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Abstract 

Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. 

Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural 

activity (i.e. bursts), yet the mechanisms regulating them are unknown. Here, we present evidence 

from electrocorticography recordings made from the motor cortex to show that the statistics of bursts, 

such as duration or amplitude, in beta frequency (14-30 Hz) rhythms significantly aid the 

classification of motor states such as rest, movement preparation, execution, and imagery. These 

features reflect nonlinearities not detectable in the power spectrum, with states increasing in 

nonlinearity from movement execution to preparation to rest. Further, we show using a computational 

model of the cortical microcircuit, constrained to account for burst features, that modulations of 

laminar specific inhibitory interneurons are responsible for temporal organization of activity. Finally, 

we  show that temporal characteristics of spontaneous activity can be used to infer the balance of 

cortical integration between incoming sensory information and endogenous activity. Critically, we 
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contribute to the understanding of how transient brain rhythms may underwrite cortical processing, 

which in turn, could inform novel approaches for brain state classification, and modulation with novel 

brain-computer interfaces. 

Keywords 

Neural activity, movement control, cortex, bursts, simulation, brain circuits, primary motor cortex 

 

1 Introduction 

Rhythmic activity from populations of neurons, as is routinely summarised using the power spectrum, 

is often leveraged to characterise neural activity from different brain regions (Keitel and Gross 2016; 

Mahjoory et al. 2020), behavioural states (Siegel et al. 2012), and pathologies (Brown et al. 2001; 

Schnitzler and Gross 2005). However, when analysed in time, neural rhythms often resolve into a 

succession of intermittent, transient events (Baker et al. 2014; van Ede et al. 2018; Feingold et al. 

2015; Fingelkurts and Fingelkurts 2010; Freeman 2004; Friston 1997) that can appear as sustained 

oscillations when investigated using trial averaged analyses (van Ede et al. 2018; Jones 2016). To 

understand how alterations in power are underwritten by the temporal restructuring of neural rhythms, 

it is necessary to explicitly quantify the duration, amplitude, and rate of transient events (Heideman et 

al. 2020).  

Temporal intermittencies in neural rhythms (i.e., “bursts”) are known to be important in behaviours 

such as sleep (Adamantidis et al. 2019) and working memory (Lundqvist et al. 2016). In the healthy 

motor system, changes in the temporal organization of beta frequency (14-30 Hz) activity can predict 

behaviour beyond that achieved when using just the amplitude of beta activity (Enz et al. 2021; 

Hannah et al. 2020; Shin et al. 2017; Wessel 2020). Further, beta burst dynamics appear to be 

significantly altered in Parkinsonism (Cagnan et al. 2019; Deffains et al. 2018; Tinkhauser et al. 

2017b), where they form a major target for adaptive deep brain stimulation (Little et al. 2016; 

Tinkhauser et al. 2017a). Properties of transient activity can, in principle, improve the accuracy of 

brain state classification and thus have the potential to inform stimulation controllers that are adaptive 

to changes in behavioural context. 

In the context of motor behaviour, preparation and execution have been described in terms of event-

related synchronization and desynchronization in the beta frequency band (Pfurtscheller and Lopes da 

Silva 1999). Movement imagery has also been linked to event-related desynchronization albeit with 

less power decrease at beta frequencies than that seen during movement execution (Pfurtscheller and 

Neuper 1997). When beta frequency activity is temporally resolved, changes in the rate and timing of 

Jo
ur

na
l P

re
-p

ro
of



  

21/12/2022  3 

 

bursts are associated with movement preparation, planning, termination or cancellation (Diesburg et 

al. 2021; Feingold et al. 2015; Khanna and Carmena 2017; Little et al. 2019; Torrecillos et al. 2018; 

Tzagarakis et al. 2010; Wessel 2020). Additionally, beta bursts are associated with effects that persist 

beyond their termination (Khanna and Carmena 2017; Torrecillos et al. 2018). Recent evidence also 

suggests that bursts reflect a competition between endogenous processing and external sensory 

responses that bias perception in the cortex (Karvat et al. 2021).  

Taken together, we hypothesize that: (1) the temporal properties of beta bursts are altered between 

different movement states such as rest, movement preparation, movement execution, and movement 

imagery; (2) these changes in temporal organization reflect altered responses of the motor cortex to 

stochastic inputs, that arise from a reconfiguration of the underlying microcircuit, and thus, (3) that 

expression of bursts reflect a rebalancing of how the cortex integrates spontaneous and exogenous 

inputs.  

To date, the mechanisms underlying burst activity have been described using relatively simple 

models, such as an excitatory/inhibitory network of Wilson-Cowan populations (Duchet et al. 2021; 

Powanwe and Longtin 2019; Xing et al. 2012) that are motivated by pyramidal-interneuron models of 

beta generation (Jensen et al. 2005; Kopell et al. 2011). These studies indicate that burst statistics are 

determined by interactions between synaptic noise and the connectivity parameters of any given 

model. This suggests that models constrained using burst statistics can more accurately infer 

underlying connectivity across states. In more structurally fine-grained models, work has 

demonstrated the importance of laminar-specific corticothalamic inputs, which given the right timing 

can generate short, high amplitude beta events in the absence of endogenous neural activity (Sherman 

et al. 2016). Whilst these models have been useful in understanding how to either experimentally or 

therapeutically modulate the mechanisms that give rise to beta bursts, it is still not known how 

changes in burst statistics between brain states may be underwritten by alterations in laminar specific 

excitability, and how spontaneous rhythmic activity interacts with exogenous inputs to the cortex. 

Here, we aim to establish how alterations in the cortical microcircuitry are manifest in the burst 

statistics of beta rhythms recorded from large scale neuronal activity. To this end, we use a library of 

publicly available electrocorticography (ECoG) data recorded from participants performing a range of 

motor tasks (Miller 2019). We first investigated how rhythmic burst features in these data may 

enhance the classification of different motor stages—such as movement preparation, execution, and 

imagery—by providing information beyond that available in the time-averaged spectra. Secondly, 

using computational models of the motor cortex microcircuit constrained to explain the both the 

power spectra and bursting properties of the ECoG data, we characterise how biophysical parameters 

may modulate bursting dynamics in different brain states. Finally, we use this model to test the 
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hypothesis that changes in spontaneous cortical activity can reflect an altered balance of how the  

cortex integrates endogenous and exogenous inputs. 

2 Methods 

2.1 Electrocorticography and Experimental Recordings 

All experimental data was taken from an openly available library (Miller 2019) and published for use 

without restriction (https://searchworks.stanford.edu/view/zk881ps0522). Recordings were made for 

anatomical mapping in patients with epilepsy at Harborview Hospital, Seattle, WA, USA. All patients 

provided informed written consent, under experimental protocols approved by the Institutional 

Review Board of the University of Washington (see supplementary information VII). Data were 

recorded at the bedside using Synamps2 amplifiers (Compumedics Neuroscan). Visual stimuli were 

presented using a monitor running BCI2000 stimulus and acquisition programs (Schalk et al. 2004). 

Electrocorticography (ECoG) was recorded using grids and/or strips of platinum subdural electrodes 

placed via craniotomy. Electrodes had a 4 mm diameter (2.3 mm exposed) with 1 cm interelectrode 

distance and were embedded in silastic. Electrical potentials were recorded at 1 KHz using a 

scalp/mastoid reference and ground. Hardware imposed a bandpass filter from 0.15 to 200 Hz. 

Locations of electrodes were confirmed using post-operative radiography. Exact details of the 

electrode localization methods can be found in Miller (2019). 

Data were taken from three different tasks as summarised below. For details of task structure and trial 

definitions please see figure 1A. Subject numbers represent the initial total available for each task, 

some subjects participated in more than one task. Data selection procedures are outlined in section 

2.2. 

