663 research outputs found

    Genetic Programming for Developing Simple Cognitive Models

    Get PDF
    ©2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Frequently in psychology, simple tasks that are designed to tap a particular feature of cognition are used without considering the other mechanisms that might be at play. For example, the delayed-match-to-sample (DMTS) task is often used to examine short-term memory; however, a number of cognitive mechanisms interact to produce the observed behaviour, such as decision-making and attention processes. As these simple tasks form the basis of more complex psychological experiments and theories, it is critical to understand what strategies might be producing the recorded behaviour. The current paper uses the GEMS methodology, a system that generates models of cognition using genetic programming, and applies it to differing DMTS experimental conditions. We investigate the strategies that participants might be using, while looking at similarities and differences in strategy depending on task variations; in this case, changes to the interval between study and recall affected the strategies used by the generated models

    Repetition suppression and its contextual determinants in predictive coding

    Get PDF
    This paper presents a review of theoretical and empirical work on repetition suppression in the context of predictive coding. Predictive coding is a neurobiologically plausible scheme explaining how biological systems might perform perceptual inference and learning. From this perspective, repetition suppression is a manifestation of minimising prediction error through adaptive changes in predictions about the content and precision of sensory inputs. Simulations of artificial neural hierarchies provide a principled way of understanding how repetition suppression - at different time scales - can be explained in terms of inference and learning implemented under predictive coding. This formulation of repetition suppression is supported by results of numerous empirical studies of repetition suppression and its contextual determinants

    Neuroinformatics approaches to understanding affective disorders

    Get PDF

    Spatio-temporal Principles of Infra-slow Brain Activity

    Get PDF
    In the study of systems where basic laws have eluded us, as is largely the case in neuroscience, the simplest approach to progress might be to ask: what are the biggest, most noticeable things the system does when left alone? Without any perturbations or fine dissections, can regularities be found in the basic operations of the system as a whole? In the case of the brain, it turns out that there is an amazing amount of activity even in the absence of explicit environmental inputs or outputs. We call this spontaneous, or resting state, brain activity. Prior work has shown that spontaneous brain activity is dominated by very low frequencies: the biggest changes in brain activity happen relatively slowly, over 10’s-100’s of seconds. Moreover, this very slow activity of the brain is quite metabolically expensive. The brain accounts for 2% of body mass in an adult, but requires 20% of basal metabolic expenditure. Remarkably, the energy required to sustain brain function is nearly constant whether one is engaged in a demanding mental task or simply out to lunch. Furthermore, work over the past three decades has established that the spontaneous activities of the brain are not random, but instead organized into specific patterns, most often characterized by correlations within large brain systems. Yet, how do these correlations arise, and does spontaneous activity support slow signaling within and between neural systems? In this thesis, we approach these questions by providing a comprehensive analysis of the temporal structure of very low frequency spontaneous activity. Specifically, we focus on the direction of travel in low frequency activity, measured using resting state fMRI in humans, but also using electrophysiological techniques in humans and mice, and optical calcium imaging in mice. Our temporal analyses reveal heretofore unknown regularities in the way slow signals move through the brain. We further find that very low frequency activity behaves differently than faster frequencies, that it travels through distinct layers of the cortex, and that its travel patterns give rise to correlations within networks. We also demonstrate that the travel patterns of very low frequency activity are highly dependent on the state of the brain, especially the difference between wake and sleep states. Taken together, the findings in this thesis offer a glimpse into the principles that govern brain activity

    When do Bursts Matter in the Primary Motor Cortex? Investigating Changes in the Intermittencies of Beta Rhythms Associated With Movement States

    Get PDF
    Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural activity (i.e. bursts), yet the mechanisms regulating them are unknown. Here, we present evidence from electrocorticography recordings made from the motor cortex to show that the statistics of bursts, such as duration or amplitude, in beta frequency (14-30Hz) rhythms significantly aid the classification of motor states such as rest, movement preparation, execution, and imagery. These features reflect nonlinearities not detectable in the power spectrum, with states increasing in nonlinearity from movement execution to preparation to rest. Further, we show using a computational model of the cortical microcircuit, constrained to account for burst features, that modulations of laminar specific inhibitory interneurons are responsible for temporal organization of activity. Finally, we show that temporal characteristics of spontaneous activity can be used to infer the balance of cortical integration between incoming sensory information and endogenous activity. Critically, we contribute to the understanding of how transient brain rhythms may underwrite cortical processing, which in turn, could inform novel approaches for brain state classification, and modulation with novel brain-computer interfaces

