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Abstract

Synthetic crowd simulation combines rule sets at different conceptual layers to represent

the dynamic nature of crowds while adhering to basic principles of human steering, such

as collision avoidance and goal completion. In this dissertation, I explore synthetic crowd

simulation at the steering layer using a critical approach to define the central theme of

the work, the impact of model representation and agent diversity in crowds. At the

steering layer, simulated agents make regular decisions, or actions, related to steering

which are often responsible for the emergent behaviours found in the macro-scale crowd.

Because of this bottom-up impact of a steering model’s defining rule-set, I postulate that

biomechanics and diverse biomechanics may alter the outcomes of dynamic synthetic-

crowds-based outcomes. This would mean that an assumption of normativity and/or

homogeneity among simulated agents and their mobility would provide an inaccurate

representation of a scenario. If these results are then used to make real world decisions,

say via policy or design, then those populations not represented in the simulated scenario

may experience a lack of representation in the actualization of those decisions.

A focused literature review shows that applications of both biomechanics and diverse
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locomotion representation at this layer of modelling are very narrow and often not present.

I respond to the narrowness of this representation by addressing both biomechanics and

heterogeneity separately. To address the question of performance and importance of loco-

motion biomechanics in crowd simulation, I use a large scale comparative approach. The

industry standard synthetic crowd models are tested under a battery of benchmarks de-

rived from prior work in comparative analysis of synthetic crowds as well as new scenarios

derived from built environments. To address the question of the importance of hetero-

geneity in locomotion biomechanics, I define tiers of impact in the multi-agent crowds

model at the steering layer–from the action space, to the agent space, to the crowds space.

To this end, additional models and layers are developed to address the modelling and ap-

plication of heterogeneous locomotion biomechanics in synthetic crowds. The results of

both studies form a research arc which shows that the biomechanics in steering models

provides important fidelity in several applications and that heterogeneity in the model

of locomotion biomechanics directly impacts both qualitative and quantitative synthetic

crowds outcomes. As well, systems, approaches, and pitfalls regarding the analysis of

steering model and human mobility diversity are described.
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Chapter 1

Introduction

Synthetic crowd simulation is an enabling technology across a broad spectrum of fields.

By simulating crowds of synthetic humans, or agents, graphics and media artists can

generate rich and complex scenes; event planners can predict the impacts of their event

staging decisions; architects can build predictively, making buildings more usable and

safe; and many more applications currently drive human-centric decisions while many

more are possible in the future.

In this dissertation, I examine the fidelity of crowd agent modelling and the importance

of diverse simulation on synthetic crowds-based outcomes. Much of synthetic crowd agent

modelling work is focused on one of two bins of research production: methods which

afford large scale (> 1000 agents) simulations; and methods that reproduce observable

qualitative features of real crowds. In crowds simulation, and automata at large, it is often

the low level rules–those that govern how an individual agent moves or makes decisions–

that produce the emergent behaviours we see at the macro scale. Thus, when constructing
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these synthetic crowd agent models and simulations from base rules it is important to

ask, ”what are we missing?” Here I examine the specific question, ”by looking at the

large macro scale what are we overlooking at the micro scale?”, I propose that what we

overlook in synthetic crowd simulation at the lowest levels is our uniqueness, our diversity,

as humans. While human bipedal locomotion has common features amongst normative

bodies–often grouped by sex and age–this is not true of humans at large. The normative

model is too simplistic to cover the range of humanity’s interesting gaits and mobilities,

and in the spaces of representation in media and safety-critical design, it is too important

to continue to overlook.

1.1 Crowd Simulation

Crowd simulation refers to a system of generating, controlling, and directing multiple

entities, actors, or agents which represent people using computational techniques. Typi-

cally, crowd simulation handles the movements of these agents on a large scale, in terms of

the number of agents and/or the size and complexity of the environment. That is, given

a basic description of an environment, crowd simulation provides the estimated move-

ment of agents in the environment based on, but not limited to, one or more of agent

initial conditions, goals, collision avoidance, inter-agent interactions, agent-environment

interactions, individual behaviours, and group behaviours.

This system can be decomposed as a set of systems responsible for particular aspects of

the simulation. While this decomposition has many subtleties confounding the division
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of labour, it serves as a starting point for a complicated and constantly growing field

of techniques. This hierarchy can be seen in Figure 1.1 alongside Maslow’s hierarchy

of needs (Maslow, 1943)–a common analogy made in the field. At the highest level

of abstraction, all entities exist as some physical simplification, such as an agent as a

particle (position and radius) or a grid cell. These agents are driven by some goal which

may be manually defined or may be derived from a behavioural model that merges a

combination of perception, desire, emotion, and reactions to stimuli derived form the

agent’s context. This goal may be a destination, a leader to follow, a group to stay with,

or any series/combination of these. Finding a path towards this goal, which may be in a

very different area of the environment, is known as global navigation. Global navigation

imitates the mental model one builds when trying to reach some place in the real world.

Typically, the output of global navigation is a series of short-term goals at all major

turning points, or corners, along the shortest path to the final goal. The local navigation

required to reach these short-term goals while avoiding collisions with the environment

and other agents is known as local steering and collision avoidance. Local steering is

responsible for immediate movement, or steering, decisions and solves inter-agent and

agent-environment interactions in some ideal way (e.g. reducing collisions and/or energy

expenditure). The actualization of crowd simulation typically exists in two modes. The

first being purely data or metrics that measure some aspect of the crowd. This is useful

for crowd and environment analysis such as evacuation studies. The second is visual

rendering and animation of the crowd. This approach is important for the film and
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Figure 1.1. This figure represents an (right) abstract overview of a simplified model of the

hierarchy of needs in synthetic crowds. The model is purposefully simplified and compared to

(left) Maslow’s hierarchy of needs. The model has several shortcomings, such as Behaviour and

Context being fundamentally intertwined, Animation being driven directly by Locomotion, and

Locomotion and Steering being part of the same biological system which makes up locomotion

in humans. Often, in synthetic crowds, animation and locomotion are the same thing, in the

sense that the actual movement of agents is driven by steering with locomotion (in this sense, the

movement of the limbs and body) being estimated by animation.

animation industry, for understanding aggregate crowd behaviours, and for environment

visualization such as when viewing architectural designs. Figure 1.2 shows a generalized

overview of the crowd simulation solution. Two agents navigate an environment and must

avoid colliding with the environment and each other on the path to their respective goals.

1.2 Locomotive Heterogeneity

The motivation of this dissertation stems from an apparent shortcoming in the litera-

ture regarding agent-based synthetic crowd models and human locomotion biomechanics.
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Figure 1.2. This figure represents an abstract overview of the steering level of crowd simulation.

Two agents, the blue discs, navigate an environment, the grey shapes, and must avoid colliding

with the environment and each other on the path to their respective goals. The green discs

represent the short-term positional goals while the purple discs represent the final goal. The pink

arrows represent the desired velocity of the agents.
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Crowd simulators are historically derived from real data, physical analogies, behavioural

assumptions, and/or computational geometry. In many cases, simulators rely heavily on

these assumptions and generalizations, or simulators are developed under the guise of one

problem space and then applied to human crowd modelling. For example, it is common

practice to apply robotics steering methods to human crowd simulation.

Generally, heterogeneity is often possible, to varying degrees, at the steering level in

most crowd models, but it is not explored or applied directly in evaluations or derivation

of the model. In many cases, heterogeneity is inserted at the behavioural level in higher

level synthetic crowds works with no regard to the diverse spectrum of human locomotion

biomechanics. While homogeneous simulation is computationally beneficial, the impact of

using homogeneous biomechanics in media, design, and policy goes beyond the processor

and into the real world. Many models that lack representative outputs are applied in

content creation tools from 3D modelling and animation suites to game engines. Similarly,

crowd simulation tools which can and are used to guide built environment decisions and

perform critical analysis often miss important human-centric considerations (Still, 2007).

This discussion is taken further in both Chapters 3 & 5.

1.3 Crowds as an Open Loop System

In order to discuss crowd simulation at length, it is imperative to place the difficulty of

creating and evaluating heterogeneous crowd simulators in a well understood framework.

The literature on human movement simulation and animation in graphics is largely split
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between character control and crowd simulation. Historically, the approaches solve dif-

ferent problems. Character controllers resolve the motions of an individual character and

their joints, while crowd simulators resolve the net movements of both individual and

group motions.

These approaches can be framed as closed-loop and open-loop control systems respec-

tively. The close-loop control system, here character control, has access to the output of

the system as part of its input, in the form of a measured response. This affords complete

control over the system via feedback-based control. On the other hand, the open-loop

control system, here crowd simulators, are merely based on inputs. In crowd simulation,

inputs are usually an individual agent’s most immediate goal and their immediate per-

ception of the environment and fellow agents. While agents receive feedback from the

world in terms of modelled perception, the scope of emergent and chaotic effects are not

captured by any measured response in the system. A useful analogy here is localized

climate control via air conditioning systems versus attempted weather control in nature.

An air conditioning system controls temperature and has a sensor which measures tem-

perature, thus the input (a desired temperature) and the measured response (the current

temperature) can be used to control local temperature directly, under the assumption

that the system is closed. However, to measure only temperature in nature as a means

to drive a weather control system remains intractable. The emergent and chaotic effects

of natural weather systems can only be approximated and are not fully captured by any

tractable measured response.
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1.4 Dissertation Overview

This dissertation seeks to contribute the following: methods and metrics for comparative

analysis of crowds over rich and in-depth benchmarks, models for investigating interesting

gait patterns, and, perhaps most importantly, strong evidence for the inclusion of diversity

in synthetic crowds and their applications. Towards these ends, the dissertation comprises

the following chapters and their respective subjects:

Chapter 2 is the literature review and theoretical background pertaining to crowd

simulation and synthetic crowd evaluation. This review supports the need, approach,

and delivery of the works described in the dissertation.

Chapter 3 covers the methodology in terms of theoretical framework and an overview

of the research arc in the dissertation. This chapter also covers a critical review or prior

works in the applications of synthetic crowds in research and industry.

Chapter 4 outlines and presents the results from the first major study in the research

arc–the importance of biomechanics in synthetic crowd simulations. This chapter is mo-

tivated by a critical review of crowd simulation evaluation approaches. A method for

ground-truth free comparative analysis is proposed, including metrics and benchmarks.

The chapter then covers the methods and results of five experiments which provide an

in-depth look at steering model selections.

Chapter 5 outlines and presents the results from the second major study in the re-

search arc–the importance of heterogeneity in locomotion biomechanics. Building from

the previous chapter, the study is motivated by a critical review of the literature on the
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application synthetic crowds with a focus on safety-critical scenarios. The chapter then

covers the methods and results of three experiments which provide an in-depth look at

the impact of heterogeneity in locomotion biomechanics on the different level of steering.

Chapter 6 reviews the details of new methods used to generate the results in the

dissertation. Additionally, the chapter covers speculation on new directions and critical

analysis of the potential applications of the results.

Chapter 7 is the conclusion and aggregates and reviews the findings of all the studies

in the dissertation. This is followed by the implications of these findings and their limita-

tions. These sections motivate the discussion of future works in the areas the dissertation

presents beyond what is discussed in Chapter 6.
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Chapter 2

Background & Literature Review

This chapter is provided to explicate the literature and situate the problem space of

the dissertation–heterogeneity of locomotion in biomechanical crowd simulation. To this

end, this chapter focuses on the dissertation topics of the local steering and collision

avoidance area of agent-based crowd simulation. Certain topics are covered from a high-

level perspective and in-depth review and analysis is left to their respective chapters.

First, a review of Crowd Simulation models and their history from agent-based mod-

elling to multi-agent systems is provided. Then the breadth of heterogeneity-capable

agent-based crowd simulators is grouped by solution approaches and delineated. In par-

ticular, I focus on solutions which are primarily concerned with immediate locomotion

decisions. Second, a deep review of synthetic crowds analysis methods lays the ground-

work for understanding the difficulty of comparing and understanding the performance of

a synthetic crowd model. This review also motivates the development of the comparative

analysis method described in further detail in Chapter 4.
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This review of literature is intended to provide the groundwork for later topics in the

dissertation and is by no means a comprehensive review of all agent-based or multi-agent

systems. The body of work in these areas are immense as they have proven useful in

modelling large, complicated, and emergent systems beyond crowds. Nor is this review

comprehensive of solutions in synthetic crowd simulations or physical character control.

There are a multitude of exciting solutions in these spaces which are beyond the scope of

this review.

2.1 Agent-based Crowd Simulation

This section provides an overview of agent-based particle models for local steering and col-

lision avoidance in crowd simulation. Crowd simulation history necessarily starts with the

history of early automata such as von Neumann’s self-reproducing automata (Von Neu-

mann, Burks, et al., 1966) and John Conway’s Game of Life (Conway, 1970). These are

examples of seminal cellular automata works that later spawned agent-based modelling.

However, cellular automata are outside the scope of this report. The first documented

use of agent-based modelling was on the dynamics of segregation (Schelling, 1971). From

this point onward, agent-based modelling became a powerful way to model emergent be-

haviours in complex systems by encapsulating the functions (directives, reactions, rules)

and knowledge (state, perception of surroundings) of an individual in a system as an

agent in a simulation. The field and concept of agent-based modelling is a precursor for

multi-agent systems, which are what agent-based crowd simulations are. In a multi-agent
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system, the interactions between intelligent agents and their environment are governed by

simulation. A simulation encapsulates the representation of the world, the agents, and the

passage of time. Generally speaking, the world is any environment and may be anything

from graph paper grid to large scale digital 3D real-world like environments. The passage

of time for simulations involves a steady update frequency or tracking of the change in

time ∆t. Depending on the simulation, the real-passage of time is most likely detached

from simulation time. Simulations may require significantly more or less time to compute

than what we perceive as real-time. The agents may be a cell within a world grid (cellular

automata) or, closer to the scope of this paper, particles (or discs) whose physical traits

(position and radius) are detached from the underlying world representation. The agents

update their state in accordance with the simulation time.

The following models are all real-time capable agent-based particle simulations of local

steering and collision avoidance. While all crowd simulators effectively handle the local

steering and collision avoidance in some way, these models represent seminal works which

focus on this particular portion of crowd simulation. Furthermore, all of these models

can be parametrized, in sub-groups of the simulated crowd, to induce heterogeneity at

the steering level.

2.1.1 Early Models

Early agent-based “Crowds” models were concerned with the animation of animal group-

ing in nature (herds, schools, flocks, etc). The first use of such procedural animation was
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in Eurythmy by Susan Amkraut and Michael Girard shown at the Film & Video Show of

SIGGRAPH ’85 (C. Reynolds, 1995). Soon after, this approach was formalized as a set

of rules for combining desired velocities based on the intentions of the agents, known as

Boids (C. W. Reynolds, 1987). These intentions included goal-seeking (to head towards

a goal), separation (to avoid collision), alignment (to keep a heading with a group), and

cohesion (to stay with a group). These simple rules work very well for replicating nat-

ural flocking and herding behaviour found in nature. The earliest application of this

approach to humans defined inter-group relationships and emotional/sociological param-

eters (Musse & Thalmann, 1997). This model used line-line intersections for collision

prediction, but it also included a multi-resolution approach to choosing whether collision

avoidance was required at all. If the observer was far enough away from an agent, no

collision avoidance technique was used. If the observer was close enough, a less expensive

collision avoidance method was used that simply altered the speed of one of the agents.

If the observer was close to the agent, the computationally more expensive technique of

altering the angular velocity (turning) was utilized.

2.1.2 Velocity Models

The introduction of velocity obstacles (VO) for robotics VO (Fiorini & Shiller, 1998,

1993) provided a simple means of finding guaranteed collision free steering decisions.

This method simply finds the abstract obstacle formed by the set of velocities for which

two objects will collide at some point and then avoids choosing relative velocities within
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this “velocity obstacle” area as if it were an actual obstacle. In this way, VO methods

are computational geometric methods that operate in velocity space. This is particularly

import to robotics since local steering in robotics is primarily concerned with avoiding

collisions in a guaranteed or provable way. Inter-robot collision can be costly in terms of

equipment and repairs while robot-human collisions are considered unacceptable because

of the potential for injury and danger to life.

This approach has since been extended several times to include reciprocal collision

avoidance (RVO) (Van den Berg, Lin, & Manocha, 2008), optimal reciprocal avoidance

for several agents (ORCA) (van den Berg, Guy, Lin, & Manocha, 2011), and general-

ized reciprocal collision avoidance (Wilkie, van den Berg, & Manocha, 2009). ORCA has

become a common choice for collision avoidance in games and animation (Snape et al.,

2012; Champandard, 2012). More recently, a biomechanically constrained hybrid mo-

tion synthesis model extends the RVO model such that full body character motions are

synthesized with respect to steering and collision avoidance (Narang, Randhavane, Best,

Shapiro, & Manocha, 2016).

2.1.3 Continuum Models

There is some analogous behaviour between crowd movement as particles and fluid dy-

namics. Several methods have been proposed to bring this analogy into practice with

agent-based crowd simulation. This approach has the benefit of applying the same equa-

tions over all agents making the problem more tractable, that is this approach assumes the
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treatment of crowds as a continuum (Hughes, 2003). In particular, “crowd fluid” dynam-

ics have been derived from gaskinetic equations (Helbing, 1992). Using these equations,

macroscopic simulation can be performed if careful attention is paid to the differences

in defining pressure and temperature to handle issues with density between actual fluids

and crowd fluids. More recently, this has been applied to large scale crowds by convert-

ing crowds to potential fields and solving a density based system (Treuille, Cooper, &

Popović, 2006).

Because of the treatment of the crowds as a whole, or continuum, heterogeneity is

much more difficult to introduce. In fact, this approach often solved the problem of

individual desired velocity by simplifying the equation into a continuum representation

(like average velocity field) and leaning on plausibility of the simulation rather than

an individual agent’s ability to move independently. Additionally, it has been noted

that while fluids can imitate many emergent crowd artefacts there are key differences

which fluids do not account for well or at all, such as the aforementioned individuality of

agents (like choice of exit or velocity), space filling phenomenon (crowds do not fill space

uniformly) such as the corner bottleneck (crowds can bottleneck in open spaces). These

methods are very good for large crowd simulations when the behaviour of an individual

agent is not the focus of the simulation, such as in city rendering.
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2.1.4 Force Models

In force-based crowd models the steering decision is based on a net of repulsion or attrac-

tion forces. This approach was first introduced to model the forces of social attraction

and repulsion during locomotion in order to inform built environment designs (Helbing

& Molnar, 1995). This model, Social Forces (SF), has been extended and applied to

escape panic during evacuation in order to inform evacuation strategies (Helbing, Farkas,

& Vicsek, 2000).

The models provide naturalistic behaviours and are computationally inexpensive,

however they can suffer from severe oscillations, or unstable cyclic movement. While

oscillations are natural in crowds, especially at bottlenecks, these can look unstable and

unnatural due to particle sliding. Particle sliding is a larger general problem of particle-

based crowd simulation. Since the particle model only represents position and radius,

a particle-based steering decision may make unrealistic or biomechanically impossible

movements. One approach that reduces oscillation is prediction, covered in more detail

in Section 2.1.5. Models that layer the force-based model with line-disc intersection for

prediction achieve excellent results (Karamouzas, Heil, Van Beek, & Overmars, 2009).

2.1.5 Predictive Models

Predictive models of local steering and collision avoidance predict imminent collisions

and make early choices that effect the current steering decision. While collision avoid-

ance is partially predicated on predictive-like decisions, this section focuses on models
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that explicitly predict future collisions and alter their current local steering decisions ac-

cordingly. This approach is particularly effective at reducing oscillations and step like or

jagged movement.

The roots of predictive collision avoidance are very likely in naval steering and the

need to avoid collisions with other boats in the near future in crowded ports. The roots of

predictive collision for crowd simulation are in robotics. The works cited in Section 2.1.2

are all predictive. The basic VO approach avoids all potential future collisions with

another agent by avoiding relative velocities within VO formed by their current veloci-

ties (Fiorini & Shiller, 1998, 1993). The extended forms of this method, in particular,

RVO and ORCA both anticipate the reactive behaviour of other agents. In RVO, this is a

achieved by assuming all agents make the same collision avoidance decisions then moving

toward the end result of that set of decisions rather than stepping towards it (Van den

Berg et al., 2008). This approach avoids the step-like or jagged patterns in the movement

trajectories VOs may create. ORCA takes this assumption one step further and solves an

optimization problem to find a collision free velocity of n-bodies in velocity space. The

collision free velocity space is formed by the concatenation of half-planes induced by the

velocities of the n interacting agents (van den Berg et al., 2011).

Perhaps the most straightforward predictive model is the linear one. In this case,

the velocity of an agent is intersected with the disc of the combined radii of the two

interacting agents using a simplified ray-disc intersection. The Social Forces model has

been augmented with this method to greatly reduce oscillation artifacts (Karamouzas et
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al., 2009).

Methods modelling the space-time accurate representations of collisions are also possi-

ble. In space-time, where space is 2D, any given entity is a cone of all directions from the

current position over time, and all other entities (from this point of view) are cylinders of

the concatenated radii of both entities over time. This representation allows for a range

of speeds and orientation changes to be represented as 3D cone-cylinder intersections.

By segmenting these and optimally choosing the lowest cost set of choices for interacting

agents, a steering decision can be made (Paris, Pettré, & Donikian, 2007).

Perception based prediction has also been utilized in the literature. In a synthetic-

vision based steering algorithm, the optic flow of obstacles and interacting agents is used

to predict future collisions (Ondřej, Pettré, Olivier, & Donikian, 2010). This paper relies

on cognitive science which states that visual-stimuli extracted from optic flow can be used

to control locomotion (Bruggeman, Zosh, & Warren, 2007).

Recent work in predictive modelling, WarpDriver, is a collision avoidance approach

that uses probabilistic collision fields in its steering decision (Wolinski, Lin, & Pettré,

2016). Any given agent perceives other agents’ current motion which is warped, or ex-

tended, in space-time to create a probabilistic field of potential future positions.

2.1.6 Planning Models

Directly related to predictive models, planning models produce a short-term path, or

trajectory, to resolve imminent collisions. This approach, like predictive models is partic-
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ularly well suited for avoiding oscillation and step-like or jagged movement. In addition

to this, planning models also avoid particle sliding and unnatural movement. In par-

ticular, sliding disks can instantly change their forward direction, which is not natural

for a biped. For people, complex interactions occur at doorways, including side-stepping

for oncoming traffic, single-particle models may try to push through the doorway at the

same time. This problem is partially eliminated with predictive models, but even these do

not naturally handle side-stepping, which is inherently piecewise (composed of multiple

steps).

One approach to planning is to model a discretized ego-centric perceptual field. This

representation affords a space to plan on that is immediate to any given agent’s perception,

or local awareness planning. The ego-centric field is discretized such that nearer obstacles

and agents are resolved at a finer granularity. By intersecting obstacles and performing

linear prediction on this field, a short-term local plan can be formed (Kapadia, Singh,

Hewlett, Reinman, & Faloutsos, 2012; Kapadia, Singh, Hewlett, & Faloutsos, 2009).

Multi-particle footstep-based models do not suffer from the same issues as single par-

ticle models. In addition to the aforementioned issues with single particle models, multi-

particle models afford tighter packing, as the occupied space of the agent is represented

by multiple smaller particles rather than one larger particle. As well, the foot particles

can be used in space-time planning at the footstep level. Footstep-based planning is used

by both the computer animation community and the robotics community, see Section 2.3.

In crowd simulation, a space-time planning method for local steering and collision avoid-
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ance based on footstep placement affords a non-linear prediction of collisions, tightly

packed crowds, piecewise stepping actions, and most importantly heterogeneity at the

step level (Berseth, Kapadia, & Faloutsos, 2015; Singh, Kapadia, Reinman, & Faloutsos,

2011).

2.1.7 Data-Driven Models

Data driven models have the advantage of being empirically sound in recreating real-

world scenarios. Most methods derive their data from video footage of aerial views of

real crowds. The general approach is to extract the 2D trajectories of people interacting

with other agents and obstacles and then use this data to inform local steering and

collision avoidance.

Context-aware approaches use the local interaction features, such as environment

features and the motion of the other agents, to resolve the closest matching action in

the dataset (Lerner, Chrysanthou, & Lischinski, 2007). This approach can be extended

to group behaviours as well (K. Lee, Choi, Hong, & Lee, 2007). Another more labour-

intensive approach is to empirically understand these local interactions. Experiment-

based modelling has been used to recreate single inter-agent interactions and large multi-

agent interactions and then tune the model for real life data(Pettré, Ondrej, Olivier,

Cretual, & Donikian, 2009). These context aware approaches may be automated in

terms of clustering and selection using machine learning (Boatright, Kapadia, Shapira, &

Badler, 2013).
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Crowd simulation may also be seen as a two layer process, the group model that

controls the formation of neighbours and the individualistic, or ego-centric, model that

controls an individual’s trajectory. By populating these models with learned data, morph-

ing or interpolation can be used to extend them in time to form crowd simulations. This

is accomplished, first, by generating an initial set of conditions, such as agent placements,

and then iteratively advancing the trajectory model (Ju et al., 2010).

2.1.8 Hybrid Models

Hybrid models attempt to combine one or more of the aforementioned approaches to

local steering and collision avoidance to produce a final steering decision. The Predictive

Avoidance Model covered in Sections 2.1.4 & 2.1.5 is a good example of a basic hybrid

model.

The High-Density Autonomous Crowds, or HiDAC system, combines psychological,

and geometrical rules with social and physical forces. The model primarily handles col-

lision avoidance in the same manner as social forces. A psychological layer provides

information about context, such as being in a panicked stated, and affords context con-

ditional rules such as stopping to avoid oscillations, waiting to form lines, and pushing

in high density situations. The physical social force model also affords falling, which

converts an agent to a static obstacle (Pelechano, Allbeck, & Badler, 2007). Many other

features of HiDAC, such as bottleneck adaptive global path planning and information or

state propagation, are outside the scope of this report.
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Another approach to this method is to blend multiple steering decisions. A modular

method for this approach is flexible such that blending can be achieved with a weighted

sum, using heuristics to match the context of the agent, and fully computing all pos-

sible steering decisions then picking that which maximizes some fitness criteria (Singh,

Kapadia, Hewlett, Reinman, & Faloutsos, 2011). This approach encapsulates the linear

ray-disc prediction model from Section 2.1.5, a rule-based reaction phase, and a local

short-term grid-based space-time planner. A state-machine keeps track of what steering

circumstances the agent is in - predictive, space-time, or normal. However, this state-

machine may be overridden by the necessity of reactive or crowd-based steering. This

approach has, as well, several features that are outside of the scope of this report, such

as perception and long or mid-term planning.

2.2 Synthetic Crowd Evaluation

The evaluation of crowd simulators is particularly difficult. An ideal scenario may be to

directly compare a real life crowd or event with a simulation and measure the differences

between the two. However, this sensible idea is fraught with issues. There are several

scenarios important to the application of crowd simulation for which there are few real

data recordings. This is especially the case in evacuation scenarios where footage or data

may simply not exist and accurate re-enactment of the scenario is potentially dangerous

and unethical. Furthermore, crowd simulators may have to perform under varying con-

ditions in which the macroscopic, or aggregate, behaviour changes drastically. Imagine
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an evacuation scenario in which the initial conditions of the crowd involve leisurely or

comfortable walking. An emergency evacuation may quickly evolve in to a high velocity

and high density scenario. As agents evacuate, the behaviour may be to spread out in

an open area away from the evacuated environment. The requirements of these three

situations are very different, but they relate to one important application of crowd sim-

ulation. Thus, any singular approach to evaluation is not likely to capture the spectrum

of macroscopic behaviours or the requirements for all applications.