Dataset 1: Self-Paced Finger Movements (n = 9) – originally reported in Miller et al. (2012). 

Participants were cued with a word displayed on a bedside monitor indicating which digit to perform 

a self-paced flexion and extension during a 2 s movement trial. Trials typically comprised 2-5 

movements as recorded using a data glove. Movement blocks were interleaved with 2 s rest trials. 

Data were taken from the “fingerflex” folder of the Miller repository. 

Dataset 2: Basic Motor (n = 19) – originally reported in Miller et al. (2007b) and Miller et al. (2010). 

Participants were asked to make either a simple repetitive flexion and extension of all the fingers, or a 

protrusion and retraction of the tongue at a self-paced rate (~2 Hz). Patients were cued with a picture 

of the body part to move, presented on a screen. Data were taken from the “motor_basic” and 

“imagery_basic” folders of the Miller repository. 
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Dataset 3: Motor Imagery (n = 7) – originally reported in Miller et al. (2010). Participants were asked 

to imagine making a simple repetitive flexion and extension of the fingers, or protrusion/protraction of 

the tongue at a self-paced rate (~2 Hz), matched to the task described for dataset 2. Imagery was  

 

Figure 1 –Illustrated criteria for selection of ECoG channels and computed data features: spectra, and 

distributions of burst amplitudes and durations. (A) Data was taken from three motor tasks, requiring either self-paced 

flexion/extension of individual digits (task 1); or flexion/extension of whole hand (task 2); or imagery of whole hand 

movement (task 3). Data was epoched according to timings relative to those given in the figure. (B) Procedures for 

preprocessing data. (C) Illustration of channel selection procedure. Candidate ECoG channels (blue open circles) were 

selected (filled blue circles) using a 30 mm search radius of the ROI (MNI coordinate: [±37 -25 62]; red circle). All 

channels were thresholded at a +5 dB SNR threshold for the beta peak (see methods), finally channels were selected using 

the maximum movement related beta desynchronization. (D) Illustration of envelope threshold procedure to identify 

bursts. Samples of burst amplitudes and durations were used to construct histograms. The summaries of these 

distributions were then taken as the kernel estimate to the probability density function. 
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intended to be kinaesthetic rather than visual- i.e., “imagine making the motion, not what it looked 

like”. Movement blocks lasted 2 or 3 s and were always followed by rest intervals of the same length. 

Data were taken from the “imagery_basic” folder of the Miller repository. 

 

2.2 Pre-processing and Criteria for Data Selection 

All ECoG recordings were processed as summarised in figure 1B. Large scale artefacts common 

across sensors were reduced by referencing electrodes to the common average. Channels with 

significant artefacts or epileptiform activity were visually rejected and excluded from the common 

average. Data were filtered between 4-98 Hz using a zero-phase (i.e., forward-backwards) FIR filter 

with -60 dB stopband attenuation. As the calculations of beta band signal-to-noise ratio (SNR) 

involved a comparison with the mean amplitude of the background, we chose a high-pass filter with a 

4 Hz cut-off frequency to reduce the influence of 1/f increase in amplitude at low frequencies.  

For each set of recordings, we selected one ECoG channel to carry forward for analysis. Data were 

selected to identify signals which were relevant to motor activity (i.e., spatially close to the primary 

motor cortex), of sufficient quality (i.e., good SNR of beta frequency activity), and functionally 

relevant (i.e., showing task related changes in synchrony). An illustration of the selection process can 

be seen in figure 1C. Channels were selected based on the following criteria: (1) select channels 

within 30mm of left or right primary motor cortex (MNI: [±37 -25 62]; Jha et al. (2015)); (2) 

threshold channels at +5 dB SNR for the beta band (14-30 Hz); (3) select a channel based on 

maximum SNR change between rest and movement/imagery. If no channels were found that matched 

these criteria the subject was removed from further analysis. The number of subjects whose data was 

carried forward for further analysis was: 5/9 subjects from dataset 1; 10/19 subjects from dataset 2; 

and 4/7 from dataset 3. 

Only one channel per subject was selected for the full analysis. This is because the number of 

channels that passed the selection criteria was variable across subjects, and pooling between 

neighbouring sensors had the potential to bias the construction of burst distributions due to the 

superposition of multiple underlying cortical sources. This is supported by distributions of spectral 

and burst features computed in example subjects (supplementary methods VI; supplementary figure 

7), that show that there is spatial spread of burst features across multiple sensors (Zich et al. 2020). 

Data from each task were segmented into 1 second epochs. Details of epoching are illustrated in 

figure 1A. For dataset (1), kinematic data was available from a data glove worn during the 

experiment, and thus data was epoched according to movement onset (finger movements) determined 

using a threshold crossing on the smoothed movement traces. Data was segmented into movement 

preparation (-1250 ms to -250 ms relative to movement onset) and movement execution (0 ms to 
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+1000 ms relative to movement onset) and then 1 s interstimulus intervals (ISI) blocks taken in 

between movement cues. ISI blocks were always at least 1 s away from a movement cue or movement 

termination. Throughout this paper we denote data from ISI blocks as “Rest”.  Note that we left a 250 

ms gap prior to movement onset to avoid non-stationarities that occur at the time that beta exhibits 

movement related desynchronization. This ensures that data arise from clearly defined states, rather 

than potentially containing data describing the transition between states. For datasets 2 and 3, 

movement kinematics were not available, and movement or imagination was cued by on-screen 

instructions. We therefore estimated movement onset using reaction times from dataset 1. If a subject 

also participated in dataset 1, we used their median subject-specific reaction time. For all other 

subjects, we used the group median. We took blocks of movement execution and movement imagery 

starting at cue onset plus this reaction time (lasting for 1 s in total). Movement preparation was 

defined as before. 

2.3 Data Features: Spectra and Distributions of Burst Amplitude/Duration 

Time series data were summarised using features derived from both spectra and bursts. We computed 

power spectral densities using Welch’s periodogram method with no overlap and a 1 s Hann window. 

Spectral features comprise the peak frequency within the beta band (14-30 Hz), wide-band SNR, and 

narrow-band SNR within the beta band (see supplementary methods I).  

Bursts were defined using a threshold (75th percentile) on the bandlimited envelope (Cagnan et al. 

2019; Tinkhauser et al. 2017b). Note that thresholds were specific to each condition (i.e., over the 

concatenated epochs from data in each movement state). This was performed to avoid the bias 

towards burst effects reflecting simple differences in SNR that can occur with a common threshold 

(Schmidt et al. 2020). This does however mean that burst properties are relative to the condition 

specific signal power, with the threshold for burst identification in movement execution, being 

systematically lower than that for movement preparation due to the difference in beta power between 

these conditions. 

For an illustration of burst definitions and the formation of summary statistics of burst properties, see 

figure 1D. Briefly, the distributions of burst amplitude or duration for each recording are summarised 

in terms of a probability density of arbitrary form (i.e., a kernel density estimate) which may be 

further reduced to its mean and standard deviation. Details of the procedure are given in 

supplementary methods III. 

Overall, spectral features comprised: (1) wide-band SNR, (2) narrow-band SNR, and (3) peak 

frequency. Burst features comprised: (4) mean and (5) standard deviation of burst duration; (6) mean 

and (7) standard deviation of burst amplitude. Statistical tests were computed on log transformed data. 

For all features except peak frequency, a one-way ANOVA and post-hoc t-tests were used to test for 
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changes in means of features between motor states. The distribution of peak frequencies was not 

found to be normal, therefore, a Kruskal-Wallis test plus post-hoc rank-sum tests were used to 

determine changes in mean. 

