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Abstract

The aim of this thesis was to find a systematic relationship between neuronal synchrony and 
firing rates, that would enable us to make inferences about one given knowledge of the other. 

Functional neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), 
are sensitive to changes in overall population synaptic activity, that can be interpreted in terms 

of rate coding for a particular stimulus or task. Characterising the relationship between 
synchrony and firing rates would facilitate inferences about fast neuronal interactions on the 

basis of macroscopic measures such as those obtained by fMRI. In this thesis, we used 
computer simulations of neuronal networks and fMRI in humans to investigate the 

relationship between mean synaptic activity and fast synchronous neuronal interactions. We 
found that the extent to which different neurons engage in fast dynamic interactions is largely 

dependent on the neuronal population firing rates and vice versa, i.e. as one metric changes 
(either activity or synchrony), so does the other. Additionally, as a result of the strong 

coupling between overall activity and neuronal synchrony, there is also a robust relationship 
between background activity and stimulus-evoked activity: Increased background activity 

increases the gain of the neurons, by decreasing effective membrane time constants, and 
enhancing stimulus-evoked population activity through the selection of fast synchronous 

dynamics. In concluding this thesis, we tested and confirmed, with fMRI in humans, that this 
mechanism may account for attentional modulation, i.e. the change in baseline neuronal 

firing rates associated with attention, in cell assemblies selectively responding to an attended 
sensory attribute, enhances responses elicited by presentation of that attribute.
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“The whole universe as we perceive it is a system of relations: we know nothing that is, or can be, 
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Lord Buddha
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Introduction

This thesis will focus on the relationship between neuronal population dynamics and 

macroscopic measures of activity such as integrated mean synaptic activity. This is an 
important issue for two reasons. First, there is the possibility of relating macroscopic 

measures of neuronal activity, that are integrated over space and time, such as those provided 
by functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), 

to more refined temporal dynamics that can be measured electrophysiologically. Second, it 
addresses the dialectic between rate and synchrony coding as the language that the brain uses 

to encode information. Rate coding states that the neuronal activity itself is the important 
feature while synchrony coding posits the precise relative timing of neuronal firing as the 

important metric. Finding a link between these two aspects of neuronal dynamics would place 
them both in a larger context and inform the interpretation of imaging studies.

PI Functional Imaging

In recent years, fMRI and PET have been established as tools for localising brain activity in 

particular tasks using the blood oxygenation level dependent response (BOLD signal in 
functional Magnetic Resonance Imaging, fMRI) and regional cerebral blood flow (rCBF in 

Positron Emission Tomography, PET). fMRI relies on the fact that protons behave like 
compass needles when placed in a magnetic field. By manipulating this field, one can align 

the protons. By applying radio-frequency pulses to the protons, the protons are perturbed 
and emit detectable radio signals as they realign. As hydrogen nuclei are abundant in the 

human body, due to the fact that water makes up around three quarters of body tissue, high 
resolution images of human organs, including the brain, can be constructed: Under an

intense magnetic field, hydrogen nuclei in water line up like bar magnets. They are then
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perturbed with radio-frequency pulses. The energy of the hydrogen nuclei consequently 
increases, causing their state to change. Following the radio-pulses, the nuclei relax back to 

their original state and release the surplus energy in the form of electromagnetic radiation. 
These signals are picked up by receivers that surround the subject’s head. If the nuclei are 

excited again before full recovery, a smaller signal is obtained. The rate of recovery, depends 
on the type of tissue containing the relevant water molecules. As this varies according to the 

type of tissue, i.e. grey or white matter and bone or plasma etc., an accurate image of the 
brain anatomy can be acquired.

The fMRI BOLD signal relies on the fact that deoxygenated haemoglobin is much more 

paramagnetic than oxygenated haemoglobin. During spurts of synaptic activity, there is a 
physiological uncoupling between flow and metabolism that may have a number of 

components at different time-scales. These components include transient increases in 
perfusion that outstrip the metabolic use of oxygen and, at longer time scales, anaerobic 

metabolism. Therefore although the blood flow to an active brain region increases, the 
oxygen demand does not parallel it. The surplus in oxygen that has been delivered returns to 

the circulation via the capillaries and draining veins in the form of oxygenated haemoglobin. 
The fMRI BOLD signal is attributed to the changes in local venous blood oxygenation. PET 

measures blood flow distribution or regional cerebral blood flow (iCBF) in the human brain. 
PET relies on the intravenous administration of radioactive water. Radioactive water is water 

that is made up of H 2 and lsO rather than ^O. The 150  molecule is unstable and so decays 

via positron emmission. In this process, a proton converts to a neutron, resulting in unstable 
150  becoming stable 15N. The emitted positrons then anihilate with electrons in brain tissue to 

form gamma waves which are detected by scintillation detectors that encircle the subjects 
head. In this way accurate images of cerebral blood distribution can be made. A more 

detailed account of the physics of PET and fMRI can be found in appendices 1 and 2.

Neuroimaging studies depend on the assumption that changes in BOLD or rCBF are 
representative of global synaptic activity levels. This is supported by optical imaging studies 

(Grinvald et a l , 1984, 1986, Frostig et al, 1990). Changes in the light absorption or 
fluorescence of cortical molecules occur as a result of the transition states o f intrinsic 

chromaphores like haemoglobin, cytochromes or NADH. Optical imaging techniques have 
been able to show that there is a local coupling between neuronal activity integrated over a 

few seconds, and the micro-circulation (haemodynamics). More recently, a combination of 
laser Doppler flow imaging and electrode recordings has shown that there is a coupling 

between regional cerebral blood flow (rCBF), as measured in PET, and local field potentials or 
global synaptic activity (Mathiesen et al, 1998). PET and fMRI measure overall levels of 

neuronal activity that are integrated over space and time. However, this tells us nothing about 
the precise timing of spikes, in relation to inputs from other neurons, as has been measured by 

electrophysiologists for many years. A robust relationship between global neuronal firing 
rate and neuronal interactions on a millisecond time scale would greatly inform the 

interpretation of neuroimaging data.
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P2 Rate and Synchrony Coding

The two dominant theories of neural coding, the language that the brain uses to convey 

information, are rate and synchrony coding. There is much evidence in support o f both. 
Rate coding proposes that brain cells code for stimuli through varying their firing rates. It 

has been shown repeatedly that neurons increase their firing rates subsequent to the 
stimulation of the cell’s receptive field. For instance, primary visual cortex cells fire when 

objects are introduced to a particular portion of the visual field (Hubei and W iesel, 1962, 
1965, 1968, 1977). There are also specialised visual areas whose neurons increase their firing 

rate for particular colour combinations (visual area V4, located in the fusiform gyrus) (Daw, 
1972, Zeki et al, 1983, 1985) and particular speeds and directions of motion (area V5, located 

in the posterior region of the inferior temporal gyrus and sulcus) (Rodman et al, 1987, Cheng 
et al, 1994). In addition, cells in the auditory cortex (located in the superior temporal sulcus) 

(Brugge, 1973, Kaas et al, 1998) have been shown to fire in response to particular auditory 
tones (Brugge, 1973, Rauschecker, 1998) and cells in the olfactory bulb, in response to 

particular odours (Meredith and Moulton, 1978).

Although certain neurons, or neuronal populations have been shown to rate code for 
particular attributes of the external world, how are these attributes linked to form a coherent 

internal real world representation? This is the problem of perceptual synthesis. For example, 
an object may be coloured red and be moving left at 10 °/s across a subjects visual field. 

There are many cells in different brain areas that increase their firing for colour and motion, 
but how does the subject perceive that the colour and motion belong to the same object? This 

is a simple example but serves to illustrate the point. The answer is likely to be through the 
functional integration among neurons or neuronal populations. Functional integration is a 

term used to describe the concept that neurons must somehow “speak to each other” in order 
to share information. Over the years, physiological investigations into functional integration 

have established neuronal synchrony as an important aspect o f integrative or synthetic 
processing.

Synchrony coding states that it is not the neuronal firing rate that is important, but the precise 

temporal patterns o f firing among different neurons. In the brain, synchronization may 
reflect the direct, reciprocal exchange of signals between two populations, whereby the activity 

in one population affects the activity in the second, such that the dynamics become entrained 
and mutually reinforcing, leading to synchronous discharges. In this way, the binding of 

different features o f an object may be accomplished, in the temporal domain, through the 
transient synchronization of neuronal responses (Milner et al, 1974, von der Malsburg,1981, 

Spoms et al, 1991). Physiological evidence has, in general, been compatible with this theory 
(Engel et al, 1991). It has been shown that synchronization of oscillatory responses occurs 

within as well as between visual areas (Frien et al., 1994), for example between homologous 
areas of the left and right hemispheres and between remote areas in the same hemisphere at 

different levels of the visuo-motor pathway (Gray et al, 1990, Engel et al, 1991, Konig et al,

14



1995, Roelfsema et al, 1997). Synchronization in the visual cortex appears to depend on 
stimulus properties such as continuity, orientation similarity and motion coherency (Gray et 

a l , 1989, Engel et al, 1990, Freiwald et al, 1995). Synchronous dynamics among cortical 
areas is also characteristic of other sensory modalities, suggesting that it represents a 

fundamental property of cortical interactions. For instance, Nicolelis et al (1995) have found 
synchronous dynamics across different levels of the rat somatosensory cortex. It seems as 

though synchrony coding may provide a mechanism that underlies perceptual binding and 
feature linking of particular objects or sounds.

In short, stimulus specific representations in the brain have been found to be coded through 

both changes in neuronal firing rate and neuronal synchronization. It would, therefore, be 
extremely important to find a link between these two metrics of neuronal dynamics, as this 

would enable us to make inferences about one given knowledge of the other. For example, 
PET and fMRI measure overall changes in firing rates and one can interpret neuroimaging 

results in terms of rate coding for a particular stimulus or task. However, one cannot make 
inferences about synchrony coding on the basis of neuroimaging results. Demonstrating a 

link between these two coding metrics would facilitate these inferences. In this thesis we use 
computer simulations of neuronal networks and functional imaging in humans to investigate 

the relationship between mean synaptic activity and fast synchronous interactions in simulated 
and real neuronal populations. These interactions are the basis of functional integration in 

the brain.

P3 Simulations of Neurobiology

This thesis is in two sections, each incorporating three chapters. The first chapter embodies a 
detailed characterization of neuronal dynamics at the single cell level. The next two chapters 

show through detailed simulations of neuronal populations, using neuronal dynamics as 
explained in chapter 1, what can be inferred about fast neuronal interactions on the basis of 

fMRI results.

In this section, we provide the reader with a brief overview of the use of computational 
modelling in neurobiology as well as an outline of the range of models that theoreticians have 

used in trying to answer neuroscientific questions. This overview is followed by the 
motivation for the models that we chose to use in the studies described in this thesis.

In using simulations to make inferences about how the brain works, a plethora o f different 

model types have been used. On the one hand, many neuronal simulations have used small- 
scale detailed descriptions of single cells, such as cable theory models (Rail, 1995, Traub etal,  

1991, also see Chapter 1 of this thesis) and multi-compartmental models (Koch et al, 1982, 
Rail and Segev, 1987, also see Chapter 1) to large scale networks of simplified neurons 

(Lumer et al, 1997, Aertsen et al, 1994, 1991) that exhibit various types of collective
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dynamics. It should be noted that the use of cable theory or multi-compartmental neurons is 
extremely computationally expensive. As we wanted to study the behaviour of large cell 

ensemble dynamics, in the context of different activity levels, we have used the simpler, single- 
compartmental formulation, in two models, where each model involves two different and 

complementary levels of complexity in the cell dynamics. The first model was a purely 
phenomological model, of the cell membrane dynamics in which the action potential was 

implemented whenever the membrane potential exceeded the threshold for firing. Using this 
simple model allowed us to simulate relatively large populations of interconnected neurons. 

The second model that we used was also single-compartmental, but was slightly more 
computationally expensive than the first, incorporating some complex cell behaviour due to 

the implementation of two realistic ionic membrane channels that generated the cell action 
potential. Both of these models and the reasons behind our choice of models are described in 

Chapter 1.

To illustrate the differences in computational processing between our model and the much 
more complex models that have been used, it is useful to consider an example of the 

implementation of a multi-compartmental model. Traub et al, 1991, developed a 19- 
compartment model of a guinea pig CA3 pyramidal neuron, with each compartment 

containing 9 active ionic membrane channels. This model contained 171 ionic channels per 
neuron whereas the second ‘more complex’ model that we used, contained only sodium and 

potassium channels that consisted of only four channels. Our cells are therefore less 
computationally expensive by a ratio of around 43:1. The implications of this loss in 

biological detail is discussed at the end of Chapter 1. This study by Traub et al, 1991, 
examined how regulating the different types of membrane channels at different locations of 

the cell changed the cell conductance and thus conditions for firing. However, it would be 
computationally infeasible to address such issues at a population level with such complex cell 

dynamics. Instead, it is easier to simulate the phenomological behaviour of the cell dynamics 
from empirical observations, using relatively few or even no membrane channels, and simply 

manipulate the cell parameters so that the cell behaviour conforms to that observed 
empirically. Indeed, this was the approach adopted by Lumer et al (1997). Lumer et al 

(1997), simulated a model consisting of 65,000 spiking single-compartmental neurons to 
address issues of neuronal population synchrony. This model consisted of two biologically 

realistic topographically organized thalamocortical areas, where each cortical area was 
separated into three laminar structures, corresponding to the upper, middle and lower cortical 

layers; or supragranular layer, layer 4 and infragranular layer. This model also used 
extremely simple neuronal dynamics, identical to the first neuronal model described in the 

next chapter. This study was primarily concerned with the role of intra- and inter-area 
synaptic connections in maintaining fast synchronous population dynamics. By 

systematically modifying physiological and structural parameters in the model, specific 
network properties were found to play a major role in the generation of phase-locked activity. 

For example, fast synchronous dynamics could be sustained autonomously by lateral and 
interlaminar interactions within and among cortical areas. In addition, these oscillations were
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propagated to the thalamus and amplified by corticothalamocortical loops including the 
thalamic reticular complex. Also, synchronous oscillations were differentially affected by 

lesioning forward and backward inter-area connections. We actually use the results from this 
study by Lumer et al to test one of the models that we use in this thesis (see p).

Other computational studies (e.g. Boven and Aertsen, 1990, Aertsen and Preipl, 1991, Aertsen 

et al, 1994) have also addressed the behaviour of neuronal population dynamics as one 
changes population activity. These studies used simulated neurons that were represented as 

non-linear systems described by four state variables (equivalent to modelling four channel 
types). These studies are expanded on more fully in chapter 3, where they are discussed in 

the context of our studies.

P4 The Neurobiology of Vision

In part two of this thesis, we present an fMRI study in which we study brain activity integrated 
over many neurons (over roughly several mm3 of cortex). This fMRI study examines 

motion-sensitive responses in the human ‘visual motion area’, V5, as a function of stimulus 
speed. Consistent with electrophysiological findings, we observed optimal responses at 

intermediate speeds of around 7 to 30 °/s. The experimental data presented in this chapter is 
consistent with electrophysiological results showing that V5 cells may code for speed through 

their activity levels. In the final chapter of this thesis, we test one a specific prediction of our 
modelling work (derived from part one of this thesis) in the visual cortex of the human brain 

using fMRI. In this section, it is therefore beneficial for the reader to give a general 
introduction to the primate visual system. However, it is important to note that this thesis is 

not in itself about the visual system; it is about the behaviour of neuronal populations. The 
reason that we test our computational hypothesis, derived from our simulations, on the visual 

system, is quite simply, because more is known about the functional and anatomical 
architecture of the visual cortex than about any other part of the brain.

P4.1 The Anatomy of the Macaque Visual System

This section P4.1, represents an extremely concise overview of the macaque monkey visual 
system. The reason that we discuss the monkey brain here is because the monkey is the 

closest model that we have to the brain of the human. It is important to note that, as much 
more is known about the monkey brain than that of the human, it is common for 

neuroscientists to make inferences about human cortical architecture and brain function from 
that of the monkey. This is as, it is obviously unethical to explore the human brain, in as 

much detail and using the same methods, as one does with other animals. Also, we must 
emphasise that this is a ‘concise’ version of the visual system. As more is known about the
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visual system than any other part of the brain, a full version of the visual system, would 
probably take up many volumes and is obviously beyond the scope o f this thesis. In what 

follows, we shall describe firstly, the route that visual information takes to reach the visual 
cortex. Secondly, we overview the functional specialisation of the visual cortex and finally 

discuss how the human visual system compares to that of the monkey.

Once that visual information enters the eye via the cornea and then the lens, the first stage of 
visual processing is at the retina. The retina contains three layers of processing. Firstly there 

are the rods and cones. In the centre, or fovea, of the retina, there are only cones which are 
sensitive to the colour/wavelength of light and not brightness. Cones are also present 

throughout the retina, but rods are more abundant in the periphery. Rods are sensitive to 
luminance or brightness and not wavelength. Rods are the cells that adapt to dim light and 

are so responsible for night vision. The rods and cones then feed into the next layer which 
contains horizontal, bipolar and amacrine cells. These cells then feed into the retinal ganglion 

cells. This is all that we shall say about the retina in this thesis, but for a fuller review of this 
stage of visual processing, see Hubei, 1988, p36 - 58. Visual information from the ganglion 

cells of the retina is then carried by the fibres of the optic nerve which then cross over at the 
optic chiasm, so that information from the nasal part of the retina is represented in the 

opposite hemisphere of the brain and information from the temporal part of the retina is 
represented in the same side of the brain. The right hemisphere contains a representation of 

the visual information from the temporal retina of the right eye and the nasal retina of the left 
eye. Therefore, each hemisphere of the brain processes the opposite or contralateral field of 

view.
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Fig. PI
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Prim ary visual co rtex

Fig. P I  The connections from the retina to the cerebral hemispheres. Inset to the left shows the multi­
layered lateral geniculate nucleus (LGN). (taken from Zeki 1993, A Vision of the brain, p25)

A representation of the layout of the macaque visual system, visualized on a two dim ensional 

sheet, is shown in Figure P2 (Van Essen and Gallant, 1994). The m ajor subcortical areas are 

the two retinae, the lateral geniculate nucleus, the superior colliculus and the pulvinar 

com plex. In the cortex, 32 distinct areas associated with vision have been identified (see 

Figure P5), which collectively occupy more than half of the total surface area o f the macaque 

neocortex (Desimone and Ungerleider, 1989, Felleman and Van Essen, 1991). At the earliest 

stage of cortical processing are the two largest areas, VI and V2, each o f which occupies 

about 10% of the neocortex. These areas then feed into other cortical areas that are discussed 

below.
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Fig. P2 Two-dimensional map of the cerebral cortex and major subcortical areas in the macaque monkey. 

The flattened cortical map encompasses the entire right hemisphere, (taken from Van Essen and Gallant, 

1994)

After the optic chiasm , the visual pathway becomes the optic tract which relays signals to the 

LGN. The LGN has six layers which receive a topographic, point to point mapping from the 

retina. The inputs from the two eyes, to the LGN, are segregated with input from the 

ipsilateral (same side) eye term inating in layers 2,3, and 5 and that from  the contralateral eye 

term inating in layers 1,4 and 6. The upper four layers o f the LGN are the parvocellular (P) 

layers and the lower two are the magnocellular (M) layers. The layers of the LGN are stacked 

upon one another in precise registration in terms of retinal representation. Hence, if a cell at a
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certain point in one layer corresponds to input from a certain point in the left retina, then a 
cell directly below in the next layer will receive input from the same point in the right retina. 

The two magno and parvocellular streams are thought to analyze colour and luminance 
autonomously and process these attributes in striate and extrastriate cortex. Wavelength 

information is relayed by the PB ganglion cells of the retina to the upper four parvocellular 
layers of the lateral geniculate nucleus (LGN). The P-cells have comparatively small receptive 

fields, a slow conduction velocity and are wavelength selective. From the P layers o f the LGN, 
the pathways are relayed to layers 2 and 3 of VI (striate cortex) where they feed the blobs 

(icolour pathway) and interblobs {form from colour). These two subdivisions are relayed to 
V4 (extrastriate cortex) through the thin and interstripe structures of V2 respectively. This 

stream’s cells are not as finely tuned to luminance contrast and do not have the temporal 
resolution of the magnocellular pathway. Magnocellular cells have a high conduction 

velocity, large receptive fields and are sensitive to luminance contrast. This pathway is fed 
through the P a ganglion cells of the retina which project to the lower two layers of the LGN 

and then to layer 4B of VI and the thick stripes in V2. These M pathways can then be 
regarded as undergoing a second bifurcation, sending efferents to the motion sensitive area 

V5 (extrastriate cortex) (the motion pathway) and V3 {dynamic form).

VI or primary visual cortex/striate cortex is situated in Brodman area 17 of the monkey and is 
parcellated into ocular dominance columns. These columns receive alternate input from the 

opposite eyes. VI also has six layers and has blobs and inter blobs, where a blob is situated in 
the centre of an ocular dominance column (see Figure P3). Around 50% of the cells in the 

blobs are wavelength specific and thus receive input from the P pathway. The remaining cells 
in the blobs are broad band (responsive to light of all wavelengths without being orientation 

specific). The majority of cells in the inter-blobs are orientation specific without being 
wavelength coded and thus receive input from the M stream.
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Fig. P3
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Fig. P3 Diagram of VI or Primary Visual Cortex (taken form Zeki, 1993, A Vision of the Brain, p201)

It can be seen that V2, situated in Brodman area 18, is a critical point of divergence, 

representing the last stage of the visual hierarchy that retains a full complement of 
functionally selective cells (although there are also direct connections from VI to V3, V4, and 

V5) (Note that as V5 in the monkey is situated in the middle temporal cortex, it is also widely 
known as area MT). The physiology of V2 (Hubei and Wiesel 1977, Zeki 1993) shows that 

V2 contains functionally heterogenous populations of cells, i.e. orientation selective, direction 
selective and wavelength selective units are all found within its subareas. The thick stripes of 

V2 receive their input from layer 4B of VI where orientation and direction cells predominate 
and project to mediate motion or dynamic form processing through their connections to V5 

and V3 respectively. Not surprisingly direction selective cells are concentrated in the thick 
stripes of V2. The thin stripes of V2 receive their input from the blobs of VI where the 

majority of cells are not orientation selective but a lot are wavelength selective. Finally the 
interstripes receive input from the interblobs and show orientation but not wavelength
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selective responses (Shipp and Zeki 1985; De Yoe and Van Essen 1985; Hubei and 
Livingstone 1987). In summary, thick stripes contain orientation and direction but not

wavelength selective units. Thin stripes contain wavelength but not orientation and direction 
selective units and the interstripes contain orientation but not direction or wavelength selective 

units.

The explanation given above of the monkey visual cortex is relatively simplified. For 
example, cells in V4, ‘the colour area’ have also been shown to be responsive to motion, 

although they only select for speed and not direction of motion whereas cells in V5 
discriminate for both colour and luminance defined visual motion although they are much 

more sensitive to luminance than colour defined stimulus borders (Cheng et a l , 1994). Such 
complications are likely to arise from integration between the P and M visual processing 

pathways via reciprocal connections (Felleman and Van Essen, 1991).

P4.2 The ‘What’ and ‘Where’ pathways

The P and M pathways have been associated with the ventral and dorsal pathways. The ventral 

or P pathway is also known as the ‘what’ pathway. The reasons for this are consistent with the 
above functional characteristics of this visual stream. This stream consists predominantly of 

colour and orientation cells and as such is thought to code for form or ‘what’ an object is. 
Indeed, although V4 is known predominantly as the ‘colour area’ due to it’s large number of 

colour responsive cells, V4 has also been shown to contain many cells that code for visual 
form (Schiller et al , 1991, Chelazzi et al , 1995). There is therefore some controversy as to 

whether V4 is really a colour or form area (Heywood et al, 1995, Cowey et al, 1995). In 
reality, of course it is likely that V4 processes both colour and form as it receives input from 

both colour and orientation sensitive cells in the blobs of VI and the thin and inter stripes of 
V2. V4 actually proceeds to feed input into the inferior temporal area (IT) whose cells have 

been found to code for complex visual objects. IT cortex is the last visual processing area in 
the ventral ‘what’ stream and lesions to this area have been found to impair object 

recognition and discrimination (Desimone et al, 1984, Desimone and Ungerleider, 1989, 
Tanaka, 1996). The dorsal or M stream is also known as the ‘where’ pathway as it processes, 

primarily, visual motion. Area V5 or MT feeds into medial superior temporal area (MST) 
which has been shown to code for more complex motion than V5, and this area then feeds 

into the superior temporal polysensory area (STP/parietal cortex). Although, STP is known as 
the last processing area in the ‘where’ dorsal pathway, it also receives input from IT in the 

ventral pathway and is thus one of the few visually responsive areas where the dorsal and 
ventral pathways converge (Felleman and Van Essen, 1991). Indeed, STP has been found to 

consist of primarily three sets of cells: those that are responsive to the direction of visual 
motion (Bruce et al, 1981, Hikosaka, et al, 1988, Mistlin and Perret, 1990, Oram et al, 1993), 

those that are responsive to form, independently of motion, (Gross et al, 1972, Bruce et al, 
1981, Wachsmuth et al, 1994) and those that are responsive to the combination of particular
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forms with particular directions of motion (Oram and Perret, 1996). It is also o f im portance 

here, that although STP cells may be responsive to m otion, unlike V5 cells, they are not 

sensitive to the speed of motion (Oram et al, 1993).
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Fig. P4 Hierarchical organization of the ventral (what) and dorsal (where) streams in the monkey, (taken 

from Van Essen and Gallant, 1994)

P4.3 Human Visual Cortex

So far, we have described the visual system in the monkey but what of the human? As it is 
obviously unethical to use electrophysiological recordings of single cells in the human brain, 

inferences about functional architecture in the human has come about largely through 
functional neuroimaging. Both PET and fMRI have elucidated the ‘colour’ and ‘motion’ 

visual areas, as well as primary visual cortices or V I, in the human. These areas have been 
largely identified with the use of subtraction procedures. To put it simply, if one measures 

the rCBF or BOLD response to a visual colour stimulus minus that to an identical black and 
white stimulus, the area that shows significant activations in the human brain could then be 

thought to be the ‘colour’ area and directly analogous to monkey V4. In the human, this 
area has been found in the fusiform gyrus of occipital cortex and has been labelled ‘human 

V4’ (Lueck et a l , 1989). In the same way, but using motion, ‘human V5’ has been found to 
exist in inferior temporal cortex of humans (Watson et al 1993, Zeki et al 1991). Oddly, this 

area in the human is still widely referred to as MT even though it is actually in IT of the 
human. Another area that tends to ‘light up’ in humans, when viewing ‘more complex 

motion’ is an area in the superior part of the middle occipital gyrus that has come to be 
known as area V3a (Tootell et al, 1997). As this area processes more complex motion, such 

as radial motion, it is likely that this area is directly analogous to area MST in the monkey. 
Another area that tends to light up in either colour or motion processing is in the calcarine 

sulcus. This area is thought to be analogous to primary visual cortex/V 1. It should be noted 
as well, that it is extremely difficult to separate VI and V2 in functional imaging as functional 

imaging measures integrated responses over large patches of cortex. Therefore, in the final 
fMRI chapters on vision, in this thesis, when we refer to V I, we mean more specifically VI/V2  

complex. Another important point is that, (not withstanding controversies, such as whether 
V4 is a colour or form area) in our fMRI studies we defined our areas operationally due to 

either a main effect of colour or motion and so distinguish areas on purely functional 
grounds. We then test for the effects that we are looking for (in terms of population 

dynamics) within these areas.