Seminal work in this area is captured in Chapter 6 - Validation of a computer model

of Dr. G. Keith Still’s PhD thesis. This work separates validation of a crowd simulator

into four categories: Component Testing, Functional Testing, Qualitative Validation, and

Quantitative Validation (Still, 2000). The first two categories, Component and Functional

Testing, are software engineering tasks and are outside the scope of this report. The

latter two categories are concerned with Qualitative and Quantitative aspects of a crowd

simulator. The following sections follow this direction and provide an overview of work in

this area including Still’s approaches. In this section, I focus on the breadth of the field

pulling from key results and seminal methods to situate the content of the dissertation.

The method presented Chapter 4 is directly relevant and a detailed overview of related

methods can be found there.
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2.2.1 Quantitative Evaluation of Simulations

Quantitative verification of crowd simulators is chiefly concerned with measuring some

aspect of the crowd simulator. In the very best case scenario, this is a direct measurement

of the difference between real and simulated data. However, since this is not always

possible, several works have proposed other approaches to this problem.

Still’s work proposed recreating several scenarios and techniques previously used in

pedestrian traffic studies. In particular, this area focuses on recreating the fundamen-

tal diagram of specific scenarios. The fundamental diagram is a primary tool in trans-

portation, traffic, and urban planning research. This diagram plots speed-density or

flow-density relationships and highlights critical points. A critical point is the density

at which speed or flow no longer increase and are very likely to rapidly decrease. Fun-

damental diagrams are useful in understanding when an environment no longer handles

a crowd, or a crowd becomes dangerous or deadlocked. In Still’s work, the fundamen-

tal diagrams between prior pedestrian experiments and his own, as well as others, and

simulated experiments are directly compared. Still also recreates a previous real-world

experiment of an evacuation scenario of a small room filled with people (Still, 2000). Sim-

ilar work has comparatively evaluated crowd simulators by measuring the evacuation rate

of rooms (Helbing et al., 2000). Follow-up work has shown that several guidelines and

models differ in outcomes because of the method of measurement regarding fundamental

diagrams (Seyfried et al., 2010). This work exemplifies the difficulty in normalizing eval-

uation, discussed later in Section 2.2.2. More recent work has used dense samplings of
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the fundamental diagram in bottleneck and group crossing evacuation scenarios to com-

paratively evaluate crowd simulators under the assumption that these scenarios capture

fundamentally different behaviours (Haworth, Usman, Berseth, Kapadia, & Faloutsos,

2017, 2015).

Directly computable measures of crowd simulator performance can provide basic com-

parative feedback on crowd simulator performance. For example, crowd simulation is

chiefly concerned with collision avoidance, thus the number of collisions can be mea-

sured directly (Shao & Terzopoulos, 2005). Similarly, several tasked-based measures such

as path length, total kinetic energy, and total change in acceleration have been pro-

posed (Kapadia, Singh, Allen, Reinman, & Faloutsos, 2009). However, these measures

are scenario dependent. As well, the effort exerted by agents can be measured directly,

and relates to the commonly found Principle of Least Effort in nature (Guy et al., 2010).

Comparatively evaluating crowd simulators is difficult but necessary to understand

the relative performance and applicability of multiple simulators. Since many direct

measurements may have unintuitive (to non-experts) or application specific meanings,

approaches have been developed that combine benchmark scenarios of increasing difficulty

and singular metrics derived from aggregates of independent measures (Singh, Kapadia,

Faloutsos, & Reinman, 2009). This work defines a set of benchmarks that range from a

single agent heading towards a goal, to two agents interacting on their paths to goals,

to large high density scenarios. This work has been extended multiple times, and these

works are covered in the following sections.
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In scenarios where there exist a ground truth, it is to possible measure the performance

of a crowd simulator with respect to the emulation of the real data. One approach

is to try to recreate the initial conditions of the real data in the crowd simulator and

measure the divergence between the two over time (Pettré et al., 2009). However, this

method relies on accurate re-enactment and may not scale well to very large crowds. As

well, the method does not take into account the non-deterministic nature of both real

and simulated crowds. This is generally a problem with directly comparing real and

simulated data. To solve this problem, one approach is to statistically model the error

distribution between the two data sources (Guy et al., 2012). First, Bayesian inference

is used to align the states of the simulation that correspond with the real data such

that they can be directly compared. The comparison is made by measuring the entropy

of the error distribution between the simulated and real data. This error distribution

is estimated using a maximum likelihood estimator which is iteratively improved via

expectation maximization. This approach scales well to larger crowds and handles the

non-deterministic nature of crowd simulation well. Using functional Principal Component

Analysis affords a multi-factored view of the sources of variability in synthetic pedestrian

dynamics (Chraibi, Ensslen, Gottschalk, Saadi, & Seyfried, 2016). This method provides

an efficient means of assessing the differences between experiment and simulation and

thus can be used for model validation when ground truth is present.
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2.2.2 Normalizing Quantitative Evaluation

The aforementioned evaluation methods all have minor shortcomings in terms of normal-

ization. It is difficult, or even inaccurate, to directly compare two simulators on the same

scenario without controlling for simulator parameters or other variables. Similarly, it is

difficult, or inaccurate, to compare crowd simulators across scenarios without controlling

for the differences in scenario.

One way of addressing cross scenario comparisons is to normalize a measure which

is not entirely scenario dependent. The measurement of path lengths in SteerBench

are scenario dependent and do not take into account the changes in velocity an agent

experiences (Singh et al., 2009). To address this, a measure relating to the metabolic

energy expenditure is utilized (Whittle, 2014). This measure directly accounts for changes

in velocity by integrating velocity dependent energy expenditure over path of an agent

during the simulation. By applying the Principle of Least Effort, the optimum effort

for an agent in a scenario can be derived (Helbing et al., 2000). The actual effort of

an agent in a scenario can then be normalized by the optimal effort. This new metric

affords comparative evaluation of simulators across scenarios (Kapadia, Wang, Reinman,

& Faloutsos, 2011). Similarly, the path measurements of SteerBench are rectified in

ScenarioSpace by taking an egocentric reference agent approach normalizing with respect

to optimal path length and time in a scenario (Kapadia, Wang, Singh, Reinman, &

Faloutsos, 2011). However, these measurements are only valid in egocentric scenarios in

which the reference agent is likely to interact with the scope of the environment.
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Most importantly, comparative crowds analyses must consider the differing parameter

space dimension between steering models. This is an issue both data-driven and synthetic

comparative methods suffer from. While some of these parameters have intuitive direct

effects, for example, the value of a comfort zone affects how close agents may come to

each other, many are not intuitive yet may have large impact on the resultant behaviour

or applicability of the model. Even when the meaning of the parameters is fairly intuitive,

their aggregate effect, or their effect on the macroscopic behaviour of a large crowd, is

not always easy to predict. Because of this, comparing crowd simulators directly and

tuning their parameters is a difficult task. A crowd simulator, as is, may work better

in particular conditions or be more suited for a particular task. Generally, all crowd

simulators, when provided to the public, are given with default parameters. However,

these default parameters may not be representative of the crowd simulators performance

for all scenarios. Thus comparing any two simulators with default parameters raises

the question of whether the comparison is fair or if the parameter settings themselves

confound the results. To alleviate this, crowd simulator parameters may be optimized

under the same conditions before comparison (Wolinski et al., 2014a, 2014b). This work

finds the parameters of the crowd simulators to best fit the given data (real data or

sketches) and then directly evaluates them.
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2.2.3 Qualitative Verification of Simulations

Several important behaviours of real crowds appear at the macroscopic level and may

occur in flux, or they may only exist in or during a small portion of the overall environ-

ment or simulation time. Behaviours such as vortices (vortex flow), lane forming (laminar

flow), oscillations, deadlocks, and several other emergent behaviours ar difficult to quan-

tify accurately or at all. While there are several rendered qualitative aspects of crowds

such as upper body texture and accessories (McDonnell, Larkin, Hernández, Rudomin, &

O’Sullivan, 2009; Mäım, Yersin, & Thalmann, 2009), this section focuses on qualitative

aspects of emergent crowd behaviour and the tools to evaluate them. Still presented

several qualitative methods in his thesis and relegated qualitative evaluation to informed

expectations (Still, 2000). The expected macroscopic effects were: Edge Effects (edges

of the crowd move faster than the centres); Finger Effects (lane forming or laminar flow

in bidirectional crossing); Density Effects (crowd compression); Human Trail (movement

regarding the principle of least effort). Edge Effects were evaluated by producing density

and speed heatmaps over a hallway scenario. Finger Effects were evaluated by visu-

ally confirming the effect in a bi-directional scenario. Crowd Compression effects were

validated by noting that the simulated crowd compresses when turning corners and in

bottleneck scenarios. Finally, Human Trail effects were evaluated by observing crossing

paths (shortest paths) for a goal square (goals in four corners), similar to human desire

paths in parks.

Several approaches use application specific measures to quantify the performance of
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a crowd simulator. In virtual reality, the presence of the user is crucial to the success

of the system. A comparative study was undertaken to measure the presence afforded

to the user by different crowd simulators (Pelechano, Stocker, Allbeck, & Badler, 2008).

In this study, the participants were given surveys immediately after completing tasks in

a virtual cocktail party. The survey questions were designed to elicit the presence each

participant felt in the company of the different crowd simulators (Social Forces, Rule-

based, Cellular Automata, and HiDAC). Similarly, studies have utilized the perception of

clones in crowd simulations to understand what contributes to heterogeneity, an impor-

tant factor in the qualitative evaluation of heterogeneous crowds. This work used crowd

agent clone identification tasks to understand what sort of behaviours or visual changes

reduced the ability to spot clones (McDonnell, Larkin, Dobbyn, Collins, & O’Sullivan,

2008). Later work evaluated the spectators, or evaluators, ability to detect collisions in

a simulation (Kulpa, Olivier, Ondřej, & Pettré, 2011).

Detection based qualitative evaluation moves the onus of viewing an expected be-

haviour from the evaluator to an algorithm. The SteerBug system is capable of detecting

rule-based qualitative behaviours (Kapadia, Singh, Allen, et al., 2009). The strength of

this system is the ability to detect micro to macroscopic behaviours and afford a simple

ruled editing interface as well as a sketch interface for defining behaviours to detect. This

makes the system extremely flexible. Similar works take a data driven approach, in that

the system highlights simulated behaviours by matching them with real data (Lerner,

Chrysanthou, Shamir, & Cohen-Or, 2010). The system can change contexts by utilizing
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different sets of real data to match against, effectively changing the evaluation.

Recent works have made use of the Level of Service (LoS) mapping to evaluate crowd

simulators qualitatively by comparing the LoS flow-density and its qualitative under-

standing with the aggregate macroscopic crowd behaviours (Haworth, Usman, Berseth,

Kapadia, & Faloutsos, 2017; Haworth et al., 2015). Fruin applied the concept of Levels

of Service from transportation research to pedestrian traffic by mapping the quantitative

values (flow rate or speed, and density) to a more qualitative one (levels or grades from

A-F) (Fruin, 1971). Each successive level represents a decrease in service afforded by the

scenario. Level A represents a low density free flowing environment without any path

conflicts between people, and Level F represents a high density crowd with oscillations,

pushing, tight packing, and deadlocked flow.

Tuning a crowd simulator for a particular behaviour or application, especially a high-

dimensional model with unintuitive parameters, is also a difficult task. A specific crowd

simulation method may be highly desirable for a particular application for several reasons

but its behaviour may not match the desired outcomes. Given a pattern of behaviours as a

performance criterion or a trade-off between performance objectives, parameter values of

a steering algorithm may be selected that will produce a particular desired effect (Berseth,

Kapadia, Haworth, & Faloutsos, 2014). This method also affords interactive blending for

artistic control and simplified fine-tuning.
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2.2.4 Scenario and Environment

The interactions of steering simulators and the environment are particularly useful. A

steering simulator may feasibly be applied in any environment scenario. Thus, it is dif-

ficult to predictively evaluate simulators for scenarios not common in the literature or

outside the scope of a particular application. To address this, work has been done to

generate a representative scenario space that captures far-reaching features of different

scenario designs (Kapadia, Wang, Singh, et al., 2011). This work samples the config-

uration space of scenarios, provides methods for statistically generating scenarios, and

deriving subsets of the representative set (10, 000 scenarios covering the spectrum of agent

interactions and environment configurations). Steering simulators can be evaluated by

computing coverage, the ratio of completed to total scenarios. The approximate converse

of this work is computing the complexity of a scenario for crowd simulators (Berseth, Ka-

padia, & Faloutsos, 2013). This work affords the tuning and selective evaluation of crowd

simulators, for example comparatively evaluating simulators on very difficult scenarios.

2.3 Character Control

This report is focused on biomechanical heterogeneity in crowd simulation, and, as such, it

must touch on the rich area of character control, which has produced physically reactive,

heterogeneous, biped locomotion at the single character level. This section provides an

overview of seminal and recent approaches in digital character control. While there is an

extensive and rich literature in robotics and biomechanics concerning biped locomotion,
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these works are outside the scope of this report.

There has been much success in physical and data driven models for heterogeneous

biped locomotion of digital characters. In the following models it is possible to per-

turb, constrain, or parametrize joints, muscle, or neural model parameters to produce

gait asymmetries, unique walking patterns, and falling. These solutions, while rich in

their movement control and output, do not natively handle extrinsic factors found when

planning in dynamic environments, agent-agent and agent-obstacle interactions, and high

volume or high density simulations. In fact, the success of many of these models, espe-

cially earlier approaches, is highly dependent heavily constrained and controlled worlds.

The most successful physical character controllers have utilized at least one or a combi-

nation of optimization, neural networks, and data driven techniques. Early biped models

recreated neural oscillators to produce walking patterns (Taga, Yamaguchi, & Shinizu,

1991). Neural oscillators are types or portions of Central Pattern Generators, biological

neural networks on which isolated rhythmic patterns are predicated (Kuo, 2002). Later

neural models focused on training neural networks by receiving joint or body sensor feed-

back as input and producing appropriate joint angles as output (Geng, Porr, & Wörgötter,

2006; Kun & Miller III, 1996; Miller III, 1994). It has been shown that this sort of walk-

ing behaviour can be evolved by using evolutionary optimization techniques on complex

neural networks composed of simple neurons (Allen & Faloutsos, 2009a, 2009b).

Several models focused on first principles and simple controllers have been successful

at producing life-like biped locomotion. A biped character’s movement controller set
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can be composed using simple control strategies and feedback learning (Yin, Loken, &

van de Panne, 2007; Faloutsos, Van de Panne, & Terzopoulos, 2001). However, generally,

controllers must be carefully composed and tuned.

Of particular interest, is the integration of simplified biomechanical models such as

the inverted pendulum model. This simple but effective model captures the movement of

the centre of mass as a biped shifts weight on a single leg. This model provides a compu-

tationally low-cost means of solving for balance in physically controlled characters (Tsai,

Lin, Cheng, Lee, & Lee, 2010; Kwon & Hodgins, 2010; Mordatch, De Lasa, & Hertzmann,

2010).

There have been several data driven models which derive motions from motion capture

of real actors. This can be achieved in several ways: by applying joint torques derived

from motion capture (Wrotek, Jenkins, & McGuire, 2006); optimizing captured motions

for balance control and composing controllers (Sok, Kim, & Lee, 2007); modulating the

reference motion capture (Y. Lee, Kim, & Lee, 2010); and adaptive controllers based on

predictive models and motion capture data (Ge, Li, & Yang, 2012).

At a more microscopic level, direct simulation and optimization of muscle models

has led to effective biped control. A flexible optimization based strategy affords the

generation of locomotion for a variety of biped characters (Geijtenbeek, van de Panne,

& van der Stappen, 2013). The value of this approach is the ability to model muscle or

body dependent perturbations directly to generate heterogeneity or asymmetries in gait.

The most recent and advanced works in this area concern deep learning. In particular,

34



the application of deep learning in layered, or hierarchical, controllers such that the

biped may have some extrinsic characteristics found in crowd simulation, such as global

planning in dynamic environments. Deep learning through hierarchical reinforcement

learning avoids the need for prior knowledge about locomotion and higher level skills like

path planning and environment interaction (Peng, Berseth, Yin, & van de Panne, 2017).

2.4 Conclusion

In this chapter, the groundwork is laid to begin an in depth discussion on analysis of

and new approaches to biomechanical locomotion heterogeneity in agent-based synthetic

crowd solutions and their applications. The history of the synthetic crowd led to the

categorization and delineation of solutions in this particular area. Related approaches

in the field of character control are also explored as the field is rich with heterogeneous

physical (read biomechanical, or at least bio-inspired) solutions.
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Chapter 3

Motivation & Methodology

This chapter attempts to concretely situate the what? and why? of this dissertation

before providing an overview of the how? In doing so, I will attempt to place the work in

frameworks that are both motivational to the work but also important in understanding

its outcomes and impact.

This dissertation seeks to pursue and critically reflect on a specific issue in an area of

research that is indicative of issues in applications of the work well beyond the scope of

the dissertation. The research area is synthetic crowds and their applications in rendering

and analytics. The specific issue is locomotion biomechanics at the steering level of crowd

agent modelling.

Now that the what? has been covered here and in Chapters 1& 2, I will endeavour

to situate the why?. First, to do so it is important to note a theoretical framework

critical to motivating the problem space. This work is inspired and motivated by a

feminist disabilities standpoint, and as such, this dissertation adheres strongly to the
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principles of the Social Model as opposed to the Medical Model. The Medical Model

pathologizes illness, disability, and difference, while the Social Model centres the humanity

and autonomy of the person or people of focus–placing the onus of such concepts as illness,

disability, and difference on environment and the organization of society. In this way,

these concepts are developed and reinforced by the institutionalization and regulation of

bodies. Rosemary Garland-Thomson (Garland-Thomson, 2005) concisely and powerfully

sums up this framing and its definition within these model frameworks:

Feminism challenges the belief that femaleness is a natural form of physical
and mental deficiency or constitutional unruliness. Feminist disability studies
similarly questions our assumptions that disability is a flaw, lack, or excess.
To do so, it defines disability broadly from a social rather than a medical per-
spective. Disability, it argues, is a cultural interpretation of human variation
rather than an inherent inferiority, a pathology to cure, or an undesirable trait
to eliminate. In other words, it finds disability’s significance in interactions
between bodies and their social and material environments.

Now that the motivation for the what? has been covered, the following sections

attempt to impress the importance of the why? of this dissertation by examining the

application space of synthetic crowd simulation, the focus on normative instead of inclu-

sive frameworks and solutions, and how this affects outcomes in terms of their generality,

usefulness, and real-world impact. The chapter ends by framing the approach taken to

examine the problem space in this dissertation.

3.1 Applications of Synthetic Crowds

Crowd simulation has been applied in several areas of art, design, and evaluation. In

particular, crowd simulation addresses the problem of scale in many fields. The costs
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required to produce large-scale scenes of crowds or evaluations of environments has been

a primary driver of the application of crowd simulation in industry.

3.1.1 Computer Graphics and Animation

Early applications of crowd simulation in animation were cross-overs between dissem-

inating technical achievements and works of art. The first use of flocking behaviours

was in the animation Eurythmy (C. Reynolds, 1995). The Boids approach was the first

formalized approach of flocking, schooling, and herding behaviours. The first animation

using Boids was Stanley and Stella in: Breaking the Ice created by Craig Reynolds and

Symbolics.

In film and animation, scenes of scale that are too costly to film with real actors or

animate manually can be created with computer graphics using crowd simulations. Be-

yond the cost factor, using AI-driven crowd simulations allows the characters to react to

their local situation and provides for emergent movement and behaviour. The first and

perhaps most famous application of rich crowd simulations in film was the battle scenes in

the Lord of the Rings series (MASSIVE, 2017). This software, MASSIVE, is also respon-

sible for crowds in other films such as Ben-Hur, World War Z, John Carter, and Hugo.

Another popular crowd simulation for use in the film industry is Golaem. This software is

responsible for crowds in a diverse set of TV and films such as Chocolat, Florence Foster

Jenkins, Race, Halo Wars 2, Pan, and Game of Thrones (Golaem, 2017). These tools all

support animation and production pipelines and micro to macroscopic behaviour editing
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that includes context selective animations, AI, and heterogeneous movement details.

3.1.2 Analysis and Optimization

Crowd simulation reduces the need for human crowd studies in environment and event

designs. Human-based (real participants) studies are very costly and require both an

environment model and participants. Thus, there is a time and monetary cost motivation

to using synthetic crowds as a source of dynamic analytics. In addition to these costs,

several common crowded scenario cases for which environments must be tested, such

as evacuations or escalated events, are unethical and extremely difficult to reproduce

accurately or safely with real humans. In general, safety-critical scenarios, perhaps the

most important to evaluate, are the most difficult to test because safety can not be

guaranteed for participants, and often video evidence or actual events are not available,

not released, or are extremely noisy due to the conditions of the event. In this space, real-

world training, such as evacuation and safety response training, helps prepare people for

such events. However, it is difficult to predict the real-world responses to such scenarios

under a variety of conditions as they occur. Thus, crowd simulation allows us to safely

sample this space and create predictive environments–environments which depend less on

the training of their users and more on their design. In this way, the social model captures

accurately the issues of inclusive environment design. Historically, design principles and

methods place much of the onus on the environment’s users, not on the environment or

the policies which govern it. That is, we seek form over function, and when we do consider
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function, it is often from the perspective of intended use by ideal, read: able-bodied, users

under ideal conditions, read: average use. This is then an issue for all environments from

common-use to safety-critical scenario conditions. The space of tools and analyses for

this work can be binned in to two areas, commercial and research. Seminal works from

these areas are covered in the following sections.

3.1.2.1 Commercial

An industry has developed around the need to predictively evaluate architectural, urban,

and event designs prior to investing in their construction or execution, as well as modify-

ing, or fixing, already built environments. There are commercial tools which provide some

crowd simulator-based analytics and visualization tools for understanding problems in de-

signs. These range from large scale industry compliant crowd simulators for predictive sce-

nario testing, such as Pedestrian Dynamics (INCONTROL Simulation Solutions, 2017), to

fully integrated BIM compliant 3D environment editors such as MassMotion (Oasys Lim-

ited, 2017). This range includes: complex building simulators (Bentley, 2019; Oasys Lim-

ited, 2017; INCONTROL Simulation Solutions, 2017; SIMWALK, 2019); transportation

focused simulation (PTV Group, 2019); evacuation focused simulation (Integrated Envi-

ronment Solutions, 2019; TraffGo HT, 2019); retail focused simulation (CORE CROWD

LLC, 2019); and film/TV focused simulation (MASSIVE, 2017; Golaem, 2017). These

tools represent powerful engineering ventures and often use state-of-the-art simulators

and analytics. However, they often rely on the use a single synthetic crowd steering
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model in their underlying animations and do not account for heterogeneous biomechan-

ical locomotion in their evaluations. Chapter 4 explicates the issues with this panacea

approach to choice in crowd model, especially in the analysis of buildings and scenarios.

3.1.2.2 Research

Historically, the application of crowd simulation in research has mainly focused on evac-

uation studies. This is mostly due the dangerous, dynamic, and very difficult to model

behaviours that occur during panicked evacuation (Still, 2007). This section makes a brief

overview of works that use crowd simulation to make environment design decisions. Work

has been done to understand evacuation strategies such as herding, and grouping during

evacuations (Helbing et al., 2000). Focus has been placed on evaluating environments

and crowd dynamics using the placement of flow affecting obstacles to impact velocity or

density in the crowd (Severiukhina, Voloshin, Lees, & Karbovskii, 2017; Helbing, Buzna,

Johansson, & Werner, 2005). Pillar-like obstacles may be optimally placed in the path of

bottlenecked crowds to reduce tangential momentum and increase crowd flow in evacua-

tion scenarios (Berseth, Usman, Haworth, Kapadia, & Faloutsos, 2015; Jiang, Li, Shen,

Yang, & Han, 2014). Recent work has shown that panel-like obstacles outperform pillar-

like obstacles under varying initial crowd conditions and crowd densities (Zhao et al.,

2017).

The concepts of Level of Service, introduced in Section 2.2.3, have been used to evalu-

ate and optimize environments for varying crowd densities during evacuations (Haworth,
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Usman, Berseth, Kapadia, & Faloutsos, 2017; Haworth et al., 2015). This work in crowd

density has been applied to speeding up the optimization of environments to facilitate

crowd flow during evacuations by discretizing the search space and focusing on areas with

high crowd flux/density (Haworth, Usman, Berseth, Khayatkhoei, et al., 2017; Haworth,

2016).

3.2 Normative Heterogeneity

This section explores the notion of homogeneity as a norm in crowd analytics and the

use of proxies for heterogeneity. In Section 3.1.2.2, several papers that prescribe solutions

to building features or concrete outcomes generated by synthetic crowds analytics are

described. In these papers, there are echoes of a prevalent problem often overlooked.

Susan Wendell (Wendell, 1996) captures this problem well:

For instance, poor architectural planning creates physical obstacles for people
who use wheelchairs, but also for people who cannot walk far or climb stairs,
for people who cannot open doors, and for people who can do all of these
things but only at the cost of pain or an expenditure of energy they can ill
afford. Some of the same architectural flaws cause problems for pregnant
women, parents with strollers, and young children.

In this way, misrepresentation, simplification, or lack of representation in synthetic

crowd simulation which is then used in content creation, environment design, or policy

development can be viewed as a form of erasure. While there may be many reasons for this

approach, some of which are well-meaning, it is pertinent to take a critical approach when

creating tools, methods, and procedures for informing the aforementioned applications.

In the rest of this section, I explore these issues in my own work and identify a focus for
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the rest of the dissertation.

3.2.1 Prior Assumptions and Focus

Many of the synthetic crowd simulation based works, both in the commercial and research

domains, make assumptions towards generating and probing tractable problem spaces.

In this section, I explore what sort of assumptions have been made in works which I have

co-authored and account for where they stem from. In many cases, by trying to control for

confounds or reduce independent variables in analysis, works in this area simply overlook

or overwrite representations of people.

My own work in this area began with these sorts of assumptions, so before analysing

the work of others (in Chapter 5), I will examine my own. Specifically, I cover papers that

make prescriptive findings about optimal environment layout for safety-critical scenarios,

which rely heavily on the use of normative crowds.

In several papers I have co-authored, prescriptive environment designs and methods

for deriving such designs have relied on mostly homogeneous and normative synthetic

crowds (Haworth, Usman, Berseth, Khayatkhoei, et al., 2017; Haworth, Usman, Berseth,

Kapadia, & Faloutsos, 2017; Haworth et al., 2016; Berseth, Usman, et al., 2015; Haworth

et al., 2015). This approach has utility for reducing the independent variable set size,

which can simplify the analysis and understanding of results. However, the assumption

of the generality of the results by an external or non-expert reader could leave that

reader overconfident and to overlook the use of these spaces by diverse users. While these
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papers are careful to note that these sorts of findings are not definitive and are limited

in scope, it is possible for a reader, a non-expert, to apply outcomes to decision-making.

In this way, preliminary, small scope, results may become part of a decision that affects

those outside of the intended scope. In particular, the application of crowds can often

be seen as overconfident. It has been noted that no single method could possible be

panacea for the crowds problem (Still, 2000). As well, that often crowd simulators are

presented as panacea with respect to modelling in that they “model the range of human

behavior” (Still, 2007).

To go deeper in to this space it is important to focus and carefully define the hetero-

geneity in the scope of this dissertation. In particular, I wish to explore the lowest level

of synthetic crowd simulation–the steering models. I want to understand the impact of

heterogeneity in locomotion biomechanics. At the steering levels this translates in to how

agent update decisions are made, in the real world it means how humans move at any

given moment. For bipedal walkers without mobility aids, this means what motions the

overall body makes in taking steps, stopping, avoiding collisions, and turning. This is the

focus of this dissertation. However, this definition extends to those with varied mobilities

including users of mobility aids, where steps are replaced with whatever means of locomo-

tion those aids offer. For example, rather than planning discrete piecewise footstep plans,

one may view, for example, a wheelchair as a differential drive controller. For this, you

may consider continuous control signals in a differential drive controller model, creating

piecewise control signal plans, or mapping the differential drive control to a simplified
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form, such as viewing the control plan as a piecewise parametrized curve. These latter

models, those concerning mobility aids, are earmarked for future work as they are deeply

important but outside the scope of this particular dissertation.

