1,188 research outputs found

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area

    Biomechanical Locomotion Heterogeneity in Synthetic Crowds

    Get PDF
    Synthetic crowd simulation combines rule sets at different conceptual layers to represent the dynamic nature of crowds while adhering to basic principles of human steering, such as collision avoidance and goal completion. In this dissertation, I explore synthetic crowd simulation at the steering layer using a critical approach to define the central theme of the work, the impact of model representation and agent diversity in crowds. At the steering layer, simulated agents make regular decisions, or actions, related to steering which are often responsible for the emergent behaviours found in the macro-scale crowd. Because of this bottom-up impact of a steering model's defining rule-set, I postulate that biomechanics and diverse biomechanics may alter the outcomes of dynamic synthetic-crowds-based outcomes. This would mean that an assumption of normativity and/or homogeneity among simulated agents and their mobility would provide an inaccurate representation of a scenario. If these results are then used to make real world decisions, say via policy or design, then those populations not represented in the simulated scenario may experience a lack of representation in the actualization of those decisions. A focused literature review shows that applications of both biomechanics and diverse locomotion representation at this layer of modelling are very narrow and often not present. I respond to the narrowness of this representation by addressing both biomechanics and heterogeneity separately. To address the question of performance and importance of locomotion biomechanics in crowd simulation, I use a large scale comparative approach. The industry standard synthetic crowd models are tested under a battery of benchmarks derived from prior work in comparative analysis of synthetic crowds as well as new scenarios derived from built environments. To address the question of the importance of heterogeneity in locomotion biomechanics, I define tiers of impact in the multi-agent crowds model at the steering layer--from the action space, to the agent space, to the crowds space. To this end, additional models and layers are developed to address the modelling and application of heterogeneous locomotion biomechanics in synthetic crowds. The results of both studies form a research arc which shows that the biomechanics in steering models provides important fidelity in several applications and that heterogeneity in the model of locomotion biomechanics directly impacts both qualitative and quantitative synthetic crowds outcomes. As well, systems, approaches, and pitfalls regarding the analysis of steering model and human mobility diversity are described

    A Synthetic-Vision Based Steering Approach for Crowd Simulation

    Get PDF
    International audienceIn the everyday exercise of controlling their locomotion, humans rely on their optic flow of the perceived environment to achieve collision-free navigation. In crowds, in spite of the complexity of the environment made of numerous obstacles, humans demonstrate remarkable capacities in avoiding collisions. Cognitive science work on human locomotion states that relatively succinct information is extracted from the optic flow to achieve safe locomotion. In this paper, we explore a novel vision-based approach of collision avoidance between walkers that fits the requirements of interactive crowd simulation. By simulating humans based on cognitive science results, we detect future collisions as well as the level of danger from visual stimuli. The motor-response is twofold: a reorientation strategy prevents future collision, whereas a deceleration strategy prevents imminent collisions. Several examples of our simulation results show that the emergence of self-organized patterns of walkers is reinforced using our approach. The emergent phenomena are visually appealing. More importantly, they improve the overall efficiency of the walkers' traffic and avoid improbable locking situations

    Coupling camera-tracked humans with a simulated virtual crowd

    Get PDF
    Our objective with this paper is to show how we can couple a group of real people and a simulated crowd of virtual humans. We attach group behaviors to the simulated humans to get a plausible reaction to real people. We use a two stage system: in the first stage, a group of people are segmented from a live video, then a human detector algorithm extracts the positions of the people in the video, which are finally used to feed the second stage, the simulation system. The positions obtained by this process allow the second module to render the real humans as avatars in the scene, while the behavior of additional virtual humans is determined by using a simulation based on a social forces model. Developing the method required three specific contributions: a GPU implementation of the codebook algorithm that includes an auxiliary codebook to improve the background subtraction against illumination changes; the use of semantic local binary patterns as a human descriptor; the parallelization of a social forces model, in which we solve a case of agents merging with each other. The experimental results show how a large virtual crowd reacts to over a dozen humans in a real environment.Peer ReviewedPostprint (author’s final draft

    Realistic following behaviors for crowd simulation

    Get PDF
    International audienceWhile walking through a crowd, a pedestrian experiences a large number of interactions with his neighbors. The nature of these interactions is varied, and it has been observed that macroscopic phenomena emerge from the combination of these local interactions. Crowd models have hitherto considered collision avoidance as the unique type of interactions between individuals, few have considered walking in groups. By contrast, our paper focuses on interactions due to the following behaviors of pedestrians. Following is frequently observed when people walk in corridors or when they queue. Typical macroscopic stop-and-go waves emerge under such traffic conditions. Our contributions are, first, an experimental study on following behaviors, second, a numerical model for simulating such interactions, and third, its calibration, evaluation and applications. Through an experimental approach, we elaborate and calibrate a model from microscopic analysis of real kinematics data collected during experiments. We carefully evaluate our model both at the microscopic and the macroscopic levels. We also demonstrate our approach on applications where following interactions are prominent
    • …
    corecore