P4.4 Cortical Connectivity

Finally, before concluding this section on the visual system, it may be interesting to say 

something about the complex connectivities within the visual system. As can be seen, the 
primate visual system comprises a large number of cortical areas dealing with different
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attributes of the visual scene. The 32 visual areas of the macaque are interconnected by more 
than 300 distinct cortico-cortical pathways (Felleman and Van Essen, 1991). A remarkable 

feature of the connections among these areas is the fact that they exhibit specific patterns of 
laminar origin and termination. In a well-known proposal, Felleman and Van Essen 

organized visual cortical areas in a hierarchy on the basis of these connectivity patterns. 
Within this hierarchy, ascending connections project from lower to higher-order visual areas 

and terminate in layer 4. These ascending connections are largely reciprocated by 
descending projections that terminate outside of layer 4. The organization of visual areas, in 

levels, on the basis of these connectivity patterns reflects that observed functionally. Neurons 
in areas at higher levels in the visual hierarchy exhibit larger receptive field sizes and more 

complex response properties. For example, receptive field sizes of cells in V3, V4 and V5 are 
known to be much larger than those of cells in VI and V2 (Tanaka et al, 1986). Also, 

receptive field sizes in IT, MST and STPp are known to be larger still (Bruce et al, 1991).

The dense network of ascending and descending connections in the visual hierarchy provides 
an anatomical basis for the interactions needed to link neuronal processes distributed over 

widely separated regions into coherent representational states. Indeed, functional 
specialization depends upon extrinsic and intrinsic connections within and among cortical 

units, populations and subareas, whose convergent and divergent architectures underlie the 
segregation of features in the visual field (Zeki 1990). This segregation is reflected in the 

emergence of distinct spatiotemporal receptive fields of units at various stages of the visual 
pathways. Interestingly, physiological investigations into types of synaptic arbours (Rockland 

et al, 1996) have shown ascending inputs to be strong and driving and descending inputs to 
be weak and modulatory. Also, ascending input has been shown to use the type of synaptic 

arbours that are round and dense while descending connections have extended arbours that 
are much sparser. Round arbours embody around 100 terminals over an area of diameter of 

about 100Jim while extended arbours incorporate roughly 500 to 1000 terminals over an area 
of diameter, 1 to 3mm (Crick and Koch, 1998, Rockland et al, 1996). Consistent with this 

synaptic asymmetry, visual area VI has a strong driving effect on the hierarchically higher 
area V2, in the sense that visual activation of V2 depends on input from VI (Schiller and 

Malpeli, 1977, Sandell and Schiller, 1982). This dependency has been demonstrated by 
reversibly cooling (deactivating) VI while recording from the retinotopically corresponding 

region of V2, during visual stimulation (Schiller and Malpeli, 1977, Girard and Bullier, 1989). 
In contrast, cooling V2 has a more modulatory effect on VI unit activity (Sandell and 

Schiller, 1982). The functional asymmetry between VI - V2 interactions has now been 
established in humans using functional magnetic resonance imaging (Friston et al, 1995). 

Additionally, there is evidence that V2 has a strong driving effect on V5 while V5 has a more 
modulatory effect on V2 (Girard and Bullier, 1989).
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Fig. P5

Fig. 5 Diagram of the hierarchical interconnectivity of the 32 visual areas in the monkey, (taken from 
Felleman and Van Essen, 1991)
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Chapter 1: Modelling Neuronal 

Dynamics

1.1 Abstract

In this chapter, we describe two synthetic single compartmental neuronal models that, during 

the course of this thesis, will be used to investigate computational aspects of neuronal coding 
and functional integration. The first section describes the modelling of Hodgkin-Huxley 

neuronal dynamics and tests this model to show that it behaves in accordance with real 
neurophysiological data. Section 2 describes the simpler, integrate and fire, neuronal model. 

Most of the work in this thesis uses the detailed, Hodgkin-Huxley model. However, in some 
instances, we also use the simpler, integrate and fire, model, as this allowed us to model much 

larger neuronal populations without increasing the computational load and thus simulation 
time.

1.2 Modelling Neuronal Dynamics

Neurons continuously receive pulses, mostly at projections known as dendrites, from 
thousands of other neurons. These pulses are conveyed at junctions called synapses. Pulses 

from certain neurons are excitatory, in that they act to increase the membrane potential of the
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cell and others are inhibitory, in that they decrease the mem brane potential o f the cell. The 

membrane potential fluctuates according to these inputs. If it goes above a certain threshold 

then an action potential is generated and is propagated down the ce ll’s axon to send a signal 

to the next c e ll’s dendrite. A ction potentials are waves o f depo larization , w here the 

m embrane potential increases by about lOOmV (note that a ce ll’s resting m em brane potential 

is usually around -60mV). Action potentials typically last for around 1 to 3 ms.

Fig. 1

Presynaptic Postsynaptic

cell body

synapse

axon

dendrites

direction of propagation

Fig. 1.1 A diagram showing the neuronal axon, dendrite and synapse (taken from Nicholls et al, From 

Neuron to Brain, p26).
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1.3 Hodgkin-Huxley Model

The action potential is generated by transient increases in the cell transmembrane sodium 

(N a+) and potassium (K+) currents, which occur when the cell is depolarised above a 
threshold. The model employed in this thesis uses the Hodgkin-Huxley formalism describing 

the membrane current properties in the squid giant axon. Hodgkin and Huxley made the 
following assumptions in describing these membrane currents:

1.) Each channel is able to exist in two states, open and closed.

2.) No current flows through a closed channel.
3.) The total membrane current is dependent on the number of open channels ie. I = i (V) 

n(V,t) where i(V) is the current through one open channel and n(V,t) is the number of 
channels open.

4.) The number of channels open depends on the Voltage (V) and time (t).
5.) At a given voltage, the current through an open channel is constant.

6.) Changes in membrane potential alter the current through an open channel 
instantaneously.

7.) Changes in membrane potential also produce a time-dependent change in the number of 
open channels.

The form of the action potential for a neuron, i, is determined by solving the Hodgkin and 

Huxley equations (Cronin, 1987). The specific implementation here is based on the 
equations from the model of the Bullfrog neuron taken from Yamada et al, 1989.:

dVi/dt = - l/CM{(gNami2 hi (Vi - VNa) + gK ni2yi (Vi - Vr) + gn (Vi- Vi) +

gex(Vi - Vex) + gin(Vi - Via)}.

dmi/dt ~ tXjpi (1 - ITli) - Bjni mj,

dhi/dt = (1 " hi) - Bhi hi,

dni/dt = ô ni (1 ■ nj) - Bni ni

dyj/dt = ctyi (1 - yi) - Byj yi

dgex/dt = "gex^ex

dgin/dt = "gii/tin

Vi represents the membrane potential of neuron i, Cm represents the membrane capacitance 

(the capacitance is taken to be constant and to be the same for all neurons), gNa represents the 

maximum Na+ channel conductance, gK represents the maximum K+ channel conductance, gi 

represents the leakage conductance, V ^  represents the Na+ equilibrium potential, V K
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represents the K+ equilibrium potential, W\ represents the leakage equilibrium potential, m, h, 

n and y are the fraction of Na+ and K+ channel gates that are open (m,h for Na+ and n,y for 
K+). gex and gjn are the conductances of the excitatory and inhibitory synaptic channels

respectively, x represents the excitatory and inhibitory decay time constants. For the

purposes of this chapter, we consider pairs of excitatory neurons throughout.

Every iteration, gex and gin are updated using the equations:

Sex = Sex + wji C 1 

Sin = Sin + wji ^2

where wj, represents the synaptic weight between a presynaptic neuron j and a post synaptic 

neuron i.

As can be seen, Na+ channels have two sorts of gates, the m and h gates (consistent with 
Hodgkin-Huxley notation). On membrane depolarisation, the Na+ current (the sodium 

current is an inward current and thus causes activation / excitation) initially increases 
(activation). However, it then shows a slower decay (inactivation / inhibition). The membrane 

potential is dependent on the activation gate, m raised to the second power (giving the Na+ 
activation current an inverted ‘U* time course). Conceptually, the Na+ channels can be 

thought to have two m gates. As the probability of one gate being open is m, the probability 
of both gates being open is m2. On depolarisation, both m gates have to be open before the 

channel is effectively open. These are assumed to open independently and their rate of 
opening is given by dnij/dt (see above).

In the equation, drnj/dt = a mj (1 - m,) - fim, m,, otm and f3m are rate constants governing the 

opening and closing of gates where, a mj (1 - mi) is the rate of uni-directional movement of 

the gate from it’s closed to open state while 3 mi mi is the rate of uni-directional movement of

the gate from it’s open to closed state. The potential is dependent on the inactivation variable, 
h to the first power (giving the late Na+ inactivation current an exponential time course). 

Thus, the Na+ channels have only one h gate (the h gate is initially open and on 
depolarisation begins to close). However, the h gate closes much more slowly than the m 

gates open. The rate of h gates closing is given by dhj/dt. K+ channels also have two gates, 

the n and y gates. Depolarisation opens the n gates and the membrane potential is dependent 
on n2 showing that K+ channels have two n gates. These n gates are initially closed and on 

depolarisation, begin to open. The K+ current is an outward current and thus causes 
inactivation (inhibition). The y gate is an inactivation gate giving the late K+ inactivation
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current an exponential time course.

1.3.1 Interaction between Units

C l, C2 are constants governing the numbers of channels opened in the postsynaptic cell if the 

presynaptic membrane potential rises above a certain threshold and implicitly releases 
presynaptic vesicles containing neurotransmitters. If the presynaptic cell is not firing above 

the threshold, then: C l, C2 = 0. If Vj is above the threshold and if the presynaptic cell has an 

inhibitory effect, inhibitory synaptic channels are opened rather than excitatory ones and thus 
C2 > 0 and C l = 0. If the presynaptic cell has an excitatory effect, excitatory channels are 

opened and thus C l > 0 and C2 = 0. This corresponds to the release of excitatory (eg. 
AMP A) or inhibitory (eg. GABA) neurotransmitters.

Synaptic transmission is caused by setting Cl or C2 to a non-negative value for the duration 

of one iteration after the presynaptic cell fires above threshold. The values of C l and C2 were 
chosen to be the same as the values of the peak conductances of AMPA and GABA channels

taken from Lumer et al (1997), as were the values of the reversal potentials and the time
constants. The presynaptic input, C1,C2, felt by neuron i from neuron j is only expressed 

after some propagation delay (DELAYji), which is of the order of a few milliseconds and is

constant. gNa> gK and gi are positive constants and On, Bn, o^ , Bm, cth, Bh, oty, By are nonnegative

functions of V that model voltage-dependent rates of channel configuration transitions:

a m = 0.18 ( V + 33) /  (1 - exp[ -( V + 33 ) /  3 ] )

Bm = -0.2 ( V + 42 )/ (1 - exp[ ( V + 42 ) /  20 ] )  

a h = -0.05 ( V + 55 ) /(I - exp [ ( V + 55 ) /  6 ] )

8 h = 2.25 / ( 1 + exp [ - V /  10 ] )

a n = 0.0047 ( V + 12 ) /  ( exp[ -( V + 12 ) /  12 ] -1 )

pn = exp-[ (V + 147) /  30 ]

If V < -25mV:

a y = 1 /  6000 (1 + exp [ ( V + 25 ) /  4 ] )

By = ( exp [ ( V + 25 ) / 4 ) / 6000 (1 + exp [ ( V + 25 ) / 4 ] )
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or else:

a y = 1 / 50 (1 + exp [ ( V + 25 ) /  4 ] )

By = ( exp [ ( V + 25 ) /  4 ) /  50 (1 + exp [ ( V + 25 ) / 4 ] )

When integrating the neuronal equations through each time step, an explicit exponential 

technique was used due to it’s good stability and accuracy statistics (Yamada et al, 1989). 
This rule assumes a first order form for the state equations with constant coefficients A and B 

over the interval At,

dy / dt = -By + A 

then:

yt + At = yte-BAt + ( A/B) (1 - exp [ -BAt ] )

The values of the parameters in this model are given in Table 1.1, below.

Table 1.1 Values Used in the Model

Membrane Capacitance / Cm 1 microfarad

Cl (AMPA g p ea k  (m S ))  

C2 (GABA gp eak  (m S )) 

time step/dt

gNa

gK

gl

0.05  

0.175  

0.5 ms 

200 mS

170 mS

1 mS
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g ex  0.05 mS

g i n  0.175 mS

Sodium  Equilibrium  Potential/V na 50 mV

Potassium  Equilibrium Potential/V K -90 mV

Leak Equilibrium  Potential/Vi -60 mV

AM PA Equilibrium Potential/Vex 0 mV

GABA A Equilibrium Potential/Vjn -70mV

AM PA decay time constant 3 ms

GABA A decay time constant 7 ms

1.3.2 Simulated Dynamics

If  we set the synaptic weights high enough, the coupled neurons resonate (Fig. 1.2). This is 

because, each time cell i receives a presynaptic im pulse, the synaptic weight is sufficiently 

high that it causes the cell i to fire which in turn causes cell j to fire and so on. In short, each 

cell repeatedly stimulates the other (with the propagation delay) so that they fire alternately.

Fig. 1.2a b
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Fig. 1.2 (a) In this example, both synaptic weights wjj and wy are set to 1. DELAYy and DELAYjj were 

set to 8 and 16 ms respectively, (b) the weights were set to 100 with the same delays. Weights of 1 are 

equivalent to the peak conductance being equal to that for an AMPA channel. Weights with a value of 100 

are 100 times bigger than the peak conductance for AMPA and thus (b) is equivalent to the postsynaptic cell 

receiving inputs from 100 cells simultaneously. In (a) and (b), both cells are stimulated once 

simultaneously at the beginning of the run.

For each action potential, the initial depolarisation is caused by changes in m, the probability 
of the Na+ activation gate increasing while the downward phase is caused by changes in n, the 

probability of the K+ gate opening and h, the probability of the Na+ inactivation gate opens. 
When, the membrane potential approaches the equilibrium potential again, m and n are 

decreasing and h is increasing. Note that in the inhibitory case there is a hyperpolarisation 
below the equilibrium potential following an action potential. This is due to the potassium 

conductance still being above its resting level.

1.3.3 Refractory Period of the Action Potential

After the peak of the action potential, when n is elevated and h is low, it is not possible, no 

matter how much the cell is depolarised, to activate enough inward Na+ current to outweigh 
the outward K+ current and initiate an action potential. This period of not being able to 

activate an action potential is known as the refractory period and is crucial for the model 
dynamics. After a cell has fired, it cannot fire again for the duration of the refractory period. 

This phenomenon is implicit in the Hodgkin-Huxley dynamics but is explicitly implemented 
in the integrate and fire model.

1.3.4 Membrane Capacitance

A critical aspect of cell membrane dynamics is that, as the membrane allows the flow of ionic 
currents, the membrane accumulates ionic charges on its inner and outer surfaces. It is this 

charge separation that determines the cells membrane potential. This also makes the 
membrane analogous to an electrical capacitor that is in parallel with a resistor. Typically, a 

capacitor consists of two metallic conducting plates separated by a layer of insulating material 
such as mica or plastic. In a neuron, the ionic fluids on either side of the membrane act as 

the capacitor plates and the lipoprotein of the membrane acts as the insulating material. In a 
capacitor, the closer together the plates are, the more charge can be stored. Because the cell 

membrane is only around 7pm thick, it is capable of storing a relatively large amount of
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charge.

The build up of charge in a capacitor is determined by:

I = dQ/dt = C (dV/dt).

where, I = current (Amperes), dQ/dt = rate of change of charge stored (Coulombs per 
second), C = capacitance (Coulombs per Volt) and dV/dt = rate of change o f potential 

difference (Volts per second). Therefore, in a simple circuit, on application of a current, the 
capacitor will charge linearly as all of the current flows through the capacitor straight away 

and this is constant (see Fig. 1.3).

Fig. 1.3 In a purely capacitative circuit, the rate of change of voltage is proportional to the applied current 

(taken from Nicholls et al, From Neuron to Brain, p i29).

Fig. 3
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However, in a circuit comprising a resistor and capacitor in parallel, things become more 
complicated. Now the current through the capacitor is not constant. Initially all of the 

current flows through the capacitor and none through the resistor (see Fig. 1.4). However, 
over time, the current through the resistor increases and that through the capacitor decreases 

(Fig. 1.4). Eventually, all the current flows through the resistor and none through the 
capacitor. As a result, on application of the current, the rate of build up of charge stored in 

the capacitor decreases over time until it reaches a maximum value, and thus the potential 
across the capacitor increases in the same way, as charge is proportional to potential 

difference or more specifically,

Alternatively, on removal of the current, the capacitor will discharge in the same way.

Fig. 1.4 In a combined RC circuit, the initial surge of current is through the capacitor. Finally, all of the 

current flows through the resistor. Voltage rises to its final value exponentially with time constant, T = 

RC (taken from Nicholls et al, From Neuron to Brain, p i29).

Q = CV

Fig. 4

i’r  +  i c =  i
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The time course of the rise of the potential is described by V = IR (1 - e-^ ) where x is the 
membrane time constant and is the time for the membrane potential to rise to the fraction (1 - 

1/e) or 63% of its maximum value, following an excitatory synaptic input. The capacitance 
time constant is determined by, x = RC. In a neuron, the membrane time constant is an 

extremely important property of the neuron as it determines how fast the membrane potential 
increases and decreases following an excitatory synaptic input or how fast it decreases and 

increases following an inhibitory input. This is important because neurons act as temporal 
integrators that need many excitatory synaptic inputs to cause the membrane potential to 

increase above the threshold and fire. Therefore, the membrane time constant determines the 
effective time window over which different synaptic inputs need to arrive in order to have an 

effect on the postsynaptic cells membrane potential. In a later chapter, we will see how 
balanced excitatory and inhibitory inputs can dynamically modulate the effective time 

constants and why this is important for population dynamics.

1.3.5 Testing the Model

a.) To ensure our model reproduces findings from real electro-physiological experiments, we 

stimulated our cells as described in Markram et al, Fig. IB (1997) :

Fig. 5

Pre. A P s -/

EPSPs 60 mV 
1.5 mV

100 ms

AP = action potential
EPSP = excitatory postsynaptic potential

39



Fig. 1.5 Physiological results taken from Markram et al, Fig. IB (1997)

Stimulating the postsynaptic cell in the same way as depicted in Fig. 1.5 shows a postsynaptic 

response as shown in Fig. 1.6. The response shown here is purely due to the dynam ics 

inherent in the Hodgkin and Huxley equations. As can be seen, the results here are consistent 

with physiological results as shown in Fig. 1.5.

Fig. 1.6
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Fig. 1.6 This Figure shows the repeated stimulation of the postsynaptic cell during it’s excitatory post 

synaptic potential (EPSP) as shown in Fig. 1.5.
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When we stimulate the presynaptic cell in this way, we see the following response (see Fig. 
1.6) in the postsynaptic cell.: The postsynaptic response initially increases and then

decreases. This effect of decreasing excitatory postsynaptic potentials (EPSPs), when a cell is 
repeatedly stimulated during it’s EPSP, is thought to occur because of depression due to 

depletion of neurotransmitters, desensitisation of postsynaptic receptors or the opening of 
other potassium channels (Magleby, 1987). However, in this model the response as shown in 

Fig. 1.6 is not due to any learning rule or short term plasticity, but is simply consequent on 
the Hodgkin and Huxley equations themselves. It can be concluded that some aspects of 

short term synaptic plasticity are due to nothing other than the Hodgkin-Huxley membrane 
channel dynamics themselves.

1.4 Integrate and Fire Model

This model does not use detailed Hodgkin-Huxley dynamics and is a simplified neuronal 

model where the threshold for firing is specified manually, rather than being implemented 
intrinsically via sodium and potassium channel dynamics. The instantaneous change in 

membrane potential, V(t), of each model neuron is given by:

Tmd V /d t  = -V + V o -X jg j(V -V j)

where xm is a passive membrane time constant set at 16ms (8ms) for cortical excitatory 

(inhibitory) cells and the sum on the right hand side is over synaptic currents. V 0 denotes the 

passive resting potential that was set to a value of -60mV. Vj are the equilibrium potentials for 

the jth synaptic type. V is reset to the potassium reversal potential of -90mV, when it exceeds 

a threshold of -50mV and a spike event is generated for that unit. Synaptic activations of 
AMPA, GABAa and GABAb receptors are expressed as a change in the appropriate channel 

conductance, gj? according to a dual exponential response to single spike events in afferent 

neurons given by:

g = gpeak[exp(-t / T i)  - exp(-t /  X2)] / [exp(-tpeak / Xi) - expt-tpeak /  X2)]

Xj and x2 are the rise and decay time constants, respectively, and tpeak, the time to peak. tpeak = 

^ 2 / ( t  l -  ^ 2 ) '  gpeak represents the maximum conductance for any particular receptor.
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C onductances are im plicitly norm alized by a leak membrane conductance, so that they are 

adim ensional. A lso , in som e instances during this thesis, feedback inter-area connections are 

m odelled as modulatory voltage dependent N M D A  channels.

The im plem entation o f  N M D A  channels, was based on Traub et al (1991):

lNMDA= gNMDA(0 M ( V - VNMDA)

d g N M D A / d t  =  -  g N M D A ^ 2

M = 1 / ( 1 + (Mg2+/ 3) (exp [-0.07 (V - £) ] )

Inmda is the current that enters linearly into the equation for dV/dt, above. gNMDA is a ligand- 

gated virtual conductance. M  is a modulatory term that m im ics the voltage-dependent affinity  

o f  the M g 2+ channel pore. £  is -lO m V  and M g 2+ is the external concentration o f  M g2+ often  

used in hippocam pal slice  experim ents (2m M ). T hese and other parameters (see Table 1.2) 

are consistent with experimental data (see Lumer et al, 1997 for details).

receptor/channel gpeak (mS) %l (ms) x2 (ms) Vi (mV)

AMPA 0.05 0.5 2.4 0

GABAa 0.175 1 7 -70

GABAb 0.0017 30-90 170-230 -90

NMDA 0.01 0 100 0

Table 1.2 Table showing the parameter values of the integrate and fire model.

1.5 Discussion of the Models used

1.5.1 Modelling the Whole Neuron

As described above, the two models used in this thesis are single-compartmental. 

However, as mentioned in the introduction, much more complex models that either use cable
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theory or multiple compartments are also widely used in theoretical neurobiology. So what 
exactly are we sacrificing, in terms of neuronal realism, for the sake o f lightening the 

computational load. Before one can answer this one must firstly know exactly what both, 
cable and multi-compartmental modelling offer the theoretician:

Both, cable theory and multi compartmental modelling allow the modeller to not only 

simulate the neuronal cell body, but also the neuronal dendrite. Dendrites are the largest 
component, in both surface area and volume, of the brain and their specific morphology is 

used to classify neurons into their different classes such as pyramidal, Purkinje, amacrine, 
stellate and double-bouquet cells. Dendrites are also the cell structures that receive the 

synaptic pulses from other connected cells and are therefore where temporal integration of 
synaptic impulses, or indeed ‘neuronal computation’ takes place. A typical dendritic tree has 

around ten thousand synapses distributed over it’s surface. When activated, these synaptic 
inputs produce a local conductance change for specific ions at the postsynaptic dendritic 

membrane, followed by a flow of the corresponding ionic current between the two sides of the 
membrane. As a result, a local change in membrane potential is generated and then spreads 

along the dendritic tree. Using cable theory (Rail, 1964), the modeller simulates synaptic 
impulses as the flow of electrical current into the dendritic tree. Dendrites are effectively thin 

tubes wrapped with a membrane that is a relatively good electrical insulator compared to the 
resistance provided by the intracellular core or the extracellular fluid. Because of this 

difference in membrane vs. axial resistivity, the current inside the core conducter tends to flow 
parallel to the cylinder axis. This makes the dendrite directly analogous to an electrical cable. 

For a fuller explanation of the use of cable theory in neuronal simulations, see Bower and 
Beeman, The Book of Genesis, p53. The other approach, multi compartmental modelling, 

allows one to overcome some of the assumptions of cable theory, such as assuming a passive 
membrane that receives it’s input as current. This approach involves modelling the dendrite 

as many functional subunits, directly analogous to the way that we modelled the single 
compartment neuron (see above). It can be shown that when the dendritic tree is divided into 

sufficiently small segments (compartments) the solution of the discrete multi-compartmental 
model converges to that of the continuous cable model. Figure 1.7 shows the differences in 

how the modeller views the neuron dendrite when using either cable theory or multi- 
compartmental modelling. Figure 1.8 illustrates a circuit for a ‘generic’ neuronal multi- 

compartmental model and shows how the current is propagated along the dendrite.
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Fig. 1.7
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Fig. 1.7 Dendrites are modelled as either a set of cylindrical cables (a) or as a set of discrete R-C 

compartments (b). (taken from Bower and Beeman, The Book of Genesis, p70)

Fig. 1.8
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Fig. 1.8. Circuit for a neural compartment. The resistor with the arrow represents one of many possible 

variable channel conductances which are specific to a particular ion or combination of ions that give 

individual neurons and neuron types their unique computational properties. Differences in the concentration 

of the ion between the inside and the outside of the cell result in an osmotic pressure which moves ions 

along the concentration gradient. The resulting charge displacement creates a potential difference over the 

cell membrane, (taken from Bower and Beeman, The Book of Genesis, p i 1)

1.5.2 Modelling other Membrane Channels

So, what are we losing in our simulations by adopting the single-compartment model. One of 
the differences in behaviour between multi- to single-compartment cells is that the multi­

compartments can function as many, almost independent, functional subunits. Each unit can 
implement a computation (such as local synaptic plasticity) and they can function as semi- 

autonomous input-output elements (via dendro-dendritic synapses). Also, neurons with slow 
currents in the dendrites and fast currents in the soma can produce a large repertoire of 

frequency patterns (Pinsky and Rinzel, 1994). However, from a phenomological point of 
view, these functions of the dendrites can be implemented via varying the inter-neuron delays 

and also by varying the number of inter-connected neurons.

The second shortcoming of our models is that they either use no ionic channel dynamics 
(integrate and fire model) or very few (Hodgkin-Huxley model). Again, many studies use 

neuron models that have a multitude of different membrane channels that influence the cell 
behaviour in a different way. For instance, Traub et a l , 1991, implemented the following in 

their model of the CA3 pyramidal neuron:

1.) Sodium channels that activate the action potential as in our model.
2.) Calcium channels that act to activate the action potential along with the sodium channels.

3.) Delayed rectified and, after hyperpolarisation, calcium-dependent potassium channels that 
act as much slower inactivaters of the cell following an action potential (these channel 

dynamics mimic long-term neuronal adaptation, as has been shown to occur by Calabresi et al 
(1990) and Lorenzon et al (1992))

4.) Types a and b potassium channels that inactivate the cell. Type b is calcium-dependent.

The main functional significance of these channels is that they enable the cells to adapt to 
their firing at different levels and also cause the duration of cell action potentials to vary. 

