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Abstract

Frequently in psychology, simple tasks that are designed to
tap a particular feature of cognition are used without consid-
ering the other mechanisms that might be at play. For exam-
ple, the delayed-match-to-sample (DMTS) task is often used to
examine short-term memory; however, a number of cognitive
mechanisms interact to produce the observed behaviour, such
as decision-making and attention processes. As these simple
tasks form the basis of more complex psychological experi-
ments and theories, it is critical to understand what strategies
might be producing the recorded behaviour. The current paper
uses the GEMS methodology, a system that generates mod-
els of cognition using genetic programming, and applies it to
differing DMTS experimental conditions. We investigate the
strategies that participants might be using, while looking at
similarities and differences in strategy depending on task vari-
ations; in this case, changes to the interval between study and
recall affected the strategies used by the generated models.
Keywords: delayed-match-to-sample; genetic programming;
memory; psychology

Introduction
In the field of psychology, a number of assumptions are regu-
larly made with regard to the stimuli, experimental paradigms
and cognitive mechanisms at play in experimental settings.
For example, the popular delayed-match-to-sample (DMTS)
task is often used to measure the memory abilities of a par-
ticipant, usually without justifying a number of potentially
critical experimental choices, such as the duration that each
stimuli is presented for, the type of stimuli, and the time de-
lay between stimuli presentation. As this paradigm has been
prevalent in memory research for a number of years, it is im-
portant to explore the interplay between these factors and the
interacting cognitive mechanisms that give rise to behaviour
on this task.

Importantly, this is just one example of a seemingly sim-
ple task that is consistently used in psychology without criti-
cal consideration. This paper will outline how a genetic pro-
gramming approach (in particular using the GEMS methodol-
ogy – genetically evolving models in science, Addis, Gobet,
Lane, and Sozou (2019); Frias-Martinez and Gobet (2007);
Lane, Sozou, Gobet, and Addis (2016)) can allow greater in-
sights into the cognitive mechanisms underlying behaviour on

the DMTS task. The methodology has shown some success
in other domains (e.g., decision-making, Pirrone and Gobet
(2020)), and is applied here to two experiments with different
timings and stimuli. A discussion of the models and strate-
gies generated by GEMS will then propose some directions
of research for aiding future researchers in their use of the
DMTS task. Further, we will discuss the ways in which this
methodology can be used flexibly for different tasks and dif-
ferent domains of study.

The delayed-match-to-sample task
The delayed-match-to-sample (DMTS) task is an important
and popular paradigm in cognitive psychology. Typically,
the task begins with a brief presentation of a stimulus (study
phase; e.g. a visually presented circle; see Figure 1). After
a delay, two comparison stimuli are presented (recall phase),
where the participant must choose which item matched the
initial study phase stimulus. Participant accuracy and re-
sponse time (RT) are most commonly recorded. In the lit-
erature, this basic methodology has been varied, allowing us
to tease apart elements of the task and better understand the
underlying cognitive mechanisms. For example, variations
in the number of stimuli to be remembered (e.g., Olsen et
al. (2009); Raabe, Fischer, Bernhardt, and Greenlee (2013)),
differences in the type of stimuli (e.g., shapes, faces, arbitrary
symbols), as well as alterations in the presentation duration of
stimuli and the delay between study and recall phases. An al-
ternative non-match to sample paradigm has also been devel-
oped, where the novel stimulus must be selected, providing
further insight into human cognition and the abstract concepts
of ‘same’ and ‘different’ (Hochmann, Mody, & Carey, 2016).

The simplicity of this experimental paradigm has led to
its widespread use with a variety of populations, includ-
ing patients with schizophrenia (e.g., Lencz et al. (2003);
Minzenberg, Laird, Thelen, Carter, and Glahn (2009)), in-
fants (Hochmann et al., 2016) and animals (see Lind, Enquist,
and Ghirlanda (2015) for a review), and the task is included
in the Cambridge Neuropsychological Test Automated Bat-
tery (CANTAB). The DMTS has also been consistently used
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Figure 1: An example trial for the DMTS experiment

in working-memory research, particularly for neuroimaging
experiments (see Daniel, Katz, and Robinson (2016) for a
meta-analysis).

