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Abstract

Neural activity in major depressive disorder and bipolar disorder has been the
subject of much debate. Conflicting findings show that cognitive deficits associated
with affective disorders can persist beyond remission, and the neural activity
associated with such deficits is often inconsistent across different studies. Analytical
and theoretical neuroinformatics-based methods (time-series analysis and
neural-network modelling) have been used in this thesis to study neural activity
associated with depressive illness.

My aim was to test whether there are specific structures or networks that are
associated with the cognitive function in depression. Further, since depressed
patients are often unimpaired during performance of cognitive tasks, I wanted to
investigate the neural activity which may underpin compensatory strategies. Three
approaches were used to investigate the underlying computational deficit in
affective disorders. These can be described as the segregational, integrational and
neural-network modelling paradigms.

In the first study, I analysed data from mildly-depressed bipolar patients and
healthy control subjects performing the Stroop task. I found potential dysfunctional
loci, such as the orbito-medial prefrontal cortex, which appears to be vulnerable in
bipolar patients and may be normalised when these patients are depressed.
Functional connectivity methods were used in the second study to compare
task-independent fluctuations between unipolar patients and healthy controls.
These methods evinced a putative compensatory strategy in unipolar patients, who
showed stronger connectivity between visual and parietal cortices during
performance of a memory task.

Finally, I used a neural-network approach to study the internal dynamics of an
effective connectivity network and subsequently to test different hypotheses
regarding both global and localised deficits in depression. These suggested further
ways in which networks that involve matching stimuli differ from networks that
support working-memory paradigms.

The studies in this thesis suggest that depressive illness may be associated with
vulnerable links in neuronal-networks associated with cognition and mood. The
combination of different paradigms and approaches used highlight the wealth of
possibilities that different computational approaches can offer both to data analysis,
and to the representation and investigation of this data through theoretical

modelling.
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Abbreviations

BA Brodmann area

BDI Beck depression inventory

BOLD blood oxygenation level dependent
DCM dynamic causal modelling

DLPFC dorsolateral prefrontal cortex
DSM diagnostic and statistical manual
EEG electro-encephalography

EPI echo-planar imaging

FDR false discovery rate

fMRI functional magnetic resonance imaging
GABA y - aminobutyric acid

GLM general linear model

GH hippocampus

HD Huntington’s disease

MDD major depressive disorder

MEG magneto-encephalography
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OMPEC orbito-medial prefrontal cortex
PET positron emission tomography
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rCBF regional cerebral blood flow
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ROI region of interest

RT reaction-time

SEM structural equation modelling
SNR signal to noise ratio

SPECT single photon emission computed tomography
SPM statistical parametric mapping
SSQ sum of squares quotient

TE time to echo
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Chapter 1

Introduction

“..Becoming depressed is like going blind, the darkness at first gradual, then
encompassing; it is like going deaf, hearing less and less until a terrible silence is all

around you, until you cannot make any sound of your own to penetrate the quiet...”

The Noonday Demon (Solomon, 2001)

1.1 Overview

Could our darkest daemons be an emergent property of faulty wiring in the brain?
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Mental disorders, which have probably existed throughout human history, have
carried a mysterious or even shameful stigma for generations. Even though
evolutionary theories in psychiatry consider changes of mental states to be
necessary transitional states responding to an environment which can sometimes be
hostile (Stevens and Price, 2000), these disorders are still perceived as frightening by
the general public. In the last few decades precise classification and better control of
these disorders has been achieved with the help of psychotrophic medications.
Raised public awareness to mental disorders generally and disorders of mood in
particular, by outlining the physiological causes of these ailments, help integrate
patients back into society. Neuroimaging has played an important role in this
process, by uncovering altered patterns of neural activity in patients and proving
that changes in brain activity, brain chemistry and subsequently pharmacological
intervention, are likely to have a positive effect on alleviating symptoms. Thus,
mental disorders could be argued to have become more understandable, in a
physical sense, since they can now be perceived as physical illnesses rather than
unknown entities of the human mind. However, we do not clearly understand the
interaction between emotional, physiological and cognitive aspects of mental illness
nor have we managed to establish a direct mapping between neurobiological

abnormalities and behaviour.

This thesis will focus on affective disorders, or mood disorders, including Major
Depressive Disorder (MDD; also known as unipolar depression) and Bipolar
Disorder (manic depression). Both syndromes are characterised by changes of
mood, perception and behaviour, with a general negative shift in the depressive
state and a hyper-active state in the manic phase of bipolar illness. Both local and
global neuropathology have been reported in patients suffering from these
disorders. Namely, specific structures such as prefrontal cortical areas show

abnormal activity during the clinical phase of the illness or even through remission.
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Furthermore, global changes in cortical excitability, as a measure of hyperactivity or
hypoactivity have also been found. These suggest that global neuropathology may

account for some of the behavioural symptoms, particularly in depression.

Specific neuropsychological deficits, such as memory and attentional impairment,
along with emotional lability and mood fluctuations, are shared by unipolar and
bipolar patients. Furthermore, these clinical groups may share a neurobiological
vulnerability (Drevets et al., 1997) that affects the activity of analogous neuronal
networks. I wished to examine neural activity in both patient groups, to reflect on
the effects that damage to different structures may have on global activity in the
brain and on specific neuronal networks therein. The following sections provide a
brief overview of the issues and questions addressed in this thesis. A somewhat
dualistic approach to the subject matter, involving both clinical and computational
investigations is reflected in this document. My aim throughout this project was to
investigate brain abnormality in mental illness, focusing on both neuropsychology
and neurobiology of mental disorders, from a computational perspective. Thus,
analysis of neuroimaging experiments is combined with theoretical models,

addressing specific questions that have been raised by the experimental work.

1.2 Emotion, cognition and the associated neural circuitry

The scientific exploration of affective disorders spans many fields, including
psychology, physiology, neurobiology and neuroanatomy. Despite the rich sources
of knowledge in these fields, we are struggling to agree on the precise nature of the
abnormality as regards brain dysfunction in affective disorders. Clinical studies may
produce conflicting results due to two main factors. First, the unique personal and

environmental circumstances in individual cases can render experimental results
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spurious. Second, patients with a heterogeneous aetiology (symptoms, number of
previous episodes, medication and family history) may be grouped together in
experimental studies. The differences in patient profiles, which may bias results, can

be confounded by small subject numbers in clinical trials.

Although affective disorders are typically characterised by changes in mood and
emotional regulation (Phillips et al., 2003), cognitive function is often affected in
symptomatic (Elliott et al., 1997) or even euthymic (Paradiso et al., 1997; Zubieta et
al., 2001) clinical groups. Since impairment appears to be positively correlated with
illness duration and number of clinical episodes (Strakowski et al., 1999), or with a
family history of mental illness (Drevets et al.,, 1997), it may be argued that
psychiatric morbidity in unipolar and bipolar disorders may have a
neurodegenerative course, deteriorating over time, with a possible genetic

underpinning.

My work will focus on the putative links between neural deficits associated with
cognitive dysfunction in mood disorders, described in the neuroimaging literature
and observed through experimental studies. Approaching this subject from a
computational perspective, I was interested in four principal questions. First, I
wished to examine the task-oriented activity in patients and compare this activity to
control subjects, examining both groups’ performance and the associated neural
response. Second, different brain areas cooperate to solve or perform specific tasks.
Therefore, I wished to evaluate the functional connectivity representing the
interaction between different brain areas in patients and in healthy control subjects.
Third, I wished to examine a task-oriented neuronal-network from a modelling
perspective, to see how vulnerable its activity may be to disruption in both global
and local parameters representing structural and functional deficits in affective

disorders. Finally, I wished to see whether gradual decline was an inevitable
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consequence of these deficits and could worsen as a function of time or whether

compensatory strategies are possible.

1.3 Why modelling is potentially useful

At first glance, it may seem strange to use theoretical models to study such a human
experience. Theoretical models can address divergent findings in the experimental
literature by representing what are believed to be the important elements and the
relationships between them, in mathematical terms. Computational models can
complement or supplement experimental paradigms capturing various aspects of
brain activity in different subject groups. Models can be used both to test existing
hypotheses and to generate new hypotheses regarding the dynamic interactions
within and between networks. Thereafter, the activity of different units can be
altered to represent state or trait related pathology. The generative properties of
computational models allow a direct and rigorous examination of interactions
between suggested cause (e.g. reduced activity in the prefrontal cortex, termed
hypofrontalitiy) and effect (e.g. the ability of a network to solve a task, or
subsequent activity changes of units representing remote brain areas). Furthermore,
to provide an insight into a putative neurodegenerative course in affective
disorders, suggested by the association between illness duration and cognitive
dysfunction, the effects of discrete deficits on neural activity may be tested over

time.
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1.4 Aims of the thesis

This thesis studies different aspects of neural activity in unipolar and bipolar
patients with an emphasis on the neural response to cognitive challenges. The
approach is both experimental and theoretical with the aim of discovering whether
activity patterns observed in neuroimaging studies can be examined in a systematic
fashion, in order to identify potential loci of dysfunction and to tease apart global

from localised abnormalities.

Using different computational methods to analyse and model neuroimaging data, I
wished to associate brain activity and structural deficits in unipolar and bipolar
patients to behavioural and neuropsychological deficits reported in these groups.
For this purpose, neural response in healthy subjects was compared to the neural
response of patients by identifying task-related and task-independent neural activity
in these subjects. My modelling endeavours include a dynamical characterisation of
task-related network activity in the delayed match to sample task, using an effective
connectivity network suggested by McIntosh et al. (1996). The characteristic activity
patterns of two simulated networks were then perturbed, altering both global
activity and the output from specific structures associated with unipolar and bipolar
disorders. These simulations were intended to test the functional implications of
illness-related abnormalities on a memory-related functional network in affective

disorders under different task-related constraints.
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1.5 Thesis outline

The topics introducing the background to my research are divided into two
chapters. First, neurobiological aspects of affective disorders and technical issues
involved with delineating the neurobiology associated with these disorders are
discussed in chapter 2. Chapter 3 follows by discussing different methods for
modelling both the symptoms and neurobiology of these disorders; looking at
animal models and then the analytical methods for studying the activity of networks
of neurons (in humans), such as functional and effective connectivity methods. The
latter part of chapter 3 is an introduction to neural-network modelling techniques,
describing several models which used these techniques to study either mental

illness or brain activity.

The neuroimaging components of the thesis start with an investigation of brain
activity in a group of bipolar patients and healthy control subjects performing the
Stroop task (chapter 4). This is followed by a study of functional connectivity,
comparing depressed patients and healthy controls performing the N-back task
(chapter 5). Both the Stroop and the N-back are common tests to investigate
cognitive capacity, namely selective-attention and working-memory. The
computational modelling component of the thesis first characterises qualitative
differences between activity patterns in a perceptual-matching and a long-delay
network by simulating systems-level networks representing brain activity in a
working-memory study (chapter 6). This is followed by an investigation of the
discrete effects of global and local neurobiological deficits in depression (such as
decreased excitability or structural vulnerability), and specific interactions between
different brain areas (chapter 7). Finally, chapter 8 suggests future studies and

discusses different implications of my findings.



Chapter 2

The Neurobiology of affective disorders

2.1 Introduction

With the aim of giving a general overview of the subject, this chapter will first
describe the diagnostic criteria for unipolar and bipolar depression (sections
2.2.1-2.2.3). The experimental chapters in the thesis (chapters 4-7) are based on
neuroimaging data. Therefore, I review neuroimaging modalities focusing on
functional Magnetic Resonance Imaging (fMRI) to investigate in vivo brain activity
in healthy subjects and in patients (section 2.3). An outline of potential culprit areas

or networks underlying depression and therapeutic strategies forms the latter half of
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this chapter, highlighting specific areas and networks. The rationale for focusing on
the computational parameters underlying affective illness, rather than providing an
overview of findings from the neuroimaging literature for example, is based on the
potential application of these findings to modelling frameworks. In sections 2.4-2.5 I
make the distinction between deficits of formation (neuroanatomy and genetics) and
deficits of function (neuropsychology), which are both prevalent in affective

disorders.

Structural abnormalities may bring about changes in behaviour, mood and
neuropsychological performance. These changes can be divided into cognitive and
emotional domains, producing specific impairment associated with the
corresponding modes of processing. Neuroimaging methods, such as Positron
Emission Tomorgraphy (PET) or fMRI, can reveal brain activity associated with
specific tasks or search for metabolic markers at rest. These studies can identify
localised changes in function, comparing the averaged brain activity of clinical
groups with healthy control subjects. A review of neuroimaging findings in mood
disorders, was published elsewhere (Ebmeier and Kronhaus, 2001); attached to this
thesis as Appendix A). There we progressed from a molecular (neurotransmitter)
hypothesis of dysfunction, looking at pharmacotherapy and related therapeutic
strategies, through to a systems approach to neurobiological dysfunction in affective
disorders. The following sections therefore present mainly seminal findings in the
field of neuroimaging, as an introduction to the ideas developed further in the
experimental chapters. Specific neuropsychological abnormalities associated with
bipolar and unipolar illness are reviewed in the relevant chapters (chapters 4 and 5

respectively).

To introduce the computational problems that may arise as a consequence of the

neurobiological correlates of unipolar and bipolar illness, I examine the anatomical



The Neurobiology of Affective Disorders 10

framework of neuropsychological deficits in affective disorders. This includes the
rationale for focusing on specific culprit areas for modelling and analysis (sections
2.5.1-2.5.4), the anatomical connections of these areas (section 2.5.5) and the link
between structural deficits and affective disorders (section 2.4). Finally, the
experimental projects in this thesis will be set in the context of the two prevailing
approaches to understanding brain activity (section 2.6), namely the segregation and

integration of brain function (Friston and Price, 2001b).

2.2 Background and specification of symptoms

Affective disorders, namely unipolar and bipolar depression (manic-depression), are
expressed through changes in mood, thought and behaviour patterns. This thesis
will focus mainly on depressive symptoms and the neural activity associated with
them. Investigating the neurobiological markers of the depressed state, both in
unipolar and bipolar disorders, may provide an insight into the shared and
divergent aspects of depression in these disorders. Therefore, the symptoms
associated with mania will be mentioned only briefly. During the clinical phase of
depressive illness, motor activity is altered, physiological (vegetative) processes,
such as sleep and appetite, are compromised and even physical strength can
decrease (Shajahan et al., 1999). These changes appear to be periodic and reversible
with appropriate treatment such as psychotrophic medication. Formal diagnosis of
depressive and manic episodes, defined in the Diagnostic and Statistical Manual of
Mental Disorders, the DSM-IV (American Psychiatric Association, 1994), is based on
episode length, recurrence, severity and relative disruption to normal functioning.
Diagnosis of depressive or bipolar disorders can be described as a collection of

ubiquitous clinical episodes. The following section will present some of the formal
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diagnostic criteria for unipolar and bipolar depression. The purpose of presenting
these here is to highlight the main physiological and behavioural changes, which
may account for the characteristic brain activity patterns and neuropsychological

changes, forming the basis of this thesis.

2.21 Major Depressive Disorder

The diagnosis of a Major Depressive Episode according to DSM-IV is based on the
presentation of symptoms related to mood, (e.g. continuously depressed mood,
anhedonia) cognition (e.g. suicidal thoughts, excessive guilt, lack of concentration)
or somatosensory changes (e.g. changes in sleeping or feeding patterns) for at least a
fortnight. Major Depressive Disorder (MDD) is subject to diagnosis of one or more

Major Depressive Episodes.

A staggering 9.5% (NIMH statistics; www.nimh.nih.gov/publicat/numbers.cfm) of
the US population is afflicted with depression every year, causing severe disruption
to the individual and to their working and social environment. Episodes can be
triggered by diverse internal and external factors, such as traumatic life-events
(bereavement, redundancy, as well as other changes in personal or professional
circumstances). Stressful circumstances are mostly associated with the onset of the
first-episode (Lewinsohn et al., 1999), while chronic illness has been linked with
with developmental factors, pre-morbid personality and continuous stress (Riso et
al., 2002). Furthermore, response to treatment, which is sometimes taken as an
indicator for an underlying pathology (Frederick et al., 1990), can fluctuate during

the illness.
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2.2.2 Bipolar Disorder

Bipolar illness is characterized by an oscillation between hyperactivity and
hypoactivity. This illness is of particular interest due to its association with artistic
temperament and the process of creativity and the relatively high intellectual ability
of sufferers (Jamieson, 1996). The prevalence rate of bipolar disorder is
approximately 1.2% (NIMH statistics), with a considerable genetic component.
Monozygotic twin studies have indicated 40% heritability in unipolar depression
compared to 80% heritability in bipolar illness (Karkowski and Kendler, 1997). A
gender bias towards the female population is more pronounced in unipolar

depression than in bipolar illness (NIMH statistics).

The main diagnostic criteria for mania, listed in the DSM-IV, include cognitive (e.g.
an inflated perception of self, flight of ideas), somatic (e.g. decreased need for sleep)

and psychomotor (e.g. pressure of speech, agitation) symptoms.

2.2.3 Psychomotor symptoms associated with MDD and bipolar iliness

Two different motor output states may be associated with depressed mood and
cognition. First, psychomotor slowing has often been associated with depressive
illness, especially with melancholic depression (Rogers et al., 2002) and may be
linked to basal ganglia dysfunction (Caligiuri and Ellwanger, 2000). Psychomotor
symptoms correlate with the severity of depressive illness in MDD but not in
depressed bipolar subjects (Swann et al., 1999). Second, psychomotor agitation,
which has also been associated with depression (Koukopoulos, 1999), is more
pronounced in melancholic bipolar patients, while psychomotor slowing was more
common among MDD subjects (Benazzi, 2004). Nonetheless, some behavioural

symptoms associated with depressive illness, such as psychomotor slowing and
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disturbed sleep, may be interpreted as adaptive and may conserve valuable

resources (Ebert and Berger, 1998).

Evidently, this method of classification is qualitative rather than explanatory, since
the fundamental cause of illness development or the neurobiological basis of its
progression remains unexplained. This symptom-based system of diagnosis can be
highly variable, since it essentially relies on personal views of the diagnosing
clinician. Furthermore, it seems unsatisfactory to ascribe a label on the cumulative
basis of specific symptoms, since failing to accumulate a sufficient number of
symptoms at any one time will preclude a formal diagnosis of these disorders.
Therefore new developments in the fields of genetics, neuroscience and
neuroimaging in particular will become essential to improve classification and

hence treatment (Helmuth, 2003).

2.3 Neuroimaging

The association of discrete brain regions with specific functions has become possible
with the invention of modern neuroimaging methods that indirectly infer brain
activity from the electrical, magnetic or radioactive labelling of various
neurophysiological properties. With the development of new and more powerful
imaging tools and data analysis techniques, our grasp of the functional
neuroanatomy associated with mood disorders is constantly improving. We are able
to measure electrical activity of neuronal assemblies in the living human brain using
techniques such as electro-encephalography (EEG) and magneto-encephalography
(MEG). Functional imaging methods such as PET, Single Photon Emission
Computed Tomography (SPECT) and fMRI measure blood flow (haemodynamic

response) and glucose metabolism, believed to be coupled with neuronal firing,
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through different states of brain activity. The temporal and spatial resolution of
these different imaging methods are compared in Figure 2.1, spanning the
sub-neuronal to the systems level, in animal and human studies. The relative merits
and disadvantages of fMRI are briefly summarised below, after discussing the

underlying assumption: coupling of neuronal activity with blood flow in the brain.

S /MEL L=t Lesions
Log mag ‘
Size -

(mm) column Microlesions

layer
neuron

2-Deoxyglucose

dendrite

el | ight
synapse 4 Microscopy

3 21 01 2 3 4 5 6 7

millisecond second  minute hour day
Log Time (seconds)

Non-Invasive IR Ml invasive

Figure 2.1: Spatio-temporal resolution of different techniques for recording brain activity
in humans and animals. Although fMRI improves the spatio-temporal resolution of PET,
it cannot achieve the same resolution as methods measuring electrical activity such as
EEG (not shown) and ERP. Image from Cohen and Bookheimer (1994).

A crucial assumption in imaging blood flow is that it correlates with neuronal firing;
however, the mapping between neural activity and subsequent registration of this
activity is not straightforward. For instance, it is unclear whether the measured
activity represents excitatory or inhibitory neuronal assemblies. However, recent
studies strongly suggest that the activity of single neurons is indeed closely linked
with increased oxygen consumption (Thompson et al.,, 2003), which is the

fundamental assumption supporting Blood Oxygen Level Dependent (BOLD) fMRI
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research. Nevertheless, Logothetis et al. (2001) showed that the fMRI BOLD
response (in monkey visual cortex) is associated with local field potentials
(reflecting the input signal), rather than spiking activity (output signal) of either
single neurons or neuronal populations. Therefore, although the underlying
assumption of coupling between different measurements of neuronal activity holds
true, we may need to rely on several techniques, such as fMRI and EEG, to

accurately map brain activity.

Further, hypotheses regarding functional circuits in the brain of both healthy
subjects and clinical populations may be even more critical, since the BOLD signal
may reflect the summed input activity over an extended network and lack the
computational sensitivity to highlight dysfunctional loci in clinical groups. Since the
experimental chapters of this thesis examine brain activity using fMRI, the next
sections will briefly review the history and principles of fMRI, after a summary of
the advantages and disadvantages of this neuroimaging method. Subsequently, data
analysis methods are outlined, describing the transformation of raw images into
meaningful neural activity, allowing comparison of activation in different groups.
Excellent textbooks in this subject e.g. Jezzard et al. (2001) provide a thorough

introduction to this field.

2.3.1.1 Merits of fMRI

1. With temporal resolution of 3-5 sec, fMRI improves the temporal resolution
of PET (45 sec) and SPECT (> 60 sec; not depicted in Figure 2.1) (Volkow et

al., 1997).

2. The spatial resolution of fMRI (1-1.5 mm) is superior to PET (4 mm), SPECT

(6-8 mm) and EEG (10-15 mm; not depicted in Figure 2.1).
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3

4.

23.1.2

4.

Safe and non-invasive. No radioactive isotopes used.

fMRI is less costly and more accessible in a clinical setting than MEG.

Disadvantages of fMRI

The temporal resolution of fMRI falls short of direct recording of electrical
activity in the brain (EEG and MEG are both in the order of 1 msec (Volkow

et al., 1997)). This method’s spatial resolution is inferior to MEG.

fMRI does not measure absolute blood flow. Therefore studies measuring
relative changes in flow, and hence activity, do not account for baseline

activity in different populations.

This method observes subtle blood flow changes in capillaries, which may be
obscured by large pulsating blood vessels, near activated regions.
Furthermore, the signal may be observed in veins that are draining the
neuronally active area. This means the signal may be dislocated from its

neuronal source.
Potential sources of noise include:

a. Susceptibility artefacts from air cavities, such as sinuses. This caveat
is particularly relevant in psychiatric populations, where the activity
of orbitofrontal and mesotemporal (amygdala and hippocampus)
regions, which are more sensitive to these signal distortions, is of

interest.

b. Periodic noise such as respiration and heart beat.
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5. Sensitive to subject movement (shared by MEG); may be confounded by

agitated or restless patients in clinical studies.

Nonetheless, many of these disadvantages can be resolved (e.g. correcting for
movement) or accounted for (e.g. physiological noise) during statistical analysis of
the data. Compared to other neuroimaging methods, fMRI remains the most

accurate and safe technique of probing brain function in humans.

2.3.2 The fundamentals of fMRI

Before the invention of methods measuring electrical and neurochemical activity in
the brain, localisation of function was possible only by associating the region of
brain damage (lesions; Figure 2.1) with loss of function. Since we currently cannot
see brain activity without opening the skull, we use an indirect approach, looking at
blood flow (haemodynamic response) and metabolism in the active brain, assuming
that demands will increase to active parts of the brain, associated with the
performance of specific tasks. While traditional neuroimaging methods such as PET
and SPECT involve injection of radioactive substances and visualising areas of
increased concentration (associated with increased metabolic rate) fMRI relies on the
subtle increase in magnetisation of oxygenated blood (binding to the iron molecule

in haemoglobin), compared to deoxygenated blood.

The strength of the magnetic field (typically 1.5-3 Tesla in human experiments)
inside an fMRI scanner causes hydrogen (‘H) protons in the tissue to spin and
precess around their axes (Figure 2.2a) at the same frequency (gyro-magnetic ratio;
measured in MHz) but in random phase, aligned with (or opposite to) the direction

of the magnetic field (along the z plane). The precession frequency (w,), which

describes the absorption of the radio-frequency (RF) pulse energy by the atom, is
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specified by the Larmour equation (2.1) to be dependent upon the strength of the

magnetic field (B,) and the gyro magnetic ratio (y) of the specific atom:

=7 B (21

The 'H protons are flipped by the RF pulse (Figure 2.2b) to the xy plane and start
precessing in phase (Figure 2.2c). Relaxation of protons back to baseline is
characterised by two independent processes, the T1 (longitudinal) and T2
(transverse) time constants (Figure 2.2d), measuring relaxation to baseline. T1
represents the rate at which hydrogen molecules return to alignment with B,
(gaining longitudinal coherence). Conversely, the decay of T2 represents the loss of
phase coherence among the hydrogen protons. The T2* effect measures the actual
decay of the T2 signal, taking into account inhomogeneities of the surrounding
magnetic field (Logothetis, 2002). Recovery of the T1 and T2* signal from different
tissues such as grey and white matter, or oxygenated and deoxygenated blood,
allows the detected signal to be reconstructed into different images. Anatomical
images are based on the T1 signal, while the BOLD fMRI contrast, described in the

next section, is based on the T2* signal.

Basic imaging parameters include the repetition time (TR), which describes the time
between RF pulses and subsequent acquisitions of the same slice. An imaging
sequence often excites the protons twice, first to 90° and subsequently to 180°. The
elapsed period between the two excitations is called the Echo Time (TE). The angle
of the flipped 'H protons following the RF pulse is simply called the flip angle

(Figure 2.2b shows a flip angle of 90°).
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Figure 2.2: The properties of magnetisation inside the fMRI scanner. (a) Magnetic field;
spinning and precessing of one hydrogen proton; (b) Flipping of the protons after RF
excitation; (c) Protons aligned along the xy axis, preccesing in phase; (d) Return to
equilibrium, loss of xy (transverse) phase coherence (T2*) and gain of coherence along the
z (longitudinal) axis.

The BOLD contrast in fMRI, first observed in the rat by Ogawa et al. (1990), depicts
changes in the magnetic field as oxygenated blood enters activated regions. In a T2*
weighted image, increased MR (magnetic resonance) signal intensity is associated
with oxygenation changes in blood flow around activated tissue, since the
oxygenated blood does not dephase the hydrogen protons as much as the
deoxygenated blood (Ogawa and Lee, 1990). These changes in blood flow (the
‘haemodynamic response’) occur approximately 4-8 seconds after the onset of a
stimulus and are characterised by an initial increase in deoxygenated blood (‘dip’)
followed by a longer period of increased (oxygenated) blood-flow to areas that were
activated by the task. The temporal resolution of modern fMRI scanners is limited
by the rate of the haemodynamic response and the scanning sequence used.
However at 2-4 seconds per TR (the experimental paradigms described in this
thesis) using 1.5 Tesla scanners, this method is a great improvement on both PET

and SPECT.
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During a typical fMRI experiment, active conditions are interspersed with periods of
rest or with similar active conditions that can be differentiated in specific aspects.
Comparing the images acquired during performance of these tasks by subtracting
the activation of one task from the other (or from rest) reveals the relative changes in

blood flow to specific regions that may be associated with the condition of interest.

In sum, fMRI is a very useful and widely used technique to measure blood flow
associated with neuronal activity. The disadvantages of this method are mainly that
its temporal resolution cannot directly detect neuronal events and the susceptibility
artefacts which result from subject movement and from inhomogeneities of the
magnetic field in the skull. Nonetheless, fMRI improves the temporal resolution of
other, more traditional methods (such as PET and SPECT), and is relatively safe and
accessible. In the next section, the transformation of the magnetic signal into

meaningful activation images in different subject groups will be outlined.

2.3.3 Analysis of fMRI data

The raw data in fMRI is acquired in the frequency domain (k-space; Figure 2.3a).
The analysis of this data involves image reconstruction using an inverse Fourier
Transform (FT) and pre-processing, to increase the signal to noise ratio (SNR).
Statistical analysis, comparing the observed signal to a model of expected activity
using methods such as the General Linear Model (GLM), produces activation
images (Figure 2.3d). These stages of data analysis, described below, pertain to

Figures 2.3c and 2.3d.
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2.3.3.1 Pre-processing

After the raw data matrix is transformed into image space, pre-processing
procedures remove noise and movement artefacts in preparation for statistical
analysis. This is crucial, since even the slightest movement of the subject’s head
inside the scanner may produce large signal changes around the edge of the brain
that can be greater than the change in signal associated with neural response to the
task. For this purpose, all the acquired scans are realigned to the first or average

scan, accounting for translation and rotation parameters.

Figure 2.3: Image reconstruction in fMRI. (a) Activation is captured in k space using an

EPI (Echo Planar Imaging) sequence. (b) High resolution anatomical scans and (c) low
resolution functional scans are reconstructed using FT. (d) Subsequent statistical analysis
measuring signal change associated with a specific activation paradigm, produces
activation images. Here yellow denotes areas that were active during the task. Sources:
(a) http://www.hslmc.cam.ac.uk/index_hires.htm

(b-c) http://tezpur.keck.waisman.wisc.edu/images/fmri.jpg

(d) http://www.kun.nl/

To increase SNR, smoothing (filtering) can be performed both in time and in space.
Smoothing in space is done by convolving the image with a Gaussian filter of a
certain size (usually parameterised by the Full Width Half Maximum (FWHM)).
Filtering can remove high frequency fluctuations (usually associated with

physiological noise such as respiration or heart-beat) or low frequency drift
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associated with scanner operation. The use of high and low pass filters is
discretionary, as is the choice of the width of the Gaussian filter for spatial
smoothing. Finally, normalisation to standard space such as the Talairach template
(Talairach and Tournoux, 1988) enables comparison and averaging of activation

images from individual subjects in standard space (as used in chapter 5).

2.3.3.2 Statistical analysis

An experimental paradigm is typically based on the hypothesis of change in activity
across a network of areas in association with a specific stimulus or task, specified in
a model (also known as a design matrix). In a block design for example, the task
conditions (or phases) alternate with at least one form of a control condition
consisting of either rest periods or different task conditions. The model of expected
activity, expressing a linear relationship between predictor variables and neural

response, is fitted to the time-course of every voxel.

Y=B*X+¢ 22)

At its simplest form, model fitting involves parameter estimation for equation 2.2,
where Y is a vector representing the neural response (the time-course of one voxel)
across all scans; X represents a (design) matrix of predictor variables (that help
account for the data, such as the difficulty of specific blocks, reaction time, or known
confounders such as movement parameters for each block) for every time point; g
represent the parameters of the regression line which we would like to estimate and
¢ represents the remaining error (or residuals) for each scan. Fitting the parameter

is typically performed using least squares minimisation.
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Once the parameters have been estimated, various techniques can assess the
statistical significance of the model at every voxel. For example, in the SPM
(Statistical Parametric Mapping; Friston, 1997)) analysis package, a t-statistic for
every voxel is computed and compared to the null hypothesis of no experimental
effects (Worsley et al., 1996). This statistic is typically converted to a z-score in
packages such as SPM to give a normalised value of neural activation. Alternatively,
non-parametric statistics (as used in chapter 4) are preferred by several groups, since

these do not assume that data are normally distributed (Brammer et al., 1997).

fMRI analysis typically involves many thousands of simultaneous comparisons. By
the nature of statistical testing, some of these may give false positive results. For
example if significance is assessed at the 95% confidence level, 5 out of every 100
results may be false positives. It is therefore necessary to correct for multiple
comparisons (Nichols and Hayasaka, 2003). This can be done simply by Bonferroni
corrections, multiplying the uncorrected p-values by the number of comparisons.
However, this test is likely to be too conservative and create false negatives, since
Bonferroni corrections treat each active voxel as if it was an independent
measurement while fMRI data are temporally and spatially continuous. Thus,
correction procedures such as Random Field Theory (in SPM) or False Discovery
Rate (FDR) are adopted (Genovese et al., 2002), giving a corrected p-value for every
activated voxel. These methods are less conservative than Bonferroni corrections,

and deal with multiple comparisons in a robust manner.

The field of fMRI analysis is relatively young and therefore development of new
imaging sequences and analysis techniques is ongoing. There are different
commercial and freely available software packages for analysing these data. These
include, among others: SPM (www.fil.ion.ucl.ac.uk): used for the first-level

(localisation) analysis of the data in chapter 5; Afni (afni.nimh.nih.gov); Brain
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Voyager (www.brainvoyager.de); and XBAMM (www-bmu.psychiatry.cam.ac.uk):
a similar package was used for analysis of the neuroimaging data in chapter 4.
Finally, only univariate analysis techniques (i.e. performing the analysis separately
for each voxel) have been discussed here. Different multivariate techniques, such as
Principle Component Analysis (PCA) and Independent Component Analysis (ICA)

were considered to be beyond the scope of this thesis.

2.4 Structural changes

Associations between structural changes and behavioural deficits have been
established in several ways. First, lesions in specific areas of the cortex have often
been linked to specific disorders. Second, certain neurological illnesses, such as
Huntington’s disease (HD), affecting discrete brain areas, are often accompanied or
even preceded by psychiatric symptoms. Third, morphological features, observed in
both post-mortem studies and in vivo techniques such as voxel-based morphometry,
may be used to compare the structure of normal brains to those of psychiatric
populations. For example, increased incidence of white matter lesions, noted both in
unipolar and bipolar patients (Videbech, 1997), suggest global connectivity

impairments in these populations.

Arguably, changes in the activity pattern of a particular structure are not a reliable
predictor for a particular affective disorder. Nonetheless, damage to certain
structures or pathways yields a fairly consistent pattern of impairment, with a
similar presentation to depression, mania and various language disorders

(Starkstein, 1998).
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2.4.1 Lesions

Before neuroimaging studies allowed us to observe activity in the healthy, living
human brain, associations between neuroanatomy and behaviour were limited to
the association of traumatic brain injuries (such as stroke, accidents or
neurosurgery) with the devastation they caused (Cosgrove and Rauch, 2003; Seel et
al., 2003). However, the cognitive deficits and altered emotional states produced by
lesions (Rogers et al., 1998) are constrained by retrospective inferences and
compensatory changes emerging as part of the recovery process (Seitz et al., 1999).
Furthermore, the behavioural manifestations of stroke for instance (associated with
older patients) may not be restricted to dysfunction in the area immediately

surrounding the haemorrage, but is confounded by putative geriatric pathology.

2.4.2 Structural abnormalities in psychiatric populations

Structural changes in limbic associated areas have been identified by several groups.
Volume reduction was found in temporal areas, linked with verbal memory deficits
(Shah et al., 1998) and illness severity (Sheline et al., 1999). Glial cell loss was noted
in the anterior cingulate of unipolar and bipolar patients with a family history of
affective disorders (Drevets et al., 1997). Glial cell abnormalities were also reported
in orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), where
neuronal volume and density were correspondingly impaired (Rajkowska et al.,
1999; Cotter et al.,, 2002). Conversely, increased cell numbers were noted in
hypothalamus and dorsal raphe (Rajkowska, 2000). Dysfunction may be argued to
focus around those areas in clinical subgroups with similar aetiology (e.g. a family

history of mental illness). However, familial affective disorders may now be
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evaluated using genetic tools, allowing earlier and perhaps better-informed

targeting of pharmacological agents.

2.4.3 Genetic studies

Twin studies have traditionally been used to establish the heritability of specific
psychiatric disorders (Zerbin-Rudin, 1987; Smoller and Finn, 2003). However, these
studies can establish only an association between specific symptoms and diagnoses.
Recent developments in the field of bioinformatics, using the micro-array
(gene-chip) technologies, can highlight or identify specific dysfunctional loci.
Unravelling the genetic phenotype associated with unipolar (Zubenko et al., 2002)
and bipolar (Craddock and Jones, 1999) disorders may in turn inspire more accurate

and focussed knockout studies in animal models.

2.5 Functional circuitry

Our grasp of functional circuitry in unipolar and bipolar depression may be
obscured by several factors. First, our understanding of human connectivity is
mostly based on anatomical studies in non-human mammals, where regional
specificity and thus connectivity patterns are likely to differ from the human brain.
Second, in human subjects, current imaging techniques (e.g. fMRI and PET) do not
operate on a sufficiently sensitive time scale to detect neuronal events. Third, brain
activity recorded during performance of specific tasks is likely to detect redundant
information. Namely, functional imaging may reveal an extended network, which
includes areas that do not participate in the functional circuit. An incomplete

understanding of functional circuitry is more complex in conditions such as
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unipolar or bipolar illness, where unclear aetiology, clinical heterogeneity and
inconsistent experimental methodology are possible confounders. Furthermore, in
patients suffering from affective disorders, it is often difficult to decouple trait
(illness) and state (current mood state) related deficits (Harmer et al., 2002). Varying
degrees of neuropsychological dysfunction are reported (Rossi et al., 2000), which

may persist beyond remission (Paradiso et al., 1997).

The afflicted network of areas giving rise to these dysfunctions may extend beyond
areas previously described as the “limbic lobe” (first delineated by Broca in 1878), to
include prefrontal cortex and cerebellum, along with basal ganglia, amygdala,
hippocampus and parietal cortex (Phillips et al., 2003). Some of these structures are
highlighted in Figure 2.4. Structural and functional deficits, along with metabolic
changes associated with different medications, have been found in these areas.
Although a reparative role may account for functional (possibly compensatory)
interactions between different regions, the precise nature of these interactions has so
far been mainly descriptive. I will now outline findings implicating several key
areas in further detail, trying to capture the putative coupling between
neurobiological and behavioural phenomena. Some of these are seldom associated
with affective disorders. However, they are likely candidates for the dysfunctional
networks associated with depressive symptoms in unipolar and bipolar disorders. I
highlight areas that may participate in neuronal-networks related to mood and

cognition, to preface the modelling ideas presented in the next chapter.
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hypothalamus

temporal lobe
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Figure 2.4: Medial view of the human brain (right hemisphere), highlighting the major
cortical and subcortical structure, some of which may be impaired in affective disorders.
Depressed patients show functional (cognitive) deficits in prefrontal and parietal lobes.
The cingulate gyrus (especially subgenual and anterior cingulate, wrapping around the
corpus callosum, which connects both hemispheres), is particularly vulnerable in both
unipolar and bipolar disorders (Drevets et al., 1997). Figure adapted from digital

anatomist. http://www9.biostr.washington.edu.

2.5.1 Basal ganglia

The basal ganglia (Figure 2.5) are often neglected in the study of affective disorders,
where the focus is predominantly on prefrontal and limbic structures. However,
these structures can be linked with unipolar and bipolar illness for two reasons.
First, motor symptoms associated with depression may be comparable to motor
dysfunction in basal ganglia related illnesses such as Parkinson’s disease (Caligiuri
and Ellwanger, 2000). Second, neuropathological processes in the basal ganglia, such
as Huntington’s disease (HD), have often been associated with mood impairment
that preceded the characteristic motor symptoms (Rosenblatt and Leroi, 2000). The
neurodegenerative process in HD is caused by a progressive pattern of cell death

originating in the dorsal striatum, progressing ventrally until the whole structure
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degenerates (Hedreen and Folstein, 1995). The exact nature of the relationship
between the psychiatric manifestation of the neurodegenerative process in this

illness is, however, unclear.

Neurochemical changes in the basal ganglia, such as changes in levels of dopamine,
have also been linked with clinical changes in depressive illness. Increased striatal
dopamine release has been linked with amelioration of depressive symptoms,
following a night of sleep deprivation (Ebert et al., 1994) and after applying
repetitive transcranial magnetic stimulation (rTMS) to the DLPFEC (Strafella et al.,
2001). However, enduring striatal hypometabolism was shared by both responders
and non-responders to (the former) treatment (Wu et al., 1999). Thus, subcortical
involvement can be associated with worsening of symptoms (psychomotor
slowing), recurrence of illness episodes and impaired cognition (Hickie et al., 1999)

in depressive illness.

9 {Gﬁbu‘g pandt:)s

3 ext. segmen

e €g

N &_ ——— !nternlal
R w capsule

h ™

o ‘ Globus palidus

% (int. segment)

) Caudate

nucleus
pcgggg;?; {tail)

Subthalamic
nucleus

Substantia nigra Red nucleus

Figure 2.5: Axial slice of subcortical structures, including basal ganglia structures and

thalamus. Image source: http://pharyngula.org/~pzmyers/neuro/chap9/basalganglia.jpg
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2.,5.2 Hippocampus and amygdala

The importance of the amygdala to recognise the emotive content of stimuli (Le
Doux, 1992) and association of the hippocampus (GH) with memory and cognition
(Rosenzweig and Barnes, 2003) suggests a functional decoupling between the two
structures (depicted in Figure 2.6). However, no definitive causal relationship has
been established between these discrete structural changes and aetiology of affective

disorders.

GH is continually modified by means of long-term potentiation a process of synaptic
activity dependent strengthening called LTP, a process that may be impaired by
aging (Rosenzweig and Barnes, 2003); see Appendix A (Ebmeier and Kronhaus,
2001) for a review of the neuropathology and neurobiology associated with the
aging process. The GH is vulnerable to chronic release of glucocorticoids (stress
hormones), which may account for the cognitive and memory impairment
experienced by depressed patients (Brown et al., 1999) and for the hippocampal
atrophy associated with this illness (Shah et al., 1998; Bremner et al., 2000). These
structural changes are independent of whole brain volume reduction or specific
changes in amygdala, caudate, frontal or temporal lobe. Neurogenesis in the adult
dentate gyrus is suppressed by glucocorticoid release in depressive illness (Jacobs,
2002) and enhanced by antidepressants, which also increase serotonin

neurotransmission (D'Sa and Duman, 2002).

Amygdala enlargement has been associated with heightened emotional state in
bipolar patients (Phillips et al., 2003), illness duration, and with medication history
(Strakowski et al., 1999). Activation of the amygdala has been associated with fearful
facial expressions or general vigilance to negative expressions (Yang et al., 2002).
This effect was observed even when processing was not conscious, such as the

backward masking paradigm (Whalen et al., 1998). In bipolar disorder, distinct
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structural changes affect regions associated with processing of emotion. These
changes include enlarged volume of amygdala (Altshuler et al., 1998; Strakowski et
al., 1999; Brambilla et al., 2002) and also caudate nucleus (Aylward et al., 1994),
along with suggested reduction in thalamic volume in adolescent patients (Dasari et

al., 1999).

medial view
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entorhinal

cortex
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amygdala hippocampus sulcus cortex
perirhinal
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Figure 2.6: Sagittal slice showing location of amygdala and hippocampus (left) and a

detailed view of the hippocampal formation (right).

Image source: http://dubinserver.colorado.edu/prj/sha2/amygdala.gif (medial view)
http://departments.oxy.edu/cogsci/courses/2000/cs101/lecture-notes/linden/ (detailed view)

Structural abnormalities may precede depression or bipolar illness. Alternatively,
these volume changes can be induced by the illness itself (Van Elst et al., 2001) or by

prolonged use of psychotrophic medications.

2.5.3 Parietal cortex

Evidence for parietal cortex involvement in depression is increasing. This area could
be reciprocally activated to complement or even compensate for prefrontal or
temporal deficits. Remitted MDD patients (Mayberg et al., 1999), showed increased

activity in DLPFC and inferior parietal regions, which were decoupled from the
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activity of the subgenual anterior cingulate. Furthermore, increased prefrontal and
parietal activity after a night of sleep deprivation compensated for decreased
temporal lobe perfusion (Drummond et al., 2000). Finally, mutual activation of
prefrontal and parietal cortices is often reported in working-memory tasks (see
chapter 5). However, I know of no reports of structural deficits in parietal cortex of

either unipolar or bipolar subjects.

2.5.4 Frontal cortex

Widespread hypoactivity is often reported in the prefrontal cortex (PFC) of
psychiatric populations (al-Mousawi et al., 1996), termed hypofrontality. However,
decreased activation of PFC may be due to neural dysfunction elsewhere. For
example, an overactive region (such as the cingulate) may directly suppress PFC or
alternatively, PFC may not receive sufficient excitation. Further, depressed patients
may be unable to alter the activity of their PFC, adapting to increased task difficulty

(Elliott et al., 1997), thus showing deficient plasticity rather than hypoactivity.

Increased dorsal PFC (associated with cognitive function) activity and decreased
ventral PFC activity (associated with mood), upon recovery (Mayberg et al., 1999),
suggests a decoupling of dorsolateral prefrontal cortex (DLPFC) from limbic regions
such as the anterior cingulate. These systems may directly compete with each other
through lateral inhibition, or perhaps participate in more extended loops, where
competition can occur subcortically (e.g. between different structures in the basal
ganglia). Therefore, the next section will examine the connectivity patterns between

prefrontal areas that are associated with mood and with cognition.
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2.5.5 Connectivity of affected areas

Both theoretical and analytical (effective connectivity; see chapter 3) models of
functional networks are based on known anatomical connections in non-human
primates. Connectivity patterns may suggest whether co-active areas are directly or
indirectly related. However, the inconsistent nomenclature and different
architectonic boundaries (Price, 1999; Ghashghaei and Barbas, 2001), make the task
of defining anatomical networks rather difficult. A searchable database
(www.cocomac.org) helps bridge some of the disparity in the field, or at least makes
it explicit. Already informative in highlighting various details included in
connectivity studies, this database may in future be enriched by allowing direct
access to the parameters used by different groups, and encouraging direct

comparisons of their findings.

The prefrontal cortex has been divided along functional outlines related to mood
and cognition (Mayberg et al., 1999; Phillips et al., 2003). This demarcation suggests
that these networks are also anatomically distinct, giving rise to their functionally
disparate vulnerability to depressive illness. The following sub-sections focus
therefore on delineation of the orbito-medial prefrontal cortex (OMPFC) and related

structures, which have been linked with affective disorders.

2.5.5.1 Orbital and medial networks

Connections and architecture of the OMPFC have been described in the monkey by
several groups (Price, 1999; Ghashghaei and Barbas, 2001). These areas have been
divided into two distinct networks (Figure 2.7), medial and orbital (Carmichael and
Price, 1995). The orbital network forms the input region, integrating information

from visceral, somatosensory and visual areas, as well as amygdala and GH. By
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contrast, the medial network is the output region, receiving both limbic and orbital
inputs and sending afferent connections to the hypothalamus and the brain-stem
(Price, 1999). The projections of different frontal areas are specific and topographical
(Yeterian and Pandya, 1991; Morris et al., 1999), which may suggest specialized roles

for areas displaying similar properties, such as connectivity patterns.

2552 Amygdala and anterior cingulate connections

The amygdala receives most of its input from temporal cortex, but also the superior
temporal gyrus, as well as small projections from the entorhinal cortex and the
parahippocampal gyrus (Stefanacci and Amaral, 2000). Subgenual anterior cingulate
(BA25) projects to amygdala and medio-dorsal thalamus (Freedman et al., 2000).
Parietal afferent input is mainly restricted to dorsal cingulate (BA24) (Vogt and
Pandya, 1987), but not in rostral BA24, which receives input from amygdala. Parietal
connections to the posterior cingulate are more prominent than to anterior cingulate,
where projections are sparse (An et al.,, 1998). See appendix A (Ebmeier and
Kronhaus, 2001) for further details regarding cingulate function in depressive

illness.