However, as can be seen in Figure 1.6, our Hodgkin-Huxley model also shows some short 
term adaptation due to the use of two membrane channels whose parameters have been 

manipulated to enable us to make the cells as realistic as possible. Although, our integrate
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and fire model does not show such short term adaptation, we do implement, in population 
models that use these types of cells, a form of long-term self inhibition (see p55) that mimics 

long-term adaptation. Another key difference between the two models that we use is that the 
duration of firing is much quicker in the integrate and fire model (one time step or 0.25ms) 

than the Hodgkin-Huxley model (around 3ms). Therefore, given the two models that we use, 
we are able to assess the role of spike duration and also different levels of adaptation on the 

population dynamics investigated. In short, we have been able to minimise our departure 
from biological realism by selective use of the appropriate complex cell state variables, which 

enabled us to substantially reduce the computational load of our simulations.

1.6 Synaptic Plasticity

1.6.1 Short term synaptic changes

We did not incorporate a synaptic learning rule in our model. However, for completeness, we 

discuss synaptic plasticity, because this phenomenon may cause non-linear coupling between 
cells of a stronger sort than we have described in our single-compartment models. 

Implementing a learning rule may, therefore, affect the nature of the population dynamics 
studied in this thesis. As the field of plasticity becomes more fully understood, it may well 

become an important component of population models in the future. Synaptic potentiation 
and depression are the processes by which neurons increase or decrease respectively their 

synaptic efficacy and thus the influence that presynaptic cell firing has on causing the 
postsynaptic cell to fire. Synaptic plasticity has been observed in electrophysiological 

recordings in both the short (of the order of seconds and minutes) and the long term (of the 
order of hours/days/weeks etc.). Short term depression (STD) and thus decreases in synaptic 

efficacy can arise from desensitisation of postsynaptic receptors or a decreased amount of 
transmitter release from the presynaptic terminal. There are four different types of short term 

potentiation (STP) depending on the level of depolarisation in the pre and post synaptic 
neurons. These are potentiation, augmentation and the first and second components of 

facilitation. Each of these mechanisms are kinetically and pharmacologically separable in 
terms of the neurotransmitter release involved. All four STP components cause the 

postsynaptic activity to build up during repetitive stimulation and then decay with 
characteristic time courses. This decay may reflect the build up and decay of Ca2+/Na+ ions in 

the postsynaptic cell as well as an increase and decrease of presynaptic neurotransmitter 
release. STP can be mediated by an increased number of quantal packets of transmitter being 

released from the synapse when the presynaptic cell fires.

Facilitation has two components with decay time constants of around 50 and 300ms and is 
known to double transmitter release after a single impulse. Augmentation, which has a decay
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time constant of around seven seconds, increases transmitter release by around one percent 
after a single impulse but can increase release severalfold during long conditioning trains of 

impulses. Potentiation whose decay time constant is around 30s to minutes, increases 
transmitter release by around one percent after one impulse but again, severalfold after 

hundreds of afferent pulses.

1.6.2 Long-term synaptic changes

More intriguing than these short-term changes in synaptic efficacy, are the longer term 

changes in synaptic efficacy that might underlie learning and conditioning of the sort 
observed by Pavlov. Pavlov noticed that hungry dogs used to salivate, even when they heard 

the footsteps of the man bringing them food (before they could smell or see the food). He 
designed a paradigm in which he coordinated the feeding of a dog with the sound of a bell 

being rung. He found that eventually the dog salivated even when the bell was rung but did 
not to any arbitrary stimulus (such as a visual stimulus). Therefore, by the repeated pairing of 

sound and salivation, he had presumably strengthened synapses in the sound - salivation 
pathway. Such long term activity-dependent changes in synaptic transmission were first 

produced experimentally in the neocortex in the 1960s and lasted tens of minutes. Long 
term potentiation (LTP) of synaptic efficacy in a mono-synaptic pathway (in the dentate 

region of the hippocampus) was described by Bliss and Lomo (1973) and was observed as an 
increase in the slope of the extracellular field potential (reflecting the EPSP occurring in 

neurons) and as an increase in synaptic voltage or current measured intracellularly after 
repetitive stimulation of the cell. LTP was shown to be both activity-dependent and synapse- 

specific. Activity-dependent means that the level o f LTP depends on the activity 
(depolarisation) of both the pre and post synaptic cell. Synapse-specific means that only the 

synapse between the pre and post synaptic cell strengthens. What made this discovery more 
exciting, however was that it was shown to occur in parts of the brain known to be important 

for learning such as the neocortex and hippocampus.

It has been found generally, that for LTP to occur, pre and post synaptic cells must both be 
active (this is known as associativity), i.e. The presynaptic terminal must be releasing 

glutamate while the postsynaptic cell is depolarised. Associativity has been inferred in a 
number of ways including depolarising the postsynaptic cell with intracellular current while 

activating the presynaptic cell with the input being studied (such as the smell of food) or 
activating the postsynaptic cell with another input (such as ringing a bell) while activating the 

presynaptic cell with the input being studied (as in Pavlovian conditioning). Markram et al 
(1997) discovered that if the presynaptic cell fires above the threshold to cause an EPSP at the 

postsynaptic synapse then, for potentiation to occur, an action potential in the soma must be 
generated within a sufficient amount of time for a feedback signal to be propagated back 

down its dendrite to the spine, so that its arrival corresponds roughly with the EPSP. They 
found that if the action potential is generated within a time window of 10 ms after the EPSP
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occurs, then LTP arises but if it is generated within a time window of 10 ms before the EPSP 
occurs, LTD arises. A large rise of Ca2+ in the dendritic spines is required for the induction 

of LTP. The transmitter release during tetanus activates non-NMDA receptors, which causes 
the postsynaptic membrane to depolarise and thus remove the magnesium block of NMDA 

receptor channels. Ca2+ then flows through NMDA channels into the spines. This rise in 
intracellular Ca2+ may be augmented by Ca2+ entry via voltage-sensitive calcium channels 

(VSCCs) and the activation of glutamate metabotropic receptors (mGluRs) leading to the 

release of Ca2+ from intracellular stores (Frenguelli e t  a l , 1993, Bashir et a l , 1993).

There are many similarities in the conditions required for LTP and long-term depression 

(LTD), with only the level of depolarisation being different. If the presynaptic target is 
strongly depolarised, then strong postsynaptic depolarisation produces LTP whereas weaker 

depolarisation produces LTD. As in LTP, LTD also depends on the levels of intracellular 
calcium in the postsynaptic cell. LTD occurs with low levels of calcium. However, as LTD 

has been observed under conditions of NMDA blockage, it is thought that for LTD to occur, 
Ca2+ must enter the postsynaptic cell through some other source. It is probable that while 

LTP is mediated by Ca2+ entry through NMDA channels, LTD is mediated by calcium entry 
from intracellular stores via mGluRs. Remember that high depolarisation causes the M g2+ 

block to move from the NMDA channels whereas low depolarisation is sufficient for Ca2+ 
entry via mGluRs. In causing LTP, Ca2+ influx through voltage-gated ion channels activates 

Protein Kinase C to sensitize AMPA receptors. However, in causing LTD, Ca2+ influx 
activates Protein Kinase C to desensitize AMPA receptors.

1.6.3 Retrograde Messengers

The role o f retrograde messengers between the postsynaptic and presynaptic cleft, in 
signalling synaptic changes is central to associative plasticity. Two of the likeliest candidates 

as this messenger are Arachidonic acid (AA) and Nitric Oxide (NO). AA is released during 
LTP induction and blocking its release blocks LTP. Moreover, adding exogenous AA 

increases the synaptic strength. However, the increase of AA release during LTP is only a 
small fraction of basal release implying that this is probably not the retrograde messenger. It 

has also been demonstrated that AA potentiates glutamate evoked currents through NMDA 
channels suggesting that AA may be needed merely to maintain a large calcium influx 

through NMDA channels, with a different Ca2+ dependent enzyme actually producing the 
diffusible retrograde messenger. NO is released when NMDA channels are opened by 

glutamate and blocking NO synthase blocks LTP, as does haemoglobin which binds NO. 
NO-synthase has also been found in the CA1 pyramidal cells that show LTP. Thus NO has 

emerged as the more likely candidate out of the two. Indeed it is the current view that LTP 
could be produced by the release of NO from within the cell coupled with depolarisation 

induced Ca2+ entry.
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In summary, LTP/LTD are likely to be good experimental models for synaptic plasticity. 
Therefore, implementation of the phenomological characteristics of these dynamics in a 

computational model may provide useful insights into the neural substrates of learning and 
the effects on the behaviour of neuronal population dynamics. However, in this thesis, we are 

not concerned with learning and only consider short-term plasticity implicit in the model 
dynamics described earlier in this chapter.
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Chapter 2: The Relationship between 

Synchronization among Neuronal 

Populations and their Mean Activity 

Levels.

2.1 Abstract

In the past decade the importance of synchronized dynamics in the brain has emerged from 

both empirical and theoretical perspectives. Fast dynamic synchronous interactions of an 
oscillatory or non-oscillatory nature, may constitute a form of temporal coding that underlies 

feature binding and perceptual synthesis. The relationship between synchronization among 
neuronal populations and the population firing rates, as measured by functional magnetic 

resonance imaging (fMRI) in the previous chapter, addresses two important issues: Firstly, the 
distinction between rate coding and synchronization coding models of neuronal interactions 

and, secondly, the degree to which empirical measurements of population activity, such as 
those employed by neuroimaging, are sensitive to changes in synchronization. We examined 

the relationship between mean population activity and synchronization using biologically 
plausible simulations. In this chapter, we focus on continuous stationary dynamics. In the 

subsequent chapter, we address the same issue using stimulus evoked transients. By 
manipulating parameters, such as extrinsic input, intrinsic noise, synaptic efficacy, density of
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extrinsic connections, the voltage sensitive nature of post-synaptic mechanisms, the number of 
neurons and the laminar structure within the populations, we were able to introduce variations 

in both mean activity and synchronization under a variety o f simulated neuronal 
architectures. Analyses of the simulated spike trains and local field potentials showed that, in 

nearly every domain of the model’s parameter space, mean activity and synchronization were 
tightly coupled. This coupling appears to be mediated by an increase in synchronous gain 

when effective membrane time constants are lowered by increased activity. These 
observations show that under the assumptions implicit in our models, rate coding and 

synchrony coding in neural systems with reciprocal interconnections, are two perspectives on 
the same underlying dynamic. This suggests that, in the absence of specific mechanisms 

decoupling changes in synchronization from firing levels, indices of brain activity that are 
based purely on synaptic activity (e.g. fMRI) may also be sensitive to changes in synchronous 

coupling.

2.2 Introduction

This chapter is about the relationship between fast dynamic interactions among neuronal 
populations and measures of neuronal activity that are integrated over time (e.g. functional 

neuroimaging). In particular, we address the question “can anything be inferred about fast 
coherent or phasic interactions based upon averaged macroscopic observations of population 

activity?” This question is important because a definitive answer would point to ways in which 
data from functional neuroimaging might be related to electrophysiological findings, 

particularly those based on multi-unit electrode recordings of separable spike trains.

The basic hypothesis behind this work is that fast dynamic interactions between two units in 
distinct populations are a strong function of the macroscopic dynamics of the populations to 

which the units belong. In other words, the coupling between the two neurons, reflected in 
their coherent activity over a time-scale of milliseconds, cannot be divorced from the context 

in which these interactions occur. This context is determined by the population dynamics 
expressed over thousands of neurons and extended periods of time. More specifically, on 

the basis of previous theoretical and empirical work (Abeles et a l , 1982, Aertsen et al, 1990, 
Lumer et a l , 1997), we conjectured that the degree of phase-locking, or more generally 

synchronization, between units in two populations, would co-vary with the average activity in 
both populations. The aim of the present work was to test this hypothesis using biologically 

plausible simulations over a large range of parameters specifying the physiological and 
anatomical architecture of the model. In this chapter we report simulations that address the 

relationship between mean activity and synchronization during relatively steady-state 
dynamics following the onset of continuous input lasting for a few seconds. In a subsequent 

chapter we will address the same issue using evoked transients and dynamic correlations at 
different levels of mean activity.
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Many aspects of functional integration and feature linking in the brain are thought to be 
mediated by synchronised dynamics among neuronal populations. In the brain, 

synchronization may reflect the direct, reciprocal exchange of signals between two 
populations, whereby the activity in one population effects the activity in the second, such that 

the dynamics become entrained and mutually reinforcing leading to synchronous discharges. 
In this way, the binding of different features of an object may be accomplished, in the 

temporal domain, through the transient synchronization of oscillatory responses (Milner et al, 
1974, von der Malsburg,1981, Spoms et al, 1991). Physiological evidence has been, in 

general, compatible with this theory (Engel et al, 1991). It has been shown that 
synchronization of oscillatory responses occurs within as well as between visual areas, for 

example between homologous areas of the left and right hemispheres and between remote 
areas in the same hemisphere at different levels of the visuo-motor pathway (Gray et al, 1990, 

Engel et al, 1991, Konig et al, 1995, Roelfsema et al, 1997). Synchronization in the visual 
cortex appears to depend on stimulus properties such as continuity, orientation similarity and 

motion coherency (Gray et al, 1989, Engel et al, 1990, Freiwald et al, 1995). It would 
therefore seem that synchronization provides a suitable mechanism for the binding of 

distributed features of a pattern and thus contributes to the segmentation of visual scenes and 
figure-ground segregation. More generally, synchronization may provide a powerful 

mechanism for establishing dynamic cell assemblies that are characterised by the phase and 
frequency of their coherent oscillations. Accordingly, the effective connectivity among 

different populations can be modulated in a context-sensitive way by synchronization-related 
mechanisms. Taken together, these considerations indicate that synchronization is an 

important aspect of neuronal dynamics.

The aim of this study was to see if population synchrony bears some relationship to overall 
activity levels. We used physiologically based neuronal networks comprising two simulated 

brain areas, to look at how the level of neuronal activity affects the degree of phase locking 
between the two populations and vice versa. We used two models. The first had a fairly 

realistic laminar architecture but simplified (integrate and fire) dynamics (see chapter 1). The 
second had a simple architecture but detailed (Hodgkin-Huxley) dynamics. By modifying 

different parameters, such as synaptic efficacy, the density of extrinsic connections, the 
voltage-sensitive nature of post-synaptic mechanisms, the number of neurons and the laminar 

structure within the neuronal populations, we were able to model a broad range of different 
architectures. For each architecture, we induced changes in the mean activity and 

synchronization among simulated populations by manipulating extrinsic input (or 
equivalently intrinsic noise). Analyses of the simulated spike trains and local field potentials 

showed that, in almost all regions o f the model’s parameter space, mean activity and 
synchronization were tightly coupled.
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2.3 Methods

2,3.1 Integrate and Fire Model

The first component of this study looked at the behaviour of two reciprocally connected 
cortical areas. Each cortical area was divided into three laminae corresponding to the supra 

and infragranular layers and layer 4 (see Fig. 2.1a). This laminar organization is consistent 
with known cortical anatomy (Felleman and Van Essen, 1991). Each layer contained 400 

excitatory cells and 100 inhibitory cells. Intra-laminar connections had a density of 10% and 
included both excitatory and inhibitory connections (with AMPA and GABAa synapses 

respectively). The supragranular cells also expressed modulatory NMDA and slow GABAb 
synapses. The pattern of inter-layer connections can be seen in Fig. 2.1a. Inter laminar 

connections were 7.5% and excitatory. GABAb connections were also implemented from the 
supragranular layer to the other two layers to represent double-bouquet cells (Conde et al, 

1994, Kawaguchi, 1995). Our ratio of inter-layer/intra-layer connections approximated the 
45%/28% ratio reported in the cat striate cortex (Ahmed et al, 1994).

Feedforward connections between cortical areas (Fig. 2.1b) were 5%, from the supragranular 

excitatory cells in the first cortical area to the AMPA synapses of layer 4 cells in the second 
cortical area. Feedback connections were 5%, from the infragranular excitatory cells of the 

second cortical area to the modulatory NMDA synapses of supragranular cells in the first 
cortical area. The synapse to neuron ratio in this model was consistent with experimental 

findings (Beaulieu et al, 1983, 1985). The extrinsic, inter-areal, connections were exclusively 
excitatory. This is consistent with known neuroanatomy where, in the real brain, long range 

connections that traverse white matter are almost universally glutaminergic and excitatory. 
The excitatory extrinsic connections between the neuronal populations targeted both 

excitatory and inhibitory neurons within each population. These target neurons are randomly 
allocated to the excitatory afferent in proportion to the percentage of each cell type. This 

results in extrinsic connections targeting preferentially excitatory cells which is consistent with 
the empirical data (Domenici et al, 1996, Johnson and Burkhalter, 1996). The anatomy used 

in this model was consistent with Lumer et al, 1997 and has been tested against empirical data 
(Sukov and Barth, 1998).
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Fig. 2.1a
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Fig. 2.1 Architecture of the first model, (a) A schematic showing the connectivity structure within one 

cortical region, (b) Two cortical regions where the first cortical area provides driving input to the second 

and the second cortical area provides modulatory input to the first. In these diagrams SG, L4 and IG refer to 

supragranular layers, layer 4 and infragranular layers respectively. D and M refer to driving (AMPA) and 

modulatory (NMDA) connections respectively.

Individual neurons, both excitatory and inhibitory, were modelled as single-compartment, 

integrate and fire units (see chapter 1, p30). Synaptic channels were modelled as fast AMPA 
and slow NMDA for excitatory and fast GABAa and slow GABAb for inhibitory channels 

(Stem et a l , 1992, Otis and Mody, 1992, Otis et al, 1993). These synaptic influences were 
modelled using dual exponential functions, with the time constants and reversal potentials 

taken from the experimental literature (see Lumer et a l , 1997 for the use and justification of

54



similar parameters to those used in the present model). Adaptation was implemented in each 
excitatory cell by simulating a GABAb input from the cell onto itself. Adaptation is an 

important feature of neocortical cell behaviour and it has been observed consistently that 
repetitive cell stimulation produces a progressive and reversible decrease of spontaneous 

depolarizations and a decrease in firing rate (Calabresi et al, 1990, Lorenzon et a l , 1992). 
Implementing slow GABAb inhibitory inputs from each cell onto itself emulates this effect. 

Transmission delays for individual connections were sampled from a non central Gaussian 
distribution. Intra area delays had a mean of 2ms and a standard deviation of 1ms and inter 

area delays had a mean and standard deviation of 5ms and 1ms respectively. A continuous 
random noisy input was provided to all units in layer 4 of the first area. Variations in this 

input were used to induce changes in mean activity and synchronization.

2.3.2 Model based on the Hodgkin-Huxley Formalism

Once we had characterised the relationship between phase-locking and firing rate in the 

model above, we then tried to replicate our results over a much larger parameter space within 
the framework of a simpler model consisting of two areas, each containing a hundred cells 

that were 90% intrinsically connected. Due to the comparatively small number of cells used 
in this model, such a high connection density gives a similar synapse to neuron ratio as in the 

previous model. In this second component of our study, individual neurons were modelled as 
single-compartment units. Spike generation in these units was implemented according to the 

Hodgkin-Huxley formalism for the activation of sodium and potassium transmembrane 
channels. This facilitated a more detailed and biologically grounded analysis of effective 

membrane time constants (see below). Specific equations governing these channel dynamics 
can be found in chapter 1. In addition, synaptic channels provided fast excitation and 

inhibition. These synaptic influences were modelled using exponential functions, with the 
time constants and reversal potentials for AMPA (excitation) and GABAa (inhibition) 

receptor-channels specified as in the previous model. Cells were 20% inhibitory and 80% 
excitatory (Beaulieu et al, 1992). Reciprocal extrinsic (inter area) connections were all 

excitatory. Transmission delays for individual connections were sampled from a non central 
Gaussian distribution with means and standard deviations as given in the first model. A 

continuous random noisy input was provided to all units in one of the two areas (area one). 
In some simulations, the mean inter area delay was increased to 8ms to mimic a greater 

separation between the areas. In other simulations, excitatory NMDA synaptic channels (see 
chapter 1, p42) were incorporated. These NMDA channels were used only in the feedback 

connections.

2.3.3 Data Analysis

The neuronal dynamics from both models were analyzed with the cross correlation function
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between time series from two areas, after subtraction of the shift predictor (Nowak et al, 
1995). We used the time-series of the number of cells spiking per millisecond (in each 

population) as well as the mean membrane potential, analogous to the local field potential, of 
each population. We ran the model for two seconds of simulated time, eight times. The cross 

correlation between the first time series (eight runs in order) and a second time series, 
comprising eight runs in a random order, constituted our shift predictor. The shift predictor 

reflects phase-locking due only to transients locked to the onset of each stimulation.

As a measure of the level of phase-locking between the two populations, we used the peak 
cross correlation following correction. This separates stimulus onset related phase-locking 

from that due purely to neuronal interactions, allowing us to see how phase-locking due to the 
interactions between the two neuronal populations varied as a function of activity level.

The measure of phase-locking given above is effectively a measure o f the functional 

connectivity between the two areas. Functional connectivity has been defined as the 
correlation between two neurophysiological time series, whereas effective connectivity refers 

to the “influence” that one neuronal system exerts over another (Friston et al, 1994). In this 
work, we also examined how mean activity and phase-locking varies with effective 

connectivity, using the second model. As our measure of effective connectivity we used the 
probability (averaged over units and time) that a cell in the first population would cause a 

connected cell in the second population to fire. Furthermore, we tried to elucidate some of 
the mechanisms that could underlie the relationship between mean activity and 

synchronization in terms of temporal integration at a synaptic level. Our hypothesis was that 
high levels of activity would engender shorter membrane time constants. This in turn would 

lead to the selection of synchronised interactions by virtue o f the reduced capacity for 
temporal integration (Bemander et al, 1991). We therefore estimated the effective membrane 

time constants to see how these varied with mean activity and phase-locking. Details of the 
simulations can be found in chapter 1 and measurement of effective connectivity and 

derivation of the effective time constants can be found in appendices 3 and 4.

2.4 Results

We found that increases in the activity level of the network were universally associated with 
increases in the phase-locking between and within the populations as represented by the peak 

shift predictor subtracted cross-correlation. This held for large ranges of mean activity with a 
fall off at very high levels. This was observed regardless of the way that the activity level was 

varied {eg. changing the input to population one, varying the number of connections or 
manipulating the synaptic efficacies).

Firstly, we used the model incorporating two cortical areas, each comprising three layers (Fig. 

2.1b) and manipulated the input activity level (Fig. 2.2) to layer four of the first area. Phase-

56



locking rose systematically with activity levels with a fall off at very high levels.

Fig. 2.2a b
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F ig. 2 .2  Synchrony vs. mean activity for the first model, (a) This is a plot o f the peak shift predictor 

subtracted cross correlation between mean spike trains of different layers in area one against mean firing rate 

in population one, as the random input to population one was increased systematically, (b) A plot for the 

same input levels but here the phase-locking between homologous layers in each area are shown.

The second component of our study represented an exploration of a larger parameter space, 
using the second model consisting of two areas, each comprising a hundred cells. Figure 2.3 

shows the phase-locking between the two populations as a function o f mean activity in 
population one, for 10 different levels of extrinsic connectivity. In these simulations, the 

input activity level was varied systematically to elicit changes in the dynamics. It can be seen 
in Figures 2.3a to d that phase-locking increases monotonically between the spike trains or 

local field potentials, as the activity level increases. Furthermore, the rate of increase of phase- 
locking with mean activity increases with extrinsic connectivity. This is expressed as an 

increase in the slope of the regression of phase-locking on mean activity and represents an 
interaction between mean activity and extrinsic connectivity in producing synchronization. 

Figures 2.3e and f  illustrate the spiking and subthreshold activity in populations one and two 
at low and high levels of activity, respectively. It is seen that as activity rises, the spiking 

activity in each population becomes increasingly oscillatory.
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Fig. 2.3a
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Fig. 2.3 Synchrony vs. mean activity for the second model, (a) and (b) The peak shift predictor 

subtracted cross-correlation between the time-series of number of cells spiking per ms for each population is 

plotted against mean number of cells spiking in population one per millisecond for extrinsic reciprocal 

connectivities of (a) 5%, 15%, 45%, 65% and (b) 75%, 85% and 95%. (b) and (c) The peak cross­

correlation between the time-series of mean membrane potential is plotted against mean membrane potential 

of population one for the same extrinsic connectivities as in (a) and (b). (e) and (f) The spiking activity in 

populations one and two are plotted over the course of two seconds. Time is plotted horizontally and all 

one hundred neurons are shown on the vertical axis. The membrane potential is shown in terms of the 

colour (see the colour scale at the side of the graph), (e) and (f) are for low and high input activity levels 

respectively.

In the previous simulations, changes in the dynamics were elicited under different levels of 

extrinsic connectivity by manipulating the input to population one. The results pointed to an 
interaction between input activity and extrinsic connectivity. To fully characterise these 

influences, we examined the main effect of connectivity per se on synchrony by changing 
both extrinsic and intrinsic connections. This can be regarded as an analysis o f the 

relationships between synaptic efficacy or anatomical connectivity and functional 
connectivity. Figure 2.4 shows plots of phase-locking between spike trains for the second 

model, when the input activity level was kept constant and the inter-area connectivity level, 
inter-area weights and intra-area weights were manipulated respectively (i.e. the density or 

efficacy of connections were modulated). These simulations were performed with feedback 
influences mediated either by AMPA or NMDA receptors. As shown in the figure, the phase- 

locking, within and between populations, increases to a certain level before reaching a plateau 
and eventually decreasing slightly, as either the extrinsic or intrinsic connectivity level 

increases (through changing the number of connections or weight values).
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Fig 2.4 Synchrony as a function of connectivity for the second model. In (a) and (b) the level of 

intrinsic connectivity was held constant at 90% while the extrinsic connectivity was varied through 5%, 

15%, 25%, 35%, 45%, 55%, 65%, 75%, 85% and 95%. Plotted horizontally is the level of extrinsic 

connectivity. Plotted vertically is the maximum value of the shift predictor subtracted cross-correlation 

between the two neuronal populations or within population one. (a) The peak cross-correlation between the 

time-series of number of cells spiking per ms for each population is plotted against extrinsic connectivity. 

The two cases when the feedback receptors were AMPA and NMDA are shown, (b) The peak cross­

correlation between the time-series of spikes per millisecond in one cell and the spikes per millisecond in 

the rest o f population one is plotted against percentage of extrinsic connectivity. Again, this graph shows 

this plot under both AMPA and NMDA feedback receptors, (c) and (d) are the same as (a) and (b), except 

that here the number of connections were not changed. Instead, the actual values of the extrinsic weights 

were varied with the density of extrinsic connections remaining at 5%. Here, extrinsic synaptic weight is 

plotted horizontally. In (e), intrinsic and extrinsic connectivity levels remained constant (90% and 5% 

respectively) while intrinsic weights were increased. This plot shows how phase-locking varies between 

populations and also within each population as the intrinsic weights are increased. These graphs show the 

results for AMPA feedback receptors but similar findings were obtained with NMDA feedback receptors.

Next, we increased the extrinsic mean transmission delays from five to eight milliseconds. 

