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Abstract 

In this thesis, we appeal to recent developments in theoretical neurobiology – namely, active inference 

– to understand the active visual system and its disorders. Chapter 1 reviews the neurobiology of active 

vision. This introduces some of the key conceptual themes around attention and inference that recur 

through subsequent chapters. Chapter 2 provides a technical overview of active inference, and its 

interpretation in terms of message passing between populations of neurons. Chapter 3 applies the 

material in Chapter 2 to provide a computational characterisation of the oculomotor system. This deals 

with two key challenges in active vision: deciding where to look, and working out how to look there. 

The homology between this message passing and the brain networks solving these inference problems 

provide a basis for in silico lesion experiments, and an account of the aberrant neural computations that 

give rise to clinical oculomotor signs (including internuclear ophthalmoplegia). Chapter 4 picks up on 

the role of uncertainty resolution in deciding where to look, and examines the role of beliefs about the 

quality (or precision) of data in perceptual inference. We illustrate how abnormal prior beliefs influence 

inferences about uncertainty and give rise to neuromodulatory changes and visual hallucinatory 

phenomena (of the sort associated with synucleinopathies). We then demonstrate how synthetic 

pharmacological perturbations that alter these neuromodulatory systems give rise to the oculomotor 

changes associated with drugs acting upon these systems. Chapter 5 develops a model of visual neglect, 

using an oculomotor version of a line cancellation task. We then test a prediction of this model using 

magnetoencephalography and dynamic causal modelling. Chapter 6 concludes by situating the work in 

this thesis in the context of computational neurology. This illustrates how the variational principles used 

here to characterise the active visual system may be generalised to other sensorimotor systems and their 

disorders. 

Impact statement 

Given that the nervous system is engaged in computation, it follows that neurological disorders may be 

thought of as disorders of computation. The work presented in this thesis illustrates a first principles 

approach that may be used to characterise the computations performed by the active visual system and 

the ways in which these may be compromised. The utility of this is that it offers a formal approach to 

understanding the processes by which a healthy brain infers the causes of its sensations and the 

appropriate course of action to take, and enables simulation of the consequences of computational 

pathology. Through this approach, it is possible to provide precise accounts of the functional 

disconnections that could underwrite neurological disorders, and the consequence of such lesions to the 

brain as a whole (i.e. the network level changes or diaschisis that result from disrupting one part of an 

interconnected system), and to behaviour (e.g. oculomotor behaviour). This has potential applications 

in phenotyping of patient populations in terms of the functional deficits giving rise to clinical 

syndromes. This has implications for personalised approaches to medicine, where the phenotypic 
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characteristics of a given patient may be used to inform decisions about their treatment or selection for 

clinical trials. In addition, the pharmacological interventions simulated in this thesis offer a simple 

proof-of-principle that could allow for monitoring of therapeutic interventions in terms of the 

computational manifestations of those therapies. In principle, the combination of computational 

phenotyping and synthetic therapeutic interventions could be used to predict the response of an 

individual to different sorts of therapy through simulating their trajectories into the future under 

different interventions. Another application of the approach outlined here is in understanding the 

functional anatomy of the active visual system from first principles. In brief, the (variational) theoretical 

approach we have pursued implies that the inferential problems the brain must solve to engage in active 

vision mandate a specific architecture that supports the passing of inferential messages. Drawing from 

clinical (neuropsychological) data, the consequences of simulated lesions that disrupt these messages 

constrain how they map to known neuroanatomy. This enables the elaboration of specific 

neuroanatomical hypotheses in terms of changes in the coupling between brain regions. Our penultimate 

chapter provides an example of the development of a model informed by neuropsychology and the 

evaluation of a hypothesis implied by this model using neuroimaging. Finally, while our focus has been 

on active vision and the oculomotor system, the methods applied here could also be used to characterise 

other sensorimotor systems. We hope that this work will aid in the understanding of these systems and, 

ultimately, in informing treatment of their disorders. 
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Glossary of mathematical notation and key variables 

Notation Description 

y Continuous sensory data 

x Continuous hidden state 

v Continuous hidden cause 

a Continuous action1 

o Categorical sensory data (observation) 

s Categorical hidden state 

π Categorical policy (sequence of actions) 

u Categorical action 

ε Prediction error (continuous) 

ε Prediction error (categorical) 

x̃ Trajectory (of hidden states) 

ẋ Rate of change (of hidden states) 

F Free energy 

F Vector of free energies for each policy 

G Expected free energy 

G Vector of expected free energies for each policy 

(μ, C –1) Normal distribution (mode μ, covariance C) 

Cat(s) Categorical distribution (expectation s) 

Dir(b) Dirichlet distribution (parameters b) 

Γ(α,β) Gamma distribution (shape α, rate β) 

ѱ( · ) Digamma function (derivative of gamma function) 

σ( · ) Softmax (normalised exponential) function 

EP[ · ] Expected (averaged) under the distribution P 

H[ · ] Shannon entropy (negative expected log probability) 

DKL[ · || · ] Kullback-Leibler divergence (expected log probability ratio) 

P(o, s, π), p(v, x, y) Generative model (categorical, continuous) 

Q(s, π),    q(v, x) Variational density (categorical, continuous) 

  

 
1 In Chapter 5, a is used to indicate prior Dirichlet parameters  



11 

 

1 - Active vision and the oculomotor system 

 

Introduction 

 

Although our experience of the visual world seems temporally and spatially continuous, the 

sensations we derive it from are not. Saccadic eye movements constitute a series of discrete 

fixations, interspersed with rapid movements. Little meaningful visual information is obtained 

as the eyes sweep from one fixation to the next (Bridgeman et al. 1975) and, at any moment, 

the proportion of the visual field from which any high resolution information is sampled is 

tiny. These observations, seemingly so contrary to perceptual experience, can be reconciled 

under the metaphor of perception as hypothesis testing (Friston et al. 2012a; Gregory 1980). 

By forming hypotheses about a continuous world, saccades can be deployed as experiments to 

adjudicate among alternatives. This licenses a description of active vision as if it were a 

scientific process (with certain qualifications c.f. (Bruineberg et al. 2016)).  

This view implies perception of space is fundamentally tied to motor representations, as visual 

input at a point in space is the consequence of a motor experiment (saccade to that location) 

(Zimmermann and Lappe 2016). This enactivist take on perceptual synthesis means that 

objects in the visual field become hypotheses or explanations for ‘what would I see if I looked 

there?’ In this chapter2, we describe the neuronal apparatus used to perform these experiments 

– and thereby implement active vision (Andreopoulos and Tsotsos 2013; Mirza et al. 2016; 

Ognibene and Baldassarre 2014; Wurtz et al. 2011). This functional anatomy comprises the 

brainstem network that gives rise to the nerves to the extraocular muscles. The superior 

colliculus is an important structure in this network, receiving input from both subcortical and 

cortical regions. Particular focus will be afforded structures that determine the choice of 

saccade target, and the mechanisms by which the data from previous saccades are combined, 

accumulated or assimilated to construct a seamless temporal experience (Marchetti 2014). 

These mechanisms can fail in the damaged brain, and a common syndrome resulting from this 

failure is visual neglect. Patients suffering from this fail to attend to one side (typically the 

left) of visual space (Halligan and Marshall 1998). One manifestation of this attentional deficit 

is a decreased frequency of saccadic sampling in the neglected half of space relative to the 

other (Karnath and Rorden 2012) despite intact early visual processing of stimuli on the 

neglected side; as evidenced by electrophysiology (Di Russo et al. 2007) and neuroimaging 

(Rees et al. 2000). We will address some of the links between the neurobiology of visual scene 

 
2 This chapter is adapted from (Parr and Friston 2017a) 
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construction, and the consequences of its disruption. A number of theoretical concepts recur 

throughout this chapter. These include consideration of the mnemonic processes required for 

scene construction, the relationship between eye movements and attention, and the inferential 

(Bayesian) foundation of these processes. 

 

Brainstem oculomotor control 

 

All forms of eye movement depend upon the connections from the cranial nerve nuclei in the 

midbrain (CN III), and the pons (CN IV, VI) to the extraocular muscles. Saccadic eye 

movements depend specifically upon the connections to these nuclei from the paramedian 

pontine reticular formation (PPRF) and the rostral interstitial nucleus of the medial 

longitudinal fasciculus (riMLF). The former generates horizontal saccades (Cohen et al. 1968; 

Henn 1992), and the latter vertical (Büttner-Ennever and Büttner 1978). Other important 

influences come from the vestibular system (Baker and Highstein 1978), and the cerebellum 

(Berretta et al. 1993), but are outside the scope of this chapter. A subset of neurons within the 

PPRF monosynaptically target the ipsilateral abducens (CN VI) nucleus (Strassman et al. 

1986). From the abducens nucleus, some neurons have axons which first decussate, then 

ascend as part of the MLF, to the oculomotor (CN III) nucleus in the midbrain (Sparks 2002). 

The PPRF can use this pathway to initiate conjugate eye movements in the ipsilateral direction. 

An additional anatomical pathway allows the PPRF to influence the riMLF (Büttner-Ennever 

and Büttner 1978), ensuring it can generate saccades with a vertical directional component 

(see Figure 1.1 for a summary of this anatomy). 

Saccadic movements are rapid movements that occur between short periods of fixation. In 

order to maintain fixation between saccades, PPRF ‘burst’ neurons are tonically inhibited by 

‘omnipause’ neurons, located in the nucleus raphe interpositus (RIP) (Büttner-Ennever et al. 

1988). These cells cease firing immediately before a burst of firing in the PPRF cells, but 

resume before the saccade is complete. ‘Omnipause’ neurons may have a role in synchronising 

different directional components of saccade generation, as the RIP also projects to the riMLF 

(Büttner-Ennever and Büttner 1978). The electrophysiological correlates of the fixation and 

saccadic phases suggest the brain treats saccadic eye movements as a series of discrete events, 

consistent with the view that attentional processes are both serial and discrete (Buschman and 

Miller 2010a). 
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Figure 1.1 – Brainstem control of saccadic movements. This schematic shows some of the 

brainstem nuclei involved in the generation and control of saccadic eye movements. The 

paramedian pontine reticular formation (PPRF) is responsible for the generation of horizontal 

saccades, through its influence on the ipsilateral abducens nucleus, which gives rise to cranial 

nerve (CN) VI. A subset of neurons in the abducens nucleus projects to the contralateral 

oculomotor (CN III) nucleus in the midbrain, via the medial longitudinal fasciculus (MLF), 

ensuring conjugate eye movements occur. The PPRF additionally projects to the rostral 

interstitial nucleus of the MLF (riMLF), which generates vertical saccades. ‘Omnipause’ 

neurons in the nucleus raphe interpositus (RIP) synchronise the onset of vertical and horizontal 

components of saccades. The superior colliculus (not shown) influences both the PPRF and 

RIP. Excitatory connections are shown in red, while inhibitory connections are shown in blue.  

 

The superior colliculus 

 

An important input to the PPRF and the RIP is the superior colliculus (Raybourn and Keller 

1977). This is a midbrain structure, found at the same level as the oculomotor (CN III) nucleus. 

The superior colliculus represents visual space according to several integrated topographic 

maps. Superficially, it contains a retinotopic map, making use of the input it receives directly 

from the optic nerve (Schiller and Stryker 1972). Intermediate layers are thought to house a 

motor map, with each location corresponding to a potential saccadic target (Sparks 1986). 



14 

 

Deeper layers have maps that exhibit multisensory features, including somatosensation (Peck 

et al. 1993; Stein et al. 1989). Some accounts of collicular function propose that it contains a 

saliency map (Veale et al. 2017; Zelinsky and Bisley 2015), and mediates attention to salient 

locations. Attention here refers to planned or performed eye movements leading to foveation 

of the ‘attended’ location. This is a distinct process to attention as ‘gain control’ (Feldman and 

Friston 2010; Hillyard et al. 1998) of sensory streams (that does not necessarily depend upon 

oculomotor contingencies) (Parr and Friston 2019a). The colliculus receives an input from 

cortical layer V (Fries 1984). This layer-specific input is shared with other structures with a 

role in salience computations, including the basal ganglia (Shipp 2007) and the pulvinar 

nucleus of the thalamus (Shipp 2003). It is interesting that many of the areas implicated in 

attentional selection and salience conform to this laminar input pattern.  

Neurons in the superior colliculus can be classified according to distinct electrophysiological 

profiles. Three broad categories of neurons are identifiable in this way. These are the collicular 

‘burst’ neurons, the ‘fixation’ neurons, and the ‘build-up’ neurons (Ma et al. 1991; Munoz and 

Wurtz 1995a). The first of the three are found more dorsally, while the latter two are more 

ventral within the colliculus. ‘Fixation’ neurons are active during fixation, and are found at the 

rostral pole of the colliculus. These synapse on the ‘omnipause’ neurons of the nucleus raphe 

interpositus (Gandhi and Keller 1997), so that decreases in ‘fixation’ neuron activity causes a 

disinhibition of the PPRF ‘burst’ neurons, resulting in a saccade. The ‘burst’ neurons discharge 

immediately before a saccade, and the target location of the saccade corresponds to the location 

of these neurons in the colliculus. ‘Build-up’ neurons have a slowly increasing activity that 

terminates when a saccade occurs, although this activity is not always followed by a saccade. 

This observation is important in the context of the premotor theory of attention (Rizzolatti et 

al. 1987), as this theory suggests that covert attention may correspond to a planned saccade 

which does not take place. ‘Build-up’ neurons, as a population, have the interesting property 

that the activity across the population appears to travel as a ‘hill’ across the colliculus towards 

the rostral pole, which represents the foveal location (Munoz and Wurtz 1995b). 

The notion of a travelling ‘hill’ of excitation corresponds well to a set of theoretical constructs 

known as attractor networks. Representations of states that evolve in metric space have been 

extensively modelled using continuous attractor networks (Zhang et al. 2008). One reason for 

emphasising this point is that, due to the serial nature of saccadic sampling, the apparent 

temporal continuity of visual experience requires explanation. The constraints placed upon a 

‘hill’ of activity in a continuous attractor network mean that changing representation of one 

location in a metric space to another requires the transient representation of all intermediate 

locations. This enforces a form of memory, as the proximal future and past are heavily 

constrained by one another. This represents an imposition of prior beliefs on the interpretation 
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of sensory data, providing a simple example of a form of Bayesian inference (Pouget et al. 

2013).  

If the superior colliculus is unilaterally damaged, or pharmacologically inactivated, the 

frequency of saccades to the contralateral side of space is reduced (Schiller et al. 1987; Schiller 

et al. 1980). However, in the presence of intact frontal eye fields, collicular ablation does not 

permanently prevent the generation of voluntary saccades (Albano and Wurtz 1982). While 

this suggests that the frontal eye fields can make use of brainstem projections, which bypass 

the colliculus, reversible inactivation experiments indicate that the collicular route is the 

pathway used in structurally normal brains (Hikosaka and Wurtz 1985). The deficits following 

these pharmacological lesions resemble those observed in visual neglect, as one side of space 

appears to be neglected by the lesioned animals, in terms of both saccadic sampling, and covert 

attention (Lovejoy and Krauzlis 2010). The superior colliculus is rarely involved in lesions 

giving rise to neglect, but it is plausible that it is a component of the networks damaged in this 

syndrome – in the sense of a functional lesion or diaschisis (Corbetta and Shulman 2011; Price 

et al. 2001). This brings us to consider the nature of the inputs to the colliculus. 

 

The basal ganglia 

 

The substantia nigra pars reticulata (SNr) is an output nucleus of the basal ganglia located in 

the midbrain. It has a direct inhibitory, GABAergic, connection to the superior colliculus 

(Hikosaka and Wurtz 1983). This can be seen as a gate on the many direct cortical inputs to 

the colliculus, each of which identifies a different potential saccadic target. Consistent with 

this view is the observation that disruption of the SNr (Hikosaka and Wurtz 1985b), or its 

projections to the colliculus (Hikosaka and Wurtz 1985), increases the frequency of 

spontaneous saccades. The SNr receives a glutamatergic input from the subthalamic nucleus, 

a component of the indirect and hyperdirect pathways through the basal ganglia (Nambu 

2004), and a GABAergic input from the D1 receptor expressing medium spiny neurons 

(MSNs) in the striatum, as part of the direct pathway. The striatum also contributes to the 

indirect pathway, as D2 receptor expressing MSNs inhibit the external part of the globus 

pallidus, thereby disinhibiting the subthalamic nucleus. The balance between the activity in 

the direct and indirect pathways is modulated by dopaminergic projections from the midbrain 

(Moss and Bolam 2008), which act to bias this balance in favour of the direct pathway. Activity 

in the direct pathway disinhibits the targets of the basal ganglia output nuclei, while the indirect 

pathway increases this inhibition (Freeze et al. 2013). 
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While visual neglect is often caused by cortical lesions, several subcortical regions have also 

been associated with the syndrome. The putamen, pulvinar, and caudate nucleus have all been 

associated with neglect (Karnath et al. 2002). These all communicate with cortical regions, 

such as the superior temporal gyrus, which, when damaged, can result in neglect. Changes in 

these regions have been observed following basal ganglia strokes which cause neglect 

(Karnath et al. 2005b). In addition to these observational data, animal studies have 

demonstrated that a neglect-like syndrome can be induced through manipulations at the level 

of the striatum. Unilateral infusions of MPTP, which is toxic to dopaminergic axons, have 

been shown to bias memory guided (Kori et al. 1995) and spontaneous (Kato et al. 1995) 

saccades towards the ipsilateral visual field. As the dopaminergic input to the striatum is also 

affected in Parkinson’s disease, involvement of the basal ganglia plausibly explains the 

‘directional hypokinesia’ component described in some forms of neglect (Mattingley et al. 

1992). This is an impairment in initiating contralesional movements, more classically (but 

non-directionally) associated with Parkinson’s disease. In neglect patients who have anterior 

or subcortical lesions, ‘directional bradykinesia’ has additionally been observed. 

 

The cortical attention networks 

 

The cortical regions that project directly to the superior colliculus include both frontal  (Künzle 

and Akert 1977) and parietal  (Gaymard et al. 2003) areas associated with the ‘dorsal 

attentional network’ (Corbetta et al. 2000; Szczepanski et al. 2013). This is a set of cortical 

regions which have been defined, using fMRI, on the basis of their signal changes during 

attentional tasks (Corbetta and Shulman 2002). The activity in these areas is largely bilateral 

(Hopfinger et al. 2000; Kastner et al. 1999), but asymmetries have been found for some tasks 

(Corbetta et al. 2002; Szczepanski et al. 2010). Interhemispheric differences in regions of the 

dorsal network have also been elicited through causal manipulations, including transcranial 

magnetic stimulation (Szczepanski and Kastner 2013), although the network as a whole was 

found to be approximately symmetrical. As might be expected for a region involved in 

directing eye movements, greater responses were found in the hemisphere contralateral to the 

visual field which was attended. These regions are connected by a white matter tract called the 

superior longitudinal fasciculus (SLF). The SLF is made up of three branches (Makris et al. 

2004), and it is the first of these which connects the dorsal network of frontoparietal areas 

(Thiebaut de Schotten et al. 2011) (see Figure 3). The other two branches connect the regions 

of the ‘ventral attention network’ to each other, and connect the dorsal and ventral networks 

to one another. 
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Figure 1.3 – The dorsal and ventral attentional networks. The dorsal and ventral networks 

each involve both frontal and parietal regions. The dorsal areas – including those in the region 

of the frontal eye fields (FEF), the lateral intraparietal (LIP) area and the intraparietal sulcus 

(IPS) – project to the superior colliculus (SC), suggesting a direct involvement of these areas 

in the control of eye movements. Note that these parietal areas are sometimes referred to as 

the parietal eye fields (Shipp 2004). These areas are connected by the first branch of the 

superior longitudinal fasciculus (SLF I). The ventral network is made up of areas in the ventral 

frontal cortex (VFC) and areas close to the temporoparietal junction (TPJ). These are 

connected by the third branch of the SLF (SLF III). SLF II connects the parietal part of the 

ventral network to the frontal part of the dorsal network. This schematic is based on the 

descriptions in (Corbetta and Shulman 2002) and in (Thiebaut de Schotten et al. 2011). 

 

The premotor theory 

 

The premotor theory of attention (Rizzolatti et al. 1987) draws evidence from these anatomical 

observations, as ‘attentional’ networks overlap substantially with those involved in eye 

movement control (Büchel et al. 1998; Corbetta et al. 1998; Nobre et al. 2000). The premise 

of this theory is that the allocation of (overt) attention to a given location is equivalent to 

making a saccade to that location. Attention can also be covertly directed to a location by 
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planning a saccade to it, even if this saccade is not performed. The behavioural evidence for 

this theory comes from eye tracking studies in which the deployment of covert attention has 

been shown to systematically alter the trajectory of saccades (Sheliga et al. 1994; Sheliga et 

al. 1995). Psychophysical measures are consistent with this, as stimulus discrimination is 

enhanced at saccade target locations compared to other visual field locations (Deubel and 

Schneider 1996). Further evidence comes from patients with palsies of the abducens (CN VI) 

nerve (see Figure 1.1). These injuries result in an inability to abduct the eye on the affected 

side. In a detection task, consistent with the premotor theory, these patients do not show the 

reduced reaction time characteristic of covert attention when the stimulus is placed in a 

location which is impossible for them to perform a saccade to (Craighero et al. 2001). 

Physiological evidence in favour of the theory is compelling. By stimulating frontal eye field 

neurons in the monkey, it is possible to cause saccadic eye movements. Subthreshold 

stimulation of these same cells increases detection performance of stimuli presented at the 

saccadic target location of those neurons (Moore and Fallah 2001). While not uncontroversial 

(Smith and Schenk 2012), the premotor theory highlights the important relationship between 

attention and eye movements, and the anatomical structures common to both. 

 

Active inference 

 

The question of how a salient location is selected as a (covert or overt) saccadic target has 

stimulated much theoretical study. Bayesian frameworks have been extensively employed to 

address this question, including definitions of salience, and surprise, in terms of information 

theoretic quantities (Itti and Baldi 2006; Itti and Koch 2000). More recently, this question has 

been formulated in terms of Active Inference (Friston et al. 2012a; Mirza et al. 2016). This is 

a theory derived from the principle that adaptive (living) systems must minimise the dispersion 

of their states in order to continue to exist in a meaningful way (Friston et al. 2006). A 

consequence of this theory is that organisms should sample (e.g. by performing a saccade to) 

the parts of the sensory environment that resolve most uncertainty about the causes of their 

sensations. In order to select the locations that best serve this process, they are equipped with 

a probabilistic model of how sensory data are generated, which includes beliefs about their 

own actions (Friston et al. 2012b). This is used to generate predictions about the sensations 

they will encounter. By performing an approximate Bayesian inversion of this model, given 

sensory data, organisms are able to infer their own optimal policy (sequence of actions). 

Optimal in this context means the active sampling of sensations that afford the greatest 

reduction in uncertainty or, equivalently, the greatest information gain. This is also known as 
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intrinsic value and, mathematically, is the expected Bayesian surprise that underwrites salience 

in the earlier formulations above (Itti and Baldi 2006; Itti and Koch 2000). A set of classical 

reflex arcs can then fulfil the predictions made under the implicit generative model (Friston et 

al. 2017a). A key aspect of this Bayes optimal, epistemic, uncertainty resolving formulation 

implies that the best saccade is selected from representations of all possible saccades, 

according to their salience or epistemic value. In turn, this implies the existence of a salience 

map; where the epistemic values of all possible saccade locations are evaluated. This may 

provide a complementary perspective on the attractor dynamics discussed above as models of 

activity in the deep layers of the superior colliculus; namely, an encoding of salience. 

 

The anatomy of visual neglect 

 

In visual neglect patients, cortical lesions can induce a lateral bias in the saccadic sampling of 

a scene. Typically, the frequency of saccades to the right side of space is increased, compared 

to the left. This appears to be related to the selection of saccadic targets, rather than an 

impairment in the production of saccades to the neglected hemifield (Bartolomeo and Chokron 

2002). Intuitively, one might expect the lesion sites to correspond to the dorsal frontal and 

parietal regions directly involved in saccadic control. However, although cortical lesions 

associated with neglect can occur in both frontal and parietal regions, they are typically more 

ventral than the frontal eye fields or the intraparietal sulcus (Corbetta and Shulman 2002). A 

neglect-like syndrome can be elicited by lesioning the frontal eye fields (Latto and Cowey 

1971), but this is only temporary. Additionally, as noted above, the ‘dorsal attentional 

network’ is symmetrically distributed. This contrasts with the observation that spatial 

hemineglect is much more common following a right hemispheric lesion. While the 

behavioural correlates render it unlikely that cortically driven neglect precludes no dysfunction 

of the dorsal network, the above observations indicate that this is likely to be secondary to the 

disruption of other structures. 

The lateral biasing of saccadic movements in neglect can be reconciled with the fact that the 

cortical inputs to the superior colliculus are often preserved. The more ventral frontoparietal 

regions which are associated with neglect overlap with the ‘ventral attentional network’ 

(Corbetta and Shulman 2002; Corbetta and Shulman 2011). In contrast to the dorsal network, 

the ventral network is more prominent in the right hemisphere, consistent with the greater 

frequency of spatial neglect following right hemispheric lesions. These regions are connected 

by the third branch of the SLF, which is known to have a greater volume in the right 

hemisphere (Thiebaut de Schotten et al. 2011). The ventral parietal regions of this network are 
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connected to the frontal regions of the dorsal network by the second branch of the SLF. This 

means that the ventral network directly influences the cortical sites that project to the saccade 

generating areas of the brainstem. 

The second branch of the SLF has been associated with some interesting lateralised 

behavioural correlates. In normal subjects, under certain conditions, a ‘pseudo-neglect’ can be 

elicited (Bowers and Heilman 1980; Jewell and McCourt 2000). This has been shown for a 

line bisection task, also used to assess hemineglect, in which a subject marks what they believe 

to be the midpoint of a horizontal line. While hemineglect patients typically mark to the right 

of the midline, small deviations to the left can occur in healthy subjects. The degree to which 

this ‘pseudo-neglect’ occurs is related to the volume of the right SLF II. The larger this is, the 

greater the leftward deviation (Thiebaut de Schotten et al. 2011). It has been proposed that 

neglect represents a disconnection syndrome, in which the frontoparietal interactions mediated 

by the SLF have been disrupted (Bartolomeo et al. 2007; He et al. 2007). This structurally 

motivated hypothesis complements the functionally motivated suggestion that an interaction 

between the dorsal and ventral networks is necessary for normal attentional function (Corbetta 

and Shulman 2002). There is some evidence for this from lesion studies. For example, one 

study looking at lesion overlaps between patients found maximal subcortical overlaps in the 

SLF (Doricchi and Tomaiuolo 2003). Case reports (Ciaraffa et al. 2013) endorse this finding, 

which is further strengthened by the observation that SLF II damage is a good predictor of 

hemineglect (Lunven et al. 2015; Thiebaut de Schotten et al. 2014). In addition to this, 

inactivation of the right SLF by electrical stimulation during surgery caused a temporary 

rightward deviation in the line bisection task (Thiebaut de Schotten et al. 2005). 

 

Dorsal and ventral 

 

The distinction between the dorsal and ventral networks mirrors the distinction between the 

dorsal and ventral visual pathways (Goodale and Milner 1992). These are often referred to as 

the ‘what’ and ‘where’ visual pathways, as the former appears to represent stimulus identity, 

while the latter represents stimulus location (Ungerleider and Haxby 1994). Given that an 

object retains its identity, regardless of its position in space, the brain appears to have treated 

these as independent factors. In probabilistic inference, this is referred to as a ‘mean field 

approximation’ (Friston and Buzsáki 2016). If the dorsal and ventral attention networks 

represent a similar factorisation, this could provide an intuitive explanation for the 

lateralisation of the latter network, and the symmetry of the former. Each hemisphere is 

thought to contain maps of the contralateral side of space (Wandell et al. 2007). It is 



21 

 

unsurprising then that more dorsal regions, associated with the ‘where’ pathway, are relatively 

symmetrical. However, stimulus identity does not require representation in a specific location, 

due to the factorisation of these variables. As such, a unilateral representation is sufficient for 

the ‘what’ stream. This is consistent with clinical neuropsychological observations, as lesions 

to regions in the right ventral visual pathway are can give rise to disorders of object recognition 

(Warrington and James 1967; Warrington and James 1988; Warrington and Taylor 1973), 

while the homologous regions on the left are more likely to be associated with difficulty 

naming objects (Kirshner 2003). This could explain the lateralisation of the ventral network 

and, given its influence over the dorsal network, is consistent with the higher prevalence of 

spatial neglect among patients with right hemispheric lesions. The connection between the two 

networks would be mandated by the need to direct the eyes to different locations to resolve 

uncertainty about a stimulus or scene identity. Note that a popular alternative explanation for 

this pathological asymmetry is that the right hemisphere represents both left and right sides of 

space, while the left represents only the right side (Mesulam 1999).  

 

Working memory and temporal continuity  

 

As has been emphasised above, saccadic eye movements involve sampling of locations in a 

serial and discrete fashion. The frequency of spontaneous saccades is about 2-3 Hz (Büttner 

and Büttner-Ennever 2006), but clearly we do not reset our beliefs about a visual scene at this 

frequency. In order to construct a temporally continuous representation of the visual world, it 

is clear that some form of short term memory must be involved, so that the information 

obtained at one fixation carries over – or is assimilated – into the next. Broadly, there are two 

mechanisms that allow the temporary storage of information in the brain. These are sustained 

neuronal activity (Goldman-Rakic 1995), and short term changes in synaptic efficacy 

(Mongillo et al. 2008). In Bayesian approaches to understanding brain function, these two 

mechanisms correspond inference and learning respectively; namely, updating beliefs 

(approximate posterior distributions) about hidden states of the world, and parameters 

(generative model) that describe the probabilistic relationships between hidden states (Friston 

et al. 2016b). 