2553 Hippocampal connections

As far as I am aware, studies of hippocampal neuroanatomy and connectivity have
mostly been restricted to the rat. Therefore, due to the evolution of the prefrontal
cortex in humans, any analogies drawn from these studies may not be relevant.
However, the following findings in primates have been reported. Several medial

orbital areas (Carmichael and Price, 1995) and OFC (Van Hoesen et al., 1993) receive
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connections from GH. Reciprocal connections of the medial areas with GH are
sparse (Carmichael and Price, 1995) or non-existent (Cavada et al., 2000) (but see
also (Barbas et al., 1999)). Finally, an indirect projection from cingulate back to GH

goes through ventromedial temporal areas (Van Hoesen et al., 1993).

2554 Subcortical afferents

The medial and orbital networks (Figure 2.7) in the OMPFC connect to distinct areas
of the striatum, which in turn connect to different portions of the mediodorsal
nucleus of the thalamus. Orbital prefrontal areas connect to central rostral striatum
(in a dorsal orientation to the connection site of the medial network). Medial
prefrontal areas however, connect to ventromedial rostral striatum. Further, while in
the orbital network striatal areas project to ventrolateral thalamus, the parallel
connections in the medial network are to dorsomedial thalamus. Finally, thalamic

nuclei project back to their respective prefrontal cortical afferents in either network.

2555 Alternative delineations of PFC

By contrast, Mayberg et al. (1999) associates changes in activity of the dorsal
(cognitive) and ventral (mood) prefrontal networks with depression and sadness.
They argue that dorsal PFC is suppressed during depression while the ventral PFC
including subgenual anterior cingulate, is over-active. After remission, this pattern
is reversed. This argument is supported by anatomical evidence, showing that the
subcortical projections of these respective frontal cortical areas is unique (Yeterian
and Pandya, 1991). Whereas the dorsolateral and medial prefrontal areas connect to

the dorsal and central section of the caudate, OFC connects to ventral and central
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sections. Respective medial-orbital and dorsal-ventral topographical projections

from PFC to similar orientations in the striatum have also been noted.
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networks (Price, 1999). Input and output regions are specified outside the dotted lines,
while subcortical efferents and afferents are included within the dotted lines. These
networks appear to have a similar connectivity profile with cortical and subcortical
afferents (albeit different portions of these structures, e.g. amygdala, striatum, thalamus
and DLPFC). The orbital network is posited as the convergence zone for somatosensory
and gustatory cortical inputs, while the medial network appears to send mostly afferent

(output) connections. Both sections of the OMPFC are interconnected.

2556 Functional implications of anatomical specificity

Distinctive functional assignment in the medial and orbital networks has been
observed in the context of reward related behaviour. While the medial network has
been associated with gambling tasks, the lateral orbital network is active when it is
necessary to inhibit response to previously rewarded stimuli (Elliott et al., 2000).

Simpson and colleagues (Simpson et al., 2001b; Simpson et al., 2001a) associated
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activation of medial prefrontal network with anxious states and deactivation with
increased cognitive (attentional) demands. Similarly specific delineation has been
reported in other areas of the cortex, such as temporal and parietal lobes (Simpson et

al., 2001a).

2.,5.6 Evaluation and summary

The anatomical delineation of the neuronal networks associated with affective
disorders can be useful in the process of identifying functional vulnerability, better
targeting of therapy and finally in constructing and testing a model of culprit
systems. However, the terminology used throughout experimental literature is often
inconsistent, with different delineation along medial-lateral (Cavada et al., 2000) and
medial-orbital (Carmichael and Price, 1995) or dorsal-ventral (Mayberg et al., 1999;
Phillips et al., 2003) networks. Further, the nature of innervation in these areas is not
always clear from experimental papers. Unless directly indicated, the density of
connections is not known and it is also unclear whether connections converge on the
same target neurons (Ferry et al., 2000). Furthermore, the computational

implications of either can only be speculated.

Nonetheless, there appears to be some consensus regarding separation of the
prefrontal cortex into two networks, defined by anatomy and function. The first
network is more closely related to cognitive function (integration of information)
and is therefore closely coupled with brain regions that are related to memory (e.g.
GH) and sensory inputs. By contrast, the second network is more closely coupled
with limbic brain regions and subcortical areas (e.g. the ventral striatum) that are
related to the processing of emotion. The networks described by Price (1999) are

limited to the OMPFC, which is separated both anatomically and functionally
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(Figure 2.7) into a network that is responsible for integration of somatosensory input

and a network for visceral output.

It is unclear to me whether the parallel networks in the OMPFC can account for the
data (i.e. abnormal cognition and mood in affective disorders). Clearly, these two
networks (Figure 2.7) are closely coupled and furthermore, delineation of the
prefrontal cortex along different boundaries (e.g. dorsal and ventral, relating to
cognition and emotion respectively) may be more appropriate. The dorsal and
ventral prefrontal networks also appear to be differentially connected to sections of
the striatum (Yeterian and Pandya, 1991). The connectivity patterns reported by
these authors show that medial and dorsal PFC are connected to the dorsal striatum,

while inferior and orbital PFC project to the ventral striatum.

However, in view of the connectivity patterns described above, the time course of
the illness in patients with HD remains a mystery. As described in section 2.5.1, the
neurobiological deficit in HD originates in the dorsal striatum, however the
neurospsychiatric manifestation usually precedes motor or cognitive symptoms.
This pattern suggests that the interaction between the prefrontal-subcortical
networks related to emotion and cognition cannot be easily teased apart (Mayberg et
al.,, 1999). Nonetheless, I tried to highlight the inter-dependency between the
OMPEFC, dorsal and ventral networks, and the associated brain areas. Identifying
distinct prefrontal cortical networks associated with both cognitive and emotional

processing deficits is crucial, both for theoretical and analytical models.
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2.5.7 Cognitive impairment

Particular neuropsychological deficits such as perseverative behaviour or thought
patterns, are shared by several mood disorders. Interaction with the environment is
altered by way of increased sensitivity (amplification) or lack of response to stimuli,
conveying fluctuating levels of attention to external and internal events. These
common behaviours contribute to the ‘continuum’ hypothesis (Moller, 2003),
suggesting that the boundaries between MDD and bipolar disorder may be blurred
and some aspects of these illnesses may have a common neurobiological substrate.
Alternatively, the sequential pattern of cognitive decline, expressed by a positive
correlation between illness duration and the number of clinical episodes, may be

shared by several psychiatric disorders.

Decreased prefrontal cortex (and cerebellar) blood flow and glucose metabolism,
were observed both in unipolar and bipolar depression (see Soares and Mann
(1997), for review). Discrete impairment in the prefrontal cortex was also discerned
by Videbech (1997), where a review of the MRI literature revealed that lesions
(which appear as signal hyperintensities), especially in the frontal cortex and the
basal ganglia, positively correlated with cognitive impairment. Veiel (1997) reported
a comparable pattern of globally diffuse impairment with an emphasis on frontal
deficits. Reports of neuropathology in particular parts of the brain endeavour to
further classify the different patient groups, by complementing reports of the

associated clinical presentation.

The concepts of helplessness and hopelessness were developed by Seligman and
Beck (see below) and have been used over the years to study both human and
animal behaviour (such as the learned helplessness model, see chapter 3) with
respect to prognosis and altered neurotransmitter pathways. Seligman’s theory of

helplessness posits an absence of contingency between behaviour and outcome
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leading to emotional distress, anxiety and fear and consequently progressing to
helplessness and depression (Seligman, 1978). These indications point to a close
coupling between cognitive deficits and disease severity. The absence of hope has
also been associated with a higher risk of suicide (Beck et al., 1985). Thus, cognitive

decline may suggest a higher probability of relapse.

Cognitive deficits in depression can be divided into two categories. The first
examines task performance of different patient groups under discrete conditions,
evaluating the correlation between perceived dysfunction and neuropathology. For
example, depressed subjects are particularly vulnerable to memory deficits (Veiel,
1997; Atre-Vaidya et al., 1998; Austin et al., 1999). The second assumes an intrinsic
negative perceptual tendency (cognitive bias). This tendency predisposes an
individual to a higher risk of depression (possibly related to personality type). It is
expressed by prevailing negative thought patterns and could play an important role

both in disease aetiology and in treatment response.

To conclude, although neuropsychological impairment and abnormal cortical
activation during task performance were noted, the associated neuropathology is
still unclear. The increased emotionality or lability at baseline may be distinct from
the neuropsychological impairment or the associated failure to activate specific
regions observed in these patients. Alternatively, characteristic patterns of brain
activity may predispose patients to specific damage and persist throughout

remission (Phillips et al., 2003).
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2.5.8 Therapeutic strategies

The efficacy of treatments that are directed at a particular mechanism or structure
can corroborate its participation in aetiology and in recovery. For example, if a
depressed patient shows weak activation of the PFC in the clinical phase of the
illness and direct excitation of this area is followed by clinical remission, we can
deduce that hypoactivity in this region is associated with the clinical phase of the
illness and with treatment response. This will inspire computational investigations
of the interactions of PFC with other regions and the effects of PFC hypoactivity on
the behaviour of the whole network. This section will explore some of these

mechanisms in MDD and bipolar disorder.

Currently the choice of treatment is guided by symptoms, yet there is no
deterministic way to predict improvement or relapse and the search for the
appropriate medication is predominantly a process of trial and error. Characterising
mental illness by neurobiological markers (Helmuth, 2003) and behavioural
expressions could provide better understanding of the impaired dynamics which
may render certain individuals more vulnerable to affective illness. The next section
introduces an investigative tool which may enable direct study of excitatory and

inhibitory stimuli on the activity of neuronal networks.

2.5.8.1 Brain stimulation techniques

Whole brain stimulation appears to be very effective in alleviating
treatment-resistant depression. Transcranial magnetic stimulation (TMS) is
performed by delivering a magnetic stimulus through an external coil over the
target brain area, stimulating cortical neurons to fire (George et al., 1998).

Stimulation over left DLPFC was found to produce an antidepressant effect
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(Pascual-Leone et al., 1996; George et al., 1997). High frequency stimulation (10-20
Hz) was found to have the most persistent antidepressant properties. This frequency
is believed to facilitate neuronal firing and therefore considered to be excitatory,
whereas low frequency (1-5 Hz) is thought to be inhibitory (Speer et al., 2000;
Cincotta et al., 2003). TMS was also used to study connectivity patterns (see section
3.2.2) and is particularly interesting in the context of computational modelling, since
hypotheses generated by models regarding the activation or deactivation of specific

brain regions can be tested using this technique.

2.6 Functional segregation and functional integration

Understanding brain function has been subject to the dichotomy of functional
segregation (localisation) or functional integration (Horwitz et al., 2000; Friston and
Price, 2001b). It can be argued that neuroimaging methods are mostly focussed on
localisation of function (or the identification of dysfunctional loci, in the case of
impairment associated with brain lesions), supporting an association between
specific brain regions and a particular task. However, brain areas can support
(integrate) a number of different behavioural or cognitive constructs. Therefore, the
idea of functional specialisation clearly cannot convey the complexity of the human
brain. The notion of functional integration therefore, purporting a network or
systems approach to brain function, is an essential conjunct to the localisation
approach. The two approaches have a complementary role in elucidating global

brain function (Horwitz et al., 2000; Friston and Price, 2001b).
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2.7 Summary

This chapter introduced a number of topics related to the study and the nature of
neurobiological deficits in unipolar and bipolar illness. The different strands in this
chapter included a review of the neuroimaging techniques which now allow us to
study brain function both in healthy subjects and in clinical populations. The latter
half of the chapter highlighted putative loci of dysfunction, where structural
impairments were identified in patients. Connectivity patterns of these areas,
suggest that localised dysfunction may translate into functional deficits in regions

that are anatomically connected to them.

Examining the dysfunctional loci from both local and global perspectives,
introduced the neuroimaging-based studies (chapters 4 and 5) in the thesis. In the
next chapter I describe different approaches to modelling affective disorders, which
will provide the rationale and computational background to my modelling efforts

(chapters 6 and 7).



Chapter 3

Modelling psychiatric disorders

Disorders of mood are unique to the human condition. Feelings of hopelessness and
despair, suicidal thoughts and, above all, cognitive changes that accompany
depressive or manic episodes cannot easily be modelled, since the nature of the
experience is so human and subjective. However certain aspects of these disorders,
such as behaviours or the neurobiology associated with these behaviours, can be
represented and manipulated through animal and computer modelling paradigms.
These models are useful tools to study putative links between discrete variables
such as the effect of localised brain damage, social interactions or environmental
factors on behaviour. This chapter will present different modelling approaches to

psychiatric disorders. The term modelling will be used to discuss representation and
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independent manipulation of certain aspects of the data. These are extended to the
class of computational generative models, which are not limited to faithfully
reproducing the main elements in the data, but also predict certain behaviours on

the basis of the known factors.

First, merits and limitations of the animal modelling paradigms will be discussed
(section 3.1). The following two sections focus on modelling brain activity in human
subjects. I will first outline approaches that aim to represent brain activity, or the
principal influences which underpin this activity, by describing various approaches
that chart connectivity in neuroimaging data (section 3.2). This will be followed by a
general description of the modelling paradigms that have been applied to the study
of human emotion and cognition (section 3.3). Although the general aim of the
thesis is to investigate both unipolar and bipolar disorders, the main focus of the
experimental work in thesis is depression and its effect on brain activity in both.
Therefore, the modelling (both animal and computational) approaches reviewed

here will mostly be limited to the study of depression.

3.1 Animal models

Causal relationships between neuroanatomy and behaviour are difficult to ascertain
in humans. The animal models allow us to investigate these links, alongside the
effect of psychotrophic medication on both brain and behaviour. This paradigm is
an accepted and well-established technique (more so than theoretical methods) to
study brain and behavioural abnormalities in affective disorders. Activity changes
associated with mood disorders, such as exploratory behaviour or memory deficits,
have been observed and associated with specific neural deficits in the animal model

(Richardson, 1991; O'Neil and Moore, 2003).
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3.1.1

Behavioural manipulation

A number of paradigms have studied the influence of stressful life-events on

subsequent behaviour that resembles depression with corresponding

neurobiological and physiological changes. The following paradigms illustrate this

class of models:

i

Exposure to stress (chronic or acute) at a vulnerable stage in development
elicits release of high levels of cortisol. This stress-response either at a critical
stage or over a prolonged period of time may cause long-term damage to the

septo-hippocampal pathway (Finkelstein et al., 1985; Korte, 2001).

The learned helplessness model emulates certain behaviours associated with
depression, such as despair and hopelessness. Deficient levels of both
norepinephrine and serotonin were found both in the learned helplessness
animal model (Rojas-Corrales et al.,, 2002) while in humans, decreased
neurotransmitter levels were associated with depression, fear and anxiety
(Charney, 2003). In the animal model, these deficits seemed to respond to

antidepressant treatment (Giral et al., 1988).

Prolonged separation of a young animal from its mother may be detrimental
to normal development and cause autonomic responses such as sleep
disturbances and decreased body temperature. These seem to persist beyond
the experimental phase (McKinney, 1984). Since these autonomic responses
resemble some of the autonomic changes associated with depression,
manifestation of depression in later-life has been putatively linked to

developmental stress (Riso et al., 2002).
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3.1.2 Hippocampal function and pharmacology

The hippocampus and its susceptibility to stress have often been associated with
depressive illness in humans, both in relation to specific working-memory
difficulties (MacQueen et al., 2003) and structural deficits (Shah et al., 1998) in
depressed patients. Recent reports showed hippocampal neurogenesis following the
administration of antidepressant medication (D'Sa and Duman, 2002; Malberg and
Duman, 2003). In rats, lesions effected early in development to ventral hippocampus

were more likely to cause a persistent working-memory impairment (Lipska et al.,

2002).

Several pharmacological studies in the rat have affected the function of the
hippocampus. Desipramine and Mianserine (antidepressant medications), as well as
Transcranial Magnetic Stimulation (TMS) reduced inhibition in dentate gyrus,
enhanced LTP and reduced the modulating effects of serotonin (Levkovitz et al.,
2001). Markedly these changes were found in young and adult rats, but were not
observed in ageing animals (Levkovitz and Segal, 2001). Further, seizure level
electroconvulsive stimulation, unlike antidepressant medication, induced axonal
sprouting in granule cells of the rat dentate gyrus (Lamont et al., 2001). By contrast,
in an animal model of psychosis, prefrontal networks were rewired when
neurogenesis in hippocampal (GABAergic granule cells) was blocked by a single

dose of metamphetamine (Dawirs and Teuchert-Noodt, 2001).

Finally, the triangulation between hippocampus, behavioural reaction to stress and
memory were studied in the Wistar-Kyoto rat. The cholinergic impairment in the
hippocampus of this animal strain appears to make it particularly vulnerable both to
stress and impair its performance on a working-memory task (the Morris water

maze), compared to wild-type (Grauer and Kapon, 1993).
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3.1.3 Advantages and disadvantages of the animal model approach

Extrapolating from distinctive changes in animal behaviour to the complex nature of
human disorders of mood is somewhat problematic. Further, an obvious
disadvantage of these models may be the difficulty in transferring information
across species at different stages of phylogenetic development and different
definitions of structural boundaries within cortex. First, the experience of suffering
associated with depressive illness, or the cognition associated with it, may be
qualitatively different in animals. I can think of no way to compare these subjective
experiences. Second, the fundamental differences in cortical structure and function
in rodents, primates and humans may render a dubious analogy. Third, the episodic
nature of this disorder, interspersing acute illness episodes with periods of

euthymia or remission, has not been modelled in animals, as far as I know.

Nonetheless, animal models allow a direct investigation of both neurobiology and
behaviour, which enables the putative long-term effects of both pathology and
plasticity to be studied over a shorter time-course. These models allow the study of
behavioural phenomena in vivo and in the context of a social environment. These

models, therefore, offer a number of practical advantages:

1. Variables can be controlled to a greater degree in animal models than in
human clinical studies. The three most useful paradigms in animal models
are lesion studies, behavioural models and pharmacological models, which
in turn emphasise two contrasting approaches. Disruption to the activity of
specific structures, functional networks and specific neurotransmitter
pathways can be achieved by localised lesions, response to pharmacological
agents, or both. For example, animal models have been used to explore the
specificity of different antidepressants with reference to modification of

behaviours or discrete pathways.
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2. Using these paradigms, further emphasis can be placed on the behavioural

implications of the neurobiology.

3. Characteristic changes in brain activity and behaviour can be measured and

subsequently modified by appropriate medication.

Although an association between psychotrophic medications and symptoms may be
different in humans, animal models provide invaluable clues to support the links
between specific neuropathology, pharmacology and behaviour. Nevertheless
moral, economical and practical issues involving experiments with animals limit

this line of research.

Next, I will describe developments in the study of neuronal-networks in the human
brain through neuroimaging and activation data. The common scientific question
among the models that will be described here is the nature of connectivity among
brain areas and the integration of different areas during and for the purpose of
performing a cognitive task. Given the large volume of data, computational
methods are needed to sift through the data to establish meaningful links. The
modelling approach in this thesis is closely linked with connectivity studies in
neuroimaging data, as well as with straightforward data analysis techniques (the
segregation and integration approaches described in chapters 2 and 3). In addition
to these approaches, recent endeavours in the field of computational neuroscience
may build upon the connectivity and basic activation studies to explore the

dynamical interactions of the areas.
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3.2 Analytical models

The dominant methods to explore brain activity from a network perspective, rather
than on the level of interaction between brain-regions and particular tasks, are the
analysis of functional and effective connectivity (Horwitz et al., 2000). These
techniques model the data in terms of representing the cardinal interactions,
capturing both the relative involvement of specific nodes (brain areas) in a task, as
well as interactions (connection strengths) between those nodes. The representation
of features is based on numerical analysis of covariance in the data describing the
pair-wise interactions in what are believed to be the constituents of the network
(which may be specified a-priori, especially in studies of effective connectivity). This
section introduces the methods used later in the experimental studies in this thesis.
Hence, chapter 5 uses functional connectivity methods and chapters 6 and 7 use an
effective connectivity network (McIntosh et al., 1996) as the grounding for a

dynamical model.

3.2.1 Introduction

Rather than focusing on specific regions and their interaction with the task, the
network modelling approach to brain imaging analysis wishes to examine the
interaction between task-oriented regions. These models are mostly descriptive,
trying to capture the relative contribution of different regions and, in the case of
effective connectivity models, the influence of these regions on each other (Friston,
1994). Recent developments in this field have highlighted the need for generative
models (Friston and Price, 2001a; Friston et al., 2003), to examine the effects of
change either in the structure of the input or in modification of connections, on the

observed response (output). This section will briefly describe different methods and
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approaches to the study of connectivity, first examining the study of functional
connectivity using Transcranial Magnetic Stimulation (TMS). Second, the study of
regional correlations will be explored through functional and effective connectivity
methods. The section will conclude by looking at a new generative-modelling

framework: Dynamic Causal Modelling (DCM).

3.2.2 Transcranial Magnetic Stimulation (TMS)

Transcranial magnetic stimulation (first mentioned in section 2.5.8.1) turns magnetic
pulses into electrical activity both directly under the site (brain area) where
stimulation is applied, and in remote areas that are connected to it (George et al.,
1998). The therapeutic properties of this method have been studied by several
groups (Pascual-Leone et al., 1996; George et al., 1997; Martin et al., 2002). Recently,
however, TMS has been linked with the study of connectivity, since stimulation of
discrete areas of cortex appears to change the activity of distant regions that may be
anatomically or functionally connected (Paus et al., 1997). Furthermore, this method
rendered convincing results in the study of connectivity patterns in depressive
illness (Shajahan et al., 2002). In this study, neural activity in bilateral cingulate loop
and ipsilateral dorsal prefrontal loop, after one day of repetitive TMS treatment in

depressed patients, was elicited by stimulation of the left DLPFC.

3.2.3 Functional connectivity

Functional connectivity methods map the temporal correlations between pairs of
brain regions. However, covariance between brain regions may be coincidental since

no causal links can thus be established. For example, two areas may appear to have



Modelling Psychiatric Disorders 52

a functional relationship when in fact they may both receive input from a common
source. Further, computing the covariance between specific Regions Of Interest
(ROI) may highlight, for example, task-associated regions which may participate in
activity of several independent networks. I feel that the most obvious advantages of
this technique can be attributed to its exploratory nature and the absence of prior
assumptions about the mechanism that produces these correlations. The absence of
model specification in this analysis enables the comparison of covariance structure
in different populations, which may be informative in highlighting connectivity

deficits in certain groups.

The within-group covariance structure however, may be more difficult to interpret.
Highly correlated areas will then be described as functionally co-active while no
direct relationship has been established between them. Several limitations are
associated with this approach. First, connectivity analyses make several critical
assumptions, for example, the choice of the ROI (or ‘seed-voxels’; the origin from
which covariance is computed). Second, functional connectivity studies are
descriptive in nature and do not include a specification of either an anatomical or a

functional model. Third, no causal links can be established.

Further, if the delineation of ROI is based solely upon activation data, the choice of
seed-voxels for analysis may be somewhat arbitrary. This may cause two further
effects. First, the ROI specified in the model may not represent the activation data
faithfully. Second, the data may contain latent influences that may not be
represented, in the absence of a model. To circumvent the effect of task-related
co-activation in neuroimaging data, Lowe et al. (1998) used signal fluctuations at
rest as a measure of functional connectivity. They found strong connectivity, at rest,
between left amygdala motor and visual cortices. However, the concept of rest is

questionable in the conscious human brain and especially in depressed subjects,
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where rumination (persistent negative thoughts) may form part of the clinical
course. Therefore, describing the rest condition as the absence of task-related

activity may be more appropriate.

3.2.4 Effective connectivity

Effective connectivity models have been described as “the influence that one neural
system exerts over another” (Friston, 1994). Structural Equation Models (SEM; see
Schumacker and Lomax (1996) for an introduction), have been widely used
(McIntosh and Gonzalez-Lima, 1994; Buchel and Friston, 1997) in the study of
connectivity in neuroimaging data. In this context, SEM account for the anatomical
connections between areas, and use maximum likelihood methods (Wall and Li,
2003) to estimate connection strengths or path coefficients between pairs of regions.
The model, signified by its strength and polarity of its paths or connections in the
network, is specified describing different task-conditions. This model is either
accepted or rejected depending on a measure of its goodness of fit, using
regression-based methods. The nodes in the network can be modelled as a set of
measured or latent variables, with residual errors associated with every latent
variable that cannot be explained by the path coefficients in the model. The error
terms associated with every path in the SEM are assumed to be independent of each

other (www.ssicentral.com/lisrel.htm).

Effective connectivity models endeavour to capture and explain the activity of
specific regions through direct (pair-wise) and indirect couplings between different
regions, termed the ‘neural context’. The contextual pattern of processing is
essentially based on the configuration of anatomical connections between brain

areas that are active during the task. The relative contribution of each area to
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different task conditions is determined by the relative efficacy of connections
between them (McIntosh and Gonzalez-Lima, 1994). The number of regions
included in effective connectivity models is usually fairly small, and therefore the
number of comparisons that needs to be corrected for, is fairly limited. An
automated algorithm was suggested by Bullmore et al. (2000), using boot-strapping

methods for calculating path coefficients.

Albeit useful in capturing and representing causal relationships among a number of
task-related areas, effective connectivity methods (e.g. SEM) have several
disadvantages. First, SEM focus on neural activity across different task-conditions,
and the connectivity of the model is constrained by anatomy. Thus, the power of
SEM may be limited to a small number of regions where anatomical connections
ought to be well-defined (Goncalves et al., 2001). Second, SEM do not allow for the
study of the direct and indirect effects of different inputs on network activity and
are therefore limited in their scope as generative models (Friston et al., 2003). A
modelling framework to address some of these problems has been proposed

recently and will now be described.

3.2.5 Dynamic Causal Modelling

Friston et al. (2003) suggest a novel framework for studying network connectivity,
by using Bayesian statistical techniques. The dynamic causal modelling (DCM)
framework uses a non-linear, generative model to predict the effect of different
inputs on both the activity of specific units and the connection strengths between
them. This is a departure from previous models such as SEM, since experimental
manipulations, or inputs, are made explicit. Furthermore, DCM allows the

modelling of changes in signal over time, a concept that is not included in the SEM
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framework which only models task-oriented states. Temporal or cognitive effects
are modelled in the DCM framework as the stimulus-independent modification of
connection strengths which indirectly changes the activity of network constituents.
Conversely, the stimulus is directed at specific units (representing brain areas) in a

manner that accounts for task-oriented neural activity.

Network activity in DCM (Figure 3.1) can also be elicited by external activation of
specific units, such as V1. Activity then propagates throughout the network
modulated by specific connectivity patterns. The connections between different
units can also be modulated. This state (or activity) is determined by a set of
non-linear differential equations whose parameters are constrained by priors. These
equations describe the coupling between neuronal activity and haemodynamic
response. The modulating effects (termed ‘contextual’) can therefore represent the
change of efficacy in specific pathways as a function of time or cognitive factors,

such as attention or learning.

stimulus independent modulation
e.g. attention, time or leamning

-
------
-

stimulus presentation
to visual cortex

Figure 3.1: The DCM modelling framework. Visual input from an external source excites
V1, which in turn activates a task-oriented loop of visual and temporal areas.
Stimulus-independent input modifies the efficacy of specific connections. This type of
indirect modulation provides the “neural-context” of activity in the network. The external
direct and contextual (indirect) inputs are depicted as rectangles, while specific brain
areas are encircled by ovals. Connections between regions are denoted by arrows. The
specified modes for altering the efficacy of connections are for illustration purposes only.
Modified from Friston et al. (2003).
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In sum, the DCM modelling framework focuses both on the discrete effects of inputs
on network activity and furthermore, it allows for external influences to modulate
intrinsic activity patterns in the network. This framework has already been tested
successfully on both simulated and real data. It seems to be a good successor to SEM

by incorporating relevant dynamic aspects of neurophysiology.

3.2.6 Connectivity as a prelude to compensation

Chronic, repetitive and severe clinical episodes are often associated with residual
cognitive impairment in euthymic unipolar and bipolar patients (Paradiso et al.,
1997; Kessing, 1998; Quraishi and Frangou, 2002). However, conflicting evidence
reporting no functional deficits in euthymic unipolar and bipolar patients with more
pronounced deficits associated with aging (Fossati et al., 2002) may suggest either
slighter neurobiological deficits in younger patients or compensatory strategies
which recruit additional brain regions to prevail over age (Della-Maggiore et al.,

2000) or illness associated decline.

3.2.7 Summary: studying regional-interdependence

The methods described in this section focus on studying the integration of
task-associated regions into a network that accounts for experimental findings. The
connectivity between regions or units in these networks can be specified a priori,
based on anatomical data. Recent modelling efforts (Friston et al., 2003) decoupled
the effect of inputs sources (directly) on the activity of specific units, from the
indirect manipulation of activity through changing the value of connections

(modulatory effects). The advantage of using functional connectivity methods in
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that respect, may be their exploratory nature. However, the disadvantages
associated with these methods are the possibility of co-activation being
misinterpreted as connectivity, and the possibility that these methods may be
excessively unconstrained. Conversely, the disadvantages associated with effective
connectivity methods are therefore the chance of over-specification, or the inclusion

of prior beliefs that may limit the model in an unrealistic manner.

The main advantages, however, of studying connectivity (both functional and
effective) as a complement to using a region-specific approach, are as follows. First,
the validation of task-specific neuronal networks through explaining (or even
replicating) the mechanism by which task-associated neural activity can be
achieved. Second, networks can be characterised in healthy subjects, allowing
comparison with clinical populations. Thus, the neural basis of aberrant, task-related
activity in clinical subjects may be revealed. Third, generative models can study the
existing data or models using different perturbation parameters. Predictions made
by the generative models, such as the modifying effects of specific inputs on areas or

paths, can be subsequently tested by using methods such as TMS.

The next section will provide a brief introduction to the field of neural-network (also
termed ‘connectionist’) modelling. Several studies have used these methods to
investigate either brain function (based on neuroimaging results) or psychological
phenomena in depressive illness. The studies presented in chapter 6 and 7 of the

thesis are based on this modelling paradigm.
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3.3 Introduction to theoretical models

Computational or theoretical models have been applied to both the study of
cognitive and mental disorders. The interaction between either high or low-level
factors (e.g. language deficits or molecular interactions) can be formally represented
by arbitrary units. The activation of those units can thus be computed by equations
describing the computation that takes place. Accordingly, this computation can be
represented on a progressive scale of detail from the dynamics of ion channels to the
abstract models describing brain function or social interaction (Rumelhart and
McClelland, 1987). If human phenomena or data are represented faithfully in the
models, they can hopefully enable the manipulation of parameters representing
concepts that either cannot transcend the species barrier or alternatively, may be too
complex for an in vivo study (e.g. cortical dynamics in the presence of an underlying
pathology). Theoretical models allow us to quantify certain parameters that are
suggested by previous hypotheses on a purely qualitative or descriptive basis. By
reproducing a known behaviour or activity pattern, the manipulation of certain

parameters and the predictions of the model could suggest further areas of research.

inputs

Figure 3.2: A simplified Artificial Neural Network. Activity in the input layer is
modulated by connection weights and summed in the output neuron. an optional
function f(X) can be used to modify the value of the output.
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The activity of units in such models is computed as the summed, weighted output
of the units that are connected to them (Figure 3.2). This output can be passed
through a function, which assigns the internal activation of the unit to an output
value. This paradigm has been used to represent neural architecture, relating the
activity of a neuron (typically a firing rate) as the summed, weighted activation of
other neurons. While this level of description may be an over-simplification of the
neurobiological phenomena, inasmuch as neural activity can be represented as a
varying input signal over time, these models have been useful in both recreating

and predicting certain aspects of brain dynamics (Hertz, Krogh and Palmer, 1991).

Neural activity associated with either depression or mania cannot be easily
addressed by theoretical models. These disorders appear to be both aetiologically
and behaviourally heterogeneous. Furthermore, findings describing neural activity
in unipolar and bipolar patients using different neuroimaging techniques such as
PET and fMRI studies are divergent. Therefore, formulation of hypotheses to
formally represent these abnormalities in theoretical models has been a challenging
feat. Models of unipolar and bipolar depression described in the next section have
mostly focused on the psychological and cognitive deficits in these disorders, often
representing the activity of specific regions at a conceptual level (Siegle, 1999). I will
briefly outline the theoretical framework of these models and conclude this section
by discussing a biologically plausible framework which models brain activity based
on PET and fMRI data. The reasoning for this ordering is based on my personal
choices for theoretical modelling, since I am particularly interested in the
neurobiological aspects of unipolar and bipolar illness and have therefore chosen to

model activity from a neuropsychiatric perspective.
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3.3.1 Prior work

There are relatively few neural-network (connectionist) models of unipolar and
bipolar depression. The models are rather varied in terms of both scope and their
approach to different aspects of the illness. My perspective on the behavioural and
cognitive manifestations of these disorders has always been focussed on the
putative links between these deficits and neurobiological abnormalities, which can
be tested using different neuroimaging methods. It seems however, that most of the
connectionist modelling of depression (over the last decade or so) has focused on the
cognitive and emotional negative bias that has been associated with this illness. For
comparison purposes and to illustrate modelling paradigms in other psychiatric
disorders, I will briefly mention several neural-network models of schizophrenia

and obsessive-compulsive disorder.

The architectures used to study psychiatric disorders include backpropagation
(Ownby, 1998) and recurrent neural-networks (Stein and Ludik, 2000), used to
model the well-defined neuropathology in obsessive-compulsive disorder (OCD) by
severing specific connections or pathways that represented the effect of serotonergic
and dopaminergic modulation of behaviour and of therapeutic strategies, for
example. Further, perturbations describing neuropathological phenomena can be
performed through severing (“overpruning”) connections in a recurrent network,
thus creating spurious activity patterns (“hallucinations”) in models of
schizophrenia (Hoffman and McGlashan, 2001). However although these models are
based on neurobiological phenomena (i.e. decreased cortical connectivity in
schizophrenia), the units in the models do not represent brain areas and the activity
of the networks may be associated with network architecture rather than with the
neurobiological phenomena they simulate. A methodological synopsis of this field

has been addressed at the psychiatric community (Jeffery and Reid, 1997).
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Nonetheless, few of these models appear to be closely linked to real neuroimaging
studies or psychopathology in depression and bipolar disorder. This may be
associated with either poorly defined (or perceived) neurobiological schema. In
existing models, the behaviour of the network following different perturbations can
often be associated with the architecture of the network rather than (for example)

the specific brain region it is argued to represent.

Another application of neural networks in the study of psychopathology was to
identify structure in large volumes of data. For example, classification of patients
grouped by clinical parameters predicted their response to a specific psychotrophic
medication (Franchini et al., 2001). The next section will therefore review several of
the modelling paradigms that have been applied to the investigation of psychiatric
disorders. I will also describe a model of neural-activity (Tagamets and Horwitz,
1998) which looked at the putative contribution of inhibition to the rCBF signal
observed with PET. Although this model is unrelated to the study of clinical
populations, I believe that modelling brain function in this context could provide
additional tools for studying the neurobiological mechanisms underlying affective

disorders.

3.3.2 Modelling cognition and emotion in Major Depressive Disorder

Human experience cannot be readily captured in the activity of artificial units in a
neural-network model. Perhaps this is the reason most network models focused on
the coupling between (biased) cognition and emotion in depression. However, many
of the signs associated with depressed or sad mood can also have cognitive (which
may be expressed through language) or motor manifestations. These include,

among others, psychomotor slowing, perseveration (difficulties with performance of
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cognitive tasks that require set-shifting), working-memory deficits and excessive
fatigue. Further, a negative bias is classically associated with depressive cognition
(Sackeim and Wegner, 1986) and associated with a higher probability of future
relapse (Bouhuys et al.,, 1999). Hence, depressed patients are more likely to use
negative words and attend to negative stimuli. They are also more likely to identify

neutral faces as negative (Bouhuys et al., 1999).

Models of depression study this illness from the perspective of biased cognition; see
(Siegle, 1998) for review. Nonetheless, a qualitative modelling framework such as
the dorsal-ventral hypothesis (Mayberg, 1997; Mayberg et al., 1999) may render

themselves to a computational investigation in due course.

3.3.2.1 The Siegle model of attentional bias in depression

A promising framework for studying interaction between cognitive and emotional
biases in depression was suggested by Siegle (1999). Although these models are not
based directly on brain activity as such, they are grounded in both psychological
(Ingram et al., 1987) and neurobiological models (Le Doux, 1992), describing the
interaction between hippocampus (cognitive stream) and amygdala (emotional
stream) function in depressive illness. To implement learning, this modelling
framework first used a supervised, back-propagation architecture, where the error is
related back to the system; it subsequently used a Hebbian learning rule (Siegle,
1999).

Using a feed-forward mechanism, the network was required to perform a lexical
decision task, with an output (signifying activity of PFC) through either semantic
(cognitive; n =9) or valence (emotive; n = 3) nodes representing the meaning of

specific words that were used as input. Feedback connections between these two
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processing modes (cognitive and emotive) can change the features associated with
specific units. Context nodes representing attentional constructs can also provide
direct excitation to either lexical or emotive nodes. The feedback mechanism
between cognition and emotion until a lexical decision is made represents the
temporal process of attention. Weights in the network decayed at a given rate to
represent the psychological concept of forgetting and to keep the weights bound. To
emulate depressive behaviour, the network was ‘overtrained’, i.e. the learning
algorithm was implemented for longer on emotive rather than on cognitive stimuli.
The results of this training regime clearly showed a bias towards negative words on
which the network was overtrained and a stronger competition between recognition
of those words and negative words that were not included in the overtraining
regime. Therefore, this simulation predicted that depressed patients will have an
attentional bias towards their internal (personally-relevant) negative representation

of the emotive context of words.

Depressed patients also show an attentional bias towards mood-congruent visual
images (Eizenman et al., 2003). Therefore the neural-network simulations were
accompanied by physiological response data (pupil-dilation in depressed patients)
suggesting that depressed patients do not attend to external stimuli and are more

likely to attend to negative stimuli for longer (Siegle, 1999).

Relating these results to neuropsychological bias in depressed patients, Siegle (1999)
suggests that unlike healthy individuals, depressed patients do not attend to
external stimuli by processing and subsequently putting them out of their mind.
Impaired attention in depressed subjects, coupled with a negative internal schema
(rumination) causes patients to perpetuate the processing associated with their

internal negative information, rather than with external stimuli.
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3.3.3 Modelling cognition and emotion in bipolar iliness

Neuropsychological phenomena associated with manic symptoms have been
simulated by adding noise to an attractor neural-network (Hoffman et al., 2001). In
this modelling framework, manic symptoms (termed “heat”) perturb the activity of
a recurrent neural-network. In this simulation stored ‘memories’ or patterns
represented different orientations of the Necker cube. Each orientation (pattern)
could be recalled by activation of one input unit. However, when noise was
increased in the system the network rapidly switched between one recalled pattern
(attractor) and another, emulating manic behaviour. These results were
subsequently confirmed by a neuropsychological study with manic patients, who
showed a similar reversal rate (choosing different representations of the Necker
cube successively). However, it is unclear whether this behaviour can indeed be
argued to represent manic symptoms, since introduction of noise to an attractor
network may simply reveal behaviour that is associated with the architecture of the
attractor-network. Specifically, it is unclear how the noise translated into neural
activity in the brain of manic patients (although the authors suggest that elevated
levels of norepinephrine during mania may be a compensatory mechanism for
increased “neural noise”. Alternatively, these authors suggested that a globally
distributed projection from “rogue neurons” may act as noise generators in

manic-spectrum disorders).

Siegle (1998) suggests that the dearth of models investigating psychological
phenomena associated with bipolar illness may be associated with the scientific
focus of investigation, stressing the biological basis of this illness. Therefore, he
believes that modelling efforts of this illness should be grounded in and motivated

by biology.
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3.3.4 Modelling brain function in depression

There are few theoretical frameworks, such as DCM (section 3.2.5) investigating
results from fMRI or PET studies using generative models and even fewer using a
neural-network approach or studying data from neuroimaging experiments in
depression or in mania. Although many conceptual models (Hoffman and
McGlashan, 2001; Hoffman et al., 2001) may be related to brain activity associated
with affective disorders, these studies do not model activity in brain areas as such,
nor the interaction between different areas. However, a recent fMRI study (Siegle et
al., 2002) confirmed predictions from previous modelling studies (summarised in
Siegle, 1999) which addressed the role of the amygdala in the negative bias of
information processing associated with MDD. The recent neuroimaging study thus
identifed sustained amygdala activity in depressed patients (compared to healthy

controls), predicted by the models (section 3.3.2.1).

3.3.5 Neural network classifiers

Neural networks can discover regularities in large datasets and thus learn to classify
or associate between different items, based on the features of those items (Hertz,
Krogh and Palmer, 1991). The application of these techniques to depressive studies
has been mostly with reference to classification of signs and symptoms experienced
by clinical populations with prediction of outcome (e.g. the therapeutic efficacy of
specific pharmacological agents) (Jefferson et al.,, 1998; Winterer et al., 1998;
Franchini et al., 2001). The architectures that have been used for classification in
psychiatric literature include both supervised algorithms such as back-propagation
(Franchini et al., 2001) and unsupervised algorithms, such as self-organising

neural-networks (Gaetz et al., 2004).
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3.3.6 Computational models based on functional imaging

Large scale, biologically realistic models of brain activity (Tagamets and Horwitz,
1998; Arbib et al., 2000) have contributed to the synthesis of neuroimaging findings
with a computational neuroscience approach. These models study the global
properties and activity among networks of neurons by representing brain activity at
different dimensions or levels of description. The next section will describe a model
which includes detail of excitation and inhibition at the neuronal level,
incorporating neuronal populations to represent brain regions. Hence, the
performance of the model was assessed by comparing the activity it produces both
in terms of task performance and in terms of neural activity recorded by PET.
Delineation of the neuronal activity that gives rise to the activation patterns in
healthy subjects and subsequent perturbations of this activity may suggest either
focal or progressive deficits that may be associated with neuropsychiatric

abnormalities.

3.3.6.1 The Tagamets and Horwitz model of neural activity

PET and fMRI are two imaging techniques measuring brain activity at different
spatio-temporal resolutions, but not at the level of single neurons or cortical
columns. Quantitative data regarding transient events could be lost or
misinterpreted, since the activity in these neuroimaging studies is usually averaged
over time. Further, imaged data sums up synaptic events rather than neuronal firing
and therefore can signify both excitatory and inhibitory synaptic activity (Horwitz et
al., 2000). The role of inhibition in detected signal through different neuroimaging
modalities is the subject of investigation in a model that examined both performance

and neuronal dynamics in a working-memory network (Tagamets and Horwitz,
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1998). In this model, both local and global excitatory and inhibitory dynamics were
probed to see the effect of changing parameter values on retrieval-capacity and on
the activity of the network (output). A Wilson-Cowan unit (including excitatory and
inhibitory interactions within an element) represented a single cortical column
(Figure 3.3) comprised of excitatory and inhibitory pairs. The connectivity patterns
within the unit included feed-forward and feedback connections, with the “neural
context” provided by input from outside areas. Weights (connection strengths)
between the excitatory and inhibitory units, as well as excitatory feedback
connections and afferent feed-forward input, were derived from anatomical data
and primate studies. Regions were modelled by combining 81 basic units into 9 x 9

matrices, representing ~1 mm? of cortex.

afferent input from other regions

Figure 3.3: A basic unit representing a cortical column in Tagamets & Horwitz (1998)
model. Excitatory (E) and inhibitory (I) populations modify each other’s activity. Both can
be driven by receiving afferent input from other areas varying between 0.1-0.2 in strength
(Tagamets and Horwitz, 2001). The most dominant connections in this model are the
recurrent excitatory connections, with an efficacy of 0.6. All connections sum up to 1
(roughly), denoting the proportional strength of every set of connections in a single unit,
representing a cortical column. These proportional divisions (e.g. 60% of connections

represent recurrent excitation) reflect results from anatomical studies in primates.

Using a sigmoidal activation function to limit the activity of the networks within
bounds, they investigated the behaviour of the network under different parameter
values and tested the effect of several modifications such as feedback vs. afferent

input, excitation and inhibition on network behaviour. Finally, connectivity patterns
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between different areas were explored by altering the density, spatial pattern and
efficacy of connections. Task-related conditions were modelled by increasing the
efficacy of feed-forward input, whereas maintenance in working-memory was
expressed through increased feedback efficacy. The parameters of the model were
based on PET data reporting changes in regional cerebral blood flow (rCBF) in the

delayed match to sample task (Haxby et al., 1995).

The model was able to solve the delayed match to sample task by successfully
retrieving simple encoded patterns after a certain delay. It emulated activation of the
ventral visual path (Ungerleider and Mishkin, 1982), including visual,
infero-temporal and prefrontal areas and was consistent with PET findings. In
addition to the setup of regional matrices, a working-memory system (PFC) was
incorporated into the model, with a weak input to one of the units representing an
attended process. The model investigated several ‘neural contexts’, where inhibition
played different roles either to dampen or enhance the signal (representing blood
flow) observable by neuroimaging modalities. In this model, increased signal was
expressed by summing up the absolute activity of the excitatory and inhibitory
elements. Despite most local connections (60%) being excitatory, increased
inhibition did not always decrease the overall signal. Counter-intuitively, if either
local recurrent or feed-forward excitation was low (described as neural context),
increased inhibition effectively enhanced the overall signal. The effect of inhibition
on the network was also dependent upon the nature of inhibition. These findings
highlight the potential discrepancy in the analysis of task related rCBF, where

activity and excitation are not necessarily synonymous.

This modelling paradigm is to some extent conceptually challenging, because it
coalesces two representational strata (both qualitative and empirical), into one

architecture. In this respect, attention could be contended to engage additional
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sub-cortical or limbic structures (such as the cingulate) in tandem with the
prefrontal cortex and therefore the model may contain several hidden variables that
remain unaccounted for. Further, it is unclear whether diffuse afferents from PFC
are realistic; indeed a subsequent model (Tagamets and Horwitz, 2003) changed this
prefrontal connection into discrete input. Nonetheless, I feel that basing modelling
studies on neuroimaging data is a more direct approach to studying brain activity.
Therefore, in chapters 6 and 7, I used a systems level model to consider the effects of
impaired cortical dynamics on regional integration. Thus, local and global
interactions could be studied in the context of the neurobiology of affective

disorders.

3.3.7 Relative merits of theoretical vs. animal models of depression

To conclude, I suggest that computational models of depressive illness offer the

following advantages and disadvantages:

3.3.7.1 Advantages

1. Theoretical models can be based on human neuroimaging data and therefore

on the activity of the human brain.

2. Theoretical models can test existing descriptive models by putting them into

arigorous framework.

3. Using an empirical approach, theoretical models can guide further
experimental studies. A model can suggest, for example, several competing

mechanisms that can account for a specific activity pattern.
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4. Computational modelling is relatively inexpensive compared to the cost of
animal studies or neuroimaging experiments with human subjects.
Theoretical models are in that sense similar to functional and effective
connectivity models, since neither involve an additional experimental cost
but rather draw on the experimental (neuroimaging) data that has already

been acquired.

3.3.7.2 Disadvantages

1. The units represented in theoretical models are arbitrary, since by virtue of
modelling the data, they will fail to include all the influences that are

believed to be represented in the experimental data.