The wealth of experimental data makes a simple represen-
tative model of the DMTS difficult to develop under a single
unifying framework. Despite consistent use of the task, the
basic cognitive mechanisms and strategies used are not often
explored. Rather, the task is most commonly used to tap spe-
cific underlying mechanisms. The DMTS paradigm in fact
represents the complex interplay between psychological con-
structs often researched in a modular fashion, for example
experiments focusing on working memory might fail to con-
sider the decision-making elements of the task when inter-
preting data, while others may only focus on decision mak-
ing. It is important to bring increasingly specialised areas of
research together to form a more unified representation of hu-
man cognition. The current research uses symbolic cognitive
modelling and genetic programming techniques to generate
novel models of behaviour that can inform future research
and expand upon existing models.

While the DMTS task has been modelled previously, the
focus has primarily been on low-level brain functionality
and neural-net modelling. In particular, the DMTS task has
been used to demonstrate the efficacy of a neural model with
the focus of addressing issues surrounding the interpreta-
tion of functional imaging data (Tagamets & Horwitz, 1998).
For example, Corbitt, Ulloa, and Horwitz (2018) refined the
large scale neural model developed by Tagamets and Hor-
witz (1998), simulating laminar fMRI activity and demon-
strating that it can be utilised for layer-specific fMRI inter-
pretation. Neural network models have been used to perform
many variations of the DMTS, including visual (Tagamets
& Horwitz, 1998), spatial (Lee Moody, Wise, Pellegrino, &
Zipser, 1998) and auditory tasks (Wen, Ulloa, Husain, Hor-
witz, & Contreras-Vidal, 2008).

Alongside neural models, ACT-R (Anderson et al., 2004)
has been applied to the DMTS task. ACT-R is a cognitive ar-
chitecture concerned with modelling human behaviour, striv-
ing for a unified model of cognition as advocated by Newell
(1990). This architecture consists of central production sys-
tems, which respond to information made available in mod-

ular buffers; for example, a visual buffer accessing infor-
mation from the visual field and a retrieval buffer access-
ing information from long-term memory. To explore visual
rehearsal in ACT-R, Cebulski and Somers (2014) used the
DMTS paradigm to compare two models, finding that min-
imising interference from previous trials led to a better fit to
the behavioural data. This result is clearly a useful advance-
ment on DMTS task knowledge. However, it only addresses
one component of the task.

Applying the GEMS methodology
The current paper describes new models explaining cognitive
behaviour and operations during the DMTS task, generated
using genetic programming techniques (Koza, 1992). This
method generates and evolves a population of models over
a number of generations, altering the models through differ-
ent operations (such as crossover, where some components of
models are swapped) to find the best models against a given
fitness function. (Note that genetic programming is different
from genetic algorithms. While both belong to the family
of evolutionary computation, genetic programming evolves
entire programs, which can be of variable size, whilst ge-
netic algorithms represent solutions as fixed-length strings
of bits.) Models developed with genetic programming can
complement and advance the insights provided by previous
DMTS models. Firstly, it reduces the potential bias involved
in generating a theory of behaviour – researchers are often
focused on one area of research and so may overlook other
influential cognitive mechanisms at play. Secondly, models
are generated and fit to different behavioural datasets, com-
pared to modelling protocols where a model may be gener-
ated to account for only one source of data. Similarly, the
models generated in the current paper are evolved for differ-
ent versions of the DMTS task, so that models are able to
account for a range of task variations. Finally, parameters are
not adjusted to derive the best fit to the data, as is common
for modelling in psychology; rather, the fundamental cogni-
tive operators driving the effects are explored. The advantage
of generating multiple models in this way is that they can in-
dicate novel research directions and inform future research.

Models were generated using GEMS, a genetic program-
ming approach for developing models of human cognitive
behaviour. GEMS is a semi-automated system designed to
discover potential computational models based on patterns in
experimental data, to better characterise cognitive operations
underlying tasks, and as such addresses some of the difficul-
ties of developing psychological models (for more details re-
garding GEMS, see Lane et al. (2016); Frias-Martinez and
Gobet (2007).