 

Memory as sustained neuronal activity 
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Sustained neuronal activity has been extensively studied in the context of ‘delay-period’ 

activity (Goldman-Rakic 1995). This is the increase in firing rate observed in some neurons, 

which persists even after the stimulus that evoked the increase is no longer present. ‘Delay-

period’ working memory tasks during single unit recordings have been used to demonstrate 

this phenomenon (Funahashi 2015). An example of such a task is an oculomotor delay task, 

in which an animal fixates a location on a screen. A stimulus is presented which indicates a 

saccadic target. During a delay, in which no stimulus is present, the animal must remember 

the target location. When instructed, they should perform a saccade to that location. From the 

presentation of the stimulus, until the performance of the saccade,  neurons in the principal 

sulcus of the prefrontal cortex remain persistently active (Funahashi et al. 1989). Among these 

neurons, many are tuned to the eventual saccade direction. Other parts of the frontal cortex 

have been shown to contain populations of neurons that exhibit similar properties for other 

planned actions (Cisek and Kalaska 2005). The relationship between these forms of memory 

and planned actions have prompted some authors (Frank et al. 2001; Hikosaka et al. 2000) to 

suggest that the raison d'être of working memory is in evaluating future actions. This 

complements work on decision processes in the field of artificial intelligence (Kaelbling et al. 

1998), in which memory serves a similar purpose. There is an attractive circularity to the 

notion that the temporal continuity of visual experience is due to the use of memories from 

past saccades to evaluate potential future saccades. 

Single unit recordings have demonstrated that there are neurons with responses limited to the 

duration of a stimulus presentation (Hubel and Wiesel 1959), and also those which have 

responses that transcend this time scale (Funahashi et al. 1989). This speaks to a temporal 

hierarchy (Cocchi et al. 2016; Hasson et al. 2008; Kiebel et al. 2008; Murray et al. 2014) in 

the brain, with different neurons representing different rates of environmental change. 

Temporal responses in different areas of the brain have been shown (Hasson et al. 2015; 

Hasson et al. 2008; Honey et al. 2012; Murray et al. 2014) to map closely to the hierarchical 

structure of the cortex as derived from studies of laminar connectivity (Felleman and Van 

Essen 1991; Zeki and Shipp 1988). This is consistent with the idea that the brain contains a 

hierarchical generative model (Friston 2008) of a temporally structured environment, and 

allows for slowly changing contexts to inform the evolution of states which change over a 

faster time scale. Under this view, working memory, in the form of persistent neuronal activity, 

corresponds to a process of evidence accumulation over multiple timescales. 

As mentioned above in the context of the superior colliculus, sustained activity patterns have 

been extensively modelled using continuous attractor networks. Working memory has not 

escaped this treatment (Compte 2006; Wimmer et al. 2014). While many accounts of working 

memory focus on prefrontal regions, such networks have been used to model activity in many 
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different brain regions, including those for brainstem oculomotor control (Seung 1998), 

navigational regions (Redish et al. 1996; Zhang 1996), and motor planning (Georgopoulos et 

al. 1982; Lukashin et al. 1996). Given the computational nature of these architectures, all could 

be described as implementing a form of working memory. All involve a sustained 

representation, which is updated as new observations are made. However, these memories 

have different temporal properties, depending on the rate of change of what they represent, 

and so may not be sustained over the time course associated with the classical notion of 

working memory. Notably, it is areas considered high in the anatomical (and consequently 

temporal) hierarchy (Felleman and Van Essen 1991), such as the dorsolateral prefrontal cortex 

(Goldman‐Rakic 1987; Kojima et al. 1982) and hippocampus (Chadwick et al. 2010; Squire 

et al. 2004), which are often thought to perform working memory functions. 

 

Memory as short-term plasticity 

 

For some situations requiring working memory, persistent activation of neurons is an 

inefficient way to store temporary information. This is due to the number of dimensions 

required for some memories, and the metabolic constraints (Lennie 2003) on the number of 

neurons required to represent these. To build some intuition for this point, consider the 

example (shown graphically in Figure 4) of a cancellation task. Variants of these tasks are 

frequently used both clinically (Albert 1973; Fullerton et al. 1986) and experimentally (Husain 

et al. 2001; Malhotra et al. 2004; Mannan et al. 2005) to assess spatial neglect. Subjects are 

shown an array of targets, and are asked to cancel each target once, and only once. Cancellation 

may involve marking the target with a pencil, or clicking on it in a computer display. In the 

latter set up, there need not be a visible marker alerting the subject that they have previously 

cancelled it. Despite this, there is a relatively low rate of re-cancellation of a stimulus in 

healthy subjects (Mannan et al. 2005), showing that cancelled locations are remembered. If 

this task were performed using a set of possible locations on an 8x8 grid, there would be 64 

possible target locations. For each of these, there are 3 possible states: no target, target, and 

cancelled target. To be able to represent beliefs about the state at each location as persistent 

activity in populations of neurons, it would be necessary to employ 64 x 3 = 192 computational 

units, and to maintain activity patterns across all of these simultaneously. In many natural 

scenes, the number of locations, and possible stimuli at each location, is clearly much greater 

than this, and would require huge numbers of neurons if remembered in this manner. 
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Figure 1.4 – Mechanisms of memory. On the left, an example of a line cancellation task is 

shown. The subject is presented with a sheet of paper with a set of horizontal lines and is asked 

to cancel (red marks) each of these lines. The middle panel shows the set of 192 neurons which 

would be required to represent the subject’s beliefs about where the lines are, and whether they 

have cancelled them, if the memory of previously visited locations were stored in terms of 

persistent activity in a neuronal population. The currently active neurons are represented by a 

black outline. The panel on the right shows a more efficient way to represent this information, 

in terms of a mapping from a representation of space to representations of each of the possible 

observations that could be made on visiting a particular location. Clearly it is more efficient to 

make use of synaptic efficacy when storing temporary, high dimensional, memories. In short, 

synaptic efficacy represents probabilistic mappings (i.e., ‘if I were to look there, I would see 

that’) as opposed to beliefs about the current state of the world (i.e., ‘I am looking there’ or 

‘seeing that’) encoded by synaptic activity. 

 

Contrast this with a memory system in which information is stored in the interactions between 

different neurons (i.e. synaptically). In this case, it is only necessary to employ 3 computational 

units to represent the state at each location. Each location unit can then represent its current 

state as an interaction between itself and the three alternative states. For example, on viewing 

a target for the first time, the synapses between the unit representing the location and that 

representing the presence of a target can be potentiated. This reduces the need for 192 neuronal 

populations to 67; a number which can be further reduced to 19 using a factorised 

representation of location (i.e. a coordinate system) in place of explicit representations of each 

location. This simple example demonstrates that, while low dimensional memories can be 

stored as persistent activity, synaptic updates are a much more efficient way to store higher 

dimensional representations. This might explain why some working memory tasks have failed 

to show a clear relationship between working memory deficits and re-cancellation rates in 

neglect patients (Wansard et al. 2014). There may be impairment in (short-term) synaptic 

plasticity, which would not be detected by probing with a delay-period type task. We will 
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return to this idea in Chapter 5, where we will illustrate how impairments in synaptic plasticity 

(e.g. due to disconnection of the neurons either side of that synapse) alter the optimal, 

uncertainty resolving, saccadic policies one could engage in. 

Short term plasticity may be due to several mechanisms, but calcium dependent processes 

clearly play a substantial role. In a presynaptic neuron, an increase in calcium ion 

concentration, as a result of an action potential, triggers vesicular release. With repeated action 

potentials, intracellular calcium buffers can become saturated (Blatow et al. 2003; Deng and 

Klyachko 2011), ensuring that the increase in calcium at the next action potential will be 

greater. This means that the synapse is temporarily potentiated. Pre and postsynaptic 

mechanisms have been used to explain the opposite phenomenon, in which there is a 

temporary depression of the synapse. Changes in plasticity over very short time scales, such 

as these, have been described in neurons in the prefrontal cortex (Hempel et al. 2000; Wang 

et al. 2006). Computational studies (Barak et al. 2010; Mongillo et al. 2008) have demonstrated 

that dynamics such as these could account for some working memory phenomena. 

Spatial neglect provides some clues as to the anatomical regions that may be involved in this 

kind of short term plasticity for spatial memories (Mannan et al. 2005). For patients with 

lesions of the intraparietal sulcus, the probability of re-cancellation of a target increases with 

time. In contrast, lesions of the inferior frontal regions give a constant increased re-

cancellation probability. Although both regions are related to the attentional networks, these 

results suggest distinct mechanisms of neglect following each lesion. The former appears to 

be memory dependent, while the latter does not. This hints at the importance of axons in the 

region of intraparietal sulcus. These connections could furnish the candidate synapses that 

store spatial memories through short term plastic changes. Consistent with this, patients with 

neglect who have a more severe spatial working memory deficit have been reported to have 

parietal white matter lesions not found in those with who have neglect but relatively intact 

spatial working memory (Malhotra et al. 2005). 

 

Conclusion 

 

The neuroanatomical system which supports the interrogation of a visual scene includes a 

complex network of brainstem areas under the influence of cortical and subcortical structures. 

Damage to almost any component of this system can cause a neglect syndrome, emphasising 

their important roles in visual experience. The mnemonic properties of many of these 

components have been highlighted, as these allow information from the past to be integrated 
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into representations of the present and future. In other words, posterior beliefs following one 

observation become prior beliefs about the causes of the next. The updating of this form of 

working memory on the basis of new observations is necessarily a Bayesian (belief updating) 

process, likely involving a factorisation of variables, such that ‘what’ and ‘where’ are 

represented independently. This is consistent with the dorsal and ventral streams hypothesis, 

and the anatomy of the attentional networks, which provide a cortical influence over eye 

movements. In doing so, hypotheses derived from past experience are combined with new 

sensory data to construct visual percepts. 

 

  



27 

 

 2 – Neuronal message passing and active inference 

 

Introduction 

 

Recent advances in theoretical neurobiology rest upon the idea that the brain uses an internal 

(generative) model of its environment to try to explain the causes of its sensations. This 

involves combining prior beliefs about the world with beliefs about how sensations are 

generated (Doya 2007; Knill and Pouget 2004). The process of computing the most probable 

explanation for the data at hand is known as Bayesian inference, and optimises a quantity 

known as Bayesian model evidence (also known as the marginal likelihood, or negative 

surprisal). Model evidence quantifies how probable data are under a particular model of how 

they were generated. The drive to maximise model evidence, sometimes referred to as ‘self-

evidencing’ (Hohwy 2016), may be motivated in a number of ways (Friston 2013). Perhaps 

the simplest, from a physiological perspective, is to see this as a generalisation of the principle 

of homeostasis (Cannon 1929). While normally applied to interoceptive data (temperature, 

blood pressure, acidity, etc.), homeostasis expresses the idea that there is an allowable 

distribution within which physiological parameters should be maintained. Deviations from 

these distributions elicit corrective actions (autonomic reflexes) to reverse the deviation. 

Interpreting a distribution over interoceptive data as representing the probability of those data 

under some model, we can think of homeostasis as expressing the imperative to maximise the 

evidence for this model. In the next few sections, we unpack this idea, extending it to 

proprioceptive and exteroceptive modalities. We outline the architectures of generative models 

the nervous system could employ, and the implications self-evidencing has for the structure 

and function of neuronal networks. 

This chapter3 outlines the methods used in subsequent chapters, which each employ different 

sorts of generative model, while appealing to the same (variational) principles. In preparation 

for Chapter 3, we outline the generic form of the discrete state-space models that we will use 

to simulate active visual sampling to reduce uncertainty. We highlight the inference scheme 

obtained through minimising a free energy functional (used throughout this thesis), and 

compare this numerically to other established schemes. We additionally illustrate the form of 

the continuous state-space models that underwrite predictive coding (Friston and Kiebel 2009; 

Rao and Ballard 1999) and will be leveraged in understanding brainstem oculomotor control 

and its pathologies. These are extended in Chapter 4, to address neuromodulatory mechanisms. 

 
3 Some of the material used in this chapter was initially published in (Parr et al. 2019b) 
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The same mathematical tools are used in Chapter 5 in a more pragmatic way, to draw 

inferences about the networks giving rise to measured magnetoencephalography data using a 

dynamic causal modelling approach (Friston et al. 2017d). 

 

Free energy 

 

As outlined above, we can think of action as a process of evidence maximisation, regulating 

our environment by correcting deviations in sensor values (y) from some optimal distribution. 

As these values will depend upon things that cannot directly be observed (e.g. the pattern of 

photoreceptor activity on the retina depends upon the position of a light source). These 

variables are referred to as hidden states (x), and must be integrated (or marginalised) out from 

a joint probability distribution to obtain the model evidence: 

 

ln ( ) ln ( , )p y p y x dx=          (2.1 

 

In most practical contexts, this integration is either computationally or analytically intractable. 

However, it is possible to express a lower bound on the evidence by introducing an arbitrary 

probability density (q) that expresses beliefs (in the sense of Bayesian belief updating) about 

the hidden variables. This is referred to as a variational distribution or an approximate 

posterior (for reasons that will become clear below). This lets us write down a free energy (F) 

functional of these beliefs that is always greater than or equal to the negative log evidence 

(Beal 2003; Dayan et al. 1995): 
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      (2.2 

 

The KL-Divergence (expected difference between two log probability densities) in the second 

line is always greater than or equal to zero, with equality when both densities are equal. This 

means the bound on the evidence becomes tighter as the variational distribution becomes a 

better approximation to the posterior density (p(x | y)). In summary, once free energy has been 
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minimised by changing the variational distribution, acting to change sensory inputs such that 

reducing free energy is equivalent to self-evidencing. Active Inference can then be succinctly 

articulated as the process of minimising free energy through optimising beliefs (perception) 

and sensory data (action). Note that this process depends upon the form of the joint distribution 

(p(y, x)), referred to as a generative model. The next sections will outline the generic structure 

of the generative models that will be employed throughout the rest of this thesis. 

 

Generative models 

 

This thesis employs two broad types of generative model (Friston et al. 2017c). The first of 

these is defined in continuous time (Friston et al. 2010a), while the latter is in discrete time 

(Friston et al. 2012b). Continuous time models are important in interfacing with the physical 

world, where sensory receptors communicate continuous data (e.g. luminance, pressure, 

temperature) and effectors (muscles or glands) cause continuous changes (muscle length, 

chemical concentration). A general way of expressing the dynamics of a continuous time 

model is through a stochastic differential equation describing the flow of a hidden 

(unobserved) variable. This is equipped with a second stochastic equation expressing the 

generation of data from the hidden variables: 
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        (2.3 

 

The first two equalities indicate how hidden states (x) generate data (y), and how hidden states 

evolve over time. These depend (respectively) upon functions (g and f ) that take into account 

a second hidden variable (v); sometimes referred to as a ‘hidden cause’. In hierarchical 

generative models, this variable links together different levels (which normally operate over 

different time scales). In this setting, the hidden causes are generated by higher levels of a 

model just as the data are generated by the single level considered here. The tilde (~) symbol 
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indicates a trajectory, here expressed in terms of generalised coordinates of motion4. These are 

vectors whose first element is the position of the state, second element is its velocity, third is 

acceleration, and so on. These can be used to reconstruct a trajectory by treating them as the 

coefficients of a Taylor series expansion5 of x(τ). The D matrix is a derivative operator, 

expressed in terms of a matrix with ones above the leading diagonal. This shifts the elements 

of the generalised motion vectors up by one, such that each element of the resulting vector is 

the first temporal derivative of the original element. When transposed (note that we use the 

dot-product notation 
Ta b a b ), this derivative operator instead shifts all elements down by 

one. The random fluctuations (ω) have a Gaussian form, enabling the expression of the 

stochastic equations in terms of their associated probability densities. The precisions (inverse 

variances) of these generalised quantities are constructed through use of an autocorrelation 

function that determines the smoothness of the fluctuations (Cox and Miller 1965). This means 

the generative models described using these equations are not constrained by Weiner 

assumptions about the structure of the fluctuations. Combining the distributions above, we can 

express the joint distribution of the variables in the generative model: 

 

( , , ) ( | , ) ( | ) ( )p y x v p y x v p x v p v=        (2.4 

 

Note the factorisation of this density into a likelihood, a dynamical term, and a prior. Figure 

2.1 illustrates this generative model in factor-graph form (Dauwels 2007; de Vries and Friston 

2017; Forney Jr and Vontobel 2011; Laar and Vries 2016; Loeliger 2004; Loeliger et al. 2007). 

The lower part of this figure also depicts the inferential message passing implied by free energy 

minimisation for this generative model. This will be unpacked in detail in the next section. 
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Figure 2.1 – Continuous state-space generative model. The upper (blue) part of this figure 

specifies a continuous-time dynamic model both graphically and in terms of its associated 

probability distributions (blue panel). Circles indicate random variables, with filled blue 

circles representing observable data. Arrows from one circle to another indicate that the 

variable in the second circle is conditionally dependent upon the first. The square nodes 

indicate the probability distributions (specified in the blue panel) that mediate these 

dependencies. The lower (pink) part of this figure shows the Bayesian message passing (or 

filtering) scheme that can be used to draw inferences about the variables in the generative 

model above. This is expressed in terms of prediction errors (ε) and expectations or modes (μ). 

While these equations look a little complicated, they are obtained simply by setting the rate of 

change of the posterior mode to be the negative free energy gradient with respect to this mode.  

 

Before outlining the inversion of these models to explain sensory data, we first outline the 

analogous generative model used to account for discrete-time (i.e. sequential) dynamics, of 

the sort associated with planning. This is a (partially observed) Markov decision process 

(MDP), and can be expressed in terms of a set of categorical probability distributions: 
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To distinguish the categorical variables used here from the continuous variables ( x, y, v) 

above, we use o to indicate an observable outcome (i.e. data), s to indicate hidden states, and 

π to indicate a policy (sequence of actions). The superscripts m and n indicate different 

outcome modalities (e.g. vision and proprioception) or hidden state factors (e.g. what and 

where) respectively. The bold letters are the sufficient statistics (vectors and matrices) of the 

categorical distributions. For example, a column of the A-matrix represents the probability, 

given the state indicated by that column, of each possible outcome (row). Similarly, B 

specifies, for each policy, the probability of each state transition (from column to row). The 

remaining distributions have sufficient statistics that are all vectors; where each element 

provides the probability of an alternative value for the associated random variable. The 

probability distribution for policies is a little different to the others, as π0 must be computed 

very carefully. This form is specified in Figure 2.2, and we will unpack this in full in the Active 

perception section in this chapter.  As in Equation 2.4, we can express the joint distribution 

over these variables simply by multiplying together these factors: 

 

( , , ) ( | ) ( | ) ( )P o s P o s P s P  =        (2.6 

 

As before, the tilde (~) indicates a trajectory. However, this is now expressed more simply as 

a sequence of values through time. Figure 2.2 illustrates the MDP model outlined above in 

graphical form, showing a sequence of states evolving through time, depending upon the 

policy selected. The states at each time generate an observation. This has a very similar form 

to the model expressed in Figure 2.1. Note that one key difference is that the same policy 

variable is used to influence transitions over multiple time-steps. This emphasises the 

importance of MDP models in planning trajectories through time. 
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Figure 2.2 – Discrete state-space generative model. This figure adopts the same format as 

Figure 2.1, with a factor graph representation of a partially observed Markov decision process 

in blue, and the marginal message passing scheme used to draw inferences about this in pink. 

The softmax (σ) function is a normalised exponential that converts a log probability into a 

probability. The lower part of this figure makes use of expectations about states (s), predictive 

distributions over outcomes (o), errors (ε, ς), and an auxiliary variable (ν) that plays the role 

of a membrane potential, or an un-normalised log probability. Several additional intermediate 

quantities are computed, including a conditional entropy (H), a bias in policy priors (E), a 

vector of free energies for each policy (F), and the expected free energy (G) for each policy, 

weighted by a precision, or inverse temperature, parameter (γ). 

 

Variational inference 
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In this section, we take the generative models and variational principles outlined above, and 

illustrate how these may be used to derive Bayesian inferential schemes. This amounts to being 

able to write down the appropriate form of the free energy for a given generative model, and 

then performing a gradient descent. The sparsity of the generative models outlined above6, and 

the factorisation this entails, is practically very useful. Because the factors of the model define 

local relationships across the graph, they can be used to define local update rules that ensure 

the free energy of the whole graph may be minimised without ever needing explicit 

computation at a global level. This fact has been exploited to derive a range of inferential 

message passing schemes (Minka 2005; Winn and Bishop 2005; Yedidia et al. 2005), two of 

which are used throughout this thesis. Biologically, this is crucial, given the local coupling 

through synaptic connections that underwrites computation in neural systems. In the following 

sections, we offer an overview of Bayesian filtering, used in inference for models defined in 

continuous time, and a marginal message passing scheme used to draw inferences about 

discrete time models. We then illustrate the performance of the latter in relation to other 

established Bayesian message passing schemes. 

 

Continuous time 

 

In this section, we start by writing out the free energy associated with the continuous time 

generative model outlined above. We follow the approach of (Buckley et al. 2017; Friston et 

al. 2010a), and show that a gradient descent on this quantity gives rise to a message passing 

scheme that can be used to perform inferences on time-series data of the sort reported by 

sensory receptors in biological systems. The free energy for the model expressed in Equation 

2.4 is: 

 

 
6 Sparsity here means that each variable is not directly dependent upon all other variables. This means 

the joint distribution may be factorised into a set of conditional distributions, each of which involves 

only a subset of the variables in the entire model. 
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The second line assumes (the Laplace assumption) a Gaussian form for the variational 

posterior density7 (see Appendix A.1) with mode μ and covariance C, such that the first term 

is the entropy of a Gaussian distribution. The second, third, and fourth terms come from (the 

expectation of) a second order (quadratic) Taylor series expansion of the log joint probability 

around the mode of the variational posterior8. The form of the free energy here has a useful 

consequence. Taking the derivative with respect to the posterior covariance, we find that the 

covariance that minimises the free energy can be expressed in terms of an analytic function of 

the posterior mean: 
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Substituting this into Equation 2.6 turns the final term into a constant. In addition (due to the 

quadratic approximation) the first and third terms (representing curvatures) are constant with 

respect to the expectation. We can now express inference in terms of a gradient descent on the 

free energy with respect to the posterior mean, computing the covariance using Equation 2.7: 

 

 
7 1( , | ) ( , ) ( , )p x v y q x v C − =   
8 Note that the linear term of the expansion vanishes under expectation, as the expected difference 

between a random variable and its mode is zero under Gaussian assumptions. 
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Under active inference, we also need to minimise the free energy through action. As the only 

variable in the above that depends upon action is y, we can express action as: 

 

( )a y ya y a = −           (2.9 

 

The involvement of action only at the level of sensory input is highly consistent with the notion 

of a reflex arc (Adams et al. 2013a), of the sort found in the brainstem and spinal cord, where 

efferent motor neurons project to muscles and correct any deviation between incoming 

proprioceptive data and descending predictions about these data. These equations have been 

used extensively to model a wide range of neurobiological phenomena, including attention 

(Feldman and Friston 2010), perceptual illusions (Brown and Friston 2012), action-

observation (Friston et al. 2011), communication (Friston and Frith 2015), and motor control 

(Baltieri and Buckley 2019; Perrinet et al. 2014). They have also been used in numerical 

simulations of self-organisation (Friston 2013) and morphogenesis (Friston et al. 2015a). We 

will apply these in Chapter 3 in the context of oculomotor control (Parr and Friston 2018a). 

 

Discrete time 

 

The free energy defined for a model using categorical distributions has a much simpler form, 

given that the sufficient statistics of a categorical distribution are simply vectors of 

probabilities. In this context, expectations become dot-products, and the free energy (and its 

gradients) can be expressed in linear algebraic terms: 
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The key points to draw from this equation are that the overall free energy (F) may be 

decomposed into local ‘marginal’ free energies (Fπτ). These are marginal in the sense that they 

approximate the free energies we would get if we were to marginalise over all variables in the 

generative model except for the state and outcome at a given time (under a given policy). This 

is seen in the form of the marginal free energy gradients in the penultimate line, where a 

marginal prior and likelihood are offset against the marginal posterior. The marginal prior is 

constructed by averaging the (log) prior we would get by running the model forwards and that 

we would get from running it backwards (see (Parr et al. 2019b) for details). The backwards 

transition probabilities are obtained through transposing the original transition matrix and 

renormalizing to ensure the columns sum to one (consistent with a probability distribution). 

The dagger notation (†) indicates the normalised transpose operation. Having defined a series 

of local free energies, we can set up a gradient descent on free energy for posterior expectations 

about states at a given time, conditioned upon a given policy9: 

 

( )n n

n n

 

 

=

=

s v

v ε
          (2.11 

 

This says that expectations about states under policies may be updated based upon a series of 

linear (matrix multiplications) and non-linear (softmax) transforms, much as combinations 

presynaptic firing rates across a neural population are non-linearly transformed (via  

membrane depolarisations) into post-synaptic firing rates. These expectations may be used to 

compute the posterior probability of each policy (treating each policy as if it were a model, 

and performing a Bayesian model comparison): 

 
9 ( | , ) ( | ) ( )P s o Q s Cat    = s   
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      (2.12  

 

We will unpack the terms involved in Equation 2.12 in greater detail in the Active Perception 

section of this chapter but include them here for completeness. Equations 2.10-12 express a 

generic update scheme to solve an MDP model. Different models depend upon the choices for 

A, B, C, D, and E.  

 

Simulated message passing 

  

While the above is fairly abstract and technical, it lays the foundations for numerical 

simulation under specific generative models. To illustrate this, we present a simple simulation 

using a Hidden Markov Model (HMM) generative model (Parr et al. 2019b). An HMM is 

essentially an MDP without alternative policies or actions. It therefore does not need Equation 

2.12 and may be simulated using only 2.10-11. The purpose of presenting this simulation is 

three-fold. First, it provides some intuition about the behaviour of the belief-update equations 

outlined above. Second, it is useful in thinking about the sorts of neuronal architectures 

required for the message passing, and the association between the variables involved in belief-

updating with plausible electrophysiological correlates (e.g. firing rates). Finally, it allows for 

a numerical comparison with other Bayesian update schemes, establishing the construct 

validity of these biologically plausible inferential dynamics. 

  

Simulations 

 

The generative model for these simulations is shown in the upper part of Figure 2.3. It 

comprises two hidden state factors (s1 and s2) represented as light blue and green shapes 

respectively. At each time-step, the shapes within each of these factors may change 
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(probabilistically) into any other shape within that factor (i.e. if the state in factor 1 is a light 

blue square at the start, it may change into a light blue circle, triangle, or stay as a square at 

the next time-step). One way to think of this is as a simple symbolic language, where any given 

letter (shape) is followed by another with a certain probability based upon the statistics of that 

language. To illustrate the relative influences of prior information and observed data, we set 

the outcomes (darker blue shapes) depend only upon the light blue shapes in the first hidden 

state factor. Intuitively, this is as if the series of visual inputs (o1) we are presented with are 

generated probabilistically from the words on the current page (s1) but carry no information 

about the words on another page (s2), which we cannot see. The purpose of this is to illustrate 

the behaviour of each scheme in the presence of informative and uninformative sensory input. 

The form of the HMM that mediates the influences between states at one time, and those at 

the next, and between current states and their associated outcomes, is shown in the upper right 

of Figure 2.3, along with the Bayesian update scheme used for the simulation. Note that this 

is a special case of the generative model and update scheme shown in Figure 2.2. 

Below the generative model, Figure 2.3 shows the results of solving the equations above 

during sequential presentation of the outcomes. This is shown for three different Bayesian 

message passing schemes. These are variational message passing, belief propagation, and 

marginal message passing. The last of these is the scheme outlined above. The first two are 

established methods for approximate Bayesian inference. Each relies upon a different free 

energy functional, as unpacked in detail in (Yedidia et al. 2005) and Appendix A.2. These are 

useful points of comparison as variational message passing represents a very simple and 

neuronally plausible architecture but rests upon a severe (mean-field) approximation that lends 

itself to overconfident inference, while the belief propagation architecture is harder to justify 

from a biological viewpoint but performs very well from an inferential standpoint. These 

schemes accumulate evidence for different hidden states by assimilating successive outcomes 

into posterior beliefs. Each hidden state starts with a defined shape (blue triangle, green 

square), but undergoes stochastic transitions. This means that the future should always be more 

uncertain than the past. In what follows, we use belief propagation as a gold standard for 

inferential performance, against which the other two (more anatomically plausible) schemes 

are compared.  
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Figure 2.3 – Simulated neuronal message passing. The upper part of this figure shows the 

form of the generative model and Bayesian (marginal) message passing scheme used for the 

simulations. The lower plots illustrate inference using the same marginal message passing 

scheme (right), but also two other Bayesian message passing schemes for comparison. The 

first row of these (‘belief trajectories’) show the sufficient statistics (expectations, s) for each 

hidden state at each time step as they evolve over time. Given that there are three possible 

hidden states (circle, square, or triangle) in each factor, the probabilities of each all start at a 

third, and move closer to zero or one as new evidence is accumulated over time. The posterior 

probability plots below show the beliefs, after all the observations have been made, about the 

hidden states as they were at each time-point in the trial. Darker shades indicate a greater 

posterior probability, such that black indicates a posterior probability of one, and white of zero. 

The red dots superimposed upon these show the ‘true’ states that were used to probabilistically 

generate the observations. The sequence of observations presented over time are shown in the 

bottom row of the figure. These were presented sequentially, with a new observation at each 

time-step. 
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Relation to established inference schemes 

 

Figure 2.3 shows the results of simulating inference via the three forms of neuronal message 

passing outlined above. This illustrates some cardinal features of the three schemes. The 

trajectories of beliefs following each outcome show that much of the belief updating occurs 

very early in variational message passing, before the presentation of most of the data. While a 

few revisions to these beliefs occur at later stages, it does not take long to arrive at highly 

confident beliefs about future states – this over-confidence of posterior beliefs is a well-

recognised feature of variational inference under the mean-field approximation (Consonni and 

Marin 2007). In contrast, belief propagation and marginal message passing take a more 

restrained approach, with each new observation driving updating. This more tentative 

approach pays off, as they make fewer errors in estimating the true states that generated the 

data. This is consistent with the fact that belief propagation offers an exact estimate of marginal 

beliefs for these models, while the variational approach is only ever approximate. 

The over-confidence of the variational approach manifests clearly in the posterior beliefs about 

the green shapes. Given the stochastic transitions, and the absence of any informative data 

about these states, posterior beliefs about the green shapes should become increasingly 

uncertain with distance from the (deterministic) initial state. The Belief Propagation scheme 

(based on Bethe free energy) clearly shows this, but the variational scheme does not, with 

highly confident beliefs about even the penultimate state. Marginal message passing 

compensates for this overconfidence issue, providing a much better approximation to an exact 

inference scheme than under the mean-field approach. In fact, it slightly overcompensates in 

the absence of precise data, leading to posteriors that are less confident than the belief 

propagation marginals. The temporal dynamics of belief updating (the upper plots) further 

illustrate the overconfidence of variational message passing relative to the other two schemes. 