Finally, I restate that the focus of the dissertation is entirely within the realm of syn-

thetic crowd simulation. Often, disability and health intersect with race, class, sex, and

gender with respect to the forms of oppression people experience. These are important

dimensions of the problem space the dissertation addresses–particularly in the applica-

tion of simulations, and the inclusivity of teams making simulation-based decisions or

creating simulation-based media. However, these dimensions are outside the scope of the

dissertation. That is, addressing the forms the application of crowd simulation takes,

requires several very different studies outside the scope of this area of study. This work,

particularly critical collaborative interdisciplinary approaches, are earmarked as deeply

important future works. However, the impacts of the various components in this problem

space are actively studied in the many areas or disability studies, in particular the role

of environment design in the disablement process and its impact on mobility, health, and

socio-economic factors of community members with disabilities (Clarke, Ailshire, Bader,

Morenoff, & House, 2008; Clarke & George, 2005; Renalds, Smith, & Hale, 2010).

The remainder of this discussion, a deeper dive into the literature around this space,

is left for Chapter 5 Section 5.1. I explore the background of this issue in the literature

spanning from normative assumptions in modelling to more particular misrepresentations

of group categories in experiments.
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3.3 Approach

This dissertation, serves the dual purpose of 1) placing an emphasis on a critical approach

in decision-making with respect to the application of simulation as an apparatus for

dynamic analysis and content creation, and 2) revealing, in the manner required by

the academic and scientific communities, that such an issue is prudent and worthy of

consideration in the defined area of research.

To achieve this goal, I reflect on the literature and build a critical view of the appli-

cation of synthetic crowds, or crowd simulation. This critical reflection occurs here in

this chapter but also at the outset of each following chapter to frame the importance of

a critical approach in this area of research. I then address the questions posed in Chap-

ter 1 by piecewise rigorous exploration of hypotheses generated by these questions in a

bottom-up hierarchical manner. I separate the notion of locomotion biomechanics from

heterogeneity to carefully examine both individually. The first study, regarding biome-

chanics in steering, serves to highlight not only that there are fundamental differences

between steering model outcomes, but also that biomechanical steering provides a level

of fidelity which affords a different view of analysis. The second study, regarding hetero-

geneity in biomechanics, serves as a set of controlled counter examples to the assumption

of normativity in crowd outcomes. Taken together these premises support the conclusion

laid out in this chapter–biomechanical heterogeneity and the representation it affords is

important in synthetic crowds.

To understand the relative performance of locomotion biomechanics in synthetic
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crowds from multiple perspectives, I devise a new method for comparative study of steer-

ing models in synthetic crowds which is ground-truth free and comprehensive. This

method attempts to normalize the difference between models in a novel manner and then

test the models over a dense and broad sampling of scenario types of increasing complex-

ity. All sources of heterogeneity not associated with model selection are also removed–

parameters such as desired speed are equal amongst all models and agents. Rather than

devise difficult to interpret measures or scores, the outcomes of this study are crowd-wide

measures with direct crowd movement/interaction interpretations. Along this vein, the

measures are taken statistically and comparatively evaluated such that outcomes have

a theoretical backing that can be checked against assumptions. This is in contrast to

several methods of comparative crowd evaluation which invent new methods that may

be seen as esoteric or involve numerical manipulations or definitions that abstract away

from a rigours understanding of the impact of model selection. This study also com-

bines rigorous qualitative analysis to ensure that emergent behaviours and failures are

captured–something quantitative-only approaches may overlook. Additionally, placing a

state-of-the-art biomechanically based steering model alongside the industry and research

standard models in this large scale study we can better understand the importance of the

biomechanical approach at the steering level.

To understand the importance of heterogeneity in locomotion biomechanics, I take

the state-of-the-art biomechanical model and produce a well-studied set of conditions,

specifically Temporal Gait Asymmetry in patients post-stroke, to induce heterogeneity at
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the locomotion level. I also produce models to comparatively control for and understand

whether the proxies mentioned in this chapter are sufficient for the types of outcomes

needed in safety-critical applications. These models are then comparatively evaluated

across a hierarchy of “impact” in a bottom-up approach: the footstep action space;

the agent collision space; and crowds space. That is, I carefully explore the impact of

locomotion heterogeneity from the way steps are produced, to the absolute motion of the

agent, to the emergent behaviours and crowd-wide scenario outcomes.

Finally, I review the issues brought forward by this dissertation and use the findings

from the above explorations to develop some preliminary approaches to addressing them.

3.4 Summary

This chapter covers the theoretical background for understanding the problem space and

reasoning behind the dissertation, namely that the feminist disability approach requires a

more critical intersection of crowd simulation work and disability work. The chapter then

outlines examples for exactly why this is so important, particularly now, for the crowds

simulation and analytics research. Finally, the approach taken throughout the disserta-

tion to satisfy these ends is delineated. In particular, the dissertation takes a controlled

hierarchical approach, first separating the relevant concepts iteratively exploring them to

build a case for improvement. At the top of this bottom up hierarchy, I provide some

preliminary solutions towards addressing the issues presented in the dissertation.
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Chapter 4

Importance of Biomechanics

This chapter explores quantitative synthetic crowd evaluation as a difficult but necessary

task both generally and towards understanding the importance of biomechanical steering

models in crowd simulation. The literature on quantitative crowd evaluation is largely

split into two approaches, data-driven and synthetic comparative crowd evaluation. That

is, methods are either data driven, from samples of real life data, or synthetic, from

measures based on the simulated crowd under varying conditions. This chapter covers

the body of quantitative comparative crowd evaluation with a focus on synthetic methods

as a necessary but problematic approach to understanding the performance of synthetic

crowds outside the space of real data.

Both approaches to comparative crowd evaluation have methodological drawbacks.

Data-driven analyses require data on which to operate. Typically, these methods can be

split into two categories, those predicated on learning from real data and those predicated

on the simulation re-enactment of real scenarios. The re-enactment methods are highly
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dependent on the accuracy of the re-enactment itself, and it is clear that generally any

given crowd will not recreate the same behaviours on two instances of the same scenario

(crowds are generally non-deterministic). The learning methods are difficult to generalize

outside of the training data conditions. Typically, the problem exists that, while a data

driven method may train and test well, it is near impossible to test on conditions not

in the training or testing set. This is partially because a complete and accurate real

life crowds data set is intractable across the space of possible situations, contexts, and

cultures. In particular, those situations which are deadly are of the highest importance

but lack data. Synthetic comparative crowds analyses suffer from the opposite issue, in

that there is no ground truth for which to compare results to. Synthetic crowds can be

compared in any environment handled by the crowd simulator and do not rely on real

world data. This is problematic because it is difficult to say if the model is reproducing

desired behaviours, and if the behaviours are sufficiently “accurate.”

A key issue across all comparative crowds analysis methods is the differing model

parameter dimensions across the compared models. For example, the dimensions of a

force-based model will likely differ from a space-time planning model. Additionally, the

parameters will control properties of the models which produce different emergent be-

haviours in the resultant crowd simulations. This is effectively solved by optimizing a

model’s parameters with respect to real data prior to comparative evaluation (Wolinski

et al., 2014a, 2014b). While this works very well when real data is present, and the com-

parison is contained to that particular scenario, this method is not directly applicable to
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comprehensive and exhaustive testing in synthetic scenarios. Furthermore, in (Berseth

et al., 2014) the problem of optimizing a model for a particular metric is effectively

solved. This method allows a crowds designer to decide what is important about the

crowd behaviour they wish to achieve, in terms of quantitative metrics, and find the best

parameters set for that model with respect to those metrics. In this chapter, I propose

the effective amalgamation of these two methods for comprehensive comparative analysis

of crowd simulation models in synthetic scenarios.

This chapter represents, to the best of my knowledge, the largest scale comparative

crowds evaluation study presented thus far. Crowds models are typically applied across

a range of applications in industry, from art, via animation and gaming, to policy and

design decisions, via environment scenario simulation. The issue of model applicability

is rarely addressed in the most important of these scenarios, where decisions may impact

real world outcomes (Still, 2007). This study explores where and why models succeed

and fail across a variety of scenarios from both quantitative and qualitative perspectives.

Specifically, this study tries to understand the applicability of models and provides a

controlled study to assist end user’s in applying models for their own use.

4.1 Background

This section provides a more in-depth review of all relevant literature in quantitative

comparative crowds analysis and is intended to extend Chapter 2 Section 2.2.1. Con-

tinuing the conversation from there, there are drawbacks in terms of applying models to
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different applications and our confidence in their results (Still, 2007). Several methods

have since been developed to carry out the important and necessary task of comparative

crowds analysis. Comparative crowds analysis can be broken into quantitative methods

and qualitative methods. The quantitative methods are of particular interest for model

design, validation, and application because they provide meaningful numbers to base de-

cisions on. Qualitative analysis is difficult to encompass because of the expectations on

may have in terms of outcomes. Context, culture, emotion, and several other factors

affect the outcomes of real world crowds and in terms of models we can only hope to

recreate expected behaviours under very specific conditions (Still, 2007). This review of

works focuses in the quantitative area of the literature.

The first works to blend traffic and comparative pedestrian analysis in the scope

of environments adapted dynamic highway traffic analysis to the space of pedestrian

environment (Fruin, 1971). This work examined the impact of environment design on the

quality of pedestrian crowd flow. An early and particularly important work in this area

for synthetic crowds was the Social Forces model (Helbing et al., 2005). This crowd model

is discussed in detail in Section 4.2.1.1 and relies on forces to model a net steering force per

time-step. Most importantly, this work examined the impact of different scenarios on the

crowd simulator. Follow-up work in this area studied the impact of panic comparatively

across level of panic and velocities (Helbing et al., 2000). These studies provide insights to

within simulator performance under different conditions as well as across parameters, such

as desired velocity and “panic”. More recently this work looked at the transition phases
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between crowd behaviours, such as laminar to stop-and-go, with a comparative analysis of

previously computed fundamental diagrams (Helbing, Johansson, & Al-Abideen, 2007).

Direct comparison of synthetic crowds via data-driven, i.e. predicated on real data,

methods has a rich history in the literature (Junior, Musse, & Jung, 2010; Zhan, Mon-

ekosso, Remagnino, Velastin, & Xu, 2008). A sampling of these methods which relate

to comparative crowds analysis is covered here. An important paper in this area focuses

on comparing real sub-crowds within the same event (Johansson, Helbing, Al-Abideen,

& Al-Bosta, 2008). In particular, this paper focuses on issues found in all comparative

crowd analysis: when looking at density there are multiple local densities where the max-

imum occurring density is what relates to safety; the difference in impact across cultures

and contexts on desired speeds; the difference of measurements used in the literature;

the difficulty of using fundamental diagrams prescriptively. For data-driven comparative

analysis of synthetic crowds, methods typically set up the problem as one of a similarity

measure to the real data. By sampling microscopic state-action pairs from real data,

synthetic crowd can be directly compared per simulation time-step, i.e. their short-term

decisions, by measuring the difference as a function of density or proximity (Lerner et al.,

2010; Lerner, Chrysanthou, Shamir, & Cohen-Or, 2009). Tangentially, under the assump-

tion of small grouping in the majority of crowds, metrics such as dispersion, distortion,

and group outlier percentage can be computed on said state-action pairs (Karamouzas

& Overmars, 2012). Similarly, by reconstructing a scene, metrics which measure the dif-

ference, or distance, between real and synthetic can be used. For example the distance
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between distributions of agents between real and reconstructed synthetic scenarios across

measurement areas (Dupre & Argyriou, 2017; Banerjee & Kraemer, 2011), or using several

similarity metrics such as (Jablonski, Argyriou, Greenhill, & Velastin, 2015). However,

complete and accurate scene reconstruction implies a modelling pre-step cost, and the

accuracy of the scene reconstruction may greatly impact results. This cost and potential

source of error is directly related to scenario complexity and may become intractable.

The concept of measuring distribution distances is significantly extended in the formula-

tion of 4D crowd phase space histograms (Musse, Jung, & Cassol, 2016; Musse, Cassol,

& Jung, 2012). These histograms capture macroscopic flow details. A clustering method

predicated on iteratively refining cluster members based on distribution distance affords

the analysis of more micro “sub-flows”. This method allows those choosing synthetic

crowd models to pick the model for particular applications based on their performance

in the same environments limited to position and velocity space measures in simple sce-

narios. Similarly, viewing crowd behaviours as a distribution of location-orientation pairs

one can formulate trending paths (H. Wang, Ondřej, & O’Sullivan, 2017). This provides

a useful qualitative abstraction of crowd behaviours in the form of abstract patterns.

Similarly, distance measures, such as KL-divergence or per-state predictive likelihood

from pairs of datasets. Beyond measuring distribution distances, other methods provide

meaningful analysis of deviation from real data. Using functional Principal Component

Analysis affords a multi-factored view of the sources of variability in synthetic pedestrian

dynamics (Chraibi et al., 2016). Additionally, the method removes the effect of lateral
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swaying from real data to normalize with respect to non-biomechanical crowds mod-

elling. Human bipedal locomotion induces swaying and is in part due to energy saving

distribution of mass to maintain balanced forward motion. Removing this unfairly gives

credence to models which ignore this motion. Evidence shows that shoulder movement,

when modelled at the collider levels, induces changes in dense crowd manoeuvring and

the perception of crowds (Hoyet, Olivier, Kulpa, & Pettré, 2016; Stüvel, de Goeij, van der

Stappen, & Egges, 2015). These data-driven methods highlight the issues with attempting

to reconstruct real data scenes for model validation in data-driven comparative analysis,

as the studied models do not perform well at scenario reproduction. Authors across this

literature are clear to note that it is difficult to conclusively make model choices based

on these types of analyses.

Another approach to comparative analysis involves quantitative metrics computed

on the synthetic crowds themselves without the underlying assumption of a data-driven

ground truth to make meaningful comparisons. An early a method in this area used

numerous per agent and aggregate metrics and a body of scenarios composing a bench-

mark set designed stress test crowd simulators (Singh et al., 2009). To make such a large

set of diverse metrics broadly usable, the metrics, both per agent and per crowd, may

be combined in a weighted sum producing a single score per scenario. An important

follow-up to this work reformulates the quantitative metrics as quality metrics based on

their optimal values for a given scenario (Kapadia, Wang, Reinman, & Faloutsos, 2011).

This functionally allows cross scenario comparison in addition cross simulator compari-
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son. This work also identifies a failure set as a function of a simulator’s ability to meet

a minimum standard defined by the user. Building on this approach, large scale cross

scenario comparison affords even more insights into performance. By sampling a well

constrained space of empirically important scenarios, which enforce interaction with an

egocentric agent, normalized metrics can be computed over a battery of the possible in-

teractions an agent may face, both agent-agent and agent-environment (Kapadia, Wang,

Singh, et al., 2011). This affords a deep stress testing of a model’s abilities under a proce-

dural set of scenarios which is extensible by reconfiguring the parameters for generation.

This approach focuses on the agent-centric, i.e. egocentric, computation of parameters

and forms a strong basis for model analysis but may misinterpret crowd level interactions

and performance. Another approach, focused on comparison under evacuation condi-

tions, measures the distributions of flow metrics between crowd models (Viswanathan,

Lee, Lees, Cheong, & Sloot, 2014). This work provides important insight in differences

between emergent behaviours in crowd models under dense conditions.

Inverting this problem by viewing the crowd simulation from the point of view of

the environment, and the impact it has on the crowd, is an important perspective. Un-

derstanding, comparatively, the difficulty of an environment for a group of simulators

helps us understand the applicability of steering models for particular environment de-

signs (Berseth et al., 2013). This provides insight into the type of difficulties particular

simulators face in environments designs. A follow-up to this work focuses on the interac-

tions between parametrizable environment elements and crowds during the optimization

56



processes (Berseth, Usman, et al., 2015). This work reveals how the different behaviours

a model reproduces affect the optimization process of an environment and vice versa,

the environment layout produces interesting and difficult to predict effects on the sim-

ulated crowd behaviours. This work found that optimal configurations often produced

emergent cooperative behaviours like laminar flow and vortices. Comparative analysis

of synthetic crowds and the effects on flow and density similarly provides insight into

the cross-density behaviours which emerge and which may be simulator dependent dur-

ing this optimization process (Haworth, Usman, Berseth, Kapadia, & Faloutsos, 2017).

In particular, patterns of pillars for counter-flows (bi-directional hallway traffic) and for

bottleneck flows (uni-directional egress traffic) differed for both the crowd model and the

density. It was found that in some cases, a scenario optimized under high density crowd

conditions produced designs that improved flow across density conditions. It was also

found that pillars near egress points caused the formation of lanes and funnels but that

these arrangements differed for each crowd simulator. Similarly, in counter-flow optimiza-

tions, optimal pillar placements either produced laminar flow or vortices depending on

the crowd model. These works conclusively demonstrate the impact that model choice

has on decision-making during crowd-aware design processes.

As previously mentioned, qualitative results in crowd simulation are highly subjec-

tive, i.e. dependent on expectations. However, these expectations may not generalize

across contexts or cultures. Early work in this area sought to reinforce subjective expec-

tations (Still, 2000). Similarly, making use of Virtual Reality to perform direct perceptual
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validation of models provides an in depth, in-person qualitative review but remains sub-

jective (Pelechano et al., 2008). Defining and identifying the occurrence or emergence

of qualitative phenomenon is very difficult, especially as crowd size grows. To address

this problem, the Steerbug platform provides a rule- and sketch-based interface in a large

scale behaviour detection framework for synthetic crowds (Kapadia, Singh, Allen, et al.,

2009). This work affords the in-depth and user guided qualitative analysis of crowds at any

scale. In a similar vein of work are anomaly detection methods for crowds (Charalambous,

Karamouzas, Guy, & Chrysanthou, 2014; Mehran, Oyama, & Shah, 2009). These may

be directly repurposed for the qualitative analysis of synthetic crowds.

A persistent and difficult problem across the space of comparative crowds analysis

is the difference in dimensionality between models being compared, and furthermore,

the underlying approach to the model itself. This is an important confounding factor

in comparative analysis of synthetic crowd because the space of scenarios is infinite and

the models in question may be biased towards particular scenarios. To address this

issue, it is possible to first calibrate all the models to be compared with respect to real

data (Wolinski et al., 2014a). This is a data-driven model optimization process which

affords a fairer direct comparison between steering models. Another approach, not reliant

on ground truth data, is the Steerfit process which optimizes models parameters by

minimizing or maximizing some criteria (Berseth et al., 2014). This affords cross models

comparison, by optimizing models for the same criteria (crowd metric) under the same

conditions (scenarios), as well as behavioural tuning for content generation, by providing
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a straightforward means of exploring the model parameter space for non-experts.

This work is inspired in part by model validation procedures and recommendations in

simulation modelling (Sargent, 2009). Following this approach, this dissertation presents

data analysis of industry and research standard models to help model consumers choose

the model-type for their application. Additionally, this paper provides a method, mea-

sures, and comprehensive testcases set which helps model producers follow these recom-

mendations when devising new crowd simulation models. The majority of the presented

testcases are pulled from the long history of comparative crowds analysis and represent

the space of scenario crowd simulators are utilized in. In addition to these testcases, some

cases from real world designs are included to represent certain complexities found in built

environments which synthetic crowd struggle to solve.

4.2 Overview

This study explores the quantitative and qualitative performance of steering models under

several conditions. This method, including the model normalization, benchmarks, and

metrics, are designed to address limitations of comparative evaluation of synthetic steering

models. Prior comparative analysis methods for steering models, as well as, literature

delineating new steering models has several notable limitations. While the specifics and

limitations of particular comparative methods were outlined in Section 4.1 the following

is a compiled list of limitations in the crowd simulation literature.

• “Ecologically valid” evaluation tasks. Most crowd simulators are evaluated
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by using a small subset of mostly ecologically invalid scenarios, such as diametric

circles, four-way crossing, or very specific use cases like plane evacuation scenarios.

These are not ecologically valid across applications, and not necessarily ecologically

valid within crowd simulations. A particular shortcoming of interest is evaluation

without static obstacles or where the static obstacles are placed in ways as to not

actually impact evaluation.

• Ranked outcomes without normalization. Several approaches rank evaluation

outcomes, such as one better than the other, without much statistical validation,

usually under the assumption that the models can be directly compared without

any normalization and that underlying outcome measure distributions are the same.

• Missing ground truth or reliance on ground truth. Relying on a ground

truth makes an assumption of perfect predictability in real crowds, and is intractable

under the space of conditions due to: 1) lack of data; 2) the cost of reproducing

the initial conditions of a single scenario; and 3) the chaotic-like nature of human

crowds (mainly that any small change in initial conditions create very large changes

in outcomes especially for any given single participant in a crowd). Because of these

limitations, it is common to generate ground truths from noisy and specific data (for

example, limited catastrophe footage), or construct non-ecologically valid scenarios

to record real data with experimental participants. However, these participants are

not performing in the context of their regular environment.

I propose a new method, the amalgamation of two previous approaches, to alleviate
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the reliance on ground truths while normalizing high dimensional models for direct com-

parison. Each crowd simulation model (specifically steering model in this dissertation) is

first optimized for the same metric using the parameter optimization method in (Berseth

et al., 2014) and then compared across micro and macro metrics in the spirit of (Wolinski

et al., 2014a). This affords a within scenario across simulator comparison method, that

is, an analysis such that each model’s approach can be directly compared under each

set of conditions. Specifically, in the first step, the models must be normalized on some

metric derived from the simulated agents performance. Humans naturally minimize effort

during locomotion tasks (Zarrugh, Todd, & Ralston, 1974; Minetti & Alexander, 1997;

Kuo, 2001; Bertram & Ruina, 2001), thus, the parameter sets are optimized with respect

to metabolic energy expenditure, referred to as ‘effort’ throughout the dissertation. A

crowd-wide definition of this metric can be found in Section 4.2.2.2. The final parameter

sets can be seen in Appendix A.

All models are then tested under a battery of scenarios that span applications from

research to industry. Some of these scenarios are pulled from prior literature (Sec-

tions 4.3, 4.4,& 4.5) and some are difficult combinations of scenario elements found in

built environment designs (Section 4.6,& 4.7). This approach provides insight into the

implications of prior comparative methods as well. In particular, the benchmark set fo-

cuses on scenario types with global and local features of increasing difficulty for models

to solve and are designed to test the limits of the models. That is, we expect models to

fail under several conditions, and by eliciting these conditions we can study their flaws,
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performance, and provide empirical evidence for their applicability in different domains.

By combining both new and previously researched benchmarks together in a hierarchi-

cal bottom-up fashion from the most straightforward solution expectations to the most

complicated, this method presents a novel means of rigorously benchmarking steering al-

gorithms. First, the models are tasked with solving simple interaction scenarios designed

to elicit whether models have any core faults, such as resolving common sub-scenarios

like moving towards a goal or interacting with obstacles. Second, the models are run in a

battery of scenarios that force agent-agent and agent-obstacle interactions with at least

one agent. Third, models are placed in conditions of increasing density in scenarios that

mimic sub-scenarios of a larger scale environment movement (such as a bottleneck egress

point, or a group crossing point). Fourth, the models are tasked with solving a larger

scale egress with several concavities.

Each experimental condition is a scenario space S = 〈O ,A〉 defined by the distribution

of obstacles O and agents A in an environment. An obstacle o ∈ O is defined by its

position, rotation, and shape, while an agent a ∈ A is defined by their model, initial

conditions (starting position and rotation), and goals (a series of world positions). Both

O and A may be generative or explicit in that they are defined by the bounds of their

parameters in which they may be generated or explicitly defined by given parameters

respectively. This allows for a scenario s ∈ S to be fully or partially generated from

the scenario definition S. Thus, each s is a sample of the experiment defined by the

parameters of S. Each of these S is discussed in detail in their respective sections.
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Several parameters of this study are constant across all the experiments conducted.

Those aspects of the study are described here.

4.2.1 Independent Variables

This study focuses on four different model-types that span the spectrum in terms of

implementation and common use in industry and research. The theoretical and historical

bases of each model is discussed here as a backbone for discussions later in the section.

There is a large body of evidence in the literature that outcomes of crowd simulation are

deeply dependent on model choice, see Section 4.1. While the proposed method attempts

to normalize differences between models for comparison, the following choice of models

is based on: 1) their ubiquity in research and industry; and 2) demonstrated deviations

from each other both quantitatively and qualitatively across the body of literature and

reported outcomes.

4.2.1.1 Net Force Models

In force-based crowd models the steering decision is based on a net of repulsion and at-

traction forces. This approach was first introduced to model the forces of social attraction

and repulsion during locomotion in order to inform built environment designs (Helbing

& Molnar, 1995). This model has been extended and applied to escape panic during

evacuation in order to inform evacuation strategies (Helbing et al., 2000). This study

utilizes Social Forces, which we will refer to as sfAI throughout this chapter.
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4.2.1.2 Predictive Models

Predictive models of local steering and collision avoidance predict imminent collisions and

make early choices that effect the current steering decision. While collision avoidance is

partially predicated on predictive-like decisions, these models explicitly predict future

collisions and alter their current local steering decisions accordingly. This approach is

particularly effective at reducing oscillations and step like or jagged movement. Several

models utilize predictive methods, including all models in this study except for sfAI .

This study utilizes the predictive avoidance model, which will be referred to as pamAI

throughout this chapter, an extension of the Social Forces net force model (Karamouzas

et al., 2009).

4.2.1.3 Velocity Models

The introduction of velocity obstacles (VO) for robotics VO (Fiorini & Shiller, 1998,

1993) provided a simple means of finding guaranteed collision free steering decisions.

This method finds the abstract obstacle formed by the set of velocities for which two

objects will collide at some point and then avoids choosing relative velocities within this

“velocity obstacle” area of velocity space as if it were an actual obstacle.

Extended forms of this method, in particular, RVO and RVO2 both anticipate the

reactive behaviour of other agents. In RVO, this is a achieved by assuming all agents

make the same collision avoidance decisions and moving toward the end results of that set

of decisions rather than stepping towards it (Van den Berg et al., 2008). This approach
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avoids the step-like or jagged patterns VOs may create. RVO2 takes this assumption

one step further and solves an optimization problem to find a collision free velocity in

velocity space. The collision free velocity space is formed by the concatenation of half-

planes induced by the velocities of the N interacting agents (van den Berg et al., 2011).

This study utilizes RVO2, which we will refer to as rvo2dAI throughout this chapter, a

predictive and reciprocal model.

4.2.1.4 Space-time Planning Models

Planning models produce a short-term path, or trajectory, to resolve imminent collisions.

One approach to planning is to model a discretized ego-centric perceptual field. By finding

the overlap, or intersection, of obstacles and agents and performing linear prediction on

this field, a short-term local plan can be formed (Kapadia et al., 2012; Kapadia, Singh,

Hewlett, & Faloutsos, 2009).

Footstep-based planning is used by both the computer animation community and the

robotics community. In crowd simulation, a space-time planning method for local steer-

ing and collision avoidance based on footstep placement affords a non-linear prediction

of collisions, tightly packed crowds, piecewise stepping actions, and most importantly

heterogeneity at the step level (Berseth, Kapadia, & Faloutsos, 2015; Singh, Kapadia,

Reinman, & Faloutsos, 2011). This study utilizes the footsteps model, which is referred

to as footstepAI throughout this chapter.
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4.2.2 Dependent Variables

This research focuses on the crowd wide performance of agents with respect to scenario

and steering model. To capture and understand what we consider to be the most im-

portant factors in understanding quantitative crowd performance we consider contacts,

effort, flow rate, and path length as defined here.