2. The model is often limited by the findings of the preliminary analysis, where
some of the underlying activity may not have been observed or accounted
for. In fMRI data analysis for example, task-independent fluctuations may
have been removed as noise and are believed to be independent of the data
and of each other. However, the residuals may contain valuable information

that is ignored because they are not accounted for by the model.

3.3.8 Connectivity approaches and theoretical frameworks

Computational approaches bolster the qualitative descriptions based on
neuroimaging experiments with a sound quantitative grounding. Both connectivity
techniques and theoretical models can adopt a generative methodology to study
unknown or poorly-understood factors in the wealth of findings that stem from

neuroimaging experiments. By quantifying the different known factors in the data
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and adopting an empirical framework, the neural activity of healthy subjects and
clinical populations can be investigated. Both approaches can offer a valuable
contribution, since both can accommodate and represent the data, albeit using
different tools. Both approaches have the potential of addressing brain activity from
a network perspective, yet also enable the investigation of the role of specific
constituents within this network. One day, it may even be possible to relate the

activity of this network to human behaviour and emotions.



Chapter 4

Selective attention in bipolar disorder:

functional localisation of neural activity

4.1 Introduction

Cognitive impairment in patients suffering from bipolar disorder (American
Psychiatric Press Association, 1994) appears to persist throughout remission, and is
characterised by attention deficits and impaired performance of tasks involving
executive function and working-memory. Bipolar patients are particularly

vulnerable to attentional deficits (Harmer et al., 2002) which can be tested using the
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Stroop task. The Stroop Colour Naming Task (Stroop, 1935) has classically been
used to measure selective attention; reviewed by MacLeod (1991). A typical
interpretation of this task suggests that when a conflict occurs between the meaning
of words and the colour of the ink in which they are written (e.g. the word yellow,
written in blue ink), subjects must inhibit automatic responses whilst attending to
the stimulus. This has been described as the Stroop interference effect (Posner and
Snyder, 1975), resulting in longer reaction-time for incongruous stimuli (i.e. when
the colour of the ink and the meaning of the word differ) since absolute suppression

of the meaning of the word cannot be achieved.

4.1.1 Impaired task performance in bipolar patients

Although there is some evidence for impaired Stroop task performance in
symptomatic bipolar patients (Borkowska and Rybakowski, 2001; Clark et al., 2001),
there are inconsistent findings regarding selective attentional impairments in
remitted or euthymic bipolar patients. Findings from several studies indicate no
impairment in euthymic bipolar patients (Paradiso et al., 1997; van Gorp et al., 1998;
Cavanagh et al., 2002), while others report deficits in these patients (McGrath et al.,
1997; Ferrier et al., 1999; Ali et al., 2000; Ferrier and Thompson, 2002). Bipolar
patients appear to experience particular difficulties with sustained attention, even
when euthymic (Clark et al.,, 2002). These difficulties seem unrelated to
working-memory impairment (Harmer et al., 2002). Longer illness duration and
increased severity of symptoms (Cavanagh et al., 2002; Cools et al., 2002) are
associated with residual cognitive impairment in euthymic patients (Wilder-Willis et

al., 2001).
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4.1.2 Neurobiological abnormalities that may impinge on task performance

Neuropathological and structural neuroimaging studies of bipolar patients have
indicated abnormalities in areas important for performance of tasks requiring
selective attention. Extensive volume reductions (Lim et al., 1999), particularly in
subgenual prefrontal cortex (PFC) (Drevets et al., 1998) and anterior cingulate gyrus
(Hirayasu et al., 1999) have been demonstrated in bipolar patients, using both
neuroimaging and histological techniques. These reductions may be attributed to
decreased density of glial cells (Ongur et al., 1998), but also to a reduced number of
non-pyramidal neurons in layer II of anterior cingulate gyrus (Benes et al., 2001) and
reduced pyramidal cell density in layers III and V of dorsolateral prefrontal cortex
(Rajkowska et al., 2001). Functional neuroimaging studies in these patients report
decreased activity in similar regions, including middle, superior and inferior
prefrontal cortices (Drevets et al., 1997; Sax et al., 1999; Lopez-Larson et al., 2002).
Many of these dorsal and ventral prefrontal cortical regions have been associated

with executive task performance (see Phillips et al. (2003) for review).

4.1.3 Delineating state-related and state-unrelated factors

Whilst a number of studies have demonstrated significantly greater functional and
neuroanatomical abnormalities during executive task performance in symptomatic
compared with euthymic bipolar patients (Baxter et al., 1989; Martinot et al., 1990;
Blumberg et al., 2000; Ketter et al., 2001), other reports indicate additional
mood-independent functional abnormalities in these patients (Blumberg et al., 2003).
In the latter study, neural responses during Stroop task performance were examined
in euthymic, manic and depressed bipolar patients. Decreased activity within left

orbitofrontal cortex during task performance was demonstrated in all bipolar
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patients compared with healthy volunteers, independent of current mood state.
Further, a relative increase in activity within a different region in left ventral
prefrontal cortex and a relative decrease in activity in right ventral prefrontal cortex
were reported in depressed and manic bipolar patients, respectively. However,
correlations of the magnitude of these abnormalities with symptom severity did not

yield significant results (Blumberg et al., 2003).

Together, these findings suggest both state and trait functional neural abnormalities
in bipolar patients during executive task performance. Furthermore, they suggest
prevalent illness-related decreases in activity within left ventral prefrontal cortex,
with specific depression-related increases in these patients. However, it remains
unclear whether these functional neuroanatomic abnormalities, which may be

partially related to the present mood, correlate positively with symptom severity.

4.1.4 Anxiety and performance of cognitive tasks

Several brain areas are particularly susceptible to the physiological effects of stress
and anxiety. Among them are hippocampus (GH) and medial prefrontal cortex
(MPFC). Damage to these regions may alter social function as well as cognitive
processing. Hippocampal damage has classically been associated with prolonged or
early exposure to the stress hormone cortisol causing susceptibility to depression
(Brown et al., 1999; Sheline et al., 1999). However, hippocampal atrophy has also
been associated with functional abnormalities in bipolar patients (Sax et al., 1999; Ali
et al.,, 2000). Furthermore, in healthy subjects, anticipation of anxiety causes
increased latency in visually evoked potentials over the temporal and pre frontal
cortices, which was interpreted as increased inhibition (Gray et al., 2003). These

authors also reported concomitant increased amplitude and decreased latency in the
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occipital cortex, suggesting increased excitation. Higher levels of anxiety in healthy

subjects were also associated with rCBF reduction in MPFC (Simpson et al., 2001a).

The MPFC is anatomically linked to the anterior cingulate (see Figure 2.7), where an
anxious trait (rather than state) was linked to performance deficits and higher
sensitivity to errors (Paulus et al., 2004). It is also reciprocally connected with the
amygdala, which has been implicated in human response to anxiety and fear
(Ninan, 1999). In children, evoked potentials in the MPFC were linked with higher
levels of anxiety (Lewis and Stieben, 2004) suggesting that activity in this area can be
linked with regulation of negative emotions. However, effortful control of emotion
and behaviour have also been linked with the “dorsal” prefrontal network (Phillips et

al., 2003), which includes GH and dorsal anterior cingulate.

Animal studies show that MPFC lesions affect social interaction and exploratory
behaviour (Gonzalez et al., 2000), yet Lacroix et al. (2000) found that lesions in this
region decreased anxiety while increasing freezing behaviour. Finally, 5 weeks after
medial PFC lesions were performed, elevated global levels of corticosterone were
accompanied by decreased release of this hormone in response to a stressful
stimulus (Rangel et al., 2003). Taken together, these findings suggest that MPFC

appears to be processing social cues associated with vigilance, anxiety and fear.

4.1.5 Hypotheses

Using fMRI, we measured neural correlates of Stroop task performance in a group
of euthymic and depressed bipolar patients. Subsequently, neural response in all
subjects was correlated with mood and performance. The framework for studying

the extent of the association between functional abnormalities in task associated



Selective Attention in Bipolar Disorder 77

neural systems and the severity of depressive symptom bipolar disorder, was based

on the following hypotheses:

1. Bipolar patients would demonstrate impaired task performance, including
both an increased numbers of errors and longer reaction times (RT). In
patients, RT is expected to be longer overall and especially during the

incongruous Stroop condition.

2. Decreased activation in dorsolateral and ventrolateral prefrontal cortices will

be associated with task performance in bipolar patients.

3. Increased activity in the left ventral PFC would be correlated positively with
depression severity in bipolar patients, as implied by a similar study

(Blumberg et al., 2003).

4. Anxiety will be associated with increased neural activity in the hippocampus

and medial PFC in both subject groups.

In the methods and particularly in the results sections, the data will first be
presented for control subjects, followed by the data for bipolar patients. The
discussion however, will be focussed on the implications of these results for the
study of affective disorders, situating this work into the general framework of my

thesis. Therefore, the discussion section will emphasise results from the patient

group.



Selective Attention in Bipolar Disorder 78

4.1.6 Collaboration

This study was conducted in collaboration with Professor Mary Phillips, Dr Natalia
Lawrence and colleagues at the Institute of Psychiatry (IOP) in London, who
recruited and tested the patients, as well as acquired the neuroimaging data
(sections 4.2.14.2.3; pages 79-81). Behavioural data (accuracy and reaction-time)
were also analysed by Dr Lawrence (section 4.3.1; page 88). Some of this work has
been presented previously in abstract form (Kronhaus et al., 2003; Kronhaus et al.,

2004).
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4.2 Methods

4.2.1 Subjects

Ten bipolar patients (six male and four female); age (given as mean + SD): 40.9 + 12.7
years; education: 15.7 + 0.8 years, diagnosed with Bipolar I illness (duration:
16.8 + 4.5 years; DSM-IV criteria, American Psychiatric Association, 1994), were
recruited from the South London and Maudsley NHS Trust. Eleven healthy controls
(six male and five female), matched for age (36.4 + 10.4 years) and education
(17.2 £ 2.8 years), were recruited from the local community. Bipolar patients had no
major manic or depressive episodes 6 months prior to testing. All subjects
completed the Beck Depression Inventory (BDI) (Beck et al., 1961), the Spielberger
state anxiety scale (Spielberger et al., 1970), and the Mania Rating Scale (Young et
al., 1978). The range of mania ratings scores (Young, 1978) was 2-7 in patients,
indicating that no patient was in a manic phase of illness during the study. Mean
BDI score was significantly higher in patients than controls (respectively, 14 + 5.9
and 2.3 +2.3, F (9= 37.6, p < 0.01). Two bipolar patients were euthymic (BDI <9) at
the time of testing, seven patients presented with mild symptoms of depression
(BDI'10-19) and one, moderate depression (BDI > 20). Our bipolar patients can
therefore be described as remitted, with some suggestion of residual depression. The
mean Spielberger anxiety score was also greater in patients than controls

(respectively, 39 + 11.9; 28.9 £ 7.3; F 15y = 4.4, p = 0.05).

All patients were medicated, receiving one or more of the following medications:
Selective Serotonin Reuptake Inhibitors (SSRIs) (n = 6), atypical antipsychotics
(n = 5); mood-stabilisers: lithium (n = 2), sodium valproate (n = 4), carbamazepine
(n=2) and lamotrigine (n=1). All participants were right handed (Edinburgh

Handedness Inventory; Oldfield, 1971). Exclusion criteria were as follows: a history
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of head injury; illicit substance abuse, and, for healthy volunteers, a history of
psychiatric illness. Ethical approval was obtained from the Ethical Committee of the
South London and Maudsley Trust and the Institute of Psychiatry. All subjects gave

written, informed consent.

4.2.2 Experimental paradigm

Subjects participated in a block-design Stroop paradigm (Stroop, 1935; Posner and
Snyder, 1975), with five alternating blocks of incongruent Stroop and control
conditions. Each Stroop block consisted of eight stimuli, with a white fixation-cross
(1500 msec) against a black background preceding presentation of each Stroop
stimulus (100 msec). Stroop stimuli comprised a colour word (yellow, green, red or
blue) displayed in an incongruent colour (e.g. the word “yellow’ displayed in red
ink). Each control block comprised eight 100 msec presentations of a row of X’s of
the same length as the colour words, with each stimulus preceded by a 1500 msec
presentation of the white fixation-cross (1500 msec) against a black background. A
blank screen (2900 msec) followed presentation of all stimuli, during which subjects’
verbal responses were recorded using voice-activated software. Subjects were asked
to name the colour of the ink, as quickly and accurately as possible. The
experimental run lasted 6:18 minutes in total (36 s per block), discarding the first 4
volumes (18 s) due to susceptibility artefacts of the magnetic field. A compressed
acquisition sequence was used (Amaro et al., 2002) to avoid acquisition of images
during periods when subjects were responding. Accuracy scores were collected for
all subjects, however due to technical difficulties reaction-time data from eight
subjects was incomplete. Response accuracy rather than reaction-time (RT) was
therefore used as the main dependent variable during task performance analysis

and a subset of participants” RT data were analysed for between-group differences.
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Figure 4.1: Design of the Stroop task. Either a string of X's or a word denoting colour, yet

depicted in a different ink-colour, are shown in the control and Stroop conditions
(task-phases) respectively. The subjects are asked to respond by naming the colour of the
stimulus (which differs from the meaning of the colour word, in the incongruous Stroop

condition).

4.2.3 Scanning protocol

Imaging data were acquired at the Maudsley Hospital, London, UK using a 1.5T, GE
scanner (Milwaukee, WI), fitted with echo planar imaging (EPI) hardware and a
quadrature birdcage headcoil for transmission and reception of the radio-frequency
(RF) pulse. Both structural and functional scans were acquired during the same

session.

High-resolution structural images (43 slices), providing whole brain coverage
(thickness: 3 mm, inter-slice gap: 0.3 mm; planes parallel to the inter-commissural
(AC-PC) line) were acquired using an inversion-recovery EPI: TE =73 msec;
TI = 180 msec; TR =16s; in-plane resolution =1.72 mm; matrix

size = 128 x 128 mm?®. Pixel size = 1.72 x 1.72 mm?.

Functional images, acquired with gradient EPI pulse sequence (T2* weighted),
measured BOLD response. These consisted of 80 volumes (after removing the first

four scans) with 16 near-axial slices each (thickness: 7 mm; inter-slice gap: 0.7 mm:
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TE = 40 msec; TR = 1.6 s; pixel size = 3.75 x 3.75 mm? matrix size = 64 x 64 mm?;

flip angle = 90).

4.2.4 Single-subject and group activation maps
4.2.41 Basic analysis: task related neural response

Data were analysed with software developed at the Institute of Psychiatry, London,
UK (Brammer et al., 1997; Bullmore et al., 1999b; Bullmore et al., 2001). Data were
corrected for motion by realignment to the average scan (Bullmore et al., 1999b)
Realignment to the average scan overcomes two potential pitfalls. First, it avoids the
potentially disproportionate influence of an unrepresentative first scan, which may
contain excessive movement or residual signal saturation. Second, the average scan
integrates movement over the entire dataset. Therefore, correction parameters are
likely to incorporate and correct for all movement artefacts. Linear low-frequency
trends were removed using a high-pass filter, correcting for scanner drift. Finally,
after spatial smoothing with a 7.2 mm Full Width Half Maximum (FWHM)
Gaussian filter functional data were registered to each subject’s own anatomical
scan. Activation maps expressing the neural correlates of brain activation during
Stroop vs. control task epochs were computed independently for each individual
subject, in several steps. First, an activation model was fitted at each voxel by
convolving the experimental design (on-off blocks) with two Poisson functions (with
a mean of 4 and 8 seconds), representing the haemodynamic response. These
functions provide a scaling factor for every model component. The least-squares fit
of the weighted sum of these two convolutions at every voxel produced a
goodness-of-fit statistic termed SSQ (sum of squares quotient), which expresses the

ratio of the model to the sum of squares of its residuals.
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Model i represents the fitted time-course at the i™ voxel, while residual error
represents subtraction of the fitted time-course (model) from the observed signal at
voxel i. This operation calculates the average BOLD response over every active
condition. These values are either positive or negative, a convention denoting either
Stroop (on) or control (off) conditions, respectively. Following the above equation,
the magnitude of the (absolute) SSQ value determines the size of the neural

response relative to the residuals.

Permutation and randomisation methods are useful in controlling for nominal type I
error, correcting for temporal auto-correlation (Bullmore et al., 2001; Nichols and
Hayasaka, 2003). These methods preserve all non-random structure in residuals
while removing the expected relationship between stimulus and response. The
distribution of the SSQ statistic under the null hypothesis of no experimental effects
(making no assumptions about the shape of the distribution) was computed by
transformation of the time-series into the wavelet domain. The data were
subsequently randomised ten times, which effectively eliminated statistical power
from the experimentally related components of the residuals. We set a determinative
threshold for the significance of each SSQ value further to obtaining the probability
distribution for all randomised sets of SSQ ratios (Bullmore et al., 2001; Breakspear
et al., 2003). Because SSQs are tested for significance using non-parametric statistics,
they do not need to assume that data are normally distributed. In other respects

however, they are analogous to F-statistics.
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4242  Group activation maps

The data were spatially transformed, first by rigid body registration to a high
resolution structural scan for each individual subject, followed by transformation to
the Talairach and Tournoux (1988) template (Brammer et al., 1997). Generic Brain
Activation Maps (GBAMs) were then computed for each group, by combining
median values for each randomised SSQ of every subject, at each voxel. Median
values were used for computing group maps, since they are robust to the effects of
individual subjects (outliers) on group maps (Brammer et al., 1997). Our group
maps allowed fifty false positive voxels (number of voxels activated by chance) over
the entire brain volume (21,409 voxels), representing an expected type I error rate of

p < 0.002 (uncorrected).

4243 3D cluster analysis

We extended our analysis to 3D clustering to bolster our voxel-wise GBAM findings.
Cluster level inference is expected to limit the impact of the multiple-comparison
problem and type I errors encountered in fMRI. Connecting contiguous voxels and
extending our inference into the third dimension allowed us to include very small
areas of strong activation that would not be considered significant in 2D analysis.
The clustering algorithm integrates the sum of statistical mass over contiguous
voxels, using the median SSQ ratios for each voxel. We estimated the probability of
the occurrence of clusters by wavelet permutation of the time-series, allowing 1 false
positive voxel per brain volume, which is equivalent to a cluster-wise error rate of
p =0.001 (Bullmore et al., 1999a). In this chapter, cluster analysis is only used for
illustration purposes (Figure 4.2 and 4.3) and for between-group analysis using IOP

software (see section 4.2.5.2).
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4.2.5 Between group analysis

4251 SSQ and between-group analyses

SSQ values of all the areas where significant activation was observed during group
GBAM voxel analysis were noted in bipolar patients and healthy controls. To test
whether these SSQ values differed between the two groups, we first calculated the
mean SSQ over all voxels in the cluster, and then compared the mean SSQ between
patients and controls with two-tailed t-tests. The p-values were then corrected for
multiple comparisons, using the False Discovery Rate (FDR) correction procedure.

These statistical tests were performed using R (www.r-project.org).

4252 Between group ANOVA and 3D clustering

To confirm the above ROI analysis we performed an analysis of variance (ANOVA)
by computing the mean SSQ values of each group at every voxel, looking for
between-group differences across the whole brain volume. The null distribution of
these differences was obtained by repeatedly randomising subjects’ group
membership and re-calculating the mean difference in SSQ values. This distribution
was used to calculate the probability that these differences did not occur by chance
(significance level of p = 0.05) and thus reject the null hypothesis of no experimental
effects. Voxels that were found to be significant were clustered using procedures
described above. We set the voxel-wise error rate p-value at 0.05 and the

cluster-wise p-value to 0.01.
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4.2.6 Correlations with present state

4.2.6.1 Correlations with mood and performance

Finally, we tested whether significant correlations existed between SSQ values,
representing fMRI BOLD (neural) response, with several measures of mood-state
and task performance. We computed correlations for task-related neural responses
using Spearman’s rank correlations and produced scatter plots for three sets of

correlations:

1. Correlating SSQ values of all subjects at every (activated) cluster with their

BDI scores (measuring depression); see section 4.2.1.

2. Correlating SSQ values with subjects” Spielberger state anxiety scores; see

section 4.2.1.

3. Correlating subjects’ SSQ values with measures of RT. These were calculated
separately for the Stroop and control conditions. Correlations were also
computed between the Stroop interference (which subtracts RT for the
control condition from RT for Stroop) and neural response (SSQ value) for

every cluster.

Three control subjects did not complete anxiety questionnaires and were therefore

excluded from these analyses.
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426.2 Interaction between medication and neural response

In bipolar patients, we also wished to examine the extent to which specific
medications (i.e. lithium carbonate, antidepressants and antipsychotics) determined
patterns of neural response during task performance. We therefore compared (using
the Wilcoxon test) SSQ values in all clusters activated by bipolar medicated vs.

unmedicated patients, with each type of medication, to test for differences.
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4.3 Results

4.3.1 Task performance in patients and controls

Stroop task performance accuracy did not differ significantly between groups: Both
groups performed at near-ceiling levels of accuracy (mean + SD % accuracy for
controls = 98.2 + 2.5; for bipolar group = 98.6 + 2.5). We retrieved RT data for six
control subjects and from seven bipolar patients. In the Stroop phase, patients (RT:
865 + 149 msec) responded slightly slower than controls (793 = 128 msec). In the
control phase, patients were also slightly slower (708 + 140 msec) than controls
(611 + 77 msec). Repeated-measures ANOVA, with Stroop condition (control and
stroop) as the repeated-measure and group (bipolar or control) as the
between-groups factor, showed no overall significant difference in either group’s RT
(F 1y = 1.51, p = 0.245), nor was there a group x stroop condition effect (F (; ;) = 0.48,
p =0.5). There was a highly significant main effect of stroop condition on RT,
however (F ;) =86.18, p < 0.001), revealing that RT was significantly slower in the
Stroop phase relative to the control phase, confirming the traditional Stroop

interference effect.

4.3.2 Group analysis: task associated neural response

4.3.2.1 Control subjects

During the Stroop condition with respect to the control condition, controls activated
bilateral neural regions involved with visual processing, attention and verbal
memory. The largest cluster was found in the left fusiform gyrus (BA37), with

smaller clusters in left dorsolateral (BA46) and ventrolateral (BA47) prefrontal
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cortices. Left precuneus (BA7), right hippocampus (Figure 4.2a) and left
orbitofrontal cortex (BA 11) were also associated with the Stroop phase of the task.
During the control condition relative to the Stroop condition, controls activated the
right cuneus (BA19; Figure 4.2b), the right lingual gyrus (BA19) and left middle

temporal gyrus (BA7; not shown) only. See Table 4.1 for coordinates and cluster

size.
Cerebral Region BA Side Size Phase Tal Cluster
X y z number
Fusiform gyrus 3Z. L 10 Stroop -30 -53 -2 44
Ventrolateral prefrontal cortex 47 L 8 Stroop -28 40 -2 49
Hippocampus - R 6 Stroop 34 -35 -7 34
Dorsolateral prefrontal cortex 46 L 5 Stroop -23 31 J 61
Orbitofrontal cortex 11 L 4 Stroop -33 40 -18 16
Post cingulate gyrus 31 L 3 Stroop -16 -19 42 102
Precuneus 7 L 3 Stroop -12 49 42 100
Lingual gyrus 19 L 3 Stroop -18 -58 -2 45
Corpus striatum (WM) - L 3 Stroop -23 31 9 69
Ventrolateral prefrontal cortex 47 L 3 Stroop -31 42 -13 28
Posterior cingulate gyrus 31 L 3 Stroop -13 -40 37 92
Cerebellum B R 3 Stroop 28 -46 -18 12
Fusiform gyrus 37 L 3 Stroop -29 -52 -7 32
Cuneus 19 R 7 control 5 -74 31 85
Lingual gyrus 19 R 5 control 6 -56 4 52
Middle temporal gyrus 7 L 4 control -31 -61 26 80
Cuneus 17/18 R 4 «control 4 -72 20 76
Premotor cortex & SMA 8 L 3 control -35 21 48 108
Precentral gyrus (premotor cortex) 6 R 3 control 49 2 42 103

Table 4.1: Group average of neural response for control subjects; voxel-analysis. Nineteen
areas were activated during the Stroop and control conditions. Size represents cluster size
(number of contiguous voxels) and Talairach coordinates (Tal x, y, z). Finally, the cluster
number, which is an arbitrary assignment given by the program, is noted for reference in
subsequent figures. Abbreviations include white matter (WM) and supplementary motor
area (SMA).
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Figure 4.2: Cluster analysis of group-averaged neural activity in control subjects, to the (a)
Stroop and (b) control conditions. (a) In the Stroop condition, neural response included an
extensive network of areas in both hemispheres, including visual areas such as the
fusiform gyrus, ventrolateral prefrontal cortex (labelled VLPFC), right hippocampus (GH)
and parietal cortex (not shown). (b) The activation associated with the control condition

was located mainly within right cuneus. Axial slices shown at (a) z =-2 and (b) z = 31.

43.22 Bipolar patients

During the Stroop condition, bipolar patients exhibited a unilateral pattern of
activation, confined mainly to the right superior temporal gyrus (BA22) (Figure 4.3a)
and right cerebellum (not shown). Deactivation associated with a control condition
in bipolar patients was seen in several prefrontal regions: left medial (BA32) and left
ventrolateral (BA47) prefrontal cortices, left orbitofrontal cortex (OFC; BA11), and
left subgenual anterior cingulate gyrus (BA25) (Figure 4.3b), see Table 4.2 for more
details. We therefore interpreted the pattern of recruitment in these left-sided
prefrontal regions as a relative deactivation to the Stroop condition in bipolar

patients compared with controls. See section 4.4.7 for further discussion.
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Cerebral Region BA Side Size Phase Tal Cluster
X yV z number
Cerebellum - R 4 Stroop 25 -35 -24 8
Superior temporal gyrus 2 R 3 Stroop 52 9 -2 35
Orbitofrontal cortex 1 L 10 control -20 40 -13 26
Ventrolateral orefrontal cortex 47 L 8 control -12 29 -24 10
Subgenual anterior cingulate gyrus 25 L 5 control -3 24 -13 25
Medial frontal gyrus 32 L 5 control 20 38 -7 30
Orbitofrontal cortex 1 L 5 control -14 38 -29 5
Anterior cingulate gyrus 25 R 5 control 1 21 -18 19
Medial Frontal gyrus 32 L 3 control -8 42 -7 31
Inf-post temporal lobe 37 L 3 control -45 -62 9 43
Cerebellum - R 3 control 13 -47 -18 15
Meddle frontal gyrus 10 L 3 control -24 53 9 46

Table 4.2: Group average of neural response for bipolar subjects; voxel-analysis. Twelve
areas were activated in total, during the Stroop and control conditions. See Table 4.1 for

conventions.

Figure 4.3: Cluster analysis of group-averaged neural activation in bipolar patients. (a) In
the Stroop condition, neural responses were confined to the right superior temporal gyrus
(STG). (b) During the control condition, which represents a relative decrease in neural
response (deactivation) to the Stroop condition, bipolar patients show a relatively
decreased neural activity in the left orbitofrontal cortex (OFC). Axial slices at (a) z = -2 and
(b) z =-13.
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4.3.3 Between group comparison

4.3.3.1 Comparing neural activity in both subject-groups using the two-tailed t-test

To perform between-group comparisons of task-associated neural response, SSQ
values were extracted from all clusters in GBAMs (Tables 4.1 and 4.2), representing
patient and control neural responses. Between-group comparisons using the
two-tailed t-test were performed for each cluster, followed by corrections for
multiple comparisons. Areas activated to a significantly greater extent by control
subjects, compared with bipolar patients, included left-sided fusiform gyrus,
dorsolateral and ventrolateral prefrontal cortices, posterior cingulate and left
precuneus (Table 4.3), all increased during the Stroop condition. Conversely in
bipolar patients, left-sided OFC and medial frontal gyrus (both activated during the
control phase of the task) were activated to a significantly greater extent than in

control subjects.

Brain area Side Size Phase Tal BA p-value FDR Cluster
(voxels) X y z number
CONTROLS
Lingual gyrus L 3 Stroop -18 -52 -2 19 0.0001 0.0038 45
Precuneus L 3 Stroop -12 -49 42 7 0.0006 0.0114 100
Ventrolateral PFC L 8 Stroop -28 40 -2 47 0.0019 0.0181 49
Fusiform gyrus L 10  Stroop -30 -53 -2 37 0.0048 0.0241 44
Posterior cingulate gyrus L 3 Stroop -13 -40 37 31 0.0057 0.0241 92
Dorsolateral PFC L 5 Stroop -23 31 4 46 0.0091 0.0280 61
Corpus striatum (WM) L 3 Stroop -23 31 9 - 0.0127 0.0322 69
BIPOLAR
Orbitofrontal Cortex L 10  control -20 40 -13 11 0.0060 0.0454 26
Medial Frontal Gyrus L 5 control 20 38 -7 32 0.0068 0.0454 30

Table 4.3: Between group differences in neural response for both subject groups
respectively, during the Stroop and control conditions. The p-value column depicts values
of between group two-tailed t-tests (uncorrected) for each cluster; FDR depicts p-values
(corrected for multiple comparisons, using FDR). Only clusters with p < 0.05 (corrected)

are shown. Areas are ordered by significance after corrections.
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43.3.2 Whole brain inference for between-group differences

To extend the region of interest analysis, which examined between-group
differences in neural regions activated during task performance in both groups, we
performed a between-group comparison, which examined between-group
differences in neural response at each voxel in the whole brain. This analysis
confirmed our previous findings (Table 4.1), highlighting significantly greater
activation in left-sided visual areas, dorsolateral and ventrolateral PFC in controls
compared with bipolar patients during the Stroop condition. By contrast, bipolar
patients demonstrated significantly decreased activation during the Stroop
condition compared with controls in left OFC, which was consistent with the pattern
of increased activity within this region in bipolar patients during the control

condition observed in the previous between-group comparison (Figure 4.4).

Figure 4.4: Between group differences in neural response to the Stroop and control
conditions. (a) and (b) show between-group response. (b) Compared with controls, bipolar
patients demonstrated significant decreases in neural response to the Stroop condition in
left orbitofrontal cortex (labelled OFC). (a) By contrast, controls demonstrated significant
increases in neural response to the Stroop condition in visual areas (fusiform), left
dorsolateral (not shown) and ventrolateral prefrontal cortex (VLPFC). Axial and sagittal

slices are shown at (a) z =-2 and (b) x =-37.
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4.3.4 Task performance and clinical correlations

43.4.1 Associating neural activity with mood and anxiety

To further elucidate the relationship between brain activation and subjects’ mood,
we searched for correlations between SSQ values with clinical and behavioural

measures.

Control subjects

In control subjects, there was no significant correlation between BDI scores and the
magnitude of neural response within any of the regions activated by the task. There
were positive correlations however, between state anxiety scores and the magnitude
of neural response within the left precuneus, right hippocampus and left
dorsolateral prefrontal cortex (Figure 4.5a-c), activated during the Stroop condition.
There is an apparent negative correlation with the right cuneus (depicted in Figure
4.5d), which in control subjects was associated with the control phase of the task.
However, assignment of a negative sign to S5Q values associated with the control
condition is arbitrary (section 4.2.4.1) and therefore the relationship of correlations
between neural activity and measures of mood state or performance should
consider only the magnitude of neural response (absolute SSQ value at every cluster).
This is particularly relevant to correlations with SSQ values in the bipolar group,
where most of the neural activity was associated with the control condition. Hence,
a negative correlation with neural response in the control condition is actually
positive, whereas a negative correlation with the Stroop phase of the task is

negative.
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Figure 4.5: Correlations between SSQ values (shown on Y-axis) and anxiety scores (X-axis)
in control subjects. (a) Clusters include left precuneus (Tal -12,-49, 42), (b) right
hippocampus (Tal 34, -35, -7) and (c) left dorsolateral PFC (Tal -23, 31, 4) activated during
the Stroop condition. Similarly, (d) the right cuneus, (Tal 4, -72, 20) activated during the
control condition, was also positively correlated with anxiety. Thus, increased neural
response to the control condition (denoted by negative values through convention),
associated with larger anxiety scores. Cluster number (corresponding to the right-most
column in Tables 4.1 and 4.2). Cluster number (c), as well as values for correlation

coefficients (r) and significance (p-value; p) are noted above the plots.

Bipolar patients

In bipolar patients, two clusters were correlated with depressive mood, measured
using BDI scores (Figure 4.6). First, activation of the cerebellum during the Stroop
condition (Figure 4.6a) was positively correlated with BDI scores in bipolar patients.
A further near-significant trend (Figure 4.6b) was found for a negative correlation
(shown here as a trend for a positive correlation with negative SSQ values) between
the magnitude of response within the left OFC during the control condition and BDI
scores of bipolar subjects, i.e. decreased neural response with increased depression
severity. When one patient outlier, whose BDI score (BDI = 1) was lower than that of
the other patients (depicted in an open circle), was removed from the correlational
analysis, a significant negative correlation was established between depression

severity and magnitude of neural response within the OFC (r = 0.757; p = 0.023).
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Figure 4.6: Correlation between SSQ values and depression severity (BDI scores) in
bipolar patients. Between-group differences in neural response were demonstrated in (a)
cerebellum (Tal 25, -35, —34) with a (b) non-significant trend in the orbitofrontal cortex. (b)
This trend depicts a negative correlation between BDI and SSQ in the OFC,
(Tal -20, 40, -13). The subject identified as a potential outlier is denoted by an open circle

in (b). See Figure 4.5 for conventions.

The correspondence between anxiety and neural response in bipolar patients was
associated with the same region in right cerebellum, which was also correlated with
BDI scores. This suggests that activation of the cerebellum in bipolar patients could
be associated with both anxiety and depression. By contrast however, neural
response of the cerebellar cluster associated with the control condition was not

correlated with anxiety.
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Figure 4.7: Correlations between SSQ and anxiety scores in bipolar patients. Activation of
the right cerebellum (Tal 25, -35, -24) during the Stroop condition is positively correlated
with anxiety, while the cerebellar cluster activated during the control condition
(Tal 13, -47, -18) is not associated with anxiety. The subject identified in Figure 4.6 as an
outlier (open circle), had a relatively low anxiety score (22). However, removing this
subject from the correlation analysis, albeit changing the correlation values, did not make
the correlation of anxiety scores with SSQ values (b) significant. See Figure 4.5 for
conventions.

4.3.4.2 Associating neural activity with task performance

Given that no significant differences were noted between bipolar patients and
control subjects either with respect to their response accuracy, or their RT, we did
not expect to find correlations between these measures of performance and the SSQ
values at each cluster, denoting neural response. Findings measuring the Stroop
interference effect (the result of subtracting RT for the control condition, from RT for
the Stroop condition), which was significant in both groups (see section 4.3.1), was

also correlated with neural response at every cluster.
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Control subjects

In control subjects, the magnitude of the Stroop interference effect was positively
correlated with activation of the left lingual gyrus (Figure 4.8). Furthermore, a trend
was noted between activation of right hippocampus (Tal 34, -35, -7) during the
Stroop condition and anxiety scores in control subjects (r = 0.829; p = 0.0583); data

not shown.
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stroop interference
n
8
[ ]
| L ]
] L ]

Figure 4.8: The Stroop interference effect is positively correlated with neural response in
left lingual gyrus (Tal -18, -58, -2). Group: control subject; Stroop condition. The X-axis
denotes SSQ values, while the Y-axis denote RT in msec.

Bipolar patients

The Stroop interference effect however, was negatively correlated with neural
response in the cerebellum and in the middle frontal gyrus (Figure 4.9). Thus, a
greater interference effect in both these areas was associated with diminished neural
response. As described in section 4.3.4.1, a positive correlation with (negative) SSQ

values for a cluster activated during the control phase of the task, is in fact negative.
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Figure 4.9: The Stroop interference effect (Y-axis, units denoted in msec) plotted against
SSQ values (X-axis). This effect expresses the difference between RT during Stroop and
control conditions. (a) The larger interference effect is negatively correlated with
activation of the right cerebellum (Tal 25, -35, -34), which responded to the Stroop
condition. (b) Correlations with left middle frontal gyrus (Tal -24, 53, 9), activated during
the control condition, are also negative. Thus, diminished neural response in the middle

frontal gyrus is associated with larger interference values.

43.4.3 Interaction between neural activity and medication status in bipolar

patients

The magnitude of neural response (SSQ values) within regions showing between
group significance (activated more strongly by the bipolar group, i.e. OFC and
middle frontal gyrus; Table 4.3), was not affected by whether the patient was taking
any type (antidepressants, antipsychotics, lithium) of medication. However, several
clusters that were significantly activated by the bipolar group (Table 4.2), yet were
not found to be significantly different in between group comparisons, appeared to

be activated differently (significantly more or less) by medicated subjects (Table 4.4).



Selective Attention in Bipolar Disorder 100

Region Phase Side Tal Medication type p-value M vs. U Cluster
X Y zZ

Orbitofrontal cortex control L  -14 38 -29 antidepressants 0019 M<U 5

Medial frontal gyrus control L -8 42 -7 antidepressants  0.0381 M<U 31

Crebellum control R 13 -47 -18 antidepressants  0.0667 M <U 15

Table 4.4: Significant differences in neural response between medicated (M) vs.
unmedicated (U) patients. The neural response of patients receiving antidepressant
medications was weaker than the neural response of unmedicated patients in left frontal
cortex and right cerebellum. The table is ordered by p-value (Wilcoxon test), corrected for

multiple comparisons.
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4.4 Discussion

We aimed to study the relationship between current state of bipolar illness and both
neural activity and performance of the Stroop task, by comparing performance of

the task in remitted bipolar patients with healthy volunteers.

4.41 Major findings

We predicted that bipolar patients would demonstrate an abnormal pattern of
neural response, predominantly within prefrontal cortex, as well as increased error
rate and reaction-times in response to incongruent Stroop stimuli. Our findings

indicate the following;:

1. In bipolar patients a decreased response to the Stroop condition
(deactivation) was noted in left ventrolateral PFC (confirming hypothesis 2

in section 4.1.5) and orbito-medial PFC (OMPFC).

2. Activation of the OMPFC showed a trend for negative correlation with

depression severity (consistent with hypothesis 3).

3. Both depression and anxiety were linked with activation of the cerebellum

in bipolar subjects.

4. Anxiety has been linked with increased neural response in the
hippocampus (showing a near-significant trend), dorsolateral PFC, cuneus
and precuneus in control subjects. This confirmed our hypothesis 4,
showing a further link between anxiety and increased activation in areas

involved with visual attention and in GH, which is vulnerable to stress.
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5. Refuting our hypothesis 1 however, this abnormal pattern of neural
response in bipolar patients emerged alongside an intact task performance,
confirmed by similar response accuracy and reaction-times of subjects in

both groups.

Medication may have contributed to these between-group differences in neural
responses to Stroop stimuli. Our analysis revealed an association between
antidepressant medication and neural response in the OMPFC and cerebellum.
Nonetheless, the location of this OFC cluster (Tal -14, 38, -29) differed from the OFC
cluster showing both a between-group effect (Table 4.3) and a trend for negative
correlation with BDI scores (Figure 4.6b; Tal -20, 40, -13). It may be possible that
these OFC activations (for example) may be related and therefore, the confounding

effect of psychotrophic medications cannot be dismissed.

4.4.2 Task-associated neural response

Performance of the Stroop task is associated with a significant increase in attentional
demand compared with the control task and has been demonstrated to recruit
neural regions associated with attention, including dorsal regions of the anterior
cingulate gyrus (Bush et al., 2000). In our study however, Stroop task-related neural
response in control subjects included the fusiform gyrus, associated with visual
object processing, and dorsolateral (BA46) and ventrolateral (BA47) PFC. The latter
prefrontal cortical areas have been associated with cognitive task performance,
including working-memory and error monitoring during reversal learning
(Goldman-Rakic, 1999; Cools et al., 2002), processes which may be involved in
Stroop task performance. Stroop task-related neural response in bipolar patients

comprised few regions, namely right temporal gyrus and cerebellum, with relative
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deactivation of left OMPFC, ventrolateral prefrontal cortex, subgenual anterior
cingulate and medial frontal gyrus, since increased neural responses within these
regions were demonstrated to the control compared with Stroop stimuli in the
bipolar patients. Relative deactivation to Stroop stimuli was demonstrated by
control subjects only within other visual processing regions, the cuneus, lingual

gyrus and middle temporal gyrus.

4.4.3 The Stroop interference effect and neural activity

Significant differences between reaction times in the Stroop and control conditions
confirmed the Stroop interference effect in both patients and controls. The pattern of
neural response observed during the Stroop condition in controls was, however,
within neural regions associated with cognitive task performance, visual attention
and object processing. However activation was not observed in areas that are

classically associated with the Stroop effect.

The block design nature of the Stroop task in the current study, which involved
repeated performance of one task per block, may have rendered the task relatively
easy for our subjects. Additionally, ample response-time was allotted for resolution
of any potential conflict. Indeed, the absence of a dorsal anterior cingulate gyral
response, together with the low error rate in either subject group, suggest that the
task was too easy to induce activation in this area (Garavan et al., 2003).
Nonetheless, previous work indicates that different versions of the Stroop task can
bring about variation in neural response, depending on methodological issues
(MacLeod and MacDonald, 2000; Salo et al., 2001). Therefore, the absence of

cingulate activation may not be related to task performance per se.
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4.4.4 State-related and state-unrelated neurobiological markers in bipolar

disorder

Our findings indicate that bipolar patients have a relative deactivation in left
OMPFC and ventrolateral PFC during the Stroop condition. Both findings are
consistent with a recent report of decreased activity in left OMPFC-ventrolateral
PFC in manic, depressed and euthymic bipolar patients, during Stroop task

performance (Blumberg et al., 2003).

In addition to the role of the ventrolateral PFC in error monitoring during reversal
learning, both orbitofrontal and ventrolateral prefrontal cortices have been linked to
response inhibition based on emotional feedback (Hodgson et al., 2002) and fewer
errors during the go-no-go task (Casey et al., 1997). Levesque et al. (2003) teased
apart the respective roles of these areas in healthy subjects linking OFC (BA11) to
increased inhibitory control and associating ventrolateral PFC (BA47) with the

suppression of sadness.

4.4.5 Statistical significance and hypothesis testing

The results presented here (for example, in sections 4.3.4) were assessed at the 5%
significance level, which is essentially a somewhat arbitrary assignment. With this
stipulation in mind, the trend reported here (a negative correlation of OFC with BDI
scores in bipolar patients and a positive correlation between hippocampal activation
and Stroop RT in control subjects, reported in section 4.2.6) cannot be dismissed.
These trends may in fact be more interesting than the ‘significant’ correlation of
anxiety with activation of the precuneus and cuneus in control subjects and
(suggesting increased attention) and similarly, correlation of both BDI and anxiety

with activation of the cerebellum in bipolar subjects (suggesting increased
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irritability or lability). Hence, both the significant correlations and the suggested
correlations (between OFC and depression in bipolar patients and between anxiety

and neural response in the hippocampus of control subjects) are discussed next.

4.4.6 Correlations

Bipolar patients

Our data (section 4.3.4.1) show a negative correlation between depression severity
and OFC activity during the control condition (i.e. relative deactivation during the
Stroop condition), consistent with a previous report (Blumberg et al., 2003). These
findings suggest that greater depression severity is associated with a
“normalisation” of the functional neural abnormality in bipolar patients. It remains
unclear, however, as to whether this activation is associated with improved
performance on attentionally demanding tasks in depressed compared with
euthymic patients. Interestingly, anxiety scores in control subjects were positively

correlated with neural response in right dorsolateral PFC and left precuneus.

Control subjects

These data suggest that greater anxiety in control subjects was associated with
increased recruitment of neural regions associated with attention and visual
processing. These were associated with an increased evidence for the Stroop effect
(section 4.3.4.2). Furthermore, activation of GH has also been putatively linked with
the degree of anxiety in control subjects, suggesting that stronger activation of this

area is positively correlated with longer RT in the stroop condition.
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4.4.7 Two alternative hypotheses may account for the current findings

4471 Hypothesis one: hypo-function

It may be possible, therefore, that the relative decreases in OMPFC and ventrolateral
prefrontal cortical responses in bipolar patients during Stroop task performance in
our study and in an earlier study (Blumberg et al., 2003) reflect a decrease in the
recruitment of neural regions implicated in inhibitory control during task
performance per se. This decrease may reflect suppression of this area during the
Stroop condition, through direct inhibition from other areas. Although patients were
not significantly impaired in task performance in the current study, this abnormal
pattern of neural response may be associated with significant impairment in

performance of tasks with greater attentional demands (see Figure 4.10).

4472 Hypothesis two: hyper-function

An alternative interpretation of our findings in bipolar patients (Figure 4.10) is of a
relative increase in OMPFC and ventrolateral prefrontal cortical activity during the
control condition compared with the Stroop condition. In this case, recruitment of
the OMPFC is continuous (i.e. it is excited both during Stroop and control phases of
the task), however the excitation is suppressed during the Stroop condition and
therefore can be detected only during the control condition. The OFC has been
associated with emotion processing (Rolls, 1999) whilst increased activity in lateral
OMPEFC-ventrolateral PFC has been demonstrated previously to mood-congruent
stimuli in depressed patients during an affective go-no-go task (Elliott et al., 2002). It
is therefore possible that in the current study, relative increase in OMPFC and
ventrolateral PFC activity in bipolar patients during the control condition may have

reflected an illness-related, task-independent increased activity in neural regions
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important for emotion, which decreased during Stroop task performance. The
alternating, control-Stroop condition block design nature of the paradigm employed
in the current study (Figure 4.10) renders it difficult to distinguish between these

two interpretations of the data (although see chapter 8 for relevant discussion).

4.48 Associating depression with neural response

Our data show a negative correlation between depression severity and OFC activity
during the control condition (i.e. relative deactivation during the Stroop task),
consistent with a previous report (Blumberg et al., 2003). These findings suggest that
greater depression severity is associated with a “normalisation” of the functional
neural abnormality in bipolar patients. It remains unclear, however, as to whether
this is associated with improved performance on attentionally demanding tasks in
depressed compared with euthymic patients. Interestingly, anxiety scores in
controls were positively correlated with neural response in right dorsolateral PFC
and left precuneus. These data suggest that greater anxiety in control subjects was
associated with increased recruitment of neural regions associated with attention

and visual processing.
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4.5 Conclusions

Patients show abnormal neural responses within regions associated with cognitive
task performance during Stroop task performance, which may diminish during the
depressed phase of bipolar illness. This may be interpreted as a simple
measurement of hypofrontality in bipolar patients, as seen in other psychiatric
populations (such as Major Depressive Disorder and Schizophrenia). However, we
believe that the deactivation of the ventral prefrontal cortex in our study is more
complex, since it appears to be “ameliorated” by depression and may reflect direct

inhibition during the Stroop phase (see hypothesis two).

Hypothesis one implies suppression of the ventral prefrontal cortex during the
Stroop phase. In depressed patients this suppression is weaker. However, even in
the complete absence of suppression (e.g. for a very depressed patient) the OMPFC
does not necessarily become active as might be expected from the activation we
observed in control subjects. This is because we might observe different networks
being recruited in the different subject groups. Under hypothesis two the OMPFC
needs continuous excitation throughout the task, with additional suppression
during the Stroop phase. This is in contrast to hypothesis one, where the OMPFC
receives suppression only during Stroop phase. To account for data from depressed
bipolar subjects, hypothesis two requires a change in the relative levels of excitation

and suppression.
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Figure 4.10: Two hypotheses accounting for neural response in the ventral PFC in bipolar
patients. The diagram shows a simplified profile of neural response in three alternating
control and Stroop blocks. In hypothesis 1, ventral PFC is deactivated during the Stroop
condition, with depressed patients showing less deactivation (turquoise arrow). By
contrast, in hypothesis 2 the ventral PFC is activated during the control condition. Here,
activation during the Stroop condition may not be detectible due to concurrent
suppression (dashed red and blue arrows). As above, this effect is “dampened’ (or perhaps

actively suppressed by activity of other regions?), in patients who are currently depressed.