Within the first time-step, the sufficient statistics of beliefs about the states over time (each 

represented as a line) approach extreme (zero or one) values. This means that, with only one 

observation, the mean-field variational approach exhibits an excessive confidence about 

present and future states, that is maintained as new observations are made. In contrast, the 

belief propagation and marginal message passing schemes afford more modest belief updates 

– following the first observation – that become more confident as new data are acquired. 

Notably, the three schemes share some of the same errors (four errors in steps 2, 4, 9 and 10). 

By errors, we mean that the inferred state (darkest shade) at a given time-step does not match 

the state that actually generated the data (red dot). These errors happen when very unlikely 
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events occur, such as a dark blue square generated by a light blue triangle. Although incorrect, 

an inference that the light blue square caused the dark blue one is still Bayes optimal under the 

generative model we employed. In contrast, the additional four errors of variational message 

passing in steps 5, 8, 12 and 13 occur even though the data are highly consistent with the 

hidden states (e.g., a dark blue circle generated by a light blue circle). These errors reflect the 

excessive weight given to the empirical priors in variational message passing – it assumes the 

most probable a priori transition, ignoring the conflicting observation.  

To quantify the performance of the mean-field and marginal approaches, we can exploit the 

fact that the belief-propagation approach is exact for the marginal posteriors for this inference 

problem. A simple way to do this is to compute the KL-Divergence between the marginal 

posteriors obtained through belief propagation and the solutions of the other two schemes. The 

smaller this divergence, the better the approximation to exact marginal beliefs. For the 

simulations of Figure 2.3, the divergences summed over marginal posteriors give the 

following: 
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This demonstrates quantitatively that, even for the relatively simple inference problem used 

here, there is a much greater divergence between the exact marginal posterior beliefs and those 

obtained using variational message passing, relative to marginal message passing. 

Although we have presented this as a single simulation, the way in which the generative model 

is defined, and the sequential presentation of the data, actually induce several distinct inference 

problems that we have implicitly appealed to above in characterising these schemes. First, the 

factorisation of the hidden state-space into two different types of hidden state allows us to 

compare the extreme case in which data are uninformative about the hidden state (light green 

shapes) with the case in which there is only moderate uncertainty about the relationship 

between (light blue) states and the (dark blue) data. Figure 2.3 shows that, while marginal and 

belief propagation approaches attenuate their confidence – when data is uninformative 

compared to informative – the mean-field approach furnishes confident inferences in both 

cases. Note that these differences rely upon there being some uncertainty in the transitions 

from one state to the next. If we were to use deterministic transition probabilities, the 
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differences between these schemes would be largely abolished as all would make confident 

inferences. 

The second comparison we have used relies upon sequential presentation of the outcomes. 

This means that each time-step represents a distinct inference problem, with more data 

available at later times than earlier. This is where the dynamics shown in the upper row of 

Figure 2.3 are revealing. At each successive time point, the inference problem becomes more 

constrained, as an additional observation is made. This allows us to compare the confidence 

using a small amount of data (at the start of the trial) with the confidence after more data have 

been seen (near the end of the trial). After making the first observation, variational message 

passing shows a consistent level of confidence until the end of the trial. This can be seen in 

the plot by noting that the distribution of lines in the vertical direction is relatively constant 

throughout the horizontal (temporal) axis. This contrasts with the other two schemes that show 

a greater proportion of lines reaching extreme values with each new observation. 

Ultimately, all three schemes above are free energy minimising processes compatible with 

active inference (see (Schwöbel et al. 2018) for an example of the application of belief-

propagation in this domain, and (van de Laar and de Vries 2019) for an example using 

variational message passing). However, we will appeal to marginal message passing 

throughout this thesis, due to its combination of the architectural simplicity of variational 

message passing with (nearly) the inferential performance of belief-propagation. 

 

Neuronal process theories 

 

Current circuit-level research shows a high degree of consistency between the form of the 

message passing shown in pink in the upper part of Figure 2.3 (and in Figure 2.2), and 

biological neuronal networks (Bastos et al. 2012; Haeusler and Maass 2007; Shipp 2016). 

Sensory input (via the thalamus) predominantly targets granular layers of cortex (Miller 2003; 

Shipp 2007), which excite more superficial cells and are disynaptically inhibited by them in 

turn (Thomson et al. 2002). This is consistent with the interactions between granular (ε) and 

superficial (s) cells in Figures 2.2 and 2.3. Associating these variables with messages passed 

between neural populations implies that these may be interpreted as normalised firing rates, 

with auxiliary variables (v) playing the role of membrane potentials. This means we can treat 

the plots labelled ‘belief trajectories’ in Figure 2.3 as idealised firing rates. We can additionally 

associate the rates of change of their associated membrane potentials with the local field 

potentials induced by membrane depolarisation that might be measured using intracranial 
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electrodes, or whose combination manifests as measurable electromagnetic signals using 

sensors at the scalp (e.g. electroencephalography or magnetoencephalography). Committing 

to a process theory of this sort (Friston et al. 2017a) ensures that these simulations may be 

used to form empirical hypotheses about the anatomical structures required for and the 

electrophysiological correlates of belief updating processes, offering one way of 

disambiguating between alternative generative models that could be employed by an 

individual or group of individuals for a given experimental paradigm. To take this a step 

further, it is useful to be able to relate inference to the behaviours it causes, such that 

behavioural data may be used to compare hypothesised generative models. This requires that 

a generative model includes courses of action, and their sensory consequences. To incorporate 

alternative courses of action (i.e. plans or policies) into a generative model, we must be able 

to express a prior belief that characterises the plausibility of each policy that could be pursued. 

The final section of this chapter addresses this issue. 

 

 

Active perception and planning 

 

Clearly the processes simulated above are a poor account of biological perceptual inference. 

This is because biological systems are not simply passive recipients of data. Instead they move 

and seek out new data. While we save a more comprehensive numerical analysis of this active 

engagement to subsequent chapters, we conclude this chapter with an example that illustrates 

the importance of considering action in understanding perception, and then unpack the form 

of the prior over policies expressed in Figure 2.2. The example is that of Troxler fading, a 

phenomenon that occurs on suspension of exploratory eye-movements. Figure 2.4 shows the 

sort of stimulus that lends itself to this effect, where a central fixation cross is surrounded by 

static coloured shapes, of the sort poorly detected by the peripheral parts of the retina and 

magnocellular pathway (which are more sensitive to  luminance or to high frequency temporal 

changes than to colour). Foveating the peripheral parts of the image ensure high quality data 

about the colour of these shapes, via the cone cells in the centre of the retina, and the associated 

parvocellular signalling pathway. This suggests that we can think of maintained central 

fixation as much like the situation illustrated by the second hidden state factor in Figure 2.3, 

where the absence of informative data leads to an accumulation of uncertainty over time. 

Consistent with this, on maintenance of central fixation, the peripheral colours appear to fade 

away into the background. They are restored as soon as exploratory eye-movements to 

peripheral locations are resumed. 
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This simple visual phenomenon provides a compelling demonstration of the role of action in 

perception, and the fallacy of studying the two in isolation of one another. In addition, it 

endorses the Helmholtzian view of perception as a process of unconscious inference (Von 

Helmholtz 1867) and the view that perceptions are hypotheses about the causes of sensory 

data (Gregory 1980). In the absence of the ability to precisely disambiguate between 

hypotheses, there is no precise percept. This suggests that the role of action in constructing a 

percept is in gathering high quality data to enable efficient (precise) inferences. This 

perspective on active perception may be formalised through an appeal to the expected free 

energy associated with alternative courses of action (Friston et al. 2015b). Simply put, this 

quantifies the potential for uncertainty resolution (or information gain) associated with a 

course of action (or policy). This can be used to score the prior probability of alternative 

policies. The next section motivates this more formally. 

 

Figure 2.4 – Active vision and Troxler fading. The image shown here motivates the 

importance of action in perception in a simple way, through a phenomenon called Troxler 

fading. On maintenance of fixation on the central cross, the colours in the periphery appear to 

fade away. However, on resumption of normal exploratory eye movements, the colours 

reappear. This illustrates a crucial point that we will return to throughout this manuscript. 

Vision is not a passive process, with data presented to a static retina. Instead it is a process of 

exploration, in which the retina is moved around to best resolve uncertainty about a 

dynamically changing environment. This image is reproduced from (Parr et al. 2019a). 



46 

 

 

Expected free energy 

 

To select a suitable prior over policies, we must take a step back, and think again from the 

perspective of homeostasis (or, more generally, from the perspective of non-equilibrium 

steady-state physics (Kwon et al. 2005)). This means thinking in terms of a distribution over 

states that a creature tends to occupy, and returns to following perturbation (Friston 2013; 

Friston and Ao 2012). We can then distinguish between this ‘non-equilibrium steady-state’ 

(NESS) distribution that is independent of the trajectory (or path) that achieves this10 and the 

evolving distribution from beliefs about the current states into the future that depends upon 

the path (policy) pursued. Given that we have said that a creature will correct deviations from 

its NESS by returning to it, the divergence between the policy-dependent density over future 

outcomes and the NESS density will be small, at the endpoint of any plausible path. When the 

divergence is zero, the following relation holds (see Friston 2019, and Appendix A.3 for 

details): 
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Here, we have defined the expected free energy (G) (Friston et al. 2015b) associated with a 

given policy (note the similarity in form to the free energy in Equation 2.2). The separation of 

the expected free energy into ‘Risk’ and ‘Ambiguity’ is useful in intuiting its properties. The 

closer the expected distribution of states under a given policy to the NESS states, the lower 

the expected free energy. Similarly, the greater the fidelity of the mapping from states to 

observations, the lower the ambiguity, and consequently expected free energy. For any 

plausible path or policy, where the divergence between policy-dependent and preferred 

(NESS) distributions is small, the approximate equality between the expected free energy and 

the entropy (i.e. negative expected log evidence) for that policy implies that, on average, those 

 
10 This is an important feature of a NESS in stochastic dynamics. Once a system has reached NESS, 

the density over its states conditioned upon the history (i.e. starting configuration and subsequent 

trajectory) of those states becomes equal to the density without conditioning upon the history.  
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policies with a smaller expected free energy will carry greater evidence, and will therefore be 

more probable. As such, the most appropriate choice of prior over policies (i.e. alternative 

paths to NESS) can be expressed: 

 

0

0

( ) ( )

(ln )

P Cat

 

=

= − 

π

π E G
        (2.14 

 

Here, E represents other potential influences over policies (that may be learned, or be 

computed through a hierarchical generative model) that may be thought of as habits 

(FitzGerald et al. 2014). The bold G is a vector of expected free energies for each policy, 

weighted by an inverse temperature parameter (γ) that determines the relative influences of E 

and G. These may be thought of in terms of a fixed prior and the expected (negative log) 

evidence for each policy. Given that minimising risk minimises expected free energy, we can 

interpret the NESS distribution over states as preferences; in the sense that a creature is most 

likely to pursue those courses of action that lead to those ‘preferred’ states. Often it is 

convenient to define a preference over observations, instead of states. To do this, we simply 

replace the risk term with an equivalent KL-Divergence expressed in terms of the distribution 

of observations that would have been generated by the associated states (intuitively, this is as 

if each state over which a preference is defined is deterministically associated with an 

outcome). This gives: 
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This is the form11 used for the prior defined in Figure 2.2 and that gives rise to the posterior 

expressed in Equation 2.12. Note that this expression only requires that we specify a final 

(anticipated or desired) distribution over outcomes (Cat(C)), which may be thought of as 

preferences. Equation 2.15, although very simple, has several very important properties that 

will be unpacked in Chapter 3. For now, we note that the first term of the expected free energy 

is the expected log probability of an observation, consequent on an action (e.g. ‘what I would 

 
11 ( | ) ( )Q o Cat  = o   
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see if I looked there’). The expected log probability is the negative entropy (uncertainty) 

associated with this prediction. This says that the most probable policies, with the lowest 

expected free energy, will be those that involve seeking out those observations about which 

we are most uncertain. Returning to the example of Troxler fading, this says that the first thing 

we will do if we become uncertain about one of the coloured shapes is to look at it, resolving 

this uncertainty and precluding fading. It is only when we interrupt this policy that fading 

occurs. For detailed numerical simulations of Troxler fading using this approach, please see 

(Parr et al. 2019a). 

 

Conclusion 

 

In this chapter, we have outlined the generic aspects of active inference, its interpretation in 

terms of message passing between neuronal populations, and the importance of action in 

perception. We provided a simple example of passive perceptual inference, and the success of 

marginal message passing in approximating the inferences of belief propagation in this setting, 

while maintaining the architectural simplicity of variational message passing. We concluded 

with a discussion of planning, in the sense of inferring which actions to perform next. Under 

active inference, optimal plans are those associated with the lowest expected free energy, that 

best resolve our uncertainty about the causes of our sensory data. In subsequent chapters, we 

will apply the same principles outlined here, introducing specific generative models, based 

upon those used here, to solve specific tasks. In addition, we will introduce additional features 

as they are needed, including the role of precision in MDPs, learning of the parameters of the 

generative model, deep temporal modelling, and the role of Bayesian model reduction in 

combining MDP and continuous state-space models for tasks involving both decisions and 

movements.  
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 3 - The computational anatomy of active vision 

 

 

Introduction 

 

In this chapter12, we revisit the anatomy and physiology outlined in Chapter 1, but through the 

lens of the theoretical material in Chapter 2. Our aim is to understand the minimal generative 

model required for the emergence of the inferential architectures employed by the brain in 

implementing active vision. First, we address the problem of how to move the eyes. In doing 

so, we explore the relationship between the sort of model required to explain the proprioceptive 

and visual consequences of oculomotion and the anatomy of the brainstem (Parr and Friston 

2018a). Second, we deal with the problem of deciding where to look (Parr and Friston 2017c). 

By varying the uncertainty associated with different variables in a generative model, we 

reproduce several behavioural phenomena (including ‘the Streetlight effect’ (Demirdjian et al. 

2005) and ‘inhibition of return’ (Posner et al. 1985)). Finally, we combine these models, and 

hypothesise a role for the superior colliculus in translating beliefs about which location to 

foveate into beliefs about the Newtonian dynamics that realise this (Parr and Friston 2018c). 

On substituting the generative models for each of these processes into the belief-update 

equations outlined in Chapter 2, the resulting message passing bears a striking resemblance to 

the neuroanatomical systems engaged in oculomotor control and can be used to reproduce 

aspects of their physiology and pathology. 

 

Movements 

 

There are many neurological (Anderson and MacAskill 2013; Büttner et al. 1999; Perry and 

Zeki 2000; Sereno and Holzman 1995) and psychiatric (Holzman and Levy 1977; Lipton et 

al. 1983; Sereno and Holzman 1995) conditions that cause impairments of eye movement 

control. As such, assessment of oculomotion forms a crucial part of any neurological 

examination. In this section, we aim to characterise the functional anatomy of eye movement 

control by appealing to the continuous state-space formulation of active inference. Our agenda 

here is to try and understand the oculomotor system in terms of its computational anatomy, as 

 
12 The material in this chapter is adapted from (Parr and Friston 2017c; Parr and Friston 2018a; Parr 

and Friston 2018c) 
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a complement to similar attempts to understand the control of eye movements at higher levels 

of the visual system; e.g., (Bruce and Tsotsos 2009; Itti and Koch 2001). Previous active 

inference accounts of eye movements have focused on saccadic target selection (Friston et al. 

2017f; Mirza et al. 2016) and ignored the mechanics of oculomotion, or have made use of the 

simplifying assumption that the position of the eyes can be altered directly through simple 

attractor dynamics (Friston et al. 2012a; Friston et al. 2017c). Here, we follow the example of 

models that have treated the eyes as physical objects, subject to Newton’s laws (Adams et al. 

2012; McSpadden 1998; Perrinet et al. 2014; Robinson 1964; Robinson 1968). We build upon 

these models by equipping each eye with separate kinetics, which are predicted by the brain 

using a model that is common to both eyes. We emphasise the anatomy and electrophysiology 

that emerge from this theoretical treatment and their striking resemblance to the properties of 

the brainstem (Büttner-Ennever and Büttner 1988; Büttner and Büttner-Ennever 2006). 

The oculomotor system is an important interface between the inferential processes of the brain, 

and the Newtonian world that it inhabits. It forms a distributed network (Parr and Friston 

2017a) that involves the cerebral cortex (Corbetta et al. 1998; Paus 1996), the cerebellum 

(Berretta et al. 1993), and the basal ganglia (Hikosaka et al. 2000; Hikosaka and Wurtz 1985b). 

Ultimately, neuronal messages from these regions combine to generate signals to the 

extraocular muscles to move the eyes. It is the brainstem that performs the translation of these 

instructions into motor nerve signals (Sparks 1986; Sparks 2002; Sparks and Mays 1990). In 

this section, we seek to understand the computations that must be performed to do this, and 

their neurobiological substrates. We begin by describing the mechanics of the eyes. We then 

describe a predictive (generative) model of eye movements. We demonstrate through 

simulation that this reproduces eye movements consistent with health and disease and show 

the emergence of established electrophysiological observations from these simulations. 

  

 

A generative model for oculomotion 

 

In Chapter 1, we outlined the connections between the brainstem and the oculomotor muscles. 

These are bidirectional connections, carrying motor commands to the muscles, and 

proprioceptive data to the brainstem. Chapter 2 highlighted the importance of a generative 

model to explain sensory data. Combining these, we begin our analysis of the oculomotor 

system by specifying the sort of generative model that would account for proprioceptive (and 

visual) data of the sort received by the midbrain and pons.  



51 

 

Saccadic eye movements implement the transition from one stationary fixation to another. 

While we may select a new target for fixation, the physical world does not allow us to alter 

position directly. Instead, changes in position must be brought about by applying forces that 

accelerate the eyes towards their target. For simplicity, we assume only two forces acting on 

each eye. These are resultant forces in the horizontal and vertical dimensions. Each force gives 

rise to a torque, made up of an active term (muscle contraction), an elastic term, and a viscous 

term. Using Newton’s second law in its rotational form, we arrive at the equations of motion 

shown on the upper left of Figure 3.1 (labelled ‘generative process’). These equations are 

relatively simple, but could in principle be replaced by a set of more realistic equations that 

take account of, among other things, the non-linear relationship between muscle elasticity and 

length (McSpadden 1998). 

In addition to the equation describing the movement of the eyes themselves, it is necessary to 

specify how the angular position and velocity of each eye gives rise to sensory data. The 

information carried from the eye to the brainstem can be classified into two broad categories. 

Visual information is passed through the optic nerve (Cranial nerve II), while proprioceptive 

data from the extraocular muscles travels through afferent fibres in the oculomotor nerves (CN 

III, IV, VI). We have assumed a simple visual signal in this chapter: it is generated through an 

identity mapping, with added noise, from the position of the eyes (Faisal et al. 2008). In other 

words, what the eyes see depends only upon where they look. 

The nature of proprioceptive signals from the extraocular muscles is a controversial topic 

(Donaldson 2000), but the presence of muscle spindles – the sensory organs of proprioception 

– in human extraocular muscles has been convincingly demonstrated (Cooper and Daniel 

1949), as has the type of reflex associated with these spindles in other muscles (Sherrington 

1893). It is worth acknowledging that the structure of these spindles is simpler than those 

found in other muscles (Ruskell 1989), but the density is comparable (Lukas et al. 1994). In 

most skeletal muscle, afferent nerve fibres from the muscle spindles carry data about the 

velocity (type Ia afferents) and instantaneous length of a muscle (type II afferents). Similar 

signals have been recorded from the oculomotor nerve (Cooper et al. 1951; Tomlinson and 

Schwarz 1977), when the extraocular muscles are stretched. We therefore assume that there 

are two proprioceptive modalities from each eye, carrying signals analogous to the II (position) 

and Ia (velocity) afferent fibres. Each of these has a horizontal and a vertical component. The 

equations determining these outputs are shown on the upper left of Figure 3.1. Having 

specified these primary afferents, we turn to the treatment of these sensory signals by the brain. 

At this point, it is useful to make a distinction between a generative model (the brain’s beliefs 

about how data are generated) and a generative process (how the world, or simulation, actually 
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generates data). So far, we have dealt with the process, but now turn to the model. The interface 

between the generative model and process is illustrated in the Bayesian network Figure 3.1, 

and this highlights the important differences between the two. The model is much simpler than 

the process. This is because the model does not allow for each eye to move independently, 

whereas the position of one eye offers no constraint over that of the other in the physical world. 

This is a reasonable simplification for a human brain to make but would not be fit for purpose 

for creatures (e.g. chameleons) that move both eyes independently. The other key differences 

are that action is part of the generative process, while hidden causes are only found in the 

model. The former causes changes in angular velocity, while the latter changes angular 

position. The hidden cause acts as a point attractor, drawing the eyes towards this position. 

 

Figure 3.1 – Generative model and process. This Figure shows the generative process (upper 

left) used to generate the data presented to our simulation, and the generative model (upper 

right) used by our synthetic brainstem to explain and predict the input from the cranial nerves. 
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The blue panel on the lower right offers a key as to the interpretation of each of the elements 

of the hidden cause (v), hidden states (x), actions (a), and data (y). Each of these includes a 

horizontal and a vertical component. Subscripts indicate angular positions (θ) or velocities (ω) 

(and their associated proprioceptive inputs), and the visual modality (V). Superscripts index 

the left (L) or right (R) eye. Note that the variables in the generative model do not distinguish 

between the two eyes (see main text for details). The generative process uses several physical 

constants relating to the moment of inertia of the eyeballs (J) and the spring and viscous 

constants (k) of the oculomotor tendons and orbit respectively. The Bayesian network at the 

lower left shows the dependencies between these variables, and the point at which the external 

world (circles with light blue shading) interfaces with the brain’s model of it (white circles). 

Note the asymmetry of this interface, with the force generated by the extraocular muscles 

(EOM) present only in the generative process, and the target fixation only in the model. 

  

On the right-hand side of Figure 3.2, we illustrate how these equations could be implemented 

by passing messages between populations of neurons (Bastos et al. 2012; Friston and Kiebel 

2009; Shipp 2016). Ascending messages here are (excitatory) prediction errors, while 

descending messages are (inhibitory) predictions. It is this pattern that characterises predictive 

coding (Friston and Kiebel 2009; Rao and Ballard 1999). This is exactly the same structure as 

in Figure 2.2, but where each we have summarised the generalised coordinates of motion for 

each variable with a single population but have unpacked each variable in terms of the 

generative model variables of Figure 3.1. This means that this network employs the generic 

aspects of the neuronal message passing of Chapter 2 but applies them to the specific problem 

of oculomotor control. 
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Figure 3.2 – Neuronal message passing for oculomotor inference. On the left are the 

equations describing a gradient descent on variational free energy. On the right, we show how 

these equations map to a neuronal message passing scheme for the generative model outlined 

above. To do so, we have simply assigned the terms on the left-hand side of each equation to 

a neuronal population and mapped the influences between each population with excitatory and 

inhibitory connections. We have separated the states representing positions and velocities into 

right and left components; for consistency with the representation of each hemifield on the 

contralateral side of the sagittal plane in the brain. The numbers in little blue circles refer to 

the anatomical designation of expectation and error units in Figure 3.4. 
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Figure 3.3 – Simulated eye movements. These plots show the changes in expectations (solid 

lines) and prediction errors (dotted lines) over time for the hidden causes and states during 

saccadic eye movements (upper), and smooth pursuit movements (lower). The eye positions 

at various times are shown on the left of each set of plots. The grey regions correspond to 90% 
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Bayesian confidence intervals around the inferred hidden states; namely the vertical and 

horizontal angular positions and velocities. The legend in the lower right of each plot indicates 

the modality represented by each line (visual = V, type II afferent/position = θ, type Ia 

afferent/velocity = ω). For example, a dotted line with a colour associated with V represents a 

prediction error in the visual domain. To see the key variables plotted individually, please refer 

to Figure 3.4, where these are represented in separate raster plots. 

 

 

Oculomotor behaviour 

 

Figure 3.3 shows the results of numerically solving these equations, with two different prior 

distributions over the trajectory of a fictive fixation location (v). The first is a discontinuous 

function that changes discretely to different values, inducing saccades. The second is a 

sinusoidal function that gives rise to smooth pursuit eye movements. For both priors, the active 

inference scheme successfully computes the forces required to fulfil these beliefs. The 

common generative model for both eyes ensures the eye movements are conjugate – i.e. the 

eyes move together. In summary, using a plausible generative model and standard (active 

inference or filtering) dynamics we can reproduce the control of eye movements. Notice that 

we have not appealed to any control theory: in active inference, motor control follows naturally 

from the suppression of prediction errors generated by prior expectations: see Figure 3.2. In 

other words, the active filter has prior beliefs about where it should be looking and action 

fulfils those beliefs in a Bayes optimal fashion. The plausibility of this sort of scheme has been 

addressed in the context of visual search (Friston et al. 2012a) and oculomotor delays (Perrinet 

et al. 2014). 

We now turn to the question of the biological substrates of the active filtering equations used 

to generate oculomotor behaviour per se. 

 

Brainstem anatomy and electrophysiology 

 

The biological implementation of the equations in Figure 3.2 is anatomically constrained in 

several ways. First, sensory inputs must reach the brain by the cranial nerves that carry that 

information. The neuronal populations that receive these inputs directly must reside in regions 

of the brain that contain the terminals of the relevant sensory afferent fibres. Similarly, neurons 
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encoding actions should be lower motor neurons that contribute efferent fibres to the cranial 

nerves. The abducens nucleus mediates movements in the horizontal dimension only, and all 

movements in the vertical dimension are mediated by cranial nerves originating in the 

midbrain. The computational anatomy shown in Figure 3.4  satisfies these constraints, and is 

remarkably consistent with the patterns of excitatory and inhibitory connectivity of the 

brainstem (Chapter 1 and (Parr and Friston 2017a)). 

To illustrate the neuronal plausibility of this computational anatomy, electrophysiological 

responses of cells in each region were simulated by taking the representations of each variable, 

as shown in the plots in Figure 3.3, and converting them into raster plots. The first two raster 

plots in Figure 3.4 show the firing rates of two of the three neuronal populations in the superior 

colliculus. As outlined in Chapter 1, the colliculus contains cells with three distinct 

electrophysiological phenotypes: ‘burst’, ‘fixation’, and ‘build-up’ cells (Munoz and Wurtz 

1995a). Burst cells fire at the start of a saccade, as can be seen in the first raster plot. This cell 

type is known to di-synaptically inhibit cells in the Raphe nucleus interpositus (RIP) (Yoshida 

et al. 2001). This is consistent with the computational anatomy here, as there is an excitatory 

connection to a second collicular population that has inhibitory connections to the RIP. Both 

physiologically and anatomically, this cell type appears to be consistent with prediction error 

units signalling visual prediction (or ‘retinal-slip’) errors of the type implicated in models of 

eye movement (Krauzlis and Lisberger 1989). Fixation cells are active while a fixation is 

maintained. The second firing rate plot shows a cell that is active maximally only during 

fixations in one direction. These cells are known to project directly to cells in the RIP (Gandhi 

and Keller 1997), again showing consistency with our proposed anatomy. These cells appear 

to signal the expected hidden cause. Build-up cells have yet another distinct phenotype and 

must be assigned to the only remaining collicular cell type in Figure 3.4, which signals the 

error in the expected hidden cause. We discuss this cell type in more detail below, but first 

turn to a key target of projections from the superior colliculus.  

The RIP contains a population of cells known as ‘omnipause’ cells (Büttner-Ennever et al. 

1988). These cease firing at the start of a saccade, but are active during fixations. This 

corresponds well to the third raster plot that shows a decrease in activity locked to each 

saccade. This signal is the prediction error related to the hidden states encoding current eye 

position. Neurons in the RIP inhibit those in the rostral interstitial nucleus of the medial 

longitudinal fasciculus (thought to coordinate vertical saccades (Büttner-Ennever and Büttner 

1978)) and in the parapontine reticular formation (that coordinates horizontal saccades (Cohen 

et al. 1968; Henn 1992)) (Strassman et al. 1986). The fourth and fifth rows of raster plots show 

neurons in the latter area. These neurons show bursting activity that triggers a saccade, here 
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related to the error in positional (proprioceptive) sensations. We have simulated such neurons 

representing saccades to either side of space. 

 

 

 

Figure 3.4 – The computational anatomy of oculomotion. On the left of this schematic, we 

show a plausible anatomical implementation of the Bayesian filtering equations in Figure 3.2. 

This satisfies the connectivity constraints described in the main text. Note that we have 

included motor neurons (grey) that represent action. As Figure 3.2 indicates, these only receive 

direct influences from the prediction error units at the sensory level. On the right, we show the 

simulated neuronal activities, along with a horizontal electro-oculographic (HEOG) trace 

indicating the eye position. Each of the numbered raster plots is associated with a particular 

neuronal population indicated by numbers in little blue circles. See the main text for a 

description of these units and Figure 3.2 for their equivalent location in the computational 

architecture. SC = superior colliculus; riMLF = rostral interstitial nucleus of the medial 

longitudinal fasciculus; PPRF = para-pontine reticular formation; RIP = raphe interpositus 

nucleus. Compare the anatomy here with that illustrated in Figure 1.1. 

 

The pattern of activity of the build-up cells is very interesting, when viewed at a population 

level (Lee et al. 1988; Munoz and Wurtz 1995b). To simulate the spatiotemporal 

characteristics of electrophysiological responses in collicular build-up cells during saccades, 



59 

 

we treated the retinotopic location vectors (i.e. the horizontal and vertical components of the 

error) as encoding the peaks of activity in the superior colliculus. This enabled us to generate 

simulated responses of colliculus neurons in which (Gaussian) ‘bumps’ of activity moved over 

a retinotopic map, similar to those elicited in computational models of the superior colliculus 

(Bozis and Moschovakis 1998; Richert et al. 2013; Seung 1998; Seung et al. 2000; 

Trappenberg et al. 2001). In turn, this enabled us to simulate spatiotemporal responses that 

would have been observed (by assuming a fixed shape of bump); either by imaging 

perisaccadic population responses in the deep layers of the superior colliculus (see Figure 

3.5A) – or unit responses at any particular location – over time – in terms of perisaccadic time 

histograms (see Figure 3.5B). The post stimulus (saccade) time histograms bear a remarkable 

similarity to empirical results of the sort shown in Figure 3.5C (Munoz and Wurtz 1995b).  