4.2.2.1 Unique Contacts

Crowd simulation can be thought of as a hierarchical set of considerations for entities to

achieve while traversing an environment towards some goal. In agent-based, and more

specifically particle-based, crowd simulation at the local steering level of the hierarchy,

a primary consideration is collision avoidance. The term collision may have a subjective

meaning however. Qualitatively, several models, especially force-based models, may have

what can be thought of as Newtonian collisions in which the particles never actually

touch but their repulsive forces create motion which appears, at a distance, to be the

result of a collision. In this research, we are specifically trying to understand where

models fail or succeed in solving scenarios. Considering this, collisions are defined in

terms of interpenetration contact, which can be considered an invalid state for a particle

simulation to be in. To understand how a model performs with respect to contact, the

total number of unique interpenetration contacts is counted over the course of a scenario

simulation for each agent’s particles with all other agent’s particles as follows:
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C(A) =
∑
t∈T

∑
(a,b)∈(A2)

∑
(p1,p2)
∈(ap)×(bp)

o(t, p1, p2) (4.1)

where T is the set of all time samples, t is the index of each sample, A is the set of all

agents, ap and bp are agent a’s and agent b’s particles respectively1, and o(t, p1, p2) is an

interpenetration contact indicator at time t defined as:

o(t, p1, p2) =


1 if

||pc2−pc1||<pr2+pr1and
o(t−1,p1,p2)=0

0 otherwise

(4.2)

where p1 and p2 are particles defined by their centres pc1 and pc2 with radii denoted by pr1

and pr2 respectively.

4.2.2.2 Effort

Measuring effort helps provide insight into how well a model mimics human behaviours

as humans naturally optimize effort expenditure when walking. Effort spent by a person

walking can be effectively expressed as total metabolic expenditure over a path (Guy et

al., 2010). In this study, the total effort expenditure over the crowd is defined as the sum

of all agents’ effort over their path integral:

E(A) =
∑
a∈A

ma

∫
(es + ew|va|2)dt (4.3)

where m is the mass of each agent (in this study, m is homogeneous and set to 1 Kg to

remove size/mass heterogeneity which is outside the scope of this dissertation), es and

1For most algorithms the agent is defined by a single particle (i.e. |(ap)| = |(ab)| = 1), but this is not
always the case (e.g. the footsteps model).
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ew are biological constants set to empirical averages for human walking, 2.23 J/Kg·s and

1.26 Js/Kg·m2 respectively, and va is the velocity of agent a.

4.2.2.3 Flow Rate

Pedestrian dynamics have been studied in the context of environment traffic, analogous

to vehicular traffic (Fruin, 1971). The application of qualitative labels to density and

predictive flow qualities in pedestrians traffic flows facilitates the discussion and mea-

surement of pedestrian flow dynamics. In this study, we define flow rate as the rate at

which agent’s complete their final goal over the entire simulation:

F (A) =
|A|
Tf

(4.4)

where Tf is the final simulation time. While there are several approaches to defining flow

rate, this formulation is a simple and tested method that can be thought of as goal com-

pletion rate (the area or point at which the flow is measured is the goal area) (Haworth,

Usman, Berseth, Kapadia, & Faloutsos, 2017).

4.2.2.4 Path Length

Measuring total path length is a straightforward way to understand the impact of emer-

gent behaviours in crowd simulators. Ideally, humans minimize the length of the path

they travel on towards their goals. In crowds, this produces interesting emergent be-

haviours as the shortest linear path is rarely possible. In this study, the path length is
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approximated over a poly-line trajectory of each agent:

P (A) =
∑
a∈A

∑
s∈Sa

||s|| (4.5)

where Sa is the poly line path traversed by agent a defined by the linear segments s whose

endpoints are captured at each sampling.

4.2.3 Additional Qualitative Discussion and Failure Ratio

It is important to explore the emergent behaviours of each of the models as well as how

each of the models fail under particular conditions. In each scenario, success is defined as,

“all agents have complete their goals.” In addition to the aforementioned crowd measures,

we also measure failure rate as the ratio of successfully completed scenarios to the entire

study testcase set. For failed and outlier scenarios, the reasoning behind the failure is

explored and discussed. Additionally, the emergent behaviours of successful scenarios are

explored and discussed.

4.2.4 Statistical Analysis

In the comparison of steering models, care must be taken in the assumption made about

outcomes and their significance. The method of comparison described here assumes noth-

ing about the compared algorithm set, and is intended to be applied broadly (to new and

different algorithms). Instead of presenting a new metric or method which moves away

from classic and well-known statical tests, this method aims for a rigorous application

of well-known techniques which can be understood from the literature regarding their
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construction and use. These methods also assume a generalizability to application. This

means a statistical method is needed which is generally applicable for comparison across

multiple groups without assumptions of underlying distributions of the groups and han-

dles the relative ranking of outcomes. In statistical hypothesis testing, there is ultimately

a tension between broad applicability and agreeable panacea in such a case. On one hand,

common parametric tests like ANOVA assume normality of underlying distributions (but

can be robust to large sample sizes), while on the other hand non-parametric tests do not

assume normality, but they may assume homoscedasticity for particular interpretations.

The data presented in this chapter has undergone careful analysis to understand what

methods of statistical significance may be applicable. Given the above constraints, the

fact that heteroscedasticity is sometimes present (verified via Levene’s test), outliers are

highly dependent on scenario type, and the number of samples is relatively large (always

N > 20), I propose using the Kruskal Wallis test (Kruskal & Wallis, 1952). Kruskal Wal-

lis has interpretations based on assumptions about the underlying distributions, these

are: (1) when the distributions of the data are homoscedastic, i.e. they are identically

distributed, the test can be interpreted as a test between medians; (2) if they are addi-

tionally distributed symmetrically the test can be interpreted as a test between means;

and (3) if no assumption is made about underlying distribution the test can be interpreted

as dominance of one distribution over another. In this work, I make use of (3), to provide

a general approach with no assumptions regarding underlying distributions. The use of

boxplots helps identify where this dominance occurs by characterizing the distribution
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graphically. Additionally, should there be a significant result, this test is then follow with

a battery of post-hoc tests to find the location of these pairwise significant differences

and help control for the errors that may stem from using a panacea method. This bat-

tery includes the pairwise multiple comparison post-hoc tests Conover (Conover & Iman,

1979), Dunn (Dunn, 1964), and Nemenyi (Nemenyi, 1963). In the case of rank ties the

FWER (Hochberg & Tamhane, 1987) & FDR (Benjamini & Hochberg, 1995) correction

methods for Conover and Dunn are used, and the Chi-square null distribution of the test

statistic for Nemenyi is used. In this proposed method, results are only reported as sig-

nificant if all pairwise post-hoc tests are p < 0.01. Taken together, this strategy should

provide for broad applicability while retaining a high degree of confidence in results.

4.3 Simple Interactions

This experiment comparatively explores the performance of each model in a set of thirty

scenarios commonly used in the analysis of models in the literature. The majority of the

set was previously defined as a spectrum of difficulties for which to stress test specific

areas of performance in steering models. Each scenario is explicitly defined with agent

initial conditions, goals, and obstacles where applicable.

The scenarios range from a single agent in an empty environment navigating toward a

nearby goal to several agents arranged in concentric circles with diametric goals. Of par-

ticular interest are those scenarios commonly used in the literature, such as the diametric

agent scenario, circle 20.
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4.3.1 Material and Methods

In addition to the materials and methods outlined in Section 4.2, this experiment is

performed on the following scenario set.

4.3.1.1 Scenario Set

All scenarios in this experiment have explicitly defined initial conditions and thus were

simulated one time, (experiments showed repeated simulation does not provide additional

information). This set comprises 28 scenarios common in the crowd simulation literature

which build from straightforward to complicated and span expected interaction cases.

These scenarios are outlined in Table 4.1.

4.3.2 Results

The results for the study are separated in tables by metric: total unique contacts in

Table 4.2; total effort in Table 4.3; flow rate in Table 4.4; and total path length in

Table 4.5. Each table is coloured as a per row heatmap (where green is the better score

for that metric) to highlight the success of each steering modelling approach.

4.3.3 Discussion

In this study, across all benchmarks all models are configured to a desired and maximum

speed of approximately 1.3m/s. This is to control for the heterogeneity of parameter set-

tings, since the rest of this dissertation addresses that separately. While higher flow rate
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Table 4.1: All simple interactions scenarios with descriptions.

Scenario Description Focus
simple 1 One agent with obstacle immediately be-

hind.

Model Validation

simple obstacle 1 One agent moving towards goal behind
obstacle.

simple wall One agent moving towards goal behind
wall.

curves One agent steering through a piecewise
quantitzed S-curve.

oncoming 1 Two agents moving towards a head on
collision.

One-on-One Interactions

crossing 1 Two agents crossing paths at a right an-
gle.

oncoming trick Two agents meeting their goals near but
not crossing each other.

crossing trick Two agents meeting their goals near but
not crossing each other at right angles.

similar direction Two agents with marginally different
goals moving in the same direction.

oncoming obstacle Two agents crossing paths with an ob-
stacle at the crossing point.

Agent-Agent Interactions

crossing obstacles Two agents crossing paths at a right
angle with an obstacle at the crossing
point.

surprise 1 Two agents crossing at the corner of a
large obstacle blocking line of sight.

squeeze Two agents crossing in a narrow corridor
with enough space for both.

doorway one way Two agents passing through a doorway
from one side.

doorway two way Two agents passing through a doorway
at their crossing point from both sides.

fan in A group of agents with the same goal.

Group Interactions

fan out A group of agents with spread out goals.
cut across 1 One agents crossing the path of a group

of agents.
3 way confusion 1 Three agents crossing paths.
4 way confusion Four agents crossing paths at a single

crossing point.
4 way confusion obstacle Four agents crossing paths with an ob-

stacle at the crossing point.
frogger One agent crossing the paths of three

agents moving perpendicular to the
agent.

oncoming groups Two groups of agents crossing paths.
3 squeeze Two agents crossing paths with one

agent in a narrow corridor.
double squeeze Two agents crossing paths with two

agents in a narrow corridor.
wall squeeze Two agents and one agent passing

through a doorway at their crossing
point in a narrow corridor.

circle 20 Twenty agents on the circumference of a
circle with diametric goals.

Large Scaleconcentric circles Five hundred agents on the circumfer-
ence of two concentric circles with noisy
diametric goals.
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(a) (b)

Figure 4.1. The two diametric goals scenarios from the common set where each agent is a

coloured circle with a matching goal star. (a) the circle 20 scenario with 20 agents, and (b) the

concentric circles scenario, a related but significantly more difficult case with 500 agents in two

noisy concentric circle arrangements. Note that (b) is multiple times larger than (a) and is scaled

for visualization here–the diameter of (a) is approximately 20m and of (b) is approximately 100m.

Several variants of the diametric goals scenario have been used throughout the crowd simulation

literature.
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(a)

(b)

(c)

(d)

Figure 4.2. The subset of common scenarios that involve difficult hallway configurations (the

intersection of people, space, and activities in the simple interactions): (a) squeeze (b) wall squeeze

(c) doorway one way (d) doorway two way.
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Table 4.2: Total unique collisions for all common scenarios.

Scenario footstepAI pamAI rvo2dAI sfAI
simple 1 0 0 0 0
simple obstacle 1 0 0 0 0
simple wall 0 4 4 0
curves 0 8 7 0
oncoming 1 0 2 2 0
crossing 1 0 0 0 0
oncoming trick 0 0 0 0
crossing trick 0 0 0 0
similar direction 0 0 0 0
oncoming obstacle 0 4 3 0
crossing obstacle 0 4 2 N/a
surprise 1 2 5 3 N/a
squeeze 0 2 2 N/a
doorway one way 0 4 4 0
doorway two way 0 4 3 0
fan in 0 0 0 0
fan out 0 0 0 0
cut across 1 0 0 0 0
3 way confusion 1 0 0 0 0
4 way confusion 0 4 2 0
4 way confusion obstacle 0 8 7 0
frogger 0 2 2 0
oncoming groups 0 0 14 0
3 squeeze 0 2 2 0
double squeeze 0 0 0 0
wall squeeze 0 5 8 0
circle 20 2 4 0 0
concentric circles 7108 44078 25668 819256
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Table 4.3: Total effort for all common scenarios. All units are kgm2/s2

Scenario footstepAI pamAI rvo2dAI sfAI
simple 1 0.89 0.11 0.26 0.22
simple obstacle 1 34.65 30.24 30.33 29.86
simple wall 232.02 208.36 207.44 209.21
curves 99.04 89.46 89.46 95
oncoming 1 140.56 324.31 329.31 378.94
crossing 1 136.12 122.92 123.12 122.58
oncoming trick 68.88 60.05 64.4 58.42
crossing trick 60.6 52.37 51.64 51
similar direction 352.36 324.45 336.92 323.78
oncoming obstacle 144.19 128.32 127.66 139.58
crossing obstacle 134.12 120.76 123.43 N/a
surprise 1 201.2 209.55 194.59 N/a
squeeze 177.35 161.21 377.11 N/a
doorway one way 180.35 160.68 162.78 180.27
doorway two way 177.63 161.22 161.14 169.79
fan in 424.9 529.19 532.36 527.64
fan out 576.82 229.85 231.11 236.93
cut across 1 875.81 788.67 838.52 785.81
3 way confusion 1 232.53 211.11 234.26 213.2
4 way confusion obstacle 284.51 258.87 259.91 266.18
4 way confusion 282.32 256.97 256.79 307.21
frogger 255.65 127.66 126.91 138.19
oncoming groups 2036.87 1886.42 1885.43 1909.49
3 squeeze 266.59 241.36 242.44 246.13
double squeeze 355.32 380.98 384.67 391.33
wall squeeze 269.7 242.69 250.18 253.3
circle 20 1371.3 1205.53 1233.65 1195.67
concentric circles 185450.2 175112.73 213682.3 675853.83
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Table 4.4: Flow rate for all common scenarios. All units are agents/s

Scenario footstepAI pamAI rvo2dAI sfAI
simple 1 2.5 20 20 20
simple obstacle 1 0.1 0.14 0.17 0.15
simple wall 0.05 0.08 0.09 0.08
curves 0.03 0.05 0.06 0.04
oncoming 1 0.1 0.2 0.23 0.37
crossing 1 0.1 0.14 0.16 0.14
oncoming trick 0.19 0.26 0.25 0.3
crossing trick 0.22 0.31 0.39 0.34
similar direction 0.04 0.05 0.06 0.05
oncoming obstacle 0.09 0.13 0.16 0.11
crossing obstacle 0.1 0.13 0.16 N/a
surprise 1 0.07 0.07 0.1 N/a
squeeze 0.08 0.1 0.03 N/a
doorway one way 0.07 0.1 0.12 0.08
doorway two way 0.08 0.1 0.12 0.09
fan in 0.27 0.13 0.15 0.13
fan out 0.09 0.26 0.31 0.24
cut across 1 0.13 0.18 0.17 0.19
3 way confusion 1 0.12 0.17 0.15 0.16
4 way confusion 0.19 0.25 0.3 0.19
4 way confusion obstacle 0.19 0.23 0.3 0.24
frogger 0.18 0.13 0.16 0.12
oncoming groups 0.2 0.27 0.33 0.27
3 squeeze 0.11 0.15 0.19 0.15
double squeeze 0.15 0.36 0.45 0.15
wall squeeze 0.11 0.15 0.17 0.14
circle 20 0.91 1.34 1.54 1.42
concentric circles 3.54 3.13 3.52 2.14
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Table 4.5: Total path length for all common scenarios. All units are m

Scenario footstepAI pamAI rvo2dAI sfAI
simple 1 0.01 0.01 0.08 0.07
simple obstacle 1 9.38 8.9 8.97 8.9
simple wall 64.98 61.85 61.33 62.15
curves 27.78 26.54 26.45 28.04
oncoming 1 38.72 37.45 37.47 38.3
crossing 1 37.63 36.43 36.4 36.5
oncoming trick 18.35 17.44 17.48 17.42
crossing trick 16.27 15.34 15.29 15.21
similar direction 98.68 96.52 99.61 96.55
oncoming obstacle 39.42 37.64 37.72 38.96
crossing obstacle 36.9 35.74 36.5 N/a
surprise 1 55.78 61.18 57.52 N/a
squeeze 48.93 47.45 75.83 N/a
doorway one way 49.21 47.63 48.14 49
doorway two way 49.06 47.45 47.61 49.06
fan in 116.6 157.35 157.38 157.32
fan out 161.02 68.03 68.36 69.82
cut across 1 243.11 234.33 247.85 234.24
3 way confusion 1 64.32 62.57 69.21 63.28
4 way confusion 77.66 75.64 75.85 78.45
4 way confusion obstacle 78.42 75.41 76.86 77.82
frogger 70.25 37.45 37.55 38.3
oncoming groups 569.54 559.09 557.46 564.76
3 squeeze 73.5 71.3 71.72 72.39
double squeeze 97.62 112.69 113.62 98.9
wall squeeze 74.1 71.66 73.07 73.84
circle 20 375.79 355.42 364.63 355.86
concentric circles 47364.99 46208.43 62603.5 172755.47
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is generally better, adhering to the desired and maximum speeds is critical to achieving

expected results for whatever scenario a designer may be modelling. In Table 4.4 the

first sign of a common thread which holds throughout the larger study, appears wherein

footsteps has a slightly lower flow rate than the other models.

The footstepAI model has the best performance in the unique contacts except for the

circle 20 scenario. The footstepAI model also has the worst performance in terms of flow

rate, path length, and effort. In the effort metric results, there are four outlier scenarios:

oncoming 1, fan in, double squeeze, and concentric circles. Despite the parabolic paths

and the longer time taken, in these scenarios the footstepAI solution is more energy

efficient. This is somewhat well reflected in the flow rate and path length metrics as well.

Broadly speaking pamAI has the best performance in terms of total effort and path

length. However, rvo2dAI has the best performance in terms of flow rate. The sfAI

model did not complete the crossing obstacle, surprise 1, and squeeze scenarios. These

differences in related measures highlight the importance of evaluating the qualitative

results.

4.3.4 Qualitative Discussion and Failure Set

The overall low flow rate of the footstepAI model is primarily due to its ability to utilize

nearby free space and make non-linear motions, like sidesteps and turning steps, to resolve

collisions and path direction. Additionally, the footstepAI model is non-holonomic. This

means the model, unlike the other models in this study, can not simply move along an
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available degree of freedom to resolve steering issues, it must plan a series of footstep

actions to do so. In this set of cases, we begin to see the importance of biomechanics and

how it may be overlooked at the micro scale.

A particularly extreme scenario, highlighting an artefact of disregarding biomechanics

and/or all aspects of physical simulation, is the simple 1 scenario. The footstepAI model

completes a multi-point turn at a speed of approximately one full turn, or 360◦, in one

second. The rvo2dAI and sfAI models complete near instantaneous rotations correspond-

ing to an angular velocity of 3600◦ in one second. Interestingly, pamAI ignores rotation

in completing the scenario. The insight here is that often open source steering model

implementations clamp linear velocities to fall between their minimum and maximum (if

they are explicit parameters). However, they may not control for torques and induced

angular velocities. Therefore, at agent initialization, when the velocity of the agent is a

zero vector and the agent is not in motion, the agent may rotate as fast as necessary.

Additionally, often the description of steering models does not include torque control.

That being said, the impact of this artefact is part of a rare edge case and is dependent

on the desired use of a model. In rendering, like animation or games, this artefact would

have negligible impact. The agent would within the first frame (or at most very few

frames), outside of human perception, simply appear to be facing the correct direction.

However, in analysis there is an interplay between the scenario, metrics, and the model.

It is clear that the artefact drastically inflates flow rate because the completion time is

the minimum given the update frequency (1agent/0.05s) and decreases the effort because
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the effort measure does not capture angular velocity. Finally, the scenario is extremely

trivial in design and has no practical value in application, but does serve to explicate

issues such as this in evaluation. In practice, and in other scenarios in the remainder of

this dissertation, this artefact has no impact.

There are two low performing effort outliers for the footstepAI model, fan out and

frogger, are due to an interesting parametrization artefact. The balance between energy

coefficients, the parametrization used to blend energy costs in the model’s optimization

scheme, have interesting impacts on qualitative results. In cluttered forced interaction

type scenarios (obstacles and agents), the model parametrization used in these experi-

ments produces a minimization of effort–an effect reflected by the well performing outliers

with respect to effort mentioned in the quantitative results. However, in very open sce-

narios, especially those with no obstacles and which require (or would be well solved by)

straight paths, the footstepAI model produced an angular path of two lines such that the

two lines and the shortest path form an obtuse triangle. This is primarily because very

straight footsteps of average step length have a lower cost overall, with respect to the

internal energy functions used by the model, than making shorter or perturbed footsteps.

That is, there is a mismatch in the distance to the goal and how many low energy steps

fit in that distance. This can be fixed by increasing the time cost weight, which affects

the overall shape of the agent trajectory. However, somewhat unintuitive, this is not an

effort optimal strategy in general–something reflected on later in Chapter 6 Section 6.2.2.

The diametric goals scenarios, circle 20 and concentric circles, are good scenarios
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for understanding the impact scale may have on revealing issues in models. In these

scenarios, the outcomes are mostly flipped. The circle 20 scenario is relatively easy to

resolve, and for the most part all algorithms produce very smooth vortices. However,

minor difference in how they achieve this lead to different results. The footstepAI model

makes a somewhat piecewise vortex in that three main groups of agents stick together and

three outlier agents which do not quite fit along the ring of these groups move along the

outside of them. The vortex like movement happens at the last possible point where the

group begins to compress sin the centre of the scenario. The pamAI and rvo2dAI models

produce very similar patterns of near perfectly balanced vortex that moves in a smooth

circular formation almost from the very beginning of the scenario. In the concentric

circles scenario, the predictive nature of the footstepAI and pamAI models produces nice

“optimal” vortices for such a noisy and large case. The sfAI model, however, struggles

in an interesting manner. The agents that reach the compression point first are trapped

by the agents on the outer edges of the group which forms near the centre. The group

near the centre oscillates at a high frequency, making no progress toward their goals. The

outer layer forms a vortex which remains on the outer layer until linear paths to the goals

can be made. This continues, with each “shell” of agents leaving the centre until the

entire agent set completes.

The sfAI model was the only model to fail under these conditions. These relatively

straightforward conditions, where balanced oncoming agents collide, highlight a general

problem for force-based models. These models without noise or predictive forces, par-

83



ticularly under heterogeneous conditions or similarly parametrized agents, may reach

equilibrium in the net force between two or more interacting agents. This may continue

in a functional stalemate with none of the interacting agents completing the scenario. In

some cases, numerical error may eventually resolve the conflict by causing gradual sliding

between the particle until the agents’ net forces overcome their equilibrium.

The results in this experiment highlight an interesting trend in the biomechanical

model, footstepAI . The model appears to do worse, with respect to the majority of

metrics. However, careful qualitative review highlights what is actually happening. In

any given path, the other three approaches will produce linear paths–in the completely

unobstructed scenario a path between any two points is a perfect line. However, footstepAI

is predicated on a piecewise trajectory of parabolic curves. These curves, at any point,

will be longer than their linear approximation counterparts. Additionally, the COM

follows these curves and thus the velocity modulates over them. So what appears to be

an under-performing approach to synthetic crowds is, in most cases, actually a significant

increase in fidelity.

4.4 Forced Environment and Agent Interactions

This experiment comparatively explores the performance of each model in a comprehen-

sive set of scenarios, the Representative Set. These scenarios were originally intended to

force interactions with a reference agent such that normalized metrics (with respect to op-

timal values) could be computed to make direct steering model performance comparisons
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across scenarios (Kapadia, Wang, Reinman, & Faloutsos, 2011). Here, the crowd-wise

metrics, as described in Section 4.2.2, are used instead of reference agent normalized

metrics, as this experiment seeks to understand the crowd level performance of these

modelling approaches.

4.4.1 Material and Methods

In addition to the materials and methods outlined in Section 4.2, this experiment is

performed on the following scenario set.

4.4.1.1 Scenario Set

This experiment’s scenario set is defined by a procedural scenario space designed to force

interactions with a reference agent. The Representative Set Sr is a subset, of cardinality

10, 000, of this space such that the “coverage” of models converges (Kapadia, Wang,

Singh, et al., 2011). In Sr, each scenario is explicitly defined with agent initial conditions,

goals, and obstacles. An example scenario from the representative set, ID: 1999, can be

seen in Figure 4.3.

4.4.2 Analysis

The summary statistics (median, first quartile, third quartile, IQR, max, min, and out-

liers) of each of the four metrics are computed over the intersection of all completed

scenarios. All measures are tested using the methods outlined in Section 4.2.4 on the
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Figure 4.3. An example scenario from the representative set Sr. In this particular scenario,

there are five agents and four goals (one agent shares a goal with another). There is a hallway

like feature and a high potential for agents crossing paths while navigating the obstacles.

intersection of all completed scenarios.

4.4.3 Results

Boxplots of unique contacts, effort, flow rate, and path length statistics in Figure 4.4. The

completion rates for each model are reported in Table 4.10. There is a significant difference

present amongst the models for each measure (N = 7371, p < 0.01). The battery of post-

hoc tests for the unique contacts measure reveal there is no significant difference between

pamAI and rvo2dAI , but all other combinations of models are significant (p < 0.01),

see Table 4.6. All pairwise comparisons of steering models for effort and flow rate are

significantly different (p < 0.01), see Tables 4.7 & 4.8. For the path length measure,
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Figure 4.4. Boxplots of (a) unique contacts, (b) effort, (c) flow rate, and (d) path length statistics

for the footstepAI , pamAI , rvo2dAI , and sfAI models in the forced interactions scenarios.

pamAI is significantly different from all other models (p < 0.01), all other combinations

are not significant, see Table 4.9.

4.4.4 Discussion

In this study, I want to understand the overall performance of the agents when they are

forced to interact with themselves and the environment under numerous configurations.
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Table 4.6: Matrix of statistically significant results for the unique contacts metric in the Forced

Interaction Scenarios. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X x -
sfAI X X X

Table 4.7: Matrix of statistically significant results for the effort metric in the Forced Interaction

Scenarios. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X X -
sfAI X X X

Table 4.8: Matrix of statistically significant results for the flow rate metric in the Forced Inter-

action Scenarios. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X X -
sfAI X X X

Table 4.9: Matrix of statistically significant results for the path length metric in the forced

interaction scenarios. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI x X -
sfAI x X x

Table 4.10: Total number of completed scenarios for each model in the forced interactions

scenario set (|S| = 10000).

AI Completed Scenarios Success Ratio
footstepAI 9825 98.25%
pamAI 9921 99.21%
rvo2dAI 7921 79.21%
sfAI 9440 94.40%
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These scenarios are relatively unchallenging in terms of crowd-level challenges (large

numbers of interacting agents), but are individually challenging for the agents as they

force micro interactions between agents and obstacles in a small space. Ultimately, the

scenario set in this experiment is a good sampling of the state space of micro agent

interactions. The results for this study tell two stories. The first lies in the source of this

benchmark and the difference between its original intended use and the use made of it

here. This is primarily because of two factors 1) the inclusion criteria for these studies

is predicated entirely on the completion of all goals of all agents in the scenario, which

differs from the original benchmark criteria and 2) Sr is specifically designed for egocentric

metric evaluation. In particular, the path length outcomes reveal the purposefully limited

definition of the Sr which focuses on scenarios with individual interactions instead of

crowd wide dynamics. Since all agents are distributed over the small and constrained

definition of tSr and all models use the same high-level path planner, there is little room

for deviations in paths and thus path lengths.

The pamAI and rvo2dAI models stand out for having the highest unique contacts

counts with numerous outliers, while also having the highest flow rates.