The GEMS system architecture includes (i) a clock, (ii) a
short-term memory store consisting of three items, (iii) an in-
dication of where attention is focused, (iv) a ‘salient’ buffer
that encodes what is perceived as salient in the visual field,
(v) a ‘current’ buffer where items that have been attended are
stored, and (vi) a response buffer where a response is held

2834



until the trial ends. Generated models consist of sequences of
operators, which are basic cognitive operations (see Table 1
for a list of the operators included in the current GEMS re-
search) that interact with the cognitive architecture to provide
potential strategies for the task. The timings for each opera-
tor type were derived from Card, Moran, and Newell (1983).
GEMS also includes a short-term memory decay function,
such that old items are forgotten unless rehearsed.

Models were generated and compared against human ex-
perimental data, with a fitness value computed for each
model, weighting response accuracy the highest (weight =
0.7), followed by response time (weight = 0.2), and model
size (valuing smaller models, weight = 0.1). Values were
chosen to reflect the importance of accuracy, considering the
typically high accuracy levels found for human participants
in DMTS tasks. These weights can be altered to optimise for
different goals, which could result in different strategies being
selected. For the current experiment, these values produced
more models that found an accurate solution with a good fit.
Lower fitness values indicate a better fit to the data. A phased
approach to fitness was used, whereby models were optimised
for accuracy first, and upon reaching an accuracy threshold
proceeded to be optimised for response time, and then model
size. This is because previous research with GEMS found that
non-phased evolution does not always converge well (Lane,
Bartlett, Javed, Pirrone, & Gobet, 2022). Best fitting models
were then retained for the next generation of models.

DMTS modelling
The GEMS system ran against data from two published re-
search papers that featured the DMTS task (Chao, Haxby,
and Martin (1999); Edwards, Boyer, Bell, and Sturz (2016),
see Table 2 for experimental details). While only two ex-
periments were included for the current paper, GEMS can
be applied to many more datasets and account for multiple
experiments. Both experiments followed the trial structure
outlined in Figure 1, but critically differed in the duration of
delay between the study and recall stimuli. While the type
of stimuli image also differed between the experiments (i.e.,
faces, tools, or simple shapes), for the current paper they were
coded symbolically without exploring these differences. Fu-
ture work will assess the influence of stimuli type on the
strategies outputted by GEMS, for example by encoding stim-
ulus complexity. To determine an appropriate threshold for
short-term memory decay, GEMS was initially run with a se-
ries of threshold values using both datasets, with a population
of 15,000 over 1,500 generations. The best model fits were
found with a threshold value of 0.1. As such, this value was
used for subsequent runs.

As seen in Figure 2, Dataset-1 reached a good fit quicker
than Dataset-2; however, both found stable, good fitting mod-
els within the first 250 generations. The sudden improvement
in fitness merits some comments. As genetic programming
searches for the best solution, the fitness landscape can shift
abruptly due to the interaction of mutation and cross-over op-

erators. This is because GP manipulates discrete structures
(programs) and progress in the search space is not incremen-
tal, as for example with gradient descent in neural networks.
This is reinforced by the relatively simple problems GEMS
deals with, where a certain composition of operators might
reach 50% correct, while a small change, e.g., putting the
correct items in STM, leads to 100% correct without inter-
mediary partial solutions.

Models from the final generation were selected for further
analysis. From these models, those with the best fit were pro-
cessed and cleaned, where operators that did not affect the
models (rather, they were there to take up time) were removed
and replaced with a relevant ‘wait-’ operator. Duplicate mod-
els were then removed, leaving a number of unique models (9
remained for Dataset-1, 10 remained for Dataset-2).

Figure 2: Model fitness by generation. Lower values indicate
a better fit to the experimental data.