 

 

Figure 3.5– Collicular ‘build-up’ cells. This shows the population activity in collicular build-

up cells during one of the saccades illustrated in Figure 3.3 (left). Our simulated build-up cells 

are those that signal the error in the hidden cause (target fixation location). A shows this as if 

we had imaged the right superior colliculus, which represents the left side of space. We have 

made use of the known retinotopy of the colliculus (Quaia et al. 1998) to plot this activity. B 

shows a set of simulated recordings of single cells from the onset to end of the saccade. Each 
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cell represents a different retinotopic location, indicated by the angles given for each plot. The 

the eccentricity increases with each row. C shows real data (adapted from (Munoz and Wurtz 

1995b)) from single unit recordings of build-up cells in the superior colliculus.  
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Figure 3.6 – Computational lesions. These plots demonstrate the consequences of simulated 

lesions. The first is a lesion of all the connections between the brainstem and the extraocular 

muscles of the left eye. As both the plots and the simulated eyes show, this causes a paralysis 

of the left eye, in keeping with what we would expect. Below this, we show the consequences 

of a lesion to the medial longitudinal fasciculus. The images and the plot of ‘action’ show that 

rightward gaze occurs normally in both eyes, but that leftward gaze reveals a deficit. The right 

eye fails to adduct to the same degree as the left abducts, and this induces nystagmus in both 

eyes – primarily the left. This is known clinically as an internuclear ophthalmoplegia. Please 

see refer to Figure 3.3 for an explanation of these plots. 

 

 

Computational lesions 

 

Having demonstrated the anatomical and physiological plausibility of an active inference 

formulation of oculomotor control, we used the anatomical constraints underwriting the 

computational anatomy in Figure 3.4 to motivate simulated lesions. Our first lesion removed 

all the connections that travel in the oculomotor cranial nerves on the left. This is to 

demonstrate that the simulation reproduces sensible results; i.e. the paralysis of the left eye 

(Figure 3.6). Computationally, this disconnection precludes the receipt of sensory data by 

proprioceptive prediction error units for the left eye and disconnects action units from the 

extraocular muscles.  

The second simulation aims to model a subtler lesion: damage to the medial longitudinal 

fasciculus, that travels from the abducens (CN VI) nucleus in the pons to the contralateral 

oculomotor (CN III) nucleus in the midbrain, causes a clinical sign referred to as an 

‘internuclear ophthalmoplegia’. This is commonly seen in demyelinating conditions, such as 

multiple sclerosis, that induce white matter lesions. This pathology represents a disconnection 

syndrome (Catani and ffytche 2005) that manifests as a failure of conjugate control of eye 

movements. Figure 3.6 shows the results of performing this lesion in silico. Our lesion disrupts 

the signal from the left CN VI to the right CN III (see Figure 3.4). Computationally, this 

represents a disconnection between error and expectation units encoding horizontal positional 

error and angular velocity respectively. As in real patients, both eyes can look to the right 

normally. However, when looking to the left, the left eye can look laterally, but the right eye 

fails to keep up while moving medially. This violation of conjugacy induces nystagmus in the 
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(healthy) left eye. In our simulation, nystagmus is seen in both eyes, but more the left than the 

right. The deficit is most obvious in the plot labelled ‘action’. 

 

Bayesian filtering in the brainstem 

 

We have demonstrated in the above that, given a prior belief about anticipated fixation 

locations (η), Bayesian filtering can be used to generate movements that fulfil these beliefs. 

An important issue relates to the source of these priors. In predictive coding, there are typically 

higher hierarchical levels in play that send descending messages (predictions) to the lower 

level (Kiebel et al. 2008). These are used to derive the (empirical) prior beliefs at the lower 

level. In short, in this section we have focused on the lowest level of deep (hierarchical) active 

vision that translates predictions about "where I am going to look next" into oculomotion that 

realises these predictions. As the predictions (η) enter the Bayesian filtering equations to form 

prediction errors (ε), any descending connections would have to target units encoding these 

prediction errors. The anatomy of connections to the superior colliculus therefore hints at the 

anatomy of higher levels generating top-down predictions (Parr and Friston 2017a). This 

anatomy includes projections from the frontal eye fields (Fries 1984) and the substantia nigra 

pars reticulata (Hikosaka and Wurtz 1983). We will attempt to address the role of these 

connections in the third (From decisions to movements) section of this chapter, and to link 

them to the decision processes we have previously attributed to cortical and subcortical regions 

(Parr and Friston 2017b). This will be essential in order to account for more complex, 

oculomotor behaviour, including the spatial patterns of saccadic searches their resemblance to 

‘Lèvy flights’ (Brockmann and Geisel 1999; Roberts et al. 2013). 

 

There are some subtle differences in the neuronal responses we have simulated (Figure 3.4) 

compared to those measured in real neurons. For example, our simulated burst neurons show 

not only an increase in firing before a saccade in a given direction, but also a decrease in firing 

rate before a contralateral saccade. When these neurons have been interrogated in vivo (Munoz 

and Wurtz 1995a), a directional sensitivity of this type has been demonstrated. The firing rate 

of a burst neuron is higher when a saccade is performed in one direction compared to a saccade 

in the opposite direction. However, there is no clear decrease in activity, relative to baseline 

firing rate, in response to a saccade contralateral to the preferred direction of a burst neuron – 

as seen in our simulations. There are several possible explanations for this discrepancy. One 

is that, as firing rates cannot be negative, the positive and negative parts of the variables 

encoded by our synthetic neurons are really represented by different groups of burst neurons. 



63 

 

A second possibility is that the mapping between these variables and neuronal firing rates is a 

convex function. If this is the case, we would expect very small changes in firing rate for a 

change in a variable at the lower end of the scale compared to those induced by the same 

change at higher values. The low baseline firing rate of burst neurons (Munoz and Wurtz 

1995a) supports this interpretation. 

 

In addition to the oculomotor syndromes simulated here, an interesting next step would be to 

consider a broader range of pathologies. For example, schizophrenia is a psychiatric disorder 

associated with subtle oculomotor abnormalities, including changes in smooth pursuit eye 

movements (Thaker et al. 1998). Previous research using this form of modelling has been 

useful in characterising this kind of deficit in terms of abnormal estimates of precision in the 

generative model (Adams et al. 2012). In addition, eye movement signs are ubiquitous in 

neurology (Anderson and MacAskill 2013). To take this model forward – to address cardinal 

oculomotor deficits in psychiatry and neurology – we may need to develop a more complete 

model that, in addition to accounting for visual and proprioceptive data, accounts for vestibular 

inputs. This is likely to be important in the development of nystagmus due to cerebellar or 

brainstem damage (Troost 1989). 

 

 

Summary 

 

In this section, we have demonstrated that active inference provides a sufficient and principled 

account of oculomotor forces that fulfil prior beliefs about eye movements. By using a 

generative model that is common to both eyes, we enforce conjugate eye movements. When 

we map the ensuing Bayesian filtering equations to their associated process theory; namely, 

predictive coding, we find a connectivity structure that is remarkably consistent with the 

neuroanatomy of the oculomotor brainstem. Once this anatomical assignment is made, it is 

possible to simulate saccade-related responses we would expect to record from these regions 

with an electrode. These were formally very similar to recordings from the homologous 

anatomical regions in the electrophysiological literature. Finally, we showed that anatomically 

motivated computational lesions reproduced the eye movement deficits seen in neurological 

patients. Two important outstanding questions based upon this account of how eye movements 

to a desired target are achieved are ‘how do we decide between alternative saccadic targets?’ 

and ‘how do we map these decisions to desired fixation locations in a continuous space?’ 

These are the focus of the next two sections of this chapter. 
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Decisions 

 

In this section, we take a step back from the mechanics of oculomotion and consider how 

saccadic targets may be selected in the first place. Decisions involve the selection of one from 

several alternatives – in our setting, saccadic targets. As such, (Markov) decision processes 

(see Chapter 2) are a natural form for the generative model because they are defined on discrete 

state spaces, where planning and decision-making may be thought of as disambiguating 

between competing hypotheses about how to act. This perspective on ‘planning as inference’ 

(Attias 2003; Botvinick and Toussaint 2012) implies we must be able to score alternative plans 

according to their prior probability. As outlined in Chapter 2, this may be done by computing 

the expected free energy for each policy (e.g. saccade) and pursuing those policies with the 

lowest expected free energy. In the following, we will unpack the properties of the expected 

free energy in terms of its role in driving exploration and exploitation. We then introduce a 

simple parameterisation of the likelihood and transition probabilities of a Markov decision 

process using a Gibb’s distribution. This affords the opportunity to simply manipulate an 

inverse temperature parameter (or precision) for each of these distributions, augmenting or 

attenuating different sorts of uncertainty. Exploiting this parameterisation, we illustrate 

through simulation how the expected free energy drives exploratory behaviour under different 

sorts of uncertainty. We find that established psychological phenomena emerge from this 

treatment. 

 

Planning as inference 

 

In Chapter 2, we introduced the expected free energy as a means of scoring the prior 

probability of alternative paths (or policies) that we could pursue: 
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The decomposition of the expected free energy in Equation 3.1 lends some intuition as to the 

sorts of policies that are favoured under active inference. The first term in the third line is the 

ambiguity, which quantifies the uncertainty in the mapping between a hidden state and the 

outcome it causes. Low ambiguity would imply a high fidelity in the relationship between the 

two. The second term is the uncertainty associated with predicted outcomes (Hwa 2004; Lewis 

and Gale 1994; Shewry and Wynn 1987). Heuristically, this may be thought of as how 

uncertain I am about what I would see if I looked there. Together, these terms quantify the 

information gain expected on performing a given policy. They appear in a range of fields under 

various names, including Bayesian surprise or salience (Itti and Baldi 2006), intrinsic 

motivation (Biehl et al. 2018; Oudeyer and Kaplan 2007), and as an objective function for 

experimental design (Lindley 1956). The last of these endorses the metaphor of the brain as a 

scientist, seeking to perform those experiments that elicit unambiguous data conditioned upon 

those variables it aims to infer, but avoiding those experiments for which it can already 

confidently predict the data it would be measure. In other words, the best experiments are those 

that address those things about which we are most uncertain (predictive entropy), but only if 

there is a potential to resolve this uncertainty (ambiguity). The final term in the expression 

provides a caveat to the scientific metaphor (Bruineberg et al. 2018). This biases policy 

selection towards those likely to result in preferred data (i.e. those data considered most 

probable a priori). This suggests a trade-off between choosing epistemically valuable 

(exploratory) policies and those policies that fulfil prior preferences (exploitative). In this 

section, we specify all outcomes to be equally preferred, such that the exploratory drive 

dominates. To illustrate how the potential for information gain influences policy selection, we 

manipulate two forms of uncertainty, and simulate the resulting behaviours. 

 

Uncertainty and precision 

 

Biological systems – like ourselves – are constantly faced with uncertainty. Despite noisy 

sensory data, and volatile environments, creatures appear to actively maintain their integrity. 

To account for this remarkable ability to make optimal decisions in the face of a capricious 

world, we propose a generative model that represents the beliefs an agent might possess about 

their own uncertainty. In this section, we address the computational basis for the representation 

of uncertainty by the brain, and its consequences for epistemic behaviour. We focus on two 

sources of uncertainty; uncertainty concerning the temporal evolution of environmental states, 

and uncertainty about the mapping from (hidden) states of the world to sensory observations. 

The first source of uncertainty corresponds to the ‘volatility’ of state transitions, while the 
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second corresponds to sensory noise and ambiguity. The latter has previously been addressed 

in the context of predictive coding, in which sensory precision (i.e., inverse variance) 

modulates the (possibly attentional) gain of ascending prediction errors (Feldman and Friston 

2010). This modulatory effect is a direct consequence of (Bayes) optimal evidence 

accumulation (c.f., the Kalman gain of Bayesian filters in engineering). This formulation of 

attention appeals to the notion of the brain as a statistical organ: an organ that infers the causes 

of its sensations using internal models of how sensory impressions are generated by continuous 

states of the world. Here, we consider the role of precision in discrete state space models. 

To equip our generative model (Figure 2.2) with beliefs about the uncertainty in both the 

transitions of hidden states (i.e., state precision), and the likelihood mapping from hidden 

states to outcomes (i.e., sensory precision), we introduce precision parameters. These are 

inverse temperature parameters, analogous to γ used for the policy prior (Equation 2.15). We 

first augment the likelihood distribution with a sensory precision, ζ: 
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This is a Gibbs measure, commonly expressed as a softmax function, for which the 

denominator is a normalising constant (partition function). In this equation, ζ is the analogue 

of precision in predictive coding formulations of attentional gain (Feldman and Friston 2010). 

Note that each value s can take is associated with its own precision. The same approach can 

be followed to define the precision of state transitions (ω): 
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Having specified a simple means of parametrically changing these precisions, we show 

through simulation that epistemic foraging is heavily influenced by the beliefs an agent has 

about the dynamic and sensory precisions of their environment (Doya 2008). The temporal 

dynamics of visual search, including the phenomenon of ‘inhibition of return’, follow naturally 

from this formulation. The formal contribution of sensory precision to the information gain 

(via the ambiguity) in Equation 3.1 dissolves the ‘dark room problem’ (Friston et al. 2012c) 
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associated with active inference, without needing to invoke additional prior beliefs (Friston et 

al. 2012a). 

 

Simulated visual foraging 

 

To illustrate the influence of beliefs about uncertainty on behaviour, the generative model of 

Figure 3.7 (upper right) was used to simulate epistemic foraging. The generative model 

includes four stimuli, whose identity can change stochastically. These stimuli are mapped, 

noisily, to observable outcomes. Each stimulus is associated with a hidden state that defines 

its identity. An additional hidden state is the current eye position, that determines which of the 

stimuli is observed. This is associated with an identity mapping to a proprioceptive outcome 

indicating the current eye position, in a manner consistent with previous MDP models of 

saccadic eye movements (Mirza et al. 2016). In brief, this means that given the hidden states 

(namely, where the agent looks and the states of the stimulus at that position) one can generate 

probabilistic outcomes (proprioceptive information about where the agent is looking and 

exteroceptive outcomes reporting stimulus identity). 
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Figure 3.7 – Epistemic visual foraging. The upper left part of this figure shows the generic 

structure of the neuronal message passing from Figure 2.2 but highlights the points at which 

the parameters introduced in this section (ζ and ω) influence belief-updating. The likelihood 

precision (ζ) acts to control the gain of the influence of the outcomes (via the A-matrix) on 

prediction errors (ε), and the contribution of the expected ambiguity to the expected free 

energy (via ς). The precision of transitions (ω) determines the influence of beliefs about the 

present on beliefs about the future and vice versa. The upper right schematic shows the form 

of the specific generative model used for these simulations, with 5 hidden state factors (stimuli 

in four locations and eye position) giving rise to proprioceptive and visual data. Each eye 

position is associated with its own likelihood precision parameter, and each of the stimuli is 

associated with its own transition precision. The three plots along the bottom row of this figure 

show simulated eye-tracking traces constructed by solving the MDP for 8 saccades. These 

illustrate uniform saccadic sampling of the stimuli when all locations are associated with equal 

precisions, neglect of stimuli with low likelihood precision, and a bias towards volatile stimuli 

(with low ω). 
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The behaviour observed in the simulations can be explained by referring to the agent’s beliefs 

about policies, and specifically the information gain (epistemic value, or salience) that 

contributes to the expected free energy (Equation 3.1). This says that the greater the expected 

change in beliefs, the lower the expected free energy. For a location associated with a low 

sensory precision (i.e. poor quality visual data), an observation is unlikely to elicit a substantial 

change in the posterior, so a saccade to such a location is less likely to be selected, as is shown 

in the lower left simulation in Figure 3.7. Heuristically, this is why a well-lit room, with precise 

sensory information, is preferable to a dark room; i.e., precise sensory cues that resolve 

ambiguity have greater epistemic affordance and are more likely to be sampled. More 

colloquially, this sort of behaviour recapitulates the joke about the drunkard looking for a lost 

key under a streetlamp (the “Streetlight effect” (Demirdjian et al. 2005)). Notably, the 

drunkards ‘cognitive bias’ is entirely Bayes optimal on an active inference view.  

The greater frequency of saccades to stimuli with a higher volatility (lower right panel of 

Figure 3.7) can be similarly explained. On making an observation at a location and updating 

our beliefs about the hidden state causing it, we should be able to predict with greater 

confidence what we would observe by looking there again. More formally, the posterior 

predictive entropy (see Equation 3.1) will be smaller for this location relative to others. Recent 

observations are thus associated with a lower salience that then gradually increases over time, 

as the probability that the hidden state has transitioned to a new value increases, and is 

associated with a corresponding increase in the contribution of the predictive entropy to the 

expected free energy. In summary, knowing the state of a stimulus is a particular location 

means there is no further information to be gained by sampling that location, and it loses its 

salience. Note that salience is an attribute of both the world and the agent’s beliefs about the 

world. However, if the stimulus can change, the salience of its location will increase slowly 

over time with uncertainty about its current status.  
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Figure 3.8 – Accumulating uncertainty and inhibition of return. This figure shows the 

inhibition of return, quantified by the average number of saccades before revisiting a location, 

under different levels of volatility. This illustrates the point that, as transitions become less 

deterministic, the salience of a location accumulates more rapidly. The plot below highlights 

one of the hidden state factors (one of the four stimuli), and represents the posterior probability 

that it is in one of three states (rows) at each time-step. As in Figure 2.3, black and white 

indicate probabilities of one and zero respectively, while intermediate probabilities are in 

shades of grey. Each column represents a single fixation. The location in question was fixated 

during the times outlined in red. Note the confident inference that the state was 2 during these 

fixations, but the gradual decrease in this confidence between fixations. This location is re-

fixated only when the uncertainty in beliefs has dropped sufficiently that the posterior 

predictive entropy (and consequently salience) exceeds that of alternative fixation locations. 

 

This phenomenon is consistent with the ‘forgetting slopes’ determined by calculating the error 

in reports about a stimulus at different times following presentation (Pertzov et al. 2013), and 

with theoretical analyses of the properties of the synthetic networks used to explain the 

maintenance of working memory signals (Burak and Fiete 2012). The concept of ‘inhibition 

of return’ (Klein 2000; Posner et al. 1985) naturally emerges from this formulation, as an agent 



71 

 

becomes less likely to return to the same location for a temporally limited period following a 

fixation. Figure 3.8 shows the accumulation of uncertainty over time since fixation, and 

illustrates how different levels of volatility influence the duration of inhibition of return. 

Formulating visual foraging in this way means that the ω parameter can be estimated from real 

subjects simply by measuring the length of the inhibition of return. 

 

Summary 

 

In summary, using a very simple but plausible formulation of active inference in the context 

of searching a simple visual scene, we find a natural explanation for two key phenomena in 

visual search; namely the attractiveness of salient, uncertainty reducing target locations and 

inhibition of return that depends upon the volatility of a visual scene. Crucially, both of these 

phenomena are rest on encoding the uncertainty or precision of state transitions and the 

generation of (visual) outcomes from hidden states. These simulations illustrate key aspects of 

the use of expected free energy to score alternative saccadic policies, and to select among 

competing fixation locations. In Chapter 4, we will consider the neuronal (i.e. 

neuromodulatory) encoding of uncertainty and precision. Before doing so, we will attempt to 

synthesise the (discrete-state space) modelling employed in this section with the continuous 

dynamics outlined at the start of this chapter. In other words, the final section of this chapter 

will deal with the reciprocal interaction between inferring where to look, and how to look 

there. 

 

From decisions to movements – and back again 

 

The nervous system faces a dual challenge in shaping behaviour. To induce changes in the 

external world, it is necessary to contract muscles or to secrete chemicals. Such processes 

necessarily involve the manipulation of continuous variables; muscle length or chemical 

concentration. In addition, animals must make decisions. To do so, they must entertain several 

different possible courses of action, or ‘policies’. Ultimately, they must select one of these 

actions or policies that are necessarily discrete. We draw upon recent work that considers the 

interactions between the neuronal processing of discrete and continuous quantities (Friston et 

al. 2017c). To make this more concrete, and consistent with the discussion so far, we focus on 

the oculomotor system. As outlined in the preceding sections, sampling the visual world entails 
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making decisions about where to look, and implementing these decisions by contraction of the 

extraocular muscles. 

We use perceptual inference performed by the networks supporting eye movements as a way 

of motivating and illustrating the theoretical challenge we want to address. However, the 

treatment offered below generalises to any system that involves the physical implementation 

of categorical decisions. The ideas presented in this section complement previous treatments 

of cognitive time (VanRullen and Koch 2003) including the notion of a ‘perceptual moment’ 

(Allport 1968; Shallice 1964; Stroud 1967), and the suggestion that brain oscillations act as 

discrete clocks to support this type of computation (Buschman and Miller 2009; Buschman 

and Miller 2010b). They also resonate with recent developments in machine learning 

(Linderman et al. 2017) and some of the problems faced in modern robotics (Cowan and 

Walker 2013; Schaal 2006). In short, the coupling of categorical decision making and dynamic 

perception (and motor control) raises some deep questions about the temporal scheduling of 

perception (and action). 

Oscillatory rhythms in measured brain activity have been linked to cyclical perceptual 

processes (Buzsaki 2006), with theta and alpha cycles as the most popular hypothesised units 

of perceptual time (VanRullen 2016). In endorsement of this, the timing of processing relative 

to the phase of certain oscillations appears to be important (Buzsáki 2005). While there is some 

controversy concerning the frequency of the perceptual clock, an advantage to focusing on the 

oculomotor system is that we can evade this issue. The frequency of spontaneous saccadic 

sampling is around 4 Hz, allowing us to commit to a theta rhythm. Conveniently, this is the 

frequency often associated with attentional and ‘central executive’ (decision) functions 

(Chelazzi et al. 1993; Duncan et al. 1994; Hanslmayr et al. 2013; Landau and Fries 2012; 

VanRullen 2013), as opposed to sensory processes associated with faster frequencies (Drewes 

and VanRullen 2011; Dugué et al. 2011; Ergenoglu et al. 2004; van Dijk et al. 2008).  

As reviewed in Chapter 1 (and (Parr and Friston 2017a)), the oculomotor system is a 

distributed network that includes brainstem, cortical, and subcortical regions. An important 

point of contact between the cortical oculomotor networks and those in the brainstem is the 

superior colliculus (Raybourn and Keller 1977), found in the midbrain. This structure receives 

a dual input from the cortex (Fries 1984) and the basal ganglia (Hikosaka and Wurtz 1983), 

and provides an important input to the brainstem oculomotor nuclei. In the following, we argue 

that the connectivity implied by active inference is consistent with a role for the superior 

colliculus as an interface between the discrete and continuous processing of the oculomotor 

system.  
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The inference problem addressed here is summarised in the Bayesian network of Figure 3.9, 

which extends the network of Figure 3.1 through the addition of a sequence of discrete (target) 

states that depends upon a (saccadic) policy. We first address the problem of translating 

between categorical and continuous random variables (Friston et al. 2017c), appealing to a 

technique known as ‘Bayesian model reduction’ (Friston et al. 2018; Friston et al. 2016c). We 

then consider the anatomical structures that could implement the requisite belief-updating and 

simulate a simple saccadic task that employs a mixed (MDP-Bayesian filter) generative model. 

 

 

 

Figure 3.9 – From decisions to eye movements. This graphical model extends that shown in 

Figure 3.1 through the addition of an MDP structure describing a sequence of saccadic targets 

(s). At each time-step, these generate a target location in continuous space (v). The 

conditioning of continuous states upon discrete states is similar to the approach of a Gaussian 

mixture model, of the sort that underwrites clustering algorithms. This effectively treats each 
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discrete state as an alternative hypothesis, where each hypothesis is associated with a mean 

and precision (for simplicity, we assume that all of these hypotheses differ only in their means). 

The consequence of this is that the anticipated (prior) target fixation (v) is constructed through 

a weighted average of the means under each hypothesis, weighted by the probability of the 

discrete state associated with that hypothesis. This accounts for the influence of the discrete 

model over the continuous. To account for the reciprocal influence from the continuous to 

discrete, we can again appeal to the perspective of comparing hypotheses. This means we can 

compute the evidence the continuous model affords to each discrete hypothesis, and use this 

to form a posterior belief about the alternative targets that could have been chosen. 

 

Bayesian model reduction 

 

An MDP outcome – representing fixation location – corresponds to one of several discrete 

saccadic targets, defined in continuous coordinates (v). If we associate each target location 

with the attracting (fixed) points of some continuous oculomotor dynamics, the prediction 

from the MDP effectively defines an equilibrium point that will attract the subsequent eye 

movement; c.f., the equilibrium point hypothesis (Feldman 2009). If there is some uncertainty 

about the particular location of the target, we can specify the predicted target location through 

a Bayesian model average of each location associated with a discrete outcome hypothesis: 
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To recap, we have specified both discrete and continuous state space models. We have now 

supplemented these with Equation 3.4, which dictates how predictions of the former model 

can play the role of (empirical) prior beliefs in the latter. The next thing to specify is the process 

by which the continuous state space model informs the discrete model. In other words, what 

sort of evidence is passed from the continuous to the discrete part of the (active) inference 

scheme? In brief, the discrete part of the generative model provides prior constraints on the 

continuous part, while the continuous part reciprocates with Bayesian model evidence for the 

discrete hypotheses entertained by the discrete part to enable Bayesian belief updating. This 

updating entails the selection of alternative hypotheses (outcomes) that constitute empirical 

priors at the continuous level.  
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To adjudicate between these hypotheses, we need to compute the posterior probabilities over 

each outcome (e.g., target fixation). We give an abbreviated outline of this (Bayesian model 

reduction) procedure here: for more technical accounts, please see (Friston et al. 2018; Friston 

et al. 2016c). Given that the only difference between the models entailed by each discrete 

hypothesis is in their priors, we can write Bayes’ rule for a full model, and for a ‘reduced’ 

model which assumes outcome m but has the same likelihood distribution. Dividing the terms 

on either side of the equality for the reduced model by the analogous terms for the full model 

(such that the likelihood cancels), we have: 
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We can replace the posteriors here with those that we compute using the Bayesian filtering 

approach outlined above. Rearranging this, we get: 
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Integrating both sides with respect to the hidden cause gives: 
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As the free energy approximates the negative log evidence, this can be rewritten as: 
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Notably, this means that the free energy for any hypothesis, m, can be calculated from the free 

energy of the full model without having to explicitly compute the posteriors associated with 

the latent variables in m. This is slightly technical point that, from a computational perspective, 

affords a very simple and efficient form of Bayesian model comparison. In other words, the 

evidence for different hypotheses or models at the discrete level can be computed directly and 

easily from the sufficient statistics of posterior beliefs encoded at the continuous level. In terms 

of neurobiology, Equation 3.8 speaks to the biological plausibility of message passing from 

the continuous to discrete domains. 

To convert the evidence for each model back to discrete time, we integrate the model evidence 

(free energy) over the time period corresponding to one theta cycle. This is then combined 

with the prior over the model to give a vector (L) that can be passed through a softmax function 

to give the posterior over each outcome model, r (Friston et al. 2017c). This plays the role of 

a discrete observation or outcome from the point of view of the MDP (see Figure 3.10). This 

concludes our technical description of message passing between discrete and continuous parts 

of a generative model. A worked example of how this sort of could work in the brain is 

provided in the final section (using the update equations in Figure 3.10). To motivate the 

interpretation of these simulations we now consider the basic neurobiology of the oculomotor 

system and how its computational architecture could support inference of this sort. 

 

The neuroanatomy of oculomotion 

 

 

Figure 3.10 – The anatomy of oculomotion. This schematic illustrates the dependencies 

between the variables in the equations described in the main text, and summarised on the left. 
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It does so in the form of a neural network with populations of neurons assigned to plausible 

anatomical locations. There is a remarkable degree of neuroanatomical plausibility to these 

assignments; including a common laminar origin for cortical projections to the striatum, 

superior colliculus, and higher order thalamic nuclei. In addition, a dual cortico-subcortical 

input to the colliculus is necessitated by this scheme, as are the excitatory-inhibitory 

connections of the direct pathway through the basal ganglia. The equations in the box on the 

upper left describe marginal message passing in a Markov Decision Process. The lower box 

gives the Bayesian filtering equations of the sort usually associated with predictive coding. 

The middle box expresses the descending messages derived from Bayesian model averaging, 

and the ascending messages that result from model reduction. In previous papers, we show 

that this is likely to be represented in the mapping from higher cortical areas (Friston et al. 

2017f), such as the dorsolateral prefrontal cortex – an area that houses representations that 

endure over a longer temporal scale (Parr and Friston 2017d) and connects to the frontal eye 

fields. 

 

In the above, we described the problem the brain faces in making discrete decisions about 

where to look and the continuous inferences required to realise and update these decisions. We 

outlined the computations mandated by active inference in solving these problems, with a 

special focus on the message passing between discrete and dynamic domains. In this section, 

we associate these computations with their neurobiological substrates. While this assignment 

is speculative, it is constrained by both the anatomy of message passing and the presence (or 

absence) of connections in the brain. Figure 3.10 shows the consistency between the 

computational anatomy of oculomotion and the networks known to support oculomotor 

function. In the following, we describe the cortical, subcortical, and brainstem components of 

this network (Parr and Friston 2017a). This section concludes with an analysis of the superior 

colliculus, a structure uniquely placed to translate discrete decisions into target locations in a 

continuous state space. 

 

The cerebral cortex is a laminar structure, with layer specific projections and terminations 

(Felleman and Van Essen 1991). The connectivity implied by inference using a Markov 

decision process closely resembles this pattern (Friston et al. 2017f). Specifically, the 

inference scheme we described above involves several distinct types of variable that receive 

messages from a subset of the other variables. This implies a stereotyped pattern of 

connectivity between these groups (or layers) of computational units. Consistent with cortical 

laminae, external input targets only one layer. Outputs of different types arise from defined 
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populations. In this section, we use known neuroanatomy to constrain the assignment of 

computational units to their appropriate laminae. 