Interestingly, though there are significant differences, the size of these differences

between models with respect to the effort and path length measures is negligible. This is

most likely an artefact of the scenario space. The scenario is rather small and is designed

primarily for forcing interactions in the building blocks of larger environments, not stress

testing the more complicated environments which may be made up of these building
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blocks. Thus, the path lengths in general are within a small range. Similarly, the same

occurs within the effort measure, however footstepAI is offset primarily by its parabolic

paths.

4.4.5 Qualitative Discussion and Failure Set

In this study, we see the beginning of a trend that holds in other parts of the larger study,

pamAI and rvo2dAI , struggle with static obstacles, particularly in tight corridors with

competing agents. This causes a number of artefacts such as ghosting through obstacles

and agents.

The outliers for rvo2dAI and pamAI in the unique contacts and flow rate metrics

are interesting. These outliers are almost exclusively caused by pushing which, in tight

environments (i.e. nearby obstacles), produces model specific problems. A couple of

rvo2dAI agents can push another agent (ie the only free velocity on velocity space is

in the opposite direction) out of their way until a forward facing free velocity is found

for the pushed agent. For pamAI , the similar issue is primarily with forced oscillations

under tight environment passing conditions. As well, while rvo2dAI and pamAI both

produce excellent reciprocal avoidance amongst agents in open environments (as seen in

Section 4.3), they struggle with stationary obstacles. For rvo2dAI , this appears to be

because, occasionally under competing half planes in velocity space, an rvo2dAI agent

will find free velocities inside of the obstacle who’s half plane is not well-defined. For

pamAI , this appears to be because of the importance of balance in the definition of
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forces. In pamAI , there are agent avoidance, obstacles avoidance, goal, and predictive

agent avoidance forces, however there is not predictive obstacle force. This appears to

cause, under the right conditions, a net force that overwhelms the obstacle avoidance

force.

The failure sets of the models in the forces interactions scenarios reveal interesting

shortcomings of all the models in dense environment conditions. The footstepAI model

does not complete scenarios if it spawns too close to an obstacle and is facing it at close

to orthogonal small number or total - a situation that does not occur often. This was

partially fixed by random sampling in the footstep action space and the definition of

in-place turning actions (Berseth, Kapadia, & Faloutsos, 2015). However, under the right

obstacle orthogonality conditions the planner never finds a solution to place the first step.

The pamAI model, under very rare conditions, suffers from equilibrium of opposing agents

in tight corridors, while sfAI suffers from this same problem much more often because of

additional corner cases (where agents attempt to round a corner in opposite directions).

These problems stem from the definition of the model. Since the models are based on

the resolution of a net force, it is possible to reach a physical equilibrium between agents

which never resolves. The rvo2dAI model violates walls (static obstacles) occasionally

and this scenario has relatively large block shaped obstacles which once inside cannot be

planned out of. This is because in velocity space static obstacles are not well-defined.

While searching for the free velocity space, an rvo2dAI agent may see an obstacle in

velocity space, especially at the seams between obstacle faces, as free (or open) and move
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into the obstacle. Once inside, the agent has no way of exiting because the agent is now

within the half planes formed by the obstacle faces.

4.5 Intensifying Density

This experiment comparatively explores the performance of each model in two common

sub-sections of large building designs, the bottleneck egress and bi-directional crossing

groups scenario. In particular, the main independent variable of this experiment is den-

sity, over which all the study measures are captured. These two subsection designs are

common in well constrained pedestrian-obstacles interaction and optimization analysis

studies(Haworth, Usman, Berseth, Khayatkhoei, et al., 2017; Zhao et al., 2017; Sev-

eriukhina et al., 2017; Feng, Yu, Yeung, Yin, & Zhou, 2016; Berseth, Usman, et al., 2015;

Jiang et al., 2014; Johansson & Helbing, 2007). Here, the density is intensified over small

steps in the fashion of a sensitivity analysis–the outcome being readable fundamental

diagrams for all the measures. Furthermore, pedestrian density can be easily mapped

to Levels of Service for expected qualitative outcomes of pedestrian behaviours (Fruin,

1971).

It is important to point out that these sub-section scenarios avoid the myriad of

other considerations generally required in larger evacuation simulations. These include

panicked behaviours models, signage, evacuation plans, and evacuation assistants (group

leaders) in a larger environment. By focusing on a well constrained sub-section of the

environment, the study can focus on the impact of density on the crowd performance at
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egress and crossing points.

4.5.1 Material and Methods

In addition to the materials and methods outlined in Section 4.2, this experiment is

performed on the following scenario set.

4.5.1.1 Scenario Set

This experiment involves two sub-enviroments commonly found in built environments.

The bottleneck egress scenario is a type of common uni-directional egress scenario where

the egress point is smaller than the hallway leading to it. This design and its key dimen-

sions can be seen in Figure 4.5a. The bi-directional crossing groups scenario is a scenario

where two groups are passing in a hallway. This design and its key dimensions can be

seen in Figure 4.6a.

Density This experiment consists of 37 samples of crowd densities from 0.2 to

2.0 agents/m2 at steps of 0.05 agents/m2 corresponding to 37 scenario spaces for each

environment - the bi-directional crossing groups scenario and bottleneck egress scenario.

4.5.2 Analysis

Fundamental diagrams have a long history of use in vehicular traffic analysis and have

been applied to pedestrian traffic in built environments (Fruin, 1971). This area of

analysis has since seen a large amount of attention in the literature (Vanumu, Rao,
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Figure 4.5. The bottleneck egress experiment from the attenuating level of service study spawns

agents inside the hallway with goals just outside if a standard sized door. (a) An experiment

outline showing common densities and their associated Level of Service label, as well as the di-

mensions of the scenario space’s important features; (b) the density level 1 agents/m2 scenario

space; (c) a single corresponding scenario generated from (b). Note that (a) is a granular repre-

sentative figure, this experiment consists of 37 samples of the density from 0.2 to 2.0 agents/m2

at steps of 0.05 agents/m2
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Figure 4.6. The bi-directional crossing groups scenario from the intensifying density study

spawns agents inside the hallway with opposing goals just outside. (a) An experiment outline

showing common densities and their associated Level of Service label, as well as the dimensions

of the scenario space’s important features; (b) the density level 1 agents/m2 scenario space; (c)

a single corresponding scenario generated from (b). Note that (a) is a granular representative

figure, this experiment consists of 37 samples of the density from 0.2 to 2.0 agents/m2 at steps of

0.05 agents/m2
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& Tiwari, 2017). The proposed method extends the fundamental diagram concept by

computing the study measures across densities. It is clear from the literature that exact

fundamental diagram shapes are highly dependent on experimental design, measurement

definition, and sociocultural factors of the pedestrians involved. This analysis therefore

seeks to see how and when fundamental diagrams converge or diverge across steering

models.

4.5.3 Results

The fundamental diagrams, with shaded error regions, for all four measures of the bottle-

neck egress scenario can be seen in Figure 4.7. The fundamental diagrams, with shaded

error regions, for all four measures of the bi-directional crossing groups scenario can be

seen in Figure 4.8.

4.5.4 Discussion

Bottleneck Egress Scenario. The most prominent feature of these results is the critical

point, the point at which density increases produce diminishing or negative returns. This

is particularly so of the sfAI model. This is entirely due to the models under damped

net force nature which causes highly oscillatory motions (Wolinski et al., 2014b). This

is most clear in the path length and unique contacts. Under this scenario’s conditions

all models should have approximately the same path length–there is little room for de-

viations. However, because of oscillations, even this metric is inflated after the critical
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Figure 4.7. Fundamental Diagrams of (a) unique contacts, (b) effort, (c) flow rate, and (d) path

length over 37 samples of increasing density [0.2,2.0] for the footstepAI , pamAI , rvo2dAI , and

sfAI models in the bottleneck egress scenario. The lines and shaded areas represent the means

(µ) and standard deviations (σ) respectively.
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Figure 4.8. Fundamental Diagrams of (a) unique contacts, (b) effort, (c) flow rate, and (d) path

length over 37 samples of increasing density [0.2,2.0] for the footstepAI , pamAI , rvo2dAI , and

sfAI models in the Bi-directional Crossing Groups Scenario. The lines and shaded areas represent

the means (µ) and standard deviations (σ) respectively.
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point.

The effort curves for this scenario are interesting because footstepAI , rvo2dAI , and

pamAI produce very similar curves at but at different scales, with pamAI performing

best overall. Interestingly, sfAI is the top performing model in this scenario up to its

critical point for both path length and effort. This is because in unhindered environments

sfAI tends to maximize its desired speed forward, via non-oscillatory pushes. Despite

outperforming in terms of effort, path length, and flow-rate, rvo2dAI is outperformed by

footstepAI in terms of path length. This is a reflection of footstepAI fidelity, which is

discussed further in the qualitative results.

The flow rate curves show some interesting outcomes behaviours. The footstepAI

model produces the lowest flow rate and plateaus early in the density sampling. The

rvo2dAI and pamAI models reach their critical points around the expected value for

such a scenario w.r.t. to pedestrian literature but resulting in much higher flow rates. In

contrast, the sfAI model reaches its critical density far before a human crowd would.

Bi-directional Crossing Groups. The collision curve is surprising in that it shows

that the rvo2dAI has difficulty resolving high density oncoming groups without colliding.

Additionally, like the sfAI model in the bottleneck egress scenario, the rvo2dAI model

struggles with all metrics beyond the density 0.9 agents/m2 though not to such extremes.

Finally, the path lengths of footstepAI , pamAI , and sfAI are nearly identical across

densities. This is a fascinating result because the qualitative results reveal strong differ-

ences in the emergent behaviour fo the crowds.
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4.5.5 Qualitative Discussion and Failure Set

In this study it should be made clear that no particular behaviour which fundamental

diagrams may measure is necessarily “correct” and/or representative of an environment’s

capacity. Perhaps Vanumu et. al. (Vanumu et al., 2017) explain this best:

..it may not be appropriate to present the [fundamental diagrams] developed
for different conditions in a single diagram as they vary for various flow sit-
uations and also for different infrastructural elements. Personal and environ-
mental characteristics influence the pedestrian motion. Moreover, capacity
of the system depends on self-organization phenomena that includes zipper
effect, oscillations at narrow bottlenecks, lane formations in uni-directional
and bi-directional flows and so forth.

In this section, I am not examining capacity of the system (the surrounding environ-

ment design) but rather the emergent policies, behaviours, and shortcomings that result

from the underlying steering model choice in a single well constrained scenario. Thus,

I attempt to control for these concerns regarding the use of fundamental diagrams in

comparative analysis.

Bottleneck Egress. This is a difficult scenario because the bottleneck exacerbates

high density conditions. That is, after a certain spawning density the crowd no longer

flows freely through the bottleneck, it causes a rapid increase in the local density near

the bottleneck which the models must resolve somehow.

It is clear that the sfAI model struggles to avoid unique contact conditions as it

rapidly oscillates to solve the scenario, while the other models perform similarly well. In

fact, beyond the density 0.9 agents/m2 social forces performance rapidly declines across

all metrics, primarily due to its oscillatory behaviour near the bottleneck point. It should
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be noted that these oscillations likely far exceed that of what a real crowd would produce.

Without a ground truth it is difficult to concretely and quantitatively say so, but in these

cases the movement is unnatural looking and occurs at very high frequencies amongst

individual agents.

The flow rate metric, as well, reveals some very interesting behaviours in the models.

The footstepAI flow rate plateaus early partially because of tighter packing available to

the agent design and more importantly the sidestepping and in-place turning behaviours

near the bottleneck. In cases like these, the step plans becomes like an under damped

spring oscillating between side-stepping and moving forward in order to maintain the goal

direction while letting others through. This non-holonomic form of oscillation appears

qualitatively to be more like those oscillations found in real crowds experiments, unlike

those present in sfAI (save for the modelling of normative versus panicked crowds respec-

tively). The pamAI and rvo2dAI model performances are partially due to the ordered

nature that predictive models produce. However, under high density conditions these

particular models occasionally clip or ghost through the edges of obstacles like the walls

forming the egress passageway–this is likely due to the issues with the prediction of zero-

velocity obstacles. Generally, all the models produced approximates of same behaviours

reaching some critical point and grouping near the bottleneck, but each model’s perfor-

mance differentiates with the scale of severity. This qualitative result is nicely reflected

in the quantitative results.

The interesting effects of having the worst flow rate and effort, but good path length
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in the footstepAI model are reflected in the qualitative results. To resolve bottlenecks

footstepAI agents will sidestep and allow others who have precedence to pass. Also, all

other models have no real notion of free space–only rvo2dAI does, but this free space is in

velocity space. The footstepAI model on the other hand will extend planning nodes into

free space to find low energy path alternatives. So while other models will only compact,

footstepAI will balance both compacting and the use of free space.

Bi-directional Crossing Groups. This experiment is important for understanding

group-group interactions in a controlled environment. In real world crowds, people under

similar conditions tend toward laminar flows and vortices as energy efficient solutions to

counter flow scenarios like this one (Still, 2000). In this experiment, it is expected models

will favour one of these strategies over the other, or succumb to a highly noisy collapse

of both groups into one.

The rvo2dAI model favours highly laminar flow however struggles with finding free

velocity space when multiple oncoming agents move towards a single agent and the en-

closing spaces create no goal advancing free velocity space. In these cases, the best free

velocity is behind the agent. This results in what appears to be pushing behaviour where

agents will move backward until the velocity space becomes clearer of velocity obstacles.

Unfortunately, the rvo2dAI model under higher density conditions violates the upper and

lower hallway bounds to resolve a free velocity. In these cases, agents may get pushed

completely through the wall boundaries and resolve the scenario from outside the hallway.

The sfAI model, surprisingly in contrast to its previous results, favours highly laminar
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flow with very thin (usually single to three agent wide) lanes. However, the agents still

oscillate in somewhat unnatural looking ways near the lane boundaries. Otherwise, the

sfAI model performs in a very ordered many before and after the group crossing points.

In these cases, the model is only resolving agent-agent interactions and since the velocities

are homogeneous here, the resolution is straightforward.

The pamAI model favours laminar flow with very thick lanes (three or more agents

wide) that begin to form before the groups meet–a sign of the low-level predictive be-

haviour producing emergent behaviours in the larger crowd. These larger groups can

lead to the pushing of a few agents, similar to the rvo2dAI model behaviour but on a

less extreme scale. The group crossing is bounded by two large walls and these generate

oscillations in the pamAI model, which has no predictive force for static obstacles.

The footstepAI model makes seemingly noisy early step decisions towards laminar

flow, similar in pattern to pamAI , but with thinner lanes similar to sfAI . However,

during the lane formation, as the groups begin to merge, footsteps resolves some difficult

areas with micro scale vortices of just a few agents. In this way, footstepAI performs a

mixed approach to the scenario resolution.

The interesting artefact in the path length metric outcome with respect to rvo2dAI

appears to be due to the fact that the footstepAI , pamAI , and sfAI models successfully

perform some variation of the laminar flow strategy. Despite the fact that these strategies

take on different qualities, as described above, the path length measure remains nearly

matched for these models across all densities. The deviation of the rvo2dAI model after
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approximately the 0.65 agents/m2 critical point is due to the pushing artefact and obstacle

ghosting caused by high densities.

4.6 Egress with Concavities

This experiment comparatively explores the performance of each model in an egress sce-

nario. As noted in Section 4.5, examining evacuation scenarios at the building scale

usually involves simulating the impact of signage, behavioural characteristics (like panic

and confusion), and leadership (both intentional, such as evacuation leaders, and unin-

tentional, such as group following behaviours). Here, I use a full scale building evacuation

scenario to test only the root simulation method controlling local steering and collision

avoidance behaviour without these higher layers. In this experiment, the nature of the

scenario is meant to elicit the spectrum of difficulties crowd steering models encounter in

egress scenarios. The egress itself is simple, a single exit and large connected hallways,

but the environment includes both regular and irregular concavities, a static obstacle,

and a 90 deg turn prior to the egress point.

4.6.1 Material and Methods

In addition to the materials and methods outlined in Section 4.2, this experiment is

performed on the following scenario set.

Scenario Set. In this study the environment is a simplified version of a portion of

the West Building of the National Gallery of Art. The scenario goal is an evacuation
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of groups of patrons viewing various exhibits or ‘mulling’ together. Both the viewing

and ‘mulling’ patrons are initialized with random orientations in the agent regions. The

scenario space is initialized and simulated over 200 scenarios.

4.6.2 Analysis

The summary statistics (median, first quartile, third quartile, IQR, max, min, and out-

liers) of each of the four metrics are computed over the intersection of all completed

scenarios. All measures are tested using the methods outlined in Section 4.2.4 on the

intersection of all completed scenarios.

4.6.3 Results

Boxplots of unique contacts, effort, flow rate, and path length statistics in Figure 4.10.

There is a significant difference present amongst the models for each measure (N = 63,

p < 0.01). The battery of post-hoc tests for the unique contacts measure reveal there is no

significant difference between pamAI and rvo2dAI , but all other combinations of models

are significant (p < 0.01), see Table 4.11. All pairwise comparisons of steering models

for effort are significantly different (p < 0.01), see Table 4.12. For the flow rate measure,

there is no significant difference between pamAI and rvo2dAI , but all other combinations

of models are significant (p < 0.01), see Table 4.13. For the path length measure, there is

no significant difference between pamAI and sfAI , but all other combinations of models

are significant (p < 0.01), see Table 4.14.
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(a)

(b)

Figure 4.9. The Egress with Concavities scenario based on a simplified version of a portion

of the West Building of the National Gallery of Art. a) The scenario space and b) an example

evacuation scenario generated from (a).
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Figure 4.10. Boxplots of (a) unique contacts, (b) effort, (c) flow rate, and (d) path length

statistics for the footstepAI , pamAI , rvo2dAI , and sfAI models in the egress with concavities

scenario.

Table 4.11: Matrix of statistically significant results for the unique contacts metric in the egress

with concavities scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X x -
sfAI X X X
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Table 4.12: Matrix of statistically significant results for the effort metric in the egress with

concavities scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X X -
sfAI X X X

Table 4.13: Matrix of statistically significant results for the flow rate metric in the egress with

concavities scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X x -
sfAI X X X

Table 4.14: Matrix of statistically significant results for the path length metric in the egress

with concavities scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X X -
sfAI X x X

Table 4.15: Total number of completed scenarios and the corresponding success ratio for each

model in the egress with concavities scenarios (|S| = 200).

AI Completed Scenarios Success Ratio
footstepAI 172 86.00%
pamAI 187 93.50%
rvo2dAI 77 38.50%
sfAI 185 92.50%
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4.6.4 Discussion

This is a fascinating scenario not only because it resembles a real world environment, but

also because of its size, rooms, and evacuation-like nature. In practice, this differentiates

all algorithms in all metrics by scaling what are otherwise seemingly small differences in

performance.

A somewhat unexpected result is the performance of the sfAI model across all mea-

sures. This is the result of previously discussed force based artefacts but scaled by the

environments size and adherence to the conditions that produce those artefacts. These

are namely: 1) single directional flow produces few if any collisions and maximizes desired

speed; 2) the absence of closed space bottlenecks avoids the oscillatory behaviour; and 3)

force models have highly linear paths in unhindered environments.

It appears from the quantitative results that linear collision prediction may have some

impact on flow rate and unique contacts in environments such as these. While pamAI

and rvo2dAI flow rate measures are significantly different, the difference between them

is much smaller than their differences with the other models. Similarly, as noted above

with sfAI , force based models have some relation to the minimization of path length and

effort in environments like these.

4.6.5 Qualitative Discussion and Failure Set

This scenario forces a long high density stream of agents to navigate an environment

with several concave sub-environments towards a singular egress point. The layout of
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the environment poses particular challenges to synthetic crowd simulators. The numer-

ous concavities present (rooms, exhibits, and corridors), the length of the environment,

and the cornering required immediately before the egress reveal certain limitations and

behaviours in the models. Concavities are particularly challenging to synthetic crowd

models. For a simulator to effectively handle concavities there must be higher level path

planning - usually referred to as long-term path planning, as in Chapter 1. This type of

path plan provides an agent with short-term goals which ideally will lead the agent out of

any concavity. Otherwise, it is highly likely that agents will simply move towards the en-

closing wall in the direction of their environment goal and either remain stuck there, slide

out of the concavity, or slide towards a concave vertex in the solid environment geometry.

This experiment revealed a deep limitation of the default long-term planning algorithm

in the SteerSuite simulation system. The breadth-first search algorithm used produces

unrealistic paths into concavities and must be carefully post-processed to fix this. In

this study, all experiments instead used the same A* shortest path algorithm with the

l2-norm heuristic, the furthest visible waypoint culling, and local target lost long-term

replanning (Kallmann & Kapadia, 2016; Hart, Nilsson, & Raphael, 1968). This ensures

all models have an optimal shortest path even in adverse conditions.

There are certain fascinating artefacts in the quantitative outcomes, with respect to

outcomes in the previous benchmarks, that mirror qualitative differences. The first is

that the sfAI model incurs the least unique contact conditions. Much of what ails sfAI is

dependent on conflicting interactions, such as head on head resolutions where sfAI agents
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simply collide and eventually slide past each other. In a long, mostly uni-directional

scenario with no enclosed bottleneck, the sfAI model produces highly ordered flow–in

contrast to its ‘panicked’ model derivation. As well, all models successfully reproduced

the ‘corners as a bottleneck’ phenomenon which shows crowds fundamentally do not move

like fluids (Still, 2000).

Interestingly, the footstepAI and rvo2dAI models struggle with the corner bottleneck.

This is primarily because the long-term path planning places a waypoint at the corner for

all agents (and all models since they are independent). The footstepAI model appears to

struggle to balance the fact that there is a large amount of open space (this is a corner

bottleneck) and the need to get close enough to the waypoint to “complete” it. The

rvo2dAI algorithm struggles for a similar reason but the effect is more akin to pushing,

in that the free velocity space is in the open space of the corridor and agents get “push”

past the local waypoint.

The failure set reiterates the common thread for issues in each model. The footstepAI

model only fails to complete scenarios when very particular spawning conditions occur.

A review of the footstepAI model failure set shows this only occurs with one or two

agents out of the total one-hundred. The sfAI model fails when two or more agents reach

equilibrium at a corner or a local target. The pamAI and rvo2dAI models fail when

an agent which ghosted an obstacle remains stuck within the obstacles. This scenario

contains a relatively sizeable column (with negative space) central to several egress routes

and proved challenging for these models.
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4.7 Diametric Environment Goals

This experiment comparatively explores the performance of each model in a worst-case,

non-egress use of an environment with a complicated concavity structure. Similar to the

Egress with Concavities scenario in Section 4.6, this experiment explores the applicability

and performance of algorithms under the extremes of use. In this experiment, the agents

and their goals are initiated as diametric environment goals. This approach is meant to

model an extreme of normal traffic use of a building, i.e. needing to traverse from one

space to another in a non-emergency scenario, under the worst case, i.e. all spaces need

to swap occupants at the same time. Additionally, the scenario environment is made up

of concavities of varying size connected by thin hallways.

It is important to point out that these scenarios do not utilize the myriad of other

considerations in evacuation simulations. These include panicked behaviours models,

signage, alarms, evacuation plans, evacuation assistants (group leaders). These scenarios

are provided as an example of a particular case taking place in a built environment design,

focusing on only the performance of the underlying steering models.

4.7.1 Material and Methods

In addition to the materials and methods outlined in Section 4.2, this experiment is

performed on the following scenario set. Scenario Set In this study the environment is

the York University Albany Road building, a real world built environment. The scenario

goal is the simultaneous diametric traversal of groups of agents. All agents are initialized
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(a) (b)

Figure 4.11. The York University Albany Road Building diametric environment goals scenario.

a) The scenario space and b) an example diametric groups scenario generated from (a).

with random orientations in the agent regions. The scenario space is initialized and

simulated over 200 scenarios.

4.7.2 Analysis

The summary statistics (median, first quartile, third quartile, IQR, max, min, and out-

liers) of each of the four metrics are computed over the intersection of all completed

scenarios. All measures are tested using the methods outlined in Section 4.2.4 on the

intersection of all completed scenarios.

113



Table 4.16: Matrix of statistically significant results for the unique contacts metric in the diamet-

ric environment goals scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X X -
sfAI X X X

Table 4.17: Matrix of statistically significant results for the effort metric in the diametric envi-

ronment goals scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI X - -

rvo2dAI X x -
sfAI X X X

4.7.3 Results

Boxplots of unique contacts, effort, flow rate, and path length statistics in Figure 4.12.

The completion rates of each model are reported in Table 4.20. There is a significant

difference present amongst the models for each measure (N = 55, p < 0.01). The battery

of post-hoc tests for the unique contacts and effort measures reveal all combinations

of models are significantly different (p < 0.01), see Tables 4.16 and 4.17 respectively.

For the flow rate and path length measures, there is no significant difference between

footstepAI and pamAI , but all other combinations of models are significant (p < 0.01),

see Tables 4.18 and 4.19 respectively.

Table 4.18: Matrix of statistically significant results for the flow rate metric in the diametric

environment goals scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI x - -

rvo2dAI X X -
sfAI X X X
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Figure 4.12. Boxplots of (a) unique contacts, (b) effort, (c) flow rate, and (d) path length

statistics for the footstepAI , pamAI , rvo2dAI , and sfAI models in the diametric environment

goals scenario.

Table 4.19: Matrix of statistically significant results for the path length metric in the diametric

environment goals scenario. All check marks indicate significance as defined in Section 4.2.4.

footstepAI pamAI rvo2dAI
pamAI x - -

rvo2dAI X X -
sfAI X X X
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Table 4.20: Total number of completed scenarios for each algorithm in the diametric environment

goals scenarios (|S| = 200).

AI Completed Scenarios Success Ratio
footstepAI 154 77.00%
pamAI 196 98.00%
rvo2dAI 79 39.50%
sfAI 183 91.50%

4.7.4 Discussion

In this scenario, the sfAI model stands out across all metrics for having the most unique

contacts, expending the most energy, having the lowest flow-rate, and the longest paths.

This scenario proves to be particularly challenging for the model.

The rvo2dAI model stands out as well for having a particularly high flow rate in a

scenario where all other models do not perform well. Indeed, this scenario, above all

others, has forced the all other models in the set into likely flow-rates for the type of

scenario it represents (Fruin, 1971), while the rvo2dAI model falls within a normative

range it is still far outperforming expectations.

4.7.5 Qualitative Discussion and Failure Set

The sfAI model’s performance is particular low for this scenario. This is primarily because

this scenario forces a variety of crowd contexts, most importantly a small high density

corridor with multiple crossing groups of agents. In this context the sfAI begins to

both oscillate and reach a sort of equilibrium where agents struggle to pass each other–

combining the detrimental effects of other benchmarks at a larger scale. The result is
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singular agents making it through the corridor after oscillating for some time.

Here, the footstepAI model excels in terms of effort and less so in terms of path length.

The model is able to resolve particularly high density contexts in complicated spaces. The

footstepAI and sfAI models both have low flow rates but for very different reasons. The

sfAI model has the issue as noted above but the footstepAI agents resolves the tight

corridor crossing groups issue by sidestepping either in the thin hallways or stepping into

rooms–what we might think of as ducking out of the way of a crowd. The other models,

however, only achieve this behaviour through pushing and, in a non-emergency context

such as this, the behaviour looks very unnatural.

The failure set reiterates the common thread for issues in each model. The reasons for

failure are much the same as in Section 4.6.5, however, many of these issues, particularly

for the rvo2dAI model, are exacerbated by the long and (relative to length) thin walls in

the environment. Some spawning regions are purposefully room filling, this exacerbates

the footstepAI model initial step spawning failure problem.

4.8 Discussion

A common issue found at different scales throughout this benchmark is particle sliding.

Particle sliding is a larger general problem of particle-based crowd simulation. A particle-

based steering decision may make unrealistic or biomechanically impossible movements

because the particle model only represents position and radius and many models take

a holonomic approach to movement. This causes outcomes like path length, unique
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contacts, and effort to be unrealistically inflated.