To investigate further the possible inter-regional deficits in affective disorders,
chapter 5 will examine the functional connectivity in depressed patients and healthy

control subjects, performing a working-memory task.



Chapter 5

Working-memory and unipolar depression

5.1 Introduction

Behavioural manifestations of neurobiological impairment can arise from either
regionally specific deficits, or impaired integration of regions into a functional
network (namely impaired connectivity), or both. The networks that might be of

interest in the framework of this thesis are either task-related, for example a
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working-memory task, or regions identified as vulnerable in the context of affective
disorders. In chapter 4, we focussed on localisation function, where bipolar patients
showed an altered pattern of neural recruitment. In this chapter, the aim was to
investigate differences in correlations between task-associated areas and the rest of
the brain in patients suffering from Major Depressive Disorder (MDD) and healthy

control subjects (CTL).

Depression is often associated with a certain degree of cognitive impairment.
Depressed patients, especially those suffering from melancholia (Austin et al., 1999;
Rogers et al.,, 2004), exhibit performance deficits associated with short-term
(working) memory. Both discrete impairments (such as under-activity of PFC or
hippocampal atrophy) and functional interactions (slow or inappropriate
recruitment of network constituents) may contribute to the observed behaviour. The
N-back task has been classically used to study a parametric increase in the demands
on working-memory resources. In this task, subjects are asked to recall a stimulus
either directly after presentation (0-back), or a number of time steps after
presentation of the target stimulus (time steps refer to presentation of subsequent
stimuli). For example, a stimulus recalled 2 time steps after presentation of the target
stimulus will represent a 2-back mode of recall (see section 5.2.2 for a full
description of the paradigm). Thus, in this paradigm encoding and recall are done in
parallel and the memory load increases parametrically as a function of delay. The
fundamental issues include capacity limitations (possibly as a consequence of
attentional or other deficits), either in the whole network or in specific elements.
Alternatively, connections among network constituents (or even between them and

other, anatomically connected but not task-related regions) could be at fault.
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5.1.1 Performance and neural activity in healthy volunteers

Comparing 2- or 3-back and repetition (0-back) conditions activated prefrontal
(BA46, BA9; BA6, BA8) and parietal (BA40, BA7) areas (Carlson et al., 1998), Jansma
and colleagues (Jansma et al., 2000) found a large area of “load sensitive” activation
in parietal cortex, whereas left primary sensorimotor cortex showed the greatest
load-associated increase. Increased load sensitive activity in anterior cingulate was
positively correlated with better performance. The authors suggest that recruitment
of the cingulate was linked with efficient performance strategy, while a higher
number of errors was negatively correlated with the size of activation of the right

parietal cortex, independent of load specific effects (Jansma et al., 2000).

Nonetheless, increased working-memory load is not necessarily constrained by
capacity. Impaired performance, which may relate to redistribution of resources,
may be attributed to increased demands on other mechanisms such as encoding,
retrieval or active maintenance of objects in working-memory. Temporal delay

associated with increased load may also be a significant confounder (Honey et al.,

2000).

Different patterns of activation, expressed as capacity profiles, were reported across
the distributed network recruited by the N-back task. Three characteristic patterns
were observed. First, an inverted U shape of activation was observed, in dorsolateral
prefrontal cortex (DLPFC), but also in premotor thalamus, basal ganglia and
superior parietal cortex. In these areas increased load (presumably beyond the
capacity threshold) was associated with decreased neural response. The other two
responses were capacity independent, including either an “all or nothing” activation
pattern, which was triggered by a small load and remained constant thereafter

(observed in the right inferior parietal lobule and precuneus). Alternatively,
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increased load resulted in a consistent linear increase in activation (medial

pericingulate; BA32) (Callicott et al., 1999).

To tease apart the effects of capacity restrictions from those of temporal delay,
Honey and colleagues looked at inter-subject (n=20 healthy volunteers)
performance variability of the 2-back task. They compared reaction time across the
whole group, which indicated restrictions imposed by limited resources (capacity).
Prolonged reaction time, as an expression of increased difficulty, correlated with
increased activity in bilateral parietal (BA40) cortex and supplementary motor area

(SMA) (BA6, BA48) but not in prefrontal regions (Honey et al., 2000).

5.1.2 Delineating task-associated areas for this study

A comparative study (Casey et al., 1998), using experimental findings from four
different institutions, with different scanners and analysis methods, found similar
regions of activation associated with performance of the N-back task. This suggests
that task-associated neural activity in specific regions is reliable and allows us to
expect that activity in these regions would be manifested in this study. Specifically,
connectivity of the medial prefrontal cortex (MPFC) with the rest of the brain was
expected to be impaired. Studies that show consistency or reproducible activation in
specific brain regions are extremely useful as a benchmark for localisation of
task-related activity. Particularly in the context of the dataset used for the
connectivity analysis in this chapter, the ability to set seed voxels for functional
connectivity analysis based on an independent study (Casey et al., 1998) allowed me
to verify that the voxels I was using were consistent with task-related neural activity

in both the current study and consistent with the literature.
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5.1.3 Working-memory deficits associated with depression

Depressive illness is often associated with neuropsychological abnormalities,
particularly in cognitive tasks involving memory and executive function (see
Zakzanis et al. (1998) for meta-analysis). The MPEC is a pertinent brain region both
in terms of the N-back task (e.g. Casey et al., 1998) and in association with
depressive illness (Drevets, 2000a; Wu et al., 2001). It forms connections with
temporo-hippocampal regions (Suzuki and Amaral, 1994; Groenewegen et al., 1997),
where changes in levels of glucocorticoid (Gartside et al., 2003) and structural
deficits were associated with severity and duration of depressive illness (MacQueen
et al., 2003; Shah et al., 1998). Reduction from baseline in MPFC activity was linked
to cognitive processing where increased perfusion through this area was associated
anxiety (Simpson et al., 2001b). In an animal model of anxiety however (Rangel et

al., 2003; Shah and Treit, 2003), MPFC lesions attenuated stress-response.

Increasing task difficulty was followed by a linear augmentation in the activity of
this area, associated with recruitment of the appropriate functional circuit in control
subjects. By contrast, depressed patients showed decreased activity in the rostral
prefrontal cortex, caudate nucleus and the anterior cingulate without the expected
compensation of increased activity in DLPFC (Elliott et al., 1997). Further, regional
activity in depression may be a consequence of characteristic structural and
functional abnormalities or possibly, of limited capacity which may be governed by
both impaired architecture and function (e.g. motivation, compensation, response to
sensory input and so forth). Subjects may have a different arrangement for the
dynamic allocation of resources throughout the network or reach their capacity
boundaries in the absence of adaptive strategies. All these will invariably contribute

to altered connectivity in patients compared to healthy controls.
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Finally, the literature suggests that depression may be associated with decreased
physical ability and patients may experience increased fatigue (Gold and Chrousos,
1999; Stahl, 2002). Therefore, patients were expected to express fatigue through
impaired recruitment both on the global scale of neural activity as well as in

decreased co-activation (impaired connectivity) of motor cortices.

5.1.4 Hypotheses and the approach taken in this study
The following hypotheses were constructed on the basis of prior literature:

1. Depressed patients will exhibit decreased connectivity as a measure of

decreased activity of their prefrontal cortex (hypofrontality).

2. Depressed patients will exhibit further deficits in the covariance of
structurally-vulnerable areas, such as GH (Shah et al., 1998), with the rest of
the brain. Connectivity of GH with the MPFC is expected to be particularly

sensitive to these structural deficits.

3. Depressed patients may experience a global dampening of neural activity

across the entire cortex.

4. Depressed patients would activate task-independent regions (i.e. not
prefrontal or parietal cortices) more than control subjects, in an effort to

compensate for hypofrontality, for instance.

5. Depressed patients will be more affected by fatigue and would therefore

show a global decline in activity, which will be associated with time.

Functional connectivity methods study the extent of correlations or covariance

between specific brain areas. Correlations are normally calculated using pair-wise
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comparisons between specific areas of interest (Friston, 1994); see chapter 3 for a
general introduction to functional and effective connectivity analysis. This study
examines the task-independent correlations between (what is assumed to be resting
state fluctuations in) specific voxels of interest and the rest of the brain, comparing

these correlations in healthy control subjects and in MDD patients.

5.1.5 Contributions to this project

The functional connectivity analysis in this study uses preliminary data and interim
results from a larger study conducted by Dr E. ]. Rose (Rose, 2004) and colleagues at
Edinburgh University. Any results relating to the neuropsychological assessment
and the functional localisation of neural activity therefore, are attributed to the
original authors. My contribution to this project is the examination of functional
connectivity or the correlation between specific areas of interest and the rest of the
brain in SPM99, using the pre-processed data from a subset of subjects studied in
the aforementioned study. The analysis software for the functional connectivity,
consisting of batch scripts in Matlab analysis were written by Dr E. Simonotto. These
scripts are documented elsewhere (Deary et al., in press). The analysis itself,
including subsequent statistical inference and any remaining inaccuracies, are
therefore my own. Specifically, sections 5.2.1-5.2.4 and 5.3.1 (pages 117-119 and 125),
namely data acquisition and primary analysis were performed by Dr Rose et al.,
while all the analysis software, using methods described in sections 5.2.4 and 5.2.5
(pages 119-123) are acknowledged to Dr Simonotto. Some of this work was

presented previously in abstract form (Kronhaus et al., 2002).
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5.2 Methods

5.2.1 Subjects

Five patients suffering from Major Depressive Disorder (4 of them female); age
(given as mean + SE): 30.0 + 2.82; 1IQ: 108.50 + 2.56 and seven matched healthy
control subjects (5 female); age: 30.3 + 3.41; IQ: 112.86 + 3.41, with no history of
psychiatric illness took part in this study. Exclusion criteria were as follows:
previous head injury; a history of drug or alcohol abuse; any serious physical illness.
Additionally, patients’ illness history did not include psychotic symptoms, recent
changes in medication or recent electroconvulsive therapy (ECT) treatment. Prior to
taking part in this experiment, all subjects completed a number of psychological

tests to establish their mood and intellectual capacity (Rose et al., 2002).

5.2.2 Paradigm

Inside the fMRI scanner, subjects performed an N-Back task (Figure 5.1), testing
their working-memory. In a two session parametric design, subjects were asked to
recall the position of the stimulus either directly after its presentation (0 back), or
after 1, 2 or 3 subsequent presentations of new stimuli. Each of the two sessions
consisted of four experimental conditions (from 0- to 3-back). Instructions were read
out before the start of every block. With parametric increase of difficulty, the first
session progressed from 1 to 3-back, interspersed with 0-back (shadow) tasks,
increasing task difficulty at every stage. Presentation order (and thus task difficulty)

was reversed in the second session. Each session lasted 18:45 min.
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Figure 5.1: the N-back task. The squares on the left represent different stimuli (along the
Y axis: progress in time). On the right, the correct response is represented, with different
columns for every block. For example, the second row shows the correct response of 3 for
the 0-back condition; 1 for the 1-back condition and subsequently no response for the 2
and 3-back conditions.

5.2.3 Scanning protocol

Subjects were scanned at the Western General Hospital in Edinburgh, Scotland,
using a 1.5 Tesla GE Magnetic Resonance Imaging (MRI) scanner. Both T1
(anatomical) and T2* (functional) weighted images were acquired, using an EPI
(Echo Planar Imaging) BOLD (Blood Oxygenation Level Dependent) sequence (see
chapter two for details). For functional images, acquisition parameters included: TR
(repetition time) = 2.5 sec; TE (echo time) = 40 msec; Flip angle = 90% FOV (Field of
View) =24 x 24 cm’*, with in-plane resolution (number of pixels for each
scan) = 64 x 64 and near-axial plane orientation. Thirty contiguous slices (covering
the whole brain volume) of 5 mm each were acquired using an interleaved
acquisition sequence, during each TR. During each scanning session, a total of 450
scans were acquired for every subject. The first ten seconds of data from each
session were discarded at the time of acquisition, due to transient inhomogeneities

in transverse magnetisation.
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5.2.4 Pre-processing and data analysis

Results were analysed with the Statistical Parametric Mapping (SPM99) software
package, by Rose and colleagues (Rose, 2004). Functional images were reconstructed
from k-space into Analyze format (http://www.mayo.edu/bir). In the
pre-processing phase, data were realigned, corrected for movement, smoothed with
a 6 mm FWHM Gaussian kernel and normalised to a Talairach template (Talairach
and Tournoux, 1988). Temporal filtering was performed with a high pass filter
cut-off period of 149 seconds and a low pass filter of 4 seconds. This removed global
signal drift (that is related to the scanner rather than neural activity). These are the

parameters used for the analysis of the full data set.

The General Linear Model (GLM) was used to estimate parameters and assess
residual error. The design matrix consisted of fifteen regressors, one for every
experimental condition (eight in total, including four instruction panels and four
experimental conditions ranging from zero to three back), six regressors to account
for movement (three dimensions each for translation and rotation), plus one
regressor representing a constant. A simple box-car model was used, which was
convolved with the haemodynamic response function (HRF, described in chapter 2)
representing the temporal delay and shape of haemodynamic response following
the onset of the stimulus. After the model was specified, multiple regression
produced goodness of fit statistics which were assessed using multiple t-tests.
Uncorrected values were corrected for multiple comparisons using Random Field
Theory in SPM. Thus, functional localisation of brain activity identified significant
areas of activation in the patient and the control groups separately, looking at the

average effect among the specified group of subjects.
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5.2.5 Functional connectivity

We wished to capture the networks that underpin different patterns of brain activity
in depressed patients and control subjects during performance of the N-Back task.
Further, we expected that impaired connectivity between regions that are known to
be structurally-vulnerable in depressed patients contribute to the impaired activity
pattern. Specifically, since MPFC and GH seem structurally impaired in unipolar
patients (Shah et al., 1998; MacQueen et al., 2003) I expected that the co-activation of

these regions with reference to the rest of the brain may be impaired.

In order to compute correlations between task related areas, I needed to choose a
number of seed voxels, which served as anchor points for connectivity analysis. I
investigated differences in connectivity between these points and the rest of the
brain in depressed patients and healthy control subjects, computing both within
group and between group significance tests (t-tests). For this analysis, I chose to
focus on areas that were assessed by previous studies (Casey et al., 1998) to be
crucially active during this task. Voxels (specified in Talairach coordinates) from this
study were based on activation data from similar paradigms across four institutions.
While the Talairach atlas (Talairach and Tournoux, 1988) is an accepted standard for
normalisation of images, it is often criticised because it is based on a post-mortem
analysis of one person and therefore it cannot be representative of the entire
population. Therefore, many groups prefer to normalise individual scans to
standard space, which is based on averaged coordinates (measuring the distance
between specific points in the brain such as the anterior and posterior commissures).
In SPM, the coordinates specifying the location of either neural activation or a
particular between-group effect for example, are based on averaging of MRI scans
from hundreds of normal, healthy subjects. The Montreal Neurological Institute

(MNI) template is used to register activity of individual subjects, allowing



Working memory and unipolar depression 121

comparison of their neural activity in standard space. Table 5.1 displays the seed
voxels (Casey et al., 1998) used for comparison of areas that were memory specific
(memory vs. motor condition), in Talairach coordinates and MNI space. The
transformation between Talairach and MNI coordinates was done using Matthew
Brett’s (www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml) non-linear
transformation script in Matlab. In an exploratory analysis (where regions of interest
are not specified a priori), I computed the covariance matrix between these eleven
regions of interest and the remaining voxels in brain (throughout the task), for each
subject in both groups. Using task related coordinates in structurally vulnerable
areas while modelling out task effects, may allow us to discern the task-independent

covariance of these areas with the rest of the brain.

The covariance matrix for voxel seeds and the rest of the brain is computed for the
first session data only. Factoring out task related effects (using the design matrix
described in section 5.2.4) in the pre-processed data, the cross correlation coefficients
between the task-independent fluctuations (the signal that is not related to the block
design of the task) were computed between seed voxels and every other voxel in the
brain. Finally, the normalised data were smoothed with a 6 mm FWHM filter.
Although I had access to data from both sessions, my results (see section 5.2.3)
suggest that depressed patients (but not healthy controls) were showing between
session differences and therefore only the first session data (rather than the mean of

both sessions) was used in this analysis.



Working memory and unipolar depression 122

Seed Area Side  Talairach MNI

X Y Z X Y y4
1 Medial frontal gyrus BA 10 R 12 57 2 12 59 5
2 Superior frontal gyrus L 2 58 4 2 60 7
3 Medial frontal gyrus BA 10 R 4 57 17 4 58 22
4 Precentral gyrus BA 9 R 38 25 35 38 24 39
5 Middle frontal gyrus L -44 16 41 44 14 45
6 Insula R 35 15 7 35 15 8
7 Parietal lobe, precentral gyrus BA2 R 53 -27 3 53 -30 38
8 Limbiclobe cingulate 0 -43 28 0 -46 28
9 Parietal lobe, postcentral gyrus R 36 -46 62 36 -51 65
10 Parietal lobe L 24 -62 38 24 -66 38
11 Parietal lobe L -15 -66 41  -15 -70 41

Table 5.1: Seed voxels used for functional connectivity analysis. Coordinates were taken
from the Casey et al. (1998) comparative study. Side describes Left (L) or Right (R)
hemispheres; Talairach coordinates from the paper were then translated to MNI
coordinates to conform with SPM standards. Seed 8 (the cingulate) is not reported to be in

the left nor right hemisphere, since the X coordinate is 0, indicating a midline voxel.

After correlation coefficients were computed separately for each subject for the
eleven seed voxels (Table 5.1), cross correlation coefficients (from the covariance
matrix of every subject) were normalised, since the activation data and likewise the
residuals of all subjects were not expected to be normally distributed. Thus,
applying the method proposed by Lowe et al. (1998), we corrected for inter-subject
variability in the distribution of the cross correlations in functional connectivity
maps, using Fisher’s r to z (equation 5.1) transform followed by steps to normalise
(mean = 0; SD = 1) the cumulative distribution of the cross-correlation coefficients.
This operation allows us to make inferences about the sampling distribution from
which correlation coefficients (p) are drawn (treating every subject as an
independent sample). We can then make inferences about the relative distribution of

individuals” score by transforming p values into Z space.
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Z(p)=05In[(1+p)/ (1-p)] (5.1)

Subsequently, I assessed within and between group differences. First, a t-test
evaluated within-group significant activity with stringent voxel-wise significance
levels (p, <0.001; uncorrected) in SPM (see section 5.2.7). These were done
separately for the first session data and for data derived from the difference between
the first and the second session. Second, an Analysis of Variance procedure
(ANOVA) tested for significance of between-group mean values in the first session

transformed correlations.

5.2.6 Localisation of correlated areas

Using a Matlab script to translate the MNI coordinates into Talairach space, I
subsequently used an online database server, the Talairach daemon
(http:/ /ric.uthscsa.edu/projects/ talairachdaemon.html), to retrieve information
about the location of the specific coordinates. I chose to include in tables 5.2-5.6
areas that may have been identified as borderline white matter (WM) for two
reasons. First, the data has been extensively smoothed during analysis and therefore
if the cluster is within a few mm of a structure, the signal may have originated from
grey rather than white matter. Second, the coordinates shown in these Tables
represent the voxel with the highest intensity within a cluster that may be composed
of many contiguous voxels. Especially if clusters are large, at least some of their
constituent voxels may indeed be located within the brain areas indicated in the

tables.
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5.2.7 Clustering and threshold levels in SPM

In accordance with the methods suggested in SPM, I did not correct for multiple
comparisons at the voxel level, but instead used a stringent p-value threshold (p,) of
0.001 (Z score of 3.09). Connected voxels were then grouped into clusters, using the
default clustering from SPM. Clusters were tested for significance at the (p.) 0.05
level after p-values were corrected for the entire volume (SPM). The results
presented here, including Tables 5.2-5.6 and Figures 5.3, 5.4, 5.6b and 5.7a-b depict
only significant activations (p. < 0.05; i.e. the probability of finding a cluster this size,

corrected for multiple comparisons in the entire search volume).

5.2.8 Computing caveat

Due to technical problems with SPM, only 4 out of the 5 available cross-correlation
maps for the patient group could be used at any one time to compute within-group
comparisons. I therefore tested all possible configurations of 4 subjects, to ensure
that the results were replicable in at least 3 subgroups of 4. This was not a problem
either for the control group (where all 7 maps could be used) or for the
between-group computation, where 5 depressed patients’ and 7 controls’
cross-correlation maps were used. Evidently, these are small numbers of subjects
and inferences should be made with great caution. However, taking stringent
significance criteria, correcting for multiple comparisons and above all, formulating
prior hypotheses about the structure of the data, may render these results more

convincing.
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5.3 Results

In order to substantiate the use of results from Casey et al. (1998) to specify the seed
voxels (the origin) for computing the covariance matrix in the functional
connectivity analysis, I needed to establish that task-related activation was
concordant with this study. The seeds in table 5.1 were all present in the task-related
activity maps (Figure 5.2). Hence these seeds were assumed to be valid for this
study. Once I established that these areas were indeed active in both groups, I could
proceed to factor out the task-associated signal and compute the correlation
coefficients using only residual activity in the seed voxels, covaried with the whole
brain. Figure 5.2 (Kronhaus et al., 2002) is based on previous analysis (Rose et al.,
2002) and illustrates brain activity in the dataset used for functional connectivity

analysis in this study.

5.3.1 Functional localisation

Patients and controls appear to activate a similar network of areas. However, there
are several distinct differences between the two groups. Co-localisation of brain
activity during task performance in both groups is suggested by the overlap of
functional activation maps in Figure 5.2. Nonetheless, whereas parametric increase
in task difficulty in both groups produces almost identical maps (with slight
differences in the extent and p-value of activated clusters; Figure 5.2a), patients’
deactivation of task related regions, as a function of time and increased difficulty, is
significantly diminished (Figure 5.2b). This pattern suggests an overused system,
where recruitment of the appropriate circuit of brain regions endures beyond what

appears to be necessary for task performance.
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Figure 5.2: Parametric increase (a) and decrease (b) of brain activity as a function of task
difficulty. Both plots show MDD (N = 5) activation (blue) superimposed on CTL (N =7)
activation (yellow-red). The areas showing task related activation include prefrontal,
parietal and temporal areas, as well as occipital lobe and cerebellum. In MDD, the cluster
size of the activated regions appears to be smaller than analogous measurements in
control subjects. Coloured bars at the top of the plots depict the subject groups’ respective
T values. The white arrow in (a) points to prefrontal and parietal activation in both CTL
and MDD, suggesting that both groups activate brain areas that are consistent with the
literature and thereby justify the use of activation from a different study (Casey et al.,
1998) as seed voxels in the functional connectivity analysis. The arrow in (b) points to
occipital areas that in patients, unlike controls, do not show the expected decrease in
neural activity that is associated with increased task difficulty (see section 5.3.2.2 for

further discussion).

The task-related brain activity in patients, although qualitatively similar to control
subjects, appears to be limited both in extent and significance (p-value). These
differences allow us to form stronger hypotheses regarding the expected differences

in functional connectivity between patients and control groups.
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5.3.2 Functional connectivity

The vast number of brain voxels result in a considerable multiple comparisons
problem. In this functional connectivity study, I chose to use SPM default values
(which use a fairly stringent threshold at p, < 0.001), performing both within and
between group, one or two sample t-tests. These tests compare normalised
correlation values using either group mean values (correlation values taken at every
voxel, for every subject within each group) or the mean of each group against the
null-hypothesis of no effects (correlation = 0). Therefore, particularly in the case of
within group comparisons, I do not wish to make any claims regarding the exact
location of the areas where either positive or negative correlations were noted with
specific seed voxels. Nonetheless, I noted clear differences in the within-group
analysis between connectivity profiles in patient and control groups. Therefore, the
next section will illustrate within group comparisons of connectivity maps for two
typical seed voxels, seed 7 (parietal cortex) and seed 8 (cingulate), for both groups,

highlighting qualitative differences in their respective group activation profiles.

5.3.2.1 Within group analysis

Seed voxels 7 and 8 were chosen to represent the typical profile of within-group
t-tests because these were two voxels where the between-group comparison showed
significant results at the 0.001 threshold (p,) level (see below: between group
differences) with stronger connectivity for patients in seed voxel 7 and for controls
in seed voxel 8. Tables 5.2-5.5 illustrate the connectivity values (normalised
correlation coefficients), obtained for clusters over the whole brain volume with the

seed voxel, based on within group t-tests.



Working memory and unipolar depression 128

Patients are comparable to control subjects in the specific areas that appear to be
either positively (depicted in black in the tables) or negatively (depicted in red)
correlated with specific seed voxels. However, when either the mean cluster size or
the total number of correlated voxels (with each seed) are compared between
patients and controls, a distinct hypo-function is illustrated by patients (Figure 5.3).
For example, in the patients’ correlation map for seed 7, mean cluster size
(+ standard deviation) for areas that are positively correlated with the parietal cortex
is 32.13 (£ 24.49) and the total number of voxels in all clusters is 257. By contrast, the
control subjects’ correlation map for seed voxel 7 shows a mean cluster size of 459.18
(+ 751.61) subsuming a total of 5051 voxels. Tables 5.2- 5.3 show data for seed 7 for
patients and controls respectively; Tables 5.4 — 5.5 show patients” and controls” data

for seed 8.
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MDD: significant correlations with seed 7

Brain region side MNI Talairach T size Z (1)

% o ZEIxX W # mean SD
Cingulate L |-12 12 32|-12 13 29| 100.74 17 1.14 0.02
Middle frontal gyrus BA9 R [32 22 40|32 23 36| 67.15 90 4.14 0.12
Frontal lobe (WM) L |-8 32 40|-8 33 35| 3935 40 1.69 0.09
Superior frontal gyrus BA9 R [18 52 36|18 52 31| 2886 25 1.04 0.07
Frontal lobe R |44 50 -6|44 48 -7 | 24.65 24 1.34 0.11
Superior frontal gyrus BA10 R [24 60 18|24 59 14| 2273 24 1.17 0.10
WM L |-32 8 -8|-32 7 -7| 1947 20 0.64 0.07
Insula (WM) L |-38 22 32|-38 23 28| 16.61 17 1.99 0.24
Occipital lobe, precuneus L |-16 -64 16]|-16 -61 18| 312.24 12 -1.13 0.01
Superior temporal gyrus L |-58 4 2|-57 4 2| 5649 35 -0.71 0.03

Cerebellum - 10 -70 -44] 0 -70 -34| 55.75 21 -0.76 0.03
Temporal lobe (WM) L |-26 -50 16|-26 -48 17| 36.84 14 -0.62 0.03
Anterior cingulate BA25 L|-2 2 -10(-2 2 -8| 3653 27 -0.85 0.05
Temporal lobe (WM) L |-36 0 -34(-36 -1 -29] 29.71 16 -0.73 0.05
Parietal lobe, postcentral gyrus | R | 64 -20 14| 63 -19 14| 2519 26 -0.83 0.07
Inferior parietal lobe, BA 40 L |-64 -38 22(-63 -36 22| 23.62 30 -0.86 0.07
Superior temporal gyrus BA42 | R | 64 -34 20|63 -32 20| 20.96 24 -0.96 0.09
Supramarginal gyrus BA 40 L |-58 -48 28(-57 -45 28| 1942 11 -0.74 0.08
Superior temporal gyrus (WM) | L |-66 -38 6 [-65 -37 7 [ 16.16 14 -0.77 0.10

Table 5.2: Within group significant correlations with seed 7 (parietal lobe) in MDD group.
Areas are listed in order of decreasing T value (i.e. more significant clusters appear first).
Positive correlations are depicted in black, negative correlations in red. SPM output
shown in column MNI, illustrating x, y, z coordinates for clusters that are positively (or
negatively) correlated with seed 7. These coordinates are transformed to the Talairach
space using a non-linear transformation, depicted in the Talairach column and translated
into discrete brain areas using the Talairach daemon (see methods). The T column denotes
a t-statistic and finally, cluster size (in voxels) and the mean and standard deviation (SD)
of normalised correlation values for each subject are depicted in the columns size and
distribution, respectively. Mean cluster size: positive = 32.13 (40.75 right hemisphere (RH);
23.5 LH)/ negative = 20.91 (25 RH; 19.88 LH); Total voxels: positive =257 (94 LH) /
negative = 230 (159 LH). The midline clusters, which are neither in the right nor in the left
hemispheres (e.g. cerebellum, among the negatively correlated clusters in red ink) were

not included in calculations of mean cluster size for RH / LH.
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CTL: significant correlations with seed 7

Brain region side MNI Talairach T size Z (1)
X Yy z]lx v =z mean SD

Frontal lobe (WM) L |-34 22 26|-3¢4 23 23| 3268 446 111 0.09
Frontal lobe (WM) R [42 10 46|42 12 42| 3205 | 2654 2.07 0.17
Medial frontal gyrus BA8 L |-10 30 -10 31 41| 1713 125 1.04 0.16
Parietal lobe, postcentral gyrus BA1 | R | 60 -28 42|59 -25 40| 14.54 515 0.68 0.12
Frontal lobe (WM) L |-12 16 60|-12 18 54| 13.99 124 1.04 0.20
Frontal lobe, precentral gyrus BA9 L |-36 10 38|-36 11 34| 10.84 213 1.20 0.29
Inferior parietal lobule BA 40 R [46 -58 54|46 -54 52| 9.85 582 1.22 0.33
Inferior frontal gyrus BA13 R |4 22 10|44 22 8| 859 76 0.85 0.26
Superior parietal lobule BA7 L |-34 -56 52|-34 -52 50| 7.91 171 1.50 0.50
Inferior parietal lobule (WM) L |-50 -40 48|-49 -37 46| 749 73 1.44 0.51
Superior frontal gyrus BA6 R|12 6 64|12 9 59| 653 72 1.05 043
Hippocampus L [-26 40 -8|-26 -39 -5| 3066 | 1271 | -0.78 | 0.07
Middle temporal gyrus (WM) L |-50 -20 -6(-49 -20 -4 | 24.09 74 -0.67 0.07
Parahippocampal gyrus BA36 L |-26 -28 -20(-26 -28 -15| 21.94 177 -1.14 0.14
Inferiior temporal gyrus (WM) R |46 -6 -34|46 -7 -28| 21.16 902 -0.87 0.11
Parietal lobe, postcentral gyrus BA3 | L [-18 -42 72|-18 -37 68| 19.1 79 -0.85 0.12
Middle occipital gyrus (WM) L |[-18 -100 12 (-18 -96 16| 19.08 594 -0.77 0.11
Inferior frontal gyrus BA47 L |-26 14 -24|-26 13 -21| 14.93 126 -0.88 0.16
Occipital lobe L [-16 -88 -14(-16 -86 -7 | 14.31 342 -1.06 0.20
Insula R |42 -14 14|42 -13 14| 1365 440 -0.77 0.15
Temporal lobe L [-40 0 -48]|-40 -2 -40| 13.09 229 -0.66 0.13

Table 5.3: Within group significant correlations with seed 7 (parietal lobe) in CTL group.
Mean cluster size positive =459.18 (779.8 RH; 192 LH) / negative = 423.4 (671 RH;
361.5 LH); Total voxels: positive = 5,051 (1,152 LH) / negative = 4,234 (2,892 LH). See table

5.2 for conventions.

MDD: significant correlations with seed 8

Brain region side MNI Talairach T size Z (1)

B X y z|x y =z mean SD
Frontal lobe L |-10 42 -22|-10 40 -20| 172.48 16 0.60 0.01
Frontal lobe R |46 38 28|46 38 24| 7323 33 1.32 0.04
Frontal lobe L |-44 12 36|-44 13 32| 57.07 231 3.69 0.13
Medial frontal gyrus BA8 L |-10 30 46|-10 31 41| 53.25 12 1.15 0.04
Putamen L |-18 8 8|-18 8 7| 4855 13 0.72 0.03
Putamen R |[18 4 10|18 4 9 31.7 24 0.98 0.06
Temporallobe L [-44 -16 -10| 44 -16 -8 14612 | 30 -1.06 | 0.01
Superior temporal gyrus (WM) L |-50 24 4|49 -23 -2 3848 12 -0.66 0.03
Parietal lobe, postcentral gyrus BA2 | R | 36 -42 62| 36 -38 59| 28.52 25 -0.49 0.03
Parietal lobe (WM) R |12 -48 62|12 -44 59| 26.33 12 -0.64 0.05
Temporal lobe L |-42 -52 10]-42 -50 12| 26.11 19 -0.99 0.08
WM R |40 -40 -6 40 -39 -3| 2074 13 -0.78 0.08

Table 5.4: Within group significant correlations with seed 8 (cingulate) in MDD group.
Mean cluster size: positive = 54.83 (28.5 RH; 68 LH)/ negative = 18.5 (16.67 RH; 20.33 LH);
Total voxels: positive = 329 (272 LH) / negative = 111 (61 LH). See table 5.2 for conventions.
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CTL: significant correlations with seed 8

Brain region side MNI Talairach T size Z (v)

X y z|x y z mean SD
Parietal lobe, precuneus BA7 - |0 -64 48| 0 -60 47| 27.55 364 1.57 0.15
Frontal lobe R [18 62 16|18 61 12| 21.33 265 1.31 0.16
Caudate L [-14 4 12|-14 4 11| 2118 348 1.42 0.18
Parietal lobe R |46 -54 56|46 -50 54| 17.47 706 1.23 0.19
Occipital lobe L [-26 86 38|-26 -82 39| 17.15 904 0.87 0.13
Middle frontal gyrus BA9 R |5 16 34|55 17 30| 1575 | 1013 1.39 0.23
Inferior frontal gyrus (WM) L (48 38 12|-48 37 9 | 15.02 427 1.03 0.18
WM (~striatum) R|14 4 8|14 4 7| 1454 277 1.02 0.19
Middle frontal gyrus R |46 48 -12| 46 46 -12| 11.23 251 1.03 0.24
Inferior temporal gyrus BA37 | R | 60 -54 -12| 59 -53 -7 10.1 194 1.25 0.33
Frontal lobe L [-38 26 32(-38 27 28| 9.36 853 2.08 0.59
Medial frontal gyrus BA8 R|2 24 502 26 45| 7.53 413 3.48 1.13
Superior frontal gyrus BA6 L |-24 12 6624 15 60| 7.53 77 141 0.50
Insula R34 2 1834 3 16| 1675 91 -0.84 0.13
Insula R |44 -16 0|44 -16 1 11.67 187 -0.82 0.19
Superior temporal gyrus BA22| R |16 -28 62| 16 -24 58| 8.7 a2 -0.41 0.12
Temporal lobe (WM) R |42 -14 -22) 42 -14 -18| 7.88 74 -0.77 0.26

Table 5.5: Within group significant correlations with seed 8 (cingulate) in CTL group.
Number of clusters: positive =13 (5 LH) / negative =4 (0 LH); Mean cluster size:
positive = 468.62 (445.57 R; 521.8 LH)/ negative = 111 (all RH); Total voxels: positive = 6,092
(2,609 LH) / negative = 444 (0 LH). See table 5.2 for conventions.

Summary of within group analysis

Within group significant correlation suggests significant differences in the extent of
correlations across the whole brain between patients and control subjects. Tables
5.2-5.5 show within group positive and negative correlations with respect to the
parietal lobe (seed voxel seven) and the cingulate (seed voxel 8), in the two subject
groups. Clearly, comparing the number of clusters in these tables in control subjects
and in patients is not sufficient to indicate significant differences between patients
and controls. However, the number of activated voxels suggests that the degree of
correlation across the brain is larger by several orders of magnitude in control

subjects (Figure 5.3). Furthermore, it appears that in control subjects similar areas in
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frontal and parietal cortex are correlated both with parietal lobe (Figure 5.3a) and

the cingulate (Figure 5.3b).

Figure 5.3: Within group task-independent positive correlations. (a) and (b) show
significant areas that were correlated with seed 7 (parietal lobe) and seed 8 (cingulate),
respectively. (c) Correlations within the MDD group with seed 8 were highly significant
(coloured bar on the left of each figure indicates T value). However, cluster size was
considerably smaller than in the control group. The figures show transverse slices at z
level of (a) z = 46; white circle around the cluster coordinates [42, 10, 46]; (b) z = 48 ; white
circle around the coordinates [0, -64, 48] and (c) z = 28 ; white circle around coordinates
[46, 38, 28]. See tables 5.5, 5.3 and 5.4 regarding details such as cluster size and Z(r) value.

Between-group differences in correlations among different brain areas can provide
important information regarding localised vulnerability in specific regions in the
depressive group, if connectivity between affected regions is impaired compared to
control subjects. Next, we will examine differences between subject groups, where
one group shows a larger effect (stronger connectivity) between seed voxels and
specific regions of the brain. If connectivity is in fact impaired in depressed patients,
we can expect to find localised deficits that go beyond the global hypo-function

suggested by the within-group analysis (Figure 5.3).
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53.2.2 Between-group differences

This analysis highlighted three areas that were significant between subject groups.

Between group differences

Ongin |[Seed Region Defiait Eftect Region Cluster] P-value
MNI (origin) MNI Talairach (deficit) size |(corrected)
X Y z X ¥ 2|%X ¥ 2
Patients > Controls| 53 -30 38| 7 |R parietallobe |-14 -86 -14|-14 -85 -14|L lingual gyrus BA18 | 143 0.025
Controls > Patients| 0 -46 28| 8 cingulate -48 48 6 (-40 43 3 | L frontal lobe (BA10)| 132 0.035
-15 -70 41| 11 | L parietallobe| -8 20 54|-10 22 53| L frontal lobe (BA6) | 149 0.041

Table 5.6: Between group differences. Patients show a stronger effect than controls in
covariance between the right parietal lobe and the left lingual gyrus. Controls show
stronger effect than patients in connectivity between the left frontal lobe and the
cingulate and the left parietal cortex. Results are in descending order, noted by
significance (lowest p-value, corrected at the cluster level). Cluster size displays the

between-group comparison.

As expected, thresholding (p,) the data at the 0.001 level yielded few significant
clusters (Table 5.6). One cluster was more significant in the MDD group and two
clusters were more significantly correlated in healthy controls. However, my results
indicate that the clusters in Table 5.6 are indeed meaningful since these between
group differences were echoed in association with different seeds (Figures 5.5; 5.9)
using the 0.01 threshold level (p,). The clusters reported in table 5.6 were corrected
for multiple comparisons and only clusters with p.-value < 0.05 are considered
below (similar p. thresholds were used with reference to the more lenient p,

threshold level).

The aim of the following section is twofold. First, I would like to present the results
of between-group comparison, taken with stricter p, threshold values. Second, I
would like to present evidence supporting the methodology of taking these
voxel-wise thresholding values, by showing that both the size of the between-group
effect and the T values obtained for clusters from the more stringent analysis, are in

fact more convincing with the stricter threshold.
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Deficits in patients

The clusters situated in the frontal lobe (Table 5.6), showing a stronger effect in
controls, with respect to connectivity with both the parietal cortex and cingulate
may both be located in white matter. However due to extensive smoothing they are
taken to be suggestive of stronger prefrontal connectivity in control subjects.
Furthermore, this result is consistent with the prior hypotheses of hypofrontality in
depressed subjects, which may give rise to the weaker covariance of left prefrontal
areas with the rest of the brain. The first of these clusters, depicted in Figure 5.5,
shows an area in the left prefrontal cortex (BA 10) where stronger connectivity was

found with respect to the cingulate (seed 8) in control subjects.

Figure 5.4: A left prefrontal cortical area (situated around BA10), which exhibited stronger
connectivity with the cingulate in healthy control subjects, than MDD patients.

The between-group difference in the t-test (or one-way ANOVA), is calculated on
the basis of the significance of differences between the respective mean values

(normalised r scores), of the patients and the control subjects (Figure 5.5).
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Figure 5.5: Between group differences, showing a stronger effect in MDD for connectivity

with the seed located in the lingual gyrus (a); and for CTL (b), for connectivity of the

cingulate with the frontal lobe. Blue dots indicate a normalised correlation value for every

subject, red dots indicate group mean. The t-test or one-way ANOVA in this case,

computes significance differences between respective group means. Location of the voxels

in this and in subsequent plots and figures is given in MNI coordinates.

Further, control subjects show stronger connectivity between the left parietal lobe

and left BA 6 (which I interpreted to be in close proximity to the pre-motor cortex;

Figure 5.6b). These findings were echoed in seed 2 (superior frontal gyrus; Figure

5.6a) with a lower threshold level, where connectivity in control subjects was higher

than in patients.
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correlations with seed 2 correlations with seed 11
trend at pv<0.01 significant at pv < 0.001

Figure 5.6: Between group differences, showing a stronger effect in CTL than in MDD. (a)

and (b) depict stronger effect in similar regions (BA6), with respect to different seeds.
Areas showing the effect, are strongly connected with the superior frontal gyrus, seed 2
(a); peak voxel at [-8, 14, 48]; p.-value (corrected) 0.06);. Stronger connectivity in CTL with
respect to the parietal cortex, seed 11 (b); showing coordinates peak voxel at [-8, 20, 54]),
which is significant at the 0.001 level (p,). The coloured bar on the left of each image
indicates T values.

Stronger effect in patients

Patients show stronger connectivity of the occipital lobe (visual areas) with respect
to task related areas such as the parietal lobe (Figure 5.7a-b), echoed by connectivity
in another occipital area with respect to the medial frontal gyrus, BA 10 (seed 3;
Figure 5.7-d). Interestingly, occipital areas were part of an extensive network (Figure
5.2b) that did not show the expected decrease in neural activity, which in control

subjects was associated with increased task difficulty.
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Figure 5.7: Between group differences, showing stronger connectivity between the
occipital cortex MDD and both the parietal (a-d; red) and medial frontal gyrus (c-d; green).
Locations of regions where differences were found. The occipital cortex of MDD patients
is more strongly activated than in controls. (a-b) Connectivity with respect to the parietal
cortex at a p, threshold level of 0.001. (c-d) Clusters depicted in red are shown for
comparison purposes (equivalent to a-b); clusters depicted in green are correlated with the
prefrontal cortex, BA10, at a p, threshold level of 0.01 (c-d).

5.3.2.3 Methodological issues

To conclude this section, I would like to motivate the rationale for use of higher p,
threshold of 0.001, despite highlighting relatively few within and between-group
differences is demonstrated in figures 5.9 and 5.10, for healthy control subject and
MDD patients respectively. Since a stronger effect was noted in control subjects at
the lower p, threshold level of 0.01 in both parietal (Figure 5.8a-b) and frontal
(Figure 5.8¢) cortices, I proceeded to investigate the difference between the effect in
these areas, to ascertain why the parietal cluster did not appear significant

(p (corrected) < 0.05) at the stricter voxel-wise (p,) threshold of 0.001.

Plotting the size of the effect in these respective clusters, it appears that a stronger
effect at the frontal cortical cluster (Figure 5.9b) than in the parietal (Figure 5.9a)
may have contributed to this. Figure 5.8 depicts parietal (a) and frontal (b) activation
at the 0.01 p, threshold level. Figure 5.9 shows a stronger mean effect in the frontal
cluster (b), which underpins the significance of this cluster at the stricter threshold

of 0.001.



Working memory and unipolar depression 138

Figure 5.8: Stronger effect in CTL than MDD. Both plots show clusters at the 0.01 p,
threshold level. (a) Right inferior parietal lobule, BA 40, shows a trend (p. = 0.089). (b) The
prefrontal cluster, is positively correlated in CTL compared to MDD (p. = 0.018) with
respect to voxel 8 (cingulate). This area was also significant (p. = 0.035) at the more
stringent p, threshold level of 0.001. Axial (a) and transverse (b) slices presented at y = -54
and z = 50 respectively for the parietal lobe cluster. The coloured bar on the right indicates

T value. All p, values indicated above are corrected for multiple comparisons.
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Figure 5.9: The size of effect at voxels [52,-54, 50] (area depicted in Figure 5.8 a) and
[-48, 48, 6] (Fig 5.8 b) with respect to seed 8. While the prefrontal cluster (b) was significant
both at the 0.01 and 0.001 p, threshold level, the parietal cluster (a) only exhibits a trend at
the 0.01 level and correspondingly, shows a smaller effect size than the prefrontal cluster.
These plots depict the mean of the absolute of the two groups’ Z scores (grey blocks) and
+ 1 Standard Error of the Mean (SEM; red bar). Individual group’s mean value (+SEM) are
as follows: (a) CTL = 0.49 (+ 0.14) / MDD = -0.68 (+ 0.09), therefore plot (a) depicts the mean
0.58 (+0.13); likewise, (b) CTL = 0.91 (+0.22) / MDD = -1.28 (+0.13), therefore plot (b) depicts
the mean 1.09 (x0.2).

Similarly, even though an effect was noted at the p, 0.01 threshold level with respect
to seed 2 (see Figure 5.7¢-d; p. (corrected) = 0.049), this effect was not significant at a
p, threshold of 0.001. Plotting the group responses (Figure 5.10c, patients plotted on
the left), it seems that there is a lot of variance among the normalised correlation

values among five patients and therefore, the between-group effect is not significant

at the higher threshold.
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Figure 5.10: Between-group comparison of correlation between seed 3 and the occipital
cortex, which is more strongly activated in patients than in controls. Images depict a
sagittal slice (a) at x=2 and a transverse slice (b) at z = 16. p-value (corrected) = 0.049;
MDD = 1.08 (£0.19) / CTL =-0.77 (£0.11). See Figure 5.5 for conventions.
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Summary of between group differences

My results suggest a global hypo-activity in depressed patients, combined with
specific prefrontal impairment. Thus, within group effects show significantly
smaller regions correlated with the voxel seeds in depressed patients, compared to
control subjects. Between group differences highlighted stronger connectivity of the
left lateral prefrontal cortex (Figure 5.4) in control subjects. Further, stronger
connectivity of the lingual gyrus in depressed patients is consistent with localisation
of function (Figure 5.2b), suggesting the absence of parametric deactivation of this
area as a function of task difficulty. Careful examination of the size of effect (Figure
5.9) suggests that choosing stringent threshold values may produce more
meaningful results, since the size of effect may be considerably smaller at this

threshold level.

5.3.3 Between session differences

Finally, consistent with my prior hypothesis (see section 5.1.4), patients exhibited
greater effects of fatigue, expressed through differences in brain activation, between
the first and the second session. Table 5.7 shows five combinations of four patients
each (since I was unable to include all five patients in the within group comparisons;
see methods). In all groups, subtraction of the first from the second session shows
areas that were significantly correlated with a specific voxel of interest (seed 11:
parietal lobe in this example), as well as showing significant increase during the
second session. These between-session differences were significant at the threshold
0.001 level and were typical of the within-group inference in the patient group, for
all other seed voxels. The mean size for positively correlated clusters (+ SD) was

52.72 voxels (+ 6.07); while the negatively correlated clusters mean = 27.33 (+ 9.92).
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By contrast, no between-session differences were correlated with any of the seed
voxels at the 0.001 p, threshold level in control subjects (results not shown). Only
one area showed between session differences in this group at the 0.01 level (p,) with

respect to seed 11, namely the pre-central gyrus, BA 6 (MNI coordinates

[-12 -32 72)).