 Layer IV of the cortex receives ascending connections from lower areas (Shipp 2007), or from 

first order thalamic nuclei. The computational units that receive this input are the error units 

(ε), suggesting that these occupy this layer. This also implies that r, the subcortical projection 

to layer IV, is likely to be represented by neurons in first order thalamic relay nuclei, such as 

the lateral geniculate nucleus (Herkenham 1980). Layer III gives rise to ascending 

connections. These are not shown here, but would arise from neurons encoding the state (s) at 

that hierarchical level (Friston et al. 2017f). For simplicity, we consider a single cortical area 

– the frontal eye field – omitting the parietal (Corbetta et al. 1998; Gaymard et al. 2003; Parr 

and Friston 2017b; Shipp 2004) and occipital (Bruce and Tsotsos 2009) contributions to this 

system. 

Layer V of the cortex has several subcortical targets (Kasper et al. 1994; Ojima et al. 1996). It 

is the layer that houses the pyramidal cells of Betz in the motor cortex that project to lower 

motor neurons in the spinal cord. In addition, layer V gives rise to projections to the second 

order thalamic nuclei, such as the pulvinar, the superior colliculus, and the basal ganglia (Fries 

1985; Hübener and Bolz 1988; Shipp 2007). As Figure 3 shows, units encoding predicted 

outcomes (o) send messages to all of these anatomical homologues. They participate in the 

evaluation of the expected free energy in the striatum, the model averaging of continuous time 

models by the superior colliculus, and Bayesian model reduction by the thalamus. That the L 

units of the thalamus receive cortical projections from layer V suggests that these neurons 

must be located in second order thalamic nuclei (Crick and Koch 1998; Rockland 1998; 

Sherman 2007). 

As noted above, the basal ganglia receive input from cortical layer V, encoding predictions 

about discrete outcomes. This input, in addition to a signal from the error units (ς), is used to 

compute the expected free energy (G) for each policy. The basal ganglia are well recognised 

to be involved in policy evaluation (Gurney et al. 2001; Jahanshahi et al. 2015). Most of the 

cortical inputs to the basal ganglia target the striatum (Alexander and Crutcher 1990; Shipp 

2017), implying the expected free energy is represented by medium spiny neurons in this 

structure. These give rise to inhibitory GABAergic projections to the substantia nigra pars 

reticulata, which itself projects to the superior colliculus (Hikosaka and Wurtz 1983). This 

‘direct pathway’ connectivity is remarkably consistent with the influence of G on π, and π on 

εv. The latter influence is in the Bayesian model averaging over expected outcomes to generate 

a prior mean (η) for the implementation of the policy in continuous time. The output nuclei of 

the basal ganglia participate in an additional Bayesian model averaging of hidden states. This 
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is mediated by modulatory projections (via thalamic relays) to superficial layers of the cortex 

(Haber and Calzavara 2009; McFarland and Haber 2002). 

The brainstem is the source of the cranial nerves to the extraocular muscles. This suggests that 

brainstem structures engage in continuous message passing. We have previously demonstrated 

that the anatomy of this message passing is not only consistent with the connectivity of the 

brainstem, but also that it reproduces electrophysiological responses in these structures, and 

the same deficits as in neurological patients when lesioned ((Parr and Friston 2018a), and 

Figure 3.6). In addition, these nerves carry proprioceptive information from the muscles 

(Cooper and Daniel 1949; Cooper et al. 1951), while the midbrain receives optic nerve fibres 

from the retinotectal pathway (Linden and Perry 1983). Given beliefs about the current 

position and velocity of the eyes (μx), it is possible to make predictions about the resulting 

sensory input (Adams et al. 2012; Friston et al. 2012a; Perrinet et al. 2014). This induces a 

sensory prediction error (εy) that is minimised by action. This implies that the midbrain and 

pontine nuclei responsible for signals to the extraocular muscles must contain neurons that 

broadcast these errors. As the brainstem nuclei form the nodes of the network engaged in 

continuous inference, they must receive input from the region mapping decisions into this 

space. The obvious candidate for this region is the superior colliculus. 
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Figure 3.11 – The discrete-continuous interface. This schematic shows the connectivity 

between the neuronal populations in the superior colliculus in greater detail. The transverse 

section through the midbrain allows us to depict the terminations in the optic tectum from the 

optic nerve. We also illustrate the topographical arrangement of the fixation (rostral pole) and 

build-up (distributed throughout) cells, and the connectivity between these implied by our 

formulation. Note that burst neurons are the most dorsal, with build-up neurons found more 

ventrally. As the schematic shows, this would be consistent with the proposed extrinsic 

(between regions) connectivity, as each population is oriented towards the regions it is 

connected to. The intrinsic (within region) connectivity between build-up and fixation neurons 

is shown on the right, conforming to the known retinotopy of the colliculus (Paré et al. 1994; 

Quaia et al. 1998). The angles indicate the coordinates of the visual field represented at each 

point in the colliculus. 

 

The superior colliculus is the interface between the forebrain and brainstem networks. It is the 

recipient of cortical (Hanes and Wurtz 2001) and basal ganglia projections (Hikosaka and 

Wurtz 1983) (Figure 3.11), and is intimately connected to the oculomotor system within the 

brainstem (Sparks 2002). As such, it sits at the anatomical boundary between the discrete and 

continuous networks. It is found in the dorsal midbrain, at the same level as the oculomotor 
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nucleus. Like the cortex, it is a laminar structure, with different electrophysiological responses 

in different subsets of cells. As outlined in the first part of this chapter (and in Chapter 1), there 

are three broad groups of these neurons, as illustrated in Figure 3.11. These are the ‘burst’, 

‘fixation’, and ‘build-up’ cells (Ma et al. 1991; Munoz and Wurtz 1995a). To recap, we argued 

above (Parr and Friston 2018a) that these groups correspond to three different types of 

computational unit (Figure 3.4). Burst cells, which fire at the start of a saccade, have the 

properties we would expect from neurons signalling visual prediction error (εy). This is 

consistent with the fact that a subset of retinal ganglion cells synapse within the colliculus, and 

that some collicular cells respond to visual stimuli (Mays and Sparks 1980; Wurtz and Mohler 

1976). Fixation neurons are active during fixations, and we have associated these with the 

expectation neurons encoding target fixation locations (μv). Consistent with the computational 

anatomy of Figures 3.10 and 3.11, it is this group that projects to the brainstem centres for 

saccade generation (Gandhi and Keller 1997). 

Build-up neurons show a pattern of activation consistent with a population encoding 

(Anderson et al. 1998; Lee et al. 1988). A travelling ‘hill’ of excitation moves from a peripheral 

location towards the rostral pole of the colliculus during a saccade (Munoz and Wurtz 1995b). 

At a population level, these neurons can be thought of as expressing a prediction error between 

a target fixation and the current eye position (εv) (Sparks 1986). The movement towards the 

pole, representing the foveal location, can be thought of as encoding the reduction in prediction 

error as the eye moves closer to its target. That this occurs at the population level suggests that 

build-up neurons individually code for discrete spatial regions.  

The discretised encoding of continuous variables by these units is consistent with their 

computational role, evaluating the difference between η, parameterising competing 

hypothetical models, and the estimated position in continuous coordinates, μv. Specifically, 

each neuron may encode the prediction error associated with a particular hypothesis, with 

activity weighted by the prior probability of that hypothesis (o). The conversion from discrete 

to continuous coordinates then simply requires that the connection strengths between these 

neurons and the fixation neurons at the pole vary with distance. The inhibitory connections 

(Munoz and Istvan 1998) from build-up to fixation neuron should be of a greater strength if 

the anatomical distance between the two is greater. In summary, electrophysiological 

properties corroborate the neuroanatomical evidence that the superior colliculus is the discrete-

continuous interface of the oculomotor system, and the topography of build-up and fixation 

neurons hints at the computational mechanisms that map between them. In the final section, 

we use the neurobiological pointers established in this section to interpret simulated 

oculomotor control in terms of established electrophysiological responses in the oculomotor 

system. 
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Simulated electrophysiology 

 

Our aim in performing these (minimal) simulations is to illustrate the interactions between the 

discrete and continuous domains of the oculomotor system. As such, we chose a simple 

behavioural paradigm: there are three possible fixation locations (left, right, and centre). We 

then set the prior preferences (through the C matrix); so that proprioceptive data is preferred 

that is consistent with central fixation initially, then with leftward fixation, rightward fixation, 

and finally central fixation again. This is consistent with the instruction to look at a sequence 

of targets at each of these locations. The structure of the model we used is as depicted in Figure 

3.9. The continuous part employs the belief that the eyes are drawn towards an attracting 

location, and this is implemented by an action that has the effect of a Newtonian torque, as in 

the model used in the Movement section of this chapter above. 

Figure 3.12 shows the results of simulating active vision in this model. Crucially, this type of 

simulation allows us to show what is happening at different neuroanatomical locations 

simultaneously, and gives a sense of the functional interaction of these areas. The results are 

presented in the form of raster plots, as if we had recorded from single neurons in each of the 

simulated brain areas. Representations in the cortex and basal ganglia update on a theta cycle 

(4Hz), while superior colliculus build-up cells translate this into continuous time for collicular 

fixation neurons. These induce (via brainstem circuits) changes in eye position, as shown in 

the simulated electro-oculography trace. Note that these neurons vary continuously with eye 

position, unlike the neurons in the discrete compartments – that encode the probability of an 

alternative fixation point. 

Intuitively, we can see how the mapping from discrete to continuous occurs. At 250 ms, the 

cortex updates its representations. These cause the expected free energy under each policy to 

change, inducing updates in the striatum. Through the direct pathway, this causes inhibition in 

the substantia nigra pars reticulata, resulting in the selection of a new policy (‘look right’). A 

Bayesian model average over outcomes then results in the selection of superior collicular 

build-up neurons that represent the error between the current belief about eye position (given 

by the fixation neurons) and the anticipated rightward location. These then induce changes in 

the fixation neuron activity. During the next 100 ms, as the eyes move to fulfil this belief, we 

can see the resolution of the prediction error in the superior colliculus build-up layer through 

the movement of the ‘hill’ of activity towards the pole. 
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Figure 3.12 – Simulated electrophysiological responses. This figure shows the 

electrophysiological responses we would expect to observe under the process theory 

associated with active inference. On the left, we show neuronal firing rates (representing 

approximate posterior beliefs), depicted in the form of a raster plot. These are synchronised 

across all of the neurons shown. Darker colours indicate a greater firing rate. In the cortex 

(frontal eye field), we show neurons representing the possible fixation targets. The first three 

rows indicate the neurons representing left, centre, and right, at the first discrete time step (τ = 

1). These three options are then replicated in the next three rows, but reporting the second time 

step. The third and fourth steps are similarly represented. In the striatum, direct pathway 

medium spiny neurons (dMSN) represent the expected free energy of each of the three policy 

options (saccade right, saccade centre, and saccade left). These then inhibit their corresponding 

neurons in the substantia nigra pars reticulata that represent the posterior beliefs about these 

policies. Note the inversion of striatal activity in the substantia nigra as a result of this 

inhibition. We show the activity of a superior collicular (SC) ‘fixation’ neuron to illustrate 

neuronal firing representing a continuous variable, with the horizontal electro-oculography 

trace below to depict the movement of the eyes. The right panel shows simulated activity 

across the superior collicular ‘build-up’ layer during a saccade, with the corresponding eye 

positions. Population activity is depicted in terms of a Gaussian intensity where the distance 

between the mean and the collicular pole is equal to the prediction error (as in (Parr and Friston 

2018a)). 
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Summary 

 

The approach we have described here is capable of reproducing a wide range of physiological 

and behavioural phenomena in the oculomotor system. Specifically, we have shown that the 

signals we have simulated bear a close resemblance to those measured in brainstem nuclei 

(Parr and Friston 2018a). Most strikingly, we found that simulated collicular ‘build-up’ neuron 

responses qualitatively reproduced single unit recordings published in the experimental 

literature (Munoz and Wurtz 1995b). In addition to these electrophysiological similarities, 

lesions to these models induce similar behavioural syndromes to those found in neurological 

patients with damage to the associated neuroanatomy. By disrupting neuronal message passing 

(i.e. inducing ‘disconnection’ syndromes (Geschwind 1965b)), we can simulate visual neglect 

(Chapter 5 and (Parr and Friston 2017b)) and internuclear ophthalmoplegia (Figure 3.6 and 

(Parr and Friston 2018a)). The white matter disconnections associated with these syndromes 

are the superior longitudinal fasciculus (Doricchi and Tomaiuolo 2003) and the medial 

longitudinal fasciculus (Virgo and Plant 2017) respectively. The locations of these synthetic 

lesions constrain the computational anatomy, and their nature endorses the notion that the brain 

engages in variational inference. 

More generally, models based upon active inference have a high degree of face validity, in 

that they reproduce a wide range of neurobiological phenomena. These range from single cell 

responses, including place fields (Friston et al. 2017a) and midbrain dopamine activity (Friston 

et al. 2014), to evoked responses, including those associated with classic working memory 

tasks (Parr and Friston 2017d). They have been used to generate behaviours as diverse as 

exploration (Friston et al. 2015b; Mirza et al. 2016), handwriting (Friston et al. 2011), eye-

blink conditioning (Friston and Herreros 2016), habit formation (FitzGerald et al. 2014), 

communication (Friston and Frith 2015), and insight (Friston et al. 2017b). In addition to these 

theoretical accounts, active inference has been used pragmatically to model behaviour and to 

characterise individuals according to the parameters of their prior beliefs (Adams et al. 2016; 

Mirza et al. 2018; Schwartenbeck and Friston 2016).  

Given this broad applicability, the issues described in this chapter generalise beyond eye 

movements. Any neurobiological system that needs to make decisions and implement these 

via some physical effector must solve the problem we have described here. This is vital for 

(but not exclusive to) speech, locomotion, and autonomic regulation. Language is made up of 

discrete units (phonemes, words, sentences) that are expressed as continuous changes in 

auditory frequencies generated by contraction of the laryngeal (and pharyngeal) muscles 

(Simonyan and Horwitz 2011). Walking involves taking a series of discrete steps, each of 
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which requires a careful coordination of skeletal muscles (Ijspeert 2008; Winter 1984). 

Interoceptive states are frequently divided into discrete dichotomies including fed versus 

fasting (Kalsbeek et al. 2014; McLaughlin and McKie 2016; Roh et al. 2016), diastole versus 

systole, sympathetic versus parasympathetic (McDougall et al. 2014; Owens et al. 2018). Each 

of these induces continuous changes in enzyme activity, blood pressure, or smooth muscle 

contractions. The form of the message passing will be very similar for each of these processes, 

but the variables represented will differ. This suggests a similar pattern of cortico-subcortical 

connectivity, but differing regions of cortex, and different subcortical components.  

In this chapter, we have chosen to focus on a fairly concrete problem – deciding where to look, 

and how to do this. For more abstract decisions, perhaps at higher hierarchical levels in the 

brain (Badre 2008; Badre and D'Esposito 2009; Christoff et al. 2009; Rasmussen 1985), it may 

be necessary to integrate beliefs across multiple modalities. A challenge for future work is to 

incorporate the set of beliefs that constitute an emotional state, as emotions are often thought 

to contribute to ‘irrational’ behaviours. It is not always easy to intuit how such behaviours 

might be Bayes optimal. One line of research into these issues frames them as questions about 

interoceptive inference (Ondobaka et al. 2017; Seth 2013; Seth and Friston 2016). Given 

beliefs about (abstract) variables that have both interoceptive and exteroceptive sensory 

consequences (Allen et al. 2019), it becomes clear that policies must minimise expected free 

energy in both domains. For example, a belief that a predatory animal is present implies that 

the sympathetic nervous system should be active, but also that visual data are consistent with 

the presence of said animal. Anatomically, these dependencies are consistent with the sensory 

and autonomic targets of the amygdala (LeDoux et al. 1988; Ressler 2010). A tachycardia then 

carries (weak) evidence for the presence of a scary animal, and could influence policy selection 

even in the absence of exteroceptive evidence. This suggests a framework in which an 

emotional state may influence decision making in an apparently irrational way that is entirely 

compatible with the formulation we have described here. 

We hope to further the ideas in this work both theoretically and empirically. There are several 

important theoretical issues that will need to be addressed in greater depth than we have space 

for here. Among these is the need for a generalisation of the inferences required for oculomotor 

decisions (and their motoric implementation) to other systems. While the ideas we have 

presented are generally applicable, it will be necessary to specify the generative models 

required to solve locomotive, autonomic, and abstract decision making problems. Finally, 

although the computational anatomy we have proposed has a high degree of face validity, it 

will be necessary to establish its predictive validity. One way to do so would be to use 

computational fMRI (Schwartenbeck et al. 2015b), fitting this model to oculomotor behaviour, 

and looking for brain regions that show activity patterns consistent with the simulated neuronal 
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responses. One might hypothesise that these regions will match the computational anatomy 

illustrated in Figure 3.11. An alternative would be to use single unit responses from each brain 

area, recorded during an oculomotor task. One could then compare each simulated neuronal 

response to each recording, and construct a confusion matrix of the evidence for each synthetic 

signal in each region. We would expect a greater evidence for each signal that we have 

associated with each region above. We will see an example of this approach later. 

 

Conclusion 

 

In this chapter, we have described the discrete and continuous message passing that must be 

performed in an oculomotor system that realises a sequence of saccadic fixations. We have 

illustrated the remarkable consistency between the message passing implied by active 

inference and the anatomy of the oculomotor system. This accounts for several 

neuroanatomical observations, including the dual input from frontal eye fields and the 

substantia nigra to the superior colliculus, and the common laminar origin of axons that target 

the striatum, second order thalamus, and midbrain tectum. Finally, we simulated 

electrophysiological responses as saccadic targets are selected, and as the eyes move to 

implement that saccade. This shows, functionally, how the superior colliculus is uniquely 

positioned to act as the interface between the discrete and continuous oculomotor systems. 

Over the next few chapters, we exploit and extend aspects of the generative model used here. 

In Chapter 4, our focus is on the precision parameters introduced in the Decisions section of 

this chapter, and their biological (neuromodulatory) substrates. In Chapter 5, we discuss 

optimisation of the parameters of a generative model (i.e. learning), the novelty seeking this 

induces, and investigate the physiology of this using magnetoencephalography.  
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 4 - Precision and neuromodulation 

 

Introduction 

 

In the previous chapter, our focus was on the behaviour that emerges from a given generative 

model architecture. However, the effective circuitry of the brain depends upon more than just 

its structural makeup. In this chapter13, we build upon the notion of precision (introduced in 

Chapter 3) and consider how neuromodulatory influences can change the way in which a 

structurally similar generative model may behave very differently when the precision of 

different distributions is altered. This has important consequences for understanding synaptic 

pathologies and the neuromodulatory influences of pharmacological interventions. In the first 

(Precision and pathology) section of this chapter, we specify the message passing required for 

updating of precision parameters, hypothesise biological substrates for these, and illustrate this 

belief-updating in some simple scenarios. In doing so, we illustrate how pathological prior 

beliefs may render a model (or a brain) insensitive to informative sensory data. Through 

introducing a hierarchical model, we illustrate how pathological priors of this sort could occur. 

The phenomena that emerge from this could provide a useful way of looking at the distributed 

changes that occur in response to a pathological insult, and we illustrate this in relation to the 

visual hallucinations that sometimes result from synucleinopathies affecting the temporal 

lobes. The second section of this chapter (Computational pharmacology) takes a similar sort 

of approach, going from a biological (or therapeutic) perturbation to its associated 

computational perturbation and consequences for behaviour. This involves a series of synthetic 

pharmacological manipulations to the oculomotor model of Chapter 3 that provides additional 

face validity to the account of neuromodulation presented here and offers a computational 

mechanism for oculomotor biomarkers of therapeutic effects. 

 

Precision and pathology 

 

Accurate perceptual inference fundamentally depends upon accurate beliefs about the 

reliability of sensory data. In this section, we describe a Bayes optimal and biologically 

plausible scheme that refines these beliefs through a gradient descent on variational free 

 
13 This chapter uses material adapted from (Parr et al. 2018a; Parr and Friston 2017c; Parr and Friston 

2019b) 
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energy. To illustrate this, we simulate belief updating during visual foraging and show that 

changes in estimated sensory precision (i.e. confidence in visual data) are highly sensitive to 

prior beliefs about the contents of a visual scene. In brief, confident prior beliefs induce an 

increase in estimated precision when consistent with sensory evidence, but a decrease when 

they conflict. Prior beliefs held with low confidence are rapidly updated to posterior beliefs, 

determined by sensory data. These induce much smaller changes in beliefs about sensory 

precision. We argue that pathologies of scene construction may be due to abnormal priors, and 

show that these can induce a reduction in estimated sensory precision. Having previously 

associated this precision with cholinergic signalling, we note that several neurodegenerative 

conditions are associated with visual disturbances and cholinergic deficits; notably, the 

synucleinopathies. On relating the message passing in our model to the functional anatomy of 

the ventral visual stream, we find that simulated neuronal loss in temporal lobe regions induces 

confident, inaccurate, empirical prior beliefs at lower levels in the visual hierarchy. This 

provides a plausible computational mechanism for the loss of cholinergic signalling and the 

visual disturbances associated with temporal lobe Lewy body pathology. 

 

Inferring uncertainty 

 

Just as we previously defined prior beliefs for hidden states and policies, we can also do the 

same for the parameters of the conditional probability distributions that make up the generative 

model. Appealing to the Gibbs parameterisation of Equations 2.15, 3.2, and 3.3, we can 

express the following prior beliefs about the precisions (inverse temperatures) associated with 

the likelihood (ζ), transition probability (ω), and prior over policies14 (γ): 
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14 For the purposes of this section, we assume the E term in Equation 2.15 is uniform (i.e. the 

prior over policies is determined exclusively by the expected free energy), noting that the 

results presented here may be simply extended to incorporate this.  
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The posterior probabilities are assumed to have the same form, and are distinguished using a 

bold β. These gamma distributions have the useful property that there is a very simple form 

for the expectation: 
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Appendix A.4 derives the variational updates required for estimating the posterior probabilities 

of these parameters. The result takes a relatively simple form: 
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Equation 4.3 prescribes intuitively sensible updates to the precision parameters. These depend 

upon a dot product between an error (the difference between the prediction based upon current 

beliefs about precision and the inferred or observed value) and the log probability assuming a 

precision of one. If this dot product is positive, this suggests overconfidence, and leads to an 

increase in β, with the corresponding decrease in its reciprocal (the expected precision). The 

relative simplicity of these equations speaks to their neurobiological plausibility.   

 

Neuromodulatory systems 
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Having derived Bayes optimal updates for these parameters, we can now simulate creatures 

who infer the precision of its environment, in terms of both likelihood mappings and state 

transitions. To interpret these simulations, it is worth considering the likely biological 

substrates of these dynamics. Table 4.1 summarises the evidence implicating various 

neuromodulatory systems in these inferences. This suggests a role for noradrenaline in 

signalling ω, and for acetylcholine in signalling ζ. This implicates connectivity between the 

cortex and the noradrenergic and cholinergic systems in mediating the updating of Equation 

4.3. These systems are related to cortical areas via the cingulum, and the dorsal noradrenergic 

bundle. Damage to the latter has been linked to deficits in epistemic behaviour (Mason and 

Fibiger 1977; Wendlandt and File 1979) and attentional set-shifting (Tait et al. 2007). 

Disruption of the dorsal noradrenergic bundle has also been associated with impaired 

extinction of a conditioned stimulus (Fibiger and Mason 1978), perhaps reflecting a 

representation of very low volatility.  

If volatility is signalled by noradrenaline, the networks computing this quantity should interact 

with the locus coeruleus, a noradrenergic brainstem nucleus that projects to much of the cortex 

(Berridge and Waterhouse 2003). Anterograde tracing has demonstrated that the prefrontal 

cortex is a source of projections to the locus coeruleus (Arnsten and Goldman-Rakic 1984). 

Pharmacological manipulations (Sara and Hervé-Minvielle 1995) show that these projections 

influence the activity of brainstem noradrenergic neurons. Specifically, inactivation of frontal 

regions causes a sustained increase in locus coeruleus firing. This makes these regions good 

candidate sites for the computation of volatility. Given the close association between central 

noradrenaline and pupillary diameter (Koss 1986), the dynamics of the Bayesian updates given 

here can be incorporated into an MDP based generative model of pupillary data, first to 

establish the validity of the updates as a description of noradrenergic signalling, and then as 

part of an generative model of empirical responses that can be elicited experimentally 

(Schwartenbeck and Friston 2016). While outside the scope of this thesis, we pursued this 

pupillometric approach (Vincent et al. In press), using a convolutional linear model to 

demonstrate evidence in favour of models that incorporate updates in ω in explaining pupillary 

responses. This complements other computational approaches in understanding the role of 

noradrenaline (Nassar et al. 2012).  

Prefrontal regions also project to the basal forebrain (Zaborszky et al. 1997), the primary 

source of cholinergic projections to the cortex. To reach the cortex, fibres from the basal 

forebrain pass the corpus callosum rostrally, before joining the cingulum (Eckenstein et al. 

1988). Cholinergic axons leave this white matter bundle to diffusely innervate the cerebrum. 

The resemblance between the update equations for each precision parameter suggests that 

sensory precision can be calculated in a manner analogous to volatility, with outcome 
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prediction errors in sensory areas propagated to frontal regions that calculate the required 

update in this precision. This must then be communicated to the nucleus basalis of Meynert; a 

forebrain nucleus that provides a cholinergic signal to sensory cortices. This view of the 

cholinergic system is endorsed by several empirical observations. First, nicotinic acetylcholine 

receptors are found on the presynaptic terminals of cells in layers 3 and 4 of the cortex (Lavine 

et al. 1997; Sahin et al. 1992). These laminae are the targets of sensory relays from the 

thalamus (Shipp 2007). Secondly, cholinergic manipulations modulate the gain of visually 

evoked responses (Disney et al. 2007; Gil et al. 1997). This renders it almost tautologically 

true that one of the roles of acetylcholine is to modulate the precision of (some types of) 

sensory input, as precision and gain are mathematically identical.  Finally, in both behavioural 

(Marshall et al. 2016) and neuroimaging (Moran et al. 2013b) studies in humans that explicitly 

test the association between precision and acetylcholine, differences following cholinergic 

manipulations are best accounted for by altered precision.  

The association between computational parameters and neuromodulatory systems is important 

in understanding the sorts of pathology that arise from failures of neuromodulatory precision 

control. The disruption of the dopaminergic modulation of policy precision can result in 

disease states, including Parkinson’s disease (Frank 2005; Friston et al. 2014; Galea et al. 

2012), and schizophrenia (Adams et al. 2013b; Goldman-Rakic et al. 2004; Howes and Kapur 

2009). Similarly, the neurotransmitter systems associated here with sensory precision and 

volatility are disrupted in a range of neuropsychiatric disorders. Depletion of acetylcholine is 

associated with Alzheimer’s disease (Lombardo and Maskos 2015; Whitehouse et al. 1981), 

while disruptions of noradrenaline signalling are thought to contribute to anxiety (Blier and El 

Mansari 2007), post-traumatic stress disorder (Gören and Cabadak 2014), depression (Moret 

and Briley 2011), and Wernicke-Korsakoff encephalopathy (Halliday et al. 1993; Mair et al. 

1985). Additionally, the lateral asymmetry of noradrenergic projections in the forebrain (Oke 

et al. 1978), reflected in pupillary responses (Kim et al. 1998), hints at a role in visual neglect 

(Malhotra et al. 2006). A formal description of the computational processes that are disrupted 

in these disorders allows for the development of a computational phenotyping (Schwartenbeck 

and Friston 2016) of patients. This may aid in the characterisation of defective 

neurophysiology, making use of the process theory (Friston et al. 2017a) associated with active 

inference. 

The story on offer here provides a coherent and formal account of neuromodulation in the 

brain that is broadly consistent with previous neurobiological accounts of perception and 

decision-making (Daw and Doya 2006; Doya 2002; Doya 2008). In brief, there are three 

fundamental sorts of beliefs that determine behaviour: (i) beliefs about outcomes given hidden 

or latent states of the world, (ii) beliefs about states of the world and (ii) beliefs about policies 
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given states of the world. Each of these sets of beliefs is equipped with an uncertainty or 

precision that may be encoded by specific modulatory neurotransmitter systems. The evidence 

reviewed above – and in (Doya 2008; Yu and Dayan 2005) – speaks to the following 

(summarised in Table 4.1): (i) cholinergic systems encode the precision of beliefs about 

outcomes given states of the world (c.f., attention and expected uncertainty); (ii) noradrenergic 

systems encode the precision of state transitions (c.f., volatility and unexpected uncertainty) 

and (iii) dopaminergic systems encode the precision of beliefs about policies (c.f., action 

selection). The coherent aspect of this account rests on the fact that all three systems play the 

same computational role; namely, an encoding of precision. Furthermore, all three 

neurotransmitter systems have the same basic effects on synaptic transmission; namely, a 

neuromodulatory gain control. For the remainder of this section, we focus upon the cholinergic 

system and its disorders. 

 

Simulated scene-construction 

 

The brain’s visual system must overcome formidable inferential challenges. Despite receiving 

sequentially sampled, spatially limited sensory information from a two-dimensional array of 

photoreceptors, we perceive spatially and temporally continuous three-dimensional visual 

scenes, populated with complex objects. However, despite this remarkable capacity for scene 

construction (Mirza et al. 2016; Parr and Friston 2017a), the visual system is not infallible. It 

depends upon a delicate balance between prior beliefs about perceptual hypotheses (Gregory 

1980), and the sensory evidence that supports or refutes them (Brown and Friston 2012; 

Geisler and Kersten 2002). The simulations in this section address the computational 

mechanisms that could maintain this balance, and the consequences of their failure; e.g. 

(Collerton et al. 2005). 

We will present two sets of simulations. The first uses a simple (single hierarchical level) 

generative model to illustrate the basics of perceptual inference – and how this depends upon 

the precision afforded sensory evidence, relative to (empirical) prior beliefs about state 

transitions. This is formally very similar to the model used in Figure 3.7. In the second 

simulation, we equip the model with a second (hierarchical) level that embodies the belief that 

outcomes are generated by a scene (i.e., a combination of visual objects at four spatial 

locations) that remains constant over successive (five saccade) visual searches. While this, 

deliberately simple, form of visual scene does not capture the rich phenomenology associated 

with real scene construction (Hassabis et al. 2007), it enables us to simulate visual processing 

under lesions that are hierarchically remote from the (neuromodulatory) effects of expected 
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precision. We offer this as a formal explanation for the sort of (functional) diaschisis that 

characterises synucleinopathies; particularly those associated with visual hallucinosis.  

