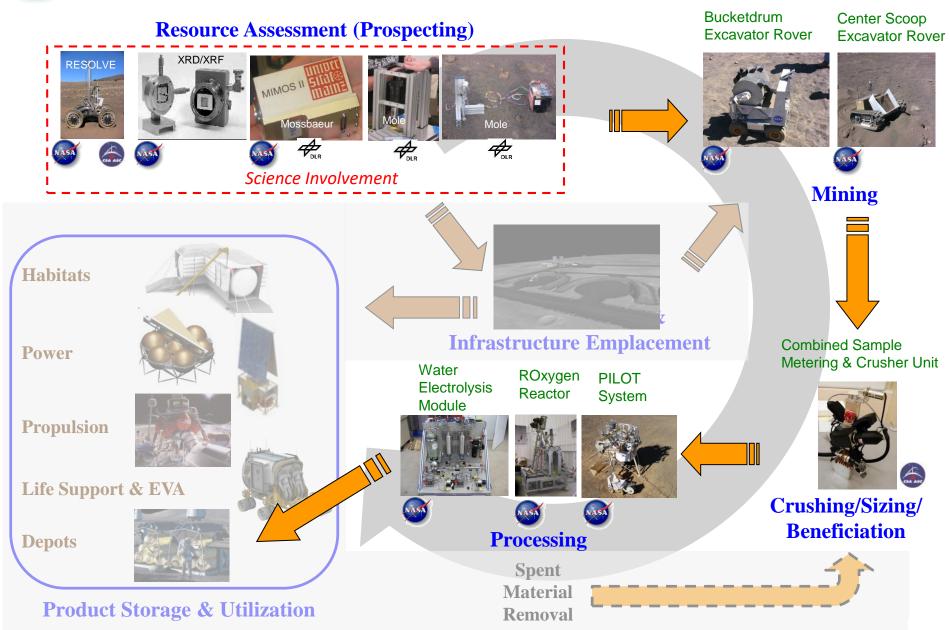
- TriDAR imager, Satellite communications, remote operation of Drill and TriDAR navigation, and on-site personnel and payload mobility
- NORCAT, Xiphos, Argo, Virgin Technologies, EVC, Ontario Drive Gear, University of Toronto

German Space Agency (DLR)

- Instrumented "Mole" & Sample Capture Mole

Carnegie Mellon University

SCARAB Rover



1st ISRU Analog Field Test: 2008 (2 of 2)

NASA Hardware List & Team Members

Site & Resource Exploration

- RESOLVE Drill
- Combined Moessbauer/XRF
- MMAMA/FSAT Instruments
 - Cone Penetrometers (Dynamic, Percussive, & Manual)
 - Heat Flow Probe
 - Multispectral Microscopic Imager (MMI)
 - X-Ray Diffraction
 - Borehole XRF
 - VAPoR Mass Spectrometer
 - RESOLVE Chemical Plant –Gas Chromatograph
 - Data Integration

Site Preparation & Excavation

- Solar Concentrator & fiber optics with sun tracking system
- Resistive heater surface sintering

Oxygen Extraction from Regolith

- Čarbothermal reduction module with regolith feed system
- ROxygen Gen 1 water electrolysis module
- Pneumatic regolith lift device

Energy

- Solar Concentrator & fiber optics with sun tracking system
- Sunlight flux/intensity measurement instrument
- Power conditioning for fuel cell power system

Product Storage and Utilization

- Liquid oxygen/methane tank and cryocooler cart
- Hydrogen hydride tanks
- O₂/CH₄ thruster hot-fire into tephra

Participant/Hardware Supplier

NASA/NORCAT JSC KA/University of Mainz (Germany) & DLR

Honeybee Robotics Honeybee Robotics Arizona State Univ. Arizona State Univ. LaRC, APL/Univ of Wash. GSFC KSC, JSC, GRC, ASRC ARC, UC Davis, & McMaster Univ

PSI (SBIR Phase III) KSC

Orbitec JSC KSC/ASRC & Honeybee

PSI (SBIR Phase III) PSI NORCAT & JSC

JSC JSC and CSA JSC and WASK

8 System Modules – 7 Instruments 6 NASA Centers, 6 Small Businesses, 5 Universities

(42 people plus visitors)

CSA Hardware/Software List

Site & Resource Exploration

- TriDAR vision system (Triangulating LIDAR)
- ERT (Extended Range TriDAR, also called DTO)
- HPC (data compression software) (Hybrid Processing Card)
- Ground Penetrating Radar(3)
- 3D Data Fusion (3 D subsurface visualization software)
- EXPLORE (ISRU site selection filter and algorithm software)
- Geotechnical Measurement Equipment (Cone Penetrometer/Shear Vane)