A few dominant areas exhibited between session differences in all sub-groups of
depressed patients (Table 5.7), including prefrontal and parietal cortices, suggesting
that these areas are the most sensitive in patients to the effects of fatigue. However,
the calculation of between-session differences simply subtracts the normalised
covariance map of the first session from the second. Values resulting from this
subtraction can either be positive (stronger effect in the second session) or negative.
Therefore, correlation coefficients with a positive sign could potentially express
positive correlations with a positive value (session 1 > session 2) or negative
correlations with a negative value (session 1 < session 2). Therefore, I refrain from
further discussing the specific areas that show between session differences in the
depressed group. Nonetheless, I feel that these results justify the use of only the first

session data for the present functional connectivity analysis.
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Group Brain region location P side MNI Talairach T value size
X Yy Z X Yy 2z

1 Frontal lobe 0.90 R 38 48 22 38 48 18 12858 49
Parietal lobe 0.85 L -3 -54 40 -36 -50 39 78.07 229
Frontal lobe 0.56 R 26 6 60 26 9 55 6071 31 Mean: 62.67
Parietal lobe 0.51 L -5 -40 48 -55 -37 46 51.81 19 Sum: 376
Frontal lobe 0.72 R 48 42 -12 48 40 -12 5078 24
Frontal lobe 0.30 L -42 34 34 -4 35 30 306 24
Frontal lobe 0.64 L -10 46 52 -10 47 46 54.37 18 Mean: 28.5
(anterior cingulate) R 16 36 18 18 36 15 3054 39 Sum: 57
2 Frontal lobe 0.70 T -4 38 34 -4 38 20 7822 40
Frontal lobe 0.79 R 28 48 34 28 48 29 7692 29
Frontal lobe 0.91 R 20 18 -22 20 17 -19 66.01 18 Mean: 48.29
Parietal lobe 0.47 L -26 -62 50 -26 -58 49 4379 78 Sum: 338
Parietal lobe 0.66 L -3 -56 62 -3 -51 60 4104 76
Frontal lobe 0.60 R 24 10 60 24 12 55 3717 43
Frontal lobe 0.90 R 38 48 22 38 48 18 28.63 54
Frontal lobe 0.64 L -10 4 52 -10 47 46 47.9 16 Mean: 18.5
Frontal lobe 0.68 R 14 -16 46 14 -13 43 474 21 Sum: 37
3  Frontal lobe 0.64 T 42 42 234 42 42 29 7621 22
Parietal lobe 0.64 L -42 -46 52 -42 -42 50 6851 115
Parietal lobe 0.66 R 42 -52 44 42 -48 43 5188 44
Frontal lobe 0.45 R 28 6 62 28 9 57 4736 93
Parietal lobe 0.45 L -28 -62 48 -28 -58 47 444 104
Cerebellum 0.93 L -3 -4 -40 -36 -44 -31 3971 28 Mean: 47.67
Frontal lobe 0.89 R 42 46 16 42 45 12 3695 42 Sum: 572
Parietal lobe 0.28 R 18 -60 58 18 -55 56 3474 36
Parietal lobe 0.55 R 42 -40 58 42 -36 55 339 21
Frontal lobe 0.53 L 20 -2 & -20 1 59 31.26 18
Frontal lobe 0.89 R 4 0 58 4 3 53 2291 30
Parietal lobe 0.72 R 58 -34 48 57 -31 46 1484 19
Parietal lobe 0.60 R 2 - 32 2 =51 32 ECAT 39
Parietal lobe 0.02 L -34 48 26 -3 -45 26 6051 41  Mean: 43.6
Frontal lobe 0.64 L -10 4 52 -10 47 46 5725 36 Sum: 218
Frontal lobe 0.75 L 4 58 12 % 57 8 48.53 58
- R 322 -20 26 32 -18 25 3682 Ee}
4 Parietal lobe 0.72 L -4 -44 58 -42 -40 55 111.31 140
Parietal lobe 0.38 R 38 -74 32 38 -70 33 7592 16
Occipital lobe 0.68 L -20 -70 -22 -20 -89 -15 595 15
Cerebellum 0.07
Cerebellum 0.87 L -14 -74 -30 -14 -73 -22 5071 37
Cerebellum 0.87 R 4 74 40 4 -73 -30 4921 25
Parietal lobe 0.44 L -28 -0 48 -28 -5 47 4868 80
Cerebellum 0.23 R 2 68 -18 2 -67 -12 4112 43  Mean: 51.15
Parietal lobe 0.60 R 22 -66 64 22 -1 62 3837 89 Sum: 665
Frontal lobe 0.45 R 28 & 62 28 9 57 3543 54
Occipital lobe 0.06 L -3 -58 -24 -34 -57 -17 3429 75
Temporal lobe 0.75
Occipital lobe 0.36 R 22 -68 -22 22 -67 -15 3412 30
Cerebellum 0.04
Frontal lobe 0.98 R 44 48 16 44 47 12 337 49
Cerebellum 0.91 T -8 -78 40 -8 -77 -30 17.02 12
Insula 0.66 L -32 10 14 -32 10 12 11408 18
Frontal lobe 0.64 L -10 46 52 -10 47 46 44.8 17
Insula 0.06 L -30 -18 18 -30 -17 17 37.34 20
- L -32 -4 -4 -32 -39 -1 36.3 20 Mean: 25.57
Temporal lobe 0.79 R 58 2 -14 5 1 -12 3558 18 Sum179
Parietal lobe 0.53 R 44 -8 15 44 -7 17 3337 69
Temporal lobe 0.11 L -34 -4 -14 -3 43 -10 27.79 b i
5 Darietal lobe 0.49 T 24 58 42 24 -54 43 12049 181
Frontal lobe 0.45 R 26 6 62 26 9 57 4431 42
Frontal lobe 0.79 R 32 5 -14 32 52 -14 23976 17 Mean: 53.83
Parietal lobe 0.79 R 58 -52 42 57 -48 41 3279 16 Sum: 323
Frontal lobe 0.85 R 38 48 20 38 47 16 3233 44
Frontal lobe 0.60 L -38 -10 64 -38 -7 59 3202 23
Frontal lobe 0.64 L -10 46 52 -10 47 4 41.77 16 Mean: 20.5
- L -34 -3¢ -12 -3 -3 -8 3173 25 Sum: 41

Table 5.7: Between session differences in MDD group. Five combinations of four patients
per-group. Differences between the second and the first session at seed 11 are correlated
with the entire brain volume. Only clusters from the analysis using a p, threshold at 0.001;
P. (corrected) < 0.05 are included. Group number is indicated on the left, positive clusters

are depicted in black while negative clusters are depicted in red.



Working memory and unipolar depression 144

5.4 Discussion

This chapter provided an insight into neural systems associated with depression,
using a functional connectivity approach. These results are both consistent with the
literature and with prior hypotheses related to the particular design of this study.
The advantage of using task-independent spatiotemporal correlations lies in the
assumption that these correlations show real connectivity rather than simply
provide circumstantial evidence for task related co-activation (Paus et al., 1997;
Lowe et al., 1998; Hampson et al., 2002). In the present study, we do not use resting
state data as such, but instead factor out task related neural activity by using the
design matrix defined as part of the primary analysis. After summarising the main
findings, this section will briefly discuss methodological questions and finally place

this study in the context of the entire thesis.

5.4.1 Major findings
In sum, we note three key findings, in order of importance:

1. Depressed patients experience a global decrease in task-independent
co-activation between areas that are known to be active during this task (and
therefore are expected to have a large residual variance) and the rest of the

brain. This confirmed the 3™ hypothesis (section 5.1.4).

2. Depressed patients show a localised deficit in connectivity of their left
prefrontal cortex with both parietal cortex and cingulate (confirming the first
hypothesis in section 5.1.4). The depressed group also exhibited stronger
connectivity of visual areas, which may be related to a putatively

compensatory mechanism (confirming hypothesis 4).
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3. Depressed patients are more vulnerable to fatigue, which may in fact affect

their cognitive performance (confirming the 5" hypothesis).

Thus, it appears that despite the modest number of subjects and the rigorous
statistical testing, this study confirmed the expected deficits, both global
(hypotheses 1 and 4 presented in section 5.1.4) and local (hypotheses 3 and 4), in
depressed patients. Nonetheless, I did not confirm the 2™ hypothesis presented in
the introduction, namely control subjects did not show stronger connectivity
between medial prefrontal cortex and the hippocampal region, where structural

deficits were observed in the MDD population.

5.4.2 Findings in context

The neural activation associated with this task is related to specific task components
such as the central executive and memory (frontal and temporal regions), attention
(parietal lobe) as well as motor and language regions (left temporal areas),
dependent on the specific version of the task. Although task related neural
activation of bilateral prefrontal cortical areas was noted in depressed patients who
were less impaired than patients with schizophrenia (Barch et al., 2003), a number of
groups report abnormalities of both neuropsychological function, along with
specific deficits associated with working-memory and executive function, see Veiel,
(1997) for meta-analysis, as well as impairments in neural response associated with
cognitive task performance (Bench et al., 1992; Baker et al., 1997; Elliott et al., 1997;

Okada et al., 2003).

In the context of the present study, Rose et al. (2002) found significant differences in
task-accuracy, but not in reaction time, between the groups. Depressed patients

appeared to have a higher error rate, which was positively correlated with task
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difficulty. These differences were associated with decreased response of the left
dorsolateral prefrontal cortex. My results are consistent with these findings,
suggesting a specific prefrontal deficit in depressed patients. Furthermore, the
absence of decreased activity in a large network of areas, including the visual
(occipital) areas (Figure 5.2 b), suggests that the comparatively larger effect
(increased correlation) between occipital areas and the parietal cortex (Figure
5.7a-b), and also prefrontal areas (Figure 5.7c-d), may serve as a compensatory

mechanism for either global or localised deficits.

5.4.3 Functional connectivity and hypothesis testing

Studies examining connectivity between areas of interest often use pre-specified
regions of interest for testing specific hypotheses about localised deficits in clinical
populations; see Drevets (1999) and Phillips et al. (2003) for reviews. This seems
sensible for two reasons. First, limiting the search space gives better control over the
multiple comparisons problem presented with analysis of whole-brain volume,
affording the wuse of more lenient correction procedures
(www.fil.ion.ucl.ac.uk/spm/). Instead of performing many thousands of t-tests, the
search can be limited to a small volume. Therefore corrections (even on the
voxel-by-voxel level) are less intrusive. However, this approach limits the search
space to areas where previous searches were conducted and thus potential new
areas will not be discovered. Second, hypothesis-driven questions may give rise to
more tractable searches, rather than creation of a-posteriori theories about brain
function. The results presented in this chapter are consistent with the expected
activation deficits in depressed subjects, although hypothesis testing in our case is

limited since I would hesitate to over-interpret the within-group regional
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correlations (the areas where significant positive or negative correlations with seed

voxels were identified).

Depression is often expressed through physical symptoms of fatigue and lethargy
(Gold and Chrousos, 1999; Stahl, 2002). Prior studies (Elliott et al., 1997; Veiel, 1997)
suggested impaired task performance in depressed subjects, along with changes in
the regional pattern of their brain activity, compared to healthy controls. This
impairment could be a consequence of cognitive or attentional deficits, capacity
limitations, or even psychomotor slowing per se. These factors may have been
confounded by increased fatigue as a consequence of the duration (19 minutes) of
the experimental sessions, which may affect patients” performance more noticeably
than controls’. Consistent with this hypothesis, between-session differences were

indeed observed in MDD patients (Table 5.7).

5.4.4 A critical review of methodology

The methods used in this study, although powerful, make the following
assumptions. First, the study by Lowe et al. (1998) upon which we based our
analysis tested connectivity in resting state fluctuations by looking in
well-delineated areas, namely motor cortex, visual cortex and amygdala. Their
acquisition (scanning) parameters allowed the examination of correlated
fluctuations in great detail. For example, their slice thickness was 1 mm and
repetition time (TR) was 134 msec (for single slice acquisition), while in the present
study slice thickness was 5 mm and TR equalled 2.5 s. We have to assume therefore,
that decreasing the resolution does not reduce the sensitivity of these methods in
measuring task-independent fluctuations. Second, by factoring out task-related

activity we assume that the residual error is completely task-independent, whereas



Working memory and unipolar depression 148

the residual error may be related to the task (for example, residuals may be
correlated with task difficulty). Finally, we have to assume that the linear model,
which is factored out in this task, fits neural response characteristics of both patients

and controls, equally well.

Nonetheless, unlike simple localisation studies, functional connectivity methods
enable a careful examination of correlated neural activity either in specified regions
of interest or across the whole brain. Potentially, these methods are more sensitive to
illness-associated changes in neural activity than the averaging of signal across
blocks, which is part of the GLM analysis in block designs. Indeed, the sensitivity of
this method clearly highlighted between group differences that were suggested by
the functional localisation study (Rose et al., 2002). For example, decreased neural
response in the left prefrontal cortex of depressed patients has been associated with
a discrete difference in the covariance of this area with respect to the cingulate
(Figure 5.4), in patients compared to control subjects. I believe that the analysis of
task-related neural activity may have revealed suppression of the left prefrontal
cortex in depressed patients; however I could not directly relate this suppression to
the activity of the cingulate. Thus, functional connectivity between limbic (cingulate)
and prefrontal (BA 10) areas may be particularly vulnerable in depression, as
revealed by correlating task-independent fluctuations. Furthermore, the
task-associated neural activity may have been sufficiently strong to activate either or
both of these areas and could obscure the specific deficit highlighted here.
Therefore, I believe that the results of my work can complement and enhance

previous findings by looking at the task-independent signal.
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5.4.5 Limitations and caveats

It is difficult to draw any meaningful conclusions about specific regional
correlations in different populations on the basis of small sample sizes in clinical
populations; see Appendix A (Ebmeier and Kronhaus, 2001). As with other
neuroimaging studies, our findings may be influenced by a number of factors such
as scanning methods; model specification (may differ for patients and controls: the
neuronal-networks may be recruited differently in those subject groups, e.g. with a
slight temporal delay in the case of the depressed patients). The main limitation
nonetheless, is the size and the variability of the patient group — both subject groups
are small and probably cannot be argued to form a homogeneous entity or represent
the clinical population, either aetiologically or symptomatically and therefore in

terms of their brain activity.

We should note however, that many important studies in the field often use data
from a small number of well-classified subjects. For example, Casey et al. (1998)
conducted their reproducibility study on the basis of data from five to eight subjects
from every institution; Jansma et al. (2000) used data from twelve healthy subjects
for their parametric study; while Lowe et al. (1998) used data from only three male
subjects in their study. Indeed the data presented here for the depressed group
appear homogeneous and their specific neural activity pattern with respect to the
whole group analysis (as well as discrete deficits) are quite well defined. The
technical difficulty I experienced with SPM has in fact proved to be fortuitous, since
it forced me to compare 5 combinations of 4 patients each (Table 5.7) and convinced
me that the effect I observed, especially with reference to my hypothesis 4

(section 5.3.3), is fairly robust.
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5.4.6 Functional connectivity and parametric designs

Further to the general limitations of this mode of inference the methods described in
this chapter may be enriched by dividing the time-series into task-related segments.
Thus, correlation coefficients that are associated with particular memory loads
(ranging from 0-back to 3-back) can be evaluated separately. This way, the
distribution of the residuals may be examined against memory demands and what
we assume to be resting state fluctuations can be compared at different stages of the
task and under different conditions. However, this may be a useful exercise only if
subject numbers are increased substantially, to achieve sufficient statistical power
for these calculations. Furthermore, forming a priori hypotheses on the basis of
functional localisation studies (associated with task related activity) may help

address the problem associated with multiple comparisons.

5.4.7 Conclusions and suggestions for future work

In sum, this study appears to highlight both global and localised deficits in the
depressed population. This project, based on Rose (2004) data, in tandem with the
study presented in chapter 4 (comparing bipolar and control patients performing
the Stroop task), offers an insight into discrete deficits in neural activity of clinical

populations.

Future extensions to this study could include the following:

1. Choosing seed voxels that are derived directly from the functional
localisation study of the same dataset: i.e. areas that were activated by both

depressed patients and healthy controls.
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2. Choosing seed voxels in areas that are affected by the illness, such as the
ventral anterior cingulate (BA25), which was reported to be particularly

vulnerable in depression (Mayberg, 1997).

3. Evaluating these results against the region-of-interest (ROI) approach used

in connectivity analyses such as SEM.

4. Increasing the number of subjects.



Chapter 6

The delayed match to sample task: setting

the scene for a systems level model

This chapter builds upon the results of the previous chapter by examining the effects
of global and local changes in excitation and inhibition on a systems-level
neural-network. This network models the results from an effective connectivity
analysis (McIntosh et al., 1996) in healthy control subjects performing a memory
task. Thus, the neuroimaging based projects in my thesis (chapters 4 and 5) are
supplemented here by a computational investigation of the impact of structural and
functional abnormalities in depression on a well-defined network of functionally

associated areas.
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6.1 Introduction

The examination of task-related neuroimaging data in healthy control subjects
provides important clues to the specific associative pattern between brain areas.
Here, the term association is used to denote the property of computation that is not
necessarily dependent on the order of the elements that are used to produce the
result. Specifically, we are interested in the interaction between different elements
within the network, discerned by studying the internal dynamics that result from
specific connectivity patterns, which are perceived to be more consequential than

the initial input.

My aims in this work are twofold. First, I wished to study the dynamical properties
of the proposed effective connectivity networks on which my models are based
(McIntosh et al., 1996; McIntosh, 1999). These could be described as the default
behaviours of these networks, since I remain faithful to the connectivity parameters
suggested by the authors (see section 6.4.2). Second, I wanted to use the model to
test the effects of simulating depression by varying certain parameters of the model.
These include reduced efficacy of excitatory (glutamate) and inhibitory (GABA)
neurotransmitters; see Sanacora et al. (2003) for review. These deficits may be
ameliorated by activity changes in striatum and hippocampus (GH) associated with
administration of antidepressant medications such as selective Serotonin reuptake
inhibitors (SSRI) (Mayberg et al., 2002). Finally, structural abnormalities in areas
such as the cingulate (Drevets et al., 1997), PFC (Rajkowska et al., 1999; Rajkowska et

al., 2001) and GH (MacQueen et al., 2003) have been simulated using these models.

Using this paradigm, we can study the effects of global changes in excitation or
inhibition on inter-regional connections or the dynamics of the entire network.

Alternatively, modelling activity patterns in these networks may suggest a possible
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explanation for the effects of changes (e.g. reduced size, denoting atrophy in specific
regions) on the default dynamics of the network. The impact of these abnormalities
on the intrinsic behaviours of a network that has been designed to cope with
working-memory demands can be compared with their effect on a network that
does not encode patterns. In this project, interactions between different
brain-regions were modelled by means of a connectivity matrix, representing
temporal correlations in neural activity between different areas during performance

of a specific cognitive task.

This chapter will outline the decisions, assumptions and compromises that had been
reached en route to constructing these dynamical models, followed by an outline of
basic results. The next chapter (chapter 7) will describe experiments that explore the
analogues of the physiology (activity) and the anatomy (structure) of these models.
The former will be studied using different techniques to perturb the characteristic
model activity (using the default parameters), while the latter will try to classify

functional groupings or clusters in the network.
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6.2 Structural Equation Modelling and dynamical networks

The networks, or effective connectivity models, pictured in Figure 6.1 (McIntosh,
1999) represent the results of Structural Equation Modelling (SEM) analysis of
interactions (measured by PET) between 22 brain regions, in 10 healthy subjects
performing the delayed match to sample task (Haxby et al., 1995). This is essentially
a recognition task, where subjects are asked to identify a stimulus that was
presented previously across different delay conditions, with or without presentation
of distractor stimuli between the encoding and recall stages of the task. Unlike the
N-back task, however, encoding and recall occur at different times and therefore this
task can be simpler in certain respects. In the modelling work, I focussed on 2 of the
4 possible delay conditions: the perceptual matching and the long-delay conditions,
to see the effect of variable delays on each network. In the matching condition,
subjects were asked to match one of two faces to the one they were asked to
previously encode (no intervening stimuli) and the long-delay network,
representing a delay of 4 presentations of intervening (blank) stimuli (with an
average of 21 s retention interval; McIntosh et al., 1996). Each stimulus presentation

(both test and target) lasted 4 s, with 1 s inter-stimulus interval (Haxby et al., 1995).

Figure 6.1: Network summarising path coefficients between specific aeas in the perceptual
matching (left) and long-delay (right) networks (reproduced from McIntosh 1999).
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Inter-regional covariance in activity between regions of interest (ROI) is assumed to
indicate a functional relationship (connectivity) between those regions (see Lee et al.,
2003 for an overview of current methods). The results (McIntosh et al., 1996)
associated with the network describing the perceptual matching condition (the
matching network), focused on activation of the bilateral inferior frontal regions
(BA47) and hippocampi (GH), as well as on strong fronto-limbic connectivity, which
summarises the activity of the ventral visual stream (Ungerleider and Mishkin,
1982). The bilateral inferior-frontal and occipito-temporal areas (BA37 and BA47)
appear to be equally important in this network. By contrast, in the long-delay
network activity is focussed on the left hemisphere, with feedback connections from

(bilateral) frontal areas to BA37 and greater involvement of GH.

To analyse network activity quantitatively, McIntosh et al. (1996) applied SEM
techniques. When applied to neuroimaging experiments, SEM combines anatomical
information (usually derived from primate labelling studies) with activation data
from neuroimaging studies in human subjects (McIntosh and Gonzalez-Lima, 1994).
Searching for causal relationships between different variables, the direction,
strength and polarity of direct and indirect connections between different nodes of
the network of areas are computed (see chapter 3 for review). For the purpose of the
neural-network models here and in chapter 7, path coefficients are interpreted as

connection strengths between different nodes of the network.

This modelling framework allows me to examine the effects of neurobiological
abnormalities found in patients with Major Depressive Disorder (MDD). The
premise for disrupting the activity of the network to emulate disrupted brain
function in depression is based on functional and structural changes reported in the
literature. These include functional dysregulation between hyperactive limbic areas

such as the anterior cingulate and hypoactive prefrontal cortical areas, reviewed by
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Phillips et al. (2003). Illness-related structural abnormalities were reported in
subgenual anterior cingulate (Drevets, 1999) and both neurons and glial cells in the
prefrontal cortex (PFC) (Rajkowska et al., 1999; Rajkowska et al., 2001). It is
expected, therefore, that these structural abnormalities would translate into
functional deficits in remote areas, by increasing flow or metabolism either in these
areas or in the associated network, for the purpose of compensation. A putative
decrease in global metabolic rate was noted in MDD, while hyperactivity in limbic
areas was also associated with depression or even sadness in healthy controls
(Levesque et al., 2003; Stefurak et al., 2003). Finally, changes in global inhibition
were also investigated, for two main reasons. First, I wished to relate this
experiment to global changes in depression, such as decreased cortical excitability
shown by post-exercise facilitation (Reid et al., 2002; Shajahan et al., 2002). Second, I
planned to investigate the relative contribution of positive and negative correlations,
expressed as path coefficients, to the dynamical activity patterns in the matching

and long-delay networks, respectively.

6.2.1 Hypotheses

Several hypotheses guided the investigation of activity in these networks. These
were based both on the basic characteristics of the effective connectivity network
(McIntosh et al., 1996) and on the putative neurobiology underpinning the

architecture of this network. Hypotheses are highlighted in bold.

1. McIntosh et al. (1996) describes the interactions between hemispheres
and specific areas. The specific differences between the matching and

long-delay networks involve two significant differences:
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d.

The long-delay network will be characterised by a strong
left-focussed activity while in the matching network, an
inter-hemispheric pattern is expected, with a slight preference for

focussed activity in the right hemisphere.

The long-delay network will have a slightly more recurrent nature
than the matching network, where activity will propagate in a more
feed-forward fashion. This is expressed in the basic architecture of
the network through bilateral feedback connections from BA47 to
BA37 in the long-delay network that are absent from the matching
network, as well as a bidirectional (left) connectivity between GH and
BA24 (cingulate) that is only unidirectional (originating in GH) in the
matching network. These interactions were described in McIntosh et
al. (1996) and are based on the simplified version of the network,
which is believed to represent the cardinal interactions (Figure 6.1) in
the original networks, rather than the actual path coefficients (Figure

6.2).

2. Three frontal areas (BA46, BA10 and BA47) were concatenated into one

frontal region, BA47, in Figure 6.1 (McIntosh, 1999). Therefore, the

activity in these regions is expected to be qualitatively similar.

Furthermore BA47 is expected to be the dominant region among the

three.

3. Further to the different global activity patterns associated with

hypothesis 1, network activity in the long-delay condition is expected

to be more vulnerable to deficits in the left hippocampus, anterior

cingulate and BA47, since these three areas are reciprocally connected,

forming a closed excitatory loop. Moreover, clinical data suggests that
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left GH is particularly vulnerable in treatment-resistant depressed
subjects (Shah et al., 2002), which may be associated with developmental
stress (Teicher et al., 2002). Likewise, left anterior cingulate deficits, such
as decreased rCBF, may be associated with depression (Bench et al.,
1992). I therefore expected these structural deficits to contribute to the
hypofrontality reported in depressive illness assuming that GH, anterior

cingulate and PFC were part of the same functional network.

4. Increased activity in other areas, for example stronger activation of
visual areas (as was suggested by the functional connectivity study,
chapter 5), is expected to ameliorate the localised deficits described in
hypothesis 3. Thus, neural reorganisation was expected to effectively
compensate for either age (Della-Maggiore et al., 2002) or mood-related

(Gron et al., 2002) localised dysfunction.

5. Changes in all excitatory and inhibitory weight values throughout the
network (termed “global changes”) are expected to affect network
behaviour. Although this may seem uncontroversial, it is impossible to
envisage the exact nature of altering global levels of excitation or
inhibition on specific behaviours, since I could not know in advance
what shape this dynamic behaviour may take. However, I planned to
examine the relative contribution of excitation and inhibition to
characteristic behaviours in the matching or long-delay networks,

respectively.
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6.2.2 The modelling approach taken in this study

The networks (Figure 6.1) that have inspired the modelling work in this chapter are
believed to be a snapshot of brain-activity during task performance. The path
coefficients have been characterised by combining anatomical details about the
presence or absence of connections between specific nodes with functional
information. Using a computational model to characterise the activity of these
networks has a threefold purpose. First, I wanted to examine which units were
likely to be coactive and explore the parameter space that gives rise to this
co-activation. Second, elements of this model of “normal function” were
subsequently disrupted, to examine the effects of regional deficits in unipolar
patients such as those described in the fMRI literature. Third, I wanted to examine
the propagation of activity in the perceptual-matching network. This was described
as co-activation of units, allowing me to effectively cluster areas functionally rather
than topographically. Subsequently, in chapter 7, I assessed how changes in global
parameters such as excitation and inhibition as well as changes in the output of
specific units influence the behaviour of the network. The study of the long-delay
network was guided by the findings of characteristic activity in matching network
and enabled comparison between the respective behaviour of these networks, as

well as the effect of perturbation upon this behaviour.
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6.3 Methods

a Perceptual matching network

BA Left Fll!M
BA46
BA10
BA4T
BA21
BA37
BA18v
BA19d
BA17/18
GH

SLENOURGN =

Figure 6.2: Connectivity diagrams depicting the cortico-cortical and cortico-limbic
connections of left (LH) and right (RH) hemispheres in (a) the perceptual matching and
(b) the long-delay conditions (McIntosh et al., 1996). LH units are labelled 1-11 and RH
units 12-22, with Brodmann Area (BA) indicated in the key (bottom left). Cortical regions
corresponding to Brodmann Areas (BA) depicted on the left are shown in Table 6.1.
Discrete values were ascribed to weak and medium weights (positive and negative), to
characterise network behaviour. Excitatory connections are depicted in shades of red and
inhibitory connections are in blue; (a) is identical to the matrix representing the matching

network in Figure 6.3.
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6.3.1 Simulating the network

The matching and the long-delay networks depicted in Figure 6.2 were simulated
and analysed by programs written in Matlab. The networks were constructed using

the following components:
1. Activation vector, a,.

A row vector of 22 units representing 11 areas in the left and 11 areas in the right
hemisphere (Table 6.1). The value of each element in vector a, changes over time and

reflects the changing activity in the corresponding brain region.

a b
Left Hemisphere
Reﬁion BA Left Rig&l
1
05 | BA46 BA10 BA47
Middle frontal 46 1 12 0 - - -
1
} BA37 5
Inferior frontal 10 2 13 35 Baat El il E’
1
Ventralinferior frontal 47 3 14 05 {BA19d Barz/8[8]| |eu  [9]
Middle temporal gyrus 21 4 15 :}_5 BA24 BA23
0
Inferior temporal gyrus 37 5 16
Right Hemisphere
Fusiform 18v 6 17
1
05 | BAd6 BA10 BA47
Cuneus 19d 7 18 0
1
Cuneus 17/18 8 19 85 BA21 BA37 BA18v
: 1
Hippocampus GH 9 20 0.5 | BA19d BAI?/ls GH
0
G g 0 50 100
Anterior cingulate 24 10 21 1
& 05 |BA24 BA23
0
Posterior cingulate 23 11 22 0 50 100 0 50 100

Table 6.1 (a): Areas from the McIntosh et al. (1996) study simulated in the model. (b) The
figure shows activation in the 22 areas represented by the network; the top half of each
plot shows activation of the 11 areas in the left hemisphere; right hemisphere activation is
shown at the bottom. The name of the area appears above each plot. The plots are
numbered from left to right and from top to bottom. The X-axis in these plots shows the
first 100 (out of 1,000) time-steps and the Y-axis of each plot shows the activation of the
area at that time (bounded between 0 and 1).
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The vector a,, representing initial activity, is initialised with binary values, set by the

user. Normally only 1 or 2 elements of a, are set.
2. Connectivity matrix W.

W is a 22 x 22 matrix. Figure 6.3 shows the connectivity matrix for the ‘matching’
condition. The rows represent the source and columns represent the target of each
connection. For example, element W(2,4) represents a weak positive connection
from BA21 to BA10 in the left hemisphere, while the reciprocal connection W(4,2) is
absent. Weak connections are given values of 0.1 or 0.35; likewise, medium-strength
connections are either 0.36 or 0.65. Inhibitory connections are denoted by negative

values.
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Figure 6.3: Path coefficients encoded into a weight matrix. Upper left quadrant:
cortico-cortical and cortico-limbic connections in the left hemisphere. Lower right
quadrant: connections within the right hemisphere. Upper right quadrant: left
hemisphere connections to the right and the opposite direction in the lower left quadrant.
Positive weights: m (values: 0.36/0.65; n=23); w (values: 0.1/0.35; n=23). Negative values:
default set as for positive weights. -m (n=9); -w (n=12).
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The connectivity matrix in Figure 6.3 was derived by studying the path-coefficients
presented in Figures 2-6 of McIntosh et al. (1996). Personal communication with
Professor A.R. McIntosh confirmed a number of inconsistencies in the connectivity
diagrams (Mclntosh et al., 1996), which were corrected in the computer programs
used here. This matrix is identical to the matching network in Figure 6.2a. In
McIntosh et al. (1996), 4 possible path coefficient ranges were encoded in the
manuscript through the relative thickness of arrows connecting different brain
regions. These included positive (solid line) and negative (dashed line) values for
strong (0.66 to 1.0), medium (0.36 to 0.65) and weak (0.1 to 0.35) connections, as well
as a thin dashed line representing a path coefficient of zero. Great care was taken to
ensure that these were correctly encoded in the computer scripts. The arrows were
mostly in the lower (medium, weak or zero) value-ranges; see section 6.4.2 for

further details.

3. Update rule.

Given an initial activation vector a,, the dynamics of the network evolve over time

using equations 6.1 and 6.2:

it = at » W (6‘1)

Internal activation, i, is a product of multiplying the current activity by the weight
matrix. The internal activation is then passed through a sigmoidal squashing

function, f, to get the activation at the next time step a,.;:

A= f (il) (62)



Delayed Match to Sample: setting the scene 165
4. Squashing function

The sigmoidal function is used as a squashing function because this function
compresses a wide range of internal activation into a limited range of output and
thus activity remains bounded. Furthermore, the specific form of the sigmoidal
function used in this work, limited the output to exclusively positive values to

prevent oscillations between positive and negative values.

f(a)=1/ (1 +exp (-10 (a,-1/ 2))) (6.3)

Therefore, each element of a will always be bounded in the range [0,1]. The constant
10 within f gives the sigmoidal a relatively sharp transition; lower values will give a

broader sigmoidal. The constant 1/2 ensures that f (1/2) = half maximum.

osF
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o3tk

0z

o1k

Figure 6.4: A typical sigmoidal function. The internal activation of a unit is passed
through a squashing function and assigned a value in [0,1]. The X-axis denotes the

internal activation of a unit i and the Y-axis shows the output, f(i) of the unit.

Starting from an initial activation vector, a,, the network activity is updated using
the above equation for a pre-determined number (1,000) of iterations. We then

examine the activation of each area over time.
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Exploratory analysis of the network is carried out in two stages:

1. Characterising the activity of the network under specific parameters,

pertaining to hypotheses 1 and 2.

2. Perturbing the network (chapter 7), pertaining to hypotheses 3 through 5:

a. Global changes in excitation or inhibition.

b. Local changes. The weight values from specific source units are
changed, which effectively means that the participation or the impact

of this source on network behaviour can be tested.

This describes the framework of the model. Further manipulations of the network to

mimic particular biological phenomena will be described in the relevant sections.

6.3.2 General approach

Before testing the hypotheses outlined in the introduction (section 6.2.1), I made the

following preliminary inquiries:

Calibrating the network: setting the framework for the dynamical models. This

includes:

I.  Highlighting the role for a limiting function on the output of the matching

network (section 6.4.1).

II. Setting the range of weight values that are likely to produce activation

(section 6.4.2).
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The following two sets of experiments map onto the hypotheses described in

section 6.2.1:

Experiment 1: Characterising the basic features of the matching (sections 6.5.1-6.5.3)
and the long-delay (sections 6.6.1-6.6.2) networks. This set of experiments maps onto

hypotheses 1 and 2.

Experiment 2: The final set of experiments will be described in chapter 7. These map
onto hypotheses 3 through 5, exploring the role of global and localised changes in

weight values, as well as the effects of compensation.

After presenting the general framework and setting up the parameters of these
dynamical models (sections 6.4.1-6.4.2) the results are presented first for the

matching network (section 6.5) and then for the long-delay (section 6.6) network.

6.3.3 Characterising network behaviour

Characterising network behaviours in the matching (and subsequently the
long-delay) networks was performed by setting one unit (of the 22) at a time in a,.
This highlighted a functional grouping of the matching network into functional
sub-networks, or clusters, of co-activated units. This classification was done
visually, by noting units that were oscillating together or displayed a similar
behaviour (such as initial bursts or convergence at the upper limits of the sigmoidal
function). The absence of activation (i.e. if the activation of any unit remained or
decayed to 0), was not considered to suggest a pattern of co-activation. Once a
sub-network was identified, I proceeded to determine which units were necessary
for this pattern by individually clamping at 0 the activity of units that did not

appear to participate in this pattern of behaviour. This was implemented for unit i
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by enforcing a(i), = 0. This stepwise elimination of units allowed me to determine
which units were necessary for generating and maintaining certain patterns of
activity and furthermore, to assess the consequence of removing certain units that
may not be sufficient to disrupt the pattern on their own but are necessary for
maintenance of this pattern. To gain insight into the nature of this activity, the
activation values of the different units were noted and compared for different

values, varying both inputs and weights.

6.3.4 Selection criteria for initial activity

The results presented in this chapter are from the analysis of both the matching and
the long-delay networks. Naturally, given the different nature of the connectivity of
these networks, it was sometimes difficult to find a common ground on which to
pursue a comparative study of network behaviour. For example, activation through
the visual areas appears to be the most sensible way of emulating the initial
activation similar to the experimental procedure (Haxby et al., 1995; McIntosh et al.,
1996). In the matching network, an initial input from left fusiform (BA18v; area 6)
with the maximum weight values specified by McIntosh, (absolute values of
w = 0.35 and m = 0.65), was sufficient to produce enduring activity in the network.
By contrast, an initial input from the same unit (and the same weight values) in the
long-delay network, produced only transient activity in several units (Figure 6.8a)
without spreading to the dominant sub-network (Figure 6.8b). However, to compare
the activity of these networks, I thought it would be helpful for the activation to be
initiated by a visual unit and therefore, in the long-delay network initial input from
BA18v (unit 6) is combined with input from a element of the dominant sub-network,
e.g. inferior-temporal BA37 (unit 5; Figure 6.8c), which in turn triggers the

characteristic coactivity pattern. The combination of these two inputs was compared
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to co-activation of the other units taking part in this sub-network and was found to
be typical of the activity pattern of any other (co-active) unit with unit 6. Hence, unit
5 was seen as a favourable and representative choice for a second area. Thus, my
experiments with both activation and perturbation of the long-delay network are

performed with initial activation from units 5 and 6.

6.3.5 Phase plots

The latter part of the analysis in this chapter (section 6.6.3), addresses the question of
the specificity of neural activity in the long-delay network. Recurrent loops between
prefrontal area BA47 and GH (Figure 6.1, from McIntosh et al., 1999) have been
assigned the function of maintaining an encoded pattern in working-memory. As I
was isolating the minimal constituents of the long-delay network, in a manner
described in section 6.3.2, the relationship between the left prefrontal cortical areas
and left GH became apparent (especially the correspondence between units 2 and 9).
The maintenance of patterns in working-memory was expected (McIntosh et al.,
1996) to be dependent upon this interaction and therefore, I wished to examine
whether there is a relationship between these areas. Furthermore, as stated in
hypothesis 2 (section 6.2.1), I wished to test whether this relationship holds for all 3
prefrontal areas in the network (i.e. BA46, BA10 and BA47). The activation of every
unit of the matching and long-delay networks is normally plotted against time, here
(Figures 6.6, 6.8) and in chapter 7 (Figures 7.1 and 7.3-7.7). This enables the visual
evaluation of the concurrent activity in all units, which in the case of the matching
network was straightforward since oscillations appear to have a period of two.
However in the case of the long-delay network, especially when only the minimal
constituents (Figure 6.9) were activated, this simple periodicity appears to have been

disrupted. In section 6.6.3 therefore, phase plots are used to juxtapose the activity of
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pairs of units and looked for periodicity in the signal by examining the activation
values over time and by plotting the autocorrelation functions of different units in

the statistical program R (www.r-project.org).
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6.4 Preliminaries

Before using the network to investigate specific hypotheses, I performed several

preliminary tests.

6.4.1 Limiting network activity (calibration I)

Network activity was constrained by the sigmoidal function (equation 6.3), which is
a simple way of introducing both non-linearity and an activity-limiting constraint
into the model. This is obviously an imposed limitation on network activity.
However, confining the activity of the networks enables a more straightforward
identification of clusters, i.e. groups of units that are likely to be co-active. In the
absence of this function, activity rises or decays exponentially, oscillating between
positive and negative values. In this network (which is largely excitatory) the
absence of a squashing function allowed the activity to either rise or decay very
quickly, depending on the discrete weight values in the matrix (Figure 6.3). If
weight values are small and the activation does not exceed one the activity will die
down (Figure 6.5a), whereas if activity exceeds one, oscillation will increase

exponentially (Figure 6.5b).

This behaviour is expected from discrete dynamical systems theory (Scheinerman,
1995). However, it seems that this network can never achieve a stable state, where

activity will neither grow nor decay over time.
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Figure 6.5: Typical activation of the matching network when no sigmoidal function is
applied. Oscillations in an unconstrained network depend on the values of the weights.
Here, the initial input is provided by unit 6. Absolute weight values (a) w = 0.35; m = 0.36;
(b) w =0.35; m = 0.65. Each plot shows the activation of a unit over time; X-axis denotes
time and Y-axis denotes activation. The activation of every area is shown in a different
colour. (a) If the weight values are too low to instigate a self-sustaining pattern,

oscillations tend to decrease rapidly. (b) If weight values are high enough however, the

oscillations will increase exponentially.

6.4.2 Setting weight values (calibration Il)

Both matching and long-delay networks were characterised by a range of values
(within the upper and lower limits) suggested by McIntosh et al. (1996), for weak
and medium path coefficients. Therefore, weak values were specified as either 0.1 or
0.35, while medium weights were either 0.36 or 0.65, resulting in 4 combinations of
weight values. Only the higher values (0.65 for the medium weights with either 0.1
or 0.35 for the weak values; more likely to be the latter) could produce sustainable
activity in the network with some, but not all, inputs. Thus, the activity pattern in
Figure 6.6a was only evident with values of w = 0.35; m = 0.65 while weaker values
of w =0.1; m = 0.65 failed to produce sustainable activity. Likewise, while units 1, 2
and 10 were recruited with weaker combinations than specified in the legend
(namely: w =0.1), units 3, 4 and 11, which echoed the activity in the dominant

sub-network, were only recruited with stronger weight values of w =0.35 and
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m = 0.65. Therefore, I chose the absolute weight values of w = 0.35 and m = 0.65 as
defaults for the remainder of this chapter (as well as for chapter 7), unless otherwise

specified.

6.5 Activity patterns in the matching network (experiment 1)

6.5.1 Characterising activity in the matching network

To activate the matching network, initial input was provided by one element of the
vector a, (one unit) at a time. The activity of the network was then characterised by
testing which elements or units are likely to be co-active. The nature of this coupling
was captured in oscillations across several units. In the minimal case of co-activated
units, the oscillations occur in left prefrontal areas BA46 and BA10 (units 1 and 2)
and left anterior cingulate, BA24 (unit 10); see Figure 6.6b. This triangular loop
could also be excited by input from visual areas by initially activating either unit 6
(Figure 6.6a) or contralateral unit 17 (not shown), which represent either left or right
fusiform (BA18v) respectively. Despite this triangle forming an entirely excitatory
loop, they exhibit an oscillatory activation pattern, which is a result of the initial
activation (from one unit only) and the discrete (stepwise) update function. Thus, if
for example only unit 10 is initially active, it will excite units 1 & 2 but not receive
any input from them until the next update step and in the absence of concurrent
input will be turned off. In the next step, units 2 and 1 will excite 10, yet their
activation will return to zero in the absence of concurrent input from unit 10. If these
areas are activated at the same time however, they will be co-active at the maximum

value of one.
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Figure 6.6: Characterising activity in the matching network. Three examples are shown,
generated by different initial conditions. (a) The matching network can be activated by
initial input is provided by unit 6 (fusiform), representing left BA18v (the input unit is
marked by X here and in subsequent plots). This causes a short burst of activity in
different units of the left (top right) and right (bottom right) hemispheres. (b) The initial
input generates an activity pattern that recruits the 3 main units in the basic network, i.e.
units 1, 2 and 10, which start oscillating. Subsequently, units 3, 4 and 11 echo this activity.
(c) For comparison purposes (with the inputs to the long-delay network) both units 1 and
6 are initially active. This does not appear to change the activity pattern substantially,
apart from reducing the transients in some units (e.g. units 3 and 9). Absolute weight

values used in all plots: w = 0.35; m = 0.65 (default).

Since activity propagating from the left fusiform, BA18v (unit 6), will invariably
pass through BA37 (unit 5) and BA24 (unit 10), we could expect these two areas to
be the weakest links in the activation of this network. Namely, we may expect that
change in their activity will have the most significant effect on the characteristic

behaviour of the network (see section 7.3.3.1).
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6.5.2 Identifying the minimal sub-network

To test which units were necessary (or sufficient) for production of these activation
patterns, I isolated the units that participate in both patterns: the second pattern
(Figure 6.6b) forms a closed excitatory loop and can develop and persist while all
other units are set to zero. The first pattern, however (Figure 6.6a), is more
widespread. When either unit 6 or 17 alone are initially active, the initial transient in
an extended network is rapidly translated into activation in the primary cluster. I
believe that the initial transient and persistent oscillations are independent patterns,

with certain areas, especially unit 3, participating in both patterns.

The default weight values do not support the recruitment (activation) of the
dominant sub-network with initial inputs from areas that are not part of, or related
to, the dominant sub-network. However, due to the extended connectivity in both
the matching and the long-delay networks, initial input from areas that may form
separate clusters within the right hemisphere for example (such as units 22, 12 and
13 in the matching network) can engender activation of most units in the network if
excitatory connections are strong enough (50% increase; data not shown).
Invariably, the dominant sub-network is recruited because of higher weight values.
Still, even when all units showed persistent oscillations, bilateral visual areas were

silent due to the dearth of recurrent connections back to those units.

6.5.3 A summary of results and interim conclusions

This pattern of activity in the matching network led to several conclusions. First,
observable and persistent activity in this network originated either in left
fronto-limbic sub-network or in the extended network associated with either left or

right fusiform (units 6 or 17). Second, the activity in the latter regions is closely
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coupled by mutually excitatory connections. Through them, activity propagates to
both left and right hemispheres. Interestingly, both in the matching and the
long-delay network, these areas are reciprocally excitatory with medium strength
connections. The other mutually excitatory couplings occur intra-hemispherically,
for example, between units 1, 2 and 10 in the matching network. Further,
inter-hemispherical excitation is more frequent in the matching (compared to the
long-delay) network and therefore the dominance of the left-hemisphere in this

network is somewhat unexpected.

Figure 6.7: The minimal matching network: units necessary for creating the characteristic
activation in the matching network. The dominant pattern of activity in this network
consists of left frontal areas BA46 and BA10 (units 1, 2) which both send and receive
excitatory input from the left anterior cingulate, BA24 (unit 10). This sub-network is
excited by the ventral visual stream in the left hemisphere, originating in the fusiform
BA18v, proceeding through BA37, BA21, BA47 and activating the dominant sub-network
owing to a weak excitatory connection to BA10 and a medium excitatory connection to
BA24. Area names appear above the unit number (see Table 6.1 and Figure 6.2 for
conventions). Red lines represent excitation (a darker shade and thicker lines depict
stronger weight values) and blue line represents inhibition. The dotted lines among the
excitatory sub-network comprised of units 1, 2 and 10 (circled), indicating areas that

oscillate together.
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Dynamical activation of the matching network allowed me to evaluate a range of
possible behaviours and achieve certain decisions regarding the activation
parameters such as configurations of weight values, input patterns and the use of a
squashing function. Furthermore, setting these parameters revealed a number of
interesting behaviours, such as the possibility of creating self-sustaining activity in

this network and the interactions or co-activation of specific clusters.

6.6 Activity patterns in the long-delay network (experiment 1)

Studying the long-delay network was more pertinent to the questions I wished to
raise in this thesis, since working-memory deficits are classically associated with
depression. The study of the matching network enabled comparison of both the
common and unique properties of these networks. The study of the long-delay
network is therefore based on the investigation of the matching network as well as
expanding upon them, guided by the neurobiological and the neuropsychiatric
questions. In the next chapter (section 7.6), a number of techniques in the study of

the interaction of specific constituents of these networks will be presented.

6.6.1 Characterising the long-delay network

Unlike the perceptual-matching network, where the dominant sub-network was
fairly isolated and the pattern of activity in this network was self-sustaining, the
long-delay network appeared to be characterised by a more distributed activity
pattern that included more areas and was thus less vulnerable to disruption. Here,
an excitatory triangle of the dominant sub-network, analogous to the matching

network, consists of units 3, 4 and 5 (Figure 6.9).
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Likewise, oscillations occur as a product of the discrete activation and update
function. However unlike the matching network, the activity here is closely coupled
with the anterior cingulate (BA24; unit 10) and prefrontal areas (BA46 and BA10;
units 1 and 2), as well as the hippocampus (GH; unit 9). To compare the activity in
the matching and the long-delay networks and to express the essentially visual
paradigm on which this model was based (Haxby et al., 1995), the fusiform (BA18v;

unit 6) is initially activated and therefore included in the dominant sub-network.