 

Figure 4.1 – Inferring uncertainty. The simulations illustrated here use Equation 4.3 to make 

inferences about the likelihood precision during a simple visual foraging set-up. With the 

exception of explicit prior beliefs about the precision, the generative model is identical to that 

used in Figure 3.7. As before, each location is associated with a hidden state factor (with an 

additional factor for eye-position). Here, the hidden state at each location takes one of three 

values: absent (white), green, or blue. The prior beliefs about the visual stimuli are depicted 

by setting the intensity of each colour equal to the probability of that colour. The posterior 

beliefs are represented similarly. The true states are presented along with the saccadic 
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trajectory (red line) that determines the sequence in which the stimuli were sampled. The 

(posterior) sensory precision is shown in the line plots. There is one precision term associated 

with each location (LL = lower left, LR = lower right, UL = upper left, UR = upper right). 

Figure 4.1A shows inference with a prior belief that is consistent with the true states. Figure 

4.1B shows a relatively imprecise prior that is inconsistent with sensory states. Here, the 

sensory evidence dominates the inference. Figure 4.1C shows the result of setting a precise 

prior belief against contradictory sensory data. In this case, the prior dominates, but must 

induce a decrease in sensory precision in order to do so. 

 

Figure 4.1 shows the results of simulating a visual search for 10 saccades under different prior 

beliefs and stimuli. First, we chose a set of prior beliefs that matched the true states of the 

world (Figure 4.1A). There is little change in the estimated sensory precision over time, and 

the posterior belief matches both the prior and the true states. We then tested the case for which 

the prior and the true states are different. Figure 4.1B shows a prior belief with the same 

content as 4.1A, but held with a lower degree of confidence (i.e. the prior belief is less precise). 

Again, there is little change in sensory precision, but now the posterior reflects the true states 

and not the prior. In other words, the sensory likelihood dominates perceptual inference. In 

Figure 4.1C, we simulate another mismatch between the prior and sensory evidence. This time, 

the prior belief is held with a high degree of confidence (i.e. a very precise prior), and this 

dominates inference. The posterior belief matches the prior, and is inconsistent with the 

sensory data sampled. The conflict between the prior and the sensory evidence is resolved in 

this case by a decrease in the precision associated with the contradictory locations. 

Heuristically, if a prior belief is held very confidently, evidence to the contrary is disregarded 

or ignored. 

We have demonstrated that excessively precise prior beliefs lead to a compensatory decrease 

in the precision of the likelihood distribution. Given the association between sensory precision 

and cholinergic signals (Dayan and Yu 2001; Marshall et al. 2016; Vossel et al. 2014; Yu and 

Dayan 2002), this provides a possible mechanism for the decrease in activity in the nucleus 

basalis of Meynert in several neurodegenerative disorders (Candy et al. 1983). Of these, the 

synucleinopathies, including Lewy body dementia, show an especially dramatic decrease in 

cholinergic signalling (Perry et al. 1994), and are associated with false visual inferences (i.e. 

hallucinations). These are, by definition, the imposition of prior beliefs on perception in the 

absence of supportive sensory evidence. Furthermore, decreased sensory gain means a smaller 

response to visual stimulation, consistent with the combination of reduced occipital 
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cholinergic activity (Kuhl et al. 1996) and occipital hypometabolism (Heitz et al. 2015; 

Lobotesis et al. 2001) in synuclein disorders. 

The above raises an important question: What is the source of the abnormal prior beliefs in 

conditions such as Lewy body dementia? We have previously argued that pathological prior 

beliefs might arise through anatomically defined vascular lesions (Parr and Friston 2017b). 

Here, too, we can appeal to the anatomical distribution of the lesions to try to understand the 

relationship between tissue pathology and computational (network level) dysfunction. Lewy 

body pathology occurs in many brain regions, but it is their presence in parts of the temporal 

lobe that is associated with visual hallucinations (Harding et al. 2002). This leads us to consider 

the ventral visual hierarchies and their computational homologues. 

 

Hierarchical inference 

 

The visual system, like other sensory systems, is known to be hierarchically organised 

(Desimone et al. 1985; Felleman and Van Essen 1991; Markov et al. 2013; Zeki and Shipp 

1988). We have previously appealed to this hierarchical structure to model reading (Friston et 

al. 2017f) and visual working memory tasks (Parr and Friston 2017d). We now draw upon the 

same idea to account for the source of the prior beliefs above, and to show how inaccurate but 

highly precise beliefs can develop. The visual system is organised into two broad hierarchical 

streams. These are the ventral (what) and the dorsal (where) pathways (Ungerleider and Haxby 

1994). It is the former that is of relevance here, as it leads from the occipital cortex to the 

temporal cortex, and represents stimulus identity at increasing levels of abstraction. While 

regions earlier in this pathway tend to respond to simple visual features (Hubel and Wiesel 

1959), later regions are selective for more complex visual objects (Valdez et al. 2015) or scenes 

(Epstein et al. 1999), constructed from lower level features. This is very important in 

accounting for the phenomenology of visual hallucinations in neurodegenerative conditions, 

as hallucinatory components of the percept appear in a consistent and plausible way in the 

context of the scene. This implies there is no impairment in scene construction per se. Instead, 

it is the wrong scene that is constructed. Crucially, this suggests hallucinated scenes are 

constructed based upon hierarchical principles, leading to the integration of a false percept in 

a way that is contextualised by the rest of the scene. This does not imply any impairment in 

the posterior precision of the overall percept. 
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Figure 4.2 – Deep temporal models. The right part of this figure illustrates the extension of 

the MDP model from Figure 2.2 to include a second hierarchical level. The outcome of the 

MDP at the higher level is the initial hidden state in the MDP at the lower level. Crucially, this 

means each time-step at the higher level transcends multiple time-steps at the lower level. In 

other words, a state at a high level corresponds to a short trajectory of states at the lower level, 

just as a word corresponds to a short trajectory (or sequence) of letters. The message passing 

used to solve this sort of generative model mirrors this structure, with slower states 

contextualising faster states and faster states playing the role of observations from the 

perspective of the slower states. For the simulations that follow, we optimised beliefs about 

the precision (black circle) associated with the likelihood at the lower level. The left part of 

this figure shows the specific structure of the hierarchical generative model used here. The 

lower level (s(1)) is exactly the same as the model used for the simulations in Figure 4.1, with 

four hidden state factors accounting for the colour of a stimulus at each point in the visual 

scene (‘what’) and one for the current fixation location (‘where’). These give rise to the 

proprioceptive and visual (foveal) outcomes (o). This model has been supplemented with a 

second level (s(2)) that represents four alternative hypothesised scenes (configurations of the 

coloured circles) and generates the ‘what’ states at the lower level. 

 

To account for this hierarchical structure, we can augment our generative model so that visual 

stimuli (the ‘what’ panel in Figure 4.2) are themselves generated by ‘scene’ states. Both the 
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‘what’ and the ‘scene’ variables are types of hidden state. We refer to the former as a ‘first 

level’ and the latter as a ‘second level’ state. The second level is much simpler in this case 

(Figure 4.2), as there is only one type of state with no policies. Furthermore, all transitions at 

the second level are taken to be identity matrices, expressing the belief that the scene remains 

constant over time. This type of generative model allows the first level (empirical) priors to be 

generated by the second level. While this generative model is too abstract to map directly to 

the real visual system, this type of hierarchy does express cardinal features of the organisation 

of the ventral visual stream. 

Importantly, although inference about a visual feature can be performed within a given 

fixation, it takes multiple saccades to make inferences about the scenes at the second level. 

This implies that beliefs at this level should be updated more slowly (Friston et al. 2017f), 

consistent with the slower response properties higher in sensory hierarchies (Hasson et al. 

2008; Kiebel et al. 2008; Murray et al. 2014). 

 

 

Figure 4.3 – Empirical priors and pathology. These plots illustrate the evolution of beliefs 

about second level states, first level states, and sensory precision. The upper plots show the 

beliefs about scenes over time. Each row of these represents a given scene (indicated by the 

images on the left). The shading indicates the belief that this is the scene responsible for the 

sensory input. Black indicates a belief that the probability is 1, white indicates 0. The 
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descending arrows represent the computation of a first level empirical prior from the second 

level beliefs. A new empirical prior is generated after every 5 saccades (demarcated by dashed 

blue lines). The empirical prior and the sensory consequences of saccadic exploration combine 

to form first level posterior beliefs (exactly as in Figure 4.1). The beliefs from each set of 5 

fixations are used to update the second level beliefs (ascending arrows). The lower plots show 

the beliefs about the sensory precision, aligned to the beliefs at the higher level. The precision 

is reset at the vertical dotted lines. 4.3A shows ‘healthy’ second level priors that associate an 

equal probability to each scene at τ = 0. Under these priors, the correct scene is inferred and 

the consistency between priors and sensory data leads to an increase in sensory precision. 4.3B 

shows the same model but with the prior probability of the third scene set to zero to simulate 

the loss of this neuron (or neuronal population). Here, the conflict between priors and sensory 

evidence leads to a decrease in precision. This also demonstrates the importance of action in 

perception as, at the final time-step, consistently fixating on the lower left location leads to a 

correct percept. This illustrates the point that collecting more data can compensate for the 

diminished precision of those data. 

 

Figure 4.3 shows the inferences made when we simulate responses with this hierarchical 

model. The upper part of the figure shows the beliefs about each of the second level states 

through time. At the start, the second level beliefs are combined (weighted by their 

probabilities) to generate an empirical prior at the first level. In both Figure 4.3A and 4.3B, 

this prior is relatively imprecise. A sequence of 5 saccades is performed, and the observations 

made are used to refine the first level posteriors in exactly the same way as in Figure 4.1. These 

posterior beliefs are used to update the second level beliefs. These then generate a new 

empirical prior and this sequence repeats. The sensory precision is reset to its prior value 

whenever a new empirical prior is set (at the start of each sequence of 5 saccades). 

The reason the precision re-sets to its prior value periodically is due to the separation of 

temporal scales inherent in the generative model. This is analogous to processes like reading, 

for which a sentence provides a high-level context linking sequential words. Letters in one 

word only inform inferences about the next word via sentence-level representations. This 

means all lower level representations are set to their (empirical) prior values every time we 

move from one word to the next. In our setting, the same is true of all lower level 

representations, including the precision. In a more complex model, it would be possible to 

condition the prior belief about the precision upon slowly changing variables at the higher 

level. While beyond the material presented in this chapter, this would allow inferences about 

the precision to transcend the time-scale of the lower level. 
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Figure 4.3A illustrates this process in a model with ‘healthy’ second level priors. There is a 

very rapid inference that the third scene is the most likely cause at the second level, and the 

first level beliefs, following saccadic interrogation, invariably match the true states. A 

moderate increase in estimated precision occurs under the second empirical prior, because 

confident prior beliefs match the sensory inputs. Note that the start location is in the lower left, 

so there is a larger effect for the precision at this location. This illustrates the fact that the prior 

has a greater influence at the start of the trial, where fewer observations have been made. 

Figure 4.3B shows a simulated synucleinopathy. Neuronal loss (or disconnection) high in the 

ventral stream has been simulated by setting the second level prior belief for one of the scenes 

(the correct one) to zero. This is as if we had removed the neuron that represents this second 

level hypothesis. Interestingly, this does not impede the formation of confident (false) first 

level empirical priors. As we saw earlier, these induce a decrease in the estimated sensory 

precision, and false perceptual inference. This demonstrates that pathology high in ventral 

visual hierarchies can, in principle, induce changes in distant brain areas – something that has 

been characterised in terms of a functional or dynamic diaschisis (Carrera and Tononi 2014; 

Price et al. 2001). The idea that damage to a neuronal population preserves the confidence in 

the beliefs they represent may seem counterintuitive. However, even with the loss of neurons 

representing the correct inference, there is still a clear ‘best’ explanation at the level of scenes. 

This leads to confident posterior beliefs about the scene, giving rise to confident (but incorrect) 

empirical prior beliefs about the contents of that scene. This is further facilitated by the 

permissive decrease in sensory precision. 

This result recapitulates the idea that, for hallucinations to occur, prior beliefs must be held 

with a high degree of confidence (precision) relative to that associated with contradictory 

sensory evidence. This has previously been demonstrated in the context of auditory 

hallucinations in schizophrenia (Adams et al. 2013b). Our account does, however, provide a 

different perspective on the initial computational insult. While this has previously been 

formulated as a false prior belief that something is present, we have demonstrated that 

hallucinations may be induced by a false prior that a given scene is not a good explanation for 

sensory data. This forces the brain to resort to an alternative explanation, associated with other, 

spurious, perceptual content. 

 

Computational neuropathology 

 

In the above, we have presented a model that relates temporal lobe pathology to the 

development of complex visual hallucinations and reduced cholinergic signalling to the 
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occipital cortex. Crucially, although the primary pathology only affects temporal components 

of the simulated network, its computational consequences are felt throughout the brain via a 

dynamic diaschisis (from Greek διάσχισις meaning ‘shocked throughout’). This type of 

account is necessary in explaining the patterns of diaschisis observed in neuropathological 

processes.  

The synucleinopathies (including Lewy body dementia, Parkinson’s disease, and Multiple 

system atrophy (McCann et al. 2014; Tsuboi and Dickson 2005)) provide important examples 

that illustrate the need to connect tissue pathology to computational dysfunction. Despite the 

presence of physiological changes in the occipital cortices (Kuhl et al. 1996), and visual 

symptoms (McKeith et al. 2004; Weil et al. 2016), the histopathological processes in these 

disorders tend not to affect occipital cortex directly (Khundakar et al. 2016). While impaired 

dopamine signalling to the cortex in these disorders might contribute, occipital regions tend to 

receive relatively few dopaminergic projections (Javoy-Agid et al. 1989). The absence of these 

processes in primary visual areas, and the association between visual symptoms and temporal 

lobe Lewy bodies (Harding et al. 2002), calls for an explanation of physiological changes in 

the former in terms of their computational relationship to the latter. 

 We note that, for prior beliefs to dominate inference, the sensory precision must be low 

relative to the precision of prior beliefs. This means that hallucinations could occur with intact 

prior beliefs and a primary lesion to systems encoding sensory precision, or an increase in 

prior confidence without any change in sensory precision. Computationally, these are 

equivalent as they each change the balance of precisions in the same way. However, they are 

not necessarily biologically equivalent. The former implies a primary lesion to 

neuromodulatory systems that modulate synaptic gain in sensory cortices, while the latter 

implies damage to higher regions of cortex that provide empirical priors to sensory areas. In 

the context of visual hallucinations in Lewy body disease, both of these are present. While 

these may be two independent primary lesions, a simpler explanation would be that one is a 

downstream effect of the other. In this chapter, we have suggested a mechanism by which 

damage to higher cortical areas could lead to disruption of synaptic gain in early visual cortex. 

In short, the formal account of active inference or vision on offer here also provides an 

explanation in terms of a functional diaschisis – a dysfunction of one region as a consequence 

of a distant lesion (Carrera and Tononi 2014; Price et al. 2001). Figure 4.4 illustrates a 

plausible computational anatomy that could underwrite this account. While this anatomy is 

speculative, it serves to illustrate the importance of the functional interactions between brain 

regions to the understanding of neurological disease. Damage to temporal regions, 

representing second level beliefs, induces changes in the first level beliefs. This leads to 
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inconsistencies between perceptual beliefs and sensory data, which down regulates cholinergic 

projections to the occipital cortex. Decreased cholinergic signalling uncouples beliefs about 

states from sensations they cause, facilitating hallucinations (O’Callaghan et al. 2017; Perry 

et al. 1991). As this model would predict, treatment with cholinesterase inhibitors increases 

occipital blood flow, while attenuating visual hallucinations (Mori et al. 2006). A 

complementary, and more biophysically detailed, perspective on this is formulated in terms of 

impaired conductance (Tsukada et al. 2015) in the synapses between visual cortical neurons, 

and those in the ventral visual stream. 

 

Figure 4.4 – Precision, hierarchy, and the ventral visual stream. This schematic illustrates 

the hypothetical computational anatomy of the ventral visual stream and its cholinergic 

modulation. Visual outcomes (o) are shown in the primary visual cortex. These inform first 

level beliefs (s(1)) early in the ventral stream, and the connection between these is modulated 

by cholinergic projections from the basal nucleus in the forebrain. First level beliefs are 

reciprocally influenced by second level beliefs (s(2)) in the temporal lobe. We have 

(speculatively) suggested that the prefrontal cortex may be engaged in computing the expected 

precision, utilising its inputs from those regions representing first level beliefs, and its 

connections to the basal forebrain (Zaborszky et al. 1997). 

 

An influential model of recurrent complex visual hallucinations (Collerton et al. 2005) 

implicates these same regions, but makes the point that many other disorders involve similar 
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changes. For example, cholinergic deficits are also associated with Alzheimer’s disease 

(Minoshima et al. 2004), although to a lesser extent (Perry et al. 1994; Tiraboschi et al. 2000). 

Like those for Lewy body disease, pharmacological therapeutics have focused on correcting 

this neurochemical deficit (Lam et al. 2009). There is evidence to implicate changes in the 

temporal lobes in this disorder, as it tends to impact these structures early. However, this is 

typically more medial than in Lewy body dementia (Minoshima et al. 2002). Furthermore, it 

is unlikely that the cholinergic deficits in Alzheimer’s disease are consequences of temporal 

lobe changes, as there is good evidence for a primary pathological insult to the nucleus basalis 

(Etienne et al. 1986; Liu et al. 2015; Samuel et al. 1994). This renders it improbable that this 

condition exhibits a similar set of computational deficits to those described above. The lower 

prevalence of visual hallucinations in Alzheimer’s disease, despite overlapping pathological 

features with Lewy body disease, illustrates an important point. It is not sufficient to have 

temporal lobe damage and cholinergic dysfunction to give rise to hallucinations. The interplay 

between the two is crucial in characterising this type of diaschisis. 

In this chapter, we have focused upon false positive inferences (i.e. hallucinations). However, 

brain damage often leads to false negative inferences (i.e. agnosia) (Warrington and James 

1967). These manifest as a failure to perceive a stimulus, despite it being present. The approach 

we have described could be used to account for these phenomena in several ways. We outline 

these here, but emphasise that determining which of these best accounts for agnosia remains 

an open question that requires further investigation. The first way in which we could account 

for this is by setting a prior belief that a given object is present to zero. If the most probable 

alternative explanation is the absence of any object, this inference will result. It is important 

to distinguish this inference of absence from uncertain inferences, in which the presence or 

absence of an object cannot be inferred with any certainty. These could result from 

disconnections that render this object conditionally independent from sensory data in the 

generative model. This would ensure beliefs about the presence or absence of a given object 

would not depend upon these data. A third way in which certain stimuli may fail to enter into 

perceptual awareness is the failure to attend to certain kinds of stimuli, as in visual neglect 

(Halligan and Marshall 1998). We have previously argued that this syndrome, in which stimuli 

on the left of space are ignored, depends upon a failure to actively engage with stimuli on the 

left (Parr and Friston 2017b). We unpack this idea in more detail in Chapter 6. 

A number of outstanding questions are raised by the approach we have taken, which require 

empirical resolution. The first concerns our use of the term ‘visual features’. We have 

illustrated a feature as the colour of a circle in a given location, but this is not mandated by the 

mathematics used in our generative model. In principle, relevant features could be shape, 

luminance, contrast, or any other experienced attribute. We would need to present patients 
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with a task like that illustrated above, but with different sorts of stimuli, to elucidate which of 

these afford the right level of description – and whether the ensuing responses are conserved 

over patients. The second question concerns the fixed parameters of the generative model – 

such as the prior belief about sensory precision. These are likely to be subject specific, but 

could be estimated from eye-tracking data collected during the above task (Mirza et al. 2018).  

 

Summary 

 

In the first part of this chapter, we illustrated the computational mechanisms that could act to 

maintain the perceptual balance between prior beliefs and sensory evidence. We simulated 

inferences about the precision associated with the likelihood, and demonstrated that confident, 

but incorrect, prior beliefs cause a decrease in the expected sensory precision, and false 

perceptual inferences. In the second part, we asked what the computational mechanisms might 

be that give rise to pathological empirical priors, and motivated this through an appeal to the 

neurobiology of synuclein disorders. We described a plausible mechanism by which tissue 

pathology in higher visual areas could cause in occipital hypometabolism, cholinergic deficits, 

and visual hallucinations. Crucially, this calls upon the computational (network level) 

pathologies induced by regional synucleinopathies. This accounts for several empirical 

findings, including the association of temporal lobe changes with hallucinations in Lewy body 

disease and the improvement in hallucinations and occipital metabolism when these patients 

are treated with cholinesterase inhibitors. The ideas and simulations presented here emphasise 

the importance of relating neuropathological processes to computational dysfunction to 

understand neurological disease. 

 

Computational Pharmacology 

 

As reviewed in Chapter 1, oculomotor behaviour relies upon the coordination of a distributed 

network of regions throughout the brain (Parr and Friston 2017a; Robinson 1968). Assessment 

of oculomotion therefore offers a simple (non-invasive) way to measure brain function. While 

disruption of normal neurological (Anderson and MacAskill 2013) or psychiatric (Lipton et 

al. 1983) function can induce a range of characteristic eye-movement deficits; subtler 

modulations of neuronal function may also be detected in oculomotion. In this section, we 

focus upon the neurochemical aspects of oculomotor control, and the sorts of oculomotor 

syndromes that may be induced by therapeutic agents (Naicker et al. 2017; Reilly et al. 2008). 
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In doing so, we draw from recent theoretical work (outlined in Chapter 3) addressing the 

computational anatomy of oculomotion (Parr and Friston 2018a; Parr and Friston 2018c), and 

emerging themes in computational accounts of neuromodulation [(Friston et al. 2014; Marshall 

et al. 2016; Parr et al. 2018a; Parr and Friston 2017c; Sales et al. 2018; Schwartenbeck et al. 

2015b), and the Precision and Pathology section above]. These accounts are based upon the 

idea (formalised in Chapter 2) that the brain uses a generative model to infer the causes of its 

sensations, and that this model is equipped with beliefs about the precision (inverse variance) 

of the relationships between different kinds of latent (i.e., unobserved) variables generating 

sensory (i.e., observed) samples. The precision of a belief can be thought of as the confidence 

in that belief (as opposed to its content). As such, precisions are generally associated with 

neuromodulatory influences over synaptic gain (Feldman and Friston 2010; Marder and 

Thirumalai 2002; Nadim and Bucher 2014), as opposed to driving postsynaptic responses (i.e., 

modulating transmembrane conductance as opposed to depolarisation).  

We have previously argued for an association (i) between acetylcholine and beliefs about how 

precisely hidden variables in the world give rise to sensory data, (ii) between noradrenaline 

and beliefs about how hidden variables in the present cause those in the future, and (iii) 

between dopamine and beliefs about how we will act upon the world (Friston et al. 2014; Parr 

and Friston 2017c). In what follows, we first provide an overview of oculomotion in terms of 

these three kinds of precision, their associated neurotransmitter systems, and active inference. 

We then introduce a simple delay-period oculomotor task – of the sort used extensively in 

primate electrophysiological studies (Funahashi 2015). Through manipulating various 

precision terms, we will see that the resulting oculomotor syndromes reproduce those induced 

by pharmacological agents acting upon their associated neurochemical systems. The 

implication here is that if one can generate pathological eye movements from selective deficits 

in neuromodulatory systems in silico, it is possible to estimate these deficits using empirical 

observations, such as eye tracking [see Adams et al (2016) for a proof of principle using slow 

pursuit eye movements]. 

 

The neurochemical anatomy of oculomotor control 

 

In this section, we briefly review the neuroanatomical networks involved in ocular control, 

with a special focus on the synapses on which different neurotransmitters are thought to act. 

In describing this functional anatomy, one can associate these neurotransmitters with putative 

computational roles. The direct cortical control of eye movements involves predominantly 

dorsal brain areas, including the frontal eye fields (Künzle and Akert 1977), which 
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communicate with the nearby dorsolateral prefrontal cortex (Buschman and Miller 2007). The 

former area is thought to represent the position of the eyes (Moore and Fallah 2001), while the 

latter is associated with the maintenance of beliefs about cued targets (Goldman‐Rakic 1987). 

Like most of the cortex, these areas receive distributed projections from the locus coeruleus 

and the basal forebrain via the cingulum (Avery and Krichmar 2017; Doya 2008). As such, 

these cortical regions are modulated by noradrenaline and acetylcholine. Under active 

inference, noradrenaline is thought to represent the precision of transitions (i.e., confidence in 

probabilistic beliefs about the dynamics of the world – such as motion and occlusion). This 

encoding of precision is crucial in prefrontal cortical regions involved in the maintenance of a 

remembered stimulus, as the persistence of a belief over time rests upon a precise belief that 

the target does not change between viewing the stimulus and enacting the appropriate response 

(Parr and Friston 2017d). 

Acetylcholine has been linked to the precision of beliefs about how latent or hidden states of 

the world – that cannot be directly observed (e.g., eye position) – give rise to sensory (visual 

or proprioceptive) data (Marshall et al. 2016; Moran et al. 2013b; Vossel et al. 2014). Loss of 

acetylcholine, as observed in conditions such as Lewy body dementia, can lead to a failure of 

sensory data to constrain perceptual inference in the right sort of way. Complex visual 

hallucinations – namely, false positive perceptual inference (Collerton et al. 2005; Parr et al. 

2018a) – represent a dramatic example of this failure. In the context of motor control, 

imprecise predictions about desired movements may lead to a failure of descending predictions 

(i.e., motor commands) to elicit the predicted proprioceptive signals via motor reflexes. 

The cortical regions described above communicate with brainstem oculomotor regions via two 

main pathways. The first is a direct cortico-collicular projection (Künzle and Akert 1977). The 

second is via the basal ganglia (Hikosaka et al. 2000). The output nuclei of the basal ganglia 

include the substantia nigra pars reticulata, which monosynaptically inhibits the superior 

colliculus via GABAergic projections (Hikosaka and Wurtz 1983). The other part of the 

substantia nigra – the pars compacta – provides dopaminergic innervation to the striatum 

(Moss and Bolam 2008). In terms of active vision, the cortico-collicular pathways may be 

thought of as predicting the proprioceptive and visual consequences of alternative saccades 

that could be performed. The nigro-collicular pathway then weights each alternative, 

depending upon striatal evaluations of the ‘goodness’ (technically, expected free energy) of 

each possible saccade. This goodness is simply the capacity of that saccade to fulfil prior 

beliefs about the sensory outcomes of a visual sampling (e.g., to comply with experimental 

instructions or to resolve uncertainty by accumulating evidence during visual scene 

construction). This sets up a biased competition in the superior colliculus, resulting in the 

selection of a saccadic target (Veale et al. 2017; Zelinsky and Bisley 2015). The superior 
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colliculus then propagates this signal to other oculomotor brainstem areas (Parr and Friston 

2018a; Robinson 1968), resulting in a saccade towards this target. The GABAergic signal here 

is vital in setting up the competition between alternative saccades (Hall 1999); leading to a 

precise representation of the chosen saccadic target. Finally, in active inference formulations, 

the nigro-striatal pathway is responsible for maintaining precise beliefs about which saccadic 

policy to pursue. Please see Figure 4.5 for a description of this computational anatomy in terms 

of Bayesian belief updating and neuronal message passing. This may be thought of as a 

simplification of Figure 3.10 that emphasises the role of neurochemical modulation. 

 

 

Figure 4.5 – Computational neuropharmacology and oculomotion. This schematic 

illustrates a simplified (computational) anatomy of oculomotor control, highlighting some of 

the key synapses at which neuromodulatory transmitters act. The cortical components of this 

network include the frontal eye fields, and the dorsolateral prefrontal cortex. We have 

associated these regions with beliefs about hidden states (s), and predictions about the 

(categorical) outcomes (o) that these states entail. The ‘Perception and prediction’ panel 

specifies how these are computed from beliefs about the way in which states give rise to 

observations (A), and beliefs about how states at a given time evolve (B). These likelihood 

and prior transition terms are equipped with precisions – superscripts ζ and ω, respectively – 

that quantify the confidence (inverse variance) of associated conditional beliefs. The 
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likelihood and prior precisions have been associated with cholinergic and catecholaminergic 

modulation respectively. These cortical regions project to both the basal ganglia (i.e., the 

striatum) and the superior colliculus. The direct pathway through the basal ganglia itself targets 

the superior colliculus, via the substantia nigra pars reticulata. Striatal neurons are modulated 

by dopaminergic projections from the substantia nigra pars compacta (γ), while the projections 

from the pars reticulata to the superior colliculus provide a GABAergic modulation of the 

cortico-collicular pathway (Π). The ‘Planning’ panel shows how the basal ganglia may 

evaluate alternative saccades by computing the expected free energy (G) associated with each 

eye movement and subsequent sensory samples. Dopamine modulates confidence in beliefs 

about the best saccade to select (π), given this evaluation. The ‘Movement’ panel provides the 

(Bayesian filtering) equations that may be used to implement the next saccade. These rely 

upon prior beliefs about where the eyes should be that are obtained from the predictions from 

the cortex (o) modulated by plans evaluated in the basal ganglia (π). Together, these are used 

to compute the average belief about where to look next, which is then equipped with a 

precision (Π). The error (ε) between current beliefs about the position of the eyes (μ) and the 

target is then used to drive brainstem reflexes that act (a) to minimise this error – implementing 

the motor command from the cerebrum. From our perspective, the key feature of these 

equations (see Figures 2.1 and 2.2), is that they suggest a modulatory role for the precisions 

described above. For a more detailed technical account of these equations, please see (Friston 

et al. 2017c) and Chapter 2, and for a conceptual overview of their relationship to anatomy, 

please see (Parr and Friston 2018b). 

 

Delayed oculomotor task 

 

A range of oculomotor changes have been observed following different therapeutic 

interventions. These include changes in the characteristics of a saccade (e.g. hypo or 

hypermetric), and in the decision processes leading to a saccade (e.g. inappropriate saccade 

targets). For the purposes of this chapter, we adopt a single oculomotor task (Funahashi et al. 