This was done to simulate longer range connections and to assess their effect on the behaviour 
of phase-locking with activity level. Figure 2.5 shows plots of phase-locking (within and 

between populations) against activity level varied in four different ways using either AMPA or 
NMDA feedback connections. As can be seen in Figure 2.5a, the results are almost identical 

to those of Figure 2.3a, indicating that increasing the transmission delay does not significantly 
alter the nature of the phase-locking. Figures 2.5c and 5d show the phase-locking between 

one neuron in population one and the rest of the population. These results suggest that 
phase-locking varies with activity level in much the same way as between populations. Figures 

2.5b and 5d show that changing the receptor types to NMDA does not have a significant 
effect on how phase-locking varies with activity.
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Fig. 2.5a
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F ig. 2 .5  These graphs show how phase-locking varies with neuronal activity when the extrinsic delays 

were increased to a mean of 8ms. Here, the activity level was varied in four different ways: (i) By changing 

the input activity levels while all other parameters remained constant. The effect of this manipulation on 

phase-locking and activity level is denoted by the x’s. (ii) By varying the extrinsic connectivity level 

between 5% and 95% (These data are shown by the ‘o ’s). (iii) By changing the proportion of inhibitory 

neurons between 60% to 0%. This is denoted by the ‘+’s. (iv) By changing the values of the inhibitory 

synaptic time constants from 500 to 0.5 ms (**’s). In (a) and (c), the feedback receptors were AMPA and in 

(b) and (d), they were NMDA. (a) and (b) Phase-locking against mean firing rate between populations, (c) 

and (d) Phase-locking between the firing rates of one cell and the rest of the population.

Figure 2.6 shows the relationship between phase-locking and mean firing rate when the input 
to area one is changed systematically under different levels of inhibition. The level of 

inhibition was manipulated either by changing the proportion of inhibitory neurons (Fig. 
2.6a) or by changing the value of the inhibitory synaptic time constants (Fig. 2.6b). Under 

all levels of inhibition within the network, a monotonic relationship between phase-locking 
and mean activity was evidenced. As inhibition increased, the rate of increase of phase- 

locking with mean activity decreased. This was evident as a decrease in the slope of the 
regression of phase-locking on mean activity. These results point to a clear interaction 

between input activity and inhibition level, where inhibition attenuates the increase in 
synchrony with mean activity.
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Fig. 2.6 (a) Phase-locking vs. mean firing rate as input to area one is varied systematically with 

network inhibitory cell proportions of 10, 25 and 50%. (b) This is the same as (a) except inhibition is 

varied by changing the inhibitory synaptic time constants between 1, 25 and 100ms while keeping the 

number of inhibitory cells constant. The feedback receptors were AMPA in both cases.

2.4.1 Effective Connectivity and Membrane Time Constants

To address the mechanisms behind the relationship between activity and phase-locking, we 

assessed how the effective connectivity and mean instantaneous membrane time constants 
varied with both activity level and phase-locking. The results of this analysis are shown in 

Figure 2.7. Figures 2.7a and b show how the effective connectivity varies with mean firing 
rate (Fig. 2.7a) and with phase-locking (Fig. 2.7b), as the input activity level was manipulated. 

A saturating relationship was observed with a fall off at very high levels. Figures 2.7c and d 
show the relationship between the mean membrane time constant and mean firing rate (Fig. 

2.7c) and between the mean membrane time constant and phase-locking (Fig. 2.7d). As 
mean firing rate increases, the mean membrane time constant decreases (Fig. 2.7c). The 

decrease in mean membrane time constant is accompanied by an increase in both synchrony 
and effective connectivity between the simulated populations. The implications of this 

finding are discussed below.
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Fig. 2.7 (a) Effective connectivity between the two populations of the second model (as given by the 

average probability of a cell in population one causing a connected cell in population two to fire) is plotted 

against average firing rate. The extrinsic connectivity was 25% and the mean firing rate was manipulated by 

varying the input activity, (b) This is a graph of functional connectivity as given by the peak shift 

predictor subtracted cross correlation in terms of effective connectivity, (c) This is a plot of the mean 

membrane time constant, computed for each activity level, against mean firing rate and (d) is a plot of 

phase-locking as a function of the mean membrane time constant.

2.5 Discussion

Our results suggest that the phenomenon of phase-locking increasing with activity level is a 

robust effect that is relatively insensitive to the context in which the activity level is varied, to 
changes in the transmission delays, the type of synapse, the number of cells and also the 

laminar structure within the populations. They also show that functional connectivity (i.e. 
synchrony) varies with mean activity in much the same way as effective connectivity and that 

there is an almost monotonic relationship between the two metrics (Fig. 2.7b). These results 
clearly hold only for the simulations presented, which addressed unstructured, continuous or 

stationary dynamics. However, it may be reasonable to generalise the inference to real 
neuronal populations with similar simple architectures if they are expressing relatively 

stationary dynamics.
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2.5.1 Activity Levels and Effective Connectivity

This work indirectly addresses the relationship between rate and synchrony coding and 
suggests that they may represent two perspectives on the same underlying dynamic. In this 

view, synchronized, mutually entrained signals enhance overall firing levels and can be 
thought of as mediating an increase in the effective connectivity between the two areas. 

Equivalently, high levels of discharge rates increase the effective connectivity between two 
populations and augment the fast synchronous exchange of signals. In a previous modelling 

study, Aertsen and PreiBl (1990) showed that by increasing the level of network activity, the 
efficacy of the effective synaptic connections increases: “The efficacy varies strongly with 

pool activity, even though the synapse itself is kept at a fixed strength throughout all 
simulations. With increasing pool activity, the efficacy of the connection initially increases 

strongly to reach a maximum, after which it slowly decays again.” This result is consistent 
with the findings presented in this chapter (Fig. 2.7a) and is intuitive; as the network activity is 

increased, the individual neuronal connections come into play more. This can be explained 
in the following way: If network activity is very low, the inputs to a single neuron (say neuron 

j) will only cause a sub-threshold excitatory post-synaptic potential (EPSP) in neuron j. If 
some pre-synaptic neuron (say neuron i) fires, so that it provides input to neuron j, this input 

will be insufficient to cause neuron j to fire. However, if the pool activity is high enough to 
maintain a slightly sub-threshold EPSP in neuron j, then an input from neuron i is more likely 

to push the membrane potential of neuron j over the threshold and elicit an action potential. 
This effect resembles the phenomenon of stochastic resonance (Wiesenfeld and Moss, 1995). 

As pool activity becomes very large, however, the coincident input to cell j will eventually 
become enough to make neuron j fire without any input from cell i, thus decreasing the 

influence that cell i has on cell j and consequently the effective connectivity between the two 
cells. This may explain the slow decline in effective connectivity as the network activity 

becomes very large (see Fig. 2.7a). In short, we can say that the pool activity provides a 
background neuronal tonus, that, depending on its magnitude, will make activity in neuron i 

more or less viable in eliciting activity in neuron j.

2.5.2 Activity Levels and Synchronization

The above argument pertains to the relationship between mean activity and effective 

connectivity but does not deal explicitly with the relationship between activity levels and 
synchronization. The present study examined the mechanistic basis of synchronized and 

oscillatory dynamics at high levels of activity. The membrane time constants were shown to 
decrease with mean activity and thus synchrony emerged with shorter membrane time 

constants. The decrease in time constants is a natural consequence of conjointly increasing 
membrane conductances through excitatory and inhibitory channels at high levels of activity 

(see appendix 4). i.e. The overall increase in background synaptic activity causes individual 
cell membranes to become more leaky, thereby decreasing their effective time constants
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(Bemander et al, 1991). As activity levels increase, smaller membrane time constants promote 
the synchronous gain in the network, i.e. individual neurons become more sensitive to 

temporal coincidences in their synaptic inputs, responding with a higher firing rate to 
synchronous rather than asynchronous inputs. In other words, as the level of activity 

increases, network interactions tend towards synchronous firing. Put simply, there is a circular 
causality: Only synchronous interactions can maintain high firing rates when temporal

integration is reduced. High firing rates reduce temporal integration. This behaviour 
underlies the emergence of self-selecting dynamics in which high degrees of synchrony can 

be both cause and consequence of increased activity levels.

It should be noted that in our model architecture, extrinsic excitatory connections targeted 
both excitatory and inhibitory neurons within the population. Further simulations are clearly 

needed to determine if the relative proportion of excitatory targets is an important parameter 
in relation to the phenomena that we have observed. One conjecture, however, is that it is not 

the overall excitation or inhibition elicited by afferent input that determines the dynamics, but 
rather the increase in membrane conductance consequent upon the conjoint increase in 

balanced excitatory and inhibitory activity. In other words, driving predominantly inhibitory 
sub-populations will inhibit excitatory cells or driving excitatory cells will excite inhibitory 

cells. In both cases, the overall level of excitatory and inhibitory presynaptic discharges will 
reduce the effective membrane time constants and predispose the population to fast dynamic 

and synchronised dynamics.

2.5.3 Uncoupling of Activity and Synchronization

The overall impression given by our results is that there is an obligatory relationship between 

mean activity and synchronised interactions. This is mediated by decreases in the effective 
membrane time constants under high levels o f activity. Due to the reduced capacity for 

temporal integration the only dynamics that can ensue are synchronous ones. It is important, 
however to qualify this conclusion by noting that, in this study, the inputs driving the coupled 

neuronal populations were spatiotemporally unstructured and continuous. Clearly, 
desynchronization between two dynamic cell assemblies is not only a possibility but can be 

observed in both the real brain and simulations where changes in synchrony have, in some 
instances, been found to occur without any change in mean firing rate. Such regional 

decoupling of spike timing and firing rates has been reported in primary sensory cortices 
(Roelfsema et al, 1994, deCharms et al, 1996, Fries et al, 1997) and may reflect feedback 

influences from higher cortical areas (Lumer et al, 1997). Our input stimulus consisted of 
unstructured random noise that did not have any spatiotemporal structure. Furthermore, our 

models did not include any feature selectivity (orientation columns etc.). It is this feature 
specificity and stimulus structure that may cause a regional decoupling of synchrony and 

firing rate. This decoupling could specify which neuronal populations are excluded from 
dynamic cell assemblies coding for the feature in question. It could be that the temporal
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patterning of action potentials in primary areas, that show a regional decoupling between 
synchrony and firing rate, may in turn lead to changes in firing rates in the areas that they 

target and thus such changes in synchrony will be reflected in changes in global activity levels 
(i.e. summed over all dynamic cell assemblies) if not local activity levels. In other words, a 

particular population could maintain high levels of desynchronised activity, in relation to its 
inputs from one cell assembly, if it was part of another dynamic cell assembly that did exhibit 

a coupling between overall activity and synchrony.

In essence, although the coupling that we have shown between mean activity and 
synchronization may represent a generic property of cortical dynamics, it should be noted 

that, desynchronized interactions can arise from non-linear coupling o f a stronger sort than 
that employed in our current model or by specific inputs that selectively engage distinct 

cohorts of interacting populations. Other mechanisms that may cause synchrony to decouple 
from firing rates include those that are capable of modulating firing rates as synchrony 

increases, such as fast synaptic changes. However, in the context of our studies that looked 
explicitly at stationary dynamics, this is unlikely to be an explanatory factor. These and other 

parameters have to be explored before any definitive statements can be made about the 
relationship between mean activity and synchronization in a real world setting. However, our 

results point to some fundamental aspects of neural interactions, under a minimal set of 
assumptions. In the next chapter we revisit the relationship between mean activity and 

synchrony in the context of evoked transients.

2.5.4 Implications

The final point, that can be made on the basis of our findings, relates to macroscopic 

measures of neural activity such as those used in functional brain imaging. In recent years, 
functional magnetic resonance imaging and positron emission tomography have been 

established as tools for localising brain activity in particular tasks using the blood 
oxygenation level dependent response (BOLD signal in fMRI) and blood flow (PET). The 

fMRI BOLD signal is attributed to changes in local venous blood deoxygenation. These 
studies rely on the assumption that such changes are representative of global synaptic activity 

levels. This is supported by optical imaging studies (Frostig et al, 1990) showing that there is 
a local coupling between neuronal activity integrated over a few seconds, and the micro­

circulation (haemodynamics). The lack of temporal sensitivity of fMRI raises the possibility 
that such measurements will fail to identify areas in which neuronal processes are expressed 

solely in terms of changes in synchrony. However, the present study demonstrates a clear link 
between mean firing rates and synchronization, suggesting that metrics based on mean 

synaptic activity may, in part, be sensitive to changes in synchronization. In the next chapter, 
we use simulations to address the related issue of evoked transients and dynamic correlations.

68



Chapter 3: Evoked Neuronal 

Transients and Dynamic Correlations

3.1 Abstract

In this chapter we used biologically plausible simulations of coupled neuronal populations to 

address the relationship between phasic and fast coherent neuronal interactions and 
macroscopic measures of activity that are integrated over time, such as the BOLD response in 

fMRI. Event related, dynamic correlations were assessed using joint peri-stimulus time 
histograms and, in particular, the mutual information between stimulus induced transients in 

two populations. This mutual information can be considered as an index of functional 
connectivity. Our simulations showed that functional connectivity or dynamic integration 

between two populations increases with mean background activity and with stimulus-related 
rate modulation. Furthermore, as the background activity increases, the populations become 

increasingly sensitive to the intensity of the stimulus in terms of a predisposition to transient 
phase-locking. This reflects an interaction between background activity and stimulus- 

intensity in producing dynamic correlations, in that background activity augments stimulus- 
induced coherence modulation. This is interesting from a computational perspective as 

background activity establishes a context that may have a profound effect on event-related 
interactions or functional connectivity between neuronal populations. Finally, total firing 

rates, that subsume both background activity and stimulus-related rate modulation, were 
almost linearly related to the expression of dynamic correlations over large ranges of 

activities. These observations show that under the assumptions implicit in our model, rate 
specific metrics based upon rate or coherence modulation may be different perspectives on
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the same underlying dynamics. This suggests that activity (averaged over all peri-stimulus 
times), as measured in neuroimaging, may be tightly coupled to the expression of dynamic 

correlations.

3.2 Introduction

In the previous chapter (and see Chawla et al, 1999), we found, using computer simulations of 
coupled neuronal populations, that mean activity and synchronization were tightly coupled 

during relatively steady state dynamics. This allowed us to make inferences about the degree 
of phase-locking or synchronization among, or within, neuronal populations given  

macroscopic measures of activity such as those provided by neuroimaging. This chapter is 
about the relationship between fast dynamic interactions among neurons, as characterized by 

multiunit electrode recordings of separable spike trains, and measures of neural activity that 
are integrated over time (e.g. functional neuroimaging). In particular we address the 

question, “can anything be inferred about fast coherent or phasic interactions based on 
averaged macroscopic observations of cortical activity?”. This question is important because 

a definitive answer would point to ways in which electrophysiological findings (from single 
and multi-unit recordings in vivo) might inform functional neuroimaging studies that employ 

a train of stimulus or task events to detect changes in time-integrated activity.

The basic hypothesis of this chapter is that fast dynamic interactions between two neuronal 
populations are a strong function of their background activity. This hypothesis derives from 

a series of compelling computational studies (e.g. Boven and Aertsen, 1990, Aertsen and 
Preipi, 1991, Aertsen et al, 1994). In other words the dynamic coupling between two 

populations, reflected in changes in their coherent activity over a time-scale of milliseconds, 
cannot be separated from the context in which these interactions occur. This context is 

shaped by the population dynamics expressed over extended periods of time and in particular 
the overall level of activity. This is based on the common sense observation that the 

responsiveness of one unit, to the presynaptic input of another distant unit, will depend on 
postsynaptic depolarization extant at the time the presynaptic input arrives. In the previous 

chapter, using relatively steady state dynamics (ie. in the absence of induced transients), we 
showed that the mean firing rate and average phase-locking between two populations were 

tightly coupled in all regions of the model’s parameter space. There could therefore be a 
link between mean activity and the emergence of dynamic correlations over a time scale of 

milliseconds. Previous modelling work has shown it to be the case that functional and 
effective connectivity vary strongly with background population activity (Boven and Aertsen, 

1990, Aertsen and Preipi, 1991, Aertsen et al, 1994). In this chapter, we pursue this same 
question but with a more refined analysis of dynamic correlations.

We expected that the emergence of phasic coherent interactions between two populations is 

both facilitated by, and results in, high mean population activity, suggesting high background
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population activity levels may be a necessary condition for the emergence of fast interactions. 
In order to examine this, we measured the short term correlation structures between two 

simulated time-series as characterized by the joint peristimulus time histogram (J-PSTH). The 
advantages of this characterization include a proper assessment o f phasic and stochastic 

interactions over peri-stimulus time, where these interactions are referred to a stimulus or 
behavioural event. Using simulations, we show that the expression of dynamic correlations is 

a strong function of the mean activity (averaged over time) extant in the two populations at 
the time that these interactions are expressed. Furthermore, we show an interaction between 

background and evoked firing rate changes that is mediated by activity-dependent changes in 
functional coupling.

Although previous work has established that the effective connectivity among neurons is 

sensitive to mean levels of population activity, the specific issue we wanted to address in this 
work was how this activity-dependent change in functional coupling would be expressed in 

terms of integrated firing rates. This is important from the point of view7 of neuroimaging 
where only time integrated measures of activity are available. These averages include a 

number of components, firstly the background activity and secondly stimulus-related rate 
modulation. The latter component may be a strong function of the effective connectivity 

within and among neuronal populations and consequently the background activity itself. The 
interaction between background and evoked rate modulation mentioned at the end of the 

previous paragraph is therefore an important phenomenon when trying to interpret responses 
observed with functional neuroimaging. For example, consider the cortical responses to a 

train of stimuli measured when the subject was attending and not attending to these stimuli. 
Increased time integrated responses maybe due to attentional modulation of background 

activity, increased stimulus related rate modulation or both. Demonstrating an obligatory 
increase in rate modulation with background activity in neuronal stimulations would greatly 

simplify the interpretation of imaging results because it would suggest that both mechanisms 
were being expressed. In order to address the interaction between background activity and 

stimulus intensity in modulating event-related responses, we varied both while measuring the 
total integrated activity and dynamic correlations.

This chapter is divided into three sections. The first section describes the synthetic neural 

model upon which our simulations were based. Section 2 describes a characterization of the 
model dynamics in terms of short-term interactions using J-PSTHs and mutual information. 

The final section establishes a relationship between the expression of short-term interactions 
(dynamic correlations) and macroscopic descriptors of the population dynamics (mean 

activity), revealed by varying the strength of the simulated stimulus and the background tonic 
activity levels. On the basis of these simulations we were able to characterise the specific form 

for the relationship between fast dynamic interactions and mean activity in two neuronal 
populations and look at the interaction between background activity and stimulus intensity in 

mediating changes in these measures.
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3.3 The Neural Model

Individual neurons, both excitatory and inhibitory were modelled as single-compartment 

units. Spike generation in these units was implemented according to the Hodgkin-Huxley 
formalism for the activation of sodium and potassium transmembrane channels (see chapter 

1). In addition, synaptic channels provided fast excitation (AMPA) and inhibition (GABAa) 
as in the previous chapter. Intrinsic (intra-area) connections were twenty percent inhibitory 

and eighty percent excitatory (Beaulieu et a l , 1992). Extrinsic (inter-area) connections were 
all excitatory. Transmission delays for individual connections were sampled from a non 

central Gaussian distribution. Intra area delays had a mean of 2ms and a standard deviation 
of 1ms and inter area delays had a mean and standard deviation of 5ms and 1ms respectively. 

We modelled two areas that were reciprocally connected. Both consisted of a hundred cells 
that were 90% intrinsically connected and 5% extrinsically connected. Excitatory NMDA 

synaptic channels were incorporated in the model (see chapter 1, p42), in addition to the 
excitatory AMPA and inhibitory GABAa synaptic channels. These NMDA channels were 

only used in the feedback connections.

Transient dynamics were evoked by providing a burst of noise to population one. The 
simulated spike trains from units in both populations were averaged over the population, 

binned into four millisecond bins and then smoothed using a Gaussian kernel with a half 
height full width of 16ms. These spike trains were then analyzed, using the Joint Peri 

Stimulus Time Histogram (J-PSTH) (Gerstein et al, 1969, 1972, 1989, Aertsen et al, 1991). 
The stimulus was provided to population one for a duration of thirty five milliseconds at 

intervals of five hundred milliseconds. For each analysis, the model was run for a total of 64 
seconds of simulated time. This was repeated under different levels of background noise and 

stimulus intensity, using either AMPA or NMDA feedback receptors.

3.4 Characterizing Dynamic Correlations with the J- 
PSTH

3.4.1 Peristimulus Time Histograms

The display format (Fig. 3.2) has three components. Plotted along each side of the square 

matrix (ie. the J-PSTH) are ordinary PST (peri-stimulus time) histograms. PST histograms 
represent the stimulus time locked average rate modulation. As an index of the total 

background activity and stimulus-induced rate-modulation, we measured the integral under 
the PSTH of the first population. This served as our macroscopic measure of neural activity 

that would be measured by, for example, fMRI or PET and represents the first dependent

72



variable in our characterization. The second dependent variable was a measure o f the 
dynamic correlations based on the J-PSTH or cross-correlation matrix expressed in terms of 

mutual information (see below). A detailed explanation of how to read J-PSTHs is given in 
appendix 5.

3.4.2 Coincidence Time Histogram and Cross Correlogram

The component of the analysis in the right panel (Fig. 3.2) is the PST coincidence histogram 
or coincidence time histogram (CTH). This represents the stimulus time locked average of 

near coincident firing (which is simply the leading diagonal of the J-PSTH). This graph thus 
shows how the level of coherent firing or synchrony (plotted vertically) varies with peri- 

stimulus time (plotted horizontally). The cross correlogram is the third component. The 
cross correlogram characterises the degree of coherence averaged over all peristimulus times 

at some time lag. Because it is not sensitive to dynamic modulation of coherence, it is not 
used further in this chapter. Similarly, we do not use the CTH because, being a metric of 

coincident firing at near zero time lags, it is an impoverished metric o f dynamic correlations 
that could be expressed at non-zero time-lags.

3.4.3 A Mutual Information Measure of Dynamic Correlations

For the purposes of this chapter we were interested in how stimulus induced dynamic 
correlations varied as a function of background noise, stimulus strength and the interaction 

between these two factors. As a measure of the dynamic correlations, induced between our 
two simulated populations, we used the mutual information between the stimulus induced 

transients having corrected for mean rate modulation. The calculation and interpretation of 
mutual information is described in appendices 6 and 7.

In what follows we examine the way in which the mutual information or functional 

connectivity changes with integrated firing rate. We did this by manipulating the strength of 
the stimulus under different levels of background activity. This enabled us to not only assess 

the effects of changing background activity and stimulus strength on mutual information 
(and integrated rate) but also to characterise any interaction between these two manipulations. 

The background noise levels were characterized in terms of the average depolarization 
produced, namely -65.9, -63.4, -63.2 and -61.2 mV. These values were calculated after 

applying a given noise level to both populations, running the simulation for 64 seconds and 
computing the mean membrane potential over units and time. The stimulus intensities used 

were 10, 25, 50, 75, 125, 150, 175, 200, 225 and 250 Hz. Noise level and stimulus intensity 
represent our two independent variables that were expected to produce changes in the two 

dependent variables (integrated rate and mutual information).
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3.5 Results

3.5.1 The Relationship between Dynamic Correlations and Integrated Rate

We found that increases in either background noise or the strength of the stimulus were 
universally associated with increases in both integrated rate and mutual information. 

Furthermore, both dependent variables (rate and mutual information) were highly coupled in 
an almost linear fashion. Fig. 3.1b shows plots of mutual information against integrated rate 

for three different levels of background noise demonstrating the coupling between these 
measures, irrespective of how different levels of either were elicited. Because of this tight 

relationship, we focussed on how the independent manipulations (background noise and 
stimulus intensity) affect mutual information (equivalent effects were observed on integrated 

rate). Two examples of the mean time course of activity (c.f. local field potential, LFP) in 
population one under two levels of background activity are illustrated in Fig. 3.1a.

3.5 .2  The Effect of Background Activity and Stimulus Intensity on 

Dynamic Correlations

Fig. 3.1c shows mutual information as a function of stimulus intensity for the three levels of 

background activity. As background noise increased, the gradient of the mutual information 
vs. stimulus intensity plot also increased. A formal test for the differences in regression slopes 

confirmed the significance of this effect (t-statistic = 2.2, residual degrees of freedom = 53, p- 
value = 0.016 for the average increase from low to high background activities over NMDA 

and AMPA simulations using multiple regression and the appropriate contrast). This is clear 
evidence of an interaction between tonic background activity and stimulus-induced rate 

modulation in the genesis of dynamic correlations. In other words, high background activity 
increased the sensitivity of evoked dynamic correlations to increased stimulus intensity. This 

is demonstrated more clearly below. These phenomena were evident irrespective of whether 
we used NMDA (upper panels) or AMPA-like (lower panels) feedback receptors.
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Fig. 3.1a
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Fig. 3.1 (a) illustrates the mean membrane potential for one stimulus strength at two of the background 

noise levels. This graph shows the mean membrane potential over three inter-stimulus intervals {i.e. 1500 

ms), (b) Plots of stimulus induced mutual information between the two populations against integrated rate 

(as indexed by the integral under the PSTH) for three different levels of background activity. The stimulus 

intensity was varied through 10, 25, 50, 75, 125, 150, 175, 200, 225 and 250 Hz. The upper panel shows 

the results when the model was implemented with NMDA feedback receptors, and the lower panel with 

AMPA feedback receptors, (c) shows the same as in (b) but now mutual information is plotted against the 

stimulus intensities used. In (c), the regression slopes of mutual information on stimulus intensity are 

plotted.

3.5.4 Examples of these Effects Demonstrated with J-PSTHs

Figure 3.2 presents J-PSTHs between the two populations, at two different levels of 
background activity and with two different stimulus intensities. It can be seen that, when the 

stimulus was very weak and the background noise was low, the presence of the stimulus had 
almost no effect on the synchronous interactions between the populations as it was not strong 

enough to enable the populations to entrain each other to any extent (see CTH of Fig. 3.2a). 
However, when the background noise was increased, this same stimulus had a definite effect 

on the dynamic correlations as can be seen in Fig. 3.2b (the background activity level in Fig. 
3.2b is higher than any of the background levels in Fig. 3.1). At the low background activity 

level as in Fig. 3.2a, when the stimulus was very strong, extremely significant dynamic 
correlations occurred (Fig. 3.2c), in contrast to when the stimulus was weak and induced 

minimal dynamic correlations (Fig. 3.2a). At the high background noise level as in Fig. 3.2b, 
when the stimulus was very strong as in Fig. 3.2c, the synchronization induced never died 

away and high levels of synchrony were maintained (Fig. 3.2d).

Fig. 3.3 shows mutual information as a function of integrated rate at the very high 
background activity level as in Fig. 3.2b, d. This shows that at such high background levels, 

the plot of mutual information vs. integrated rate eventually levels off, at which point, 
increasing the stimulus intensity will no longer facilitate an increase in the mutual information 

between the two populations. This demonstrates nicely the “saturation phenomenon” as seen 
in Fig. 3.2d. Fig. 3.2d showed that with a very high background noise, the stimulus intensity 

may reach a level at which the synchronization induced never dies away. Increasing the 
stimulus intensity further then has little or no effect.
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Fig. 3.2
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Fig. 3.2 (a) J-PSTH for the simulated populations at the lowest background noise level (see Fig. 3.1) and 

similarly with a very weak stimulus applied every 500 ms for 35ms. (b) J-PSTH at the highest background 

noise level (the same as in Fig. 3.3) and with the low intensity stimulus as in Fig. 3.2a. (c) J-PSTH for 

the neuronal populations at the low background activity as in Fig. 3.2a and with a high intensity stimulus, 

(d) J-PSTH at a high background activity level as in Fig. 3.2b and with the high intensity stimulus as in 

Fig. 3.2c.
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Fig. 3.3
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F ig. 3 .3  Mutual information is plotted against integrated rate for the highest noise level, as depicted in 

Fig. 3.2b,d, under both AMPA and NMDA feedback receptors. The stimulus intensity is varied through the 

same values as in Fig. 3.1.