The models generated for each dataset showed a fairly sim-
ilar strategy, mainly differing in the order that operations were
conducted. The heat maps shown in Figures 3 and 4 confirm
this similarity for the final models in each experiment; mod-
els were compared against each other (with each model rep-
resented by a number in the Figures), and the syntactic sim-
ilarity of the components determined the similarity statistic.
Lower numbers indicate more dissimilar components, and a
value of 1 indicates the models are the same (as shown in the
heat maps when a model is compared against itself). All mod-
els began by using the detect-attend-putstm operator, placing
the study phase stimulus into STM slot-1. For Dataset-2 (see
Figure 6 for an example tree), attention was then shifted to
the left, and a ‘right’ response was given. After using the
wait operators, the recall phase stimuli on the left side was
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Table 1: Overview of the operators used by GEMS. Each operator type had a set time (in milliseconds, ms) as follows: input
(100 ms), output (140 ms), cognitive (70 ms), STM (50 ms), syntax (0 ms).

Name Function Type
attend Sets model ‘current’ to what is stored in model ‘salient’ cognitive
move-att-X Shift ‘attention’ to a location in the visual display cognitive

(X ∈ {centre, le f t,right,clockwise,counterclockwise})
if-current-stm-RX Compare item in model ‘current’ with those in STM; cognitive

if find a match, respond in line with X (X ∈ {ST Mitem/‘current ′− item})
if-stmN-R Compares stm item N with other items in STM, cognitive

if match, respond in line with matching item (N ∈ {1,2,3})
compare-M-N-p Predicate comparing value of STM items M and N (M̸=N ∈ {1,2,3}) cognitive
compare-current-N-p Predicate comparing value of model ‘current’ and STM items N (N ∈ {1,2,3}) cognitive
current-X-p Predicate for stimulus type of model ‘current’ (X ∈ {target,stimulus}) cognitive
detect Puts the item at the attention location into model ‘salient’ input
respond-X Sets model ‘response’ to X (X ∈ {le f t,right,centre, ‘current ′− item− location}) output
rehearsal-N Updates item-time in STM item N (N ∈ {1,2,3}) to current model ‘clock’ stm
retrieve-N Sets model ‘current’ to STM item N (N ∈ {1,2,3}) stm
retrieve-X Sets model ‘current’ to STM item matching type X, (X ∈ {target,stimulus}) cognitive
nil Sets model ‘current’ to nil cognitive
put-stm Pushes value in model ‘current’ and model ‘clock’ to STM slot 1 cognitive
dotimes-N Repeats a given expression (N ∈ {2,3,4}) syntax
if Executes condition, executes one of two expressions depending on the condition syntax
prog-N Sequence of expressions (N ∈ {2,3,4}) syntax
wait-N Advances model clock (N ∈ {25,50,100,200,1000,1500, syntax

0.5-trial-length, 0.25-trial-length, 0.1-trial-length})
while-N Repeats an expression for a set time in ms (N ∈ {100,200}) syntax
detect-attend Executes the detect operator, then the attend operator combined
detect-attend-putstm Executes the detect operator, the attend operator and then the put-stm operator combined

placed into STM slot-1, moving the study stimuli to slot-2.
The strategy then makes use of the ’if-current-stm-Rc’ oper-
ator, which looks through STM and if it finds a match to the
item in ‘current’, will respond with the location of the ‘cur-
rent’ item.

Similarly, the Dataset-1 models (see Figure 5) moved at-
tention to the right, gave a ‘left’ response, and used the
‘detect-attend-putstm’ operator a second time to move the
study phase stimuli to STM slot-2. The recall stimulus lo-
cated on the right was then placed into STM slot-1, following
which the model used the ‘if-stm3-R’ operator, comparing the
item in STM3 with items saved in the other STM slots.