The same characteristic activity as the control case (Figure 6.8b) pattern can be
triggered by initial input from any of the 3 constituents of the dominant
sub-network, namely left BA47, BA21 and BA37 (units 3, 4 and 5 respectively), the
contra-lateral (right) area BA47 (unit 14) or left BA24 (unit 10). To compare
visually-triggered activity in the matching and the long-delay networks, units 5 and
6 are set in a, (Figure 6.8¢c), since BA18v (unit 6) alone is unable (Figure 6.6a) to

trigger self-sustaining activity (see methods).
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Figure 6.8: Typical activation patterns from the long-delay network. (a) Input from area

BA18v, unit 6 and (b) BA37, unit 5. (c) Finally, a combination of both these inputs triggers
a similar pattern to (b), with initial transients, such as those seen in units 6, 17 and 20

(dotted circles), associated with the visual input only (a).
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6.6.2 ldentifying the minimal sub-network

On the basis of observing activity in many trials, I have determined a minimal
network that seems dominant. The minimal constituents of the long-delay network
included a number of loops characterised by feedback connections. Here, as in the
matching network, oscillations can be restricted to 3 mutually excitatory units,
namely 3, 4 and 5. The sustainable activity in this dominant network can be
triggered by one of these units and maintained while all the other units are silenced.
However unlike the persistent pattern of activity in the matching network, the
activity of the minimal long-delay network (Figure 6.9) cannot be triggered by the
visual path (with initial input from unit 6). Furthermore, the relative contribution of
each constituent of the minimal-network to the overall pattern cannot always be

observed by visual inspection alone (see section 6.6.3).

Figure 6.9: Minimal number of constituents participating in the activation of the
long-delay network. Recurrent loops include the basic sub-network (units 3, 4 and 5),
extending to fronto-limbic areas (units 10, 1 and 2) as well as hippocampus (unit 9). The
activity in these recurrent loops cannot be triggered exclusively by the fusiform (unit 6),
however this area is participating in the network by providing initial activation, together
with one of the minor constituents of the dominant sub-network (unit 5; see Figure 6.8).

See Figure 6.7 for conventions.
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6.6.3 Outlining activity using phase plots

Figure 6.10 shows two plots that are seemingly identical (both include only units 1
through 10 of the network; units 11-22 are always silenced). However, while in (a)
the visual units 6-8 are active, in (b) they are reset after every time-step. The activity
in units 2 and 9 (BA 10 and left hippocampus respectively) appears to have a similar
periodicity, yet the oscillations are somewhat irregular. Furthermore, the activity in
BA47 appears to be unrelated to either of those. Visual inspection alone clearly
could not distinguish between the two. Therefore, I used phase plots to chart the
activity of these 3 areas against each other. This method allowed me to examine the
activity of 2 pairs of units simultaneously, leading to the conclusion that the
relationship between units 9 and 1 mirrored the relationship between 9 and 2
(Figure 6.11a). Detailed examination of the activation values in units 1, 2 and 9

revealed a dominant periodicity of 18 (twice the number of arms in Figure 6.11b).
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Iminimal network excited by units 5 and 6 minimal network excited by unit 5; no visual input

Figure 6.10: Minimal constituents of the long-delay network. Only units 1 through 10 are
active, while the rest (11-22) are reset at every time-step. (a) Initial input from units 5 and
6, or (b) by unit 5, where activation of visual areas (C represents clamped units 6-8, where
the activity is set to 0) is reset at every time-step. Default weight values are used in these

experiments (see Figure 6.6 for conventions).
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Figure 6.11: Phase plots of the activity in units 1, 2 and 9, which were plotted against time
in Figure 6.10. The activity of the left GH (unit 9) is plotted along the X-axis, against BA46
(unit 1) and BA10 (unit 2). (a) Visual units can participate in this activity pattern or (b) are
reset to zero at every time-step. The activity plotted here is for iterations 20-1000, ignoring

initial transients.

Comparing the periodicity of unit 9 with units 1 and 2, to the periodicity of unit 9
plotted against every other unit (units 3, 4, 5 and 10; Figure 6.12) in the minimal
network (excluding the visual units), we can see that this relationship is unique.
Although both units 1 and 2 are excited by unit 10, the relationship between unit 10
and unit 9 (Figure 6.12d) does not resemble the interaction between the prefrontal
areas (units 1 and 2) and the hippocampus (unit 9). Moreover, it appears that the
activity in unit 3 (Figure 6.12a), which was chosen to represent all three frontal areas

(Figure 6.1), does not resemble units 1 and 2.
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Figure 6.12: Corresponding activity in unit 9 and 4 other units in the minimal network.
Phase plots of the activity of unit 9 against the activity in units (a) 3, (b) 4, (c) 5 and (d) 10.
The activity of unit 9 is plotted along the X-axis. These plots correspond to the activity of
individual units in Figure 6.10b.

The autocorrelation function measures the correspondence between two copies of
the same signal shifted relative to each other. Peaks in the autocorrelation function
at a given time-lag indicate periodicities at a certain interval. The periodicity of 18,
revealed by the autocorrelation function (Figure 6.13), supports the periodicity
observed in the examination of activation values of these units over time (directly
reflecting the activation in Figure 6.10). This long periodicity reflects the complex

nature of interaction in the long-delay network.
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Figure 6.13: Autocorrelograms for the activity of three units (1, 2 and 9) in Figure 6.10b.
This operation showed that in all three units the highest peak (periodicity) beyond the
zero lag, is found at 18 (circled). The Y-axis represents the autocorrelation function (acf),
showing both positive and negative correlations while the lag is plotted along the X-axis.
The dotted blue line around 0 depicts the 95% confidence intervals, i.e. correlations

within these bounds could have occurred by chance.



Delayed Match to Sample: setting the scene 183

Discussion

Dynamical activation of the effective connectivity models suggested by McIntosh et
al. (1996) highlighted fundamental differences between the networks characterising
2 experimental conditions in the delayed match to sample task. While constructing
these models, certain assumptions or choices have often involved compromises, e.g.
restricting the range of all possible values. For example, instead of using the range of
values suggested by McIntosh et al. (1996) to encode path coefficients, I focused my

efforts on the upper and lower limits of this range.

6.6.4 Summary of main findings
My network studies have shown the following

1. The matching network can be activated by direct input from either right or
left fusiform (areas 6 or 17), while the long-delay network requires input
from the prefrontal cortex, temporal regions or anterior cingulate. The
activity of both networks however, appeared to be focused in the left
hemisphere, thus refuting the expectations (hypothesis 1a) for a more

balanced inter-hemispheric pattern in the matching network.

2. Further to the propagation of activity described in point 1, the dominant
cluster in the long-delay network is more expanded than in the matching
network. It includes more units, which are connected in a recurrent fashion
through several feedback loops. Conversely, the matching network has a
more feed-forward architecture, transcending the ventral visual stream and
triggering activity in one dominant excitatory loop. This confirmed

hypothesis 1b.
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6.6.5 Caveats

Many of the parameters of this model had to be guessed (such as a limiting function)
or approximated (such as the choice of weight values). Therefore, some of the
behaviours of these networks are a product of imposed decisions. Nonetheless, the
aim of revealing whether characteristic behaviour was fundamentally different in

these two networks has been achieved.

The more general question is how long we would expect activity to persist in these
networks with presentation of only one input. For example, the matching network is
only supposed to perform a comparison with minimal involvement from PFC.
However, PFC appears to be recruited almost instantly and the activity in this
cluster persists beyond what I would expect visual activation to be associated with.
By contrast, the long-delay network is expected to support maintenance and storage
of patterns, perhaps by maintaining persistent activity and therefore, the sustained

oscillations we observed in this network are not surprising.

Since I had limited expectations of the shape of activity, the assessment of activity in
the network was defined as a measure of co-activation or functional clustering
among units. Further experiments (chapter 7), testing the vulnerability of these
networks to changing excitation or inhibition, can further highlight their unique
architecture, through perturbation and compensation for both local and global

deficits.

6.6.6 Neural context

McIntosh et al. (1996, 1999) suggested that finding specific regions related to task
performance may be achieved through studying their interactions with other brain

regions. This was termed the ‘neural context’ that supports observed behaviours.
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This model supplements information available through simply observing the task-
related neural activity highlighted by PET. In the framework of my thesis, this
modelling project examines the mood-related neural context of activity in these
networks. In this case, the neural context will be set by the clinical state of patients
with major depressive disorder. Thus, ideas guiding the exploration of activity in
illness-related brain regions (such as the anterior cingulate) and the investigation of
their specific role of these regions in a task-associated neuronal networks (the

matching and long-delay networks), were juxtaposed.

6.6.7 Solving the task

Although this model was not designed to study how the delayed match to sample
task could be solved, this paradigm encoding the connections in the matching and
long-delay networks (McIntosh et al., 1996) suggested several differences between
them. These, in turn, may show how these networks are able to solve the delayed
match to sample task. Naturally, the results presented here and in the next chapter
can be evaluated only within the limits of the present modelling framework.
Creating self-sustaining activity in the matching network for example, is
superfluous to the recognition task this network is putatively specialised for. This
paradigm allowed me to group and classify the minimal clusters. However, these
networks (especially matching) do not need to maintain this activity over time.
Further, it is unreasonable to assume that the activity is a product of only one input.
This was an imposed parameter, to enable understating the minimal interaction in

this complex structure.

Nevertheless, if we can accept that activity in the matching and long-delay networks

is qualitatively different, I would suggest that the significance of the
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prefrontal-cingulate loop (the dominant sub-network) may suggest the dissociation
or transition between the straight-forward matching task (the initial burst in both
hemispheres; Figure 6.6a) and the recruitment of frontal areas to account for the

increased working-memory load, associated with different delays.

Further, I have suggested that persistent oscillations in the network are a product of
the mode of input (a single unit set to 1 in a,) and the discrete update function.
Nonetheless, one is tempted to relate the persistent activity among the closely
coupled units 3, 4 and 5 in the long-delay network (Figure 6.10), to persistent
activity recorded in the infero-temporal (represented here by unit 5) and prefrontal
cortex of monkeys (Miyashita, 1988; Wilson et al., 1993). This persistent activity is
thought to maintain familiar patterns in memory until a new stimulus is presented.
This phenomenon was simulated previously with a recurrent neural-network
architecture using biologically-plausible (integrate-and-fire) units that model
neurons (Amit et al.,, 1994). The architecture used in the present study did not
encode the activity of single neurons or even neuronal ensembles, and was based
instead on an effective connectivity network describing this task in humans.
However, dynamically modelling the coupling between areas the activity in the
long-delay network seems to have captured the unique activation pattern associated

with performance of the delayed match to sample task in non-human primates.

6.6.8 Comparing this approach with other modelling paradigms

Models of functional or effective connectivity are based on the analysis of both
apparent and latent contributions to neural activity (Schumacker and Lomax, 1996),
see chapter 3. This descriptive construct, however, has not been used to reproduce

behaviour, unlike dynamical modelling paradigms such as Friston et al. (2003); see




Delayed Match to Sample: setting the scene 187

chapter 3. Examining the connectivity patterns from a dynamical perspective can
further the analysis of pair-wise interactions suggested by the network-analysis

methods such as functional and effective connectivity.

The notion of modelling activity through dynamic representation of connectivity
patterns, using the characteristic or representative features of task-related networks,
has been addressed in this study. Unlike many artificial neural-network models of
both psychiatric illnesses (e.g. Hoffman and McGlashan, 2001; Hoffman et al., 2001)
and cognitive-tasks (Siegle, 1999) the units in this network represent task-associated
neural activity or co-activation. Unlike biophysical models, which often endeavour
to capture brain activity by including details at the molecular and cellular level
(Amit and Mongillo, 2003), this model uses simple units that are controlled by an
activation function and limited by a sigmoidal. It does not attempt to capture the
activity of brain regions on a molecular level, since I believe that e.g. including ion
channels in these units cannot help form a veridical representation of the summed
activity in those areas. Arguably, some or even most of the findings in chapters 6
and 7 may be associated with the architecture and the parameter setting in these
models. However, it seems that the behaviour of the networks is fairly robust within
these bounds and furthermore, it is characteristically different in the matching and

long-delay networks.

To conclude, the decisions that had to be made while setting up the framework for
dynamic modelling of the effective connectivity networks (McIntosh et al., 1996)
have highlighted a number of limitations of my paradigm. In turn, I believe that
quantifying activation parameters and associating various values (e.g. weights) with
specific behaviours made these networks more tangible and assured me that in the
limited scope of my modelling paradigm, mindful of the reservations outlined in

section 6.6.5, it is possible to characterise the behaviour of these network and predict
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their response to changes in specific parameters on the basis of the typical behaviour

described here.

Chapter 7 will therefore investigate the relative contribution of some of these
parameters, such as the relative effect of excitation or changes thereof, on the typical
behaviour of the network. These will map onto experiment 2 (which investigates
hypotheses 3 through 5), outlined in section 6.2.1. In chapter 7, positive and negative
path-coefficients will be discussed as if they represented excitation and inhibition in
the network. It is not likely however that we can assume a direct correspondence
between excitation and inhibition, with correlation or anticorrelations among units
in the network (in the manner it is represented in the effective connectivity
networks). I would like to stress therefore, that these are not taken as the direct
influence of GABA or glutamate deficits in the depressed brain, but rather as

coherent co-activation of network constituents.



Chapter 7

Physiology and anatomy of the matching

and long-delay networks

7.1 Introduction

In the previous chapter, I described how the values of the experimental parameters
in my modelling paradigm were set and characterised typical activity in the
matching and long-delay networks. In this chapter I report different experiments,
which were aimed at disrupting the characteristic activity in both networks and
comparing the behaviour of these networks under different perturbations. In the
following sections, I firstly summarise my results (see chapter 6), then describe the

experimental framework and report my findings, separately for each network. This
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part of the results (sections 7.3-7.5) will outline the “physiology” of the network, i.e.
its behaviour under different parameter values. The latter part of this chapter
(section 7.6) will describe the modelling analogue of examining the “anatomy” of
the network. It will explore the possible delineations of different clusters based on
the network’s intrinsic properties (connectivity structure) rather than its dynamical

activation.

7.1.1  Summarising interim results

Results so far (chapter 6) indicate the following general points:

Activity in the matching network (Figure 7.1a):

1. Activity in the dominant cluster (units 1, 2 and 10) is self-sustaining and does
not require contribution from other units. This activity can be triggered by

initial input from BA18v (visual unit 6).

2. The signal propagating from unit 6 activates the dominant sub-network,
with only transient activity in the ventral visual stream (Ungerleider and

Mishkin, 1982).

Long-delay network (Figure 7.1b):

1. The activity in the dominant cluster (units 3, 4 and 5) is self-sustaining and
independent of other units. It can be triggered by a larger number of areas
than the self-sustaining activity in the matching network (including units 10

and 14). It cannot however be triggered solely by an initial input from unit 6.
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2. The long-delay network appears to include more feedback connections than

the matching network and therefore can be expected to express a more

robust, distributed pattern.

L L L J = L o 50 100 o % 100

Figure 7.1: Characteristic activity patterns in the (a) matching and (b) long-delay networks.
(a) The initial activation is provided by unit 6 in the matching network, where it is
sufficient to trigger activity in the dominant sub-network. (b) Conversely, the same input
from unit 6 alone in the long-delay network cannot trigger the activation of the dominant
sub-network. Therefore here initial input is provided by both units 5 and 6. See Figure 6.6
for conventions. These characteristic patterns serve as the “control” or default patterns

against which the experiments in this chapter will be compared.

7.1.2 Localised changes in the network

I wished to translate the deficits that were found in limbic areas of depressed
patients, into a functional effect. For example, glial cell reduction in the pregenual
anterior cingulate (Drevets et al., 1997) and metabolic reductions in dorsal anterior

cingulate (Phillips et al.,, 2003) which appeared to normalise after successful
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treatment (Kennedy et al., 2001), were represented through decreased output from
unit 10, whereas hippocampal atrophy (Shah et al., 1998), was represented through
decreased output from unit 9. Furthermore, since it is unclear whether structural
abnormalities were indeed unique to these areas or whether localised atrophy may
have been overlooked elsewhere, I investigated how a decrement in the efficacy of
every unit (one at a time) affects network activity. To simulate the reduced effect of
an area, I reduced the value of all its outgoing weights (both positive and negative)
by some fraction. Default weight values were maintained throughout the rest of the
network. The different perturbations to network activity have been performed on a
unit by unit basis, both in the left and right hemispheres, however only changes to
specific units in the left hemisphere appeared to have made a difference to network
activity and therefore the apparent bias in my results can be attributed to the
intrinsic properties of the network or its behaviour rather than to any prior decisions

on my part.

7.1.3 Compensation

Depressed subjects often exhibit task performance or cognitive skills comparable to
healthy control subjects (Grossman et al., 1994; Rogers et al., 2004) especially after
remission (Phillips et al., 2003). However, neural activity deficits in key areas appear
to persist beyond the clinical phase of the illness (Drevets, 2000b). Furthermore, as I
found in the functional connectivity study (chapter 5), connectivity that may
represent activity of specific areas is actually stronger in patients than in controls.
This increased activity in depressed patients may represent an attempt to
compensate for decreased activity elsewhere in the brain. Analogous results were
reported by Della-Maggiore et al. (2000) where stronger cortico-limbic connectivity

in older subjects suggested age-related deterioration in cognitive function. In the
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present modelling study, after decreasing the weight output from BA37 (unit 5) and
BA24 (unit 10), I examined the effect of increased activity in specific areas in
compensating for these deficits. Compensation is defined therefore as restoration of

sustainable activity in the network.

7.1.4 Visualisation of structural groupings

Several classification methods have been suggested to account for the functional
organisation of brain regions into networks or functional clusters. Among them is
the Multi Dimensional Scaling (MDS) technique. This method assesses the relative
proximity or similarity between pairs of items in multi-dimensional space.
Non-metric MDS has previously been applied to neuroanatomical data by Young
(1992) and criticised by Simmen et al. (1994). The MDS method has also been
applied to neuroimaging data by Friston et al. (1996), who related functional
connectivity (correlations) to anatomical structure, using principal coordinates
analysis (Gower, 1966). The Elastic Net algorithm (Durbin and Willshaw, 1987) takes
an analogous approach to MDS, minimising the Euclidian distance between
network constituents by re-ordering or clustering units that share similar properties

(such as connectivity, or Euclidian distance), to other units.

In this thesis, I used a simple clustering technique to assess which functional clusters
identified by the models presented here and in chapter 6, related to any groupings
found by those clustering techniques. Thus, the clustering approach taken here

complements the functional or activation studies in chapters 6 and 7.

Four separate results sections follow after an outline of methods. First, I will
describe different perturbation procedures in the matching (section 7.3), long-delay

(section 7.4) and both networks (section 7.5). These experiments investigate the
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physiology of the network, since altering positive and negative weights in the
network (termed excitation and inhibition), will engender changes in network
activity or behaviour. The final results (section 7.6) examine the structure of both
excitatory and inhibitory connections in the networks, relating this structural
(anatomical) clustering to the functional groupings suggested by the functional

experiments here and in the previous chapter.
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7.2 Methods

7.2.1 Physiology of the networks

The second set of experiments (see section 6.3.2) explores the effects of global and
local changes on the activity of the matching (section 7.3) and the long-delay (section

7.4) networks, using the following procedures:
1. Changing global values of either excitatory or inhibitory weights.

2. Isolating the relative contribution of specific units in the network to
characteristic activity patterns, by decreasing the weights from specific areas
to all other areas in the network, to simulate the effects of reducing the
relative contribution of an area to the overall activity of the network (e.g.
emulating significant structural or functional deficits in specific areas, that
have been associated with depression). Thus, the reduction of the efficacy of

specific areas is achieved, by changing elements of W.

3. Exploring the ability of specific units to compensate for a discrete reduction
in the output of other areas may provide a quantitative underpinning for

normal task in clinical populations in the presence of neural dysfunction.

7.2.2 Anatomy of the networks

The final phase of the analysis involved the examination of the intrinsic structure in
the matching and long-delay networks. Areas in the 22 x 22 matching (Figure 6.3)
and long-delay matrices were assigned a number in arbitrary order (albeit with

some reference to topographical organisation) apart from separation of left and right
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hemispheres. The same information (Figure 7.2) can be displayed in different ways.
For example, permuting the order of the rows and columns (to allow grouping of
areas that are closely connected) does not change the information in the matrix,
however it may reveal additional information about possible functional

relationships between adjacent units.

a Perceptual matching network b Long-delay network

BA Left _Right
BAS 112
BA10 2 13
BA4T 3 14
BAZ1 4 15
BA3? 5 18
BAlEv 6 17
BA18d 7 18
Bai7he 8 19
GH 8 20
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Figure 7.2: Connectivity diagrams of the (a) matching and (b) long-delay networks. The
ordering of units, albeit arbitrary, is related to the topographical organisation (units are
numbered in ascending order, from anterior to posterior direction). Excitatory connections
are in red and inhibitory in blue. A darker shade denotes a stronger connection (higher
weight value). (c) The matrix of connections equivalent to (a), using the same colour

coding for positive and negative weights. Figure reproduces Figures 6.2 and 6.3.
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To further our understanding of the functional groupings of units in these networks,
two re-ordering algorithms were used. Both algorithms ignore the information
regarding value of the weights and instead treat all non-zero connections as
identical. First, the Reverse Cuthill-McKee (RCM) algorithm is an iterative process,
which is intended to reduce the bandwidth of a matrix by pushing all the
connections towards the diagonal axis. This effectively arranges reciprocal
connections along the leading diagonal axis. Second, the Minimum Degree Ordering
(MDO) algorithm accounts for extent connectivity (the number or degree of
connections) of specific units and arranges the matrix in an ascending order of
expansion (influence on other areas). Both algorithms are implemented in Matlab
(www.mathworks.com). While the first algorithm can suggest functional
organisation, I believe that the second highlights areas with the most extensive
connectivity pattern and thus may suggest points of vulnerability, where localised
deficits will cause the most disruption. Using these procedures to highlight
functional clusters in both networks seems most effective when the excitatory and

inhibitory connections are assessed separately.

Next, I will examine the effect of perturbation on the respective activity of the
matching and long-delay networks. Modelling inhibitory and excitatory connections
can in some sense emulate changes in excitatory and inhibitory dynamics in the
brain. For example, decreased excitation can allude to decreased cortical excitability
in depressed patients (Reid et al., 2002). Likewise changes in the efficacy of
inhibition throughout the network can emulate increased cortical inhibition (Steele
et al., 2000) or GABA deficits in depression (Leung and Xue, 2003; Kosel et al., 2004;
Sanacora et al., 2004) and bipolar disorder (Krystal et al., 2002; Ketter and Wang,

2003).
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7.3 Altering network connectivity: the matching network

The matching network appears to be more sensitive to changes in the efficacy of all
excitatory connections (termed global excitation) rather than changes in the value of
inhibitory weights across the network (global inhibition). Arguably, this may be
attributed to the number of excitatory and inhibitory connections. Compared to 21
inhibitory connections (w = 12; m =9), there are 46 excitatory connections (w = 23;
m = 23). Therefore, we expected that any change in the global value of inhibition,
will need to be stronger by (at least) a factor of two, compared to any change in
global excitation to exert a similar effect on the whole network. Surprisingly
however, contrary to hypothesis 5 (section 6.2.1), changes in levels of global
inhibition had no effect whatsoever on the characteristic behaviour of the network

(Figure 7.3).
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Figure 7.3: Changing the efficacy of inhibitory connections in the matching network does
not affect the characteristic activity. (a) The control case, using the default weight values.
(b) The value of all inhibitory (negative) connections is doubled, such that -w =-0.7 and
-m = -1.3. (c) The value of inhibitory weights is reduced by 90%, such that -w =-0.035 and
-m = -0.065. The excitatory connections are unchanged at the default values of w = 0.35 and
m = 0.65.
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7.3.1 Altered global excitation (experiment 2.1)

With stronger excitation, the dominant sub-network (Figure 7.4a) is more extended,
recruiting left hippocampus (L GH; unit 9) and left posterior cingulate (L BA23; unit
11), which are mutually inhibitory. The activity depicted in Figure 7.4, shows how
increasing excitation by 20% (Figure 7.4a-b) also increases the number of co-active
units in the network, as well as the amplitude of the oscillations, until some units
reach a steady state. Figure 7.4c shows how a small decrease (5%) in global
excitation stops the characteristic activity pattern from developing. In the network
associated with initial activation of the fusiform however (Figure 7.1a), a decrement
of only 2% in excitation is sufficient to prevent the activity from propagating (data

not shown).

2 -

.....

Figure 7.4: Changes in global excitation alter the characteristic pattern of activity in the
matching network. (a) Increasing excitatory weights in the network by 20%, to w = 0.42;
m = 0.78 causes transitory oscillations in the dominant sub-network. Thereafter, areas that
were previously oscillating, as well as a few other contra-lateral areas, reach a steady state.
(b) Combined initial inputs from units 1 and 6 change this pattern to some extent. For
example, oscillations appear to persist in the hippocampus of both left and right
hemispheres (units 9 and 20, where oscillations at very small amplitude are barely
visible). (c) However, decreasing the excitatory weights in the network by 5% to positive
values of w = 0.332; m = 0.617 suppressed activity in the dominant sub-network. Default

inhibitory weight values remained unchanged.
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7.3.2 Altered global inhibition (experiment 2.1)

Changing the value of only inhibitory weights in the matching network, e.g.
doubling the negative weights to -w =-0.7 and -m =-1.3, did not appear to alter
network behaviour. Likewise, decreasing inhibition in this network to one-tenth of

its original values (90% decrease) did not affect network behaviour (Figure 7.3).

However, when excitation and inhibition were altered concurrently, varying
inhibition subsequently changed the pattern of network behaviour. Furthermore,
removing inhibition from the network entirely (negative weights set to 0) appeared
to have an even greater effect compared to increasing the inhibitory weight values
to -1. For example, with input from unit 1, if all excitatory weights were decreased
by 4%, the characteristic oscillations in the sub-network of units 1, 2 and 10
disappeared. However, when inhibition was eliminated while excitation was still
decreased (w = 0.336; m = 0.624), the usual pattern of oscillations was reinstated.
Nonetheless, a different combination of positive weight values w =0.12 and
m = 0.78 (20% increase from respective baseline), which normally produced
oscillations, was unaffected by large changes in values of inhibitory weights (either
decrease to negative weight values of -1, or decrease to 0). Thus, this configuration

appears to be even less sensitive to changes in inhibition (data not shown).

7.3.3 Localised changes in the matching network (experiment 2.2)

Modelling paradigms such as the one presented here allow us to quantify the effect
of certain parameter values on the default behaviour of the network. In this instance,
we have assumed that structural deficits imply a functional change in the behaviour
of a unit, decreasing the output from the unit in question to the rest of the network.

The ability to enumerate the discrete effects of these perturbations can suggest how
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specific interactions may happen. For example, they may explain why the network
is particularly sensitive to deficits in certain units and how these deficits can be

corrected (through increased activity in other units).

7.3.3.1 Decreasing the efficacy of specific units (experiment 2.2)

The matching network is particularly sensitive to decreased weight value of 20%
(output) from either BA37 or BA24 (units 5 and 10; Figure 7.5a and b respectively).
These effects are in apposition to the absence of a notable effect while the weight
value from every other source unit (one at a time) was either increased or decreased
by 50%. The exception to this rule was area 4, where halving the weight output did
not allow the activity to propagate to the dominant sub-network. Nonetheless, the
sustainable activity in the network was more sensitive to decrement in the output

from unit 10 than from any of the other units.
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Figure 7.5: Activity fails to propagate through the matching network when the weights
from (a) left BA37 (unit 5) or (b) left BA24 (unit 10), are decreased by 20%.
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7.3.3.2 Compensation

Left inferior-temporal (unit 5) and anterior cingulate (unit 10) areas (BA37 and BA24
respectively) appeared to be the most vulnerable areas in the matching network
(Figure 7.5). Namely, a relatively small decrement in the output from these areas
prevented the characteristic, self-sustaining activity (Figure 7.1a), from developing.
The critical role of both these units may be accounted for by their pivotal role in the
propagation of activity. From an initial input provided by the fusiform (unit 6),
activity propagates through a prominent input from inferior temporal BA37 (unit 5),
allowing activity to propagate through temporal BA21 (unit 4) and frontal BA47
(unit 3), reaching the dominant sub-network, which includes frontal areas BA 46

(unit 1) and BA10 (unit 2), through anterior cingulate BA24 (unit 10).

Unlike BA24, where a decrement in its efficacy required a relatively large
compensatory increment in output of other units in the network (such as an increase
of 40% in the weight values from prefrontal units 1 or 2), reduction in activity of
BA37 was relatively easy to correct for (probably because it is not included in the
dominant sub-network or due to the distributed nature of this network). Namely, an
increase of 10% in the output of one of several units (3, 4, 8, 15, 16 and 19) restored
the characteristic pattern of oscillation. Likewise, an increase of 10% in the output of
purely visual areas (units 6-8; Figure 7.6c) appears to restore the characteristic
activity patterns and perhaps even over-compensate, whereby oscillations are now
more widespread. Nonetheless, some areas fail to compensate for decreased output
or weight values from these two units (5 and 10). For example, unit 1 cannot
compensate for decreased weight values from area 5 (not shown) while unit 5
cannot compensate for the decrement in the weight output from unit 10 (Figure

7.6a).
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Figure 7.6: Compensating for decreased output from left BA24. The initial activation is
provided by the fusiform (unit 6) while all output weights from unit 10 are decreased by
20%. (a) Doubling the output weights from area 5 fails to produce the expected pattern of
oscillations. (b) Increased output by 40% from unit 4, restores the default pattern of
activity. A similar effect occurred when compensating with either units 1 or 2 (not shown).
(c) By contrast, a small (10%) increase in weight values from left visual areas (units 6-8),
appears to overcompensate, producing oscillations in the dominant sub-network, but also

in other units, unrelated to the original pattern.

7.3.4 Findings: the matching network

A number of interesting behaviours were revealed in the matching network:

1. Relatively small changes in global excitation affected the default behaviour

of the network (Figure 7.4).
2. Inhibition does not play a key role in the activity of this network.

3. Left BA37 (inferior-temporal gyrus) and BA24 (the anterior cingulate) have
an especially influential role in the activity pattern of the matching network
(which is slightly more sensitive to decrement in the output weights from the

anterior cingulate).
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4.

It is possible to compensate for decreased output from specific areas.

Furthermore, BA37 is easier to compensate for than BA24.

An increase of 10% in output weight from visual areas (units 6-8,
compensating for unit 10) is sufficient to restore (and perhaps
over-compensate for) the default activation pattern. However, when
compensation is provided by frontal areas (e.g. BA46 or BA10), an increase of
40% in the output weight values of these units is necessary to restore typical

network activity.
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7.4 Altering network connectivity: the long-delay network

Owing to the distributed pattern of activity in this network, changing global and

local parameters did not create the extreme changes seen in the matching network.

7.4.1 Changing global excitation and inhibition (experiment 2.1)

Figure 7.7: Decreased excitation (a) and increased inhibition (b) in the long-delay network
produce little change to characteristic behaviour (Figure 7.1b). The typical pattern of
oscillations (a) is slower to develop with decreased global excitation. Increasing global
inhibition however, seems to affect the regularity of oscillations in bilateral hippocampi
(units 9 and 20) most significantly. (a) Positive weight values were increased by 20%
w = 0.315; m = 0.585. (b) Negative weight values were decreased by 50% to -w =-0.525;
-m = -0.975. Negative weight values remain unchanged in (a), as do positive weight values
in (b).
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Increasing global excitation by 20% in the long-delay network increased the
amplitude of oscillations or activated several areas at the maximum value of one.
However, these oscillations did not extend to other units that did not participate in
the characteristic pattern (Figure 7.1b). Moreover, unlike the matching network,
decreasing global excitation did not have a similar catastrophic outcome (compare

Figure 7.4c with Figure 7.7a).

Despite an initial disruption, after time-step 50 (about half-way along the X-axis),
normal network activity has been reinstated. Increasing global inhibition by 50%
seems to affect network behaviour by changing the frequency and/or amplitude of
the characteristic oscillations (see for example unit 5, Figure 7.7b), where activity of
both left and right hippocampi (units 9 and 20) may be particularly vulnerable.
Decimating global inhibition (90% decrease) caused the amplitude of oscillations in
all participant units to increase to the maximum (data not shown; see matching

network, section 7.3.2, for comparison).

7.4.2 Localised deficits and the efficacy of compensation (experiment 2.2)

Using a similar testing procedure to the matching network (section 7.3.3.1), I tried to
disrupt network activity by decreasing the weight values from one source unit at a
time. However, unlike the matching network, even substantially reducing output
from any unit by decreasing its output weight values did not prevent the
characteristic pattern from developing. The effect of localised disruption (in the
presence of global decrease in efficacy) in the matching and long-delay networks,
may suggest that the compensatory strategy in the matching and long-delay tasks
are different. This may be related to the compensatory strategies in depressive

illness, where both the activity throughout the network is often suppressed
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(Shajahan et al., 1999) and performance deficits associated with memory, when

present, appear to be accompanied by an altered pattern of neural response

(MacQueen et al., 2003).
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Figure 7.8: The long-delay network is vulnerable to (a) decreased output (weights) from
anterior cingulate (left BA24; unit 10) by 10%. This only occurs when the excitation in the
whole network is reduced by 10%, thus setting positive weight values at w =0.315,
m = 0.585. (b) Activity is resumed by increasing the weight values from one of the other
areas in the dominant sub-network, such as BA37 (unit 5) by 10%. (c) However, compared
to compensation for the disrupted activity in the matching network, weight values from
the visual areas (units 6-8) need to be considerably higher (40%) than the analogous
increase in (b), before the characteristic pattern is restored. Even then and similarly to the
matching network, restoring self-sustaining oscillations by increased output from the

visual areas appears to over-compensate.

Decreasing positive (with or without the negative) weight values throughout the
network by 10% was followed by individually decreasing the weight values from
every source unit, following the procedure described in the matching network
(section 7.1.2). This highlighted the sensitivity of this network to decreased weights
(representing reduced activation as a result of structural or functional abnormalities)
from left BA24 (unit 10; Figure 7.8a) and surprisingly, the left GH (by 10% and 20%

respectively).
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The latter was unexpected because unlike the key participants in the dominant
sub-network (units 3, 4, 5 and 10; all linked by excitatory reciprocal connections), the
GH is excited by BA37 (unit 5) yet inhibited by BA21 (unit 4), two of the constituents
of this excitatory network (see Figures 6.2 and 6.9). Furthermore, GH does not
directly excite any of the constituents of this sub-network nor trigger the activity of
this sub-network when it is set in a,. Nonetheless, an analogous decrement of 20% in

weight values from any other source unit could not disrupt network activity.

7.4.3 Findings: the long-delay network

Further to the effect of global changes in excitation and inhibition on network
behaviour, which are more constrained in the long-delay network due to its

relatively distributed pattern, I would like to highlight the following phenomena:

1. Network activity is sensitive to disruption due to the effect of a single unit
only in the presence of global decrease (-10%) in excitation. If default weight
values are used (absolute values: w = 0.35; m = 0.65), even a large decrement

in the output weight values does not affect the behaviour of the network.

2. Visual areas (units 6-8) can compensate more easily for decreased efficacy of
the anterior cingulate (BA24) and inferior temporal gyrus (BA37) in the
matching network (with a 10% increment), compared to their ability to
compensate for the left anterior cingulate and GH in the long-delay network

(requiring a 40% increment in their efficacy).

Sections 7.5.1-7.5.2 describe additional experiments performed on both networks, to

prove that these behaviours can be generalised and are not unique to only a limited
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range of weights and values of a, (although values used here conform to McIntosh et

al., 1996).

7.5 Specificity of parameter space determines activity

patterns in both networks

7.5.1 The effects of initially activating several areas upon network activity

The cumulative effect of more than one input unit being set to 1 in a; of the matching
network, achieved the expected activation of either one or more sub-networks. Since
the dominant force in this network is excitatory, no specific combination of initial
activations could exert an inhibitory effect. In the long-delay network the activation
of more than one unit changed the pattern of oscillations in the other units,
however, this was typically expressed in the increase of either the amplitude or the
frequency (or both) of oscillations. Interestingly however, if units 6 and 17 are
co-activated in the matching network, the activity peaks and dies down very quickly
(thus there is no chance for the activation of the dominant cluster to develop, since
unit 4, which provides the link to units 1, 2 and 10 in the dominant sub-network (see
Figure 6.7) is strongly inhibited by unit 6. Similarly, if an analogous co-activation of
units 5 and 3 is set in a, of the long-delay network, the frequency of oscillations in
the dominant sub-network appears to be compromised to a certain extent (results

not shown).
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7.5.2 Testing the specificity of weight values in the matching and long-delay

networks

Finally, to test the notion that activation in this network was uniquely linked to the
specific weight values or range of values (upper and lower limits) set in the effective
connectivity model, I tested the network with other combinations of weights, to see
the effect that changing these values may have on network behaviour. Usually
activity occurs with a combination of either w = 0.1 or 0.35 and m = 0.65. Decreasing
these values by 0.05 stopped the characteristic activity patterns entirely. Therefore I
would conclude that the dynamical activation of the network (subject to setting of
the other activation parameters described in chapter 6) is dependent upon the upper
limit of the specified range, while the lower limits cannot generate self-sustaining
activity. Figure 7.9 shows the activation in the matching (a) and the long-delay (b)
networks, with higher weight values. Increasing the weight values appears to
recruit other units (that may belong to other clusters or sub-networks). However,
when excitation in these networks is increased further, it is difficult to appreciate the
more delicate interactions between different clusters since the activity is too
widespread. Nonetheless, it should be noted that other aspects of network
architecture (e.g. shape and limits of the sigmoidal) could be changed to restore

characteristic activity after weights have been globally affected.
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Figure 7.9: Testing the specificity of activation in the (a) matching and (b) the long-delay
networks. Increasing the magnitude of all weight values in both networks extended the
recruitment of units that were not normally activated by the default weight values.
Absolute weight values for both plots: w = 0.5; m = 0.8.

Finally, section 7.6 suggests alternative techniques for evaluating activity in the
matching and long-delay networks, based on the intrinsic (anatomical) connectivity

patterns therein.

7.6 Clustering techniques: functional organisation?

The activity of the matching network was much less sensitive than the long-delay
network to changes in the value of inhibitory weights despite the comparable
number of excitatory and inhibitory connections in both networks. Several

hypotheses could account for these differences:
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First, I tried to establish if there was a difference between the overlap of excitatory
and inhibitory connections in the matching and the long-delay networks. A
significant difference could suggest that while the number of connections may be
similar, the connectivity patterns may differ and therefore the loci of activity and
overall network behaviour will invariably differ. Furthermore, if the degree of
overlap were much higher between the excitatory than between the inhibitory
connections, it may explain why excitation appears to affect both networks equally

while inhibition does not.

Second, the distribution of either overlapping or disparate excitatory and inhibitory
connections could suggest whether either polarity is clustered in specific regions of

either network.

Third, the qualitative differences exhibited by these network may be related to the
unique functional clustering in each. Specifically, the co-activation of clusters of
units and the extent or nature (feed-forward or recurrent) of these functional
clusters may explain their different behaviours. Table 7.1 provides a reference for

the excitatory-inhibitory weight-ratio in the matching and long-delay networks.

Network Excitatory connections (E) Total (E) Inhibitory connections (I) Total (I)

w m -W -m
matching 23 23 46 12 9 21
long-delay 25 24 49 14 5 19

Table 7.1: The number of excitatory and inhibitory connections in the matching and
long-delay networks.
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7.6.1 The overlap between excitation or inhibition in the connectivity

matrices

Testing the first hypothesis presented in section 7.6, Figure 7.10 plots the location of
excitatory connections (a) in the matching network, compared to (b) the long-delay
network. Likewise, the inhibitory connections in the matching compared to the
long-delay (c, d) networks are plotted. The number of non-zero (NZ) elements does
not differ substantially between the respective excitatory and inhibitory connectivity
matrices in either network, indicating that this is not an informative measure of

functional clustering in these networks.

Excitation Inhibition
a . : b, - P R ]
E - LA . 3 - L] -8 . ) - 3
. L] “ - .
- - - - L} . . L L] L - -
- - -e - L - o L
- - e L - b - -
| - + | -
. LR o LR ] |
LL] L] wrese - e o]
1} LR " -
) « . . o] 3 .
2| 3] L]
- - - - - - 4] -
" . L 8 | L . - 8| L] R
e - - - 0| - - ALl LR ] -
- LR LRl - .w 7|
- - - - - 18 -
- 8| -e 18]
=) o x| - - B - -
n - - o LI - n - L] - n| L]
= o 13 . p A
e R O i B BT e TR iy TR e S
Matching Long-delay Matching Long-delay

Figure 7.10: Excitatory and inhibitory connections in the matching and long-delay
networks. The scatter plots show non-zero (nz) elements, for excitatory (a,b; depicted in
red) and inhibitory (c,d; blue) weights in the matching and long-delay networks
respectively. These plots do not differentiate between weak and medium connections.
Area numbers are plotted along each axis with Y-axis representing the source area and

X-axis representing the target area.

It seems therefore that the differences between these networks cannot be attributed
to the ratio between excitatory and inhibitory weights, nor to the degree of overlap

between weights of either polarity within these networks, since the ratio of
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excitatory and inhibitory weights throughout the network is similar. The excitatory
and inhibitory patterns do not overlap exactly, however differences between them
seem minor. Furthermore, I do not believe that the distribution of weights (Figure

7.10) is informative.

7.6.2 Clustering in the matching network

The functional groupings observed in the networks may, to a certain extent, depend
on the structural organisation of the network. In sparse matrices such as the
matching and long-delay networks, it is often helpful to change the ordering of the
rows and columns. This operation is aimed at grouping units that are closely
connected, and reducing the band-width of the matrix by placing reciprocal

connections near to the diagonal axis.

I expected clustering in the matching network to highlight mainly the excitatory
cluster comprised of units 1, 2 and 10. Further, I expected this cluster to be related to
the input from unit 6. These were indeed highlighted (Figure 7.11b). Examination of
the matrix containing only positive values also highlighted a second cluster in the
right hemisphere (Figure 7.11c). The highlighted clusters in the matrix of positive
weights only (top left and bottom right), were functionally independent and were
thus grouped by the clustering algorithm at either end of the matrix. However,
re-organisation of the matrix with negative weights only did not highlight any

functional clusters.
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Figure 7.11: Re-plotting the matching network using the RCM algorithm. (a) All weights
from the matching network; original arrangement of units. (b) When both positive and
negative connections are arranged using RCM along the diagonal axis, the dominant
sub-network is highlighted (white circle). (c) This classification hierarchy is preserved
when only excitatory yet not (d) exclusively inhibitory weights are arranged along the
diagonal axis, effectively reducing the bandwidth. Excitatory weights are depicted in
shades of red, while inhibitory weights are in blue (indicated by a scale-bar). The relative
arrangements of areas (numbered) appear above and on the left of each plot (see also
Table 7.2). Other circled clusters are described in the text.

Grouping of the positive weights only also revealed two reciprocally connected
clusters, either side of the diagonal line (Figure 7.11c). These units (circled in the

centre of the matrix, outside the two main clusters) appear to mirror each other. To
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the left (number of excitatory on the left central cluster NEL = 14; overall number on
the left NEL =24) and right (number excitatory right central cluster NER = 12;
overall number on the right NER = 22) of the diagonal axis, expressing the clustering
or similar connectivity patterns of neighbouring units. 6 reciprocal connections exist
among units in the large clusters, whereas the small clusters on each side of them

have 3 reciprocal connections each (12 in total).

Grouping of the negative connections (Figure 7.11d) highlighted a cluster (circled) to
the right of the main diagonal, however distribution between left (number of
inhibitory weights on the left NIL =10) and right (number inhibitory right;
NIR = 11) are fairly equal. When the RCM algorithm was applied to both excitatory
and inhibitory units (Figure 7.11b) at once, most of the weight were on the right side
of the leading diagonal (NER = 26; NIR = 14), compared to the left (NEL = 20;
NIL = 7). It seems therefore, that the number of units on the right of the leading
diagonal is considerably larger than the number of units on the left, even though the
algorithm appears to have achieved its aim in reducing the bandwidth of the matrix.
Nonetheless, there is no correspondence between the activity observed in the
physiological experiments (chapter 6) and RCM clustering of both positive and
negative weights (Figure 7.11b), while RCM using only positive weights (Figure

7.11¢) was more successful.

Similar results were achieved with the MDO algorithm (Table 7.2). This algorithm
grouped together areas units 5 and 10, whose efficacy was found to be most likely to
disrupt network activity. However, other groupings observed from the

physiological experiments have not been highlighted in this analysis.
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7.6.3 Clustering in the long-delay network

When the RCM algorithm was applied to the long-delay network, groupings of
units appear to be larger and both re-ordering algorithms (RCM and MDO) have
highlighted them with greater success (Table 7.2). Although the 3 main units were
not grouped together using the RCM analysis, the algorithm grouped together GH
(unit 9) and several dominant areas (e.g. units 2, 4, 5 and 10). This area (GH) could
not activate the network on its own, yet decreased weight output from it disrupted
network activity if overall excitation was lowered. The MDO method also grouped
together the most active units with GH (placing area 3 at the top of the ordered list,
when the matrix containing only positive weights was ranked. The (secondary)
visual input area (unit 6) was linked to the dominant activity cluster by the MDO

examination of the matrix containing only negative weights.

Clustering only positive weights in the long-delay network (Figure 7.12c) reveals
different characteristics to the matching network. First, a central cluster is
highlighted, with 1 reciprocal connection. The large continuum of innervating areas
are highlighted to the left of the diagonal (NEL = 17; overall number on the left
NEL = 27). On the right, a cluster with a similar orientation has a much smaller
number of connections (NER = 6; overall number on the right NER = 22). The
clustering of negative weights in this network (Figure 7.12d) appears to have been
most successful among all the examples above (both in the matching and long delay
network) at reducing the bandwidth along the diagonal axis. There is little
reciprocity among these connections however, and the left (NIL = 10) and right

(NIR = 9) distribution is fairly equal.

The large elongated clusters either side of the diagonal have 3 reciprocal
connections, with 3 more such connections remaining outside the highlighted areas.

Finally, the clustering algorithm appears to have highlighted two large reciprocal
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clusters (Figure 7.12b), which include units 10, 2, 9, 4 and 5. Surprisingly, unit 9 was
included in this grouping, even though it appears to be outside the main excitatory
loops. In the joint (excitatory and inhibitory) clustering map of the long-delay
network, in contrast to the matching network, the weights were fairly evenly
distributed either side of the leading diagonal (NEL = 23; NIL = 10; NER = 26;
NIR =9).
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Figure 7.12: Application of the RCM algorithm to the long-delay network. Dominant
clusters are highlighted (see Figure 7.11 for conventions).
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7.6.4 Summary: comparison of relative clustering profiles in the matching

and long-delay networks

The clustering analysis highlighted the following main points:

1. The matching network has twice the number of directly reciprocal excitatory
connections compared to the long-delay network. The significant number of
reciprocal connections in the matching network, characterise its activity on a
two parallel (2D) strata, where activity in one cluster of units is immediately

reflected in the activity of another.