1989) that showcases a simple decision process but also allows us to inspect the trajectory of 

the saccade itself (Figure 4.6). This involves presentation of a cue at the saccadic target 

location, followed by maintenance of fixation after the disappearance of the target. When cued, 

the task is to saccade to the remembered target. This oculomotor delay-period task has been 

used extensively in primate research, notably in the study of working memory, so has well-

described neurophysiological correlates. 
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To simulate oculomotor performance under this paradigm, we have to specifying a model of 

how sensory outcomes are generated by latent or hidden states of the world – and how those 

states can be changed by selecting particular actions or movements. This generative model 

then specifies belief updating in a synthetic brain under ideal Bayesian assumptions (see the 

equations in Figure 1). The beliefs in question here are expectations about states of the world 

generating sensations – and the plausible actions that can change those states. Crucially, the 

synthetic subject believes she will select those actions that maximise the evidence for her 

model of the world. It transpires that this is the same as selectively sampling in sensory 

outcomes (e.g., directing saccades to particular parts of the visual field) that resolve 

uncertainty. This resolution of uncertainty comes in two flavours. First, the information gained 

by sampling new observations and, second, ensuring that these observations are consistent 

with the generative model (i.e., conform to prior preferences). In the following generative 

model, we have to deal with two sorts of states: namely, discrete and continuous states. 

Discrete states correspond to different locations, different stages of each trial etc., while 

continuous states refer to things like eye position and velocity. 

The generative model we use to simulate this task uses a Markov Decision Process (MDP) 

model of discrete states (Friston et al. 2015b) that generates a set of hypothetical saccadic 

targets. Each of these hypotheses represents the equilibrium (attracting) point (Feldman and 

Levin 2009) in a continuous state-space model (described in detail in (Parr and Friston 2018a)) 

of the eyes themselves (Figure 3.1). The MDP part of the model comprises three types of 

hidden (unobservable) state – that jointly generate discrete predictions for the continuous part 

of model dealing with continuous oculomotor trajectories (Friston et al. 2017c)). The discrete 

states generating predictions include the current fixation location, the target location, and the 

current stage of the trial. The last of these states includes the target presentation, delay period, 

and saccade-to-target stages. Fixation location is a controllable state, meaning that any of the 

five (fixation cross, up, down, left, right) locations may change to any other location depending 

upon the saccade selected. The target location is static over time, ensuring it is the same at the 

end of the trial as it was at the beginning. It is this enduring context that gives rise to the delay-

period activity – thought to be supported by recurrent glutamatergic connections in Layer III 

of the cortex (Kritzer and Goldman-Rakic 1995) – characteristic of the prefrontal cortex. The 

third hidden state models transitions to the next stage of the trial, at each time-step. 

During the fixation stage of the trial, the visual outcome indicates the target location. During 

the delay-period, the cross turns red and no cues are shown. An outcome ‘incorrect’ occurs if 

a saccade is performed during this step. A priori, this outcome is not preferred and is therefore 

avoided. At the final stage of the trial, the cross changes from back to blue, and a saccade is 

permitted. ‘Correct’ outcomes ensue if the fixation location hidden state at this time matches 
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the target location, and ‘incorrect’ pursues otherwise. Prior preferences dictate that ‘correct’ 

outcomes mark a particular saccade as more likely (in terms of maximising the model evidence 

or minimising free energy expected following a saccade). At all stages, the proprioceptive 

outcome is generated through an identity mapping from the fixation location (i.e., the subject 

has precise sensory evidence about where she is looking). We do not explicitly model free 

free-viewing during inter-trial intervals, and assume that feedback is given immediately 

following the response. Equipped with this model, we can now examine the effects of changing 

the precisions (i.e., simulated neuromodulators) on task performance. 
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Figure 4.6 – Delayed oculomotor task. This illustrates the sequence of a single trial of our 

simulated task. The task begins with fixation in the centre, while a peripheral target is 

presented. The target then disappears, but the cross changes to red, indicating that fixation 

must be maintained. When the cross changes back to blue, this indicates that a saccade should 

be made to the target location. The sequence shown represents correct task performance, where 

the saccade is withheld until the appropriate time, and is then directed to the correct location. 

The lower left panels show the displacement from the fixation cross and the velocity of the 

eyes as a function of time, while the upper left images show the position of the eyes at the end 

of each discrete time-step (i.e. the dotted vertical lines in the lower left plots). Note that the 

trial sequence takes place over four time-steps that each represent a 250ms continuous 

trajectory. This was chosen for consistency with the frequency of saccadic sampling. While 

much longer delay periods are normally employed in practice, the model could be extended to 

deal with these simply by adding in additional delay periods (each of 250ms). The dashed 

vertical lines in the plots on the lower left indicate the phases of the trial, as outlined here. 

These will be used in all subsequent figures for to aid comparison. 

 

 

Figure 4.7 – Saccade characteristics. The plots on the left show a set of trials with varying 

levels of GABA (Π from Figure 4.5). The upper plot shows the displacement over time through 

the trial, while the lower plot shows the associated velocity. Note that very low levels of 

GABA result in an overshoot, that is subsequently corrected, and a higher velocity. In contrast, 

high levels of GABA lead to slow, hypo-metric saccades. These become broken when the 
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velocity is sufficiently slow that the saccade takes more than one discrete time-step (vertical 

dashed lines) to complete. The plots on the right show the same characterisation of saccades 

with varying levels of cholinergic modulation (ζ from Figure 4.5). These show a similar, but 

inverted, phenomenology; with increasing levels of acetylcholine leading to faster saccades. 

Unlike with the GABAergic changes, there is no hypermetric overshoot. The saccades instead 

converge to the optimal distance. At low levels of acetylcholine, saccades start to occur too 

early or late, and in some cases, more than one saccade occurs during a given trial. It is useful 

to try to infer where the normal physiological range of these parameters may lie – to understand 

the difference between overdoses or depletions. While this is really an empirical question, best 

answered by fitting these models to data, we can try to address this issue heuristically. Given 

that healthy eye-movements tend not to overshoot, and that they reach their target 

displacement quickly, this suggests normal physiological ranges are at the lower end of the 

GABA scale, and that most of the traces shown above represent excesses above this (with the 

exception of those that overshoot, which may be depleted). Similarly, the relatively low 

frequency of inappropriate saccades in healthy people suggest that physiological ranges of 

acetylcholine are at the higher end of the scale shown here. The improvement elicited by some 

cholinergic drugs (see main text) suggests that the normal range is not quite at the higher limit 

shown here. 

 

Gamma-Aminobutyric acid (GABA) 

 

Benzodiazepines are a class of pharmacological agents that act through modulation of 

GABAergic activity (Griffin et al. 2013). Specifically, they bind to the GABAA receptor, and 

facilitate action of the endogenous neurotransmitter. They are commonly used in clinical 

practice to treat a range of conditions including, but not limited to, anxiety disorders, insomnia, 

and (in an acute setting) epilepsy. Oculomotor changes during use of these agents are 

sufficiently robust that they have been proposed as biomarkers for the pharmacological effects 

(de Visser et al. 2003). These effects include a clear (inverse) dose-response relationship 

(Bittencourt et al. 1981) with saccadic peak velocity. Although the actions of systemic 

benzodiazepine administration are difficult to localise, this has also been demonstrated using 

anatomically precise injections of muscimol (a GABA agonist) directly into the superior 

colliculus (Hikosaka and Wurtz 1985). This induced a similar attenuation of saccade peak 

velocity. This is consistent with Figure 4.5, which associates the oculomotor effects of GABA 

with inhibition of the superior colliculus, and with Figure 4.7, which shows the effect of 

increasing the precision of beliefs about the anticipated eye position (empirical prior) on the 
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displacement and velocity of a saccade over time. Notably, the peak velocity decreases with 

increasing precision, consistent with the effect of increasing the dose of a benzodiazepine. 

Intuitively, the greater the prior precision is over the dynamics represented in the brainstem, 

the harder it is to update these beliefs such that the eyes can move to a new location. 

 

Acetylcholine 

 

Cholinergic or anticholinergic effects are common to many drug classes (Campbell et al. 2009; 

Ness et al. 2006) and also represent an important mode of action of several toxins (e.g. 

organophosphate pesticides (Minton and Murray 1988)). As with the benzodiazepines, 

cholinergic effects have been associated with the velocity of a saccadic eye-movement 

(Naicker et al. 2017). This is interesting from the perspective of the scheme in Figure 4.5, as 

cholinergic modulation is hypothesised to occur at the level of inference about categorical 

variables (which saccade to perform and which location is the target). It is not immediately 

obvious how such inferences could influence continuous variables such as velocity. In addition 

to its cortical site of action, acetylcholine is vital in the normal function of the striatum and 

has actions on brainstem nuclei directly (Dautan et al. 2014; Kobayashi and Isa 2002; Maurice 

et al. 2015). The cholinergic (precision) manipulations illustrated in Figure 4.7 suggest that 

these categorical inferences can influence velocity in a consistent way. As cholinergic 

transmission increases so does the peak saccade velocity. This is an example of a functional 

diaschisis (Carrera and Tononi 2014; Fornito et al. 2015; Price et al. 2001), in which altering 

one part of a network has implications for all other parts. The effect here is due to the fact that 

the precision of the state-outcome mapping determines the precision of the predictive 

distribution over alternative saccadic locations. If this distribution becomes less precise, the 

expected (average) anticipated location in continuous coordinates becomes a mixture of all of 

the possible locations, weighted by their relative probability. When the precision is low, this 

means saccades towards more central locations become more probable and that, as precision 

increases, the anticipated location will move further towards a specific target. 

Hyoscine (a.k.a. scopolamine), an antimuscarinic (anticholinergic) drug (Corallo et al. 2009) 

used to treat motion sickness, slows the velocity of saccades (Oliva et al. 1993), consistent 

with Figure 3. Interestingly, it additionally causes saccades to become hypo-metric, and 

impairs the stability of fixation. These effects are shown clearly in Figure 4.7, with lower 

levels of cholinergic signalling leading to shorter saccades, and an increase in the number of 

inappropriate saccades. The latter are due to the fact that precision sharpens or flattens the 

distribution of plausible saccadic targets. As this distribution becomes flatter, saccades 
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previously deemed inappropriate acquire plausibility. Agonists of the cholinergic system, 

notably nicotine, improve the performance of saccade (specifically ‘anti-saccade’) tasks if 

performance is suboptimal (e.g. on first exposure to a task) (Rycroft et al. 2006). These effects 

tend to saturate fairly quickly, implying that nicotine adds no additional benefit (or deficit) 

when task performance has already been optimised – and this may be why some studies report 

no improvement or changes in velocity with nicotine administration (Sherr et al. 2002). This 

is consistent with the saturation of responses we see in our simulations, with increasing levels 

of precision asymptotically approaching optimal saccadic trajectories. It is encouraging that 

these studies show similar results to the computationally focal manipulations performed in our 

simulations, despite the fact that these drugs do not act in an anatomically specific way. 

 

Dopamine 

 

Pharmacological manipulation of the dopamine system can be highly effective in treating both 

neurological and psychiatric disorders. Parkinson’s disease, in which the substantia nigra pars 

compacta degenerates, responds to L-Dopa (a dopamine precursor) (Smith et al. 2012), in 

addition to dopamine agonists (Jenner 1995). In contrast, suppression of dopaminergic activity 

is a key part of the pharmacological strategy adopted in antipsychotic medications (Kapur et 

al. 2000). In oculomotor tasks, impairments in dopamine signalling cause deficits in saccades, 

most pronounced in memory-guided saccades (Kato et al. 1995; Kori et al. 1995). Similar 

deficits have been described in Parkinson’s disease (Chan et al. 2005), in which there is a 

degeneration of dopaminergic nuclei. This is highly consistent with the active inference 

account of dopamine as representing the precision of beliefs about temporally deep policies, 

or plans about how to act (Friston et al. 2017a). While a visually guided saccade requires a 

planning depth of one-step-ahead, a memory guided task required the inference of the 

appropriate plan over multiple time-steps (from presentation of the cue to the execution of the 

action). We have previously demonstrated the influence of dopamine on simulated saccades 

in a memory guided paradigm (Parr and Friston 2017d), and here replicate this influence in 

the oculomotor delay period task described above. Figure 4.8 illustrates the effect of changing 

the prior precision on simulated dopamine firing (updates in the precision over time) and its 

behavioural consequences. Memory-guided saccades are disrupted once dopamine levels drop. 

Not only are saccades performed to incorrect locations, they also occur at inappropriate times, 

consistent with the impairment in sequential planning induced here. 

These simulations provide further face validity to the idea that dopamine is involved in 

signalling the precision of beliefs about deep policies. Previous theoretical accounts have 
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reproduced aspects of the phenomenology of dopamine signalling based upon this (Friston et 

al. 2013), and have inspired empirical studies, including the use of simulated precision updates 

as regressors in functional imaging studies (implicating the dopaminergic midbrain) 

(Schwartenbeck et al. 2015b), and modelling of behavioural responses under pharmacological 

manipulations (Marshall et al. 2016). A simple experiment that could be performed to further 

test these ideas would be to fit the model described here to the (saccadic) decisions made in 

this task (Mirza et al. 2018), and to see whether the prior precision over policies estimated 

from real participants correlates with their spontaneous blink rate – a peripheral manifestation 

of central dopamine function (Karson 1983). 

 

 

Figure 4.8 – Dopaminergic modulation of saccadic choices This Figure illustrates the effect 

of dopaminergic modulation of decision making during the delay period task. Each row shows 

a different level of prior precision over policies (highest for the first row, and lowest for the 

last). Simulated dopaminergic firing rates are shown on the left (note the differences in axis 

ranges). When the precision is very low, the selected saccadic target is random, as all possible 

saccadic policies become (nearly) equally probable. As the prior precision is increased, the 
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first notable change occurs in the dopamine plots (third row). Here, there is a decrease in 

dopamine firing during the first saccade, as uncertainty about the policy pursued increases. 

This is because this saccade is inconsistent with the policy consistent with reaching the target. 

Having committed to the incorrect policy, there is a dopamine spike coinciding with a 

confident inference that this policy is being pursued. As dopamine levels increase further, this 

spike moves earlier, as the saccade performed (although still premature) is still consistent with 

reaching the target. When sufficiently high, dopamine levels show little change throughout the 

trial, with the correct policy inferred quickly and confidently from the first time-step. The key 

message to take away from this Figure is that, in the absence of dopamine, oculomotor 

decisions become increasingly random. This is because the distribution over action sequences 

becomes less precise. As the precision tends towards zero, all plans of action become equally 

probable. 

 

Noradrenaline  

 

The evidence for a modulation of oculomotor responses by noradrenaline is less clear (Reilly 

et al. 2008). Although some saccadic tasks are reported to vary with noradrenergic modulation 

(e.g. using methylphenidate (Klein et al. 2002; O’Driscoll et al. 2005)), including upon the 

timing of saccades (Suzuki and Tanaka 2017), there is little evidence for a systematic influence 

over behaviour in the delayed oculomotor task. Despite this, there is evidence for 

neurophysiological changes in circuits implicated in task performance when prefrontal α2-

adrenoreceptors are modulated (Arnsten 2011; Arnsten and Li 2005; Sawaguchi et al. 1990). 

Specifically, administration of clonidine, an α2-agonist, facilitates the delay period activity 

associated with maintenance of working memory (Li et al. 1999; Suzuki and Tanaka 2017). 

This is highly consistent with the simulations shown in Figure 4.9, where increasing 

noradrenergic signalling improves the propagation of information about the past to the future 

(columns of the raster plots).  

Intuitively, an inability to project precise beliefs into the future, or from the past to the present, 

should undermine the performance of this task. Under active inference, a simple explanation 

for the preservation of performance even in the absence of precise beliefs about transitions 

rests upon the use of deep (sequential) policies. If we are able to infer, based upon early 

observations, the course of action we will pursue, performance becomes robust to the 

degradation of memories about those observations. In other words, if I know I have to perform 

a saccade to the left location, whether I believe that this is the target location or not has no 

influence over my task performance. This illustrates the dissociation between beliefs about 
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states of the world and beliefs about ‘how I will act’. This affords an opportunity to investigate 

the interaction between neuromodulators and the influence of, for example, noradrenergic 

modulations on dopamine firing. 

Interestingly, selective noradrenaline uptake inhibitors have been shown to be efficacious in 

treating anxiety disorders (Montoya et al. 2016). These drugs increase signalling at α2-

receptors (Grandoso et al. 2004), implying that anxiety may be partly mitigated through an 

induction of the belief that environmental dynamics are more precise. Under the view that 

stress is a manifestation of uncertainty (Peters et al. 2017), this conclusion makes a great deal 

of sense. The reduction in uncertainty about what will happen next, by setting up a belief that 

the world is actually quite predictable, may be an important part of the computational 

mechanism of action of these pharmacological agents. 

 

Figure 4.9 – Noradrenergic modulation of prefrontal firing Each row illustrates a single 

trial of the delay period oculomotor task, but with different levels of noradrenaline. This has 

little effect on the performance of the task. Even in the lowest row, where a premature saccade 

takes place, this mistake is corrected at the next time-step. Note that this error is a consequence 

of the random sampling of actions from beliefs about policies, and does not occur on the 

majority of trials. It has been retained here to illustrate the change in strategy that leads to the 



117 

 

successful completion of the task. While there are no clear behavioural consequences of this 

manipulation, the physiological implications are much more striking. These are shown as 

raster plots of prefrontal cortical neurons representing the remembered target location. Each 

row represents the firing of a population of neurons representing the probability of one of the 

target locations at specific times throughout the trial. The lower rows within these plots 

indicate later times. This means that at the first time step (first column), the last row represents 

beliefs about the future. By the final time step (last column), the last row represents beliefs 

about the present. As the concentration of noradrenaline increases, more structure becomes 

apparent in the lower parts of the plots, indicating a more successful propagation of the 

inferences drawn from observing the initial cue to the later points in the trial. Note that the 

increase in persistent activity is accompanied by a decrease in the firing of other neurons, 

representing the probability of alternative states. 

 

Summary 

 

In the above, we have demonstrated the face validity of the use of active inference to simulate 

the effects of pharmacological therapies on oculomotor behaviour. Previous accounts of these 

behaviours have proposed their utility as biomarkers for the action of therapeutic (or toxic) 

agents in individual patients (de Visser et al. 2001; de Visser et al. 2003; Reilly et al. 2008). 

Complementing this approach, we offer a mechanistic (computational) account that bridges 

the gap between chemical and behavioural changes. The advantage of casting this in 

computational terms is that the model used here can be fit to empirical (eye-tracking) data to 

estimate the changes in precision brought about by specific drugs (Adams et al. 2016; Mirza 

et al. 2018; Schwartenbeck and Friston 2016). This offers a mechanistically informed method 

for non-invasive evaluation of synaptic function in individual patients. In doing so, it may be 

possible to titrate drug doses to achieve an optimal change in central nervous system function, 

or to avoid adverse psychopharmacological effects. 

Part of the strength of this method is the appeal to behaviours that depend upon inferences in 

two different, but connected domains (Parr and Friston 2018c). These are categorical decisions 

between alternative saccadic targets that depend upon working memory and delay period 

activity, and the continuous implementation of these decisions through oculomotion. This 

means that it is possible to draw inferences, based upon behaviour, about the function of 

anatomically disparate brain regions using a single model. An important caveat here is that the 

model we have used is overly simple from a pharmacological perspective. Notably, we have 

neglected the fact that neuromodulatory compounds act at many different anatomical sites, and 
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have different effects on different receptor subtypes. These omissions undoubtedly have 

important computational consequences. This may be why, although we have captured some 

aspects of the oculomotor changes induced by different drugs, there are others that are not 

reproduced. For example, the changes in speed of saccades associated with dopaminergic 

changes (Lynch et al. 1997) were not seen here. Despite these limitations, the correspondence 

between drug effects and the behaviours resulting from changes to precision parameters adds 

further weight to computational accounts of neuromodulatory systems, and offers a tool to 

evaluate these theoretical accounts empirically. 

 

Conclusion 

 

This chapter comprised two sections dealing with key aspects of neuromodulatory systems in 

a clinical context. The Precision and pathology section addresses the ways in which faulty 

neuromodulation may permit false inference, and a possible mechanism whereby anatomically 

distant lesions may cause a diaschisis that impairs (for example) cholinergic function. The 

Computational pharmacology section offers a computational perspective on the influence of 

commonly used drugs on behaviour. We considered oculomotor behaviour as a specific 

example that is known to vary with drug administration, and that is easy to measure with non-

invasive techniques. The simulations presented above illustrate that some of the key features 

of oculomotor responses to pharmacological interventions can be replicated in silico through 

an appeal to active inference. Both sections rest upon the idea that planning is inference about 

how to act, and that these inferences entail predictions about the sensory consequences of 

action. Each stage of this process is sensitive to the precision associated with the relationship 

between different kinds of variable, and these precisions are thought to manifest biologically 

as synaptic gain – subject to neuromodulatory chemicals. Ultimately, we hope that this 

approach will be useful in a clinical setting, enabling quantitative characterisations of disease 

processes and pharmacologically induced synaptic modulations using non-invasive measures. 

 

 

Table 4.1 – Putative roles of neurotransmitters in active inference (Parr and Friston 

2018b) 

Neurotransmitter Precision  Evidence 
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Acetylcholine Likelihood • Presence of presynaptic receptors on 

thalamocortical afferents (Lavine et al. 1997; 

Sahin et al. 1992) 

• Modulation of gain of visually evoked 

responses (Disney et al. 2007; Gil et al. 

1997) 

• Changes in effective connectivity with 

pharmacological manipulations (Moran et al. 

2013b) 

• Modelling of behavioral responses under 

pharmacological manipulation (Marshall et 

al. 2016; Vossel et al. 2014) 

Noradrenaline Transitions • Maintenance of persistent prefrontal (delay-

period) activity (requiring precise transition 

probabilities) depends upon noradrenaline 

(Arnsten and Li 2005; Zhang et al. 2013) 

• Pupillary responses to surprising (i.e. 

imprecise) sequences (Krishnamurthy et al. 

2017; Lavín et al. 2013; Liao et al. 2016; 

Nassar et al. 2012; Vincent et al. In press)   

• Modelling of behavioral responses under 

pharmacological manipulation (Marshall et 

al. 2016) 

Dopamine Policies • Expressed post-synaptically on striatal 

medium spiny neurons (Freund et al. 1984; 

Yager et al. 2015) 

• Computational fMRI reveals midbrain 

activity with changes in precision 

(Schwartenbeck et al. 2015b) 

• Modelling of behavioral responses under 

pharmacological manipulation (Marshall et 

al. 2016) 

Serotonin Preferences 

or 

interoceptive 

likelihood 

• Receptors expressed on layer V pyramidal 

cells (Aghajanian and Marek 1999; Elliott et 

al. 2018; Lambe et al. 2000) in medial 

prefrontal cortex 
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• Medial prefrontal cortical regions heavily 

implicated in interoceptive processing and 

autonomic regulation (Marek et al. 2013; 

Mukherjee et al. 2016) 
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 5 – Novelty, neglect, and dynamic causal modelling 

 

Introduction 

 

Visual neglect is a debilitating neuropsychological phenomenon that has many clinical 

implications and – in cognitive neuroscience – offers an important lesion deficit model. In this 

chapter15, we describe a computational model of visual neglect based upon active inference. 

Our objective is to establish a computational and neurophysiological process theory that can 

be used to disambiguate among the various causes of this important syndrome; namely, a 

computational neuropsychology of visual neglect. In the Novelty and neglect section of this 

chapter, we introduce a Bayes optimal model based upon Markov decision processes that 

reproduces the visual searches induced by the line cancellation task (used to characterise 

visual neglect at the bedside). We then consider three distinct ways in which the model could 

be lesioned to reproduce neuropsychological (visual search) deficits. Crucially, these three 

levels of pathology map nicely onto the neuroanatomy of saccadic eye movements and the 

systems implicated in visual neglect. 

A key aspect of this model comes back to the idea, expressed in Figure 1.4, that high 

dimensional beliefs may be more efficiently represented through short-term (synaptic) plastic 

changes than through delay-period activity (of the sort exploited in Chapter 4, Figure 4.9). 

This implies we need to move beyond inferences about states, or the relatively course precision 

modulations in the last chapter, and to optimise beliefs about the parameters of the model. 

When we consider the contribution of this additional set of beliefs to the expected free energy, 

we find that these supplement the expected free energy with an information gain associated 

with parameters. In analogy with the salience we associated with information gain about states 

of the world, we now associated a novelty value with the corresponding information gain about 

the probabilistic structure of the world. 

Given that performance of the dot cancellation task, in our model, depends upon parameter 

learning of the sort that could be mediated by changes in synaptic efficacy, this predicts 

changes in effective connectivity between different brain regions over the time-course required 

to perform this task. The neuropsychology of visual neglect, in combination with the 

computation lesions required to induce neglect in silico, motivates a specific hypothesis about 

the brain regions whose coupling we would expect to change over time. As detailed in the 

Dynamic causal modelling section below, we collected magnetoencephalography data from 

 
15 This chapter is adapted from (Parr and Friston 2017b; Parr et al. 2019c) 
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healthy participants while they performed the same cancellation task as our simulation. We 

use these data to test the hypotheses arising from the Novelty and neglect section, finding 

evidence in favour of time-dependent changes in the coupling between dorsal frontal and 

ventral parietal regions during the performance of this task. 

 

Novelty and neglect 

 

This section has three key aims. The first is to provide an example of the role of novelty and 

learning under active inference in the context of active vision. The second is to illustrate a 

computational approach to neuropsychology, developing a belief-based differential diagnosis 

(i.e. a set of alternative computational lesions that could explain pathological behaviour), and 

illustrating how these may be disambiguated using non-invasive eye-tracking and Bayesian 

model comparison. The third aim of this section is to appeal to the neuropsychology of visual 

neglect to form specific, anatomically informed, hypotheses about the neurophysiological 

changes that underwrite healthy active vision, amenable to testing using non-invasive 

neuroimaging techniques. 

 

Visual neglect 

 

Visual neglect is a common syndrome in which patients neglect one side (typically the left) of 

space (Halligan and Marshall 1998). It is often caused by right middle cerebral artery strokes, 

but has also been reported as a consequence of inflammatory (Gilad et al. 2006), metabolic 

(Auclair et al. 2008), and degenerative (Andrade et al. 2010; Ho et al. 2003) diseases. It has 

also been observed as a feature of seizure activity (Heilman and Howell 1980; Schomer and 

Drislane 2015; Turtzo et al. 2008), and as part of a migraine aura (Di Stefano et al. 2013). In 

addition to the wide range of pathological processes which can cause the syndrome, visual 

neglect can be caused by a range of anatomical lesions. These include both cortical (Corbetta 

and Shulman 2002) and subcortical (Karnath et al. 2002) insults. There is evidence that the 

heterogeneity of the causes of visual neglect map on to distinct behavioural phenotypes 

(Grimsen et al. 2008; Hillis et al. 2005; Medina et al. 2009; Verdon et al. 2009), and this has 

the potential to be exploited clinically and scientifically.  

Eye tracking provides one way in which to characterise behavioural deficits in visual neglect. 

These measurements have demonstrated that patients with visual neglect perform saccades to 
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the right side of space with a disproportionately high frequency, compared to leftward 

saccades. This occurs both spontaneously (Fruhmann Berger et al. 2008; Karnath and Rorden 

2012) and during search tasks (Husain et al. 2001). While these biases will form the main 

subject of this chapter, it is important to note that it may be possible to elicit signs of neglect 

in patients with no deficit in ocular exploration. For example, in tasks requiring a manual 

response, it is possible that patients may exhibit a normal pattern of saccadic eye movements, 

but that they may be impaired in executing a response (Bourgeois et al. 2015; Ladavas et al. 

1997). In this section, we consider the control of eye movements, and the conditions that would 

have to be fulfilled in order to explain the saccadic patterns observed in visual neglect. We 

aim to show that there is a well-defined and distinct set of conditions that can reproduce the 

neglect syndrome.  

Active inference provides a principled framework in which to define these conditions – in 

terms of the prior beliefs that a patient would have to possess for their behaviour to be Bayes 

optimal. The notion of optimal pathology might seem a strange one, but the existence of a set 

of prior beliefs that renders any behaviour optimal is mandated by the complete class theorems 

(Daunizeau et al. 2010; Wald 1947). This means that we can characterise pathology in terms 

of optimal inference, but in a system or subject that operates under a poor model of its 

environment (Conant and Ashby 1970). In the following, we briefly review active inference 

and show how this normative approach can be used to identify the functional lesions that could 

cause visual neglect. We then propose a neuroanatomical network that is consistent with the 

neuronal message passing implied by active inference. This allows us to equate functional 

lesions to anatomical lesions, and to simulate saccadic eye movements for each lesion in silico. 

We explore the influence of subcortical structures (Karnath et al. 2002) in visual neglect, and 

the notion that visual neglect is a type of disconnection syndrome (Bartolomeo et al. 2007; He 

et al. 2007). This section concludes by asking the question whether the different sorts of 

(saccadic) behaviour induced by distinct sorts of lesions is sufficient to identify the locus of 

the lesion. We address this question using in silico neuropsychology and Bayesian model 

selection. 