Note that analyses of differences in signal recorded between motor states (results section 3.1) use the 

above quantitative summaries of the data features (i.e., the seven features described above), whereas 

the model fitting procedures (results section 3.3) utilizes the full continuous data features (i.e., 

spectral density, and probability densities for bursts) to constrain model parameters. 

2.4 Assessing Feature Nonlinearity: Comparison with Linear Surrogate Data 

To assess the extent to which statistics of burst features in cortical signals encode information beyond 

that contained in the power spectrum, we used a comparison to surrogate data (Theiler et al. 1992). 

Following work characterising the degree of nonlinearity in beta bursts (Duchet et al. 2021), we use 

Iterative Amplitude-Adjusted Fourier Transforms (IAAFT; Schreiber and Schmitz 1996). The IAAFT 

surrogate method improves upon the simpler technique of constructing randomized-phase Fourier 

surrogates, by not only ensuring the power spectrum is preserved, but also that the signal’s probability 

density is preserved. This ensures that the surrogate reproduces the linear features of the data whilst 

destroying potential nonlinearities in the original time series. To compare data with IAFFT surrogates, 

we constructed 25 surrogate time series for each data set, and then took the feature average, computed 

in the same way as for the reference (i.e., the empirical or simulated) signals. We then computed the 

goodness-of-fit in terms of the R2, with R2 << 1 indicating significant deviation of a data feature from 

that expected in the equivalent linear process. 

2.5 Classification of Functional States with a Support Vector Machine 

To determine the ability of different data features to decode the functional state from neural activity, 

we employed a classification approach. Prior to classification, we applied Linear Discriminant 

Analysis (LDA) to the data to reduce the dimensionality of the feature space to two LDA components. 

We then used a multiclass support vector machine (SVM) using error-correcting output codes to 

combine binary classifiers into an ensemble and applied this to the LDA feature space. Learners were 

implemented in MATLAB using iteratively optimized hyperparameters, and a Gaussian kernel set. 

Model performance was evaluated using five-fold cross validation and the area under the curve 

(AUC) of receiver operating characteristics (ROCs) across the folds. Plots of SVM decision bounds 

were computed using posterior probabilities of model predictions applied in a grid search across the 

feature space. In effect, these measures of classification accuracy constitute an empirical estimate of 

model evidence or marginal likelihood, where the model in question maps from a functional motor 

state to various data features. 
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2.6 Identification and Fitting a Model of Motor Cortex Population Activity 

We used a neural mass model of population activity in the motor cortex microcircuit (i.e., Bhatt et al. 

(2016)) that incorporates a middle layer reflecting the presence of layer 4 cells in primary motor 

cortex (Yamawaki et al. 2014). This neural (state space) model formulation follows from the Wilson-

Cowan population firing rate model (Vogels et al. 2005; Wilson and Cowan 1972). This model was 

first employed to describe the behaviour of large scale, aggregate, neural population activity such as 

thalamocortical oscillations (Wilson and Cowan 1973) and since has been used extensively to explain 

cortical and subcortical rhythms (Deco et al. 2009; Lea-Carnall et al. 2016; Oswal et al. 2021; 

Pavlides et al. 2015; Powanwe and Longtin 2019; Yousif et al. 2017). As a prelude to the current 

modelling, we compared the evidence for convolution models — specifically, extended Jansen and 

Rit-like models (Jansen and Rit 1995) — against the simpler Wilson Cowan like model. The Bayesian 

model comparison is detailed in supplementary methods V and supplementary figure 4. 

Supplementary figure 4 shows that the Wilson-Cowan formulation better fits the burst features as 

indicated by the superior model evidence. Unlike the Wilson-Cowan model, we also found that the 

Jansen-Rit model was not able to capture altered burst properties, reflecting motor state dependent 

changes – a critical component of our study. For these reasons we used the Wilson-Cowan 

formulation in the remainder of this work. 

The states of the Wilson-Cowan model depict instantaneous changes in the average firing rate of a 

population of neurons (spikes s-1). This population activity A(t) represents the expectation of the 

fraction of 𝑁 neurons to be active within a short interval Δ𝑡: 𝐴(𝑡) =
1

Δ𝑡
 
𝑛(𝑡;𝑡+Δ𝑡)

𝑁
. This quantity is 

commonly estimated empirically from the peristimulus time histogram, in which the number of spikes 

per unit time (i.e., a rate) across a range of time bins is calculated. Peaks in the population activity 

reflect synchrony en masse in the neural ensemble, and thus periodic dynamics reflect phase-locked 

spike wave synchrony. In the neural mass formalism (in which the Wilson-Cowan equations are 

derived), a population is assumed to be made of a large number of identical, interconnected neurons 

that allows for equivalence between single neuron spiking and population spiking rates (Gerstner et al. 

2014), and as such, the models are parametrized using single unit firing properties. 

Using a coarse-grained, simpler model means that issues of interpretability can become more vexed. 

A key instance of this is the potential dissociation between neuronal firing – as measured in terms of 

single unit activity — and the density dynamics of populations – as measured by local field potentials 

and multiunit activity. In selecting a Wilson-Cowan formulation, we are committing to an 

interpretation of the model’s latent states in terms of a beta-phase locked neuronal firing (an 

interpretation that is supported by experimental evidence laid out in the discussion section). 
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Individual Wilson-Cowan equations were used to describe each population (e.g., cortical lamina and 

inhibitory interneurons). Intra- and inter- laminar projections were modelled using a delayed 

connectivity matrix reflecting the pattern of connectivity outlined in figure 4A. The model is driven 

using 1/fα noise generated using a fractional Gaussian process (Dietrich and Newsam 1993), with α a 

free parameter to be fit. For a full description of the model equations please see the supplementary 

methods IV. The model comprises three pyramidal cell layers (superficial SP, middle MP, and deep 

DP) plus one population of inhibitory interneurons (II). Each cell layer receives a self-inhibitory 

connection reflecting local synaptic gain control. The output of the model is a weighted sum (i.e., a 

lead field) of the layer specific firing rates with 80% contribution from deep layers, and 10% each 

from superficial and middle layers.  

Priors on model parameters dictating intrinsic dynamics (e.g., time constants, firing rate properties, 

etc.) were chosen using a combination of sources: (1) we preferentially used the Allen Brain Atlas 

data portal (https://celltypes.brain-map.org/) and retrieved properties derived from human cortical 

cells; (2) when parameters were not available in Allen Brain Atlas, we used the NeuroElectro 

database (https://neuroelectro.org/) as an alternative. For both databases, multiple estimates were 

available per parameter, and so we used the mean and standard deviation to specify the respective 

expectations and precisions on (Gaussian) prior densities. The parameter priors are outline in 

supplementary table I. Interlaminar connectivity was parameterized to match the same ratios of 

synaptic gains described in Bhatt et al. (2016). Prior covariances between parameters were assumed to 

be zero. See supplementary table I for specification of parameter priors. 

Systems of stochastic-delay differential equations were solved numerically using a Euler-Maruyama 

integration scheme. For details of incorporation of finite transmission delays, and integration of the 

resulting system of stochastic-delay differential equations, see supplementary methods IV. To fit 

models, we used an implementation of the sequential Monte-Carlo Approximate Bayesian 

Computation algorithm (SMC-ABC; Toni et al. 2009; West et al. 2021). We take forward the 

maximum a posteriori (MAP) estimate (the collection of modes of the marginal posterior 

distributions) of each parameter for additional simulations. 