2. Major constituents of the dominant networks have been highlighted by both
RCM and MDO algorithms. However, I believe that the activity of the
networks could not have been predicted a-priori by looking at the clustering
configurations. Therefore, groupings in Table 7.2 are on the basis of prior

knowledge (exploring structural and dynamic stability).



Table 7.2: Clusters in the matching and long-delay networks, highlighted by the RCM and MDO algorithms. Areas were grouped into frames
based on functional organisation. The framed areas are suggested to be functionally-related, based on previous results (sections 6.5-6.6). If areas
are closely coupled (for example, the dominant network in the matching network, highlighted in the RCM analysis of positive weights only),
areas that are not functionally included in a cluster (e.g. area 7) were included in the frame. Unit numbers and corresponding area names are
noted at the top of this table. The numbers chosen for different brain areas are arbitrary, however topographical organisation is generally

preserved (see Figure 6.2).

REORDERING THE MATCHING AND LONG-DELAY NETWORKS, USING THE REVERSE CUTHILL-MCKEE AND THE MINIMUM DEGREE ORDERING ALGORITHMS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
LBA4 LBA10 LBA47 LBA21 LBA37 LBAISv LBA19d LBA1718 LGH LBA24 LBA23 RBA46 RBA10 RBA47 RBA21 RBA37 RBA18v RBA19d RBA17/18 RGH RBA24 RBA23

Matching
RCM
All weights 19 17 13 15 16 6 18 8 14 22 12 20 4 5 7 9 3 21 1 [ 2 1 10
Positive [1 7 10 2 | 3 20 8 11 9 4 14 6 19 5 15 17 16 18 [ 21 12 22 13
Negative 3 5 1 2 12 22 16 13 18 14 15 7 21 20 11 10 |9 4 6 | 8 17 19
MDO
All weights 7 12 6 18 19 21 13 16 17 8 L1 2 1 3 9 11 4 15 20 2 5 10 | 14
Positive [ 12 22 13 21 | 17 8 5 20 3 1 6 18 19 15 11 16 9 |2 10 | 14 4 7
Negative 3 4 5 7 13 11 21 9 22 14 10 20 | 1 2 6 | 8 12 15 16 17 18 19
Long-delay
RCM
All weights 6 1 8 |10 2 9 4 5 17 ] 7 19 11 3 20 15 16 21 18 22 14 12 13
Positive 21 13 2 14 4 20 12 22 10 3 11 9 16 15 19 18 [ 1 5 17 Z 6 8
Negative 9 20 21 12 13 22 14 15 16 | 1 5 4 6 2 10 ] 11 18 7 8 3 17 19
MDO
All weights 18 8 17 1 21 13 6 19 1220 15 22 16 3 7 | 2 5 9 14 4 10 | 1
Positive |13 21 22 12 | 6 19 16 20 15 18 7 8 17 1 11 2 9 10 5 4 14 3
Negative 5 7 10 13 4 16 8 11 9 20 22 14 15 1 2 3 6 | 12 17 18 19 21
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7.7 Discussion

Further to setting the basic framework for dynamical modelling of the effective
connectivity networks described in McIntosh et al. (1996) and outlining the typical
behaviours in the matching and long-delay networks in chapter 6, I proceeded to
investigate the physiological (functional) and anatomical (structural) properties of
the networks. Studying the effect of specific changes on the default connectivity
pattern was taken to express the functional implications of discrete abnormalities
associated with affective disorders. Some of the differences between the matching
and long-delay networks, such as the different response of the networks to altered
inhibition, could not be predicted without modelling the dynamics in these

networks.

The functional and structural organisation of these networks can now be associated
with specific values of different connections. The propagation of activity through
these networks, has been manipulated using both local and global perturbation
techniques. Evidently however, these observations (including putative differences
between matching and long-delay networks) are limited by (and may be a product

of) the parameters set in the basic framework.

7.7.1 A summary of the main findings

The analysis I used in this chapter, confirmed some of the hypotheses outlined in

section 6.2.1. Findings are presented in order of importance:
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1. Inhibition does not play a significant role in the matching network. The
long-delay network however, is equally affected by changes in global

excitation and inhibition, exhibiting resilience to small changes in either.

2. Activity in both networks is particularly sensitive to reduced output from
left anterior cingulate (unit 10; BA24). Nonetheless, the long-delay network is
only affected by localised deficits (including reduced output from BA24 and
the left GH) when the global excitation is reduced. This finding is further to
hypothesis 3, since the long-delay network was only vulnerable to disruption

in those areas when global excitation was reduced.

This finding is particularly interesting, since the left anterior cingulate (BA24) is
vulnerable in unipolar and bipolar patients with a family history of affective

disorders (Drevets et al., 1997; Price, 1999).

3. Compensation, termed as restoration of the typical pattern of oscillations, is
possible in these networks, however with different results. Visual areas can
readily compensate for disrupted activity in the matching, but not in the
long-delay network. Conversely, the prefrontal cortex is more effective at

compensating for disrupted activity in the long-delay network.

4. Confirming hypothesis 1b in chapter 6, the minimal constituents in the
matching and long-delay networks suggested different connectivity
structures. Whereas the matching network appears to have relatively
dominant feed-forward characteristics (leading to activation of the main
loop), the long-delay network is more strongly recurrent. In this chapter,
these different connectivity structures implied the comparatively robust

response of the long-delay network to small global or localised changes.
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These results did not confirm hypotheses 2 and 5, since the dynamical activation of
both networks revealed that BA46 and BA10 may indeed be functionally related
(section 6.6.3), consistent with the findings of Ranganath et al. (2003) who reported
that anterior middle frontal gyrus (BA10/46) was activated during the recognition
phases of both working and long-term memory tasks, while ventrolateral (BA47)
and dorsolateral prefrontal (BA9/46) cortices were associated with encoding. In the
current study, BA47 was functionally distinct and the activity of this area was more
apparent in the long-delay network. Furthermore, BA46 and BA10 in both networks
were activated predominantly through concurrent input from BA24 and therefore

largely dependent on its unimpaired function.

7.7.2 Functional clustering

In the matching network, visual units 8, 6, 17 and 19 appear to be grouped.
However, only units 6 and 17 are able to trigger activity in this network and clearly,
this is not a dominant cluster in its own right. The main activity in this network is
associated with prefrontal areas 1, 10, and 2 and to some extent 14, 5 and 4. An
independent cluster is formed in the right hemisphere by units 12, 13 and 22.
Activity in this cluster is triggered only when global excitation in the network is
increased. The long-delay network is governed by the dominant activity of units 3,
4, 5 and 10 (thus shifting slightly the dominant activity in the matching network).
Visual units 6, 7, 8 and 17, 18, 19 are still grouped together functionally; however in
this network, despite their extended connectivity, they are less influential. Finally, in

the right hemisphere, cluster 13, 12 and 21 is still apparent.

Functional delineation through simply examining the connectivity patterns or using

classification algorithms such as RCM and MDO, can suggest a different way of
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grouping units into clusters. The RCM algorithm has highlighted a large number of
directly reciprocal connections among the excitatory weights in the matching
network (twice the number in the long-delay network), which may explain the
dominant role of excitation in this network. However, the algorithms used here only
account for non-zero elements; they do not account for the actual value of weights,
which seems to be crucial in these networks. Furthermore, ignoring the exact weight
values in the networks will not enable the study of perturbing excitation or
inhibition therein. Therefore, it may be desirable to discern interactions of

sub-networks or a number of areas using activity, rather than connectivity alone.

7.7.3 Visualisation of activity

Graphical representation of architecture and activity in these networks has been
instrumental in highlighting both the complexity (Figure 6.2) and the simplicity (e.g.
Figure 6.7) of these dynamic interactions. Simultaneously plotting the activity of all
areas encourages an awareness of change or novelty in the behaviour of network
constituents over time. However simply viewing these plots cannot always reveal
more complex interactions between specific constituents (Figure 6.10). Thus,
plotting the activity of two prefrontal areas against the activity of GH (section 6.6.3),
under two different conditions, (first including then excluding input from visual
areas) highlighted discontinuity under the latter condition. One biological
explanation for this could be putatively associated with the constant jitter associated
with the activation of the visual system, where the continuous movement allows
more efficient encoding of the visual scene. However, this is a speculative

interpretation of the findings.
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7.7.4 Caveats

Modelling inhibitory and excitatory connections in this network was suggested to be
emulating inhibition (i.e. GABA efficacy) and excitation (e.g. glutamate) in the brain.
This assumption may of course be incorrect, since anticorrelations (expressed as
negative path coefficients) are not likely to represent direct inhibition and
furthermore, the connections between cortical areas are reported as mostly
glutamatergic (Somogyi et al., 1998). Moreover, the units in this effective
connectivity network (McIntosh et al., 1996) are based on previous analysis of PET
data (Haxby et al., 1995) and were sufficient to describe the data. However, certain
latent interactions may be present yet not accounted for by the effective connectivity
model. For example, sub-cortical structures such as striatum and thalamus are
absent from this model, yet may be important for performance of this task (Rolls,
1994; Barrett et al., 2001). Furthermore, the striatum may also be functionally related
to the dorsolateral PFC, since TMS over the latter area increased dopamine release in
the caudate of healthy volunteers (Strafella et al., 2001). Though not necessary to
describe the PET data, their presence in my models may have changed both the
dynamical activity (perhaps modifying the excitatory loop between prefrontal cortex
and anterior cingulate in the matching network) as well as the response of the

network to changes in local or global efficacy.

7.7.5 Inferences

The exact nature of the interplay between excitation and inhibition in depressive
illness is unclear. Though there are numerous findings reporting deficits in different
neurotransmitters and neuromodulators, there is no clear delineation between these

deficits and behavioural or cognitive dysfunction. I introduced global changes in
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excitation and inhibition to examine whether the matching and long-delay networks
have a similar response to these perturbations. Furthermore, I wished to associate
these perturbations with deficits, such as decreased cortical excitability in depressed
patients (Shajahan et al., 1999). In this sense, I would like to argue that decreased
cortical excitability may have been expressed as decreased positive correlations
among brain areas in the matching and long-delay networks. Nonetheless, although
the various perturbations of the network in chapters 6 and 7 were discussed in the
context of the neurobiological deficits, I would suggest that these positive and
negative correlations (termed excitation and inhibition) may express coherence, or
the absence of it, among different regions. Therefore, if we can accept that a natural
activation or oscillatory pattern can be both task-independent and sustainable, this

pattern was differentially affected in the matching and the long-delay network.

Hence, this study suggests a fundamental difference in the manner of neural
recruitment in tasks that do (long-delay) or do not (matching) involve a memory
component. During a relatively easy task, it is possible that presence of the positive
correlations is instrumental for successful recruitment of task related areas, while
any change in negative correlations is insignificant. By contrast, in the long-delay
network both positive and negative correlations must be maintained, for successful
completion of the task. Furthermore, the long-delay network is relatively robust to
localised perturbation, however this resilience is expeditiously lost when excitation
throughout the network is decreased. Thus, these results suggest a putative
triangulation between the decreased excitability, specific working-memory deficits
and cell loss (in the anterior cingulate), which are all associated with depression.
Finally, we cannot directly relate deficits in glutamatergic excitation or GABAergic
inhibition to perturbing the efficacy in the networks. However, the experimental
decrease in global efficacy (either excitation or inhibition) in the modelling

paradigm may be associated with white matter lesions even in mildly ill bipolar and
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unipolar patients (Sassi et al., 2003), which may suggest an impaired intra-cortical

connectivity (Kumar and Cook, 2002).

7.7.6 Future work and conclusions
Further to this project, I would like to pursue the following ideas:
1. Associate the network with performance of the delay match to sample task.

2. Implement learning in this network, to see whether the actual encoding of
specific patterns in the matching network architecture may develop into a

connectivity pattern resembling the long-delay network.

In sum, I believe that neither the characteristic activity patterns nor the different
response of the matching and long-delay networks to perturbations could be
observed by looking at the connectivity patterns alone. Furthermore, functional
grouping may have been suggested by the close excitatory coupling among units.
However, the coupling between GH and PFC in the long-delay network (Figure
6.11) is not apparent from the connectivity matrix, albeit suggested by the effective
connectivity study (McIntosh, 1999). This project was informative and instructive on
a number of levels, including the dynamical examination of a static effective
connectivity model; the grouping of specific units into functional clusters using
different reordering algorithms and finally, the outline of specific interaction or

clusters within these networks.



Chapter 8

Conclusions

This thesis has been an exploration of the scientific questions in the context of
various techniques that can be used for the study of different facets of
neurobiological abnormalities associated with depression. This chapter brings
together the contextual and conceptual aspects of my work. The neuroimaging
related experimental projects (chapters 4 and 5) in the thesis have both inspired and
instructed my modelling endeavours (chapters 6 and 7). Without studying the
neural activity of bipolar and unipolar patients, I would not have been aware of the

rationale upon which my models can be based or the implications of my findings.



Conclusions 229

After briefly summarising my major findings, I will describe my outlook on this

subject, reflecting on the insight I have gained through the different studies.

Establishing the neurobiological basis of cognitive vulnerability in mood-disorders
has been an important part of my thesis. I was involved at different stages of data
analysis using datasets from two fMRI studies. In the first study, I examined
neural-activity and its behavioural correlates in bipolar patients performing the
Stroop task. In the second study, I computed task-independent correlations between
seed-voxels and the whole brain, looking for significant between and within-group

effects in unipolar patients performing the N-back task.

8.1 Neuroimaging data analysis

Neural activity in bipolar patients and healthy control subjects was examined
during performance of the Stroop task. Bipolar patients are known to be particularly
impaired in tasks involving attention (Harmer et al., 2002), a cognitive capacity

which can be investigated by the Stroop task.

8.1.1 Depression in euthymic bipolar patients
The Stroop study (chapter 4) highlighted the following points:

1. The task-related network in bipolar patients differs both qualitatively
(different areas) and quantitatively (smaller network) from healthy control

subjects.
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2. Despite using different networks, patients performed the task as well as

control subjects.

3. The subjects’ anxiety levels were associated with activation of the

hippocampus in control subjects and cerebellum in patients.

4. Neural deficits in bipolar patients (i.e. deactivation of the orbitofrontal

cortex) may be normalised by depression.

8.1.2 Implications

Confirming the findings of Blumberg (2003), we found that hypoactivity in
orbito-medial prefrontal cortex (OMPFC) persists beyond remission in bipolar
patients. This could delineate this area for purposes of diagnosis or as a possible
candidate for directed therapy. For example, the effects of activating this area can be
investigated in an analogous manner to activating dorsolateral prefrontal cortex
(DLPFC) using transcranial magnetic stimulation (TMS) in depressed patients with

unipolar disorder (Shajahan et al., 2002).

However, in the absence of an explicit baseline, in section 4.5 we suggested two
alternative hypotheses to explain deactivation of OMPFC (see Figure 8.1). These are
suppression of the OMPFC during the Stroop condition or, alternatively, activation
of this area during the control condition. The former implies a prevalent pattern of
hypofrontality in this group, which has also been observed in patients with
schizophrenia and unipolar illness (al-Mousawi et al., 1996; Elliott et al., 1997). The
latter suggests the opposite pattern of hyperfrontality, where OMPEC is active

throughout the task yet suppressed during the Stroop condition. These hypotheses
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may benefit from further examination in the context of both clinical and modelling

studies.

I believe that the most intriguing finding in this study showed that depression
appears to normalise OMPFC activation. This suggests that depression in bipolar
disorder can be an adaptive strategy, which returns a hyperactive orbito-medial
network (if the second hypothesis is indeed correct) to baseline. However, it is
unclear whether symptoms of mania could be ameliorated by deactivation of this
area and furthermore, the role of the OMPFC network or structures associated with
it (such as the anterior cingulate, which is overactive in depressed patients (Mayberg

et al., 1999)) has not been addressed.

8.2 A network approach to studying neural activity

Memory impairment is often associated with depressive illness (Zakzanis et al.,
1998), which may be related to hippocampal deficits (MacQueen et al., 2003).
Task-independent correlations across the brain may also be impaired in unipolar
patients. These were examined in unipolar patients performing the N-back task, as a
measure of functional connectivity that is unrelated to task performance as such.
This investigation searched for characteristic differences in the patterns of
connectivity between depressed patients and healthy controls, seeking out both

global differences and areas where one group shows a stronger effect.
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8.2.1 Functional deficits and compensatory strategies in unipolar patients

Examining the functional connectivity in unipolar patients and healthy controls, I

found the following (chapter 5):

1. Patients show a significantly reduced pattern of correlations (in terms of
number of voxels, as well as cluster size) across the brain, compared to

control subjects.

2. Patients show a significant effect of fatigue across a lengthy experiment,

compared to healthy controls.

3. Patients show a relatively reduced correlation between the cingulate (BA24)
and prefrontal cortex (PFC; BA10), as well as between parietal lobe and BA6,

compared to controls

4. Most importantly: patients show a stronger correlation than controls
between the parietal lobe and visual areas (the lingual gyrus), possibly

suggesting a compensatory strategy.

8.2.2 Compensation and cognitive deficits

This study examined task-independent correlations in neural activity, comparing
depressed patients and healthy controls subjects. Following the rationale of Lowe et
al. (1998), we argued that computing correlations between task-associated areas may
erroneously highlight coincidental activation in remote regions that may respond to
the task independently, rather than forming a functional network. Our findings
therefore suggest that global suppression in depressive illness may hinder task

performance by reducing the ability of regions to correlate rather than respond to
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stimuli as such. Further, stronger correlations between visual areas and the
task-oriented seed-voxels we used suggested a constant, task-independent
coherence of the visual system with prefrontal areas. However, as well as suggesting
compensation for cognitive deficits by stronger activation, this pattern may imply a
global pattern of suppression. Therefore, it is possible that hypoactivity is pervasive
throughout the cortex. Thus, contrary to the hypothesis I promoted in chapter 5,
stronger correlations between the residuals in task-related areas and visual cortex
may suggest the absence of de-coupling (between parietal and visual areas) rather

than the presence of compensation.

8.3 Computational modelling

To complement my studies of neuroimaging data, I conducted various experiments
using the neural-connectivity architecture proposed by McIntosh et al. (1996) for a
working-memory task. The delayed match to sample task was used in this study,
including data from a PET experiment (Haxby et al., 1995) where 4 experimental
conditions were tested. In a visual task, subjects were asked to correctly identify a
previously presented stimulus either immediately after its presentation (a
perceptual matching condition) or following short, intermediate or long-delay
periods. Dynamic modelling of the effective connectivity networks allowed me to
investigate two of the architectures suggested by these authors, representing the
matching and long-delay experimental conditions, from a global perspective
(chapter 6). Further to this, I perturbed the default configuration of these networks
and established putative links between structural abnormalities in depression and

the different patterns of activity in either (chapter 7).
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8.3.1 Modelling neuroimaging data

The first task I undertook was turning the effective connectivity networks in
McIntosh et al. (1996) into dynamical models. These models highlighted the

following differences between the matching and long-delay networks:

1. The matching network has stronger feed-forward characteristics compared

to the recurrent nature of the long-delay network.

2. Dominant sub-networks are apparent both in the matching and long-delay
networks. The activity of the main network constituents in the long-delay
network has a longer and more complex periodicity than in the matching

network.

3. In the long-delay network, there is a unique relationship between the left
hippocampus (GH) with left BA46 (middle PFC) and left BA10 (inferior PFC)
but not BA47 (ventral inferior PEC). All three areas (GH, BA46 and BA10)
were not involved in the dominant loop and furthermore, this relationship
was unique and not readily observable by looking at the activation of these

areas over time.

8.3.2 Neural deficits and compensation

The subsequent experiments tested how perturbing global and local parameters
affected the behaviour of the matching and long-delay networks, suggesting the

following differences:

1. Unlike the long-delay network, the matching network is unperturbed by

changing global inhibition levels.
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2. The sustainable activity in both networks is sensitive to decreased output
from left anterior cingulate (BA24; where structural deficits were observed in
unipolar and bipolar patients with a family history of affective disorders

(Drevets et al., 1997)).

3. The activity of the long-delay network was disrupted only when global

activity in the network (expressed through weight values) was decreased.

4. Restoring the sustainable activity pattern (once it was disrupted) was more
easily achieved with increased activity from visual areas in the matching
network. By contrast, prefrontal and temporal areas were more likely to

compensate for a similar disruption in the long-delay network.

8.3.3 Modelling psychiatric disorders

In the context of the thesis, the different perturbations to network activity
highlighted the anterior cingulate as a potentially vulnerable area both in the

matching and the long-delay networks.

8.3.3.1 The anterior cingulate and depression

Both in depression and in bipolar illness, it is unknown whether structural
abnormalities in the cingulate (Drevets et al., 1997) are the cause or the effect of
specific mood or cognitive deficits, nor is it clear which depressive symptoms may
be associated with this particular deficit. The decreased output from the cingulate
(BA24) in the matching and long-delay networks was the only instance where

decreased output from one region disrupted the behaviour of both networks in an
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analogous manner. This may be a consequence of the connectivity structure
imposed on these networks, strategically placing BA24 in the intersection between
the dominant sub-network and the units representing PFC. However, it may suggest
that in the presence of this specific structural deficit in depression, compensatory

strategies may differ in the perceptual-matching and long-delay (working-memory)

tasks.

8.3.3.2  The hippocampus and depressive illness

Interactions between GH and PFC (McIntosh et al., 1996) were suggested to support
maintenance of an encoded pattern in working-memory. Structural vulnerability in
GH, as well as in the anterior cingulate, have often been associated with depression
(Shah et al., 1998; MacQueen et al., 2003). The unique interplay between GH and
both BA46 and BA10 suggests that deficits in hippocampal activity are most likely to

affect these areas.

8.4 The power of numbers

The number of patients in neuroimaging studies is predominantly limited by
financial constraints. Performing an fMRI experiment can cost thousands of pounds,
even for small subject groups. It therefore seems important to investigate datasets
beyond the first-level analysis of straightforward functional localisation. It also
seems appropriate to make full use of the available data, combining different
analytical and modelling techniques to study various aspects of the data (e.g. study
aspects of activation or connectivity using generative models), testing specific

hypotheses. Further, although it is certainly beneficial to increase sample sizes in
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neuroimaging studies, it is also valuable to apply several complementary techniques
to a given dataset to maximise the utility of the data. Thus, rigorous and
multifaceted analysis with larger sample-sizes will render the most reliable results.

The next section gives an example of this approach.

8.4.1 Case study: a computational model of neural activity in bipolar patients

performing the Stroop task

The experimental study I analysed (chapter 4) showed that neural activity in bipolar
patients differs from the activation in healthy control subjects, despite comparable
task performance and reaction time. The study highlighted activation in the
orbitofrontal and medial prefrontal cortices (OMPFC) as a potential correlate of
mood in bipolar patients, showing that depression in these patients was associated
with normalisation of activity in these regions. The deactivation of these areas may
be related to the activity of the dorsolateral and ventrolateral prefrontal cortices
(DLPFC and VLPEC respectively) in healthy controls during the Stroop task.
However, it is unclear whether VLPFC and OMPFC, activated by control subjects
and deactivated by bipolar patients during the Stroop task, may have been involved
in a process of mutual inhibition with DLPFC in bipolar patients and therefore

activation of neither was apparent.

We argued that activation of OMPFC may have been attributed either to active
suppression from other regions during the Stroop condition or, alternatively, with
deactivation during the control condition (see section 4.4.7 for a full account of our
hypotheses, depicted in Figure 8.1). In the absence of a rest condition in the
experimental paradigm, it was impossible to ascertain which of the two hypotheses

may best account for brain activity in bipolar patients. Furthermore, it is unclear
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how the modification associated with depressive illness may be related to the

correlations we found between BDI scores (measuring depression, see section 4.2.1)

and the activity of the OMPFC.
a b
suppression during activation during depression
Stroop condition control condition ,
control  Stroop baseline
r | [— | ¥ | | A J _| I | | A |AV T I_ baseline
depression i |
Hvpothesis 1 Hypothesis 2

Figure 8.1: Alternative hypotheses for the activation of the OMPFC in depressed and
euthymic bipolar patients, performing the Stroop task (repeating Figure 4.12).

The next section will therefore outline one (of several) possible modelling
framework for investigating some of these questions, by proposing a simple

architecture where mutual inhibition (suggested by hypothesis 2) can be addressed.

8.4.1.1 Proposed modelling framework

In its simplest form, the model (Figure 8.2) will contain two mutually inhibitory
areas, receiving excitatory input from other cortical regions. These areas will
represent interaction between OMPFC/VLPFC and DLPFC during the Stroop task

in bipolar patients. I would like to test the following:

1. Explore the relationship between initial activity, continuous input and

changing inhibition on network dynamics.

2. Investigate the effects of changing the values of afferent excitatory
connections on mutually inhibitory units, varying both levels of excitation

and inhibition.
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3. Investigate the effects of synchronous and asynchronous input to the afferent

units on network dynamics.

Further, I would like to test the discrete effects of VLPFC on network activity, by
incorporating anatomical constraints into the model. Thus, superior temporal gyrus
(which was activated by bipolar patients during the Stroop phase of the task) can be
included in this framework either providing input to VLPFC, as suggested by
Petrides and Pandya (2002), or acting as the output zone for the activity of the
medial network in OMPFC, as suggested by Carmichael and Price (1995); see Figure
2.8. The effects of including this structure on network dynamics and especially on

the activity of DLPFC can therefore be tested.

...................................
..............
- .

afferent input ; X afferent input

mutual inhibition

Figure 8.2: Synchronising input can provide a mediating signal to mutually inhibitory
units in a circuit representing OMPFC activity in bipolar patients. Blue arrows represent a
putative mutual inhibition between orbito-medial and ventrolateral PFC
(OMPEFC/VLPFC) and dorsolateral (DLPFC) in bipolar patients. Testing “winner-take-all”
dynamics in this network, afferent excitation (red arrows) can cause one of these units to
be more active and therefore suppress the activity of the other. The dotted black arrows
represent a synchronising effect of the afferent input units. Different shades of red and
blue represent the relative strength of these connections (testing the effect of strong and
weak excitation respectively).
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The modelling framework investigating the effects of synchronous input on
laterally-inhibited neurons has been applied previously (Lumer, 2000), using
integrate-and-fire neurons to simulate dynamics of a small patch of tissue. This
author showed that synchronisation of neuronal firing prevents winner-take-all
dynamics in the network. I would like to test lateral inhibition in a simplified
network, to see how activity of external units (for example representing GH), affect

these dynamics.

This modelling framework could only address the limited issues of lateral inhibition
and the effect of synchronous input on winner-take-all dynamics. Such a
hypothetical modelling study could help inform future experiments. Furthermore,
with focussed experimental design, the question of variability, synchronous input
signals and mutual inhibition between specific brain areas can be further explored

through neuroimaging studies.
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8.5 Conclusions

8.5.1 Background

Having developed a keen interest both in modelling and in neuropsychiatry, I was
hoping to create a theoretical model that can capture and express the neural
abnormalities associated with unipolar and bipolar illness. Since I wanted my
findings to be based on real data, the analysis of neuroimaging data was invaluable.
I believe that theoretical models can greatly benefit from being grounded in
neuroimaging data and have therefore eschewed models that conceptualise the
cognitive difficulties in affective disorders by looking at vague phenomena such as
noise (Hoffman et al., 2001) or at negative emotional bias (Siegle, 1999). Although
the experimental projects (chapters 4 and 5) have not directly contributed to my
theoretical work, I feel that they have greatly contributed to my understanding of
the field. Furthermore, these studies have provided a suitable grounding for my
modelling ideas and will be invaluable both to the development of concrete models

at a future date (section 8.4.1).

8.5.2 Connectivity and activity

The complexity of neuroimaging data is quite daunting. This is a relatively young
field that is rapidly moving forward. Examples of recent developments in data
analysis are the event-related design of studies (often replacing the popular
block-design) and the transition to random-effects (replacing fixed-effects) analysis.
These methods allow greater sensitivity and specificity in registration of neural

activity and improve the computational reliability of the results.
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However, the activity of specific regions cannot be detached from the activity of
other brain areas. Therefore, the network or systems-level approach is now widely
accepted (Horwitz et al., 2000). Network analysis looks at between-region
correlations across the task, with or without specifying regions of interest. However,
it seems that these methods are co-dependent, since usually functional connectivity
is closely coupled with functional activity. After all, functional coupling is more
likely to be found if function is present. Computational limitations dictate (McIntosh
and Gonzalez-Lima, 1994) that study of effective connectivity (e.g. the construction
of structural equation models) are to be limited to a small number of areas. With the
advancement of technology through the development of more powerful scanners
and faster (and more precise) scanning sequences, I believe that the activity of the
human brain could be imaged with even greater accuracy. Combination of fine-
grained methods such as EEG with fMRI is currently helping transcend the gap

between recording activity at the neuronal and whole-brain level.

8.5.3 Limitations

In chapter 5 of the thesis I used data from a working-memory study (Rose, 2004) to
explore task-independent fluctuations in depressed patients and healthy control
subjects. In this study we did not use an ROI approach as such but rather performed
an exploratory analysis, using a number of task-related yet study-independent seeds
(see methods, chapter 5) and computing the correlations between those and every
other voxel in the brain. By using exploratory analysis, we did not limit ourselves to
task-related activity, nor did we enforce the expected areas where correlations could
occur (of course, the origin of the correlations was set but not the target). The
obvious disadvantage of this approach however, aside from the limitations imposed

by selecting the origin seeds, is the huge multiple comparison problem. If 20,000



Conclusions 243

correlations are performed simultaneously, then simply by chance 1,000 of them
may be significant at the 5% significance level. In this respect, limiting the number

of correlations performed to ROIs appears to be a sensible idea.

At present, many of the assumptions about the structure of both the data and the
noise (residuals) in healthy controls and clinical groups remain unstudied.
Furthermore, the residuals are assumed to be completely independent (this is one of
the assumptions supporting both the general linear model and structural equation
models). Likewise, the residuals in patients may differ either during or between
clinical episodes and in bipolar patients, the residuals (as well as the actual activity
accounted for by the model) may have a different shape when patients are manic,
depressed or euthymic. The assumption of independence may be incorrect and
therefore, further work is needed to study the residuals in neuroimaging data and to

compare these in controls subjects and in patients.

8.5.4 Why model if we can analyse connectivity?

I believe that the modelling approach can usefully complement data analysis for

several reasons:

1. Examining neural activity or connectivity patterns from a dynamical
perspective can highlight certain influences in the data that may not

otherwise become apparent.

2. The modelling approach looks at the global activity rather than at pair-wise

relationships.

3. Latent interactions can be modelled, to supplement the examination of

visible structure of the data.
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8.6 What is new and what can follow

The interdisciplinary nature of this project has made the amalgamation of these
studies into a cohesive body of work both difficult and fascinating. Although
depression is often described as the suffering of the human soul, I have been able to
observe specific neurobiological deficits underpinning this experience. Further, in
euthymic bipolar patients, depression was associated with normalisation of neural
response. This might be evidence in support of the evolutionary hypothesis of
depressive illness, suggesting that depression may aid self-preservation (Stevens
and Price, 2000), with depressive hypo-function providing a temporary
counterbalance to manic hyper-function in bipolar illness. However this interplay

needs further clarification.

The most important finding in this thesis, I believe, is the compensatory capacity in
the depressed brain. This has been shown through functional connectivity analysis
in chapter 5, as well as suggested by my modelling studies in chapter 7. The
modelling studies therefore, are not representing depression per se, but rather study
patterns of activity under specific task-conditions. The different vulnerability loci in
the matching and the long-delay networks may suggest how the structural deficits

associated with depressive illness may be functionally expressed.

The experimental projects in the thesis did not address specific neural activity in
manic patients, nor did they investigate the switch between mania and depression
in bipolar illness. This switch can occur as a by-product in the course of
anti-depressants (Parker and Parker, 2003; Tamada et al., 2004) or sleep-deprivation
(Colombo et al., 1999). However, there have also been reports of mania induced by
withdrawal of antidepressant treatment, both in unipolar and bipolar patients (Ali

and Milev, 2003). Therefore it is possible that the under-specified ‘switch’
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mechanism in bipolar illness may be related to an analogous neural system in
unipolar disorder, which may be disinhibited in mania. Moreover, fMRI studies
with manic subjects may be complicated by subjects” behaviour inside the scanner,
since this neuroimaging modality is susceptible to movement-associated noise (see
section 2.3.1.2). I feel, therefore, that the modelling experience I have gained may
help me address some of these questions in the future, using experimental findings
from existing data, e.g. Blumberg et al. (2003) or Caligiuri et al. (2003), to inform

computational investigations.

Perhaps better understanding of the neurobiological mechanisms associated with
this disease may lead to the development of better cures. At the very least, the study
of brain activity in the mentally-ill may dispel the stigma associated with “madness”
or “malignant sadness” (Jamieson, 1996; Solomon, 2001) as affective disorders are
sometimes colloquially labelled. Social acceptance and an awareness of the high
prevalence of affective disorders in western society is rapidly increasing. The rising
interest (and associated research) of these disorders among the neuroimaging and
the computational modelling communities, and realisation that neurobiological
abnormalities can to some extent be addressed and treated, may offer a ray of hope

to those who are currently suffering.
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Brain Imaging in Mood Disorders

Klaus P. Ebmeier and Dina Kronhaus

INTRODUCTION

Depression, as the reversible psychiatric condition par excellence,
is clearly an ideal object of functional neuroimaging studies. In
theory, patients return to their initial (healthy) brain state so that
any image changes observed during an affective episode should
mark the brain structures and circuits involved in the expression of
symptoms and signs. Authors have imaged patients when ill and
after recovery and used a number of strategies to exploit short-term
fluctuations of symptoms. Such fluctuations occur naturally, as in
the typical diurnal variations of mood (Moffoot et al., 1994b), or
they can be provoked by interventions, such as mood induction
(Baker et al., 1997), sleep deprivation (Ebert et al., 1994a) or
tryptophan depletion (Smith et al., 1999b). If, on the other hand,
anatomical changes did exist in depression, they would be predicted
in cases of treatment resistance (Shah et al., 1998), in secondary or
late-onset depression (Ebmeier et al., 1998), or possibly a priori in
certain patients with a genetic predisposition for the illness (Drevets
et al., 1998).

Anatomical systems involved are likely to be medial limbic,
with the anterior cingulate cortex and orbitofrontal cortex playing
a prominent role (Ebert and Ebmeier, 1996). There is also the
well-rehearsed hypothesis of hypercortisolaemia, which occurs
frequently in depression and, at least in animal models, leads to
hippocampal damage. Hippocampal damage, in turn, would release
the pitvitary secretion of adrenocorticotropic hormone (ACTH)
from hippocampal suppression and result in a positive feedback
loop (Sapolsky et al., 1986). This mechanism may not be specific
to depression (Welberg er al., 2001), as some authors have also
used it to explain cognitive impairment or dementia (Hibberd et al.,
2000) and the sequelae of severe psychological trauma (Bremner
et al., 1995).

Neuropsychological tasks have been employed in imaging stud-
ies to activate brain systems thought to be implicated in depression,
in particular using ‘frontal’ (e.g. word-generation) or ‘temporal’
(memory) tasks. In such experiments, limited task performance
may be responsible for group differences. Attempts to control for
such performance differences include pacing tasks at a speed that
all patients can manage, and post-hoc correlation of brain activity
with task performance, e.g. by using analysis of covariance. A fur-
ther complication of functional imaging protocols is that it is now
very difficult to recruit untreated patients in a psychiatric setting.
Primary-care physicians have usually already treated their patients
with a standard antidepressant (e.g. a selective serotonin reuptake
inhibitor, SSRI) by the time of referral. The cost and effort required
to recruit patients at the primary care level is usually seen as pro-
hibitive. For this reason, many studies contain samples of medicated
patients and have to be interpreted with caution. It also cannot be
excluded that changes in brain activity or even brain anatomy may
be caused by medication (DelBello ez al., 1999).

Medication is, of course, a particular problem for receptor ligand
studies. Based on effective pharmacological treatment, there are a
variety of hypotheses, particularly involving the serotonergic and
noradrenergic transmitter systems, which are theoretically amenable
to in vivo testing with neuroimaging (Delgado et al., 1990). Not
only the availability of untreated patients but also the availability
of receptor ligands has limited such research. The latter may
be partially responsible for the dearth of noradrenaline ligand
studies. Not all ligands are suitable; their use may be limited
by their specificity for the receptor concerned, their affinity (i.e.
the likelihood to be displaced by endogenous ligand) and their
nondisplaceable (nonspecific) binding fraction. In spite of these
limitations, first results are now emerging that test some of the
extant pharmacological hypotheses in depression.

Rather than giving a balanced review of all studies carried
out in the field, we will focus on certain themes and future
prospects that appear to be emerging. Our selection will no doubt
be idiosyncratic, but we hope that we have captured the important
paradigms and paths of current research. In order to limit the
size of the chapter, we will focus on key publications of the
last 5 years (at the time of writing), as earlier literature has been
summarized well in a number of other reviews (Davidson et al.,
1999; Drevets, 1998; Kennedy et al., 1997; Norris et al., 1997;
Stoll et al., 2000; Videbech, 1997; Videbech, 2000). Rather than
systematically dividing the imaging literature by image modality or
diagnosis, we will attempt to present a logical narrative, proceeding
from simple (e.g. neurochemical) hypotheses, such as the dopamine
theory of psychomotor retardation in depression, to more complex
models. Hypotheses that are, in a sense, post-hoc, i.e. exploit the
natural history of depressive symptoms and their treatment, will
be followed by experimental approaches, which imply complex
neuronal systems and attempt to activate selectively such systems
that are thought to be implicated in the expression of depressive
symptoms. Mania is a rare condition that is very difficult to study
with neuroimaging techniques, and reports are rare (Al-Moussawi
et al., 1996). This illness will, therefore, not be discussed, except
when included in studies of bipolar depressed patients.

PHARMACOLOGY

Dopamine and Motor Function

Although dopamine is not thought to be involved primarily in the
treatment and the experience of symptoms of depression, it may
play an important role in the brain reward systems and in move-
ment control. It has been implicated in retarded depression, both
by the reduction of the dopamine metabolite homovanillic acid in
cerebrospinal fluid (Jimerson, 1987) and by increased D2 receptor
binding, particularly in psychomotor retarded patients (Ebmeier and
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Ebert, 1997). Increased postsynaptic receptor binding is interpreted
mainly as evidence of reduced dopaminergic activity with result-
ing receptor supersensitivity or, alternatively, reduced displacement
of the radioligand by endogenous dopamine (Shah et al., 1997).
Sleep deprivation, which may have an amphetamine-like effect, is
associated with displacement of such ligands from their binding
sites in the neostriatum (Ebert and Berger, 1998). Whether reduced
availability of dopamine is ubiquitous in depression is, however,
doubtful. At least one single photon emission computed tomography
(SPECT) study (Klimke et al., 1999) (n = 15) found a reduction in
ligand binding to D2 receptors that normalized on clinical recovery
and predicted response to SSRIs. Paillere-Martinot er al. (2001)
reported a reduction in left caudate 18F-dihydroxyphenylalanine
(DOPA) positron emission tomography (PET) only in blunted and
retarded, but not in impulsive and anxious, depression. Examin-
ing presynaptic loci, 15 drug-naive patients with major depression
showed significant increases in SPECT striatal dopamine transporter
(DAT) binding capacity (Laasonen-Balk et al., 1999). This may be
interpreted similarly to the findings in D2 receptors, as a corre-
late of reduced availability of dopamine (see above). This effect,
however, was not reported in 31 drug naive children. Serotonin
transporter (SERT) binding (see below) but not DAT binding in the
hypothalamus and midbrain was increased (Dahlstrom et al., 2000).
Interestingly, during acute cocaine abstinence (n = 28), associated
with depressive symptoms and a 20% increase in striatal DAT bind-
ing capacity measured by SPECT, there was a negative correlation
of tracer binding with Hamilton depression scores (Malison et al.,
1998a), suggesting an adaptive response. Basal ganglia involve-
ment in depression is demonstrated by not only abnormal dopamine
ligand studies but also imaging studies examining brain activa-
tion and blood flow. Hickie er al. (1999) reported a correlation
between (delayed) reaction time and (reduced) left neostriatal acti-
vation from simple to choice reaction time tasks in psychomotor
retarded patients. Finally, basal ganglia pathology may predispose
to late-onset or secondary depression, as suggested by magnetic
resonance imaging (MRI) lesion studies (Lauterbach et al., 1997)
and MRI studies of iron deposition (Steffens et al., 1998).

Noradrenaline

Although noradrenaline has been implicated in depression for many
years (Zis and Goodwin, 1982), there have been relatively few
neuroimaging studies. After driving the noradrenergic system with
clonidine, an alpha2 agonist, a study in six depressed and six healthy
women found an increase in right prefrontal perfusion only in the
depressed group, suggesting either presynaptic subsensitivity or a
local supersensitivity of postsynaptic alpha2 receptors (Fu et al.,
2001). This may not be a specific finding, as Moffoot reported
similar results for patients with Korsakoff psychosis (Moffoot
et al., 1994a).

Serotonin
Serotonergic Activation, Treatment Effects and Response

In accordance with the theoretical and practical importance of
SSRIs in the treatment of depression, a number of studies have
examined the effects of SSRIs on brain function, both explicitly and
by comparing patients when they are ill and recovered. Mayberg
et al. (1997) examined 18 hospitalized patients with unipolar
depression and reported that rostral (anterior) cingulate (Brodman’s
area 24a,b) metabolism predicted response (hypermetabolism) and
lack of response (hypometabolism) to fluoxetine. In a repeat
measures study (Brody et al., 1999), 16 depressed outpatients were
imaged with 18F-fluorodeoxyglucose (FDG)—-PET before and after
treatment with paroxetine. SSRI responders showed a reduction

in ventral prefrontal perfusion, but low (left) ventral anterior
cingulate reduction before treatment predicted a better response.
These findings could be in contradiction to the data of Mayberg
et al. (1997). However, patients in that study were more clinically
unwell, different SSRIs were used, and the target areas do not seem
to be congruent.

In reversal of SSRI treatment, depletion of serotonin by a low-
tryptophan amino acid drink can lead to a temporary lowering of
mood in recovered depressed patients. Smith et al. (1999b) found
that ‘increasing levels of depression after tryptophan depletion
were associated with diminished neural activity in ventral ante-
rior cingulate, orbito-frontal cortex and caudate nucleus regions’
during paced verbal fluency performance. In addition, depressive
relapse attenuated cognitive task-related activation in the anterior
cingulate. This study illustrates potential complications in design
arising when behavioural conditions are mixed with pharmacolog-
ical interventions in neuroimaging: although not obvious in this
study, the pharmacological interventions may affect task perfor-
mance as well as mood. The separation of drug and clinical effects,
and the statistical definition of the interaction between the two, are,
up to a point, arbitrary. The same group also confirmed the spe-
cific hypothesis that mood deterioration induced by low-tryptophan
drink would increase activity in the projection from the habe-
nula to the raphe, structures that are part of the feedback loop
controlling the release of 5-hydroxytryptamine (5-HT) throughout
the brain (Morris et al, 1999). A reliable differential effect of
the indirect serotonin agonist fenfluramine on brain perfusion in
healthy volunteers and depressed patients has not been established.
A study of 13 depressed and 18 healthy women showed identical
effects in both diagnostic groups after intravenous infusion (Meyer
et al., 1998).

Serotonin Transporter

After an initial rush of interest in the association of certain SERT
alleles with depression, a number of imaging studies have used
SERT ligands with patients (Battersby et al, 2001). Such stud-
ies are understandably difficult to conduct, as medicated patients
cannot be used. Unipolar depressed patients exhibited a char-
acteristic reduction of 18% in SERT in the brainstem, where
the highest concentrations of receptors can be found, compared
with healthy volunteers (Malison et al., 1998b). Patients with sea-
sonal affective disorder showed reduced SERT binding capacity in
the thalamus and hypothalamus but not in the midbrain or pons
(Willeit et al., 2000). This effect, however, was reversed in the
hypothalamus and midbrain, where increased SERT binding corre-
lated with concurrent depression in a group of drug-naive children
(n = 41). Increased binding could be attributed to a reduction of
serotonin within the synaptic cleft (thus allowing increased tracer
binding), with developmental differences accounting for contra-
dictory results for adult and child transporter binding (Dahlstrom
et al., 2000).

5-HT2 Receptor

Post-mortem studies have suggested that a history of depression
and, in particular, suicidal behaviour is associated with an increase
in 5-HT2 receptors (Mann et al., 1999). In contrast, a study of six
drug-free, depressed patients examined with 18F-altanserin PET
reported reduced binding in the right posterolateral orbitofrontal
cortex and anterior insula with trends on the left side (Biver
et al., 1997). This apparent contradiction may be explained by
receptor downregulation due to medication: eight of ten depressed
patients who improved with desipramine showed a decrease in 18F-
setoperone binding to the 5-HT2 receptor in many cortical areas
(Yatham et al., 1999). Further, an 18F-setoperone study before and
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after 6 weeks of paroxetine medication in 19 depressed patients sug-
gested a reduced binding capacity after treatment, which was found
mainly in patients younger than 30years of age. A study of 14,
better controlled, drug- and self-harm-free (>6 months) depressed
patients showed no abnormalities in prefrontal 18F-setoperone bind-
ing (Meyer et al., 1999). Similarly, 11 elderly depressed patients did
not show an in vive reduction of 18F-altanserin binding capacity
(Meltzer et al., 1999).

5-HT1a Receptor

Rueter et al. (1998) have argued that antidepressant effects are due
to a desensitization of 5-HTla somatodendritic autoreceptors in
the rat, which is responsible for the return to normal firing rate
levels in the dorsal raphe nucleus. A single study has confirmed the
hypothesized reduction in 5-HT1a binding capacity in depressed
patients (Lesch et al., 1990) using the PET ligand 11C-WAY-
100635. Twelve primarily depressed patients with a family history
of the illness showed reductions in binding capacity in the brainstem
raphe, medial temporal cortex and possibly other cortical areas. This
effect was greatest in bipolar patients and patients with a family
history of bipolar illness (Drevets et al., 1999).

‘NATURAL EXPERIMENTS’: CLINICAL
PROFILES, TREATMENT RESPONSE
AND TREATMENT RESISTANCE

What can neuroimaging studies tell us about depression that clini-
cal description could not? Comparison of pretreatment and post-
treatment neural activity is the most obvious way to associate
in vivo neurobiological markers with depressive symptoms, cog-
nitive ability or deficits. There is also mounting evidence for a
correspondence between pretreatment metabolism in specific areas
and treatment outcome. Characteristic changes in perfusion may
help to classify patients with similar neuropathology. Changes in
functional circuitry may emerge as predictors of treatment response
and residual dysfunction whenever remission is not synonymous
with recovery. Because a substantial placebo or spontaneous remis-
sion effect contributes to the drug treatment of depression, it is
unclear whether changes in cortical dynamics upon recovery are
associated with the nature or the extent of drug-induced changes
(Andrews, 2001).