Site Preparation & Excavation

- ISRU MAT/ANT Rovers (6) (Multi Agent Teaming/Artificial Neural Tissue)
- Articulated joint (coupling of 2 rovers to accommodate heavy payloads)
- Plow Attachments (3)
- Excavation Attachments: Long (1) & Short (1)
- Autonomous Regolith Delivery system (1)
- Solar Sintering XYZ Table Rastering Device (1)

Product and Utilization

Mining vehicle Fuel Cell/H₂ Hydride Tank (1 at 10 KW)

Infrastructure

- Satellite Communications to CSA HQ (Mainland) VoIP service
- Secure telemetry links to other agencies from CSA
- On-Site Wireless Communications
- Multi media studio
- ExDOC Control Center at CSA HQ (Exploration Development Ops Centre)
- Large Rover (Argo Avenger)
- Lunar Link Emulator (LLE)
- Base Camp (mining camp structures), personnel tracking system
- Food Preparation

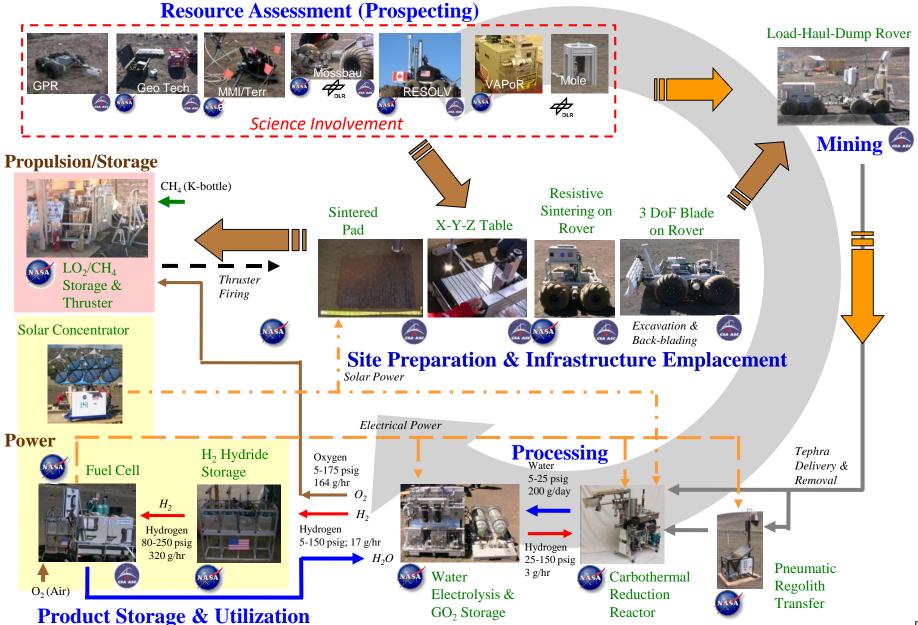
12 System Modules & Attachments; Infrastructure 3 Government Agencies, 8 Small Businesses, 2 Universities

(46 people plus visitors)

Participant/Hardware Supplier

Neptec Neptec Xiphos Noggin Xiphos NORCAT NORCAT

NORCAT/ODG/Univ of Toronto NORCAT/ODG NORCAT/EVC NORCAT/EVC NORCAT/Neptec NORCAT


NRCan (Natural Resources Canada)

CSA/CRC (Communications Research Center) CSA/CRC Virgin Tech CSA/CRC CSA CSA/Ontario Drive (ODG) Xiphos CSA/NRCan YUM Culinary/Cambrian College

2nd ISRU Analog Field Test: 2010 (3 of 3)

3rd ISRU Analog Field Test: Lunar Polar Prospecting Mission Simulation

Rover Communications (CSA)

Total Station-Relative Navigation (CSA)

Navigation & Situational Awareness Cameras & Lights (CSA)

Solar Array (NASA)

> Artemis Jr. Rover (CSA)

LAVA Gas Chromatograph/ Mass Spectrometer (NASA) Situational Awareness Camera & Lights (CSA)

DESTIN Drill System (CSA)

> Avionics & Software (CSA & NASA)

Near Infrared Spectrometer (NASA)

Neutron Spectrometer (NASA)

OVEN Sample(Heating Unit (NASA)

Mission Control, Timeline, Traverse & Data Display Software (NASA)

Communication (NASA)

Situationa Awarenes Camera (NASA)

Lander (NASA)

3rd ISRU Analog Field Test: Lunar Polar Prospecting Mission Simulation

Rover video camera transmitter

> GPS/Mossbauer/X-Ray Spectrometer Avionics Box

Rover video

camera

Panoramic Video Camera

Magnetic Susceptibility Sensor on Actuator 3-axis <u>accele</u>rometer

> GPR Contro

....

Mechanized Sample Processing and Handling System (MeSH)

400 MHz Ground Penetrating Radar (GPF

Juno II Rover with actuators for Mossbauer, GPR, and Magnetic Susceptibility Probe (CSA)

Spectrometer

Controller Box