Force-based models can provide naturalistic behaviours with low computational cost,

however they can also suffer from severe oscillations, or unstable cyclic movement. While

oscillations are natural in crowds, especially at bottlenecks, these models can become

unstable and unnatural in appearance due to holonomic particle sliding and very high

frequency vibrations. However, as evidenced in this study, force-based models perform

very well, both quantitatively and qualitatively, in primarily uni-directional scenarios.

Though in unobstructed environments, heterogeneous parameters are required to reduce

an unnatural appearance of uniformity and order, depending on the context (e.g. march-

ing versus civilian crowds).

One approach that reduces oscillation and sliding is prediction. Both force-based and

geometric-based models that layer the model with even simple prediction, like line-disc in-

tersection for prediction, achieve excellent results (van den Berg et al., 2011; Karamouzas

et al., 2009). These, however, may still fail in other ways if they do not account for

obstacles carefully in their predictive forces. That is, predictive avoidance control signals

(like additive force or velocity) may overcome obstacles avoidance controls or still pro-

duces oscillation at the obstacle boundary. The outcome in the best situations may create

agent ghosting or clipping through walls, in the worst case the agent may become trapped

inside of obstacles because of the inversion of the control signal. This issue can be largely

mitigated by using physical collision constraints and resolution strategies such as those

found in physics engines. The low computational overhead and use of physics engines as a
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corrective measure makes these models particularly well suited to games (Champandard,

2012).

Planning models, like predictive models, are particularly well suited for avoiding os-

cillations, step-like or jagged movement, and particle sliding. Since all future movements

are planned in advance, the model can impose constraints which avoid such issues.

In addition to this, biomechanics based planning models may also avoid particle sliding

and unnatural movement while affording complex interactions such as side-stepping for

oncoming traffic. This problem is partially eliminated with predictive models, but these

do not naturally handle side-stepping or turning, which is inherently piecewise (composed

of multiple steps). Multi-particle biomechanics based planning models provide another

advantage over single particle models when fidelity is needed. These models afford tighter

packing, as the occupied space of the agent is represented by multiple smaller particles

rather than one larger particle. As well, the foot particles can be used in space-time

planning at the footstep level. Thus, steering decisions may be resolved at a very high

granularity, affording high fidelity in complex scenarios. This also allows for interest-

ing metrics such as accurate step counts which is very useful in safety-critical design

applications such as hospitals, care facilities, correctional, and high security facilities.

4.9 Conclusion

This chapter has sought to both understand and reinforce the importance of biomechanics

in the founding of synthetic crowd simulator steering models. To achieve this, the largest
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ever comparative crowds analysis benchmark was devised and undertaken. This method

proved useful for several reasons. First and foremost, the benchmark solidifies the cases

where steering models may fail to behave in a valid or accurate manner. Second, the

use of quantitaive and qualitaitive matching of artefacts helps isolate the reasons behind

issues such that they may be fixed, studied, or mitigated. Finally, the simulation results

from the benchmarks provides a large amount of data for both future study and training

in crowd simulation.

It is clear across the benchmarks that no singular benchmark or model is panacea.

Together, these benchmarks and their results, both quantitative and qualitative, provide

a strong basis on which to make decisions regarding both “ecologically valid” benchmark

scenarios and applicable models. These results also help us predict the behaviour and out-

comes of a particular model for a particular use case. Since we now know the combination

of environment layouts and features with goal locations and models we can make informed

assumptions about how a model will perform. This form of testing allows a non-expert

user to make more informed decisions when seeking to apply synthetic crowds. Because

of this, future works include creating an online benchmarking portal including the open

source simulation suite (SteerSuite) modified to reproduce these results, with all included

benchmarks and scenario files. In this way, the broader community may continuously

build on rigorous analytics and afford better informed decisions amongst the users of

synthetic crowds. This chapter also serves towards rectifying some extreme perceptions

among users and stakeholders in various fields that synthetic crowds are either, on one
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hand, panacea or, on the other, not useful at all. Specifically, some models are very well

suited to real time applications, scenarios where the modelling of panic is important, or

high fidelity analysis, and where one excels others may not.

Another prominent result of this study is the importance of biomechanics in both

fidelity and the resolution of difficult problems. In terms of fidelity, particle sliding and

generally holonomic movement assumptions in steering models is a deeply important

problem that affects the viability and efficacy of synthetic crowds simulations. Addi-

tionally, under ideal scenario conditions, single particle non-biomechanical models tend

towards highly uniform and ordered motions that appear unnatural in some conditions.

It is known that differentiating velocity even a little on the motion profile of agents in-

duces a perception of heterogeneity (McDonnell et al., 2008). By tracing the non-linear

path of the centre of mass, biomechanical models may not necessarily need to induce

heterogeneous parameters to produce this result. In this same vein, in single particle

non-biomechanical models it is difficult or impossible to model disordered gaits, inter-

esting mobilities, or mobility aids without an additional higher-level model or reliance

on velocity scaling as a proxy to this form of heterogeneity. This is flagged as a very

important drawback of non-biomechanical methods, and the following chapters explore

the importance of this issue further.
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Chapter 5

Importance of Heterogeneity

This chapter examines the impact of biomechanical heterogeneity in the steering level

of synthetic crowd simulations on various crowd outcomes. In particular, the chapter

takes a hierarchical approach to examining the impact of these heterogeneities by exam-

ining the individual components of steering. These are the action, collision, and crowd

spaces, which are described in detail in their respective studies in Sections 5.3.2, 5.4,& 5.5

respectively.

It is important to note that in much of the synthetic crowd simulation research there

are two primary proxies used for heterogeneity. The first is velocity as a proxy for dif-

ferent walker types or as a means to diversify desired velocity to give the appearance

of heterogeneity. The second proxy is particle diameter. As noted in Chapter 2, this

dissertation deals mostly in the realm of synthetic crowd simulation which is primarily

achieved using particle based multi-agent simulations. Thus, particle diameter is meant

to serve as a proxy to body types. It is important to make a statement about scope
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here because, while this dissertation endeavours to prove the importance of locomotion

biomechanics and heterogeneity, I use a limited case that is well studied in medical liter-

ature as a counter example to homogeneity and to heterogeneity proxies for locomotion.

This case is limited purely to the locomotion biomechanics without reference to body

types. Specifically, the focus is placed on a mobility disorder that is prevalent in elderly

care institutions and hospitals, where safety-critical scenarios like evacuations present the

most likely dangers.

This dissertation primarily examines the heterogeneity portion of the problem from

a perspective that if the seminal velocity proxy fails to be representative even when well

controlled for, then by extension the diameter proxy fails to be representative. While

research in the interaction between body types and locomotion is in the same vein of

this work, it is outside the scope of this particular dissertation. This work is earmarked

for important and critical future work. It is equally important to note that this is not

to say differing body types are disabled–reiterating the social model here that our built

environment and societal organization is not designed to equitably serve the spectrum of

body types, disabilities, or generally marginalized communities. Additionally, there are

broader areas of shoes types, assistive devices, mobility aids, and prosthetics which are

directly related to this dissertation but also outside of its scope and are earmarked as

critical future work.
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5.1 Background

In the literature, the scope of issues regarding heterogeneity has a range, or spectrum,

of impact. At one end there is the absence of heterogeneity. In this area, methods are

mostly reported as is and things like heterogeneity are not explicitly tested. In many

of these cases, and in fact, in most steering models, the velocity proxy for heterogeneity

is a functional one not meant as an actual proxy. For example, in the pamAI model, a

noise force is added to the net force to reduce the occurrence of deadlocks (equilibrium

of opposing net forces from multiple agents) and add variation to the avoidance strate-

gies (Karamouzas et al., 2009). It is noted however, that more ‘realism’ can be introduced

by varying anticipation coefficients or desired speed. Similarly, other algorithms adopt

adaptive approaches to desired velocity changes which can induce between group hetero-

geneity, such as density adaptive desired velocity manipulation (Guo, Wang, & Wang,

2009), clustered velocity potentials (Sud et al., 2007). Other algorithms, embed velocity

as a heterogeneity proxy in higher level models. As noted in Chapter 1, synthetic crowd

simulation is typically a layered endeavour with behavioural layers near the highest lev-

els. Similarly, it is possible to use personality modelling to induce heterogeneity in the

crowd (Guy, Kim, Lin, & Manocha, 2011). However, as the principal components of

the personality model reveal, the main contributing factor in the transformation matrix

from personality model to steering parameters is radius and speed. A recent approach,

focuses on overtaking and passing clearance as the primary interaction factors between

normative walkers and walkers with disability (Stuart et al., 2019). Ultimately, this still
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maps to speed reductions or increases, and in doing so the method lumps people with

visual impairment, people using canes, wheelchairs, and motorized wheelchairs, into the

same model–a model predicated on giving wide berth to those with disabilities.

Beyond steering model generation, the assumptions of proxies and language gain more

potential to do harm. Nearer the centre of this spectrum are studies which, as noted

above with my own work, are attempting to reduce the size of the independent variable

space and in doing so create studies of limited scope that may later be misinterpreted as

having broader scope by non-experts. The studies typically derive a model extension or

a model based study to then derive findings which use crowd simulators. A seminal and

insightful paper in this area, forming the bridge between modelling and safety-critical

application of multi-agent synthetic crowds in the literature, showed that panic can be

modelled with a relatively straightforward weighting of a desire to follow an individual

direction or a group direction (Helbing et al., 2000). This study is done in two parts,

first over changing desired velocity (similar to a fundamental diagram) and then with

heterogeneous panic weights, both for a crowd with heterogeneous particle radii. In

both cases, because the weighting factor impacts the direction, velocity and radius are

still ultimately proxies for heterogeneity. More problematic uses of this make concrete

prescriptive statements about design and policy based on presumptive models of the

intended users. In particular, the BUMPEE model, which modulates only velocity and

radius has been used to make statements about crowds of users with several modes

of locomotion (Koo, Kim, & Kim, 2012). The main problem here is that biped and
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wheelchair control differs in its fundamental control space. Normative biped control

can, to some degree, be estimated by holonomic (controllable degrees of freedom match

total degrees of freedom) particle models, however differential drive control (such as

wheelchairs) are non-holonomic. It is possible to make mixed holonomic/non-holonomic

simulators but not by simply attenuating the desired velocity magnitude (speed) and

radius of an agent. That is, wheelchairs do not simply move slower, they move differently

and this difference is likely very important in safety critical-scenarios (Geoerg, Schumann,

Boltes, Holl, & Hofmann, 2018; Shimada & Naoi, 2006). Similarly, in context of the Hajj,

several simulation-based studies have been proposed, and in some cases used in practice,

to facilitate changes in the environments involved in the pilgrimage. An example of this,

closely related to this study, breaks up the levels at which actions may impact emergent

behaviours. By looking at low level actions of individuals the authors derive a large scale

simulator. However, the approach uses a “Mobility Factor” which models the “impaired

section of the population” with up to 30% reductions in speed (Gwynne & Siddiqui,

2013). Additionally, the paper notes conflicts between wheelchair and bipedal pilgrims,

however the simulators used were not capable of producing the aforementioned dynamics,

so those pilgrims are left out of the simulation.

Where language is involved, the impact of these sorts of prescriptive studies serve

to potentially misrepresent marginalized genders and people with disabilities. One ap-

proach uses a Finite-State Machine to layer intention on top of a well-known velocity

space geometric collision avoidance algorithm (Curtis, Guy, Zafar, & Manocha, 2011).
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This paper divides a heterogeneous population into young, old, male, and female. The

‘female’ agents are arbitrarily assigned lower velocities and implicitly become the cause

of simulation bottlenecks or slow-downs. However, the empirical data on which the study

is based makes no notion of a gender/sex difference in velocities or density. Works like

this serve as a useful case for study, but arbitrary assignment of properties to sex may be

used in framing real world changes that impact real peoples lives negatively. Similarly,

however in a much more problematic fashion, authors have assigned an explicit negative

connotation to gender (particularly women) and disability, while making far-reaching

claims about outcomes. In a recent paper, pedestrians are bifurcated into two groups

‘weak’ and ‘strong’ where “disabled persons, children or women” are considered ‘weak’

and “young men” strong (Liu, 2018). This study uses no empirical data, only presump-

tuous simulations, to make the very strong claim that the “weak” should be separated

from the “strong” during egress to reduce both groups evacuation times.

5.2 Overview

This study is presented in addition to the biomechanics study in the last chapter as

another premise towards this dissertation’s conclusions. To recap, this dissertation ar-

gues that if biomechanical modelling impacts the outcomes of synthetic crowds studies

(Chapter 4) and if heterogeneity in biomechanics impacts outcomes of synthetic crowds

studies (this chapter) then we, the synthetic crowd community, must critically reflect on

the validity and generality of previous results and incorporate more inclusive approaches
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moving forward. That is, given the successful argumentation of these claims, it is then not

enough to assume the efficacy of proxies for biomechanical heterogeneity in the modelling

and application of synthetic crowds.

This study is broken into three experiments that separate the level at which biome-

chanical heterogeneity is presumed to have impact. These levels follow from an under-

standing of the steering layer of synthetic crowds (the focus of this dissertation). This

layer can be broken into: the action space, the level at which individual decisions are

made; the collision space, the resultant collider corridor formed by moving the agent’s

colliders through space-time; and the crowd space, an infinite space of possibilities where

the interactions between an arbitrary number of agents occur with an arbitrary envi-

ronment (the result of actions within the collision space). Each study in this chapter

motivates the next in the sequence, each serving as premises towards the conclusion that

heterogeneity at the biomechanical level has both quantitative and qualitative impacts

that propagate upwards to the highest level–crowds. The first study looks at the impact

of heterogeneity in biomechanics at the footstep level. The second study introduces a par-

ticular area of disordered locomotion biomechanics and qualitatively looks at the impact

of heterogeneity at the collision level. The third study looks at the impact of heterogene-

ity in biomechanics at the crowd level. In Chapter 4, I show the importance and efficacy

of biomechanical modelling in synthetic crowds. In this Chapter, I exclusively look at the

impact of heterogeneity in a biomechanical model. These studies explore the question,

”Does heterogeneity in locomotion biomechanics matter? If so, where?”, I argue that
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they do matter, and that indeed this follows strongly from the discussion in Chapter 3,

and that they matter at all levels of the steering layer of synthetic crowds.

5.3 Action Space

This study examines the impact of heterogeneity in locomotion biomechanics on the foot-

step action space. This work uses the definition of the footstep action space defined

by the footstepAI biomechanically-based synthetic crowd simulator introduced in Chap-

ter 4 (Berseth, Kapadia, & Faloutsos, 2015). The footstep action space is a 9 dimensional

feature vector describing a single footstep in a space local to the footstep and defined

by the timing and shape of the centre of mass (COM) trajectory following a simple

parabolic arc. These features are: Foot Angle; Stride Length; Stride Time; Stride Speed;

Step Length; Step Time; Step Speed; COM Arc Length; and COM Alpha Coefficient.

The parabolic trajectory model is derived by using a small-angle approximation of the

hyperbola defined by the linear inverted pendulum model (Singh, Kapadia, Reinman, &

Faloutsos, 2011; Kajita, Kanehiro, Kaneko, Yokoi, & Hirukawa, 2001). The result is a

local space parabola whose origin is offset from the foot flat condition2.

2Using this definition, the footstepAI produces a ”footstep plan”, a piecewise trajectory of individual
footsteps that avoid collisions with other agents while moving towards the agent’s current goal. This is
done by minimizing the energy expenditure over time and the energy consumed by ground reaction forces
(momentum dissipation and active change in momentum) while accounting for invalid footsteps (collisions
or those outside of parameter ranges).
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5.3.1 Material and Methods

The data used are from the CMU Motion Capture Database (La, n.d.). The data used in

this study are derived from two subjects (16 & 91) who performed a mixture of normative

and stylized walking trials. The normative walking trials (subject 16) include primarily

straight walking tasks where the subject turns around and returns to the starting point.

The stylized walking trials (subject 91) include booth normative walking tasks such as

straight, figure-8, and turn in place, and stylized walking tasks such as mummy walking,

and injured walking (dragging foot) trials. These particular subjects were selected to

exhibit a range of different footstep types and for their capture cleanliness (fewer errors

and floating form the ground plane).

5.3.2 Analysis

In this study I use clustering as a form of confirmatory data analysis. I want to show

that footsteps are separable in the footstep action space and identify why/how this is

so. For this analysis, I use k-Means with the squared Euclidean distance metric in the

k-Means++ algorithm (Arthur & Vassilvitskii, 2007). These choices reflect the lowest

common denominator (with the improvements of careful seeding) in the area of unsuper-

vised clustering algorithms under the assumption that if k-Means returns good results

(good indicated by internal evaluation and qualitative analysis) then the space can be con-

sidered separable under even the simplest conditions. Generally, motion capture datasets

are not labelled by individual footstep styles or actions, so the datasets generated by the
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footstep action space identification process must be considered unlabelled (though each

sequence has a qualitative description, which is noted in Section 5.3.1 and later utilized

for clarity in Section 5.3.3). Ideally, given the nature of the step types, a labelling for

such a dataset would come from expert gait analysts who could identify steps and their

“character” and then be validated by a follow-up inter-rater agreement study. This form

of in-depth study for the application of unsupervised and supervised learning techniques

is left to future works.

In this study, considering the unlabelled nature of individual identified footsteps and

that we are not interested in classification here but rather the uniqueness or separability

quality of the footsteps, I rely on internal clustering criteria and the qualitative aspects

of the clustering (K. Wang, Wang, & Peng, 2009; Thalamuthu, Mukhopadhyay, Zheng,

& Tseng, 2006). To achieve this, the first step is to use a form of elbow analysis to find

where the error of choosing K falls off below acceptable levels. This is one common way

to choose a good initial value K. In this analysis each clustering sample, k ∈ 1, ..., 30,

is initialized 100 times to extract the performance, in terms of variability, of choosing

that K value. I estimate and use K = 5 as good number to capture all variations given

the motion capture sequence descriptions and the qualitative review of the footsteps

present in the sequences–a number which generally agrees with the elbow analysis. This

is followed with a Silhouette analysis which shows the internal clustering validity. The

clusters are then reviewed qualitatively using an Andrews plot, a sort of quasi Fourier

analysis used to plot multidimensional data in a way that conveys underlying structure

131



of the data or outliers. Finally, the thumbprint, or signature, of the clusters in footstep

action space is shown to impress the connection between the qualitative and quantitative

cluster analysis.

This internal validation approach is followed with principal component analysis (PCA)

to understand what components of the footstep action space explain the clustering and

separability of the footstep action space. This examination determines the “why” of

the deviations in the footstep action space by identifying the action space components

that define different footsteps clusters. The hypothesis being, if stylized, disordered, and

normative footstep styles differentiate in the action space the heterogeneity is important

at this level.

5.3.3 Results

5.3.3.1 Normative Walking

The elbow analysis for the clustering of the normative walking subject steps can be found

in Figure 5.1. The silhouette analysis of the normative walking subject steps can be seen

in Figure 5.2. The Andrews plot of the clustered footstep data points can be seen in

Figure 5.3. To facilitate an understanding of the “shape” of the footstep clusters, the

“footprint” if you will, the cluster centroids are shown in a radar plot in Figure 5.4.

The percent of variance explained for each principal component (PC) can be seen in

Table 5.1. Given that the first two PCs explain %96.8 of the variance, the clustered data

transformed into the space of the first two PCs can be seen in Figure 5.5. The loadings
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Figure 5.1. Sum of Squared Errors (SSE) elbow analysis for the normative walking subject.

The K parameter of the K-Means algorithm is sampled from 1 to 30 clusters - each is initialized

randomly 100 times.

for these components can be seen in Table 5.2.

5.3.3.2 Stylized Walking

The elbow analysis for the clustering of the normative walking subject steps can be found

in Figure 5.6. The silhouette analysis of the normative walking subject steps can be seen

in Figure 5.7. The Andrews plot of the clustered footstep data points can be seen in

Figure 5.8. To facilitate an understanding of the “shape” of the footstep clusters, the

“footprint” if you will, the cluster centroids are shown in a radar plot in Figure 5.9.
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Figure 5.2. Silhouette values for the normative walking subject’s footstep clusters. The singular

outlier is clearly identified as being perfectly clustered on its own. Other clusters show good

clustering values predominantly above 0.6 and 0.8. Cluster 4 appears to be a wide reaching

cluster with approximately a quarter of footsteps not being well clustered.

Table 5.1: Percent of variance explained for each principal component of the normative walking

subject steps.

PC 1 2 3 4 5 6 7 8 9

% 91.6145 5.1863 2.3622 0.3566 0.2246 0.1782 0.0591 0.0113 0.0072
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Figure 5.3. Andrews Plot of the normative walking subject’s footstep clusters. Even in differ-

ently stylized normative walking footsteps there is not much separation in the Andrew’s curves

and the structure is regular and oscillatory.
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Figure 5.4. Normative Cluster Radar Plot. Because the outlier causes severe scaling, both the

(a) original cluster centroids and the (b) centroids with the outlier removed are plotted for clarity

and comparison. In (b) an outlier shape can be seen in high dimensions, upon qualitative review

this cluster appears to be associated with the turning steps.

Table 5.2: Coefficients, or loadings, of the first two principals components of the normative

walking subject’s footsteps. The primary, or most significant loadings, are in boldface.

Dimension Feature PC1 PC2

1 Foot Angle 0.9996 0.0231

2 Stride Length -0.0041 0.0051

3 Stride Time -0.0041 -0.2619

4 Stride Speed -0.0234 0.9331

5 Step Length -0.0053 -0.0013

6 Step Time -0.0006 -0.1459

7 Step Speed -0.0123 0.1931

8 COM Arc Length -0.0017 -0.0250

9 COM Alpha Coefficient 0.0014 -0.0275
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Figure 5.5. Normative PCA, PC-1 and PC-2.
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Figure 5.6. Sum of Squared Errors (SSE) elbow analysis for the stylized walking subject. The

K parameter of the K-Means algorithm is sampled from 1 to 30 clusters - each is initialized

randomly 100 times.

The percent of variance explained for each principal component (PC) can be seen

in Table 5.3. Given that the first two PCs explain %98.9 of the variance, the clustered

data transformed into the space of the first two PCs can be seen in Figure 5.10. The

coefficients, or loadings, for these PCs can be seen in Table 5.4.

5.3.4 Discussion

The results of this experiment verify the general separability of footstep styles. In the

following subsections, I examine each subject’s results individually.
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Figure 5.7. Silhouette values for the stylized walking subject’s footstep clusters. The clusters

show good clustering values predominantly above 0.6 and 0.8. Cluster 1 appears to be a wide

reaching cluster with approximately a quarter of footsteps not being well clustered.

Table 5.3: Percent of variance explained for each principal component of the stylized walking

subject steps.

PC 1 2 3 4 5 6 7 8 9

% 97.2402 1.6184 0.4826 0.3582 0.2040 0.0589 0.0208 0.0111 0.0058
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Figure 5.8. Andrews plot of the stylized walking subject’s footstep clusters.

140



0

0.26

0.53

0.79
Foot Angle

Stride Length

Stride Time

Stride Speed

Step Length

Step Time

Step Speed

COM Arc Length

COM Alpha Coefficient

Figure 5.9. Clustered radar plot of the stylized walking subjects. An outlier shape can be seen

in high dimensions, upon qualitative review this cluster appears to be associated with the limping

steps.
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Figure 5.10. Stylized PCA, PC-1 and PC-2.
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Table 5.4: Coefficients, or loadings, of the first two principals components of the stylized walking

subject’s footsteps. The primary, or most significant loadings, are in boldface. Interestingly, the

most significant PC2 loadings are temporal features.

Dimension Feature PC1 PC2

1 Foot Angle 0.9998 0.0087

2 Stride Length -0.0086 -0.0102

3 Stride Time -0.0053 0.8034

4 Stride Speed -0.0042 -0.1276

5 Step Length -0.0053 0.0486

6 Step Time -0.0069 0.5627

7 Step Speed 0.0071 -0.1107

8 COM Arc Length -0.0052 0.0616

9 COM Alpha Coefficient 0.0038 0.0540

5.3.4.1 Normative

The results of the normative motion capture subject show an expected lack of variability

in footstep action space components. There are two important outcomes of this particular

experiments. The first is that the underlying system (described in Chapter 6) for reverse

engineering the footstep action space from animation used to collect this data is not

perfect and occasionally produces erroneously detected footsteps. This is rendered as

the green coloured cluster throughout the plots which highlight the clustered data. This

singular data point is the result of a false positive foot flat condition which makes the

step appear to be extremely fast, flat, and short.

The second interesting and important outcome of this study is the component of

footstep action space which contributes to most of the variability to normative footsteps

based on the loadings in Table 5.2–the foot angle. This is entirely explained by the
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underlying data which comes from a subject walking in straight lines, turning around

and walking back. Thus, the foot angle differentiates the turning steps from the straight

walking steps. The subject makes different types of multipoint turns and it is hypothesized

that this is primarily what differentiates the clusters w.r.t foot angle. Additionally, noting

the lack of variability or dispersion of data points along PC2, the normative steps are

strictly clustered along PC1 and do not differ much from each other in terms of PC2.

Examining the loadings of PC2 reveals that the primary contributing feature of the

footstep action space for PC2 is the stride speed. This can be almost entirely explained

by the outlier which differentiates along PC2.

5.3.4.2 Stylized

The results of the stylized motion capture subject show an expected addition of variability

in footstep action space components. There are two important outcomes of this particular

experiments. The first is that the subject 91 dataset includes normative walking and

these, upon an informal review, appear to have separated from the stylized walking

conditions.

The second interesting and important outcome of this study is the component of

footstep action space which contributes to most of the variability to stylized footsteps

based on the loadings in Table 5.4. While the most significant loading in PC1 is still foot

angle, the most significant loadings in PC2 are Stride Time and Step Time. This is entirely

explained by the underlying data which comes from a subject walking in straight lines,
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turning around and walking back under stylized conditions that include temporal gait

asymmetry (TGA). Thus, the foot angle differentiates the turning steps from the straight

walking steps, but the stride time and step time differentiate asymmetrical stepping

patterns which are a result of TGA. It is clear that these two loading have a scaling

impact on PC2 unlike in the normative walking study which shows very little dispersion

in PC2.

5.3.4.3 Conclusion

In conclusion, this study shows that the footstep action space is: separable over the space

of footsteps (shown over a small sample of possible footsteps) and potentially a good

representation for temporal gait asymmetries that produce footstep level asymmetries.

Further work in this are is required in order to examine the footstep action space parame-

ters which correspond to the vast body of conditions and disorders which cause temporal

gait asymmetries. Additional further work is required to understand not only the dif-

ference between within subject footsteps in the footstep action space but also between

subjects.

The radar plots of both stylized and normative subjects in the footstep action space

appear to have some immediate use. By viewing the overlaid footstep patterns over the

action space dimensions it is hypothesized that disordered steps and apparatus errors

are much easier to identify. In the normative walking subject data, the outlier step

is immediately apparent because it dominates the component scaling which appears as
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spikes. After removal, the radar plot clearly separates turning steps from normative ones

and in place turning from curving path steps. In the stylized footstep subject data, the

stylized disordered footsteps (dragging, limping) are immediately apparent because of

the increased foot angle and step speed, while the stylized zombie footsteps have a short

stride length and exaggerated COM Alpha Coefficient (associated with COM swaying).

Further work is required to understand the efficacy of this form of visualization in for

gait analysis as well as for automatic crowd analysis of ability and heterogeneity.

5.4 Collision Space

This study examines the impact of heterogeneity in locomotion biomechanics on the

collision space of a synthetic crowd agent. All synthetic crowd models must facilitate

and attempt to avoid collision as a fundamental aspect of the steering layer of crowd

modelling. In particle-based crowd simulation, agents are represented as particles which

define their collision bounds. This representation greatly simplifies the mathematics

required for detecting and resolving collisions. The collision space in this experiment

then is the collision shape, the combined spatial sum of the collision particles, extended

through time. This can thought of as a corridor of avoidance. The hypothesis of this

study is that heterogeneity in biomechanics impacts the shape of this collision space.