Model fits were assessed by the data used to fit them: type A – using the power spectra only; and type 

B – using both power spectra and burst features (features described in section 2.4 “Data Features: 

Spectra and Distributions of Burst Amplitude/Duration”). We fit models to the group averaged data 

features and reduced the spectra to isolate peaks using a non-overlapping sum of Cauchy functions 

(see supplementary figure 3A and supplementary methods II). When fitting models across different 

motor states, movement preparation state was treated as a baseline, from which all other states were 

modulated. Movement preparation was chosen as the baseline as the group averaged spectra from this 

condition exhibited the strongest beta band power. The posteriors of the movement preparation state 
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provided empirical priors for the remaining models (i.e., Rest, Movement Execution, and Movement 

Imagery) that describe deviations from this baseline state (i.e. the movement preparation state was fit 

first using all free parameters (i.e., time constants, synaptic gains, sigmoid characteristics, properties 

of intrinsic and observation noise)). Remaining motor states were fit using a restricted set of free 

parameters incorporating laminar specific time constants, synaptic gains, sigmoid characteristics, and 

the slope/gain of 1/fα innovation noise. All models were fit to the group averaged data features for 

each state. 

2.7 Finding Parameters Responsible for Shaping Bursts 

The posterior parameter estimates—under models of the motor cortex—were examined to identify 

parameters responsible for shaping burst properties. To do this, we individually manipulated the 

synaptic gain and gain parameters for the laminar specific inputs (a total of 18 parameters) on a 

logarithmic scale from -2.5 to +2.5 (equivalent to approximately decreasing or increasing the strength 

12 times) in 25 steps. Each model was simulated for 48 seconds, and the following properties were 

estimated: the peak frequency of the spectrum, percentage change in power (from base model), mean 

burst amplitude, mean burst duration. Parameters correlating with each feature were then identified by 

estimating the Spearman’s rank correlation coefficient with the average of each feature (i.e., the 

expected value of the kernel approximation to the probability density function). This constitutes a 

sensitivity or contribution analysis: in other words, it assesses the degree to which changing synaptic 

parameters generate discernible differences in the space of data features. 

As features may not correlate across the whole connectivity range due to, for example, the existence 

of bifurcations in the model, we computed correlations within a restricted range. The optimal range 

was identified by computing the Spearman’s coefficient between the parameter and mean feature 

value across all possible ranges, with a minimum window of 1/3 of the whole range examined (i.e., 8 

steps in connectivity strength). Correlations were thresholded using a Benjamini-Hochberg correction 

to set the False Discovery Rate to 10%, and the range yielding the largest coefficient was selected. 

The correlation between average burst duration and parameter scaling was used to choose the range, 

as this feature was found to have the largest association with interlaminar connectivity. Correlations 

with the other three signal features (peak frequency, mean burst amplitude and interval) were taken 

within this parameter range. Finally, candidate parameters were found by examining the correlation 

coefficients. To identify parameters engendering changes in burst properties—but showing minimal 

effects on spectra—we looked for those exhibiting clear correlations with burst features but not with 

spectral frequency/power.  
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2.8 Assessment of the Cortical Input/Output Fidelity and Relationship to 

Expression of Beta Bursts 

We used the constrained models to understand how parameters responsible for modifying stochastic 

burst activity may regulate a trade-off between beta modulation reflecting spontaneous cortical 

activity versus that in response to exogenous input (e.g., as arising from sensory evoked potentials). 

To do this we delivered a train of inputs (modulations of asynchronous firing rate) to the middle 

pyramidal layer- the main recipient of thalamocortical afferents. We then assessed how this 

modulated beta bursts in deep cell layers – the predominant output layer of cortex (illustrated in figure 

6). Inputs were given as a step function with bouts of length in seconds drawn randomly from a 

normal distribution with mean 500 ms and 150 ms standard deviation, and breaks drawn with mean 

700 ms and 150 ms standard deviation. Inputs were multipliers on the stochastic firing rate and were 

set to 1x on the breaks and 3x (to test response to increase input rate) during bouts of upregulation. 

Fidelity of modulation was assessed by computing the Spearman’s correlation between the input 

(square wave of firing rate modulations) and output (square wave reflecting beta burst detection). We 

thus used this measure of input/output (I/O) fidelity to assess to what extent parameters known to 

regulate beta bursts also comodulate cortical integration of endo- and exo- genous activity. 
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3 Results 

3.1 Properties of Beta Bursts in Motor Cortical Activity are Better than 

Spectral Features when Predicting Motor State  

 

Figure 2 – Analysis of recordings from selected ECoG sensors exhibit changes in properties of both spectral and 

burst features between motor states. Analyses were split among motor states: interstimulus interval (blue), movement 

preparation (red), movement execution (green), and motor imagery (orange). (A) Example 2 second time series of ECoG 

recordings for different motor states. Clear bursts of beta activity are apparent in rest, movement preparation, and imagery 

states. (B) Group average of normalized power spectra, (C) probability density of burst amplitudes (Z scores), and (D) 

probability density of burst durations (ms). Bar plots in (E-G) show data from individuals overlaid, with mean and 

standard distributions indicated by error bars. Data is shown for: (E) narrow-band SNR (dB); (F) mean burst duration 

(ms); (G) mean burst amplitude (Z score). Statistics indicate results of one-way ANOVA with bars indicating respective 

significant post-hoc t-tests between pairs of states. An analysis of the predictive value of burst vs spectral features in 

classifying motor states can be found in supplementary figure 2.  
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Data features summarising the spectra (e.g., peak frequency, power in band), and probability densities 

of bursting activity (e.g., mean burst duration/amplitude) were constructed from ECoG signals taken 

from the three datasets (see methods) and epoched to yield segments reflecting different motor states: 

rest (colour coded in blue throughout), movement preparation (red), movement execution (green), and 

movement imagery (orange). Data were selected from a sensor close to primary motor cortex that 

exhibited the largest movement related beta desynchronization (see methods section 1.2 for selection 

criteria). Example time series from the different motor states are shown in figure 2A which show clear 

bursts of 14-30 Hz beta activity in data from the different states. Spectra in figure 2B demonstrate 

movement related beta desynchronization in the group averaged spectra that is reflected in the change 

in 14-30 Hz narrow-band SNR from +18 dB to +11 dB from preparation to execution of movement 

(figure 2E; post-hoc t-test (40), P < 0.001). Changes were found in the wide band SNR (i.e., level of 

background noise indicating the overall signal quality) and corresponded to worsened recording 

quality during movement epochs (supplementary figure 1B). Beta desynchronization associated with 

movement is reflected also as a reduction in burst amplitudes (figure 2C and F; one-way ANOVA P = 

0.006) and a shortening of beta burst durations (figure 2D and G; one-way ANOVA P = 0.001), 

although no significant changes were found in terms of the peak beta frequency or inter-burst intervals 

(supplementary figure 1 C and D, respectively). These results are robust to the choice of threshold 

used to define bursts, with peak discrimination between motor states occurring in the region of the 

70th to 85th percentile (supplementary figure 5A and B). An analysis of the spatial distribution of 

ECoG activity over the cortex (supplementary figure 7) in a representative subject, showed that beta 

power, burst amplitude and durations peaked at a location close to the motor cortex. 

To compare the predictive value of either spectral or burst features, we trained an ensemble of binary 

SVM classifiers to predict different motor states (supplementary figure 2). Decision boundaries 

(indicating > 50% or > 75% prediction success) between all four motor states were present for 

classification with burst features, and AUCs of the receiver operating characteristics (ROCs) showed 

good predictive value (AUC > 0.80). In contrast, classifiers using summary statistics derived from the 

power spectra could only separate features from movement preparation and execution states with 

AUCs > 0.5 (greater than chance level) and could not classify features derived from rest or imagery 

states. These results suggest that, when using band restricted information (i.e., within 14-30 Hz), the 

properties of bursting activity can significantly augment the prediction of motor states from brain 

activity. 