3.6 Discussion

There are several lines of evidence in support of our findings that a systematic relationship 
between fast dynamic interactions (measured here in terms of mutual information or 

functional connectivity) and macroscopic measures exist: Aertsen & Preipl (1991)
investigated the behaviour of artificial networks, analytically and using simulations. They 

concluded that short term effective connectivity varies strongly with, or is modulated by, pool 
activity as discussed in the previous chapter (see p66).
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In the previous chapter, we demonstrated that sustained synchrony shows a monotonic 
relationship with mean activity. As mean activity in the network increases, the mean 

instantaneous membrane time constants decrease, giving rise to a higher level of synchrony. 
The decrease in time constants is a natural consequence of conjointly increasing membrane 

conductances through excitatory and inhibitory channels at high levels of activity. Hence, as 
activity level increases, smaller membrane time constants increase the synchronous gain in the 

network, i.e. individual neurons become more sensitive to temporal coincidences in their 
synaptic inputs, responding with a higher firing rate to synchronous rather than asynchronous 

inputs. Therefore, in the present event-related context, as background noise increases, the 
network becomes more prone to stimulus-induced synchronous transients. This is reflected 

both in the time that the post-stimulus synchronization endures and a progressive increase in 
the mutual information vs. stimulus intensity regression slope. The latter effect constitutes an 

interaction and can be viewed as a stimulus-dependent effect that is context-sensitive. In this 
instance, the context is set by the tonic background of activity and is mediated through a 

diminution of the effective membrane time constants.

Our findings provide the basis for two fairly important conclusions. The first is that
increasing the tonic or background activity can potentiate the transient or dynamic 

correlations induced by a salient stimulus or behavioural event. As mentioned above, this
simple phenomenon might provide a useful mechanism in the brain for exerting control over

functional integration between neuronal populations in a context dependent fashion. For 
example, attentional modulation of background activity in distinct sensory neuronal 

populations could be used to selectively enhance neuronal interactions in a topographically 
constrained way (Frith and Friston, 1997). The fact that a higher mutual information between 

our simulated neuronal populations was induced under conditions of higher noise is 
presumably very similar to stochastic resonance (Wiesenfeld and Moss, 1995), wherein small 

amounts of stochastic noise facilitate non-linear transformations, in this instance effected by 
interacting neuronal populations. This phenomenon is interesting because of its almost 

counter-intuitive nature. Indeed, it might be thought that increased background noise may 
lead to a greater difficulty in distinguishing a transient signal from noise. However, this is not 

necessarily the case. Mainen and Sejnowski, 1995, have shown that noisier neuronal input can 
increase the precision of the cell spikes, thus increasing the sensitivity of the cells to their 

inputs. Their data suggests: “a low intrinsic noise level in spike generation, which could 
allow cortical neurons to accurately transform synaptic input into spike sequences, supporting 

a possible role for spike timing in the processing of cortical information by the neocortex.” 
(Mainen and Sejnowski, 1995).

The second conclusion has a more practical importance and pertains to the interpretation of 

neuroimaging studies in which only macroscopic observations o f rate modulation are 
generally allowed. By simply demonstrating a systematic and consistent relationship between 

rate modulation (integrated rate over peri-stimulus time) and coherence modulation (the 
mutual information associated with dynamic correlations), one can be comfortable with the
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probability that functional neuroimaging is not totally insensitive to event-related fast 
coherent interactions of the sort mediated by dynamic correlations. This is important given 

the possible role that dynamic correlations may play in sensori-motor and cognitive 
operations (Vaadia et al. 1995). This conclusion leads to the more general point that specific 

metrics based upon rate or coherence modulation may be different perspectives on the same 
underling dynamics. In this view, synchronized, mutually entrained signals enhance overall 

firing levels and can be thought of as mediating an increase in the effective connectivity 
between the two areas. Equivalently, high levels o f discharge rates increase the effective 

connectivity between two populations and augment the fast synchronous exchange of signals. 
In this sense there is an almost circular causality in the relationship between rate and transient 

synchronisation. Although we manipulated mean background activity in our simulations, 
much of the variability in integrated rates over peri-stimulus time, can be accounted for by the 

dynamic correlations induced by the stimulus. In other words a high mean level o f activity 
facilitates transient coherent interactions, above and beyond those predicted by dynamic rate 

modulation itself. These dynamic correlations in turn cause a mutual entrainment of the 
interacting populations and augment activity levels for a period of time. At very high levels 

of activity any stimulus evoked transient might ignite the system leading to high levels of 
synchrony and mean activity that are self-maintaining (see Fig.s 3.2 and 3.3).

The statement that the distinction between temporal and rate coding is simply a matter of 

perspective is a strong one that is made with some expectation of it being refuted. Although it 
is clearly possible that the information conveyed by the precise timing of spikes is very 

different from that conveyed by discharge rates, from the point of view of population 
dynamics it may be the case that changes in spike timing cannot be divorced from changes in 

firing rate given the neuronal infrastructure employed by the brain. The point being made 
here is that due to the intimate relationship between the temporal patterning of pre-synaptic 

events (either in terms of phase-locking as discussed in the previous chapter (and Chawla et 
al, 1999), or in terms of dynamic correlations as considered in the present chapter), and post- 

synaptic discharge probabilities, an increase in synchronised input will inevitably result in 
higher population discharge rates. The mechanisms that underlie this relationship may involve 

increased membrane conductances, decreased effective membrane time constants and an 
increase in synchronous gain mediated by impoverished temporal integration. Put simply, 

under the constraints imposed by the emergent non-linear dynamics of neuronal circuits, one 
cannot change the fine temporal structure of discharge patterns without changing population 

activity (this is a point being made by the results in Fig. 3.1, showing a monotonic 
relationship between integrated firing rate and mutual information). If changes in one metric 

of neuronal dynamics, such as spike timing, are universally associated with changes in another 
metric, such as population activity, then the two metrics are mutually redundant and reflect 

different measures o f the same underlying dynamics. It should be noted that these 
observations pertain to, and only to, population codes.

In summary, we have shown that background activity levels in simulated neuronal populations
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facilitate and are facilitated by the expression of stimulus induced dynamic correlations. 
These findings have implications for the context-dependent aspects of stimulus related 

neuronal interactions and also inform the interpretation of neuroimaging measures of 
neurophysiology.
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Section 2:

Empirical

Investigations
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Chapter 4: fMRI Methods

4.1 Introduction

In this chapter, we review the pre-processing and analysis of fMRI data and discuss briefly 

some of the issues that are encountered. The next two chapters describe the application of 
these methods to empirical studies that were predicated on the theoretical work described in 

the previous chapters.

4.2 Data acquisition

Our functional imaging experiments were performed using a 2 Tesla magnetom VISION 
(Siemens, Erlangen) whole body MRI system equipped with a head volume coil. Data were 

obtained from normal subjects using T2* - weighted fMRI images. In the first functional 
imaging study in this thesis, (chapter 5, section 1), we acquired 48 axial slices at lOOms/slice 

giving a repetition time, per volume, of 4.8s. The volume acquired covered the whole brain 
(48 slices). In the second study, however (chapter 5, section 2), as we had already identified 

our visual areas in the back of the brain, we acquired only 16 axial slices with a 3mm 
thickness at lOOms/slice giving a repetition time, per volume, of 1.68s. This allowed us to 

acquire many more scans in the second study. Contiguous multislice T2* weighted images 
(TE = 40ms; 64x64 pixels [19.2cm x 19.2cm]) were obtained with echo-planar imaging 

(EPI). A T2* weighted sequence was chosen to enhance blood oxygenation level dependent 
(BOLD) contrast.
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4.3 Data Analysis

Image processing and statistical analysis were carried out using SPM96 (Friston et al. 1996: 

Friston et al. 1995; Worsley and Friston 1995,{http://www.fil.ion.ucl.ac.uk/SPM}). The data 
were analyzed using multiple regression as implemented in SPM96 using box-car stimulus 

functions convolved with a haemodynamic response function (see below). As movement- 
related variance components in fMRI time-series represent one of the most serious confounds 

of analysis, all volumes were realigned to the first volume (Friston et al 1995). This was done 
by estimating the movement relative to the first scan by using a least squares method and then 

using the obtained estimates to realign the scans. A mean image was created using the 
realigned volumes. A structural MRI, acquired using a standard 3-D T1 weighted sequence 

(1x1x3 mm voxel size), was coregistered to this mean (T2*) image. This ensured that the 
functional and structural images were in the same space. Finally the structural image was 

spatially normalised (Friston et al 1995) to a standard template (Evans et al 1993; Talairach 
and Toumoux 1988), using a non-linear transformation. This non-linear deformation 

employs non-linear deformations using spatial basis functions as described in Friston et al 
(1995). The transformation, mapping the structural T1 MRI scan onto the template, was 

applied to the fMRI data. The data were smoothed using an isotropic Gaussian kernel. 
Smoothing is useful as this generally increases signal relative to noise. In fMRI, the noise can 

be regarded as independent for each voxel and has therefore very high spatial frequency 
components. Secondly, convolving with a Gaussian kemal conditions the data in the sense 

that the data conform more closely to a Gaussian field model. This is important if one wants 
to use the theory of Gaussian fields to make statistical inferences about (i.e. assign p-values 

to) the ensuing regionally specific effects. The requirements that the data be a good lattice 
representation of a Gaussian field includes (1) that the autocorrelation function be twice 

differentiable and (2) that the spatial correlations be stationary. Both these requirements are 
assured (approximately) after smoothing. The final reason for smoothing is that it allows 

haemodynamic changes from subject to subject to be assessed on a spatial scale that shows 
meaningful homologies. This is important for intersubject averaging.

Inferences using SPMs can be of two sorts depending on whether one knows where to look in 

advance: With an anatomically constrained hypothesis, about effects in a particular brain 
region, the uncorrected p value associated with the height or extent of that region in the SPM 

can be used to test the hypothesis. With an anatomically open hypothesis (i.e. a null 
hypothesis that there is no effect anywhere in the brain) a correction for multiple dependent 

comparisons is necessary. The theory of Gaussian fields provides a way of computing this 
corrected p-value that takes into account the fact that neighbouring voxels are not 

independent by virtue of smoothness in the original data. Provided the data are sufficiently 
smooth the correction based on Gaussian field theory is less severe (i.e. is more sensitive) than 

a Bonferroni correction for the number of voxels.
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4.4 The General Linear Model

The general linear model is an equation Y  =  X p  +  £ that expresses the observed response

variable Y in terms of a linear combination of explanatory variables X plus a well behaved 

error term (see Figure 2). The general linear model is variously known as 'analysis of 
covariance' or 'multiple regression analysis' and subsumes simpler variants, like the 'T test' for 

a difference in means, to more elaborate linear convolution models such as finite impulse 
response (FIR) models. The matrix X that contains the explanatory variables (e.g. designed 

effects or confounds) is called the 'design matrix'. Each column of the design matrix 
corresponds to some effect one has built into the experiment or that may confound the 

results. These are variously referred to as explanatory variables, covariates, regressors or, in 
fMRI, stimulus functions.

The general linear model can be used to implement a vast range of statistical analyses. The 

issue is therefore not so much the mathematics but the formulation of a design matrix X 
appropriate to the study design and inferences that are sought. The design matrix can contain 

both covariates and indicator variables. Each column of X has an associated unknown 
parameter. Some of these parameters will be o f interest (e.g. the effect o f particular 

sensorimotor or cognitive condition or the regression coefficient of haemodynamic responses 
on reaction time). The remaining parameters will be o f no interest and pertain to 

confounding effects (e.g the effect of being a particular subject or the regression slope of 
voxel activity on global activity). Inferences about the parameter estimates are made using 

their estimated variance. This allows one to test the null hypothesis that all the estimates are 
zero using the F statistic to give an SPM{F} or that some particular linear combination (e.g. a 

subtraction) o f the estimates is zero using a SPM{t}. The t statistic obtains by dividing a 
contrast or compound (specified by contrast weights) of the ensuing parameter estimates by 

the standard error of that compound. The latter is estimated using the variance of the
residuals about the least-squares fit. An example of contrast weights would be [-1 1 0  0 .......]

to compare the differential responses evoked by two conditions, as modelled by the first two 
condition-specific regressors in the design matrix. If several parameter estimates are 

potentially interesting (e.g. using polynomial expansions (Buechel et al, 1995) or basis 
functions of some parameter of interest), then the SPM{F} is usually employed.

Temporal basis functions are important because they provide a graceful transition between 

conventional multilinear regression models with one stimulus function per condition and FIR 
models with a parameter for each time point following the onset of a condition or trial type. 

Temporal basis functions offer useful constraints on the form of the estimated response that 
retain (i) the flexibility of FIR models and (ii) the efficiency of single regressor models. In 

practice the implementation of these constrained FIR models involves setting up stimulus 
functions that model expected neuronal changes [e.g. box cars of epoch-related responses or 

spikes (delta functions) at the onset of specific events or trials]. These regressors are then
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convolved with a set of basis functions that model the HRF, in some linear combination, and 
are assembled into the design matrix. The basis functions can be as simple as a single 

canonical HRF, through to a series of delayed delta functions. The latter case corresponds to 
a FIR model proper and the coefficients are the impulse response function for the event or 

epoch in question.

The advantage of using temporal basis functions (as opposed to an assumed form for the 
HRF) is that one can model voxel-specific forms for haemodynamic responses, as in section 1 

of the next chapter, and formal differences (e.g. onset latencies) among responses to different 
sorts of events. The advantages of using basis functions over FIR models are that (i) the 

parameters are estimated more efficiently and (ii) stimuli can be presented at any point in the 
inter-stimulus interval. The latter is very important because time-locking stimulus 

presentation and data acquisition gives a biased sampling over peri-stimulus time and can lead 
to differential sensitivities, in multi-slice acquisition, over the brain.

4.5 Fixed Effects Analyses

In all three fMRI studies in this thesis, we only report those effects that were conjointly 
significant in all three subjects. This corresponds to a conjunction analysis using a fixed- 

effects analysis and allowed us to focus on the most robust and compelling features of our 
data. A technical point here speaks to the number of subjects analysed and the nature of the 

inferences we are making. By virtue of the fact that we use subject-specific estimates in our 
statistical model, these case studies can be regarded as single-subject studies and two 

replications. The inferences that we are making are quite sufficient at this case-study level 
and pertain to and only to the subjects studied. The alternative approach would be to make a 

random effects inference, where the activations would be collapsed within subjects and the 
degrees of freedom would be approximately the number of subjects studied. In this instance, 

we would require at least six subjects and probably many more. The motivation for using a 
random effects analysis is clear when one is trying to compare one group of subjects with 

another. Our study does not attempt to do this and simply makes observations about three 
normal subjects. This fixed effects approach is analogous to reporting careful statistical 

characterizations on two or three non-human primates. We emphasise this point because the 
distinction between a random and fixed effects analysis is likely to become more important in 

the future.

4.6 Subjects

All subjects that participated in the studies in this thesis gave informed consent and all of the
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studies were approved by the National Hospital for Neurology and Neurosurgery Ethics 
Committee

4.7 Visual Stimuli

In all the ensuing fMRI experiments, visual stimuli were backprojected onto a screen in the 

scanner by an LCD video-projector. The active screen area was a square with a diameter of 
37°. The screen refresh rate was set to 33.5 per second. The subjects were instructed to 

maintain visual fixation on the central focus.

4.8 Flicker Photometry

In the next chapter, we scan subjects in conditions where they view purely colour contrast 
stimuli, In these cases, luminance contrast was minimised using calibration in each individual 

with flicker photometry, just before the start of the scanning, in the scanner. Flicker 
photometry is a standard method used to isolate the P and M pathways and then, by targeting 

the M cells alone, minimise luminance difference between two colours. P cells code for 
wavelength and have been shown to code for visual stimuli with a tonic response, when the 

stimuli crosses the receptive field centre. In contrast, M cells code use luminance cues and 
code for visual stimuli with a fast phasic response (Lee et al, 1979). Therefore, if two colours 

are flashed quickly enough, the subject only sees one colour as the P cells are not fast enough 
to change the responses to the two cells and so blend the two responses into one. However, 

the M cells are still able to change their responses and when the subject sees minimum flicker 
between the colours, this reflects the minimisation in the M cell responses and consequently 

the luminance difference between the two stimuli. Obviously, this method is not perfect as it 
doesn’t enable us to completely abolish luminance contrast, as photoreceptors at different 

eccentricities across the retina differ in their point of equiluminance.
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Chapter 5: Speed-Dependent Motion 

Sensitive Responses in V5: An fMRI 

Study

Section 1

5.1 Abstract

In chapter 1, we focused on the behaviour of the single neuron as the basis o f the 
computational studies that comprise this thesis. This chapter serves to introduce the empirical 

basics of fMRI that underpin the neuroimaging study described in the next chapter. In this 
chapter we describe a study in which we used fMRI to study brain activity integrated over 

many neurons (over roughly several mm3 of cortex). This fMRI study examined motion- 
sensitive responses in human area V5 as a function of stimulus speed. Consistent with 

electrophysiological findings, we observed optimal responses at intermediate speeds of around 
7 to 30 °/s. The results are consistent with a non-linear (inverted ‘U’) dependency on speed. 

The same dependency was also observed in V3a. VI activation was observed to decrease 
linearly as speed increased. This is consistent with the fact that speed sensitive cells in VI 

have been shown to be tuned to much slower speeds than in V5.
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5.2 Introduction

The aim of this experiment was to determine how V5 human visual cortex activation varies as 

a function of stimulus speed and whether this relationship was the same for motion based on 
hue or luminance cues. Physiological results (Rodman et al 1987, Cheng et al 1994) show 

that most neurons in area V5 have an optimal response at speeds of between 4 and 16 °/s. We 
were interested in seeing how an fMRI study, assessing brain activation at various speeds, 

correlated with previous electrophysiological studies. We were also interested in whether 
colour and luminance elicits a differential motion sensitive response in V5.

A critical feature of our experimental design was that we characterized the speed-dependent 

responses of V5 under two different stimulus conditions, namely equiluminant and 
monochromatic. There are clear differences between motion defined by luminant and 

equiluminant coloured stimuli. Generally, it has been found that conditions of equiluminance 
deplete motion perception and equiluminant motion has been described as ‘incoherent’. 

Electrophysiological and psychophysical evidence (Livingstone and Hubei, 1987, 1988) 
suggests that this is due to non-overlapping parallel pathways originating in the retina. Two 

streams, the magno and parvocellular are thought to analyze colour and luminance 
autonomously and process these attributes in striate and extrastriate cortex. Wavelength 

information is relayed by the PB ganglion cells of the retina to the upper four parvocellular 
layers of the lateral geniculate nucleus (LGN). The P-cells have comparatively small receptive 

fields, a slow conduction velocity and are wavelength selective. The parvocellular or colour 
opponent pathway then continues to the blobs of area VI, the thin stripes and interstripes of 

area V2 and eventually to area V4. This stream’s cells are not as finely tuned to luminance 
contrast and do not have the temporal resolution o f the magnocellular pathway. 

Magnocellular cells have a high conduction velocity, large receptive fields and are sensitive to 
luminance contrast. This pathway is fed through the Pa ganglion cells o f the retina which 

project to the lower two layers of the LGN and then to VI and the thick stripes in V2 to 
terminate in V5.

If a moving foreground is of the same luminance as the background, the magnocellular 

pathway would not be able to function on the basis of luminance contrast and so, through the 
P pathway, foreground would be discriminated from background on the basis of wavelength 

alone. In this case, the smaller receptive fields and slower conduction velocities of the P cells 
would be an impediment to the efficient processing of motion. Lee et al (1979) used single 

unit recordings in primates to show that both M and P cells in the LGN respond to a bar 
moving through the cell’s receptive field. They found that M cells code for the movement 

with a phasic response as a luminance contrast border crosses the receptive field border. In 
contradistinction, the P cells expressed a more tonic response that endured while the stimulus 

was in the receptive field. They also demonstrated that P cells have wavelength selectivity but 
no velocity selectivity, while M cells showed no wavelength selectivity but some were very 

sharply tuned for velocity. This implies that while M cells code, primarily, for visual motion
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and speed, P cells code for the presence of a stimulus and its wavelength properties. Neuronal 
activity further along the visual processing pathways has also been characterised in terms of its 

selective responses. It has been found that although both colour and luminance defined 
stimuli activate neurons in V4 and V5 (Cheng et a l , 1994), V5 is much more sensitive to 

luminance contrast than V4. In other words, using isochromatic stimuli, a relatively high 
luminance contrast will be needed to elicit the same response in V4 that would be elicited in 

V5 by low luminance contrast. Also, whereas V4 cells show quite a high response for 
chromatically defined stimuli, in comparison to luminance defined stimuli, and show 

selectivity for stimulus wavelength, V5 cells elicit only a slight response to isoluminant colour 
defined stimuli (Gegenfurter et a l , 1994) and do not show wavelength tuning. Interestingly, 

Cheng et al (1994) showed that many V4 cells are just as tuned for speed as V5 cells but, 
unlike in V5, they do not show any direction selectivity. V4 and V5 cells evidenced mean 

optimal tuning at 32 degrees/second. However, they also showed that V5 cells, on the whole, 
had a slightly wider range of optimal speeds, ie. A few V5 cells had optimal speeds lying 

outside the range of optimal speeds seen in V4 (0.5 degrees per second at the lower end and 
256 degrees per second at the higher end). Taken together, these findings are consistent with 

what would be expected in V4 and V5 given their affiliation with the P and M pathways 
respectively. However, some findings, indicate that motion processing may be distributed 

earlier in the processing pathways and may reflect the reciprocal anatomical connectivity 
between V4 and V5 (Ungerleider et al, 1986). Given this electrophysiological evidence, we 

were therefore interested in how motion-sensitive responses in V5 varied as a function of 
speed with stimuli that biased processing towards either the M or P pathways. This was 

achieved by changing the speed of stimuli under luminance and colour bias conditions 
respectively.

A further explanation for potential differential speed-sensitive responses, that we wished to 

explore, was that at slow speeds V5 is thought to receive input primarily from the primary 
visual cortex (ffytche et al, 1996). At faster speeds, visual input to V5 is thought to come 

directly from the retina through the superior colliculus and then the pulvinar and thus bypass 
V I. Because extrageniculate pathways bypass areas implicated in colour processing, we 

wanted to look at the differences between hue and luminance based motion- responses at 
higher speeds, relative to slower speeds.

Differential responses to stimuli of varying speeds in V5 may therefore reflect (i) speed - 

dependent responses intrinsic to V5 that are independent of whether processing at earlier 
stages occurs in the M or P pathways or (ii) differences attributable to the relative amount of P 

and M processing as stimulus speed increases. To adjudicate between these explanations, we 
looked at how V5 activation varies as a function of speed under conditions of colour bias, 

compared with that of luminance bias. Under isoluminant conditions, we assumed that 
processing in the P pathway was the major determinant of input to V5. Under isochromatic 

conditions, we assumed that M pathways were implicated. These two pathways have different 
speed-dependent behaviours. Our prediction was therefore that if (i) V5 responses mirror the
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perceptual speed and reflect processing intrinsic to V5 then there should be no difference in 
the speed-dependency under isochromatic and isoluminant conditions. On the other hand 

(ii), if V5 responses have a component that is sensitive to the pathways engaged in earlier 
processing, then we would see different speed dependencies (i.e. a speed times cue bias 

interaction).

5.3 Methods

5.3.1 Stimuli

We used moving dots as our motion stimulus. The dots moved radially at a constant speed 

from the centre of the screen. We will refer to this stimulus as an “optic flow” stimulus 
because it is reminiscent of the movement of a visual pattern as one moves towards it. We 

used a parametric factorial design consisting of colour contrast bias stimuli and luminance 
contrast bias stimuli, both at five different speeds, plus a stationary dots condition that was 

used as the control between each moving stimulus presentation. The five speeds used were 
3.7, 7.7, 15.4, 30.8 and 61.6 °/s. Optic flow stimuli were employed as this stimuli contains 

dots moving in many different directions, thus providing stimulation to motion sensitive cells 
with different direction selectivities. However, the direction of motion of the radially moving 

dots is constant. V5 stimulation is therefore purely due to motion and not changes of 
direction. Also, the centre of motion of the stimulus (centre o f the optic flow field) is 

stationary and thus nystagmus is not induced (Tootell et al, 1995). In the colour contrast 
condition, luminance contrast was minimised using calibration in each individual with flicker 

photometry. It should be emphasised that as it is extremely difficult to attain isoluminance in 
psychophysical stimuli (we also had the added obstacle of creating isoluminant conditions in 

the scanner) so luminance contrast was not ‘removed’ by using flicker photometry but was 
simply minimised. It might therefore, be more accurate to think of our isoluminant condition 

as a low luminance heterochromatic condition. The colour contrast condition consisted of a 
green background upon which red dots (size 0.23°) moved radially from the central focus in 

random directions towards the border of the screen where they vanished. Background and 
foreground colours were swapped randomly throughout the runs to prevent bias due to cone 

dominance. The luminance contrast condition consisted of red dots on a red background. 
Each condition was followed by a stationary condition (either luminance or colour contrast 

depending on the prior condition) which consisted of frozen, colour contrast or luminance 
contrast defined dots in random positions on the screen.
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5.3.2 Data Acquisition

We acquired 48 axial slices at lOOms/slice giving a repetition time, per volume, of 4.8s. The 
volume acquired covered the whole brain (48 slices). Contiguous multislice T2* weighted 

images (TE = 40ms; 64x64 pixels [19.2cm x 19.2cm]) were obtained with echo-planar 
imaging (EPI). A T2* weighted sequence was chosen to enhance blood oxygenation level 

dependent (BOLD) contrast. There were 6 volume scans per condition. We replicated each 
condition 4 times in 2 sessions, each lasting 20 minutes. 240 image volumes were acquired in 

each session. Each condition lasted for 29.28 seconds. Three normal right-handed 
volunteers (aged between 20 and 45, 2 female, 1 male) participated in the study.