Since the collision space is fundamental to the resolution of collision avoidance, then an

affected collision space would impact combinatorial interactions between agents (the next

study, Section 5.5, addresses the evidence of this implication).
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5.4.1 Material and Methods

This study focuses on four different model types that span a small spectrum of mobility

heterogeneities. In particular, this study focuses on spatio-temporal gait asymmetries,

referred to as Temporal Gait Asymmetry (TGA) in this chapter, as a probe for exploring

biomechanical heterogeneity at the steering level. TGA is a common symptom of several

conditions and medical disorders from injuries to neurodegenerative diseases and is often

described characteristically as ‘limping’ though it may take many forms and appear at

different intervals. Specifically, TGA is the occurrence of asymmetries in temporal gait

parameters, such as step timing (more details in Section 5.4.1.2). In this study, I use

the footstepAI steering model with various forms of higher level parametrization control

to induce different TGA conditions in the footstep planning. Much of the information

regarding TGA in this section is extracted from Dr. Kara Kathleen Patterson’s PhD

Dissertation on measures of gait asymmetry post-stroke, and is recommended reading for

those interested in these conditions (Patterson, 2010).

5.4.1.1 Normative Locomotion Biomechanics

This condition uses the footstepAI model as is with its Principle of Least Effort (PLE)

parametrization of the robust footstepAI steering model (Berseth, Kapadia, & Faloutsos,

2015; Berseth et al., 2014). That is, this model matches the parametrization of the

footstepAI model in Chapter 4. The full set of parameters and their default values can

be seen in Table 5.5. Note that, Step Duration Scale and Desired Velocity Scale are
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Table 5.5: Least effort parametrization of the footstepsAI model for step affecting parameters.

footstepAI Footstep Parameters Values
Preferred Step Angle 0.58 rad
COM Height 0.93m
Min. Step Length 0.16m
Max. Step Length 0.79m
Min. Step Time 0.03m
Max. Step Time 0.6m
Max. Speed 1.33m/s
Time Cost Weight 0.58
Trajectory Cost Weight 0.03
Shoulder Comfort Zone 0.39m
Shoulder Comfort Zone 2 0.03m
Step Duration Scale 1
Desired Velocity Scale 1

additional parameters used to support the following models (thus their default values for

the normative model are 1). For the remainder of this chapter, this model will be referred

to as “normative”.

5.4.1.2 Temporal Gait Asymmetry

This conditions the robust footstepAI model with a higher level model that produces

the TGA symptoms in the steering model by modulating the parameters during foot-

step planning. This higher level parametrization is required to bifurcate the foot step

parameters (necessary for creating asymmetry). To focus this study, and derive empirical

parameters from real data, I use data and analysis of TGA in patients post-stroke. The

prevalence of Stroke is well studied, and is considered a significant health issue (Hodgson,

1998; Hakim, Silver, & Hodgson, 1998). Furthermore, spatiotemporal gait asymmetries

are prevalent in community-ambulating (independent walking ability within 200m (Brown

et al., 2010)) chronic stroke survivors. For example, of 54 participants post-stroke, 55%
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and 33% exhibited significant temporal and spatial asymmetries respectively (Patterson

et al., 2008). Gait asymmetries in patients post-stroke have impacts on walking speed,

falls, and energy costs, all of which, in turn, impact patients’ quality of life, health, and

autonomy (Lauziere, Betschart, Aissaoui, & Nadeau, 2014).

This higher level model modulates the step time duration for each footstep planned.

When the model is initialized the paretic side is chosen randomly with no preference.

Then for each potentially planned step, when the planning foot matches the paretic side,

the model loads and modulates the step duration scale. On the paretic side, the step

duration scale is 1.42385, which is the average of the swing time asymmetry range reported

as a ratio of paretic/non-paretic side in the literature (Dettmann, Linder, & Sepic, 1987;

Brandstater, Gowland, Clark, et al., 1983). Note that it is unclear what effect post-stroke

swing time asymmetry has on step length, with patients having either longer paretic or

non-paretic steps (Kim & Eng, 2003; Hsu, Tang, & Jan, 2003; Dettmann et al., 1987;

Balasubramanian, Bowden, Neptune, & Kautz, 2007). The impact of the step duration

scaling can be seen spatially in the results, Section 5.4.3, of this study, Figure 5.11.

This is the result of the internal optimization resolving the footstep parameter constraint

given the step duration scaling, and may reflect certain real world cases. The accuracy

of this modelling for patients post-stroke is outside the scope of this dissertation and is

earmarked as important future work. For the remainder of this chapter, this model will

be referred to as “TGA ”.
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5.4.1.3 Temporal Gait Asymmetry Velocity Reduction

The relationship between velocity and asymmetry in gait is complicated. It is not clear

whether the two represent the same changes in post-stroke walking ability. For example,

asymmetry will likely worsen over time, velocity may not (Patterson, Gage, Brooks, Black,

& McIlroy, 2010a). Post-stroke gait velocity is characterized by a non-linear reduction

with age (El Haber, Erbas, Hill, & Wark, 2008). However, there is extensive variation in

the measures of preferred velocity across the literature. See Section 2.2.1 of Patterson’s

Dissertation for an excellent review of this literature (Patterson, 2010).

Much like the aforementioned TGA model, this model induces asymmetry by bifur-

cating and modulating the foot planning parameters. In this model, step duration scale

is modulated for the paretic side, while the desired velocity scale, max. speed, min. step

length, max. step length are altered generally. This general change is required to help the

internal optimization algorithm find footsteps which fall within these constraints (other-

wise steps would fall outside the min. and max. values, forcing the optimization into an

endless search). The step duration scale is set at 1.42385 as in the aforementioned TGA

model. The desired velocity scale is meant to scale preferred velocities down to those found

in the literature. That is, the highest reported preferred velocity of chronic patients post-

stroke is 0.76m/s (Nadeau, Arsenault, Gravel, & Bourbonnais, 1999) and the normative

average preferred velocity is 1.33m/s, so the desired velocity scale is 0.571428. The max.

speed is 1.09m/s, the highest reported speed of chronic patients post-stroke (Nadeau et

al., 1999). The min. and max. step lengths of 0.08m and 1.027m were found empirically
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under a battery of tests with the planning model. Adjustments were made to the step

length range until the planner could successfully create plans under all local conditions.

For the remainder of this chapter, this model will be referred to as “TGA velocity”.

5.4.1.4 Velocity Reduction

As explored in Section 5.1, the literature on applied synthetic crowd models seeking to

cover diverse mobilities has used velocity as a proxy for people with gait disorders and

people using assistive devices. In the review of literature, velocity was used in several

instances where the modelled agent would have had Temporal Gait Symmetries. In this

model, I match the velocity scale, max. speed, min. step length, max. step length with

the aforementioned TGA velocity model in Section 5.4.1.3. However, this model has no

bifurcation of parameters in the step planning phase. In this way, this model serves as a

good control for the TGA velocity model. For the remainder of this chapter, this model

will be referred to as “Velocity” (in the context of models not to be confused with the

concept of velocity itself).

5.4.2 Analysis

This study is primarily a qualitative one to show that collider corridors of the various

models differ from each other in shape. Recording taken over 7 normative steps (3.5

strides), or approximately 2.66m, are compared to each other. This distance was chosen

as all models approximately reach a beat at the same distance, a typically physical phe-
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nomenon where two similar frequencies interfere periodically. Here the term is applied

loosely since the foot side or amplitude is not taken into account, simply that feet spa-

tially hit their foot flat, or loading response phase, conditions in approximately the same

place. Knowing the approximate distance travelled also affords the quantitative measure

of spatial frequency (here, cycles per m, or strides/distance). All measures are approxi-

mated from the collider corridors. Previous methods in animal gait characterization and

motion path editing have used the Froude number to characterize the relationship be-

tween spatial and temporal attributes (Alexander, 1976; Lockwood & Singh, 2011). The

Froude number is useful in characterizing walking patterns between animals of varying

size. In these studies, I control for body size and mass as a form of heterogeneity to focus

on changes at the action level in the biomechanical model3. Thus, the Froude number

reduces to step frequency. As well, this frequency is separated between left and right side

to note asymmetry.

5.4.3 Results

The corridors of each model in the simple straight walking task can be seen in Figure 5.11.

The normative model produces a regular symmetric pattern where the mean stride length

is 0.762m (step lengths are then approximately 0.381m). The spatial stride frequency is

approximately 1.32Hz. The velocity model produces a regular symmetric pattern of stride

lengths approximately 0.508m (step lengths of approximately 0.254m). The spatial stride

3These particular parameters are purposefully homogeneous in this study, but are earmarked as im-
portant forms of heterogeneity to be explored with respect to biomechanics and crowds. Past works have
used the particle radius parameter to represent different body sizes.
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frequency is approximately 2.068Hz. The TGA model produces asymmetrical stepping

pattern with shorter paretic side step. The mean length of paretic side steps is 0.431m,

while the for non-paretic side the mean length is 0.504m. The spatial stride frequency

is approximately 0.9398Hz. The TGA velocity model produces asymmetrical stepping

pattern with shorter paretic side step. The mean length of paretic side steps is 0.28m,

while the for non-paretic side the mean length is 0.299m. The spatial stride frequency is

approximately 1.6917Hz.

5.4.4 Discussion

The qualitative difference between the model’s collider corridors is highlighted in Fig-

ure 5.11 by demarcating the approximate left and right foot flat, or loading response

phase, conditions. None of the corridors is like the other. The implication here is that

if an agent’s steering behaviour is predicated on the collision space of nearby agents,

then changes in collision space would change the agent’s steering behaviours. It is clear

in this study that the step sizes, spatial frequency, and ultimately the shape of the col-

lider corridors is impacted by the control of temporal parameters related to TGA. While

the velocity model may capture symmetric shuffling behaviours, several features of the

collider corridors are not. This is in addition to the findings of Chapter 4, which show

that these sorts of non-linear movements are not even possible without either locomotion

biomechanics or some form of non-linear kinematics modelling.
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Normative

Low Velocity

TGA

TGA Low Velocity
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* Paretic side

Figure 5.11. Agent level collider corridors. Each agent’s collider space is defined by its par-

ticle(s). The collider corridors shown here are the collider space over time in a simple straight

walking task from left to right. The loading response, or foot flat, phase conditions are annotated

in each model for each foot. In the disordered conditions the paretic side is annotated with an

asterisk.
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5.5 Crowd Space

This study examines the impact of heterogeneity in locomotion biomechanics on common

crowd outcomes measures. The hypothesis of this study, given the results of Sections 5.3

& 5.4, is that heterogeneity in locomotion biomechanics (in this case, the non-linearity

of TGA) within a crowd changes common crowd outcomes measures. The focus is on

outcomes which are used in applied situations (policy decisions, design decisions, and

evaluation frameworks), and in particular flow rate which, while it has no singular defi-

nition, is common in the analysis of safety critical scenarios.

5.5.1 Material and Methods

The definitions of the outcome measures used in this study match the descriptions in

Chapter 4 Section 4.2.2. The study examines these crowd outcome measures in the

context of a common scenario in the literature, and sub scenario of applied synthetic

crowds - the bottleneck egress (see Figure 4.5). There is a rich history of this type of

scenario’s use covered in Chapter 4 Section 4.5 and Chapter 2 Section 2.2. The models

used in this study are those described in Section 5.4.1.

In the previous study, all sources of heterogeneity were carefully removed and the mod-

els normalized before comparison. In this chapter, heterogeneity is carefully introduced in

a purposefully limited way to understand the impact without confounding factors. To do

this, the study samples multiple levels of heterogeneity, namely: 1/50 (2%), 5/50 (10%),

10/50 (20%), 20/50 (40%), 30/50 (60%), 40/50 (80%), 50/50 (100%); where the ratio is
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agents with the specified model/total agents and the remaining agents from the total are

using the normative effort optimal parametrization. In each crowd mixture, there are a

number of controls. First, each mixture includes a comparison to a normative baseline

where all agents in the crowd are homogeneous and have the default effort optimal pa-

rameters. Conversely, the TGA condition is a control for all other conditions including

the normative, so that the impact of TGA can be analysed in crowds generally. Finally,

and perhaps most importantly for this dissertation, the velocity condition is a control for

the TGA and TGA velocity conditions. This last control is important because it will tell

us if the use of velocity, as is done across the history of synthetic crowds, is an adequate

proxy for heterogeneity in synthetic crowds. This way of controlling the study will tell us

at which point, if any, the mixture of agents produces a significant impact on outcomes.

It should be noted however that within each group, that is agents with the specified

model and remaining agents the within group agents are homogeneous. The only caveat

to this is the paretic side selection in the TGA conditions. There is no preference for

side across conditions, so in these groups the paretic side is randomized and considered

approximately symmetric over the distribution of scenarios. That is, the average left

and right paretic sides across mixtures and simulations is equal. The importance of this

point is mainly that, I hypothesize, that in these very controlled conditions, if significant

outcome differences appear, then within group heterogeneity would only increase these

differences in outcomes. However, this study is outside the scope of this dissertation and

requires an in-depth sampling of condition dependent distributions of symptoms.
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5.5.2 Analysis

In this study, I extend the concept of fundamental diagram to compare the changes in

outcome measures over levels of heterogeneity mixtures. For each heterogeneity mixture,

agents are randomly initialized and simulated 100 times. For each heterogeneity mixture

level and each outcome measure, a Kruskal Wallis test is performed to determine if there

is a significant difference amongst the ranks of each of the models. Repeated pairwise

post-hoc Conover’s tests (with false discovery rate (FDR) corrections in the presence of

ties) are used to identify the significant differences among the models p < 0.05.

The qualitative analysis includes heatmaps of aggregate movement, or flux, over the

best performing (in terms of flow rate) scenarios for each of 30/50 (60%), 40/50 (80%),

50/50 (100%) mixtures. The scenario is divided into sections to focus the qualitative

analysis.

5.5.3 Results

The fundamental diagram for the total crowd effort metric can be seen in Figure 5.12 and

the statistical test results can be found in Table 5.6. The fundamental diagram for the

crowd flow rate can be seen in Figure 5.13 and the statistical test results can be found

in Table 5.7. The fundamental diagram for the total crowd path length can be seen in

Figure 5.14 and the statistical test results can be found in Table 5.8. The aggregate

flux maps for the best performing (by flow rate) scenarios for each model is shown in

Figure 5.15.
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Table 5.6: Matrix of statistically significant test results for total crowd effort. All check marks

are significant as per Section 5.5.2. The N value is the intersection of completed scenarios between

all models.

1 5 10 20 30 40 50
normative/TGA x x X X X X X

normative/TGA Velocity X X X X X X X
normative/velocity X X X X X X X

TGA/TGA velocity X X X X X X X
TGA/velocity X X X X X X X

TGA velocity/velocity x x x X X X X
N 96 97 95 87 83 84 77
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Figure 5.12. Fundamental diagram of total crowd effort over model mixtures. The lines and

shaded areas represent the means (µ) and standard deviations (σ) respectively. Detailed results

can be found in Appendix B.
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Table 5.7: Matrix of statistically significant test results for the crowd flow rate. All check marks

are significant as per Section 5.5.2. The N value is the intersection of completed scenarios between

all models.

1 5 10 20 30 40 50
normative/TGA x X X X X X X

normative/TGA Velocity x X X X X X X
normative/velocity X X X X X X X

TGA/TGA velocity X X X X X X X
TGA/velocity X X X X X X X

TGA velocity/velocity x x x X X X X
N 96 97 95 87 83 84 77

1 5 10 20 30 40 50
Crowd Model Mixtures (out of 50 agents)

0.8

0.9

1.0

1.1

1.2

Fl
ow

 R
at

e 
(a

ge
nt

s/
s)

normative
tga
tga_velocity
velocity

Figure 5.13. Fundamental diagram of total crowd flow rate over model mixtures. The lines and

shaded areas represent the means (µ) and standard deviations (σ) respectively. Detailed results

can be found in Appendix B.
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Table 5.8: Matrix of statistically significant test results for the crowd path length. All check

marks are significant as per Section 5.5.2 (no difference amongst models at the 1/50 (2%) level).

The N value is the intersection of completed scenarios between all models.

1 5 10 20 30 40 50
normative/TGA - x X X X X X

normative/TGA Velocity - x x X X X X
normative/velocity - x X X X X X

TGA/TGA velocity - X X X X X X
TGA/velocity - X X X X X X

TGA velocity/velocity - x x x x x X
N 96 97 95 87 83 84 77
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Figure 5.14. Fundamental diagram of total crowd path length over model mixtures. The lines

and shaded areas represent the means (µ) and standard deviations (σ) respectively. Detailed

results can be found in Appendix B.
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5.5.4 Discussion

This experiment completes the series of experiments investigating the impact of hetero-

geneity in locomotion biomechanics. There are two notable outcomes of this study which

impact the area of safety-critical analysis using synthetic crowds. The first is the be-

haviour of the effort metric over the heterogeneity mixture levels with respect to the

models. The velocity reduction models (TGA velocity & velocity) differ significantly

from the normative velocity models (normative & TGA) in their effort outcomes. This

is expected as the effort measure is predicated on velocity changes over the path integral

of each agent, thus scaling velocity would scale the effort metric overall. However, the

velocity model and the TGA velocity model differ significantly between 10 and 20 agents,

or 20% and 40% respectively, heterogeneity mixture levels. This result is very interesting

as it is likely rooted in normative assumptions in the measure about the agent’s being

simulated. The effort metric assumes the values of two biological constants which are

generally set to empirical averages for normative human walking. In contrast, it is known

that TGA is an inefficient gait strategy, or at least leads to higher effort. In particular,

post-stroke TGA (Finley & Bastian, 2017; Platts, Rafferty, & Paul, 2006; Michael, Allen,

& Macko, 2005), post-amputation TGA (Mahon, Darter, Dearth, & Hendershot, 2019),

and even perturbed normative walking (Ellis, Howard, & Kram, 2013) lead to higher

metabolic energy costs. This result then shows a need for defining the biological con-

stants of effort on a per agent basis, or, in the case of non-linear energy consumption,

redefining the effort path integral.
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(a)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5.15. Aggregate flux heatmaps for the best (by flow rate) egress scenarios (crowd ini-

tialized at right, egress bottleneck at left). The default model is shown in (a) to illustrate areas

of interest. The first column (c, f, i) show the TGA model results for the 30 (60%), 40 (80%),

and 50 (100%) mixture conditions. Similarly, the TGA velocity (d, g, j) and the velocity (e, h, k)

model results are shown in the middle and right columns respectively.
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The second notable result of this study is the differentiation between the TGA model

and the normative, TGA velocity, and velocity models as well as the differentiation of the

TGA velocity and velocity models with respect to the flow rate measure. The TGA model

and the normative, TGA velocity, and velocity model differentiation becomes significant

between 1 (2%) and 5 (10%) levels. The TGA velocity and velocity model differenti-

ation becomes significant between the 10 (20%) and 20 (40%) levels. The means that

under these conditions, and considering these synthetic models of TGA, that velocity

attenuation alone is not an efficacious proxy for the simulation of populations with TGA

symptoms.

The qualitative results highlighted in Figure 5.15, reveal interesting patterns within

models and across mixture levels. In Figure 5.15 areas for salient behaviours are de-

lineated, with 4 being the rightmost and earliest point in the scenario and 1 being the

leftmost and last point in the scenario. In order from beginning to end: 4 is both crowd

instantiation and movement toward egress point; 3 the area before the egress point which

form a salient region because of the effects of the bottleneck; 2 the bottleneck itself, a

doorway 1.37m wide; and 1 the egress point and goal area within 2m of the bottleneck.

It should be noted that these are the qualitative results of synthetic crowds in an envi-

ronment and scenario structured to be problematic. The qualitative analysis will focus

on the emergent crowd behaviours with respect to model, but the scenario itself is the

problem (that is, an element of building design under a capacity it potentially can not

handle well). Without this type of analysis, with the scenario under diverse model con-
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ditions, one may make conclusions about means to fix or improve the egress design (for

example optimizing a flow altering obstacle). However, these improvements would only

be predictive under a limited range of uses, read: normative users.

In the TGA model results, there is a general broader use of space in area 4 that

increases with the mixture. Because of this, there appears to be more uniform spread

of space use in area 3, which appears as radiant lines of constructive interference in the

aggregate flux. Agents with the TGA model are moving to the edges of the available space

and entering a state similar to under damped PD controllers. This appears to be due to

the wide non-paretic step length in the face of an undersized doorway for this capacity.

Most of the space use over the scenario is clearly concentrated within the bottleneck in

area 2. In area 1, several agents appear to make circuitous exits to their goal to avoid

other emerging agents. In general, TGA appears to produce noisy paths, space filling

behaviours, under damped oscillations, and wide avoidance paths.

In the TGA velocity and velocity results, there is generally less noise (oscillations,

and non-linear paths) than in the default and TGA models. In area 4, most paths are

very straight and low noise. In both models, there appears to be less utilization of the

entire hallway width than the TGA and default models. In area 3 and 2, velocity and

TGA velocity methods differ, in a subtle but serious way. While both models produce a

funnel like flux pattern, with strong symmetric utilization at the edges of the entrance

to the bottleneck in area 3 connected to a strong movement in the bottleneck in area

2. Similar to the TGA model, but at a smaller scale, the TGA velocity model produces
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oscillations and side stepping in the mixture of agents. This produces high frequency

noise patterns in the flux and ultimately reduce flows at key points in the bottleneck. At

the exit point, in area 1, the TGA velocity model is somewhat chaotic, while the velocity

model is very symmetric and mostly linear.

An interesting artefact that motivates future work is that the noise in the paths

appears to lessen as the mixture becomes more and more homogeneous. The asymmetry

of in the TGA velocity model appears to exacerbate this behaviour. This may be evidence

that the differing of models, the mixture of different types of synthetic gaits, produces

numerous micro-conflicts. The resolution of these micro conflict between models appears

to be oscillations and non-linear paths. This may be where the impact on path and flow

rate stems from. Future work will explore this impact in real crowds and how to build

environment and safety-critical building elements to support these types of crowds.

5.6 Discussion

In Canada, as of 2012, an estimated 7.2% of the population has a mobility disability, and

this prevalence increases with age (Statistics Canada, 2015). In neurological hospitals,

upwards of 60% of patients may have disordered gait (Stolze et al., 2005), and the preva-

lence in community-residing older adults is upwards of 35% with the chance of incidence

increasing with age (Verghese et al., 2006). These statistics reveal how important it is to

build inclusive environments, make inclusive policies, and develop inclusive media. If our

current proxies are not adequate for these purposes, as this study shows in a limited and
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controlled way, then we must develop better models when representing these populations.

5.7 Conclusion

This chapter sought to examine if heterogeneity in locomotion biomechanics has a dis-

cernible impact on the layers involved in steering models of synthetic crowds. These are

namely: the action space; the collision space; and the emergent crowd space. It is clear

from the studies in this chapter that heterogeneity has an impact at each level.

Limitations of this study are the scope of both scenario and locomotion biomechanics.

The experiments are purposefully limited to control for confounds and to derive the mod-

els from well studied conditions that are both prevalent and impact the given scenario or

class of scenarios. in This case, I focus on patients post-stroke with TGA in a common

safety-critical scenario, the bottleneck egress. This means the results have limited gener-

ality, however, it is strongly implied (given the impact in all three layers of the steering

model) that results similarly differentiate under other conditions. Additionally, the mod-

els built to simulated TGA conditions are not validated with real world data. Instead,

the parameters are carefully constructed from analyses coming from a long history of

investigations in to the effects of TGA in patients post-stroke. The velocity model, as

well, is unvalidated, but uses these same parameters without the bifurcation of paretic

and non-paretic side steps. The modelling approach is described in Chapter 6, however,

direct validation of the models (fitting and error analysis between actual walkers and the

simulated agents) is left for future work.
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A common theme in these studies has been the importance of heterogeneity at different

scales. What this sort of language erases here is that the end result of this direction of

thinking is not heterogeneity of synthetic agents–it is diversity, and specifically diversity

in representation. The importance of this is: if you as a person are not captured by

a synthetic crowd model; if that synthetic model is used to make decisions; then those

decisions may impact your quality of life and the equity of your access to things associated

with those decisions. That is to say, diverse mobilities exist, and they must be accounted

for and done so in a way that captures their intricacies. People with non-normative gaits

and mobilities know that they exist, and I, as a researcher investigating this dimension

of synthetic crowds, am certainly not ‘discovering’ them. My hope with this study is

to reinforce, in the way required by the sciences, the humanity and importance of these

people who are so often overlooked or even hidden from view to the detriment of everyone.

That is, this study takes a critical standpoint regarding diversity in crowds and from this

standpoint we see that diversity impacts outcomes at all levels of steering modelling.

Thus, we must consider a critical standpoint in the adoption of synthetic crowds as an

analytic methodology, and likely a content creation methodology. This means at least

recognizing the limitations of our approaches and ideally developing more representative

ones.
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Chapter 6

Toward Capturing Heterogeneity

This chapter reviews the findings of and methods used in the dissertation to build a

picture of the direction synthetic crowds is heading. Specifically, I delineate: the method

used in Chapter 5 Section 5.3 for extracting the features of the footstep action space; the

method used in Chapter 5 Sections 5.4 & 5.5 for modelling temporal gait asymmetries in

a space-time planning steering model; the findings and possible resolutions for measuring

effort of agents with asymmetric gaits from Chapter 5 Section 5.5.

6.1 Seeing the Footstep Action Space

In Chapter 5 Section 5.3, I use a method devised for “reverse-engineering”, or seeing, the

footstep action space. In step planning based crowd simulation the footstep action space

is used to generate footstep plans. In this case, a reverse process is devised as a means

of extracting the action space as feature vectors for each step from a data source. This

method is a relatively straightforward set of assumptions and transformations with some
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fitting procedures to produce the 9-dimensional footstep action space for every footstep

in a given data stream–in this case the skeleton of motion capture based data (La, n.d.).

This tool has multiple uses. The first is simply extracting step information in the form of

footstep action space feature vectors. The second use unsupervised machine learning in

the form of clustering, and exploring the clustering of, this type of data. The third use

is exploring and visualizing the footstep action space of data source.

The process, outlined in Figure 6.1, requires some input data source of human skeletal

motion (including feet) which, in turn, requires some basic labelling. The most important

labels are the foot front and back, as well as the Centre of Mass (COM). The COM may

be: derived from direct measurements as part of the data source (a per person COM);

approximated by assuming a uniform distribution of weight in the void space of a 3D

model and computing the mean mass point; or approximated by hand using the skeleton

of the recording. Generally, these labelled points become child transformations of the

skeleton such that their motions are the result of the data sources motions.

Once the key points are labelled, the data source is tracked throughout its frames. In

the system, this becomes an animation of the skeleton. As the animation proceeds, the

COM point is projected onto the ground plane and the foot markers are monitored for

foot down conditions. These conditions include: foot flat–both front and back foot labels

are within some epsilon of each other; foot down–the front and back foot labels are both

below a height value (ground plane); and foot moved–the current foot has moved more

than some delta value. When all of these conditions have been met a foot flat condition is
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recorded. The parametrization of each condition allows the user to account for noisy data

sources or badly tracked feet. In the poor cases, a number of methods may help increase

accuracy and detection. These include: manual clean-up of the data source; filtering

or smoothing of the relevant label positions; and, in the case of missed footsteps, using

first order derivative approximation methods, like central differencing to find the vertex

point of the COM arc. In the latter method the foot features may be estimated directly

using some basic transformations, or may informed by data or models to approximate

the relative foot placement and angle.