Jo
ur

na
l P

re
-p

ro
of



  

21/12/2022  15 

 

 

Figure 3 – Comparison of empirical ECoG data with linear surrogates show that burst features represent 

significant signal nonlinearity that is modulated across conditions (A) The Iterative amplitude adjusted Fourier 

transform (IAFFT; see methods) was used to construct spectra-matched, linear surrogates (right) for each of the ECoG 

recordings (left).  Spectral and burst features were computed for each signal, and the difference between the surrogate and 

empirical features were compared to assess the extent to which nonlinearities were present in data from the four motor 

states. (B) Plots showing the averaged difference between surrogate and empirical power spectra (computed as a 

percentage change). (C) Same as (B) but for distributions of burst amplitudes. (D) Same as (B) but for burst duration 

distributions. (E)  Bar chart indicating the median goodness-of-fit of the surrogate to the empirical data feature with IQR 

shown by error bars. (F) Same as (E) but for burst amplitude distributions. (G) Same as (E) but for burst duration 

distributions.  Statistics indicate results of one-way ANOVA with bars indicating respective significant post-hoc t-tests 

between pairs of states. 
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3.2 Burst Features are not Predicted by Linear Models of the Data 

To further determine whether beta burst features reflect meaningful information about the underlying 

motor state, beyond that contained in the spectra, we compared empirical features with those 

computed from spectrally matched IAAFT surrogates (see methods section 3.4). In figure 3, we show 

a  

comparison between empirical data features and the average feature derived from surrogate data (n = 

25) for each of the motor states. By design, the surrogates matched well to the power spectra of the 

data (figure 3B and E). Differences between the distributions of burst amplitudes and durations 

computed from the data or from linear surrogates (figure 3C/F and D/G, respectively) show that both 

features deviate significantly (median R2 < 0.80) from that expected under linear assumptions. 

Comparisons of the goodness of fits (R2) to linear surrogates showed that deviations in burst 

amplitude distributions from linearity were not identical across motor states (figure 3F, one-way 

ANOVA P = 0.002), with movement preparation and rest states showing reduced R2 values when 

compared to movement execution. Similarly, burst durations exhibited significant changes between 

states (figure 3G, one-way ANOVA P = 0.002) with data from the rest and movement preparation 

providing the greatest evidence for nonlinearity among all the motor states. These data suggest that 

burst features represent underlying nonlinearities in the data that are not captured in the power spectra 

alone. States associated with rest and movement preparation are associated with a higher degree of 

nonlinearity, especially when compared to movement execution. We next use a neural mass model to 

investigate the potential biophysical explanations for these differences. 

3.3 Biophysical Models of Motor Cortex Fit Constrained to Fit Power Spectra 

do not Predict Distributions of Burst Features 

The SMC-ABC algorithm was used to constrain a biophysical (neural mass) model of the primary 

motor cortex microcircuit to key data features (i.e., the power spectral densities and probability 

densities of burst duration/amplitude) from each of the four motor states. Models were fit to the group 

averaged data features and reduced spectra (see supplementary figure 3D-F and supplementary 

methods II). To assess the value of the power spectra in predicting burst features, fitting procedures 

were split into two groups depending upon the data features used: type A - constrained exclusively 

using the spectra, or type B – constrained using a combination of the spectra and distributions of burst 

amplitude and duration (figure 4A). Samples of the simulated time series using posterior estimates, as 

well as the fitted features are shown in supplementary figure 3. 

Type A models fit well to spectra (figure 4B; all states R2 > 0.90) but showed that spectra were not 

sufficient to predict burst features accurately. Further analysis of the fitted features (supplementary 
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figure 3E and F) showed that predicted distributions of burst amplitudes were attributable to smaller 

amplitude bursts than those observed in the experimental data, and burst durations were shorter than  

predicted in the case of rest and movement preparation (blue and red, respectively; R2 < 0.80). 

However, type A fits were sufficient to accurately recover the empirical distributions of burst 

durations in movement execution (figure 4C; green, R2 > 0.90).  

In contrast, type B fits demonstrate that the model parameters could reproduce burst features (figure 

4C), with a median fit of ~92% for all features. Complementary to the analyses of feature nonlinearity 

in figure 3, we show that the rest and movement preparation (the motor states exhibiting the highest  

 

Figure 4 – Comparison between type A (spectra only) and type B (spectra + burst features) fits of the motor cortex 

microcircuit demonstrates that spectral features are not sufficient to accurately constrain simulated burst 

parameters. Data features were constructed by simulating data using draws from the posterior distributions over 

parameters (n = 256). (A) Schematic of the motor cortex microcircuit model. Each black node represents a neural mass 

that is coupled with either excitatory (red) or inhibitory connections (blue). There are three pyramidal cell layers: 

superficial (SP), middle (MP), and deep (DP), plus an inhibitory interneuron (II) population. Model parameters were 

constrained using either pre-processed spectra (type A) or both spectra and burst features (type B) (B) Summary of the 

median ±SEM goodness of fit (R2) of the model to data from each state resulting from type A model fits. (C) Same as (A) 

but for type B model fits. (D) Difference in the goodness-of-fit (ΔR2) between type A and B fits. Negative values 

accuracy was greater in type B that type A fits.  
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degree of nonlinearity) gained the most (in terms of accurate predictions) from the explicit inclusion 

of burst features (difference of type A and B fits shown in figure 4D). In contrast, for data from 

movement  

imagery and execution, there was less gain in accuracy when explicitly incorporating burst features. ,, 

we analysed the dependency of model inference upon the specific threshold used to defined bursts. 

This analysis shows that both parameters and models were not as well constrained at higher 

thresholds, due to the increase in variance in the summary statistics that arises from the drop in the 

number of instances identified. 

 

Figure 5 – Results of the motor cortex model fits to ECoG data from motor tasks. Analysis shows posterior model 

estimates, as well as modulations in parameters from the baseline condition (movement preparation.), as well as 

correlation analysis of circuit parameters with the statistics of spectral and burst features resulting from posterior 

simulations. (A) Parameters of the model of motor cortex microcircuit were estimated from fits to group averaged data 

features from all four motor states using ABC-SMC. (B) Bar plot of the posterior model parameters with y-axis indicating 

log scaling ± the prior values at 0. Asterisks indicate statistically significant changes (Z-test of posteriors, P < 0.05) in 

parameters from the baseline state (movement preparation state; red). (C) Connections exhibiting a significant modulation 

are shown on the colour coded circuit diagram. (D) Modulations in parameters were estimated by first fitting to movement 

preparation data as a baseline state (using a wider set of free parameters, see methods), and then using these as empirical 

priors on the remaining models (using a smaller set of free parameters, see methods). (E)  Parameters of the posterior 

models dictating interlaminar connectivity, and laminar specific inputs were then systematically examined for correlation 

with different data features. Correlations were performed on a restricted range with minimum range equal to 50% of the 

total parameter space tested(see methods). Parameter significance was determined using False Discovery Rate correction 

(10%). Grey bands highlight parameters that modulated both power and burst features. Parameters in light grey reflect 

those predominantly acting on burst features. (F) Connections and inputs exhibiting a significant correlation with either 

spectral and burst features (highlighted in grey) or exclusively burst features (blue) are shown on the colour coded circuit. 
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The inadequacy of type A fits in predicting burst features (i.e., features withheld from type A model 

inversions) suggests that burst characteristics are the product of circuit mechanisms (and associated 

biophysical parameters) that are either independent or at most only weakly associated with those 

governing the power spectral amplitude and implies that features summarising temporal organization 

of bursts are important for informing neural models. Furthermore, burst features from periods of rest  

 and preparation appear most different from those predicted using type A fits. In the next section we 

aim to identify parameters of the fitted microcircuit models of motor cortex underlying these changes 

in burst properties. 