Neuroanatomical and functional deficits may already be identi-
fiable as vulnerability factors in patients’ families, or they may, at
the other extreme, be the correlate of lingering abnormalities, such
as perturbed cortical dynamics and impaired cognitive performance
that are present beyond remission (Abas et al., 1990). Persistent
abnormalities can be a consequence of several factors. First, chronic
administration of antidepressant, anticonvulsant or antipsychotic
medication may contribute to the enduring brain changes (DelBello
et al., 1999). Second, impaired function during (or between) clin-
ical episodes may compromise a system that is already fragile or
affected in some way, and thus cause enduring damage (Sapolsky
et al., 1986). Finally, since affective disorders are often charac-
terized by recurrent episodes over time, the normal process of
ageing may be a confounder or may interact with the illness pro-
cess (Kapur et al., 1994). The interpretation of treatment progress in
depression is also not straightforward. Change in behaviour, cog-
nition or motor activity may not necessarily imply an associated
modification in functional circuitry with return to normal activity
(Goodwin et al., 1993). Psychopharmacological agents target one or
more neurotransmitter systems. Nonetheless, if the activity of one
of the widely projecting neurotransmitter systems (dopamine, nora-
drenaline, 5-HT) increases, then global cortical dynamics will also
be affected. Functional connectivity changes in mood disorders will

be associated with abnormalities at rest (baseline) or, more likely, an
abnormal pattern of recruitment during cognitive or motor activity.
Where structural abnormalities have been reported in unipolar and
bipolar depression, it is not unreasonable to assume that base-
line and task-associated functional connectivity changes may occur.
Brain imaging provides an assessment tool for the course of both
illness-induced changes and active mechanism of recovery or com-
pensation. In accordance with Alexander’s (Alexander et al., 1986)
and Swerdlow and Koob’s (1987) theories of functional cortico-
subcortical loops, cortical areas (such as the frontal, temporal and
parietal cortices), subcortical areas (such as the basal ganglia and
thalamus), and most of all areas related to the limbic system (such as
the anterior cingulate, hippocampus and amygdala) will be affected.

In order to better understand blood-flow abnormalities in affec-
tive disorders and consequent remission effected by different forms
of treatment, findings can be separated into a number of distinct
categories: pretreatment perfusion, post-treatment perfusion, activ-
ity in responders and nonresponders, and the comparison of either
or both with control subjects. Some studies do not include healthy
volunteers; therefore, it is impossible to tell whether remission
is associated with normalization of perfusion. The use of diverse
methodologies in clinical studies makes the comparison between
their findings difficult. The neuroanatomical maps or delineation of
specific brain regions (Brodman’s areas) used to localize activation
may not be identical throughout the literature. Despite anatomical
proximity, these areas may have very different connectivity pat-
terns. For example, the medial or orbital frontal networks receive
input from very different areas of the cortex (Barbas et al., 1999;
Bhashghaei and Barbas, 2001). Methodological constraints on stud-
ies in a clinical setting include great variations in the size of sam-
ples, which are often small and occasionally nonuniform in terms of
age, medication and clinical history, Medication can influence out-
comes in both neuropsychological and imaging studies, although the
duration of medication effects is not known (Elliott et al., 1998). An
agreed standard for response to medication lies around 6 weeks, but
it may take longer to establish remission. Therefore, brain imaging
carried out at a later stage (Pizzagalli et al., 2001) may be recording
the long-term behavioural gain of therapeutic intervention, rather
than incidental drug effects.

An alternative to measuring regional metabolic changes is
to examine functional connectivity. Mallet et al. (1998) found
decreased interhemispheric connectivity along with reduced con-
nectivity within the right hemisphere (in a cortical-subcortical
as well as anterior—posterior orientation) in schizophrenia, obses-
sive—compulsive disorder and unipolar depression. In depressed
subjects, these deficits were mostly resolved on remission. A dis-
tinct ‘melancholic pattern’ was noted, with decreased correlation
between the orbitofrontal cortex and the dorsolateral prefrontal cor-
tex compared with controls and non-melancholic depressed subjects
(Mallet et al., 1998).

TREATMENT METHODS
Sleep Deprivation

Up to 60% of patients can improve after a night of total sleep depri-
vation (TSD) (Ebert and Berger, 1998). In contrast to the delayed
cumulative effects of antidepressant medication, TSD has an imme-
diate effect that does not appear to extend beyond the next full
night’s sleep (Ebert and Berger, 1998). The experimental advan-
tage of TSD is that patients do not have to be medicated to show
a short-term clinical improvement. The effects of TSD have been
explained with increased dopamine release in the basal ganglia,
which results in increased displacement of the D2/D4 receptor radio
ligand 123I-iodobenzamide (IBZM) by endogenous dopamine, i.e.
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reduced ligand binding (Ebert et al., 1994b). However, an allele of
the D4 dopamine receptor, which has been suggested previously to
increase susceptibility to this treatment, was not linked to treat-
ment response in 124 bipolar patients (Serretti er al., 1999). A
growing body of evidence is documenting hyperperfusion in the
medial prefrontal cortex as a state or trait related change (Ebert
and Berger, 1998; Ebert et al., 1996). Allied with limbic hyperper-
fusion, a number of studies describe dorsolateral prefrontal cortex
hypoperfusion in depression and during mood induction in normal
volunteers (Mayberg et al., 1999). The early sleep deprivation lit-
erature reported increased perfusion in the orbitofrontal cortex that
was found in the right anterior cingulate and bilateral orbitofrontal
cortex and basal cingulate. Increased right hippocampal pretreat-
ment flow was associated with greater treatment response (Ebert
et al., 1994a). Similar findings, indicating the association between
successful drug treatment and pretreatment limbic hyperperfusion,
have since been reported by a number of groups. Comparing glu-
cose metabolism in hospitalized unipolar patients, Mayberg et al.
(1997) reported hyperperfusion in the rostral anterior cingulate
(Brodman’s area 24a/b) to be indicative of a favourable treatment
outcome. Although subsequent nonresponders were reported to be
marginally more impaired than responders on neuropsychological
performance, no other correlation between perfusion and clinical
ratings was found. Hypoperfusion in responders was greater than
in nonresponders in the dorsolateral prefrontal cortex (Brodman’s
area 45/46), anterior insula and inferior parietal cortex (Brodman’s
area 40). Pretreatment premotor cortex activation, on the other hand,
was greater in responders.

The prognostic capacity of anterior cingulate activity with
reference to the extent of treatment response can also be measured
with electroencephalography (EEG) (Smith et al.,, 1999a). Higher
6 (6.5-8 Hz) activity in the rostral cingulate was associated with a
greater response after 4—6 months of treatment with nortriptyline.
A greater degree of response was associated with increased
pretreatment € activity in the medial frontal cortex (Brodman’s
area 24, 32), consistent with previous functional imaging reports
(Mayberg et al., 1997).

Pretreatment metabolism in the medial prefrontal cortex (Brod-
man’s area 32), ventral anterior cingulate (Brodman’s area 24) and
posterior subcallosal gyrus (Brodman’s area 25) was found to be
higher in responders to TSD than in nonresponders and healthy vol-
unteers (Wu et al., 1999). Normalization upon recovery was noted
with decreased flow in the medial prefrontal cortex (Brodman’s
area 32) and the frontal pole (Brodman’s area 10). All depressed
subjects had a lower striatal (putamen) metabolic rate than controls,
which persisted after treatment and, by contrast, decreased in nor-
mal volunteers. Frontal and occipital cortex metabolism was also
higher in both groups before treatment. The activity in the right
lateral prefrontal cortex (Brodman’s area 46) and higher superior
temporal cortex and right insula increased in responders. Perfusion
was decreased in the lateral prefrontal cortex of controls. Moreover,
in comparison with control subjects, the neuropsychological perfor-
mance of all depressed patients deteriorated markedly after a night
of TSD. Normal subjects performing a verbal learning task follow-
ing 35hours of sleep deprivation exhibited a pattern of increased
activation in the prefrontal and parietal cortices, whereas activity
in their temporal lobe was decreased (Drummond et al., 2000).
Decline in subjects’ performance of a free recall task was correlated
positively with activation of their parietal lobe. Bilateral prefrontal
cortex activation, which was related closely to personal perception
of fatigue, was interpreted as a competitive mechanism associated
with the homeostatic urge for sleep. Compensation for decreased
temporal lobe activity appears to be achieved by increased perfu-
sion in the bilateral parietal lobes in verbal tasks, which are not
associated with this area in the control condition. Just as TSD
created characteristic changes in blood flow during verbal learn-
ing challenge, elevated pretreatment regional cerebral blood flow

(rCBF) in the right orbitofrontal cortex and basal cingulate of
patients was normalized in responders to partial sleep deprivation
(in the latter part of the night). Post-treatment left inferior temporal
flow was correlated with treatment response (Volk et al., 1997).

In summary, these studies appear to suggest that elevated
metabolism and blood flow in the prefrontal or medial prefrontal
cortex areas is an adaptive marker aiding response to different
forms of therapeutic intervention, especially sleep deprivation.
Depressed patients may share an abnormal functional network
(decreased flow in subcortical structures) (Wu et al., 1999) or
persistent abnormalities throughout the temporal cortex (where
structural changes have also been reported) (Shah et al., 1998;
Sheline et al., 1998; Sheline et al., 1999) that may accommo-
date behavioural changes by compensating for hypoperfusion else-
where. In certain patients, this mechanism may later cease to be
effective.

Sleep disturbance during rapid eye movement (REM) and non-
rapid eye movement (NREM) sleep are well documented in patients
suffering from affective disorders (Kupfer and Reynolds, 1992).
Ho et al. (1996) studied the § stage of slow-wave (high-amplitude)
sleep of NREM sleep with FDG-PET in depression and found that
metabolism was elevated in the occipital and parietal cortices to a
greater degree than elsewhere. Limbic structures, such as the pos-
terior cingulate, amygdala and hippocampus, were more active in
depressed patients; however, metabolism in midline structures and
the neostriatum (including the medial prefrontal cortex, medial tha-
lamus, anterior cingulate, bilateral caudate, putamen and the head
of the caudate) was reduced compared with controls. In conjunc-
tion with an EEG investigation, Nofzinger et al. (2000) studied
the link between B EEG frequency (characterized by higher fre-
quency and lower amplitude) and glucose metabolism in different
areas of the cortex, defined on the basis of findings from control
data. 8-Wave frequency had been coupled previously with secretion
of cortisol (Chapotot et al., 1998) and, in this study, was present
for longer in depressed subjects and was associated negatively
with subjective sleep quality. No hypofrontality was found in this
study; however, orbitofrontal cortex (including Brodman’s areas 11,
25, 32) metabolism was higher in depressed patients than in con-
trols, which may be indicative of dysfunctional arousal. Finally,
the contrast between waking and REM sleep revealed that, unlike
controls, depressed subjects failed to recruit anterior paralimbic
areas (right parahippocampal gyrus, right insula and anterior cingu-
late). Instead, temporal-limbic areas (amygdala, subiculum, inferior
temporal cortex, sensorimotor cortex) were activated (Nofzinger
et al., 1999).

Light Therapy

In patients suffering from seasonal affective disorder, light therapy
produced dissimilar blood flow changes in responders and nonre-
sponders. Responders expressed a globally increased activity, mea-
sured with hexamethyl-propyleneamine-oxim (HMPAO)-SPECT,
relative to the cerebellum mainly in the frontal and cingulate
cortices along with the thalamus (Vasile et al., 1997).

Pharmacotherapy

Ogura et al. (1998) found in an HMPAO-SPECT study of patients
with major depression that the severity of depression was corre-
lated negatively with perfusion in the left superior frontal, right
lateral temporal and right parietal cortex. After treatment with
tricyclic antidepressants (clomipramine and amoxapine), remit-
ted patients’ perfusion did not differ significantly from that of
controls.

Brody et al. (1999) reported that a better response to the sero-
tonin reuptake inhibitor paroxetine was associated with lower pre-
treatment glucose uptake in the left ventral anterior cingulate. In
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responders, values returned to normal in the ventrolateral prefrontal
cortex and orbitofrontal cortex, but not in the dorsolateral pre-
frontal cortex or the inferior frontal gyrus. Hamilton depression
score changes were correlated with changes in glucose metabolism
in some areas (ventrolateral prefrontal cortex and inferior frontal
gyrus). Remission was associated with increased baseline perfu-
sion in the left premotor and supplementary motor area, along with
decreased left ventral anterior cingulate metabolism (Brody et al.,
1999). These findings do not fit the Mayberg et al. (1997) study, but
patients in Brody’s study were more depressed and the researchers
identified an area that lies ventral to Mayberg’s ‘rostral cingulate’.

Hi Am » MF
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Figure XVIII-9.1  Effect of one session of TMS (5-20Hz at motor
threshold over the left dorsolateral prefrontal cortex) on rCBF during a
word-generation task. (a) Statistical parametric map of areas with P < 0.01
for effect size (z) and contiguous area (k), using Statistical Parametric
Mapping, version 1996. (b) Neuroanatomical projections. Am, amygdala;
CN, caudate nucleus; DL, dorsolateral prefrontal cortex; GP, globus
pallidus; Hi, hippocampus; MF, medial orbitofrontal cortex; PP, posterior
parietal; Th, thalamus: VS, ventral striatum; Dotted ellipse, dorsolateral
prefrontal loop; continuous ellipse, limbic loop; dotted arrow DL to
CN, increase in regression coefficient ¢ with significance levels in left
dorsolateral loop (c = 2.45, P < 0.05); dotted arrow CN to GP, increase
in regression coefficient ¢ with significance levels in left dorsolateral loop
(c= 2.15, P = 0.05); continuous arrow MF to VS, bilateral limbic loop
(left: ¢ = 2.51, P < 0.05; right: ¢ = 2.89, P < 0.05) (see Plate XVIII-9.1)

Physical Therapies

Electroconvulsive treatment (ECT) has anticonvulsant effects,
which suggests a reduction in cortical activity after a course of
treatments (Ketter et al., 1999; Post et al., 2000). Using glucose
uptake as a measure of cortical activity 5days after a course of
bilateral ECT in ten patients, Nobler et al. (2001) were able to sup-
port this hypothesis. Yatham et al. (2000) had previously failed to
detect a significant change in five patients 1 week after a course of
ECT, likely to be an effect of insufficient power.

Transcranial magnetic stimulation (TMS) has been used exten-
sively to investigate cortical function in healthy volunteers and
psychiatric patients (George et al., 1998). A number of the simple
hypotheses underlying the use of TMS in the treatment of psychi-
atric illness are based on the assumption that low-frequency TMS
suppresses cortical activity (quenching) while high-frequency stim-
ulation increases cortical excitability. Speer et al. (2000) were able
to support this notion using 1- and 20-Hz stimulation over the left
dorsolateral prefrontal cortex in a cross-over study of ten depressed
patients. They found rCBF increases under the stimulation site
and in associated paralimbic structures after 20-Hz stimulation
and decreases in more restricted frontal, temporal and subcortical
structures after 1-Hz stimulation. Similarly, Zheng (2000) found
increases in cerebral perfusion in areas remote from the stimulation
site after stimulation over the left dorsolateral prefrontal cortex.

In a parallel design study comparing 5, 10 and 20 Hz applied
over the left dorsolateral prefrontal cortex in depressed patients,
we found localized increases in the anterior cingulate after the
first day’s treatment, in combination with increased functional
connectivity in the ipsilateral dorsolateral prefrontal loop and
bilateral in the cingulate (limbic) loop (Figure XVIII-9.1).

In summary, recent studies have suggested an association
between anatomical and functional changes in different prefrontal
areas and their associated structures on one hand and disordered
cognition and affect on the other. Such changes have been docu-
mented extensively in cingulate activity following successful treat-
ment (e.g. Ebert et al., 1996; Mayberg et al., 1999; Volk et al.,
1997). Cingulate pretreatment perfusion differentiates between
responders and nonresponders (Mayberg et al., 1997; Wu et al.,
1999). Furthermore, abnormalities in glial density (Drevets, 1999)
and even changes in neuronal size (Rajkowska et al., 1999) were
found in the prefrontal cortex of unipolar patients. Finally, the cin-
gulate is activated differentially in cognitive tasks (e.g. Stroop)
involving attention or motivation (Whalen et al., 1998), possibly
denoting subregions that can be involved in specific tasks, promis-
ing a more differentiated understanding of the cognitive and emo-
tional aspects of depression.

EFFECTS OF AGE, CHRONICITY
AND TREATMENT RESISTANCE:
IRREVERSIBLE AND REVERSIBLE CHANGES

Depression has been perceived as a transitory state where, on remis-
sion, brain function and altered or compromised cognition return to
normal. This is no longer considered to be accurate in every case.
Neuropsychological studies have discovered persistent abnormali-
ties in cognitive performance, pertaining to the duration and severity
of the illness (Abas et al., 1990; Shah et al., 1998). A number of
imaging studies have also found possibly enduring deficits (e.g.
Abas et al., 1990; Shah et al., 1998; Sheline et al., 1999). Shah
et al. (1998), in addition to a mere group difference, described a
correlation between abnormal verbal memory and left medial tem-
poral lobe grey matter deficits in the impaired group. Just as for
certain unipolar depressed patients, structural abnormalities in bipo-
lar depression include white-matter lesions, decreased cerebellar
size, and sulcal as well as ventricular enlargement (see Stoll ef al.,
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2000 for review). Structural MRI in 24 hospitalized bipolar patients
(Strakowski et al., 1999) has also revealed an increase in size of
the amygdala with a similar trend in the globus pallidus, thalamus
and striatum. These changes did not appear to correlate with other
clinical measures, such as illness duration, medication, substance
abuse, or the presence of previous episodes, although antipsychotic
use would be a likely candidate.

Pathological studies have shown an excess of atheromatous
disease in elderly depressed patients (Thomas et al., 2001). In fact,
some authors used the term ‘MRI-defined vascular depression’
(Krishnan ez al., 1997) to describe a group of elderly depressed
patients with mainly later age of onset, nonpsychotic subtype,
functional disability, anhedonia and a relative absence of family
history (Krishnan et al., 1997). Although these patients did not
have a significantly worse prognosis than nonvascular depressives, a
subgroup with late onset of the illness did (Krishnan et al., 1998).
In a large epidemiological study of cardiovascular health, small
vascular lesions of the basal ganglia but not severity of white-matter
lesions were associated with increased reporting of depressive
symptoms as measured by the Centre for Epidemiological Studies
Depression Scale (Steffens ef al., 1999). In a subsample, however,
the MRI vascular changes in basal ganglia and nonbasal ganglia
structures appeared to exert their effects on depressive symptoms
via functional consequences of vascular disease, such as physical
disability and cognitive impairment (Sato et al., 1999). On the other
hand, a case—control study of 96 elderly patients with late- and
early-onset depression found the former to be associated with more
white-matter hyperintensities, enlarged ventricles and hypertension
(Lavretsky et al., 1998).

MRI white-matter hyperintensities thus appear to be a hallmark
of late-onset depression. Hyperintensities are also associated with
treatment resistance (Lavretsky et al., 1999; Simpson et al., 1998).
and future residual dysfunction, as well as cognitive decline
(Hickie er al., 1997; Jenkins et al., 1998; Kramer-Ginsberg et al.,
1999) White-matter lesions seem to go with medical comorbidity,
relatively independently of whole-brain and frontal atrophy, which
are also more common in late-life depression (Kumar et al., 2000).
In particular, frontal lobe atrophy is correlated with severity of
depression (Kumar et al., 1998). A recent Newcastle study found
that frontal white-matter changes were also more common in
depressed patients with dementia. Finally, white-matter changes and
frontal atrophy may be more common in depressed elderly patients
with delusions (Kim et al., 1999; O’Brien et al., 1997a).

A combined MRI and SPECT study conducted in Edinburgh sug-
gested greater temporal perfusion abnormalities in late- than early-
onset depression and an association between cognitive deterioration
and deep white matter changes (Ebmeier et al., 1997b; Ebmeier
et al., 1998). Similar (left medial) temporal lobe changes were
reported in late-onset depression (Greenwald et al., 1997), suggest-
ing a possible link between late-onset depression and Alzheimer’s
disease. A large study comparing 61 depressed patients with 77
demented patients suggests, however, that temporal lobe volume-
try can distinguish clearly been these two groups (O’Brien et al.,
1997b). Similar results were obtained using hippocampal width
alone (Ebmeier et al., 1997b).

Research in younger but also elderly depressed patients suggests
that there may be a subgroup with long-lasting or treatment-resistant
illness who show (medial) temporal lobe structural and functional
changes (Shah and Ebmeier, 1998; Sheline er al., 1999; Vakili
et al., 2000). Although there is little corroborating clinical evidence,
some authors have argued that hypercortisolaemia associated with
clinical depression may be responsible for the hippocampal damage
observed in elderly patients. Contrary to this assumption, there
is some limited evidence that temporal lobe changes are more
common in late-onset, i.e. shorter-lasting, depression (Ebmeier
et al., 1998; Lavretsky et al., 1998).

Age Effects

As in younger patients, in elderly patients variation of depressive
symptoms is associated with changes of brain activity in (medial)
prefrontal structures. This can be shown in sleep deprivation
studies (Smith et al., 1999a), in follow-up studies of depressed
patients (Halloran eral., 1999), and in cross-sectional studies
of clinical correlates in elderly depression (Awata et al., 1998;
Ebmeier et al., 1997b). and even Alzheimer's disease (Hirono
et al., 1998).

Depression in children and adolescents has been attracting
researchers’ attention in recent years. Although the prevalence of
affective disorders in childhood is now accepted to be on a par
with the adult form of the illness, the contribution of the child’s
environment, along with cognitive and neuroanatomical develop-
mental factors, is unclear. Data on functional brain activity in
early onset depression are consistent with findings in adults report-
ing left anterolateral hypoperfusion. Nonetheless, it is not cer-
tain whether the association between haemodynamic response and
neural activity are analogous across the lifespan (Davidson and
Slagter, 2000). Decreased frontal volume and increased choline-
to-creatinine ratios in the anterior medial frontal lobe have been
reported in depressed children and adolescents (reviewed in Stein-
gard, 2000). Bipolar, just as schizophrenic, adolescents (n = 35)
were reported to have reduced intracranial volume with enlarged
ventricles and increased frontal and temporal sulci (Friedman
et al., 1999).

Treatment Resistance

Shah eral. (1998) demonstrated in 20 young patients with
treatment-resistant unipolar depression, all of whom had been ill
for more than 2 years, that temporal lobe structures, including
the hippocampus, were reduced in grey matter density. The
reduction in left medial temporal lobe grey matter density was
correlated with poor performance in an auditory verbal memory
task. Mervaala er al. (2000) examined 34 drug-resistant patients
with major depression and were able to replicate the reduction in
volume of the left hippocampus. In addition, the mesial temporal
lobe choline/creatinine ratio was raised, suggesting membrane
breakdown. Sheline et al. (1999) imaged 24 women with recurrent
major depression and found that hippocampi were reduced in
volume bilaterally in proportion to illness duration and after
controlling for age effects. Interestingly, patients also performed
poorly in a verbal memory task, which may be a correlate of
hippocampal reductions. Vakili et al. (2000) measured hippocampal
volumes in 38 patients with primary depression. Although as a
group patients had normal-sized hippocampi, treatment response
to 20mg fluoxetine for 8 weeks was associated with relatively
larger right hippocampi in women. Somewhat at variance with
these results, a study focusing on temporal lobe epilepsy patients
reported amygdala enlargement to be associated with dysthymia and
depressive symptoms (Tebartz van Elst et al., 1999; Tebartz van
Elst et al., 2000). The discrepancy may be explained by different
pathology underlying mood changes in epilepsy, by divergent
changes in amygdala and hippocampus, or by a different timepoint
in the natural history of depression. Ketter et al. (2001) examined
43 treatment-resistant bipolar patients and found a contrast between
cortical and subcortical glucose metabolism (18FDG-PET).
Normalized effects indicating increased metabolism were reported
in subcortical areas (ventral striatum and right amygdala) as well
as in the posterior cortex, thalamus and cerebellum. Depressed
bipolar patients also showed an absolute prefrontal, temporal
and anterior paralimbic hypometabolism. Elevated metabolism
in posterior cortical areas (including posterior thalamus and
cerebellum) persisted beyond remission (i.e. in euthymic patients),
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indicating a trait marker unique to bipolar patients. Cognitive
task activation (in this case, an auditory task) may be recruiting
qualitatively different circuits in patients and controls, a concern
shared by all studies employing neuropsychological activation
paradigms (Ketter et al., 2001).

Cellular Changes

Both neuronal and glial volume changes have been reported. The
latter can be a consequence of a number of factors. As a result of
the chronic use of antipsychotic medication, increased volume of
glial cells was noted in the prefrontal cortex of rhesus monkeys
(Selemon et al., 1999). Reports of a laminar as well as a regionally
specific pattern of glial but also neuronal reduction, where neurons
decreased both in size (dorsolateral prefrontal cortex) and density
(orbitofrontal cortex), was observed in the prefrontal cortex of
unipolar patients (Rajkowska eral, 1999). By contrast, post-
mortem studies in both unipolar and bipolar patients with a
family history of depression have not revealed any differences in
the neuronal population, while glial density was decreased; glial
volume of schizophrenic patients was unchanged (Drevets er al.,
1997; Ongur et al., 1998). Finally, age-associated glial changes
in primate grey matter reached statistical significance only in the
cingulate (Sloane et al., 2000). It is apparent that some association
between changes in glial density and pathological or restorative
processes has been established in patients suffering from affective
disorders. Nonetheless, it is still unclear whether these changes are
adaptive, compensatory or incidental. Further, the functional effect
of such changes is still undetermined.

The association between neuronal activity and the metabolic
processes measured by various functional brain-imaging modalities
(haemodynamic response in functional magnetic resonance imaging
(fMRI), glucose utilization in FDG-PET, and so forth), is not
without question. Furthermore, it is apparent that astrocytes as
well as neurons may contribute to the signal changes observed
in FDG-PET (Magistretti and Pellerin, 1996; Magistretti and
Pellerin, 1999). In the presence of glial reduction in anterolimbic
structures reported by a number of groups (Drevets et al., 1998;
Rajkowska er al., 1999), it is unknown whether, and to what extent,
glucose utilization and its associated PET signal are altered as a
result.

Lithium and valproate have been suggested to have neurotrophic
and neuroprotective effects. An increase of 3% in the cortical
grey matter volume of bipolar patients after 4 weeks of lithium
administration is attributed to neurotrophic factors rather than
to cell swelling (Moore et al., 2000). Mood stabilizers could
be involved in the regulation of gene expression by increasing
levels of mRNA for PEBP28 (polyomavirus enhancer-binding pro-
tein 2 beta subunit), which controls coding for the neuroprotec-
tive protein BCL2 (B cell lymphoma protein 2) in the frontal
cortex. Increased neuronal survival and increased regeneration
are all effected by BCL2 upregulation, protecting against exci-
totoxic damage (Chen et al., 1999; Chen and Chuang, 1999).
It is unclear whether recent post-mortem findings of increased
neuronal numbers throughout the hypothalamus and the dorsal
raphe could be related to chronic use of medication (Rajkowska
et al., 1999),

Small structures such as the brainstem raphe nuclei are imaged
with difficulty. It is, therefore, fortuitous that ultrasound sonography
can be applied using a preauricular acoustic bone window to image
the mesencephalic brainstem with structures such as the red nucleus
and the rostral pontine brainstem. Becker er al. (1995) examined
40 unipolar, 40 bipolar depressive and 40 schizophrenic inpatients,
as well as 40 healthy volunteers. Reduced midline echogenicity
relative to the red nucleus, which can be interpreted as structural
disruption of the raphe nuclei, was found only in the unipolar
depressed patients.

EXPERIMENTAL APPROACHES TO DEPRESSION:
COMPLEX MODELS

Introduction

Cognitive performance in depression and its relationship with the
disturbance of emotion or mood have been examined in a number
of contexts. Along with an investigation of cognitive impairment in
subjects suffering from affective disorders, there is a large body of
literature reporting different procedures of precipitating depressed
or dysphoric mood in healthy subjects (mood induction). A number
of conceptual questions are inherent in this literature. Above all,
it is unclear to what extent sad mood is analogous with clinical
depression. The transient time course of the neuropsychological
impairment brought about by mood induction is usually far shorter
than the experience of clinical depression. Similarly, induced
mood may be of a different quality from morbid depression,
although biological symptoms, such as depressive retardation, can
be observed after experimental mood induction (Ebert et al., 1996).
The absence of biological markers often associated with depression
(such as hypercortisolaemia), along with structural and functional
differences, hinder direct comparison. In this sense, even if the
neural systems recruited in healthy controls during mood induction
are analogous to the neuroanatomical circuit activated in depressed
patients at rest, the dynamics of the circuit may be different
in the two conditions due to selective dysfunction in specific
components or the connectivity between these. It is even possible
that some of the differences between patients and controls can
be explained by simple mechanisms, e.g. that depressed patients
are slower to recruit the appropriate neuronal systems or their
components.

Since neuropsychological studies are described in detail in
Chapter XVIII-7 and XIX-8 of this book, we will focus on neuronal
systems implicated by clinical and mood induction paradigms. We
will try to integrate structural and functional findings reported
earlier in the chapter in an attempt to assemble some of the
complex interactions between specific structures and the systems
they comprise in the manifestation of affective illness.

Neuropsychological studies suggest that cognitive deficits may
be the consequence of competition between cognitive and affective
functional resources. If this holds true, such that neural pathways
identified in the induction paradigm are analogous to those affected
in the specific mood disorder they are trying to emulate, then
transient sadness or elation in normal volunteers can provide a
useful insight into the neural correlate of cognitive performance
in mood disorders. However, covariation between the degree of
depression, impaired task performance and (in-)activity of relevant
functional circuits does not necessarily imply a causal relationship
between the three. Thus, apparently similar short-term deficits of
neuronal activity observed both in clinical depression and after
mood induction could be grounded in dissimilar processes. In the
long term, these may be of no consequence for healthy volunteers,
but they could result in the significant deficits noted in patients with
recurrent and severe depression (Shah et al., 1998).

The following section includes studies emphasizing perfusion
changes associated with emotional states. Most studies report
impaired cognitive performance as a consequence of transient mood
change, although their methods may differ greatly. Anatomical
structures that are grouped classically under the definition of ‘limbic
lobe’ are involved in circuits responsible for both cognitive func-
tion and the generation of affect. These include the cingulate cortex,
hippocampus, amygdala and thalamus, as well as other prefrontal
and subcortical structures. Both mood-induction and clinical studies
report altered dynamics in the limbic and prefrontal circuits, com-
prising activation or deactivation under specific conditions, com-
pensatory effects, and the interplay between different regions (e.g.
cortical and subcortical, limbic and dorsolateral prefrontal cortex,
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etc). The role of the cingulate has been emphasized by authors such
as MacLean (1985). He saw the phylogenetic emergence of the cin-
gulate cortex as fundamental to the development of maternal care in
mammals. There is therefore a convergence of paradigms (Stevens
and Price, 2000) between psychodynamic speculation about attach-
ment and loss (Bowlby, 1969) and the understanding of limbic brain
function in depression (Ebert et al., 1996).

Such theories are now amenable to empirical testing. Lorberbaum
etal. (1999) employed fMRI in four recent mothers listening
to recordings of infants’ cries and white noise as a control
condition. Increased brain activity could be demonstrated in the
anterior cingulate and right medial prefrontal cortex. These regional
activations are probably not very specific, as similar areas are
activated during pain and are thought to be related to affective
and attentional concomitants of pain sensation (Peyron et al., 2000;
Schnitzler and Ploner, 2000). However, with careful experimental
procedures, hypotheses about the specific role of the medial
prefrontal cortex in emotion are testable, in principle.

Supporting the imaging studies in humans, there is also an animal
model of congenitally helpless rats with reductions in brain activity
in the dorsal frontal, medial orbital and anterior cingulate cortex,
and increases in the subgenual cingulate (Shumake et al., 2000).

Mood Induction and Neuropsychological Paradigms

Neuropsychological studies use cognitive tasks in order to recruit
associated functional circuits through their component structures.
Specific functional vulnerability can be described by either impaired
performance of a particular task or impaired activation of charac-
teristic circuits or their constituents. Neuropsychological tasks have
been designed to probe activity in brain regions associated with
them. Frontal areas are activated by tasks such as the Wisconsin
card sorting test (WCST) or the Tower of London (TOL) task,
both of which involve the application and manipulation of rules,
adaptive skills and flexibility necessary for set shifting. Tasks that
involve memory are expected to be particularly sensitive to struc-
tural and/or functional discontinuity in (mesial) temporal structures,
such as the hippocampus. Finally, the involvement of subcortical
structures in the experience of clinical and experimental mood is
expressed by both perseverative responses (the inability to change
strategies) and psychomotor slowing, experienced predominantly
by melancholic patients (Austin et al., 1999; Austin et al., 2001).
It appears that similar limbic-subcortical circuits are involved in
different experimental mood induction procedures; however, dif-
ferent substructures may be affected, possibly due to inconsistent

methodology of experimental paradigms and the different affects
involved.

Studies: Mood Induction

Baker et al. (1997) induced sad and elated mood in controls
and examined brain activity following performance of a verbal
fluency task. They reported anatomical dissociation between mood
and cognitive function. Both mood states curtailed the activity
normally associated with the verbal fluency task throughout the left
prefrontal, premotor and cingulate cortex, as well as the thalamus.
Reduced activation in the rostral medial orbitofrontal cortex and
anterior cingulate was associated uniquely with sad mood.
Mayberg et al. (1999) proposed a simplified model of brain
responses. They hypothesized a general increase in limbic-
paralimbic perfusion coupled with a decrease in neocortical perfu-
sion to accompany induction of sadness in healthy volunteers, while
reciprocal changes were predicted during the resolution of dyspho-
ric symptoms in depressed patients. These authors also observed
an inverse correlation between right dorsolateral prefrontal and
subgenual cingulate perfusion, supporting this notion. These finding

can be interpreted as corollary evidence for the inverse relationship
between depressed mood and attention.

Beauregard et al. (1998) studied patients’ and controls’ (n = 7)
responses to mood induction. Transient sadness (triggered by film
clips with emotional content) produced activation in the medial
and inferior prefrontal, middle temporal cortex, cerebellum and
caudate. Significantly greater activation in the left medial prefrontal
cortex (Brodman’s area 8) and right cingulate gyrus (Brodman’s
area 32) was observed in depressed patients, suggesting that these
two structures may have a role in pathological sadness.

Elliott et al. (1997) postulated a catastrophic reaction to fail-
ure as a specific neuropsychological mechanism underlying poor
performance in depression. They examined performance feedback
responses in six patients and controls. Depressed patients did not
show the expected activation in the medial caudate and ventrome-
dial orbitofrontal cortex found in controls. Patients’ brains were,
therefore, insensitive to changes in both task and feedback condi-
tions, consistent with the a priori hypothesis.

Schneider et al. (1996) found activation in a network related
to performance feedback during the attempt at solving unsolvable
anagrams; perfusion increased in healthy subjects (n = 12) in the
mamillary bodies and the amygdala, and decreased in hippocampus.
Solvable tasks were associated with increased perfusion in the latter.
Increased frontal and temporal perfusion was associated with both
conditions.

The Stroop interference task has been typically associated with
activation of the cingulate gyrus (Pardo et al., 1990). A different
activation pattern was observed in depressed patients (n = 11),
who failed to activate the left cingulate in comparison with
control subjects. Reduced perfusion in patients’ right cingulate was
balanced by stronger activation of the left dorsolateral prefrontal
cortex and the visual cortex (George et al., 1997). A variant of the
Stroop interference task (the emotional counting Stroop paradigm)
showed a unique activation of the rostral anterior cingulate using
fMRI in normal volunteers (Whalen et al., 1998). Comparing
perfusion between trials containing affective (such as murder) and
neutral words associated negative content with increased perfusion
in the anterior cingulate, without a change in reaction. Performance
of this form of the Stroop task compared with fixation per se was
associated with overall decreased perfusion. These findings may
suggest an association between pathological anxiety and an inability
to reduce cingulate activation during task compared with fixation.

Correlation between higher global perfusion and increased cog-
nitive demands was associated with task switching. The superior
parietal cortex was reported to have a specific role in task switch-
ing, although this effect may be task specific (Kimberg et al., 2000).
Illness severity in this subtype correlates with increased perfu-
sion in frontolimbic structures parahippocampal gyrus and cingulate
(Ebmeier et al., 1997a).

Induction of depressed and elated mood can, at times, be asso-
ciated with overlapping or diverging neural circuitry. Dissociable
recruitment of subcortical and cortical structures in healthy sub-
jects (n = 16) during experience of both positive and negative affect
was associated with specific changes in subcortical structures (espe-
cially the amygdala) but not frontotemporal structures (Schneider
et al., 1995). Both happy and sad mood correlated with increased
blood oxygen level-dependent (BOLD) fMRI response in the left
amygdala of healthy subjects (n = 12) (Schneider et al., 1997). De
Raedt et al. (1997) used a modified Velten procedure to induce
mood both ‘within and out of the realm of attention’. The latter
involved a combination of dichotic listening and subliminal stim-
ulation. Right lateral reduction in thalamic perfusion was found
during both conditions compared with responses to neutral stimuli.
Increased hippocampal perfusion was limited to subliminal stimu-
lation conditions.

Divergent circuits were found in the evaluation of negative ver-
sus positive affective content. While the former was associated
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with increased perfusion in the right frontal gyrus and thalamus,
the latter produced activation of the bilateral insula and the right
inferior frontal gyrus. Neither showed associated changes in amyg-
dala perfusion (Teasdale er al., 1999). In a different study, sub-
cortical limbic structures (amygdala, associative cortex, primary
visual cortex, cerebellum) were activated through evaluation of
unpleasant stimuli, while pleasant stimuli activated cortical struc-
tures (medial prefrontal cortex, dorsolateral prefrontal cortex, and
the right orbitofrontal cortex (Paradiso et al., 1999). Spatiotemporal
differences in activation of the neuroanatomical correlate of positive
and negative affect, expressed through characteristic activation of
either the orbitofrontal cortex or the prefrontal cortex, were shown
in healthy volunteers (n = 10). Recruitment of the medial prefrontal
network in the context of negative affective content was established
faster than the activation of the lateral prefrontal circuit, which
was associated with positive affect (Northoff et al., 2000). Finally,
retrieval of episodic memory with affective content was associated
with anterior temporal lobe activation and the left amygdala (Dolan
et al., 2000), a pattern mirrored by McGaugh and Cahill (1997) and
Hamann and Adolphs (1999) in encoding of similar memories.

Hypofrontality along with specific prefrontal deficits has been
reported extensively in the literature. Both depressed (n = 6) and
control subjects performing the TOL task exhibited a pattern of
deactivating the medial prefrontal cortex, superior temporal gyrus
and posterior cingulate. For control subjects, increased difficulty
was associated with a linear augmentation in the recruitment of
the appropriate functional circuitry. By contrast, depressed patients
presented with decreased activity in the rostral prefrontal cortex,
caudate nucleus and the anterior cingulate without the expected
compensation by the dorsolateral prefrontal cortex (Elliott et al.,
1997). Parietal cortex activation did not reach threshold in this
experiment. Neural dissociation between cognitive and affective
activation denoted specific activity-related changes in the medial
frontal cortex. A reduction from baseline activity in the medial
prefrontal cortex was linked to cognitive activation. Practice was
associated with decreased perfusion in the medial prefrontal cortex,
while performance anxiety was linked to increased perfusion in the
same region. In a different experiment, elevated perfusion in the
medial prefrontal cortex was reported during the anticipation of
painful stimuli, and was correlated negatively with anxiety rating
(i.e. increased anxiety produced a smaller reduction from baseline).
Corresponding changes in flow were noted in the hypothalamus
and midbrain. Thus, a decrease from baseline activity in the
prefrontal cortex is thought to be a consequence of recruiting
the network related to attention (Simpson et al., 2001a; Simpson
et al., 2001b).

Systems

We conclude the chapter by discussing the neuronal circuits or
systems putatively linked with affective illness. To the best of
our current knowledge, there is no clear or direct correspondence
between neurobiological factors and their effect on emotional
experience or expression. Structural changes in areas such as
the hippocampus, prefrontal cortex, cingulate or amygdala are
perfect candidates for theories of dysfunctional loci. However,
as we have indicated throughout this chapter, neurobiological
abnormalities are not entirely predictive of functional deficits.
Furthermore, dysfunction in affective disorders may involve long-
term mechanisms of compensation and deterioration over time,
which may not be explicit in present theories of unipolar and bipolar
depression.

The limbic system is, of course, a natural candidate for many neu-
roimaging investigations. The evolutionary angle described earlier
in this chapter (Bowlby, 1969; MacLean, 1985) places structures
associated closely with environmental feedback, particularly in a

social context, at the locus of a system associated with integrating
internal and external states. For example, specific behaviours or
neuropsychological tasks yield an associated activation in structures
such as the cingulate gyrus (maternal separation cry, Stroop), amyg-
dala (fear), hippocampus (autobiographical memories) and dorsolat-
eral prefrontal cortex (TOL task), to name but a few. It is important
to note that in brain regions not classically associated with the lim-
bic system (and thus not salient in many investigations), such as
the parietal cortex, reports of functional abnormalities are increas-
ing (Davidson et al., 1999; Drummond et al., 2000; Ho eral.,
1996; Mayberg, 1997) Since regions of functional interest are often
defined a priori in neuroimaging studies, a bias towards the well-
documented structural and functional changes in limbic regions may
be perpetuated.

Behavioural response to long-term stress in a social context
seems to be adaptive, in the sense that initial alarm and resistance
will lead ultimately to exhaustion and acceptance (Selye, 1936).
Similarly, rank theories in mood disorders postulate acknowledge-
ment of subordinate status and a ‘yielding" motor response in the
presence of higher rank (Stevens and Price, 2000). The limbic sys-
tem is therefore assumed to unite behaviour and neuroanatomy,
where conflict between external and internal input can be resolved,
a role associated particularly with the cingulate. The impact on
both psychomotor and prefrontal-cognitive associated capacity is
inherent in these theories.

Expanding Papez’s early theories of limbic circuit connectiv-
ity and function, current neuroimaging tools are instrumental in
facilitating both understanding and advancement of functional cir-
cuitry in depression and mania. Careful attention to experimen-
tal design (such as activation under different experimental condi-
tions), as well as the development of new chemical tracers and
more powerful imaging technology, will contribute towards a bet-
ter appreciation of the various phases associated with affective
disorders. We are nearing a qualitative coupling between systems
with either function or dysfunction. This is achieved by direct and
indirect comparison between patients and healthy control subjects
performing tasks under similar conditions. Nonetheless, quantita-
tive knowledge regarding activity in distinct systems is, for now,
sketchy.

Common to both prefrontal and limbic structures is the overlap
between sensory and affective processes (LeDoux, 1996), where
a visceral system provides feedback through endocrine and other
neurobiological mechanisms. It is possible that inhibition by the
prefrontal cortex may be involved in feedback control (not only
the classically inhibitory orbitofrontal cortex but also the lateral
prefrontal cortex, both denoting different strategies of associative
learning) (Roberts and Wallis, 2000). Consequently, activity, or lack
thereof, in frontal regions may lead to limbic hyperperfusion via
nonlinear excitatory or inhibitory operational modes.

Hypofrontality has been reported extensively in different con-
texts. Thus, the interaction between cognitive and affective cir-
cuits with the frontal cortex has been described by neuroanatom-
ical (Barbas et al., 1999; Price et al., 1996), neuropsychological
and neuroimaging studies (Mayberg et al., 1997; Rogers et al.,
1998). These circuits appear to have functional as well as struc-
tural regional specificity, whereby connectivity to other (remote)
regions throughout the cortex and the subcortex are clearly defined.

The limbic system has been separated into affective and
cognitive components, supported by neuroanatomical studies in
humans and primates (e.g. Devinsky ef al., 1995; Mayberg et al.,
1999; Mega et al., 1997; Price, 1999a). The integration of vis-
cerosensory and affective information, yielding endocrine and
motor changes (Price, 1999b) contributes to an extended network,
which cannot be explicable by lesion studies alone (Frith and
Dolan, 1998).

A number of compensatory mechanisms can be deduced from
the extensive neurcimaging literature in the field. The amygdala
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and orbitofrontal cortex appear to activate in synergy, where
the orbitofrontal cortex is activated more strongly in response
to amygdala dysfunction (Drevets, 1999). In healthy subjects,
compensatory strategies require greater activity in the prefrontal
and parietal cortices to balance for decreased temporal lobe
perfusion and associated performance deficits after a night of
TSD (Drummond et al., 2000). By contrast, Elliott er al. (1997)
showed that depressed patients lacked an adaptive capacity, which
was expressed by their inability to recruit prefrontal as well
as subcortical structures during performance of the TOL task.
Further, correspondence between hyperperfusion in the cognitive
and affective divisions of the cingulate reported by Mayberg et al.
(1999) could arguably have a compensatory role in depression and
recovery.

Therefore, a hyperactive limbic (or ‘ventral’; see Mayberg et al.,
1999) system was noted by a number of groups, where increased
perfusion can imply higher probability for response to treatment
(Mayberg et al., 1997; Wu et al., 1999) or, alternatively, increased
likelihood of more severe illness (Austin et al., 1992). In the long
term, connections to temporal (amygdala, hippocampus), parietal,
prefrontal and subcortical structures will help us understand the
extent to which an extended network can compensate for limbic
hyperperfusion.

Blood flow and glucose metabolism in subcortical structures,
the dorsolateral prefrontal cortex and the cingulate have been
linked extensively with affective disorders through neurological
and movement disorders, lesion studies, and functional activation
and imaging at rest (Cummings, 1993; Mega and Cummings,
1994, Soares and Mann, 1997). Furthermore, basal ganglia and
frontal lesions carry a higher probability for cognitive impairment
(Rogers et al., 1998; Videbech, 1997). It is apparent that subcortical
involvement can be associated with increased pathophysiology (e.g.
psychomotor retardation), recurrent episodes and cognitive decline
(Hickie ef al., 1997, Hickie et al., 1999; Simpson et al., 1998).
The anterior cingulate may play a cardinal role in this context,
due to its widespread connections and functional association with
the prefrontal cortex (Ebert er al., 1996; Koski and Paus, 2000).
This is, at present, not clearly specified, ranging from theories
of a ‘somatic marker’ (Damasio, 1994), of motivation, attention
and error detection (Carter et al., 1999) to its specificity in the
integration of cognition and affect. It is confounded by the structural
changes in specific subgroups of unipolar and bipolar patients
(Drevets et al., 1997).

Finally, since hippocampal volume reduction is associated with
the severity of depressive illness (Sheline et al, 1999) and, by
association (Drummond et al., 2000), transient hypoactivity in the
temporal cortex, its function maybe balanced by prefrontal and
parietal regions. It would be interesting to probe such functional
correspondences between two or more structures in a clinical
context. To conclude, a unified theory of affective disorders is
developing through the application of different imaging methods
and consideration of both animal and human neuroanatomical data.
Future studies will no doubt consider a larger, distributed functional
network, coupled with better understanding of the long-term effects
of clinical deterioration, medication and the ageing process. What
emerges, is a functional interplay of brain modules that are
associated with specific mood states, attention and nonspecific
emotional factors, and specific aspects of the neuropsychological
tasks used. We now have the tools to test relevant hypotheses in the
living brain. The groundwork will have to be done with fMRI and
possibly TMS in healthy volunteers, although in the last analysis,
studies in sufficiently large, homogeneous and representative groups
of patients will be necessary. The understanding that has come
from studies so far is that dimensions of mood are indeed
interlinked closely with cognitive categories, and that experimental
studies may necessitate our rethinking of clinical and psychological
constructs.
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