5.3.3 Data Analysis

The data were smoothed using a 6mm isotropic Gaussian kernel full width at half maximum. 
The data were analyzed from two perspectives. First we assessed the effects of motion, relative 

to stationary conditions and the interaction between motion and contrast-bias using 
conventional ‘box-car’ stimulus functions (convolved with a haemodynamic response 

function) that modelled the effects o f each condition separately. The significance of 
condition-specific effects was assessed using the ensuing SPM{F}s. By using appropriate 

contrasts of condition-specific effects, SPMs of the t-statistic (SPM{t}) were created to identify 
regionally specific interactions. In the second analysis, we focussed specifically on parametric 

variation in haemodynamic responses as a function of speed. These responses were 
activations relative to stationary stimuli. This analysis implicitly discounts the stationary 

condition by using it as a reference and characterises speed-response relationships within the 
motion conditions only. To allow for non-linear relationships, we used an orthogonal 

polynomial expansion of (contrast bias specific) stimulus-functions reflecting stimulus speed. 
This expansion comprised first and second order terms, treating the motion vs. stationary 

effect as a confound. The significance of the ensuing polynomial regressions were assessed 
with SPM{t}s in the usual way and interactions with contrast-bias were assessed in terms of 

first and second order components using the appropriate contrasts and SPM{t}. Statistical 
inferences were made using Gaussian random field theory to correct for multiple dependent 

comparisons. To illustrate motion selective tuning of the responses, we selected voxels that 
constituted a maxima in the SPM{t} testing for inverted “U” relationships (i.e. negative 

second order component). The mean activities per epoch of motion stimuli were computed 
and plotted as a function of speed.

5.4 Results

The posterior region of the inferior temporal gyrus and sulcus were activated bilaterally by
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motion in both the colour and luminance context in all three subjects. These areas 
correspond to bilateral V5 (Watson et al 1993, Zeki et al 1991). Bilateral activation was also 

seen in the calcarine sulcus and in the area of the superior part o f the middle occipital gyrus 
that extended to the border of the angular gyrus. We refer to these areas as VI and as V3a 

(Tootell et al (1997)) respectively (Fig. 5.1.1, Table 5.1.1). In short, under conditions of 
both colour and luminance contrast, activation was seen in VI, V5 and V3a under all motion 

conditions relative to stationary dots. Differential speed responses were seen, within the 
motion conditions, in certain areas: Under colour bias, activation in bilateral VI was observed 

to decrease linearly with speed in all subjects (Fig. 5.1.2). With luminance bias stimuli, a non­
linear, ‘inverted U’ response to speed was seen in V5 in subjects one and two (Fig. 5.1.3) with 

optimal responses between 7.7 and 30.8 degrees per second. In subject three, a linear 
decreasing response to speed was seen in left V5 (Fig. 5.1.3c) of the sort observed in VI (Fig. 

5.1.2). Using colour bias stimuli, a non-linear type response was also seen in right V5 in 
subjects one and two (Fig. 5.1.3e, g), with optimal responses observed at 7.7 and 15.4 degrees 

per second. Also, under colour bias, a non-linear response was seen in right V3a in subjects 
two and three with optimal speeds of 7.7 degrees per second in each case (Fig. 5.1.4). 

Testing for an interaction between stimulus speed and cue contrast (colour vs luminance bias) 
using appropriate contrasts, showed no evidence for differential speed-dependent responses.

x co-ord y co-ord z co-ord F-ratio

right VI 6 -87 -3 5.32

left VI -6 -87 -9 6.55

right V5 45 -78 -6 24.69

left V5 -42 -72 6 20.95

right V3a 24 -87 21 20.99

left V3a -21 -87 21 15.52

T able 5.1.1 Co-ordinates of the maxima in left and right V I, V5 and V3a in the analysis employing 

condition-specific stimulus waveforms (SPM(F) in Figure 5.1.1) testing for an overall response to the 12 

different conditions. The table gives the F-values (p < 0.05 corrected) of the maxima in left and right V5 and 

V3a of each subject.
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Fig. 5.1.1a

F ig . 5.1.1 a) Maximum Intensity projections of the SPM{F} (threshold p = 0.05 corrected) from the 

analysis using condition-specific box car stimulus waveforms, b) Bilateral regional effects in V I, V5 and 

V3a rendered on a structural MRI scan. Each region shown was significant at p < 0.05 (corrected).
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Fig. 5.1.2 Graph showing how VI activation varies with stimulus speed under colour bias conditions in 

each subject, (a), (b ), (c) show left VI with Talairach co-ordinates of (9, -87, -3), (-12, -90, -12), (-9,-81,- 

15) mm respectively, (d), (e), (0 show right VI with Talairach co-ordinates of (12, -84, -3), (2,-87,3), (6,- 

87, -3) mm. These regressions were significant at p < 0.05 (corrected).
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Fig. 5 .1 .3  Graph showing how V5 activation varies with stimulus speed in all subjects, (a), (b), (c ) 

show left V5 in all subjects under luminance bias conditions with Talairach co-ordinates of (-48, -69, 9), (- 

42, -72, -9), (-36, -84, 3) mm respectively, (d, (e) show right V5 for subject one under luminance and 

colour bias respectively, (48, -60, -3), (42, -69, 6). (f), (g) show right V5 for subject two under luminance 

and colour bias respectively, (45, -60, 3), (45, -69, 6). These regressions were significant at p < 0.01 

(uncorrected).
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Fig. 5.1.4 a b
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Fig. 5 .1 .4  Graph showing how right V3a activation varies with stimulus speed under colour bias 

conditions [in (a) subject one, (b) subject two] with Talarairach co-ordinates of (24, -87, 12), (33, -84, 18) 

mm. These regressions were significant at p < 0.01 (uncorrected).

Testing for an interaction between cue contrast (colour/luminance) and motion (pooled over 

all speeds and relative to stationary) showed an interaction in bilateral VI and V5 (colour > 

luminance) and in right V3a (luminance > colour) (Fig. 5.1.5).

Interaction one I Interaction two

X y z Z-score X y z Z-score

R V5 42 -75 6 4.0

L V5 -42 -60 6 3.4

R VI 15 -96 6 4.8

L VI -9 -84 3 4.1

R V3a 33 -81 9 4.0
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Table 5.1.2 Location of the maxima in V I, V5 and V3a in the analysis using the SPM(t) to test for an 

interaction between cue contrast and visual motion. Interaction 1 corresponds to colour > luminance and 

interaction 2 to luminance > colour. The table also shows the Z-score (p < 0.05 (uncorrected)) of the 

maxima.

Fig. 5.1.5a

Fig. 5.1.5 SPM(t)s (shown on structural MRI scans) showing areas that evidenced an interaction between 

cue contrast and motion, a) corresponds to colour > luminance and b) to luminance > colour. The voxels 

shown were significant at p < 0.05 (uncorrected).

5.5 Discussion

A non-linear inverted ‘U ’ dependency of V5 activation with speed is consistent with electro­

physiological results (Rodman et al,  1987, Cheng et al ,  1994) and could result from 

differential adaptation intrinsic to V5. Rodman et al (1987) found that V5 cells fall within 

four speed classes: “S I:  cells with similar speed tuning for excitatory responses in both 

preferred and anti-preferred directions. S2: cells with similar speed tuning for excitatory
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responses to anti-preferred motion. NT: cells whose responses to anti-preferred motion were 
not speed sensitive. ‘Unclassified’ cells had ambiguous speed tuning or no response for anti­

preferred motion.” Of these, the highest proportion of cells in area V5 are SI followed by S2 
followed by NT followed by unclassified. Apart from the unclassified cells (which make up 

only a very small proportion of V5 cells), all cells showed a non-linear response to speed with 
optimal activation at around 167s (SI), 147s (S2) and 57s (NT). Lagae et al (1993) classified 

V5 cells as tuned (33%), low pass (22%), broad band (19%) and mixed (22%), leaving 4% 
unclassified. They also found that these cells showed a non-linear response to speed, with 

optimal activations at around 1.77s (low pass), 7.37s (broadband), 9 .17s (tuned), 5.87s 
(mixed) and 5.37s (unclassified).

A significant response was also seen in area V3a that was roughly of the same form as that 

seen in V5. It has been shown that almost all V3 complex cells are selective for the speed of 
the stimulus and about half [42% (Felleman et a l , 1987)] are selective for its direction of 

motion. Also V3 cells show a similar non-linear response to speed with the optimal speeds of 
most cells being around 16 7s and the distribution of optimal speeds ranging from 4 to 32 7s.

In light of these findings, it is therefore not surprising that we found such a non-linear 

response to speed in certain parts of V5 and V3a. The non-linear effect that we have shown is 
not as comprehensive as has been shown electro-physiologically. This is most likely due to 

the facts that: (i) optimal speeds in V5 and V3a have been found to be very varied with many 
cells tuned to speeds that are quite slow and (ii) fMRI cannot resolve responses in individual 

cells. This means that the ability to detect highly tuned responses is reduced as one is forced 
to look at population responses that will have a range of optimal speeds. As optimal speeds 

among V5 and V3a neurons have been shown to vary a great deal amongst different cells, it is 
pleasing that at least some regions in V5 and V3a show this ‘inverted U ’ behaviour using 

neuroimaging techniques.

The linear decreasing response to speed observed bilaterally in VI is also interesting. It has 
been shown that the motion sensitive cells in VI are directionally selective for much slower 

speeds than in V5 (Mikami et a l , 1986). Also, it is known that at slow speeds, V5 gets its 
information via VI while at higher speeds, motion processing bypasses VI and reaches V5 

from the retina via extrageniculate pathways involving the superior colliculus and pulvinar 
(ffytche et al, 1996). It could be that the response observed in VI would also have been non­

linear, had we started with much slower speeds.

Interestingly, the non-linear responses found in V5 and V3a were not demonstrated bilaterally 
in all subjects. The reason for this is somewhat unclear, although it should be remembered 

that failing to demonstrate that an effect is significant does not mean it is not there. For 
subject three, a linear decreasing response to speed was seen in left V5. This may be due to 

the optimal speeds being at or below the slowest speed of 3.7 degrees per second employed in 
this study.
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An explanation for potential differential speed-sensitive responses is that, at slow speeds, V5 is 
thought to receive input primarily from the primary visual cortex (ffytche et a l , 1996). At 

faster speeds, visual input to V5 is thought to bypass VI through extra-geniculate pathways 
involving the pulvinar. Therefore at faster speeds, V5 responses may be mediated by 

different afferents. Because extrageniculate pathways bypass areas implicated in colour 
processing, we predicted a greater difference between hue and luminance based motion- 

responses at higher speeds, relative to slower speeds. Despite testing explicitly for an 
interaction between stimulus speed and cue contrast (colour vs luminance bias), we could find 

no evidence for differential speed-dependent responses. This would suggest that V5 
responses, in terms of speed, are not sensitive to earlier processing differences that implicate 

M or P pathways or geniculate vs. extrageniculate pathways to a different extent. However, 
finding no evidence for differential speed-dependent responses does not mean that they do 

not exist (see below).

When we tested for an interaction between stimulus motion (pooled over all speeds) and 
contrast, differential activation was seen bilaterally in the calcarine sulcus (V I) and also 

bilateral V5. In these regions, colour cues produced a greater activation than luminance cues. 
For luminance > colour, an interaction was seen in right V3a. It could be said therefore, that 

contrast cues do have an effect on motion processing, in that colour defined motion activates 
VI and V5 more and luminance defined motion activates V3a more. Colour enhanced 

motion-responses in VI and V5 are consistent with the psychophysical findings of Morgan 
and Ingle (1994) that colour, added to luminance defined motion stimuli, enhances the 

motion percept by increasing the maximum spatial displacement at which apparent motion is 
perceived. A possible explanation for our finding is that V5 is extremely sensitive to 

luminance contrast (Cheng et al, 1994) and in our colour contrast condition, there may have 
been enough residual or artefactual luminance contrast to effectively saturate the luminance 

response of cells in V5. These responses may then have been augmented by colour-derived 
motion processing.

It should be emphasised that it is extremely difficult to attain isoluminance in psychophysical 

stimuli and that we had to contend with the added difficulty of creating isoluminant 
conditions in the scanner. We performed heterochromatic flicker photometry while subjects 

lay in the scanner. However, after taking into account other possible sources of artifact, it 
might be more accurate to suggest that our isoluminant condition was a ‘low luminance 

heterochromatic condition’.

Some of the shortcomings of this study were addressed in a subsequent study described 
below. Although it may be important to minimise artifacts in psychophysical experiments for 

the quantification of perceptual deficit, our study addresses differential cortical activation 
under colour and luminance bias cues. The stimuli that we used were certainly sufficient to 

introduce this bias.
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In conclusion, optimal responses in human V5 were observed at intermediate speeds of 
around 7 to 30 °/s. This finding is consistent with electrophysiological data. A non-linear 

(inverted ‘U ’) dependency on speed was also observed in V3a. We also found that VI 
activation decreased linearly as speed increased. This is consistent with the fact that speed 

sensitive cells in VI have been shown to be tuned to slower speeds than in V5.

Section 2: A Replication Study

5.6 Abstract

In the previous section, we used fMRI to examine motion-sensitive responses in human area 

V5 as a function of stimulus speed. As predicted by electrophysiological findings, we 
observed optimal responses at intermediate speeds of around 7 to 30 °/s. These results 

revealed a non-linear (inverted ‘U ’) dependency on speed that was also evident in V3a. In 
this section we repeated the experiment using an improved stimulus and a larger range of 

speeds. We replicated our previous findings and extended our characterization of speed- 
dependent responses: Optimal responses were seen in V5 at speeds of 4 and 8 °/s and in V3a at 

speeds of 4 to 16 °/s. We were also able to show an interaction between speed (fast vs. slow) 
and contrast (colour > luminance) in V5. This interaction was anticipated on the basis of the 

different properties of the geniculate and extrageniculate inputs to V5. Finally, we were also 
able to demonstrate an interaction between motion (moving vs. stationary) and contrast 

(colour > luminance) in V4. This suggests that for V4, colour specific responses are 
augmented in the context of motion; or equivalently, that colour contrast enhances any 

motion sensitive responses in V4.

5.7 Introduction

In the previous section, we tried to determine how V5 human visual cortex activation varies as 

a function of stimulus speed and whether this relationship was the same for motion based on 
hue or luminance cues. At slow speeds V5 is thought to receive input primarily from the 

primary visual cortex (ffytche et al, 1995, 1996, Beckers et al, 1995) while, at faster speeds, 
visual input to V5 may bypass VI through extra-geniculate pathways involving the pulvinar. 

We therefore predicted that there should be a greater difference between hue and luminance
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based motion-responses at high speeds, relative to slow speeds, as extrageniculate pathways 
circumnavigate areas associated with colour thereby processing precluding any interaction 

between colour and motion processing. Despite testing for an interaction between stimulus 
speed and cue contrast (colour vs luminance bias) in our previous study, we found no 

evidence for differential speed-dependent responses (Chawla et al, 1998). However, failing to 
find evidence for differential speed-dependent responses does not mean that they do not 

exist. One of the aims of the current experiment was to test for this interaction again, having 
addressed some of the potential shortcomings of the stimuli employed in the previous study.

In our previous study, when we tested for an interaction between stimulus motion (pooled 

over all speeds) and contrast, differential activation was seen in the calcarine sulcus (VI) and 
V5. This interaction addresses the integration of colour and motion processing while 

discounting differential speed-dependency per se. In these areas, colour cues elicited a 
greater motion-sensitive response than luminance cues. For luminance > colour, an 

interaction was seen in V3a. As V5 is extremely sensitive to luminance contrast (Cheng et al, 
1994), it could have been that there was enough luminance contrast in our colour stimuli to 

saturate the luminance response of cells in V5. The present study revisits this issue by 
substantially reducing the luminance artifact in the stimulus. In the current experiment, two 

improvements were made, (i) Firstly, the dots were enlarged by a factor of ten. This 
minimises luminance and hue contrast due to chromatic abberation at the dot borders, (ii) 

The range of speeds were extended to incorporate slower speeds. This enabled a better 
characterization of speed-dependent responses.

In short this second study had two aims: (i) To replicate the finding of an inverted ‘U ’ speed- 

dependent response in V5 and V3a and (ii) to revisit the issue of interactions between hue vs. 
luminance and speed with an improved stimulus.

5.8 Methods

5.8.1 Stimuli

We used radially moving dots to provide a motion stimulus, as in the first section of this 

chapter. We used a parametric factorial design consisting of colour contrast stimuli and 
luminance contrast stimuli, both at six different speeds plus stationary. A blank screen was 

used as the control between each stimulus condition. The six speeds used were 1, 2, 4, 8, 16 
and 32 °/s. The size of the dots in our stimulus was 2.3°.
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5.8.2 Data Acquisition

We acquired 16 axial slices with 3mm thickness at lOOms/slice giving a repetition time, per 
volume, of 1.68s. Contiguous multislice T2* weighted images (TE = 43ms; 64x64 pixels 

[19.2cm x 19.2cm]) were obtained with echo-planar imaging (EPI). There were 18 volume 

scans per condition (i. e. stimuli presented continuously at a given speed using hue or 
luminance contrast). Each condition lasted for 30.24 seconds. We replicated each condition 

twice in a session lasting for 28.22 minutes. 1008 image volumes (56 replicated conditions) 
were acquired in a session. Three normal right-handed volunteers (aged between 19 and 22, 

2 female, 1 male) participated in this study.

5.8.3 Data Analysis

The data were smoothed using a 6mm isotropic Gaussian kernel full width at half maximum. 

In our statistical model, the data from all three subjects were included in the same fixed effects 
model. This model comprised subject-specific condition effects and confounds (low  

frequency components and global activity). This constitutes a case-study of three subjects, 
allowing contrasts to be specified for (i) each subject separately and (ii) testing for average 

effects over subjects (see Fig. 5.2.1).

We assessed the effects of motion, relative to the stationary condition, the interaction between 
speed (highest vs. lowest) and contrast (colour vs. luminance) and the interaction between 

motion (motion vs. stationary) and contrast. In assessing the speed by contrast interaction, we 
used the highest and lowest speeds to bias as far as possible towards extra-geniculate (and 

magnocellular) and geniculate (and parvocellular) processing respectively. These analyses 
used conventional ‘box-car’ stimulus functions (convolved with a haemodynamic response 

function) that modelled the effects of each condition separately. By using appropriate 
contrasts of condition-specific effects, SPMs of the t-statistic (SPM{t}) were created to identify 

regionally specific main effects and interactions. The SPM(t)s were transformed to SPM(Z) 
for display and tabulation. Statistical inferences were made using Gaussian random field 

theory to correct for multiple dependent comparisons. However, because we restricted our 
hypothesis to V I, V5, V3a and V4 we report all maxima at p < 0.05 (uncorrected), only if  the 

areas survived this threshold in all three subjects. The SPMs shown in Figure 5.2.1 represent a 
conjunction analysis over all subjects. In other words, the SPMs show the effect tested for, 

assessed over subjects, but only in voxels where this effect was significant conjointly in every 
subject-specific analysis. Because o f the separable nature of the design matrix, this 

corresponds to an uncorrected significance of p < 0.053.
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5.8.4 Characterising Speed-Dependent Responses

To characterise speed dependent responses within motion sensitive areas, we focussed on the 
maxima from the analyses testing for a main effect of motion in V5 and V3a using the 

parameter estimates of the response at each speed, in each stimulus context, in each subject. 
In these and only these analyses, we smoothed the data with a 12mm kernel to get a more 

representative estimate of the regional responses in these areas.

5.9 Results

5.9.1 Main Effect of Motion

As in our previous study, the posterior region of the inferior temporal gyrus and sulcus were 

activated bilaterally by motion in both the colour and luminance context in all three subjects. 
These areas correspond to bilateral V5 (Watson et al 1993, Zeki et al 1991). Bilateral 

activation was also seen in the calcarine sulcus and in the superior part of the middle occipital 
gyrus that extended to the border of the angular gyrus. We refer to these regions as VI and 

V3a (Tootell et al (1997)) respectively (Fig. 5.2.1a and b, Table 5.2.1). In short, under 
conditions of both colour and luminance contrast, activation was seen in V I, V5 and V3a 

under all motion conditions relative to stationary dots.

5.9.2 Speed x Contrast interaction

Testing for an interaction between stimulus speed (fast relative to slow) and cue contrast 

(colour > luminance bias) using appropriate contrasts showed an interaction in a bilateral V5 
satellite in all subjects (see Fig. 5.2.1c). The direction of this interaction suggests that at faster 

speeds, relative to slower speeds, colour cues elicit a greater response. This is consistent with 
the interaction in V4 reported next but is somewhat counterintuitive given that optimal speeds 

using hue contrast are higher than those using luminance contrast.
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Subject Area name xco-ord y co-ord z co-ord Z-score

One right VI 16 -90 -2 5.74 *

left VI -8 -98 4 4.55 *

right V5 58 -56 -2 7.94 *

left V5 -46 -66 2 7.11 *

right V3a 30 -90 22 7.12 *

left V3a -24 -86 14 8.03 *

Two right VI 24 -100 -2 2.13

left VI -8 -96 -6 2.46

right V5 46 -78 -4 2.99

left V5 -44 -82 -2 3.20

right V3a 26 -94 16 3.11

left V3a -12 -96 30 2.86

Three right VI 16 -92 -8 4.68

left VI -12 -90 -4 3.88

right V5 48 -68 2 3.05

left V5 -38 -74 2 4.25

right V3a 18 -80 24 2.95

left V3a -20 -80 28 2.86

Table 5.2.1 Co-ordinates of the maxima in left and right V I, V5 and V3a testing for the main effect of 

motion against stationary in each individual subject. The table gives the Z-scores of the maxima in left and 

right V I, V5 and V3a of each subject that survived a statistical significance of p < 0.001 uncorrected. 

Voxels surviving a p < 0.05 correction are denoted by an asterix (*).
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Fig. 5.2.1a b

Fig. 5.2.1 a) SPM{Z} (threshold p < 0.01 uncorrected) showing the main effect of motion vs. stationary 

over subjects, b) SPM{Z} (threshold p < 0.05 uncorrected) showing the main effect of motion vs. 

stationary over subjects and rendered on a structural MRI scan. The left panel shows bilateral regional 

effects in VI and V5 and the right panel shows bilateral V3a. (c) shows V5 from the SPM{Z} (threshold p 

< 0.05 uncorrected) of the interaction between speed (highest vs. lowest) and cue contrast (colour > 

luminance) over subjects, (d) shows V4 from the SPM{Z} (threshold p < 0.05 uncorrected) of the 

interaction between motion (pooled over all speeds) vs. stationary and cue contrast (colour > luminance) 

over subjects. The voxels in these SPMs were significant in all subjects when assessed separately and 

therefore represent a conjunction analysis.
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Subject Area X y z Z-score

One left V5 -42 -66 2 1.88

right V5 52 -60 2 2.31

Two left V5 -38 -74 4 2.29

right V5 44 -74 2 1.77

Three left V5 -44 -78 6 3.97

right V5 48 -72 8 1.82

Table 5.2.2 Location of the maxima in V5 in the analysis testing for an interaction between cue contrast 

and speed (fast relative to slow). The table also shows the Z-scores (p < 0.05 uncorrected) of the maxima.

5.9.3 Motion x Contrast Interaction

Testing for an interaction between cue contrast (colour > luminance) and motion (pooled 

over all speeds relative to stationary) showed an interaction in right V4 in all subjects (Fig. 
5.2.Id). This represents a positive interaction between colour and motion in augmenting V4 

responses and replicates an earlier study (Phillips et al, in preparation).

Subject Area X y z Z -score

One right V4 26 -70 -12 2.95

Two right V4 18 -66 -14 1.78

Three right V4 22 -82 -10 2.84

Table 5.2.3 Location of the maxima in V4 in the analysis using the SPM(Z) to test for an interaction 

between cue contrast and visual motion. The table also shows the Z-scores (p < 0.05 uncorrected) of the 

maxima.
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5.9.4 Non-Linear Speed Dependent Responses

D ifferential speed responses were seen, within the m otion conditions, in the m axim a of V5 

and V3a from  the main effect of motion in all three subjects. Figure 5.2.2 shows the speed- 

dependent responses in V5 in all three subjects. A non-linear “ inverted U ” response was 

evident in each case with optimal speeds at 4 or 8 °/s.

Figure 5.2.3 shows the speed-dependent responses in V3a in all three subjects. A non-linear 

“inverted U ” response to speed was observed, this time with optimal speeds between 4 and 16 

°/s. It is rem arkable that the same optimal speeds were seen universally in both hem ispheres of 

the sam e subject under both colour and lum inance contexts in both V5 and V3a. The 

probability  o f this happening by chance is incredibly sm all, speaking to the biological 

plausibility o f these results (particularly given that these voxels were identified by a contrast 

that was orthogonal to the inverted “U” behaviour observed).
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Fig. 5.2.2 Graph showing how activation in the V5 maxima from the main effect of motion compared to 

stationary varies with stimulus speed in all subjects, (a) shows right and left V5 in subject one under both 

colour and luminance bias conditions, (b) shows right and left V5 for subject two. (c) shows right and left 

V5 for subject three.

110



Pa
ram

ete
r 

est
im

ate
s 

Pa
ram

ete
r 

est
im

ate
s

Figure 5.2.3a Right Left

BO LD  Response vs. Speed: S ub ject 1: R ight V3a
0.6

0.5
Colour

0.4

0.3

0.2

Luminance

- 0.1

- 0.2

-0 .3

-0 .4
15

Speed (degrees/sec)
20 25 30 35

(degrees/sec)

B O LD  R esponse vs. Speed: S ub ject 2: R ight V3a
0.6

0.4

0.2
Luminance

Colour
- 0 .

-0 .4

-0.6 10 15 20
Speed (degrees/sec)

25 30 35

BO LD  Response vs. Speed: S u b jec t 1: Left V3a
0.8

Colour
0.4

CO0)
I  0.2
CO(D Luminance
aj
CD
EES(0

CL

-0.2

-0 .4

- 0 . 6 ,
2515 20

S peed (degrees/sec)
30 35

BO LD R esponse vs. Speed: S u b jec t 2: Le ft V3a
0.8

0.6

0.4

Luminance
COO)
|  0.2
toa>
is
E
to
to

CL

Colour

- 0.2

-0 .4

- 0.6 10 15 20
Speed (degrees/sec)

25 30 35

111



c

BO LD R esponse vs. Speed: Sub ject 3: R ight V3a BOLD Response vs. Speed: Subject 3: Left V3a
0.6

0.5

0.4

Colour
0.3

S  0.2

0.1
Luminance

- 0.1

- 0.2

- 0 .3

—0.4
2515

Speed (degrees/sec)
20

(degrees/sec)
30 35

0.4

0.3

Luminanqe

0.2

0.1 Colour
to
<B

s
Ea

- 0.1

- 0.2

-0 .3
30 3515 20

Speed (degrees/sec)
25

Fig. 5.2.3 Graph showing how activation in the V3a maxima from the main effect of motion compared 

to stationary varies with stimulus speed in all subjects, (a) shows right and left V3a in subject one under 

both colour and luminance bias conditions, (b) shows right and left V3a for subject two. (c) shows right 

and left V3a for subject three under colour and luminance bias.

5.10 Discussion

A non-linear inverted ‘U ’ dependency o f V5 activation with speed is consistent with electro­

physiological results (Rodm an et al ,  1987, C heng et al ,  1994) and could  resu lt from  

differential speed-selective responses intrinsic to V5. A significant motion response was also 

seen in area V3a that had roughly the same form as that seen in V5. It has been shown that 

alm ost all V3 com plex cells are selective for the speed of the stim ulus and about half (42%, 

Felleman et al,  1987) are selective for its direction of motion. Furtherm ore, V3 cells show a 

sim ilar non-linear response to speed with the optimal speeds of most cells being around 16 7s 

ranging from 4 to 32 7s.