Essentially, models for both experiments are utilising the
same strategy – put the item in STM, pick a direction to focus
attention on (left or right), and have a response for the oppo-
site side ready if the attended stimulus does not match. As
such, rather than having to engage with all three items in the
display, the strategy is to only look at one in order to make a
decision (this is consistent with a previous implementation of
GEMS for the DMTS task that used a simpler setup and only
one dataset (Frias-Martinez & Gobet, 2007), suggesting that
this is a robust strategy). The key experimental difference be-
tween the two datasets is the interval between study and recall
phase. The key difference between the strategies generated by

GEMS however is whether the models put all items into STM
(as with the models of Dataset-1) or instead just put the study
item in STM, comparing this against the stimulus currently
attended. These strategies differ in their reliance on STM,
and suggest that a better test of memory capabilities would
require more stimuli. In particular, these models suggest that
participants are responding to a ‘same’ judgement, and doing
nothing in response to a ‘different’ judgement, rather than
looking at both stimuli and responding left or right accord-
ingly. This changes the dynamics at play in the experiment,
and brings into question how participants might be using dif-
ferent strategies to the ones assumed by researchers.

Discussion
While GEMS can provide insight into the potential strategies
that are used in experiments, it has a number of limitations.
One limitation is that the evolutionary system currently only
works across the syntax trees of the model programs; the nu-
meric parameters, such as the timing of operators, are left as
hyper-parameters and were not optimised in this paper. As
noted above, these timing parameters are derived from Card
et al. (1983). However, as the generation of models in part re-
lies on response time data, any changes to these values could
result in considerably different models being generated. One
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Table 2: DMTS experiments included in GEMS

Details Dataset 1 Dataset 2
Experiment Chao et al. (1999) Edwards et al. (2016)
Number of trials 60 60
Delay phase 500ms 5000ms
Study stimulus presentation time 1000ms 1000ms
Recall stimulus presentation time 2000ms 1500ms
Type of stimuli black-and-white photographs of unfilled simple shapes

animals, tools, faces and houses
Mean response time 767ms 485ms
Mean accuracy 0.957 0.94

Figure 3: Syntactic similarity of components for the final
models generated for Dataset-1. Each number on each axis
represents a model.

likely area of future work within GEMS is to integrate mecha-
nisms to optimise hyper-parameters such as the operator tim-
ings, in order to ascertain differences in the models gener-
ated. A second limitation, inherent to all cognitive modelling
efforts, is that the operators used by the system are created
by researchers, and as such they are liable to any biases re-
searchers may have. For example, if a researcher has a focus
on memory research, they might be more likely to provide the
system with a disproportionately large amount of memory op-
erators. Further, the way the operators are coded could be a
source of bias, where some researchers might disagree over
the mechanisms for different processes. However, the GEMS
methodology can actually turn this weakness into a strength:
by combining operators from different research domains, it
makes possible cross-domain theoretical contributions, which
in turn could provide a powerful means to combine current
psychological knowledge.

Figure 4: Syntactic similarity of components for the final
models generated for Dataset-2. Each number on each axis
represents a model.

Future analyses can look at how additional changes in the
experimental conditions, as well as changes to the model ar-
chitecture and operator set used with GEMS in this paper, can
impact the models that are generated. For example, limiting
the models to one response (rather than the current models,
where different responses can be made throughout the trial,
and only the final response is accepted) would require sub-
stantively different models to solve the task. Further, differ-
ent experimental dynamics have been explored, for example
giving two study phase stimuli, followed by two recall stim-
uli, one of which matches one of the study stimuli (Olsen
et al., 2009). These questions will continue to be explored
by the GEMS methodology, alongside simple experiments
across different experimental domains.

Conclusions
There is a need to not take for granted the usual theoretical in-
terpretations of experimental paradigms and to consider other
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Figure 5: Typical example of best-fitting model for Dataset-1. Fitness = 0.038; Accuracy = 1; Response Time = 770ms

Figure 6: Typical example of best-fitting model for Dataset-2. Fitness = 0.052; Accuracy = 1, Response Time = 490ms

factors that might affect behavioural results. While new and
compelling experiments are being designed for more inter-
esting research questions, it is still important to make time
for these foundational paradigms. GEMS can provide a sim-
ple tool to search the vast model space, which includes the
combination of all possible models with the given operators,
a considerably larger space than the parametrisation of a sin-
gle model. Further, GEMS could function as a collaborative
project between experts in different research domains – for
example researchers focusing on decision-making contribut-
ing operators and testing their theories, alongside memory re-
searchers, and even extending outside of psychology, allow-
ing interdisciplinary collaboration.
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