3.4 Modulation of Interneuron Activity in the Microcircuit is Predominantly 

Responsible for Modulation of Beta Bursts 

Parameters of the fitted models exhibited significant deviation from the empirical priors provided by 

model fit to movement preparation (i.e., the baseline state), and indicate changes in intra- and inter-

laminar coupling (figure 5A and B). As expected, movement execution and imagery displayed the 

largest changes in parameters away from the movement preparation state. Movement execution 

largely involved changes in interneuron inhibition of middle and superficial layers (MP and SP, 

respectively; green figure 5C). Movement imagery and rest were associated with strengthening of 

reciprocal loops between deep and interneuron (DP and II, respectively) cell layers (orange and blue, 

figure 5C). An analysis of the laminar specific activity in the model (supplementary figure 8) 

demonstrated that these two layers (DP and II) were most active during burst activity in the movement 

preparation state, with firing rates in inhibitory layers greatest at the peak of a burst. We note that the 

baseline inhibitory tone (dashed line in supplementary figure) is high (~50 Hz) when compared to the 

activities of  the pyramidal layers (~10 Hz). Both deep and inhibitory layers were heavily recruited 

during bursts and exhibit sustained rhythms outside of the main burst but with irregular phases that 

averages out across different instances. 

To identify the parameters responsible for shaping beta burst features, we systematically altered 

interlaminar connection strengths and input gains, and then applied a restricted-window correlation 

analysis (see methods section 1.7) to detect co-modulation of certain parameters with the predicted 

spectral frequency, beta power, mean burst duration, or mean burst amplitude (figure 5D). Panels 5E 

and F show that several parameters affect these data features. For instance, the strength of DP→ II 

connectivity (highlighted in grey in figure 5E) positively correlates with both burst duration/amplitude 

and spectral power for 3 out of 4 of the states. Five parameters were found to predominantly modulate 

burst amplitude and durations independently of power (light blue in figure 5D, not showing 

correlation with spectral frequency or power for rest or movement prep.): MP → MP, MP → II, SP → 

SP, SP → DP, and II → DP. Notably, 4 out of 5 of these parameters involved modulation of 
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inhibitory interneurons. To investigate how these parameters shape beta dynamics, we chose an 

example parameter—SP self-inhibition—that we took forward for further analysis. This was because: 

(A) it assumes a similar strength between motor states (figure 5B); and (B) it negatively correlates 

with both  

burst amplitude and duration but exhibits only limited effects on spectral peak frequency or power 

(figure 5E). It should be noted that this analysis depends on the minimum range for correlation 

detection, as well as the significance threshold. However, correlations with burst duration and 

amplitude were preserved despite these choices. 

 

Figure 6 – Detailed analysis of modulation of burst durations associated superficial pyramidal layer (SP) self-

inhibition strength and corresponding correlations with signal features in terms of burst duration and 

nonlinearity. The level of superficial layer self-inhibition was taken forward as a control parameter following from the 

correlation analysis presented in figure 6F. Simulations were performed on a range of parameter values spanning -3 to +3 

(log scaling from posterior). (A) 1.5 seconds of sample data simulated from each model of a motor state at either low (-2 

scaling), fitted (0 scaling), or high (+2 scaling). (B) The mean burst duration is plot against the strength of SP cell input. 

All states excluding movement execution indicate existence of negative correlation between control parameter and burst 

duration. (C) The goodness of fit between burst duration distributions estimated from simulated data and linear surrogates 

(IAAFT processes) indicates that the degree of nonlinearity in the signals is anticorrelated to changes in the burst 

durations. Inset stats give the correlation coefficient and P-value for test of association between burst duration and the 

IAAFT R2 value.  
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3.5 Increased Interneuron Inhibition of Superficial Layer Acts to Shorten 

Cortical Beta Bursts 

We used SP self-inhibitory gain as a control parameter to investigate the effects of altered laminar 

specific inhibition on the temporal organization of simulated neural activity (figure 6A). Sustained 

oscillatory activity is observed in models fit to the data recorded during rest, movement preparation 

and  

movement imagery states, with strengthening of inputs of the superficial layer interneurons acting to 

extend bursts. Corresponding intermittencies in beta rhythms were graded, with burst durations 

shortening as SP self-inhibition was increased (figure 6C; blue, red, and yellow). In the model fit to 

data recorded during movement execution (in green), there was no periodic behaviour in the simulated 

traces generated by the model (figure 6A and B, green). 

We also analysed changes in feature nonlinearity (using comparison to IAAFT surrogate method 

introduced in section 3.2; figure 6C), in which we found that IAAFT fits were negatively correlated 

with burst duration for three of the four states. However, the IAAFT R2 exhibited a higher degree of  

variance than burst durations, suggesting that the later might be a better proxy for system state in real-

world data.  These analyses demonstrates that the duration of temporal intermittencies of beta rhythms  

 in the model, can be explained by the impact of biophysical parameters on the system, in this 

instance, SP self-inhibition acts to dampen rhythmic beta responses in motor cortex outputs.  

3.6 The Temporal Organization of Spontaneous Beta Bursts Correlates with   

Cortical Integration of Exogenous Inputs 

Lastly, we investigated the hypothesis that cortical beta burst properties reflect a trade-off between 

integration of spontaneous endogenous activity, versus that arising due to structured exogenous inputs 

(Karvat et al. 2021) (i.e., from sensory or higher order thalamus). In figure 7A and B we illustrate an  Jo
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Figure 7 – Parameters responsible for modulating burst properties do not uniformly alter the fidelity of 

synchronous cortical responses to exogenous inputs. (A) To probe the fidelity of cortical beta responses to changes in 

exogenous input, fitted models were used in an in-silico experiment. Asynchronous (stochastic) inputs to the middle layer 

were modulated with a square wave of random intervals. Beta burst detections in signals simulated in deep cell layers 

were taken as the outputs. The total “fidelity” of input/output (I/O) transmission was estimated using the rank correlation 

between these two square waves. (B) Example waveforms of the spontaneous (unperturbed; grey) activity, overlaid with 

perturbed (in red) activity matching the perturbation (i.e., modulation in noise to middle layer) seen below (black square 

wave). The output of the system matches the beta burst detections (red square wave) (C) Plots of I/O fidelity (left axis) 

versus burst duration (right axis) when modulating either SP or MP self-inhibition (top and bottom rows, respectively). 

Inset statistics indicate Pearson’s correlation R between I/O fidelity and burst duration and corresponding P value. (D) 

Bar plot indicating correlation between I/O fidelity and burst duration for five parameters known to modulate burst 

properties (see figure 5). Note direction of correlation changes dependent upon specific modulating parameter. 
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in-silico experiment conducted on the models fit to different motor states in which we delivered 

patterned modulations of asynchronous (i.e., noisy) inputs to the middle layer of cortex (the main 

recipient of thalamic projections). We considered beta bursts in deep layer (the main projection layer 

of cortex) as the cortical output. We then measured the correlation between the input and output as an 

estimate of transmission fidelity.  

The results in figure 7C show that whilst strengthening either SP or MP layer specific interneuron 

inhibition decreased the mean burst duration (right axes; shown by circle markers), the correlation 

with I/O fidelity was reversed dependent upon the parameter that was chosen for modulation. For 

instance, in the models fit to rest data, SP self-inhibition associated shortening of bursts correlated 

with a decrease in I/O fidelity. The opposite was true for modulations of MP self-inhibition. The 

analysis in figure 7D, shows that for all of the five parameters identified to modulate bursts (i.e., 

shaded blue in figure 5E), three parameters displayed positive correlations between I/O fidelity and 

burst duration.  