In this section, the non-linear effect in V5 and V3a is more com pelling than that reported in

112



the first study of this chapter (Chawla et al, 1998). In the present study, the non-linear 
responses came from the maxima from the main effect of motion whereas before we looked 

for them explicitly. However, as before, these non-linear effects (i.e. selectivities) are not as 
“tight” as when characterised electro-physiologically. This is most likely due to the fact that 

fMRI cannot resolve response profiles of individual cells. This means that the ability to detect 
highly tuned responses is reduced as one is forced to look at population responses that have a 

range of optimal speeds.

A potential explanation (that motivated our experimental design) for differential motion- and 
speed-sensitive responses under different contrasts (luminance vs. colour) is that, at slow 

speeds, V5 is thought to receive input primarily from the primary visual cortex (ffytche etal, 
1996). At faster speeds, visual input to V5 is thought to bypass VI through extra-geniculate 

pathways involving the pulvinar. Therefore at faster speeds, V5 responses may be mediated 
by different afferents. Because extrageniculate pathways completely bypass areas implicated 

in colour processing (and because of the differential demands put upon magnocellular and 
parvocellular pathways), we predicted a difference between hue and luminance based motion- 

responses in V5 at higher speeds, relative to slower speeds. Consistent with this prediction, an 
interaction between speed (fast relative to slow) and cue contrast was seen in V5. Because of 

the non-linear speed-dependent responses, one should be careful not to overinterpret the 
exact form of these interactions.

When we tested for an interaction between stimulus motion (pooled over all speeds) and 

contrast, differential activation was seen in V4. This result replicates the finding of an 
independent study that looked explicitly for motion vs. colour interactions using just one 

speed (8 °/s) (Phillips et al, in preparation). In this region, colour cues produced a greater 
activation than luminance cues. Colour enhanced motion-responses at a neurophysiological 

level are consistent with the psychophysical findings of Morgan and Ingle (1994). This 
suggests that for V4, colour specific responses are augmented in the context of motion; or 

equivalently, that colour contrast enhances any motion sensitive responses in V4. The latter 
interpretation could imply motion responses intrinsic to V4, or an integration between distinct 

visual processing pathways via reciprocal connections with V5 (Felleman and Van Essen, 
1991).

In conclusion, optimal responses in human V5 and V3a are observed at intermediate speeds 

of around 4 to 16 °/s. This finding is consistent with electrophysiological data in single 
neurons and replicates our previous findings. We were also able to show for the first time an 

interaction between speed perse  and contrast (colour vs. luminance) in V5. This interaction 
was anticipated on the basis of the various ways in which visual input can reach V5. Finally, 

we replicated the findings of Phillips et al (in preparation), in finding an interaction between 
motion and contrast in V4. This suggests a modulatory interaction of colour on motion 

processing pathways via reciprocal connections, or intrinsic responses to dynamic stimuli in 
V4.
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Chapter 6: The Physiological Basis 

of Attentional Modulation in 

Extrastriate Visual Areas

6.1 Abstract

Selective attention to colour or motion enhances cortical activity in functionally specialised 

areas of extrastriate cortex, but the underlying mechanisms of this attentional modulation 
remain unclear. Functional neuroimaging in humans was used to investigate the 

physiological basis of such effects, by dissociating the modulation of transient activity evoked 
by a visual stimulus from the baseline activity established by a particular attentional set. 

Significantly, baseline activity in motion and colour sensitive areas of extrastriate cortex was 
enhanced by selective attention to these attributes even in the absence o f a moving or 

coloured stimulus. Further, when baseline activity increased, there was a concomitant increase 
in visually evoked responses. These results are consistent with the hypothesis, motivated by 

computational modelling studies described in chapters 3 and 4, that attention modulates the 
sensitivity of neuronal populations to inputs by simply changing background activity. Our 

modelling studies indicate that increases in background activity augment fast synchronous 
stimulus-induced interactions. This mechanism provides for a baseline “gain control” that 

emerges spontaneously from the population dynamics.
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6.2 Introduction

A substantial amount of experimental evidence, from humans and non-human primates, 

implicates the extrastriate visual area, V5 (located in the posterior region of the inferior 
temporal gyrus and sulcus) in motion processing and area V4 (located in the fusiform gyrus) 

in colour processing (Chawla et al, 1999, 1998, Tootell et al, 1995, Watson et al 1993, Zeki et 
al, 1991, Lueck et al, 1989, Livingstone and Hubei, 1988, Dubner and Zeki, 1971). Over the 

past decade, evidence has emerged to suggest that attention to colour or motion enhances 
activity in V4 or V5 respectively. In non-human primates, the effect of attention on neuronal 

activity is to enhance both baseline activity (Luck et al, 1997, Ferrera et al, 1994), before a 
visual stimulus is presented, and the activity evoked by a stimulus with the attended attribute. 

Treue and Maunsell (1996) showed, in studies of macaque visual cortex, that the responses of 
most V5 cells are reduced when attention is directed to moving stimuli that are outside the 

cells receptive field; however responses were enhanced when attention is directed to stimuli 
within the receptive field. In humans, neuroimaging techniques (positron emission 

tomography (PET) (Corbetta et al, 1991) and functional magnetic resonance imaging (fMRI) 
(Buechel et al, 1998, O’Craven et al, 1997)) show that V5 activity is enhanced when subjects 

are paying attention to moving stimuli relative to passively viewing the stimuli or indeed, 
paying attention to a different attribute such as colour. Enhanced V4 responses to stimuli 

have also been demonstrated as a result of attending to their colour (Corbetta et al, 1991, 
Haenny and Schiller, 1988, Spitzer e ta l ,  1988). Haenny and Schiller found, in 72% of the 

cells in V4 that they tested electrophysiologically, an enhanced response of around 20% and 
increased selectivity, under conditions of attention. Spitzer and colleagues used 

electrophysiological techniques to show that cell responses in V4 increased as a colour 
discrimination task became more difficult, requiring a higher level of attention. The 

responses also became more selective as difficulty increased: In an easy task, cells responded 
to both target and unattended stimuli (in the receptive field). However, as the task became 

more difficult, responses to target stimuli were enhanced and responses to unattended stimuli 
were attenuated. More recently, McAdams et al (1999), examined how attention affected the 

orientation tuning of 262 isolated neurons in monkey V4. They trained the monkeys to 
“perform a delayed match to sample task in which oriented stimuli were presented in the 

receptive field of the neuron being recorded. On some trials the animals were instructed to 
pay attention to those stimuli, and on other trials they were instructed to pay attention to other 

stimuli outside the receptive field.” They found that, “attention enhanced the responses of 
V4 neurons (median 26% increase)44, although “selectivity, as measured by the width of its 

orientation-tuning curve, was not systematically altered by attention. The effects of attention 
were consistent with a multiplication scaling of the driven response to all orientations.” These 

results suggest that extrastriate responses to visual stimuli are modulated according to task 
demands. In other words, responses to individual attributes can be selectively enhanced by 

attention.

The above studies show attentional modulation of stimulus evoked responses. Fewer studies
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have explicitly investigated attentional modulation of baseline activity. Ferrera et al (1994) 
explored baseline shifts in neuronal responses, in the context o f working memory. They 

found in macaque that both baseline activity and activity evoked by a moving stimulus appear 
to change with expectation. Even when subjects viewed a blank screen, activity in 32% of V5 

cells showed a doubling of baseline activity. This study employed a delayed match to sample 
task, using direction of motion as the matching criterion. Modulation of delay period or 

baseline activity was not related to information in the cue (i.e. the specific direction that was 
relevant on that trial), suggesting that this effect may be modulated, in part, by attention. 

When interpreting our results, in relation to these findings, we assume that baseline attentional 
modulation is mediated by the same sort of tonic discharge associated with delay period 

activity that is evoked by such working memory tasks. Luck et al (1997) also showed in V4, 
using monkey electrophysiology, that attention can modulate both baseline and stimulus 

evoked activity, depending on the relative locations of visual stimuli within the cells receptive 
fields (see below for a fuller discussion of this work in relation to our study).

Enhanced baseline activity is taken to reflect attentional ‘set’ or expectation, whereas changes 

in stimulus evoked activity reflect changes in sensory processing (Corbetta et al, 1991). 
However the functional significance and relationship between changes in ‘set’ and changes in 

evoked activity is not known. In functional neuroimaging studies on humans, it has been 
difficult to unambiguously dissociate activity due to attentional set and that due to stimulus 

evoked responses (Rees et al, 1997) because of the relatively long periods of time over which 
haemodynamic signals are integrated. Here, by using a novel event-related paradigm and 

fMRI, we show just such a dissociation in V5 and V4, revealing a relationship between 
attentional set and evoked activity that is in accord with hypotheses based on computational 

studies.

Our specific hypothesis, motivated by computational studies of simulated neuronal 
populations (Chawla et al, 1999, also see chapters 2 and 3), provides a model for attentional 

modulation and speaks to some important conclusions based on monkey electrophysiology: 
Unit electro-recording studies (Luck et al, 1997) have suggested that when multiple stimuli 

fall within a cells receptive field, they compete for the cells response in a manner that can be 
biased in favour of the attended stimuli. Earlier in this thesis, we have shown that stimulus- 

evoked rate modulation increases with tonic, background population activity suggesting that 
attentional modulation, of evoked responses, may be mediated by simply increasing 

background activity in the appropriate functionally specialised populations. This leads to the 
intuitively remarkable hypothesis that tonic cortical activation should be seen when attending 

to a specific attribute of the sensory field in the appropriate functionally specialised cortical 
area. Importantly this effect should be seen in the absence o f  any stimuli. Furthermore, the 

computational results predict a specific form for the relationship between changes in 
background activity and evoked transient activity: In areas that show attention-specific

increases in baseline activity, one would expect to see positive modulation of transient 
responses evoked by stimuli when they are presented.
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Here, for the first time in humans, we test and confirm these theoretical predictions by 
dissociating activity associated with attentional set and that evoked by presentation of a visual 

stimulus. We conducted an event-related fMRI (Josephs et a l , 1997, Buckner et a l , 1996) 
experiment in which we examined transient V5 (V4) responses to motion (colour) stimuli 

under different levels of attention. The technique of event related fMRI resembles that used 
to record event-related potentials in electrophysiology, where different stimuli are presented 

repeatedly over time. Subjects viewed a stationary monochromatic random dot display where 
the dots intermittently changed colour and moved radially. By asking subjects to detect and 

discriminate among these and sporadic target events, using either colour or motion cues, 
attentional modulation of activity evoked by the transient stimuli could be measured. 

However, our design also allowed measurement of the modulation of baseline activity, 
between  successive stimuli, due to attentional set or expectation. During these times, the 

stimulus was stationary and did not change colour. We characterised these two different 
measures of attentional modulation in two functionally specialised extrastriate visual areas (V4 

and V5), replicating our findings independently in three subjects, in both hemispheres.

6.3 Methods

6.3.1 Stimulus Presentation

The stimulus was identical in all conditions and consisted of stationary random green dots 
(with a size of 0.1°) on a green background of differing luminance. Transient visual events 

occurred intermittently and consisted of random red dots on a green background that moved 
radially. There were 500 dots on the screen at any time. In a previous fMRI study (Chawla et 

al, 1999, 1998, also see chapter 2), we characterised V5 activity as a function of speed. We 
found optimal responses at speeds of around 10°/s and therefore used this as the speed of our 

motion stimuli. In 25% of the events, the speed was reduced to 7°/s or the colour of the dots 
was a slightly lighter shade of red.

Subjects viewed the visual display for periods of 98 seconds, interleaved with periods when the 

screen was blank (as a low level control). Before each presentation of the visual display, a 
visual cue was used to instruct subjects to attend to either motion or colour attributes of the 

stimulus. In the motion attention condition, the subjects were told to discriminate the slower 
moving dots from the faster moving dots and respond with a key press. In the colour 

attention condition, the subjects were told to detect the slightly pinker dots. As these events 
were only subtly different from the normal events, and the subjects were not aware of their 

25% sparsity, attention was maintained at high levels. The compound colour-motion stimulus 
events lasted for one second and were presented sporadically where the inter-stimulus intervals 

(ISIs) were selected from a random ‘uniform’ distribution that ranged from one to 36 
seconds. One special design problem we faced was to ensure the effects of attention on
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baseline activity and the modulation of evoked responses were as unconfounded or 
orthogonal as possible. This was achieved by deleting occasional events such that each 

attention condition had at least one “long” ISI of 33 secs (+/- 3secs). These intervals were 
needed to disambiguate attentional effects on the transient haemodynamic response to 

stimulus events from background activity associated with a particular attentional set (Friston et 
al, 1998) (see below).

6.3.2 Data Acquisition

Each volume comprised 32 axial slices with 3mm thickness (in plane resolution 3mm x 3mm) 
giving a repetition time, per volume, of 2.8s. Each experimental condition lasted for 98 

seconds (35 volume scans) and was followed by a blank screen lasting for 19.6s (7 volume 
scans). We replicated each condition 10 times in a session, lasting for 39 minutes and 12 

seconds. 840 image volumes (20 replicated conditions) were acquired in a session. Three 
normal right-handed volunteers (aged between 19 and 26, all female) participated in the 

study.

6.3.3 Data Analysis and Statistical Model

The data were smoothed using a 6mm isotropic Gaussian kernel full width at half maximum. 

Our fixed-effects statistical model comprised subject-specific effects (baseline attention 
effects, responses to stimulus events and the interaction between these two) and confounds (a 

constant term for each subject, low frequency components, global activity and stimulus events 
that were responded to). This analysis constituted a case-study of three subjects, allowing 

contrasts to be specified for (i) each subject separately and (ii) testing for average effects over 
subjects (see Fig. 6.1).

Our conclusions depend heavily on being able to separate measures of set-related baseline 

activity from measures of stimulus-evoked activity in the same brain region. To do this we 
used multi-linear regression, implemented in the context of statistical parametric mapping at 

each and every voxel using SPM97. The ensuing regression model is simply a linear 
combination of regressors or time-varying explanatory variables that best explain the 

observed time-series. In this instance, there were effectively three regressors of interest. 
These regressors modelled an effect of attentional set, event-related haemodynamic responses 

and the interaction between these two factors. The first regressor was 1 under attention to 
motion and -1 for scans acquired under attention to colour. Evoked responses were modelled 

by a delta function {i.e. spike) at the occurrence of every event. The interaction is simply the 
product of these two and accounts for differential evoked responses under both levels of 

attention. Haemodynamic responses to these effects were modelled by convolving the 
regressors with a synthetic haemodynamic response function and its temporal derivative.

118



Variations in cortical activity, about the mean of each voxel time-series, are expressed in terms 
of the relative contribution of these three effects, or more precisely the corresponding 

parameter estimates obtained with least squares. Statistical inferences are based on t-statistics 
(the parameter estimates divided by their standard error) that are assembled into a SPM{t}. 

The t-values were used only to infer that the effects described were significant (see below). 
The effects themselves are presented in terms of the parameter estimates, namely the 

difference in baseline activity associated with attentional set, the degree o f evoked 
haemodynamic response and the attention-dependent component of these evoked responses 

(i.e. the interaction). In order to ensure that parameters are estimated efficiently, it is 
important to avoid correlations between the explanatory variables. This was a critical aspect 

of our experimental design and involved at least one long ISI during each attentional 
condition. The resulting small correlation co-efficients (< 0.3), between the attentional set 

regressors and those modelling attention specific events, do not ensure independence but 
make our estimates of any effects that are separable more efficient. However, it is important 

to appreciate that the parameter estimates are identical to those that would have been obtained 
if we had orthogonalized each effect with respect to the remaining effects in the design 

matrix. Put simply, this means that the results reported in the figures are the estimated 
responses to any particular effect, having removed any component that could be explained by 

the others. This renders our estimated responses conservative and, by virtue of the fact that 
they were still significant, robust. Had we not minimised the co-linearity between the 

regressors, by experimental design, it is possible that we would have seen no effect of attention 
(because it could be modeled by the interaction) and no effect of evoked response 

modulation (because it could be modeled by changes in attention). The actual estimates of 
activity in Figures 6.2 and 6.3 correspond to the parameter estimates where the constant term 

has been added back to the attentional baseline estimates. Fig.s 6.2a,c,e,6.3a,c,e show the 
average baseline activity, over and above which the stimulus event effects are seen. In Fig.s 

6.2b,d,f,6.3b,d,f the dots around the estimated haemodynamic responses correspond to the 
original fMRI data adjusted for confounds and baseline attentional effects.

By using appropriate contrasts of condition-specific effects, SPM{t}s were created to test for 

regionally specific main effects and interactions. The SPM(t)s were transformed to SPM(Z) 
for display and tabulation. Statistical inferences were made using Gaussian random field 

theory to correct for multiple dependent comparisons. However, because we restricted our 
hypothesis to VI, V5, V3a and V4 we report all maxima at p < 0.05 (uncorrected), only if the 

areas survived this threshold in all three subjects. The SPMs shown in Figure 6.1 represent a 
conjunction analysis over all subjects. In other words, the SPMs show the effect tested for, 

averaged over subjects, but only in voxels where this effect was significant conjointly in every 
subject-specific analysis. Because of the separable nature of the design matrix, this 

corresponds to an uncorrected significance of p < 0.053.
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6.4 Results

6.4.1 Behavioural

All subjects reported the task to be demanding and that they had to maintain attention to the 
attribute (colour or motion) in question. All subjects responded correctly on between 80 and 

92% of target events (see methods) and incorrectly on between 20 and 24% of non-target 
events (Table 6.1). These results show that the subjects were able to discriminate the target 

events from the normal events, although the difference was sufficiently subtle that the subjects 
sometimes mistook non-target events for target events.

SPEED I COLOUR I OVERALL

Subject %correct %incorre %correct %incorre % %incorre
One 8 3 1 9 9 2 2 2 8 8 2 0

Two 7 5 1 1 9 4 31 8 0 21

Three 8 8 2 2 9 4 2 5 9 2 2 4

Table 6.1 Performance of each subject in the colour and motion target detection tasks. %correct denotes 

the number of events that the subject responded to correctly. %incorrect denotes the number of false 

positive responses.

6.4.2 Neurophysiological

The experimental design allowed us to model the effects of attention in terms of baseline 

changes and stimulus responses separately. Here we present findings that reflect the activity 
evoked by transient visual events p e r  se, the effect of attentional set, and the interaction 

between the transient event and attentional set. The latter reflects the modulation of evoked 
responses by attention to colour or motion.
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Fig. 6.1 SPM{Z} (threshold p < 0.01 uncorrected) showing the main effect of the stimulus vs. baseline 

over subjects, masked with the main effect from each individual subject (i.e. a conjunction of significant 

effects over all three subjects) and rendered on a structural MRI scan, (a) bilateral regional effects in VI and 

V5. (b) bilateral V3a. (c) bilateral V4.
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6.4,3 Activity Evoked by Transient Visual Events

Figure 6.1a shows the haemodynamic response due to the main effect o f stimulus events 
(pooled over colour and motion). In each of the subjects, responses were seen bilaterally in 

the calcarine sulcus (primary visual cortex or VI), in the posterior region of the inferior 
temporal gyrus and sulcus known as area V5 (Watson et al, 1993, Zeki et al, 1991) (Fig. 

6.1a), in the area of the superior part of the middle occipital gyrus that extended to the border 
of the angular gyrus, referred to as V3a (Tootell et a l , 1997) (Fig. 6.1b) and in the fusiform 

gyrus or V4 (Lueck et al, 1989, Livingstone and Hubei, 1988) (Fig. 6.1c, Table 6.2).

6.4.4 Activity due to Attentional Set

A main effect of motion attentional set, obtained by subtracting the colour from the motion 

attention baseline was evident in areas V5 and V3a in all subjects (Table 6.2). A main effect 
of colour attention was observed in V4 in all subjects (Table 6.2). Table 6.2 shows the Z- 

scores of the main effect of attentional set as they appear in the maxima from the main effect 
of the stimulus events. In addition to the areas shown in Table 6.2, there were a small number 

of voxels that evidenced a main effect of motion attention in V4, bilaterally in all subjects at p 
< 0.05 (uncorrected). This finding is not considered further here, because it was not 

expressed at the V4 maximum for the main effect of events.
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S u b ­
ject

Area Z - 
Score 
(M. E.

X y z Z - Score 
(motion 
baseline -

Z - Score 
Interaction 
(motion >

One Left V5 7 . 71 ** 6 2.78* 1.95*

Right V5 6 . 89 ** 52 6 2.42* 1.86*

Left V3a 3.92* 28 2.27* -1 .79*

Right V3a 7 . 77 ** 24 26 3.02* 0.72

Left V1 8 .52* * - 8 0 1.11 0.84

Right V1 7 .3 9* * 1 6 6 0.58 -0 .80

Left V4 7 .7 2* * - 2 . 8 2 * - 1 . 9 0 *

Right V4 8 .3 7* * 30 - 2 . 4 3 *

*COo>1

Two Left V5 7 .4 3* * 0 2.66* 2.22*

Right V5 7 .4 6* * 56 0 2.99* 2.37*

Left V3a 7 .2 2 * * 26 2.80* -0 .63

Right V3a 7 . 47 * * 22 22 2.89* 1.47

Left V1 6 .3 9* * - 2 - 2 - 1 .50 0.87

Right V1 3.84* 1 0 - 2 - 2 . 2 9 * 0.66

Left V4 7 .5 5* * - 2 . 6 4 * - 1 . 9 1 *

Right V4 7 .0 0* * 18 - 6 - 2 . 7 0 * -1 .89*

Three Left V5 7 . 45 ** 6 2.12* 2 .53*

Right V5 7 . 03 ** 44 1 2 2.07* 2.75*

Left V3a 7 . 94 ** 30 3.05* -0 .78

Right V3a 6 .39* * 20 34 2.66* - 0 .33

Left V1 6 .9 2* * 1 4 6 0.43 0.19

Right V1 3.46* - 8 2 - 0 .78 1 .79*

Left V4 7 .82* * - 2 . 8 3 * - 2 . 0 6 *

Right V4 8 .2 5* * 38 - 2 . 5 6 * - 2 . 1 2 *

Table 6.2 Talairach co-ordinates of the maxima in V I, V5, V3a and V4 testing for the main effect o f the 

stimulus event in each subject. The table gives the Z-scores of the maxima from the stimulus main effect 

(p < 0.001 uncorrected). The table also contains the Z-scores of the main effect (M. E.) of motion/colour 

baseline and the interactions (motion > colour and vice versa) in that order. These Z-scores are from the 

same voxels as in the main effect of the stimulus and are significant at p < 0.05. Note that the Z-scores for 

the group were much larger, but we elected to show subject-specific Z-scores to demonstrate the 

reproducibility of these results.
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Fig. 6.2 Activity and responses in V5 as a function of attention in all subjects, (a) Parameter estimates 

with standard errors for baseline effects under both levels of attention in left V5 in subject one. (b) Adjusted 

data and fitted haemodynamic responses following the stimulus events under each attentional context 

(having adjusted for baseline effects) in left V5 for subject one. (c) and (d) show the same as (a) and (b) but 

in left V5 for subject two and (e) and (f) are for left V5 in subject three. The units are dimensionless and 

represent % whole brain mean signal. The magenta and cyan lines in b, d and f represent evoked responses 

under motion and colour attention respectively.
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Fig. 6.3a
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Fig 6.3 Activity and responses in V4 as a function of attention in all subjects, (a) Parameter estimates 

with standard errors for baseline effects in left V4 in subject one. (b) Adjusted data and fitted haemodynamic 

response curves following the stimulus events under each attentional context (having adjusted for baseline 

effects) in left V4 for subject one. (c) and (d) show the same as (a) and (b) but in right V4 for subject two 

and (e) and (f) are for left V4 in subject three. The magenta and cyan lines in b, d and f represent evoked 

responses under motion and colour attention respectively.
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6.4.5 Interactions Between Attentional Set and Evoked Responses

To examine attentional modulation of evoked responses, we tested for interactions in the 
maxima of regions showing a main-effect of events in V5 and V4. In V5 (see Fig. 6.1a) in 

all subjects, greater haemodynamic responses were elicited by events under motion attention 
relative to colour attention (Fig. 6.2b,d,f). This modulation was expressed over and above the 

increased differential motion attention baseline described above (Fig. 6.2a,c,e). Furthermore, 
in the maxima of V4 (see Fig. 6.1c), an increased response was seen to events under colour 

attention as opposed to motion attention (Fig. 6.3b,d,f), this time in the context of an 
increased colour attention baseline (Fig. 6.3a,c,e). These results suggest that attention 

modulates both baseline activity and evoked responses in a way that is congruent with the 
functional specialisation of V4 and V5 and in accord with our predictions. These effects were 

seen bilaterally in V4 and V5 in all subjects. Examples from one hemisphere in each subject 
are shown in Figures 6.2 and 6.3.

6.5 Discussion

This event-related fMRI study revealed regionally specific effects of attention at two levels: 

Firstly, a baseline response to attentional set (motion), was observed in bilateral V5, in all 
subjects and a baseline response to colour attention was observed in V4. Secondly, greater 

evoked haemodynamic responses to stimuli under motion attention (after discounting 
baseline effects) were seen in V5 and greater stimulus responses under attention to colour 

were observed in V4.

The phenomena reported above are interesting in that there is enhanced activity in V5 when 
the subject attended to motion, even when there was no motion in the visual field {i.e. viewing 

stationary monochromatic dots) (Fig. 6.2a,c,e). In the same way, there was enhanced activity 
in V4, when the subject viewed monochromatic dots, but attended to colour (Fig. 6.3a,c,e).

The relationship between changes in set-related activity with attention and changes in visually 

evoked responses suggests that attention increases baseline activity within V5/V4, and in so 
doing increases the sensitivity to motion/colour stimuli. This observation may seem  

counterintuitive as increasing background activity might be thought to lead to a greater 
difficulty in distinguishing a transient signal from noise. However this result was fully 

anticipated by our computational work and the results of single-unit recording studies (Luck 
et al, 1997, Ferrera et al , 1994). In previous computational studies (see chapter 3), we used 

biologically plausible simulations of coupled neuronal populations to address the relationship 
between phasic and fast coherent neuronal interactions and macroscopic measures of activity 

that are integrated over time such as the BOLD (blood oxygenation level dependent) response 
in fMRI. Our simulations indicated that an attentional ‘biasing signal’ may mediate its effects
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in a relatively simple way: Increased baseline activity leads to decreased effective post- 
synaptic membrane time constants (by increasing membrane conductance, see Chawla et al, 

1999 and chapter 2) and a selective amplification of stimulus-related synchronous 
interactions (i.e. a predisposition to phase-locking). This reflects an interaction between 

background activity and stimulus-intensity in producing dynamic correlations. In other 
words, background activity augments stimulus-induced dynamics. This is interesting from a 

computational perspective as background activity establishes a context that may have a 
profound effect on event-related responses. This background-dependent increase in response 

sensitivity may constitute one of the physiological mechanisms underlying attention 
modulation and this was the motivation for the current experiment.