    How do neural processes give rise to cognition? Simultaneously predicting brain and behavior with a dynamic model of visual working memory

    Get PDF
    There is consensus that activation within distributed functional brain networks underlies human thought. The impact of this consensus is limited, however, by a gap that exists between data-driven correlational analyses that specify where functional brain activity is localized using functional magnetic resonance imaging (fMRI), and neural process accounts that specify how neural activity unfolds through time to give rise to behavior. Here, we show how an integrative cognitive neuroscience approach may bridge this gap. In an exemplary study of visual working memory, we use multilevel Bayesian statistics to demonstrate that a neural dynamic model simultaneously explains behavioral data and predicts localized patterns of brain activity, outperforming standard analytic approaches to fMRI. The model explains performance on both correct trials and incorrect trials where errors in change detection emerge from neural fluctuations amplified by neural interaction. Critically, predictions of the model run counter to cognitive theories of the origin of errors in change detection. Results reveal neural patterns predicted by the model within regions of the dorsal attention network that have been the focus of much debate. The model-based analysis suggests that key areas in the dorsal attention network such as the intraparietal sulcus play a central role in change detection rather than working memory maintenance, counter to previous interpretations of fMRI studies. More generally, the integrative cognitive neuroscience approach used here establishes a framework for directly testing theories of cognitive and brain function using the combined power of behavioral and fMRI data. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

    Relating macroscopic measures of brain activity to fast dynamic neuronal interactions

    Get PDF
    The aim of this thesis was to find a systematic relationship between neuronal synchrony and firing rates, that would enable us to make inferences about one given knowledge of the other. Functional neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), are sensitive to changes in overall population synaptic activity, that can be interpreted in terms of rate coding for a particular stimulus or task. Characterising the relationship between synchrony and firing rates would facilitate inferences about fast neuronal interactions on the basis of macroscopic measures such as those obtained by fMRI. In this thesis, we used computer simulations of neuronal networks and fMRI in humans to investigate the relationship between mean synaptic activity and fast synchronous neuronal interactions. We found that the extent to which different neurons engage in fast dynamic interactions is largely dependent on the neuronal population firing rates and vice versa, i.e. as one metric changes (either activity or synchrony), so does the other. Additionally, as a result of the strong coupling between overall activity and neuronal synchrony, there is also a robust relationship between background activity and stimulus-evoked activity: Increased background activity increases the gain of the neurons, by decreasing effective membrane time constants, and enhancing stimulus-evoked population activity through the selection of fast synchronous dynamics. In concluding this thesis, we tested and confirmed, with fMRI in humans, that this mechanism may account for attentional modulation, i.e. the change in baseline neuronal firing rates associated with attention, in cell assemblies selectively responding to an attended sensory attribute, enhances responses elicited by presentation of that attribute

    Realistic models for detection of neuronal currents with magnetic resonance imaging

    Get PDF

    The computational neurology of active vision

    Get PDF
    In this thesis, we appeal to recent developments in theoretical neurobiology – namely, active inference – to understand the active visual system and its disorders. Chapter 1 reviews the neurobiology of active vision. This introduces some of the key conceptual themes around attention and inference that recur through subsequent chapters. Chapter 2 provides a technical overview of active inference, and its interpretation in terms of message passing between populations of neurons. Chapter 3 applies the material in Chapter 2 to provide a computational characterisation of the oculomotor system. This deals with two key challenges in active vision: deciding where to look, and working out how to look there. The homology between this message passing and the brain networks solving these inference problems provide a basis for in silico lesion experiments, and an account of the aberrant neural computations that give rise to clinical oculomotor signs (including internuclear ophthalmoplegia). Chapter 4 picks up on the role of uncertainty resolution in deciding where to look, and examines the role of beliefs about the quality (or precision) of data in perceptual inference. We illustrate how abnormal prior beliefs influence inferences about uncertainty and give rise to neuromodulatory changes and visual hallucinatory phenomena (of the sort associated with synucleinopathies). We then demonstrate how synthetic pharmacological perturbations that alter these neuromodulatory systems give rise to the oculomotor changes associated with drugs acting upon these systems. Chapter 5 develops a model of visual neglect, using an oculomotor version of a line cancellation task. We then test a prediction of this model using magnetoencephalography and dynamic causal modelling. Chapter 6 concludes by situating the work in this thesis in the context of computational neurology. This illustrates how the variational principles used here to characterise the active visual system may be generalised to other sensorimotor systems and their disorders
    • …
    corecore