An analysis of the excitation/inhibition (EI) ratio was performed by taking the ratio between the mean 

excitatory and inhibitory inputs to the DP cell layer (summarised in supplementary figure 6). We then 

investigated how EI changed between bursts. The results (supplementary figure 6) show that when 

modulating the strength of either SP or MP self-inhibition, both connections (as expected) tended to 

tip EI balance in favour of inhibition during beta bursts. We found that there was no consistent 

correlation with IO transmission fidelity, with positive or negative correlations found for modulations 

of either MP or SP inhibition, respectively. 

These findings suggests that the properties of spontaneous cortical activity can reflect the underling 

balance of cortical integration of endogenous and exogenous inputs. This comes with the caveat, that 

to infer cortical processing from the temporal organization of spontaneous activity requires a priori 

knowledge of the laminar interactions that are responsible. 

4 Discussion 

4.1 Summary of Findings 

Temporal dynamics of spontaneous activity in the brain contain significant information regarding how 

the cortex processes incoming information. Here, we have shown that motor states can be decoded 

from electrocorticography using features computed from narrow-band beta activity (figure 2). Our 

results show that these features aid classification (supplementary figure 2) and arise from signal 

nonlinearities that are not detectable in the power spectrum (figure 3). Further, evidence for 

nonlinearity was found to be greatest in data recorded during rest and movement preparation, 

indicating that the increase in information, beyond that available in the spectrum, and contained in the 
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distributions of burst amplitude/duration, is highest in these states. Using a neural mass model, we 

then delved into the potential mechanisms and their functional significance. As expected, we found 

that neural mass models fit exclusively to spectra were not sufficient to accurately recapitulate the 

features of cortical beta bursts (figure 4). Analysis of the fitted model parameters between motor 

states found that burst properties are modulated predominantly by connections modulating interneuron 

inhibition and arise independently of connections modulating spectral amplitude or frequency (figure 

5). Using the strength of superficial self-inhibition as an exemplar control parameter, we showed that 

layer specific inhibition acts to stabilize beta bursts in the time domain (figure 6).  Finally, using the 

microcircuit model, we showed that the same parameters found to modulate temporal organization of 

spontaneous activity, also control the balance by which the cortex integrates exogenous inputs with 

that of ongoing endogenous activity (figure 7).  

4.2 Intermittencies in Bursts can Discriminate Brain States Associated with 

Movement 

Transient fluctuations in neural oscillations can contribute to the understanding of the organization of 

brain activity (Bonaiuto et al. 2021; van Ede et al. 2018; Feingold et al. 2015; Lundqvist et al. 2016; 

Sherman et al. 2016; Shin et al. 2017). Transients in beta oscillations, the focus of this study, are 

found in healthy sensorimotor cortex (Feingold et al. 2015; Hannah et al. 2020; Little et al. 2019; Rule 

et al. 2017; Wessel 2020), and also play a prominent raeiole in Parkinsonian electrophysiology 

(Cagnan et al. 2019; Tinkhauser et al. 2017b). Quantification of these intermittencies is beginning to 

build a taxonomy of bursts by identifying changes associated with different brain states and diseases 

(Deffains et al. 2018; Enz et al. 2021; Khawaldeh et al. 2020; Shin et al. 2017; Torrecillos et al. 2018). 

The discrimination of brain states by temporal features, as well as their transitory nature, makes them 

attractive targets for closed-loop approaches to neuromodulation, for instance using either beta (Little 

et al. 2016; Tinkhauser et al. 2017a), or theta and gamma (Kanta et al. 2019; Knudsen and Wallis 

2020) based biomarkers.  

The results reported here support this approach, by providing direct evidence that quantification of 

burst duration and amplitude, from narrow-band information can aid classification of motor states, in 

a way that is superior to that achieved when using spectral measures of beta power or peak frequency 

alone. Notably, we were able to discriminate between periods of rest and movement preparation, 

despite similar beta SNR observed across these states. These burst features are good candidates for 

control signals in closed loop neuromodulation, as they can be readily computed from narrowband 

data such as that available on current sensing/stimulation devices such as Percept (Medtronic) (Van 

Rheede et al. 2022) and they are known to be modulated by deep brain stimulation (Pauls et al. 2022). 

Additionally, motor state discrimination was enhanced compared to linear surrogates, with the degree 

of nonlinearity being largest during rest and movement preparation (figure 3). This technique has 
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previously been deployed to show that Parkinsonian beta bursts are more nonlinear when compared to 

a medicated control state (Duchet et al. 2021). This suggests the possibility that biomarkers relating to 

signal nonlinearity can also form the basis for novel closed loop control algorithms (Jelfs et al. 2010). 

4.3 Mechanisms and Functional Implications of Bursts in the Motor Cortex 

If the statistics of bursts in rhythmic neural activity are discriminating features of brain states, then 

they may provide a window into the underlying changes in the generative neural circuitry. A 

prominent model of beta bursts, consisting of high amplitude, short duration events over the 

sensorimotor cortex, highlights the importance of synchronous subthreshold inputs to proximal and 

distal dendrites of pyramidal neurons (Bonaiuto et al. 2021; Sherman et al. 2016). Strong inputs to 

distal dendrites may then halt information processing by recruitment of inhibitory interneurons in the 

supragranular layers (Jones et al. 2009), that can lead to a reduction in pyramidal firing rates 

following cortical beta bursts (Karvat et al. 2021). As with any model, the conclusions drawn are a 

product of the data feature that they wish to explain. In the case of Sherman et al., (2016), bursts were 

comparatively rare (98th percentile amplitude threshold; ~0.5 burst s-1), high amplitude events that 

permitted well stereotyped waveforms. In our own analysis, we aimed to explain more common 

events (75th percentile amplitude threshold; ~1-1.5 burst s-1) that were typically multicycle. Similar 

events have been shown to exhibit burst distributions extending up to ~300ms in duration (Seedat et 

al. 2020). A focus on high amplitude beta events may occlude alternative mechanisms by which 

recurrent interlaminar interactions may either generate and/or sustain beta bursts lasting multiple 

cycles. 

As changes in the temporal structure of beta rhythms between motor states are ascribable to 

alterations in inter and intra laminar connectivity, it follows that the amplitude modulation of beta 

oscillations may reflect changes in the cortical response to exogenous inputs. The cortex is known to 

exhibit context dependent changes in interlaminar propagation and laminar specific inputs 

(Kirchgessner et al. 2020; Takeuchi et al. 2011) yet limited information is known regarding the 

changes occurring during movement (Inagaki et al. 2022), and even less about how this relates to 

rhythmic neural activity. Our simulations demonstrate that input/output relationships between 

exogenous modulations in asynchronous firing rates and entrainment of cortical outputs at beta 

frequencies may change between brain states. Previous work has suggested that balanced excitation 

and inhibition can facilitate gating of neural signal propagation (Vogels and Abbott, 2009), we 

however did not observe a consistent relationship between EI balance and cortical beta responses to 

sensory inputs (supplementary figure 6), perhaps due to the high resting inhibitory tone in the model. 

Further we show that properties of spontaneous activity such as burst duration can correlate with the 

fidelity of cortical integration of exogenous inputs (figure 7). However, the direction of this 

relationship is mechanism dependent – and thus inference of properties of cortical processing from 
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analysis of spontaneous burst activity, would require a prior knowledge on the connections 

responsible for their modulation. Thus this work provides support for the idea that, given suitable 

generating circuitry, bursts in sensorimotor cortex can reflect a competition between spontaneous and 

sensory evoked activity (Karvat et al. 2021). It is possible that this cortical gating of sensory 

information may occur in tandem with transient changes to subcortical circuitry during sensorimotor 

processing (Mirzaei et al. 2017). 