The issue o f whether attention modulates baseline activity has also been examined 

electrophysiologically by Luck et al (1997). This study examined the role of attention in 
areas VI, V2 and V4 in monkey, using a paradigm where attention was directed to one of two 

stimulus locations. In V4, when the attended stimulus fell within the cell's receptive field (RF) 
and the ignored stimulus outside the RF, a 30-40% increase in baseline firing rate was seen, 

but no modulation of stimulus-evoked responses. Conversely, when both attended and 
ignored stimulus locations fell within the cell's RF, attentional modulation of evoked 

responses, but not baseline, were seen. These results suggest that attentional modulation is due 
to top down control mechanisms that affect either background or  sensory-related activity, 

depending on the neuron recorded. However, our hypothesis posits that attentional 
modulation of baseline population activity is sufficient to mediate an increase in the gain of 

the population to sensory inputs. The electrode recording results above would be consistent 
with this mechanism if enhanced sensory-related responses in one set of cells were caused by 

increased input from another set of cells that expressed a baseline shift. The relationship 
between background activity and stimulus-evoked responses found empirically in this fMRI 

study and in previous computational simulations need not necessarily exist at the level of 
single cells and may be mediated by interactions among cells. Our empirical findings and 

mechanistic explanation in terms of population dynamics concurs with the suggestion from 
Luck et al (1997), that modulation of baseline activity “may reflect a top down signal that 

gives a competitive advantage to a stimulus” with an attended attribute, that is mediated by “a 
biasing signal that favours one population of cells over another (reflected by the baseline 

shift)”. It remains a possibility that our results can be explained by presynaptic activity in 
modulatory afferents that sensitize cells to sensory inputs through voltage-dependent and 

other non-linear post-synaptic effects. This would preclude a mechanistic role for population 
dynamics. However, the existence of cells that show a postsynaptic baseline shift argues 

against modulatory effects, at a purely synaptic level, as a sufficient explanation.

Event-related potential recordings in human subjects have also demonstrated an interaction 
between target processing and antecedent attentional shifts. The early component (PI and 

N l)  o f the visual evoked potential are known to be modulated by previous attentional 
allocation (Mangun et a l , 1994). These authors found that these attention related negativities,
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in the cue-target interval are associated with increased stimulus-locked PI and N1 
components.

It is interesting and unpredicted, that certain voxels in V4 showed a main effect o f motion 

attention. Ferrera et al (1994) also found increased “delay period” or background activity 
in V4 cells during a motion discrimination task, “even though this pathway is not generally 

viewed as playing a major role in motion processing”, although it was “significantly lower 
than in MT (V5)”. However, only a few voxels in V4 showed this behaviour. Another 

interesting result from this study was the increase in motion attentional baseline activity in 
V3a. However, we were unable to demonstrate an interaction between attentional set and 

evoked responses in this region.

In conclusion, both a main effect of attention (where V5 (V4) activity is increased by motion 
(colour) attention even when there is no motion (colour) stimulus present) and an interaction 

between attention and the stimulus was found. This suggests that the main effect of attention 
(increase in background activity) might engender the interaction (increased sensitivity). It is 

possible, given our simulation results, that attention modulates responses purely by increasing 
the background activity within a population. In other words, a sufficient explanation for 

attentional modulation is a simple tonic background effect that is translated by non-linear 
neuronal interactions into a modulation of evoked transients. Likely candidates for areas that 

feed afferents to the visual areas, to increase background activity, have been inferred on the 
basis o f labelling (Morecraft et al, 1993) and lesion studies (Mesulam et a l , 1981). Areas 

implicated in attentional modulation are the frontal eye fields, cingulate, premotor, lateral 
prefrontal, orbitofrontal, opercular, posterior parietal, lateral and inferior temporal, 

parahippocampal and insular regions as well as subcortical regions such as the pulvinar. 
Specifically, areas implicated in mediating visual attention include the frontal cortex, occipital 

cortex, parietal cortex, medial thalamus and the superior colliculus (Buechel et al, 1998). 
These afferents could increase the gain of the neurons through the emergent dynamics at a 

population level and render them more sensitive to the attended stimulus.
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General Discussion

From the work covered in this thesis, a compelling picture of neuronal processing or how 
neurons encode information emerges; namely that neuronal correlations or interactions are 

strongly linked to overall levels of neuronal activity. In other words, the extent to which 
different neurons engage in fast dynamic exchanges among each other is largely dependent 

on the neuronal population firing rates and vice versa, i.e. as one metric is varied (either 
neuronal activity or the extent of synchronization), so is the other. This informs the 

interpretation of functional neuroimaging results, in that it allows one to make inferences 
about the fast dynamic neuronal interactions that are taking place given macroscopic 

measures of activity, that are integrated over space and time, such as the BOLD response. 
Additionally, as a result of the strong coupling between overall activity and neuronal 

synchrony, there is also a strong relationship between background activity and stimulus 
evoked activity: Increased background activity renders the populations more prone to fast 

synchronous dynamics and in so doing increases the sensitivity of the neurons to an incoming 
stimulus and enhances stimulus evoked activity. This phenomenon may explain the 

mechanisms underlying certain cognitive functions. Indeed, in the final chapter of this thesis, 
we tested and confirmed that this theory may account for attentional modulation, i.e. the 

change in neuronal processing that occurs when the subject is attending to a stimulus attribute 
rather than being incidently exposed to it.
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Cl Rate and Synchrony Coding

In chapter 2, we establish, using our neuronal population simulations, that there is a relatively 

robust monotonic relationship between neuronal phase-locking and activity levels. This 
indirectly addresses the relationship between rate and synchrony coding and suggests that 

they may simply represent two perspectives on the same underlying dynamic. In this view, 
synchronized, mutually entrained signals enhance overall firing levels and can be thought of 

as mediating an increase in the effective connectivity between and within neuronal 
populations. Equivalently, high levels of discharge rates increase the effective connectivity in 

the populations and augment the fast synchronous exchange of signals. Although it is clearly 
possible that the information conveyed by the precise timing of spikes is very different from 

that conveyed by discharge rates, from the point of view of population dynamics it may be 
that changes in spike timing cannot be divorced from changes in firing rate given the 

neuronal infrastructure employed by the brain. Further, due to the relationship between the 
temporal patterning of pre-synaptic events (either in terms of phase-locking as discussed in 

chapter 2, or in terms of dynamic correlations as considered in chapter 3), and post-synaptic 
discharge probabilities, an increase in synchronised input will inevitably result in higher 

population discharge rates. The demonstration of such a clear link between mean firing rates 
and synchronization suggests that metrics based on mean synaptic activity, such as fMRI and 

PET, may, in part, be sensitive to changes in synchronization.

To explore possible mechanisms that may underlie this link between neuronal synchrony and 
activity, an investigation of how the membrane time constants vary with activity was 

undertaken in chapter 3. These time constants were found to decrease with mean activity 
implying that synchrony emerges with shorter time constants (see Fig. 2.7 from chapter 2). 

The decrease in time constants is a natural consequence of conjointly increasing membrane 
conductances through excitatory and inhibitory channels at high levels of activity. As activity 

levels increase, smaller membrane time constants promote the synchronous gain in the 
network, i.e. individual neurons become more sensitive to temporal coincidences in their 

synaptic inputs, responding with a higher firing rate to synchronous rather than asynchronous 
inputs. Therefore, in the event-related context considered in chapter 3, as background noise 

increases, the network becomes more prone to stimulus-induced synchronous transients. This 
is reflected both in the time that the post-stimulus synchronization endured (see Fig. 3.2 from 

chapter 3) and a progressive increase in the mutual information vs. stimulus intensity 
regression slope (see Fig. 3.1 from chapter 3). The latter effect constitutes an interaction and 

can be viewed as a stimulus-dependent effect that is context-sensitive. The context is set by 
the tonic background of activity and is mediated through a progressive diminution of the 

effective membrane time constants.
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C2 Functional Imaging

The interaction between background and evoked rate modulation mentioned at the end of the 

previous paragraph is an important phenomenon when trying to interpret responses observed 
with functional neuroimaging. For example, in chapter 5, we used fMRI to show that the 

BOLD response in human visual “motion area” V5, varies with visual speed, in the same way 
as macaque V5 neuronal responses. It is relatively well established, through optical imaging 

studies as mentioned in the introduction, that cortical haemodynamics co-vary with local 
neuronal activity levels, However, as we have shown in this thesis, if integrated population 

activity increases, so does synchrony. In chapter 6, we tested a specific prediction of our 
modelling work in the human brain using fMRI: We showed in chapter 3, that increased 

mean population activity also increases the gain of the neurons to afferent input, due to the 
concomitant increase in neuronal synchrony and neuronal interactions. In chapter 6, we 

tested the hypothesis that this phenomenon may account for attentional modulation. For 
example, consider the cortical responses to a train of stimuli measured when the subject is 

attending and not attending to some attribute of these stimuli. Increased responses maybe 
due to (i) attentional modulation of background activity, (ii) attentional modulation of 

stimulus-dependent responses or (iii) both, that renders the neuronal populations more 
sensitive to the stimuli. Using fMRI, we were able to dissociate activity due to attentional set, 

or expectation, (this represents background activity) and that due to stimulus evoked 
responses, to investigate the interaction between attentional set and stimulus responses. We 

showed the same type of interaction between set-related responses and stimulus responses that 
we observed between background activity and stimulus induced rate-modulation in our 

simulated neuronal populations. In this attentional study, we focused on the visual cortex and, 
in particular, on the “colour” and “motion areas”, V4 and V5. Our experiment tested 

whether attentional modulation, of evoked responses, may be mediated by simply increasing 
background activity in the appropriate functionally specialised populations. Using event- 

related fMRI, we showed regionally specific effects of attention at two levels: (i) A baseline 
response to attentional set (motion), was observed in V5 and a baseline response to colour 

attention was observed in V4. (ii) Greater evoked haemodynamic responses to stimuli under 
motion attention (after removing baseline effects) were seen in V5 and greater stimulus 

responses under attention to colour were observed in V4.

The form of the relationship between changes in set-related activity with attention and 
changes in evoked responses to transient visual events suggests that attention increases the 

background activity within V5/V4, and in so doing increases the sensitivity to motion/colour 
stimuli. Although we showed that our theory may account for attentional modulation in 

visual cortex, we clearly imply that this mechanism may be responsible for attention in a more 
general sense. For example attentional modulation of this sort may occur in auditory cortex 

when the subject is attending to the particular tones, amplitudes or frequencies of sounds. 
Alternatively, it may occur in olfactory cortex when the subject attends to particular odours. 

In short, the link between neuronal activity and dynamic correlations and the context it
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establishes, in which there is a profound interaction between background activity and stimulus 
evoked responses, may mediate the neuronal correlates of the processes that allow us to attend 

to and “perceive” our environment rather than passively “sense” it.

C3 Conclusion

In conclusion this thesis has addressed the relationship between overall levels of neuronal 
activity at a population level and the incidence of fast dynamic, synchronous interactions 

among neurons that constitute the populations. The motivation for this work was to develop a 
better understanding of what measures, like the BOLD signal in fMRI can tell one about the 

underlying neuronal dynamics. Computational studies pointed to a robust and monotonic 
relationship between the degree of synchronous interactions and population activity both in 

terms of continuous dynamics and those evoked by transient inputs to neuronal populations. 
The coupling between synchronous gain and mean activity, at a population level may be 

mediated by the obligatory decease in effective membrane time constants associated with high 
levels of population activity. This is a central contribution of the work presented in this thesis. 

From this work we developed the hypothesis that modulation of the population responses to 
any afferent input could be effected simply by changes in baseline or background mean 

population activity. By using attention modulation as a specific example o f this effect we 
were able to predict, and confirm, changes in baseline and evoked activity observed with 

functional magnetic resonance imaging.

In summary, the selection of synchronous dynamics depends upon small effective membrane 
time constants. A reduction in effective membrane time constants occurs with increases in 

population activity. The conclusion is therefore that high levels of mean population activity 
will facilitate the expression of average synchronous interactions. It is important to realise 

that this coupling is at a population or average level. It does not preclude independent rate 
and temporal coding at the level of single units but does suggest that at the population level, 

synchrony and rate codes are linked in an obligatory way simply because of the nature of the 
neuronal infrastructure that engenders the dynamics. From the point o f view of 

neuroimaging, the identification of two regional increases in mean activity suggests that 
somewhere there will be an average increase in synchronous interactions. Neuroimaging per  

se  does not allow any inferences about where these interactions are taking place. For 
example, the synchrony could exist within two unconnected populations or reflect 

synchronous interactions between the two cortical areas implicated by neuroimaging. A 
further qualification is that effective membrane time constants can be decreased by other 

mechanisms such as the opening of specific channels by modulatory afferents to a 
population. However, because of the circular causality outlined earlier in this thesis, the 

results of this modulatory input will be an increase in synchronous gain and concomitant 
increases in mean activity. In short, whenever we see increases in mean synaptic activity with 

functional neuroimaging we can infer an increase in synchronous interactions.
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The hypothesis that synchrony and mean activity are tightly coupled at a population level but 
not necessarily at the level of a single unit speaks to the interactions between different scales. 

From this perspective it is important to note that only neuroimaging is in a position to 
measure the synaptic activity at a population level whereas electrophysiology is required to 

make inferences about synchrony at the level of single or small numbers of neurons. It 
follows that a complete characterisation of the relationship between synchrony and mean 

activity at both the single unit and population level will require a combination of functional 
neuroimaging and electrophysiological techniques. Future work could use techniques that 

measure electrical activity at a millisecond time scale in the human brain such as 
electroencephalography (EEG) (this technique uses electrodes on the scalp to measure brain 

activity), to address further the interpretation of integrated measures of activity, such as those 
obtained by neuroimaging. In this way the link between BOLD signal, overall activity and 

correlations may be investigated empirically, using combined fMRI and EEG, in humans, or 
combined fMRI and electrode recordings, in non-human primates. With the advent of non­

human primate fMRI and the increasing spatial resolution o f distributed dipole source 
estimation in human EEG and MEG these multi-scale studies may be possible in the next few 

years. Indeed, such combinations of empirical techniques will prove vital, as fMRI is 
becoming more and more widely used within the neuroscience community to characterize the 

neurological correlates of perception and cognition.
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Appendices

Al PET

Radionuclides that could be used in PET are lsO (which has a half life of 2 minutes and 4 

seconds), 13N (which has a half life of 9 minutes and 58 seconds), n C (which has a life of 20 
minutes and 18 seconds) and 18F (which has a life of 109 minutes and 42 seconds). lsO is 

used as it has the shortest half life and so the body is exposed to the radioactivity for the least 
amount of time.

lsO is unstable and decays via positron emission. In this process, a proton, p becomes a 

neutron, n plus a positron, e+ plus a neutrino, v e: p =s> n + e+ + v e lsO decays via the 

following reaction: 150  => 15N + e+ + ve
8 7

Such unstable proton rich 150  nuclei are produced in a cyclotron. This device accelerates 

protons (to 10 - 18 MeV), deuterons (to 5 - 9 MeV) or other charged particles (such as alpha- 
particles etc.). It consists of a flat metallic can that is cut into two D-shaped pieces called dees 

and which are placed between the poles of a large electromagnet. A voltage generator, 
connected to the dees, creates an oscillating electric field in the gap between the dees. The 

frequency of the voltage generator is equal to the cyclotron frequency of the charged 
particle, i.e. frequency, v = qB/2n;p where q = charge of the particle, B = magnetic field 

strength and m = mass of the particle.
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Fig. A l . l  Trajectory of a particle within the dees of the cyclotron. (Taken from Ohanion HC, Physics, 

p761.)
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Fig. A1.2 Positively charged particle with uniform circular motion in a uniform magnetic field. The 

magnetic field points perpendicularly into the plane of the page. (Taken from Ohanion HC, Physics, p760.)

The force on the charged particle, F = -q(v x  B)

The centripetal force on the particle, F = qvB = mv2/r
The radius o f the circular motion of the charged particle, r = mv/qB

The time period of the particle’s orbit, T = 2rcr/v = 27tm/qB
The frequency of the particle’s orbit, v = 1/T = gB/27tm

where v = velocity of particle.

There is an ion source at the centre of the cyclotron which releases the charged particles. The 
electric field in the gap between the dees accelerates the particles and the uniform magnetic 

field in the cyclotron makes the particles travel in a semi-circle inside the first dee. When the 
particles return to the gap after half a period, the high voltage generator, having reversed the 

electric field in the gap due to the radio frequency across the dees (which controls the 
polarity), pushes the particle around the second dee. This time it travels a slightly larger semi­

circle as it has more energy. The increase in the energy, E of each particle per acceleration is 
E = (4/1.42)qV, where V = maximum accelerating voltage between the electrodes and the 

factor 4/1.42 takes account of the acceleration occurring at 45° to the dee and not 90°. The 
motion of the particle carries on in this way until it reaches the outer edge of the dees and 

leaves the cyclotron as a high energy beam. This beam is then deflected at the target material 
by a deflector, such as carbon foil, placed in the outer particle orbit in the cyclotron. The 

beam is collimated before reaching the target. The reaction occurring in production 
within the cyclotron is either:

14N + 2H =* 150 + In + 7.82 MeV or 15N + ip + 3.54 MeV =» 150 + in
7 1 8 0 7 1 8 0

The next stage is for the positron emitter to be separated from the target mixture and 
converted into the appropriate form for administration. This is done rapidly due to the short 

half lives o f these isotopes. The radio-nuclide is then administered to the subject. The 
positron emitting 150 accumulates in the brain by diffusing as radiolabelled water, according 

to first order kinetics. The local concentration is proportional to the regional cerebral blood 
flow (rCBF) delivering the tracer to that part of the brain. Positrons have a short range in soft 

tissue. After travelling a few millimetres, as a result of losing energy in particle interactions, 
they slow down and either stop or annihilate with an electron to produce two 0.511 MeV

gamma photons (as this is the rest mass of both the positron and the electron). These gamma
photons are then detected by an array of scintillation detectors. The detectors are in a 

coincidence circuit so that events are only registered if the two photons are emitted at around
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180° to each other, thus reflecting the nature of positron-electron annihilations. Scintillation 
detectors consist of materials (usually bismuth germanate (BGO) crystals) whose nuclei are 

excited by ionising radiation. The gamma photons excite electrons, in these nuclei, which 
subsequently de-excite to their original energy level and emit visible photons. Due to the 

scintillation materials optical transparency, these photons travel through the material to a 
photomultiplier tube, where they produce a detectable current pulse.

A2 MRI

A proton has spin, I = 1/2. Under normal conditions, the direction of the proton spins are 
isotropically directed.

Fig. A2.1

Proton
spin
alignment 
Proton spin

Fig. A2.1 Diagram showing isotropically oriented spins of protons under normal conditions
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Under an applied magnetic field, Bo, the spinning electric charge of the proton generates a 

magnetic moment, p = (yh/2n) ( 1 ( 1 +  1))1/2, where y  is the gyromagnetic ratio of the particle 
= e/2m where e = charge of proton and m = mass of proton. This causes the protons to align 

in B0.

Fig. A2.2

Magnetic poles

Fig. A2.2 Diagram showing proton alignments under application of a static magnetic field.

The frequency of the protons precession in the magnetic field is v = p,Bo/hI where h = 

Planck’s constant. Next, a radio frequency pulse is applied perpendicularly to the protons, 

during the static magnetic field. This excites the protons and tips their spins.
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Fig. A2.3
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Fig. A2.3 Diagram showing proton orientation under radio pulses.

During the applied radio-pulses, a magnetic field, of flux density, B l, which is rotating at the 

Lamour frequency, is applied. The proton now experiences a second torque. Between the 
pulses, the spins relax to their original state. On de-excitation, the protons emit a radio 

frequency signal which is then measured. The radio frequency is equal to the energy 
difference between the proton spin states, AE/hbar (where hbar = h/27t), so resonant absorption 

occurs. As AE = (xBq/I, the RF frequency, v = (iBo/hbarl-

The rate of recovery of the protons is described by a ‘longitudinal relaxation time’, T l. This 
depends on the type of tissue containing the relevant water molecules.

In MRI, the maximum signal is obtained if the phase angle of the perturbed protons 

magnetization vector is constant across all protons. However, small differences in the

151



magnetic environment of each spin causes them to precess at slightly different frequencies, 
resulting in a dispersion of phase angles and, consequently, a signal which decreases with 

time. This signal decay is roughly exponential and is characterized by a time constant, T2 
(the transverse relaxation time). As mentioned in the preface, the fMRI BOLD signal relies on 

the fact that deoxygenated haemoglobin is much more paramagnetic than oxygenated 
haemoglobin. This means that the protons of deoxygenated haemoglobin have a greater 

propensity to uniformly align in the presence of a magnetic field. This causes additional 
magnetic field variations amongst the protons and thus a further phase dispersion causing a 

more rapid decay of the signal. This additional relaxation is denoted by T 2 \ Together, the 
two effects result in a signal decaying with a time constant, T2*, where 1/T2* = 1/T2 + 1/T2’.

A3 Measuring the Effective Connectivity

Consider two cells; the first, cell i being some neuron in population one and the second, cell j, 

being in population two, that receives an input from cell i. The number of times cell j fires in 
a time window of 10ms immediately following an event in cell i is nj The total number of 

spikes from cell i is nj. nj/nj is an estimate of the conditional probability that cell j fires in a 

time interval after cell i. To discount the effect of incidental firing in cell j, we subtracted the 

probability that cell j would fire spontaneously in this interval (p) when cell i had not 
previously fired. This was calculated as the total number of spikes from cell j divided by the 

total number of 10ms intervals comprising the time series (having discounted intervals 
following an input from cell i). The resulting estimate can be construed as an index of 

effective connectivity, E = nj/n, - p.

A4 Determining the Effective Membrane Time 
Constant

The effective membrane time constant was determined as follows: Tmem = RmCm> where Rm is 

the membrane resistance and:

Cm dV/dt = gi(V  - VO +  gAMPA(V - VAMPA) + gGABA(V - VGABA) + sodium and potassium currents

Discounting the internal sodium and potassium channel dynamics that generate the action 

potentials, the last equation can be rearranged in the following way;
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CmdV/dt = (g! + gAMPA + gGABA)(V " Vo) + gAMPA(V0 “ VamPa) + gGABA(V0 “ VGABA) + gl(V() - Vj)

V o  denotes the resting membrane potential. Over time, the average currents (inhibitory, 

excitatory and leakage) cancel each other out. Therefore, gAMPA(Vo - Vampa) + Sgaba(Vo - 

Vqaba) + gi(V 0 - Vi) is negligable compared to (gj + g AMPA +  gG ABA>(V - V 0) and, thus 

approximately, xmem = Cm / (g i +  gAMPA + Sgaba) at any given time for any particular cell. In 

this chapter, we take the average value of Tmein over time and units.

A5 How to Read J-PSTHs

The J-PSTH is a raster plot of the two PSTHs plotted against each other and as such 

coincident firings are shown along the leading diagonal o f the J-PSTH. Time lagged 
synchronised firings are shown as diagonal bands that are shifted relative to this diagonal. 

The displacement of the band is therefore a measure of the latency of phase-locking. The 
width and structure of the band depends on the details of the coherent interactions. Direct 

synaptic connections from population one to population two will produce a 45° band of 
differing density lying below the principal diagonal at a distance proportional to the latency 

of the interaction. Connections from population two to one will produce a similar band lying 
above the principal diagonal. If the interactions between the two populations are affected by 

the stimulus, then the diagonal band will show changes in density along it’s length, evidencing 
dynamic correlations or coherence modulation as a function of peri-stimulus time. 

Correlations due purely to rate modulation evoked by the stimulus are removed by 
subtracting the cross product matrix of the individual PSTHs from the ‘raw’ J-PSTH, and 

then dividing the resulting difference matrix (bin by bin) by the cross product matrix of the 
standard deviations of the PSTHs. This is mathematically the same as computing the cross­

correlation matrix between the binned activities from both populations over stimulus epochs.

A6 Explanation of Mutual Information

Our measure of mutual information is equivalent to testing the null hypothesis that all the 

elements of the J-PSTH are jointly zero. The mutual information can be thought of as the 
generalization of a correlation for multivariate data (in this case the activity over different 

peri-stimulus times). As such it serves as a measure of functional connectivity. The critical
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idea, in this instance, is that by predicating our measure of functional connectivity on the J- 
PSTH we properly include dynamic correlations that would otherwise be missed if we simply 

looked at average correlations as implicit in the cross correlogram. The importance of using 
the J-PSTH in the context of this chapter is discussed fully in Aertsen et al (1994). A simple 

example makes the distinction between these two approaches clear: Imagine that a stimulus 
induced strong positive correlations for 100 milliseconds followed, systematically, by equally 

strong negative correlations for the subsequent 100 milliseconds. The average correlation 
over all peri-stimulus times, as measured by the cross correlogram, would be zero. However, 

the mutual information mediated by the dynamic correlations in the J-PSTH would be 
extremely significant.

The reason that the mutual information is an implicit test of the null hypothesis that the 

dynamic correlations are jointly zero, follows from the fact that the maximum likelihood 
statistic for the latter test is Wilks’ Lambda. Under Gaussian assumptions, the log of this 

statistic is proportional to the mutual information between the stimulus induced transients that 
produce the dynamic correlations. In this chapter we restricted ourselves to using the mutual 

information and refer the interested reader to Chatfield and Collins (1982) for a discussion of 
Wilks’ Lambda in the context of multi-variate analysis of covariance (ManCova).

A7 Mutual Information and Wilk’s Lambda

The J-PSTH is given by X TY (T denotes transposition) where X is a mean corrected and 
normalised data matrix from unit or population one with a row for every stimulus epoch and 

a column for every peri-stimulus time bin. Y is the corresponding matrix from the second 
population. The mutual information between X and Y is given by:

I(X,Y) = H(X) + H(Y) - H(XnY)

where H(X) is the entropy of X, H(Y) is the entropy of Y and H (XnY) is the entropy of X and 

Y considered jointly. Under Gaussian assumptions:

H(X) = In (2 71 e" | X^X  | ) /  2

where | XTX | is the determinant of X^X (i.e. the auto-covariance matrix of X) and n is the 
number of columns.

Let:
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A= [XY]T[XY]=r XT X XTYl 
Lytx ytyJ

then,

I A | = | XTX | | YTY - YTX ( XTX)-l XTY | 

giving, 

I(X,Y) = In ( | YTY | / | YTY - YTX ( XTX)-l XTY | )

An alternative (statistical) perspective, that is mathematically equivalent to testing for dynamic 

correlations is to test the null hypothesis that X TY = 0. This can be effected in the context of 
multivariate analysis using Wilks’ maximum liklihood-ratio or Wilks’ lambda, X = I R I / 

I Ro I, where R and Rq are the residual sum of squares and products under the alternate and 

null hypotheses respectively. In this instance, we treat the test for statistical dependencies 
between X and Y as a multiple regression problem under the general linear model:

Y = Xp + e

where P are the regression coefficients and 8 are errors with a multi-normal distribution. The 

parameter estimates are given by:

13 =(XTX)-1XTY

Y* = X P , where Y* is the fitted data. Under the null hypothesis, P = 0 and therefore, Rq = 

YTY. Similarly, under the null hypothesis:

R = [Y - Y*F [Y - Y*] 

= YTY - YTY*

155



therefore:

X = | R | / | Rq I = I YTY - YTX ( XTX)-l XTy| / |y T y | 

and:

I(X,Y) = -In (X)

i.e. The negative log of Wilks’ Lambda is the mutual information.

Under the null hypothesis of no dynamic correlations, ln(A,) has approximately a Chi-squared 

distribution where -(r - 1/2) ln(A,) ~ %2 (n2) where r are the residual degrees of freedom 
(number of epochs minus time bins) (Chatfield and Collins, pl45). In practice the number of 

time bins may exceed the number of epochs. In this instance, one generally reduces the 
dimensionality of the data X (and Y) using singular value decomposition.

156