At each successful foot flat condition a number of conditions are checked to ensure

there is enough information to extract the footstep action space parameters. These con-

ditions are based on footsteps accumulated in to strides–there must be: more than two

steps, the previous foot can not be the same as the current; and the current foot must be

the same as the step before the previous. Clearly hopping or uni-pedal movement strate-

gies are not captured here, but for the studies in this dissertation, these are adequate.

Generally, these conditions can easily be changed or adapted for use with a wide range

of locomotion strategies.

Once steps are detected and enough information is available, the foot, step, and stride

features are trivial to extract. The COM features require processing. The COM features

are defined by a parabola in local space. First the relevant COM trajectory points for

the current foot are extracted based on foot flat condition timings. The first feature,

COM arc length, can be estimated by summing the polyline segment lengths formed by
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the segmented COM trajectory points. The accuracy of this measure is then dependent

on the frequency of the COM sampling and the speed of the person being tracked. In

these studies, the data source participants walked at or less than the average human

walking speed, approximately 1.3m/s, and the sampling frequency of 200Hz proved more

than adequate. The second COM feature, the COM parabola α parameter, requires the

COM trajectory to be placed in a local space. This requires a set of assumptions and

transformations based on the shape of the COM trajectory. This process is outlined in

detail in Figure 6.2.

Finally, the tool provides an interface to several unsupervised machine learning meth-

ods. The current version provides: kMeans, kModes, Guassian Mixture Model, Mean

Shift, and Binary Split. Clustering analysis in this tool is typically done in two passes.

The first pass involves extracting all the footstep feature vectors from whatever data

source is provided. Once data is collected, the user may choose the clustering method

and its parameters (typically k). The system will internally cluster all captured feature

vectors. The second pass is optional, when the user may play back this data to see what

footsteps are grouped together, or use the plotting tool to understand the distribution of

footstep action space parameters in the clusters.

It is important to note that the data source for this method may be anything that

tracks bipedal human skeletons and can transform them into world space. For pure

computer vision based methods this usually means some scene understanding as well for

the world space transformation. However, these methods are becoming more and more
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Figure 6.1. Overview of the process for footstep action space feature extraction. Foot down

conditions provide enough information to trigger step and stride completion conditions. At each

stride completion, step-based features are extracted. These features inform the COM trajectory

segmentation and afford COM-based feature extraction. The segmented COM trajectory under-

goes transformations to place it in local space. It is then fitted with a simple curve y = αx2

to approximate α which determines the shape of the COM’s parabolic projection on the ground

plane. Figure 6.2 outlines the details of the COM trajectory processing.
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Figure 6.2. Overview of the COM trajectory process. In panel 0, a typical example of a complete

stride. In panel 1, the centroid of the COM parabola is estimated using the arc length. In panel

2, a translation is performed to place the estimated vertex at the origin. In panel 3, the opening

direction of the parabola is estimated by: (a) forming the vectors to the estimated vertex and

the arc end points; (b) projecting the vertex vector on to the endpoint vector and subtracting

the vertex vector from the projected one; (c) finding the smallest rotation to align the vector

from (b) with “up”; and (d) rotating all arc points (this step can be augmented with a corrective

translation to fix badly estimated vertices). Finally, the parabola, now in local space, is fitted

with a simple curve y = αx2 to approximate α. Overview of the steps for the feature extraction

process in Figure 6.1.
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Figure 6.3. Interface for footstep action space feature extraction and clustering.

ubiquitous. For example, the OpenPose (Cao, Hidalgo, Simon, Wei, & Sheikh, 2018; Cao,

Simon, Wei, & Sheikh, 2017; Simon, Joo, Matthews, & Sheikh, 2017; Wei, Ramakrishna,

Kanade, & Sheikh, 2016) and ArtTrack (Insafutdinov et al., 2017) projects represent

the current state-of-the-art in this area. The value of OpenPose and projects like this,

includes the annotation and training of foot detection models–an often overlooked portion

of motion capture.

6.2 Measuring Heterogeneity

This section expands on some speculations regarding measurement in the areas of this

dissertation. The first subject is the direct measurement of heterogeneity of a data source.

The second subject is the modification or redefinition of previously used metrics which
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have been shown to be less than adequate.

6.2.1 Locomotion Heterogeneity as Diversity

The direct measurement of heterogeneity poses and interesting problem while opening a

large space of exploration in futures works. Using the method outlined in Section 6.1,

it is possible to see heterogeneity. If this method is applied over a more than mocap, as

suggested by the use of methods like OpenPose, in the setting of crowds, it is possible to

see the heterogeneity of a population of environment users. The applications of this are

numerous, but there are critical questions to ask about this approach. The applications

include: understanding the mobility of a population (smart city and urban planning;

adaptive routing and signage for diversely mobile populations (hospitals and care homes);

event planning; accessibility validation. However, there are also critical questions we must

ask, and I motivate these for the reader with an anecdote recounted from my time working

abroad, a colleague said,

When visiting [country name] a few years ago I noticed that there were many
people in wheelchairs moving about the city. I asked myself what had [country
name] done to these people, why was there so much disability in their popu-
lation. I noticed this elsewhere as well as I travelled. When I returned home,
I began to notice the sidewalks, the stairs, the places people in wheelchairs
could not go. I realized these countries did not produce more disabilities,
I realized my own was hiding them–forcing people with disabilities to only
access small portions of the city by not making the city accessible.

This anecdote was spurned by a conversation we were having about the work in this

dissertation and it has stuck with me. It suggests that our environment can skew our

perception of underlying systemic issues. Even the most well-meaning people may be
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shielded from the realities of the lived experiences that do not match their own. In this

suggested application, if we are to, say, measure heterogeneity, we must remember that

we are only measuring the endpoint of a system. This system may hide or obscure an

underlying series of assumptions and barriers. This is what much of this dissertation is

about–visibility. If the representation is lacking or absent then our decisions are at min-

imum biased and problematic and at worse wrong and harmful. So while many of these

applications hold great promise, they must be taken with care. Perhaps the most inter-

esting is accessibility validation because we can examine the distributions of mobilities

in a population to see what is missing. If an environment or event does not have a di-

verse mobility population in an expected proportion to known values, then this is strong

evidence that there is a need to assess what and where barriers still exist. The other

application, and perhaps closely related to this thesis, is data diversity verification. If a

data source (crowd simulation, motion capture database, etc) is being used in the appli-

cation of synthetic crowds (built environment testing/optimization, policy development,

or digital animation), it can be analysed to find whether the source has good coverage of

expected mobilities or diversity prior to use.

There are several possibilities for heterogeneity, or diversity, metrics that range from

basic high level statistics to machine learning based methods. For a data set of footstep

action space feature vectors, the variance in features may be a high level indicator. More

specifically, the per person variance of per foot features may be an indicator of either

environment details (like foot angle variance in an environment that has a corner) or di-
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versity in mobility (like asymmetrical variance or mean values in foot angle and step time

features). Separating person-environment interactions from within and between person

mobility interactions and mobility-environment interactions is a non-trivial task. For a

clustered data set, there are even more possibilities for analysis and visualization. Beyond

simple summary statistics or cluster centroids, there are several metrics for clustering

quality with respect to diversity. These include: separation (e.g. between cluster Sum

of Squared Errors, graph node weights); joint cohesion and separation (Silhouette Coeffi-

cient (Rousseeuw, 1987)); richness (akin to the K value in kMeans, fund using Silhuoette

Coefficient, Elbow Methods, Gap Statistic (Tibshirani, Walther, & Hastie, 2001), etc);

Shannon index (Tuomisto, 2010; Shannon, 1948); and numerous other indices or diversity

statistics. Generally speaking, many of these methods have either been applied broadly

as internal cluster validations or in ecology where understanding species distributions is

important.

6.2.2 Normative Crowd Measures

An important outcome of the experiment outlined in Chapter 5 Section 5.5 is strong

evidence that the total metabolic energy expenditure, or effort, of non-symmetrical gait

patterns is more than that of symmetrical gaits. The literature strongly supports this

result, specifically, that asymmetry in hemiplegic patients post-stroke induces a higher

energy expenditure (Kramer, Johnson, Bernhardt, & Cumming, 2016). Handling this

difference accurately in the application of synthetic crowds is very important. With
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respect to mobility, the more important factor between speed and distance in community

functioning of post-stroke patients is distance (Combs et al., 2013). This is likely the role

of the community design and the built environment in the disablement process(Renalds

et al., 2010; Clarke et al., 2008; Clarke & George, 2005). The energy cost of walking is

considered one of the primary factors in the distance a patient post-stroke, both younger

and older, can walk (Platts et al., 2006; Zamparo et al., 1995). This warrants a closer

investigation of the effort metric.

The definition of the effort metric (single agent version of Equation 4.3 from Chapter 4

Section 4.2.2) is the path integral for total metabolic energy expenditure during walking:

E = m

∫
(es + ew|v|2)dt (6.1)

where m is the mass of the agent, es and ew are biological constants set to empirical

averages for human walking, 2.23 J/Kg·s and 1.26 Js/Kg·m2 respectively, and va is the

velocity of the agent. Herein lies a normative assumption, both es and ew are based on

averages for normative walking over level ground (Whittle, 2014). The value es is the

rate of base metabolic energy expenditure per second and grows depending only on time.

The value ew is the rate metabolic energy expenditure of walking and grows depending

on the agent walking velocity and time. Assuming that es remains fixed, which may not

be true, the average percent difference of the metabolic energy expenditure is 12.76%

so es becomes 1.420776 for post stroke patients with hemiplegia (Zamparo et al., 1995).

However, this assumes that: 1) es can accurately remain fixed for patients post-stroke; 2)
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that the derivation of measurements of the energy expenditures can be compared; and 3)

that this average difference is suitable (note that the energy expenditure cost is directly

related to speed). To further this conversation, it is clear from past experiments that the

energy expenditure is not simply an average scalar value. In fact, there appears to be a

power law relationship for both normative and hemiplegic energy expenditure with respect

to speed (Zamparo et al., 1995). This can be seen in Figure 6.4. Further work in this

area is required to define more appropriate and potentially adaptive metabolic energy

expenditure path integrals for use in the analysis of diverse synthetic crowds. This is

particularly important for safety-critical scenarios as there may be large variations in

speed as bottlenecks form, panic ensues, and differences in walking patterns are resolved

via social norms (sidestepping, assistance, etc) or safety practice (mobility routing, care

staff, etc). Additionally, as noted in Chapter 4 Section 4.3.4, the measure as defined does

not necessarily capture the energy cost of torques.

6.3 Modelling Heterogeneity

This section briefly delineates the key implementation details of the footstepAI model

used in this dissertation, and then approach used in Chapter 5 Sections 5.4 & 5.5 as a

means to further the conversation on modelling in this space. The footstepAI model is

implemented with an interesting use of the A* shortest path planner. To provide solutions

to the problem of planning of multiple sequential footsteps with multiple objectives, as

described in the original paper, the author’s convert the problem into a just-in-time graph
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Figure 6.4. Estimated power law relationships between speed and energy expenditure in nor-

mative controls and patients with hemiplegia–data from (Zamparo et al., 1995).

exploration. From a high level, the footsteps planner, given one agent, plans a path for the

agent as a piecewise footstep plan, where each piece is a complete footstep. The number

of steps to plan is a sort of time horizon, where typically the value is around 10 steps.

Each step, as the plan is built must minimize three energy cost functions: 1) the cost of

a fixed energy expenditure (this is to reduce the total time spent trying to reach a goal);

2) the cost of counteracting the instantaneous loss of momentum during the heel strike

phase (this is to measure the effort required to maintain a desired speed); 3) the change

of momentum over the step trajectory (this makes straighter steps preferential at the

desired speed and slower steps preferential when changing direction). In the just-in-time
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graph solution of this problem, at each step, a series of nodes are created which represent

various types of possible steps from the discretized footstep action space–the footstep

action space is described in detail in Chapter 5 Section 5.3. To simplify this search,

the implementation uses a large set of normative footstep action prototypes during the

search. Each of these footstep actions is tested for collisions (either culled or incur a high

cost penalty if they occur along the step trajectory) and the total of the cost function.

The resultant graph after the number of nodes to expand and number of steps to plan

are reached is then searched using the A* path planner.

To implement the models in Chapter 5 sections 5.4 & 5.5, I interject at the point of the

just-in-time node expansion of the implementation. Each time a footstep is evaluated for

its cost and collisions, a higher level model is passed the current state of the agent. This

state includes the current foot flag and the parameters of the footstep being evaluated.

Primarily the focus of the modelling in that study is the representation of hemiplegia in

community ambulating patients post-stroke. This means the models primary function

is to bifurcate the parameters such that the paretic side and unaffected aside differ.

This difference produces spatiotemporal gait asymmetries reflected in both the stepping

patterns and th COM trajectories. It is important to note that the main reason for

using scaling factors for temporal parameters rather than concrete values or parameter

bounds is that any given step passed from the representative normative set may fulfil

a particular function, such as turning, back stepping, sidestepping, etc. Scaling factors

based on empirical values solve the issue of robustly handling the various step types. For
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the TGA models the higher level model simply checks the current foot state and switches

out the parameters noted in Chapter 5 sections 5.4.1.2 & 5.4.1.3.

While this model provides a high fidelity and highly modular means of producing

biomechanically based synthetic crowds including agents modelling spatiotemporal gait

asymmetries, it has several key drawbacks as implemented. One important issue to note is

that in the models presented in Chapter 5 Section 5.5, I am primarily aiming to model the

temporal parameters of asymmetry symptoms found post-stroke. However, as noted in

that study, to make the optimization tractable with the same underlying footstep planner

model, it was necessary to constrain certain spatial parameters, such as minimum & max-

imum step length. There is some evidence that the spatial (length) and temporal (time)

parameters are correlated, but the correlations are weak to modest (Patterson, Gage,

Brooks, Black, & McIlroy, 2010b). Additionally, there is evidence that patients post-

stroke can adapt spatial and temporal asymmetries independently (Malone & Bastian,

2014; Malone, Bastian, & Torres-Oviedo, 2012). This is to say the model, as presented,

serves the purpose of presenting possible walkers based on empirical evidence, but that

there is strong reason to create new footstep planners which separate the mechanisms con-

trolled by these parameters. The future of this area of modelling includes such approaches

as using probabilistic models for irregular stepping patterns; space-time planning models

for differential drive controllers (for footsteps + wheelchairs); physical models for mobil-

ity devices and persons/environment interactions; and machine learning based models to

remove the dependence on an underlying crowd model. A particularly important goal
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would be to produce a sort of fidelity agnostic panacea physical model that is flexible

enough to capture the range of not only gait disorders and interesting mobilities but also

integrates physically robust simulations of mobility devices.

6.4 Conclusion

In this chapter I explore many of the questions that arise from the findings in the disser-

tation. I make preliminary attempts to either address them or provide further evidence

from the literature of their importance. My hope with this chapter is not to provide solu-

tions to issues in crowds but to strongly suggest important avenues the future of synthetic

crowds may take. In doing so, I have covered: a method and system for extracting the

footstep action space features from a a data source and performing unsupervised learning

on the data set; the importance of capturing and measuring the diversity of mobilities

including the diversity of a population from a pattern recognition and information the-

oretic approaches derived from ecology to the importance of metric derivation such as

effort when measuring diverse crowds; and finally, the modelling diverse mobilities and

the limits if current modelling through the inner workings of the footstepAI models used

throughout this dissertation.
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Chapter 7

Conclusion

This dissertation has endeavoured to examine the underpinnings of steering model selec-

tion and how representation impacts outcomes we find when we apply steering models.

The dissertation is arranged as a critical standpoint and informal proof for both endeav-

ours. That is, assuming the implied (by way of the literature) universal quantifications

that: 1) steering models capture human behaviour and thus reproduce the same human

behaviour; and 2) low-cost (computational and implementation complexity) heterogeneity

proxies capture the outcomes of diverse crowds; then there exists counterexamples which

falsify these statements. This dissertation provides these counterexamples by way of ex-

tensive studies each framed by a critical review of the literature and assumptions made.

This chapter reviews what these studies have found, and how those findings challenge

common practices in the application of steering models. Following these discussions, I

explore and delineate the limitations of the studies and their findings. Finally, I follow-up

with future works to address these limitations and explore directions which this area of
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work could take.

7.1 Findings

The dissertation is primarily broken into two extensive studies. Since the topic of the

dissertation is the importance of biomechanical heterogeneity in the space of synthetic

crowds and their applications, I build toward the major findings of the dissertation by

separating the two core concepts–biomechanics and heterogeneity. In the first study, I

examine the importance of biomechanics by constructing, both from the literature and

new real world examples, the largest single comparative synthetic crowds study ever

conducted. This study builds over the course of five experiments which increase in scenario

complexity. The study examines four ubiquitous steering models which are commonly

found in games, animation, research, and analytics which employee synthetic crowds. By

normalizing the models beforehand under the same conditions and for the same fitness

function, they can be directly compared to understand how their underlying models and

built-in assumptions perform under the battery of scenarios. The key finding in this study

is that no one model is panacea. Even when normalized the models produce different

quantitative and qualitative results. The next major finding is that the models underlying

mathematics and assumptions produce shortcomings under specific conditions–no one

model is capable of 100% success across all scenarios. These shortcomings naturally

delineate the applications of where these models are successful. Some models are perfect

for gaming as they are computationally inexpensive, produce nice qualitative results,
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and would overcome there shortcomings in gaming environments where other systems or

mechanisms fix certain assumptions (such as physics engines, navmeshes, higher level AI

etc). Some models are excellent for rapid analysis as they produce emergent behaviours

found in real crowds. However, the key insight here was that fidelity had a large impact

on outcomes, both quantitative and qualitative. In particular, biomechanical modelling

affords a level of analytics not provided by other approaches, namely that across scenario

complexities they produce expected direct and emergent behaviours and quantitative

outcomes which reflect the underlying human nature of certain scenarios.

In the second study, I examine the impact of heterogeneity on outcomes derived from

synthetic crowds by examining the three levels of outcomes where steering decisions have

an impact. These levels of impact are the actions space, the collision space, and the

emergent crowd space. At the action space level I examine real world data of normative

and stylized walking in the form of motion capture and derive footstep action vectors. The

main finding at the action space level was that footsteps are separable into distinct regions

of footstep action space and that this is especially true of stylized, non-normative steps–

thus these actions produce action spaces of distinctly different character. At the collision

space level, I reuse the biomechanical model from the first study and introduce a higher

level models which perturbs the footstep action planning. I specifically focus on patients

post-stroke as several prior studies make claims in the space of evacuation analysis of

hospitals and care homes whose populations would include these people, but use velocity

reduction as a proxy for their mobility modelling. This focus also allows for the empirically
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based derivation of footstep parameters and constraints as there is extensive literature

on the analysis of spatiotemporal gait asymmetries of patients post-stroke. Using the

previous literature as a backbone, I develop three new models which model: temporal

gait asymmetry, velocity reduction, and temporal gait asymmetry with velocity reduction.

The main finding of this study is that the collision space of all models differs in shape,

amplitude, and frequency. Since all steering models attempt to produce collision free

trajectories for agents and this necessarily relies on the collisions space, the finding implies

that they emergent collision avoidance strategies, and thus emergent crowd behaviours

and outcomes, would differ as well. At the highest level, crowds outcomes, I test this

implication in a carefully controlled study of a ubiquitous synthetic crowds scenario. The

scenario is important as it is not only used across crowd simulation literature but is also a

sub-feature common to many buildings and has been responsible for the deaths of people

in real world tragedies–the bottleneck egress. By examining common crowds outcome

measures over increasing levels of heterogeneity (mixing in more of a particular agent

model), I show that the biomechanical heterogeneity of agents in the makeup of a crowd

significantly impacts the quantitative and qualitative outcomes of a safety-critical crowd

scenario.

7.2 Implications

The implications of the dissertation can be summed up simply: diversity matters. If we

are rendering media, producing analytics, drafting policies, or generally making decisions
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which impact peoples lives, and we are using synthetic crowds to do so, then the diversity

of those people we are simulating must be taken into account.

In study one, I devise a novel hybrid approach to comparative analysis of synthetic

steering models. The approach combines optimization as a means of normalization be-

tween models of arbitrary parameter dimensions (Wolinski et al., 2014a) and the use of

optimal ratio metric minimization (or maximization) (Berseth et al., 2014). Additionally,

this approach combines and sorts prior and new benchmarks by scenario difficulty into

the largest, non-procedural, benchmark set for in-depth analysis of crowds. The implica-

tions of this are two-fold: first models can now be comparatively analysed in ecologically

valid scenarios without ground truth; second the result of comparative analysis can feed

future research results (see Section 7.4).

In study two, I show in a very controlled case that the diversity of simulated population

impacts crowd outcomes at every level of steering. Since the heterogeneity is introduced at

the very lowest level, the action space, and the results show significant difference between

all controls, the implication is that the non-linear modelling of gaits is important in

crowd simulation outcomes. This means that, particularly in safety-critical analysis, that

an analysis of expected population must take place before and during the use of synthetic

crowds to inform decisions.
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7.3 Efficacy & Limitations

The studies presented in this dissertation are primarily limited by scope. The first study

examines only four steering models. There are several models available to the synthetic

crowds research scientist and most commercial software have one in particular they use.

The approach in this dissertation was to select several common models which are ubiq-

uitous in a few key areas. The first study also carefully removes heterogeneity from the

models. This step proceeds down to the individual agent level, and is artefact of ex-

perimental control for this dissertation. That is, in certain cases where agents would

have heterogeneous desired locomotives (again this is the primary heterogeneity proxy), I

have homogenized the desired velocity. I wanted to explore biomechanics separately from

biomechanical heterogeneity to build towards a particular research arc. In practice, this

benchmark would not do this. It is important to keep this alteration of desired speed when

comparing models. Additionally, I removed scenarios from prior benchmarks which relied

solely on this–namely the overtake scenarios of the Simple Interactions experiment (Singh

et al., 2009).

The second study is limited in scope because there are numerous sources of interesting

gait patterns. Temporal Gait Asymmetry is a nice case study because it specifically relates

to linearity of step and COM patterns at the lowest level. In this way, biomechanical

heterogeneity can be introduced in the lowest level of footstep planning. Similarly, I

analyse the footsteps of two particular subjects in a large motion capture dataset. This

is partially because direct analysis of motion capture can be difficult without professional
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cleaning, but also motion capture of people with disordered gaits is difficult to obtain

because of the need for facilities and the control of participants with co-morbid conditions,

medication, availability, and varying comfort. In this dissertation, I use data collected,

analysed, and published to make models of a particular condition.

7.4 Future Work

The future work stemming from the findings in this dissertation are numerous. There are

several areas involved including: comparative crowds analysis; crowd and agent outcome

measures; and diverse crowd modelling.

Within the area of comparative crowds analysis the main future work would be to

create a benchmarking portal for both researcher and practitioners to make use of. This

would include supporting software for simulation, data acquisition, and analytics as well

as interfaces for exploring comparative results.

Within the area of crowd and agent outcomes measures, there is an entire area of

research to be explored further. Both the selection and definition of crowd measures pro-

duce biases in outcomes. At the selection stage, it has to be clear why a particular “thing”

is being measured over another. Generally, the approach here would be to measure as

much as possible and explore high dimensional datasets for artefacts and interesting find-

ings. This area of work requires the application of findings in big data, high dimensional

analytics, and the visualizations of high dimensional datasets. At the definition stage it

is important to be critical of outcomes metrics. Many metrics have no inherently built
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in biases, but may have biases when paired with a particular model (e.g. note that the

path length has no inherent bias, but some models have linear movements and some more

accurate models have non-linear movements). Then there are more powerful metrics, but

they may have biases, such as effort, heat production, etc. The metrics afford in sight

into biological effects of crowds but may utilize constants or values derived from medical

literature focused on normative controls.

Within the area of diverse crowd modelling the future works are endless. There is an

opportunity for modelling all sorts of interesting gaits, mobilities, devices, and interactions

which are simply not captured by simplified models. Much of crowd simulation makes

a singular approach towards robust emergent crowd behaviours. IN different areas there

are different focuses for the approach. In large scale simulations, often the focus is

produces basic emergent behaviours with very many agents. In robotics the focus is

on producing provably collision free trajectories. In building analytics the focus is on

reproducing real world scenarios and emergent behaviours with enough fidelity to assume

some generality of the results. In safety-critical analytics the focus is on produce midscale

emergent behaviours captured in safety critical scenarios. Some areas, such as games and

media focus on panacea models where several layers are involved to produce believable

animations. This latter approach has applications in all the other areas, however, it is

often strongly driven by human artists and can be costly to produce high fidelity results.

In each area, the focus is often on model and its supposed affordances. So the future work

in this area could conceivably be to devise a model-free approach. Or, in other words,
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a model which makes no assumptions about how crowds or people move, but rather 1)

learns movement and 2) is robust and general enough in definition that multiple steering

modalities may be added and interact such that large diverse crowds may be constructed

without the need for costly human intervention.

7.5 Conclusion

This dissertation has covered a particular area of synthetic crowd simulation, the steering

model, and revealed through a series of studies the impact of model decisions made at

this, the lowest, level of synthetic crowds. The studies open up new areas of research in

the field of synthetic crowds and supports future works in these particularly difficult but

rich areas from a critical standpoint.
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Table A.1: rvo2dAI Effort optimal parameters. rvo2dAI has 4 parameters that are involved in
the optimization process.

Parameter Name Value
neighbor distance 12.08
time horizon 2.72
time horizon obstacles 11.81
max neighbors 15.03

Table A.2: sfAI Effort optimal parameters. sfAI has 11 parameters that are involved in the
optimization process.

Parameter Name Value
acceleration 0.05
personal space threshold 0.1
agent repulsion importance 0.11
query radius 10
body force 500
agent body force 4027.4
sliding friction force 10000
agent b 0.11
agent a 53.24
wall b 0.08
wall a 61.65
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Table A.3: footstepAI Effort optimal parameters. footstepAI has 19 parameters that are involved
in the optimization process.

Parameter Name Value
preferred step angle 0.58
default com height 0.93
default min step length 0.16
default max step length 0.79
default min step time 0.03
default max step time 0.6
default time cost weight 0.58
default trajectory cost weght 0.03
shoulder comfort zone 0.39
shoulder comfort zone 0.03
ped reached target distance threshold 1
furthest local target distance 71.72
next waypoint distance 26.37
ped max num waypoints 26.19
ped query radius 10.3
ped num steps before forced plan 6.28
ped initial step variation 0.45
ped reached footstep goal threshold 1.05
max nodes to expand 910.07

Table A.4: pamAI Effort optimal parameters. pamAI has 12 parameters that are involved in
the optimization process.

Parameter Name Value
max acceleration 22.22971
fov 187.5081
ksi 0.4
neighbour distance 8.208917
max neighbours 7
time horizon 4.027235
agent distance 0.05
wall distance 0.05
d mid 3.405647
agent strength 0.9
wall steepness 1.784718
w factor 0.760493
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Figure B.1. Detail boxplots of effort for each crowd model mixture from the experiment in
Section 5.5 of Chapter 5: (a) 1/50 (2%), (b) 5/50 (10%),(c) 10/50 (20%),(d) 20/50 (40%),(e)
30/50 (60%),(f) 40/50 (80%),(g) 50/50 (100%).
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Figure B.2. Detail boxplots of flow rate for each crowd model mixture from the experiment
in Section 5.5 of Chapter 5: (a) 1/50 (2%), (b) 5/50 (10%),(c) 10/50 (20%),(d) 20/50 (40%),(e)
30/50 (60%),(f) 40/50 (80%),(g) 50/50 (100%).
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Figure B.3. Detail boxplots of path length for each crowd model mixture from the experiment
in Section 5.5 of Chapter 5: (a) 1/50 (2%), (b) 5/50 (10%),(c) 10/50 (20%),(d) 20/50 (40%),(e)
30/50 (60%),(f) 40/50 (80%),(g) 50/50 (100%).
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