4.4 Model Inference and Intermittent Dynamics 

This work also provides evidence that power spectra alone may contain insufficient information to 

accurately constrain parameters of nonlinear and/or stochastic models. Existing dynamic causal 

models of large scale temporal dynamics such as Parkinsonian beta bursts (Reis et al. 2019) or 

epileptic seizures (Rosch et al. 2018) appeal to fast-slow separation of time scales (i.e., the adiabatic 

approximation) in which changes in dynamics (i.e., bursting to quiescence) can be approximated by a 

model of fast (i.e., oscillatory) dynamics, with slow variables regulating the transition between states 

(Jafarian et al. 2021). In a similar vein, many phenomenological or statistical models describe bursts 

as a transition between discrete dynamical states (Heideman et al. 2020; Seedat et al. 2020). Other 

modelling approaches, such as that of Sherman et al. (2016), described above, take well constrained 

compartmental models that can describe high amplitude beta events, albeit with a specific pattern of 

input and in the absence of endogenous activity.  

In this paper we take a different approach and treat bursts as the product of stochastic “quasi-cycles” 

that arise from noise driving a stable system such as a damped oscillator (Powanwe and Longtin 

2019), that exhibit amplitude envelopes that can be modelled in terms of a drift-diffusion process 

(Duchet et al. 2021). Thus we use a model incorporating the full nonlinear transfer functions, and fit 

parameters of the resultant stochastic differential equations (West et al. 2021). Given the full breadth 

of information summarised by both the spectra and distributions of burst features, these models can 

well describe temporal dynamics of ECoG data in a parsimonious way without needing to appeal to 

modelling multiple states separately.  

The distinction between generative models in which synaptic parameters fluctuate slowly and our 

model based upon stochastic dynamics speaks to an important distinction between explanations for 

itinerant dynamics of which beta bursts provide a good example. Technically, the first kind of 

generative model rests upon structural instability, where the itinerant changes in fast neuronal 

dynamics—and ensuing transients—are generated by changes in the fixed points of a system with the 

parameters of the equations of motion. In contrast, the second kind of generative model relies upon 

dynamical instability; namely, unstable (or weakly stable) fixed points to produce transient dynamics. 

This formal distinction has importance for understanding the biophysical mechanisms that generate 

bursts in population activity, as well informing stimulation approaches that aim to modulate them. For 
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instance, in the case that bursts are the direct product of slow changes in neural circuits (i.e., invoking 

neural plasticity), then stimulation should directly target these mechanisms, whereas in terms of 

dynamical instability, stimulation can be patterned to with the aim of suppressing transient burst 

activity, or disrupting neural states that preclude them. 

4.5 Limitations 

A major problem when investigating changes in temporal dynamics between brain states arises from 

potential confounds that arise from the effects of changes in overall signal-to-noise of recordings. 

Although we found changes in the wide-band SNR (i.e., an estimate of signal quality between states 

(supplementary figure 1), alterations in burst amplitude did not correlate with either wide- or narrow-

band SNR. Further, bursts were defined using a window-specific threshold, which prevents burst 

properties from predominantly reflecting SNR differences- a problem encountered when using a 

common (i.e., across condition) threshold (Schmidt et al. 2020). The robustness of using a fixed 

threshold of 75th percentile is well supported following reports that specific threshold values do not 

qualitatively change outcomes of burst analyses (Lofredi et al. 2019; Tinkhauser et al. 2017b). Our 

analyses here support this and show that separability of motor states is maximal around the 70th to 85th 

percentile. Further, higher thresholds require more data to stabilize estimators of burst duration or 

amplitude. Accordingly, we found that at these higher thresholds, the precision of parameter inference 

from models was decreased. 

We applied selection criteria (described in methods section 2.2) that lead to the rejection of ~40% of 

the available data, as in these subjects there was no beta peak at rest or movement preparation that 

was responsive to movement. Such stringent criteria were chosen to ensure that mechanistic 

modelling of the data was focused upon clear-cut cases in which intermittencies in beta were 

unobstructed by limits in signal quality. It is likely that in many cases of data rejection, the sparse 

spatial sampling of the ECoG grid may impede the recording from the underling cortical source.   

Additionally, model inversion with Approximate Bayesian computation is susceptible to issues arising 

due to insufficiency of the summary statistics (i.e., the power spectrum, or distributions of burst 

duration/amplitude used here). More complete descriptions may be achievable with the bispectra (i.e., 

the Fourier transform of the third-order cumulant; Halliday et al. 1995). The results of the current 

study clearly call for development of generative models of these kinds of data features. 

The ECoG signal arises primarily from an aggregate of currents flowing along the dendrites of 

spatially aligned pyramidal cells, a state not directly modelled by the Wilson-Cowan equations, which 

instead describe firing rates. Thus, the adoption of this model comes with an implicit appeal to an 

interpretation of the model’s states in terms of beta frequency phase locked neural firing. The 

frequency specific power of signals such as that measured in the local field potentials/ECoG and 
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single unit firing rates can be dissociated (Confais et al. 2020; Rule et al. 2017). However, recent 

work by Karvat et al. (2021) has demonstrated that the instantaneous population firing rate (as 

commonly estimated in a peri-stimulus spike histogram, and the state described by the Wilson-Cowan 

model), exhibits correlation with high amplitude beta frequency bursts in the LFP. Previous work 

analysing spike/field synchrony has reported correlations spanning from weak (Rule et al. 2017), up 

to highly significant (Murthy and Fetz 1996a, 1996b; Peles et al. 2020). 

The coarse graining of the neural mass model lumps diverse populations of interneurons into a single 

homogenous description. This limits the extent to which the model can explain important 

contributions from the neurochemical diversity of cortical interneurons (i.e., parvalbumin and 

somatostatin neurons). This diversity is known to play important roles in the modulation of large-scale 

rhythmic activity at both the gamma and beta frequencies (Chen et al. 2017; Lee et al. 2013; Veit et 

al. 2017). Future models can finesse the exploration of the role of interneuron diversity by inclusion 

of separate neural populations furnishing their specific electrophysiological properties and anatomical 

distributions. 

4.6 Conclusions 

This work provides significant evidence that the temporal properties of bursting intermittencies in 

brain rhythms contain unique information about the underlying circuits that generate them, beyond 

that more conventionally inferred from the power spectra of electrophysiological data. Furthermore, 

we have shown that burst features are nonlinear and are not simple predictions of the power spectra. 

Using a model of the primary motor cortex’s microcircuitry, we show that bursts can arise from 

stochastic dynamics, with properties that are predominantly modulated by laminar specific inhibitory 

loops. We have shown that this has important consequences for understanding information processing 

in cortical microcircuits, although simulations exhibit a non-trivial relationship between burst duration 

versus the responsivity of the cortex to exogenous inputs. These findings inform novel paradigms to 

understand the role of external perturbations such as electrical brain stimulation, in manipulating 

cortical computations when in the presence of spontaneous fluctuations in neural rhythms.  
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Highlights 

 Properties of transient “bursts” at beta (14-30 Hz) frequencies measured in 

electrocorticography are altered across motor states such as movement preparation, 

execution and imagery. 

 These transient events represent significant properties of neural signals, independent to that 

measured in spectral power. 

 A computational model of the cortical motor circuit suggests that bursts properties are 

shaped by layer specific interneuron inhibition. 

 This model shows that the properties of spontaneous burst activity can predict the 

propagation and gating of sensory inputs to the cortex. 

 

Jo
ur

na
l P

re
-p

ro
of