The purpose of this section is to describe the active inference scheme and establish its 

predictive validity in (simulated) visual neglect. In the following section, we will validate the 

underlying functional anatomy using eye tracking and MEG in real (normal) subjects. Our 

ultimate objective is to translate this model into clinical studies – to provide a functionally and 

biologically grounded characterisation of neuronal computations in patients with visual 

neglect. 
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Learning, novelty, and expected free energy 

 

Chapter 2 detailed the importance of free energy minimisation, and of the selection of policies 

that minimise expected free energy. Specifically, policies which are associated with a smaller 

expected free energy should be considered more likely than those associated with a larger 

expected free energy. Chapter 3 illustrated the consequences of this for active visual sampling 

in selection of salient (uncertainty resolving) saccades. Here, we generalise this to the 

resolution of uncertainty about the parameters of a generative model. To do so, we must 

specify a generative model that includes prior beliefs about these parameters, and the Bayesian 

belief-updating that realises the learning of the generative model. Given that the probability 

distributions are specified as categorical distributions, the appropriate conjugate prior for the 

likelihood (A) matrix is a Dirichlet distribution. This means that the probability can be 

represented simply in terms of Dirichlet concentration parameters. For each state (s) there are 

a set of Dirichlet parameters (a) one for each outcome, which could be associated with this 

state. These are initially ‘pseudo-observations’, as no observation has yet been made. The 

belief about the probability of an outcome (o) given a state is: 
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In Equation 5.1, ψ is a digamma (derivative of a gamma) function. As observations are made, 

the agent is able to learn – that is, accumulate its Dirichlet parameters – to better fit its 

observations. This process of learning simply involves increasing the Dirichlet parameter 

representing a particular outcome when that is observed (Beal 2003; Blei et al. 2003). The 

amount it is increased by the (approximate) posterior probability that each hidden state was 

occupied when the observation was made. This allows a creature to remember the observations 

they sampled when they believed they were in a particular state (Friston et al. 2016b). The 

notion that the mapping between representations of two variables should be increased when 

the two are simultaneously active is strikingly similar to Hebbian plasticity (Brown et al. 2009; 

Hebb 1949). This analysis suggests that this form of memory could be implemented by short-

term changes in synaptic efficacy. More formally, the free energy, incorporating these priors, 

is: 
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Taking the gradient of this expression with respect to the expected sufficient statistics of the 

likelihood: 

 

[ln ] 0E F a o a o    
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The final expression here expresses the activity dependent plastic changes described above 

(i.e., the accumulation of Dirichlet parameters). If we interpret the beliefs about states and 

their corresponding observations as represented in firing rates, and the A-matrix as a 

connectivity matrix, Equation 5.3 simply says that the strength of a given synapse is 

incremented whenever the neurons representing the state and observation connected by that 

synapse are simultaneously active. Note that this Hebbian perspective on learning emerges 

from the generative model and the minimisation of free energy. An important consequence of 

the Dirichlet parameterisation concerns the scaling of parameters. The scaling of the Dirichlet 

parameters does not influence the values in the likelihood matrix. However, it does influence 

the degree to which these change following an observation. If all the concentration parameters 

are very large (as would be the case if many past observations had been made), a single 

observation will make a very small difference to the likelihood. If the parameters are very 

small, an observation can trigger one-shot learning, suggesting a rapid short term plasticity 

effect16. Such effects have been proposed as one mechanism underlying working memory 

(Mongillo et al. 2008). This behaviour is of particular interest in the current context, as will 

 
16 Intuitively, imagine flipping a coin 5 times, and getting 5 heads in a row. This might lead us to 

update our beliefs to favour the hypothesis that this is an unfair coin. However, if this had been 

preceded by 100 flips with 50 heads and 50 tails, the final 5 heads would do little to influence our 

beliefs about whether or not this is a fair coin.  
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become apparent in the next section, where the form of the MDP used to model visual neglect 

is described. 

Having specified the way in which beliefs about parameters are updated, we now need to 

supplement the expected free energy (Equation 2.16) with priors and posteriors about the 

parameters. 
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Remembering that lower expected free energies are associated with more probable policies, 

this expression implies that the greater the expected update from prior to posterior beliefs about 

the parameters (the novelty term), the more probable the policy. This implies that the salience 

discussed in Chapter 3 in relation to inference is supplemented with the novelty afforded by 

the potential to learn. Appendix A.5 derives the form of the expression for the novelty, which 

may be expressed in terms of a matrix (W): 

 

( )1 1 1
2

(ln ln )

ij kjk
ij a a

     =  − +  − 

−


G o o C H s o Ws

W
     (5.5 

 

Connecting this back to the accumulation of Dirichlet parameters, we see that very large prior 

Dirichlet parameters yield very little novelty. This is consistent with the fact that an 

observation is unlikely to cause a substantial change in the expected likelihood. Equation 5.5 

makes an important connection between the capacity to increment a connection strength 

(which depends upon the size of the initial Dirichlet parameters) and the novelty value 

associated with the observations expected under a given policy. 
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Figure 5.1 - Generative model for the saccadic cancellation task. The structure of the 

particular generative model used for the saccadic cancellation task is shown on the left. The 

hidden states in this model are the locations in the visual field that are fixated. These are 

indicated by the 8x8 grid on the left of this figure. The agent may saccade to any location on 

the grid, and the particular saccade is defined by the policy (π) which selects the appropriate 

B-matrix. Each component of this matrix defines the probability of a saccade to a given 

location, given a current location. There are two A matrices which provide a probabilistic 

mapping from the hidden states to the visual (A1) or proprioceptive (A2) outcome modalities. 

Prior preferences are defined by the C-vectors for each modality. On the right is a depiction 

of the structure of the task resulting from the generative model. The dotted line is the saccade 

path, and this demonstrates the change from black to red of targets as they are cancelled. 

 

 

Saccadic cancellation task 

 

The task performed by the particular MDP model used in this work is based on the pen-and-

paper line cancellation task (Albert 1973; Fullerton et al. 1986). This task is used to assess 

visual neglect clinically, and is very sensitive (Ferber and Karnath 2001). Despite its 

popularity, it is worth noting that there are many possible reasons that performance of this task 

might be impaired. We will demonstrate this for a few of these reasons below. We will use a 

saccadic version, which involves presenting the subject with an array of targets that can be 

placed at various locations on an 8x8 grid. The task is to look at each of the targets until all 

targets have been sampled (i.e., cancelled). When a target has been fixated, it changes colour 

from black to red (see the right panel in Figure 5.1), indicating that it has been seen. The model 

used to emulate this behaviour is shown in Figure 5.1, in terms of the variables in the MDP. 

The only hidden states in this model correspond to the location currently foveated. An identity 
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matrix maps these deterministically to proprioceptive observations, ensuring there is no 

uncertainty about the hidden state (i.e., where the subject is currently looking). The uncertainty 

in the model is contained in the (likelihood) mapping from hidden states to visual outcomes. 

There are three possible outcomes: no target (white), target (black), and cancelled target (red). 

The prior preferences of the simulated agent are that it has equal preferences over all 

proprioceptive outcomes, prefers to see targets that have not been cancelled, and does not 

expect to see targets that have already been cancelled. Our synthetic subject begins with 

(almost) uniform beliefs about the A-matrix (i.e., what will happen if she looks at a particular 

location). However, these incorporate very weak, but accurate, beliefs concerning the locations 

of the targets. On foveating a target, the first visual outcome is a black target. This observation 

allows the appropriate Dirichlet parameters to be accumulated. During fixation, the target 

changes from black to red, and this causes further changes in the Dirichlet parameters, so that 

the subject remembers she has already cancelled that location. This implements a synaptic 

form of spatial working memory (Mongillo et al. 2008), of exactly the sort shown in Figure 

1.4. The subject may saccade to any location at any time, meaning there are 64 possible 

actions, each of which is associated with a corresponding transition (B) matrix. Having 

established the basic form of the generative model, sufficient to simulate visual search, we 

now turn to the finer details of the implicit epistemic foraging, how novel targets are selected 

– and what can go wrong under pathological priors. 

 

 

Computational neuropsychology 

 

In principle (under the complete class theorem), all neuropsychological syndromes can be 

formulated in terms of active inference. The challenge is to find the prior beliefs a subject 

would have to possess to render their behaviour Bayes optimal. For visual neglect, we consider 

the abnormal patterns of saccadic eye movements in patients (Bays et al. 2010; Fruhmann 

Berger et al. 2008; Husain et al. 2001; Karnath and Rorden 2012), and the beliefs which would 

engender these patterns. For each saccadic policy, the generative model specifies the prior 

probability that the policy will be pursued. By analysing the form of this prior belief, one can 

develop a differential diagnosis for the computational lesions in visual neglect. As noted 

above, the prior belief about policy should depend on the expected free energy. The smaller 

the expected free energy under a policy, the more likely it will be pursued. Rearranging the 

expected free energy from 5.4, we can dissect out the terms related to different sorts of 

information gain: 
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The second (salience) term in this equation, in the context of the generative model used here, 

is identical for all policies. This is because the identity mapping from the hidden states 

representing locations to the proprioceptive outcomes allows the subject to infer location in 

visual space with certainty. This means there is no information gain or epistemic value that 

would otherwise resolve uncertainty about the hidden states. The key terms that determine 

policy selection are the first and third. The former implies that a policy which is expected to 

fulfil the agent’s prior beliefs (preferences) about outcomes has a lower expected free energy 

than one which does not. The latter suggests that a policy which affords the greatest change in 

the beliefs about the likelihood mapping, from beliefs prior to seeing counterfactual outcomes 

has the lowest expected free energy. Heuristically, policies that elicit observations that enable 

large Bayesian belief updates become more attractive. In other words, the subject will be 

attracted to novel contingencies that resolve uncertainty about the consequences of being in a 

particular state; i.e., the likelihood mapping. 

In short, prior preferences and novelty are both important factors in determining the selection 

of a location to saccade to. This implies two possible computational mechanisms for visual 

neglect. A subject may have a prior belief that she will experience the proprioceptive outcomes 

corresponding to the right side of space with a greater probability than those corresponding to 

the left. Alternatively, the subject may be more confident in her beliefs about the mapping 

from states to outcomes on the left, and therefore consider the right side of visual space novel. 

This is equivalent to starting with very large Dirichlet parameters (corresponding to a large 

number of pseudo-observations) for locations on the left. This follows because an observation 

resulting from a saccade to the left will induce a small change in beliefs about the likelihood 

mapping.  

A third possibility relates to (baseline) prior beliefs about policies that may not depend upon 

expected free energy. Although active inference mandates that an agent believes it will pursue 

policies which minimise its expected free energy, it does not preclude fixed prior beliefs over 

policies which, in visual neglect, might identify saccades to the right to be a priori more likely 
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than those to the left. To express this formally, we can augment the expression for priors over 

policies as in Equation 2.15 (omitting the salience terms, given the argument above): 
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Here, E expresses the prior beliefs about policies that do not depend on the expected free 

energy. In this form, the (log) priors over policies are expressed as a linear function of expected 

free energy, where E corresponds to the y-intercept and precision is the sensitivity or slope. 

The numbers labelling various terms in Equation 5.7 index the terms that we lesioned for the 

simulations, and correspond to the numbers in black circles shown in Figure 5.2. 

In summary, the above formal considerations have led us to identify three possible synthetic 

lesions which could give rise to visual neglect. These are changes in the priors over policy E, 

the Dirichlet parameters of the beliefs about A, and the priors concerning proprioceptive 

outcomes, contained in the matrix C. In the following section, we review plausible 

neurobiological substrates for each of these computational pathologies. 

 

The neuroanatomy of visual neglect 

 

As we detailed in Chapters 1 and 3, the superior colliculus, in the midbrain, is a key site for 

the control of saccadic eye movements (Raybourn and Keller 1977). It is also a point of 

convergence for the cortical and subcortical structures involved in oculomotor control (Berson 

and McIlwain 1983; Fries 1984; Fries 1985; Gaymard et al. 2003; Künzle and Akert 1977; 

Shook et al. 1990). The substantia nigra pars reticulata, a GABAergic output nucleus of the 

basal ganglia, projects directly to the colliculus (Hikosaka and Wurtz 1983), as do cortical 

areas including the frontal eye fields (Künzle and Akert 1977) and the lateral intraparietal 

cortex (Gaymard et al. 2003) (sometimes called the parietal eye fields (Shipp 2004)). These 

dorsal frontal and parietal areas constitute the dorsal attention network (Corbetta and Shulman 

2002), and communicate via the first branch of the superior longitudinal fasciculus 

(Bartolomeo et al. 2012; Makris et al. 2004). The frontal eye fields are well placed to house 

the hidden states representing eye position, while dorsal parietal areas are suited to the 
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representation of proprioceptive information. The former are known to contain spatial maps 

in egocentric space, as evidenced by demonstrations that stimulation of neurons in this region 

induce saccades that end in specific egocentric eye positions (Bruce et al. 1985; Sajad et al. 

2015). The latter contain neurons that are modulated by multiple spatial reference frames 

(Andersen et al. 1985; Pouget and Sejnowski 2001).  

 

 

Figure 5.2 - Computational anatomy and lesion sites. This schematic illustrates the 

proposed mapping from the computational entities implicated by the model (see Figure 5.1 

and 2.2) and their neuroanatomical substrates. On the left the dorsal and ventral attention 

networks are shown. The former involves the frontal eye fields (FEF) and posterior parietal 

areas in the region of the lateral intraparietal area (LIP) and intraparietal sulcus (IPS). The 

frontal areas of this network are assumed to represent the hidden states, corresponding to the 

current fixation location. The parietal component represents proprioceptive outcomes (eye 

position). The connection between these frontoparietal areas is the first branch of the superior 

longitudinal fasciculus (SLF I), mediating the likelihood mapping between the hidden states 

and proprioceptive outcomes (A2). The ventral attention network includes the ventral frontal 

cortex (VFC) and the temporoparietal junction (TPJ). These are connected by SLF III, which 

could carry prior preferences about visual outcomes (C1). Visual outcomes are assumed to be 

represented in the TPJ, which suggests the SLF II is the mapping from hidden states to visual 

outcomes (A1), and it is in these connections that the beliefs about the target locations are 

encoded. Prior preferences for proprioceptive outcomes are assigned to the pulvinar, a nucleus 

of the thalamus. On the right the connections from the pulvinar to the dorsal parietal cortex 

(LIP) are shown. These are portrayed as conveying expectations about (proprioceptive) 

outcomes in C2. In addition, the pathways through the basal ganglia are also shown. The policy 
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evaluation processes are depicted as stages in the direct pathway. In this scheme, the putamen 

evaluates the expected free energy, and baseline policy priors, E. These are modulated by 

dopaminergic inputs from the substantia nigra pars compacta (SNc), in proportion to their 

precision γ, and the output of the putamen is transformed by the substantia nigra pars reticulata 

(SNr) into a distribution over policies. The simulated lesions we considered are numbered: 1 

– SLF II; 2 – Putamen; 3 – Pulvinar.  

 

The parietal cortex is part of the dorsal visual stream, thought to carry information about the 

location of a stimulus (Goodale and Milner 1992; Ungerleider and Haxby 1994). In the present 

context, the first branch of the superior longitudinal fasciculus would perform a coordinate 

transformation, bringing spatial information about a stimulus into egocentric coordinates; 

suitable for planning eye movements. This suggests that the superior longitudinal fasciculus 

corresponds to the connectivity or mapping encoding the likelihood matrix A (see Figure 5.2). 

In our model, this is an identity mapping, but this is only the case when the head is assumed 

to be in a fixed position. A model which allowed for head movements would require this matrix 

to represent a more complex coordinate transform. Given proprioceptive outcomes are 

represented in the dorsal parietal regions; inputs to this region must represent prior beliefs 

concerning proprioception. A candidate structure providing this information is the pulvinar, 

which is involved in visual search behaviours (Ungerleider and Christensen 1979). The 

connections from this region would then encode the C matrix. 

Despite the important role of dorsal frontoparietal areas in the generation of saccadic 

movements (Corbetta et al. 1998), it is more ventral frontoparietal lesions which are associated 

with the visual neglect syndrome (Corbetta et al. 2000; Corbetta and Shulman 2002; Corbetta 

and Shulman 2011). These regions are the constituents of the ventral attention network, and 

are connected by the third branch of the superior longitudinal fasciculus (Bartolomeo et al. 

2012; Rushworth et al. 2005). The parietal part of this network includes areas in the region of 

the temporoparietal junction, closer to the temporal regions associated with the ventral visual 

stream. This component of the visual system has been described as the ‘what’ pathway 

(Ungerleider and Haxby 1994), propagating information concerning stimulus identity to 

complement the ‘where’ information of the dorsal stream. The ventral temporoparietal regions 

are then good candidates for the representation of the visual outcome modality of the model, 

allowing them to influence eye movements in a stimulus-driven manner (Shomstein et al. 

2010). Connections from the ventral frontal cortex could then carry information concerning 

prior beliefs (equivalent here to the instructions a subject would be given), consistent with the 

proposed role of areas in this region in representing task demands (Dosenbach et al. 2006; 
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Duncan 2001) and in target detection (Stevens et al. 2005). This suggests that the third branch 

of the superior longitudinal fasciculus is the anatomical substrate of C.  

Notably, the ventral attention network is lateralised to the right cerebral cortex, while the 

dorsal network is much more symmetrical (Corbetta et al. 2002; Thiebaut de Schotten et al. 

2011; Vossel et al. 2012). This is consistent with the notion that temporal regions could 

represent the ‘what’ modality, as identity is largely independent of location, and therefore does 

not require a bilateral representation (Parr and Friston 2017a). There is evidence to suggest 

that this unilateral representation of identity is right lateralised (Warrington and James 1967; 

Warrington and James 1988; Warrington and Taylor 1973), while left sided homologues relate 

to object naming (Kirshner 2003). We note that, although temporoparietal regions are thought 

to play a role in target detection (Corbetta et al. 2000), they do not appear to be necessary for 

object recognition. The involvement of the ventral network is consistent with the fact that 

visual neglect is frequently associated with right hemispheric lesions.  

This leaves the question of how lesions in ventral regions produce the saccadic deficits that 

might be expected from dysfunction of areas which are directly involved in saccadic control. 

One answer to this question is that visual neglect involves dysfunction of the dorsal network 

as a consequence of the failure of the ventral network, or of the interaction of the two networks 

(He et al. 2007). The two networks are joined by the second branch of the superior longitudinal 

fasciculus (Thiebaut de Schotten et al. 2011), and it has been proposed that visual neglect 

represents a functional disconnection syndrome involving this pathway. Given that this branch 

connects the parietal part of the ventral system to the frontal part of the dorsal system, this 

corresponds exactly to the mapping described by A. It is interesting that this tract, heavily 

implicated in visual neglect (Doricchi and Tomaiuolo 2003; Thiebaut de Schotten et al. 2005), 

appears to be the anatomical homologue of the mathematical entity identified above as a 

candidate for pathological priors – on purely theoretical grounds. 

As stated above, an important input to the superior colliculus is the substantia nigra pars 

reticulata. This structure is a point of convergence for the direct and indirect pathways through 

the basal ganglia. Both of these originate from the striatum, which comprises the caudate 

nucleus and putamen. In visual neglect patients with subcortical lesions, there is substantial 

lesion overlap found in the putamen, and to a lesser degree in the caudate (Karnath et al. 2002). 

As indicated in Figure 5.2, the putamen is involved in the evaluation of policies. This fits with 

the proposed role of the basal ganglia. Additionally, as policies that are independent of the 

expected free energy are equivalent to habitual behaviour, it makes intuitive sense that 

pathological biasing of policies would take place within a structure which is involved in habit 

formation; i.e., the striatum (Yin and Knowlton 2006). The consistency of the anatomy of the 
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basal ganglia with the policy update equations is further enhanced when the hierarchical 

extension of these equations is considered (Friston et al. 2017f). These imply multiple parallel 

loops, originating and ending in the cortex, closely resembling those described in subcortical 

structures (Haber 2003). 

The pulvinar is another subcortical region that is strongly implicated in visual search and 

neglect – and, as mentioned above, connects to dorsal parietal areas (Behrens et al. 2003; 

Weller et al. 2002). This makes it a plausible anatomical substrate for the representation of 

prior beliefs about proprioceptive outcomes. This is consistent with accounts of the pulvinar 

in directing attention (Kanai et al. 2015; Shipp 2003) and eye movements (Petersen et al. 

1985), and as a ‘salience map’ (Robinson and Petersen ; Veale et al. 2017).  

There are other possible lesions which could be accommodated by this model. For example, 

unilateral disruptions of the connections from the substantia nigra pars reticulata to the 

superior colliculus (Hikosaka and Wurtz 1985; Schiller et al. 1987; Schiller et al. 1980), or of 

the dopaminergic modulation of the striatum (Kato et al. 1995; Kori et al. 1995), have been 

shown to cause visual neglect-like syndromes. However, these lesions are rarely reported as 

causes of neglect in human patients. We have prioritised the lesions corresponding to the white 

matter tract that connects the dorsal and ventral attention networks, in addition to two common 

subcortical lesions; the putamen and pulvinar. These closely resemble the theoretically 

motivated lesions of A, E, and C.  

In the above, our focus has been on disruption of the communication between posterior and 

frontal cortices, and on subcortical disconnections within the right hemisphere. Importantly, 

there is good evidence (Dietz et al. 2014; Rushmore et al. 2006; Vuilleumier et al. 1996) that 

neglect involves inter-hemispheric imbalances in addition to intra-hemispheric disruptions 

(Bartolomeo 2014; Bartolomeo et al. 2007). This is a key feature of an existing model of 

neglect (Kinsbourne 1970). Fortunately for our framework, the two are inherently linked. 

Examination of the equations in Figure 2.2 reveals two key features in the belief updates for 

hidden states. The first feature is that beliefs about states are conditionally dependent upon 

policies. This means that any bias towards policies favouring saccades to the right will increase 

the probability, on taking a Bayesian model average over policies, of a fixation location on the 

right. Given the contralateral cortical control of eye movements, this corresponds to increased 

left hemispheric activity. The second important computational feature is the softmax function, 

which ensures posterior beliefs over allowable fixation locations sum to one (i.e., ensures a 

proper probability distribution). Such a constraint could be biologically implemented by 

inhibitory interactions within and between the two frontal eye fields. In other words, if 

fixations on the right side of space are considered more probable, it must be the case that 
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leftward fixations are less probable. This necessarily implements a form of inter-hemispheric 

competition – a competition that is won by the left hemisphere if any of the lesions described 

in the previous section bias policies towards rightward saccades. 

 

Simulating visual neglect  

 

Figure 5.3 shows the results of running the simulation for 20 saccades, under different prior 

beliefs (i.e., lesions). Strikingly, all three lesioned models produce very similar behavioural 

patterns. This heterogeneity of functional lesions is consistent with the diverse set of 

anatomical lesions known to cause visual neglect. While the non-lesioned model samples both 

sides of space, all three lesions cause a bias towards sampling the right side of space. This 

biased sampling is very similar to that observed in visual neglect patients (Bays et al. 2010). 

It is worth noting that people may have additional priors over their policies (possibly contained 

in E), that result in a slightly different pattern of saccadic search than that depicted in Figure 

5.3. For example, people might have a prior bias towards performing a saccade to a nearby 

target. We have omitted this additional prior, as our aim is to present a minimal model that 

reproduces the important features of neglect. 

The functional disconnection induced by altering the Dirichlet parameters of A effectively 

increases the novelty associated with saccades to the right hemifield. This corresponds to the 

functional disconnection of the dorsal and ventral attention networks, and can be thought of as 

impairing the ‘capture’ of attention by salient stimuli, consistent with existing theories of 

visual neglect (Ptak and Schnider 2010) and attention (Shulman et al. 2009). The simulated 

pulvinar lesion causes the agent to fulfil their prior beliefs that they are more likely to be 

looking at the right side of space, and the lesioned putamen biases policy selection in favour 

of saccades in this direction.  

While mechanistically distinct, the behavioural profiles of each of these lesions do not appear 

to lend themselves to precise diagnoses in terms of observable behaviour. In the next 

subsection, we consider a more realistic approach to spatial representations. We follow this 

with an attempt to determine whether the syndrome generated by these lesions is really as 

homogenous as it appears, or whether it is possible to identify the lesion from saccadic 

behaviour.  
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Figure 5.3 - Simulated saccadic cancellation task. Each of the panels shows the simulated 

eye tracking data (blue) during 20 saccades. In all cases, the target array was the same. The 

upper left panel shows the performance of the model with no simulated lesions. The upper 

right panel shows the results when the A1 Dirichlet parameters were increased for the left 

hemifield, corresponding to a functional disconnection of the second branch of the right 

superior longitudinal fasciculus. The lower left panel shows performance when there is a 

biasing of policy selection, simulating a lesion of the putamen. The lower right panel 

represents a lesion of the prior beliefs about proprioceptive outcomes, which relates to a deficit 

in the inputs to the dorsal parietal cortex, likely from the pulvinar. 

 

Multiscale representations of space 

 

Spatial representations in the brain involve multiple segregated spatial scales, and resolutions. 

The magnocellular system, for example, carries information with a relatively low spatial 

resolution, while the parvocellular system provides higher resolution information (Livingstone 

and Hubel 1988; Nealey and Maunsell 1994; Zeki and Shipp 1988; Zeki and Shipp 1989). 

Visual neglect provides further evidence for the brain’s use of multiscale spatial 

representations. One example of this is the Ota search task (Ota et al. 2001) in which 

participants are asked to identify, from an array of shapes, which shapes are complete. While 
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some visual neglect patients fail to address any of the left hand side of the array (‘egocentric 

visual neglect’), others address all shapes, but are impaired in determining which shapes are 

complete (‘allocentric visual neglect’). Specifically, those shapes which have a deficiency on 

their right side are correctly identified as incomplete, while those deficient on their left side 

are incorrectly identified as complete. While many accounts have described the two perceptual 

deficits in terms of different spatial reference frames (Medina et al. 2009), it has been argued 

that both forms are actually different manifestations of an egocentric visual neglect (Corbetta 

and Shulman 2011; Driver and Pouget 2000). If both are considered to take place in the same 

reference frame, the two behavioural patterns would be consistent with visual neglect 

operating at a coarse spatial scale in the first case, and a finer scale in the second. 

Equipping the model with a multiscale representation is simple to do in our generative model: 

instead of representing each of the 64 locations at a high resolution, we can encode each 

location using three levels (i.e. factors) of resolution, each level divided into four quadrants 

that, collectively, specify 43 = 64 locations (see Figure 1.4 for a conceptual overview of this 

sort of factorisation). Technically, this means the A matrix now becomes three matrices 

encoding the likelihood mappings at low, intermediate, and high levels of resolution. 

Functionally, this means that the subject perceives visual input at three levels of resolution – 

and can entertain uncertainty (and novelty) at any level. This also means we have the 

opportunity to model pathological (prior) biases at the level of quadrants of the visual field, 

quadrants within each quadrant and quadrants within those quadrants. 

 

 

Figure 5.4 - Multiscale representations of space. In the illustration on the left, two fixation 

points in a sequence of saccades are highlighted. This is to demonstrate their representation in 

terms of a multiscale spatial state space. In the centre left, this state space is shown for each 

fixation point. This specifies a location in an 8x8 space, as before. However, the location is 

specified in terms of which quadrant (blue), which subquadrant (red) and which 
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subsubquadrant (green) the location is found. These three specifications constitute the hidden 

states of the multiscale model. An advantage of this model is that it allows visual outcomes to 

be defined at different resolutions. This is shown in the centre right. Each outcome 

corresponds to the density of targets in the quadrant, subquadrant, and subsubquadrant 

currently fixated. Darker shades indicate a greater density. Note that the finest resolution is at 

the level of individual locations, so density is equivalent to the presence or absence of a target. 

Cancelled targets appear red at this level only – lower resolutions are considered to be colour-

blind; consistent with the properties of the magnocellular system (Hubel and Livingstone 

1987). As a saccade is made from a quadrant containing three targets to one containing four, 

the lowest resolution (blue frame) outcome becomes denser. Similarly, the subquadrant 

representation (red frame) becomes darker, as a subquadrant containing only one target is 

followed by a subquadrant containing two. The finest resolution (green frame) represents the 

maximum density (one target) for both fixation locations. The illustration on the right 

motivates the multiscale representation in terms of the Ota task. This shows one quadrant of 

an array of shapes. If the blue frame was biased towards occupying the right side of the array, 

this would resemble an egocentric hemineglect. If the green frame were biased towards the 

right, this would be closer to an allocentric hemineglect. 

 

Figure 5.4 shows a multiscale representation in our model, and its application to the saccadic 

cancellation task. The right panel shows how the Ota task was used to motivate this approach. 

If visual neglect is induced at a coarse scale – i.e., quadrant enclosed by the blue frame – an 

egocentric behavioural pattern of saccadic sampling would be expected. However, if induced 

at a finer scale (green frame), neglect would cause an allocentric pattern. Figure 5.5 shows the 

simulated eye tracking data generated under this multiscale representation. Lesions are shown 

at each spatial scale and are induced by scaling the corresponding Dirichlet concentration 

parameters. The other two types of functional lesion produce similar results. Crucially, 

different spatial scales of visual neglect could reflect different lesion topologies, as more 

ventral lesions have been associated more with neglect at the object scale (Grimsen et al. 2008; 

Medina et al. 2009; Verdon et al. 2009). 

A simplification we have made in the generative model we have used is that we have assumed 

the head position is stationary. This allows us to treat the coordinate transform, performed by 

the first branch of the superior longitudinal fasciculus, as an identity transformation. If we did 

not make this assumption, the transformation would have to be modulated by a set of hidden 

states representing the head position, as in established models of parietal contributions to 

attention (Pouget and Sejnowski 1997; Pouget and Sejnowski 2001). The influence of head 
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position over the reference frame – in which neglect is induced – allows for the possibility of 

different egocentric coordinate systems. However, it may be that a set of egocentric reference 

frames are insufficient, on their own, to explain some neglect phenomena. There is evidence 

that the orientation of the axes of reference frames can be influenced by the spatial 

configuration of visual stimuli (Driver et al. 1994; Li et al. 2014), but the inferences involved 

in these processes lie outside the scope of this chapter. Importantly, deficits that are classically 

described as ‘object-centred’ are rarely seen in the absence of ‘egocentric’ deficits (Rorden et 

al. 2012; Yue et al. 2012). This suggests that such deficits are not an essential part of the 

neglect syndrome, but may occur in larger lesions that compromise additional connections. 

In summary, we have seen that a normative (active inference) model of visual searches and 

biased (visual) sampling can provide a sufficient, if minimal, account of the functional deficits 

observed in patients during line cancellation tasks. The computational architecture and 

message passing implied by the active inference scheme is remarkably consistent with the 

known functional anatomy of visual search and saccadic eye movements – and the deficits in 

epistemic foraging seen in patients with neglect. In the final section, we turn to the practical 

issues of using this sort of model to make inferences about lesions on the basis of saccadic eye 

movements. 
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Figure 5.5 – Lesions at different spatial scales. By changing the number of the initial 

Dirichlet parameters, we have simulated hemineglect at three resolutions. As can be seen in 

the above, the course scale representation biases saccades to the right side of the array, similar 

to the patterns seen in Figure 5.3. The medium scale representation biases saccades to the right 

side within each of the four quadrants of visual space. Neglect at the finest scale biases 

saccades to the right of each subquadrant (comprising four possible locations). For larger 

targets, but the same spatial scales, each of these biased sampling policies would produce 

results very similar to those observed in patients performing the Ota task. 

 

Previous models have addressed attentional processes in general (Bundesen 1998; Heinke and 

Humphreys 2005), and neglect specifically (Heinke and Humphreys 2003; Kinsbourne 1970). 

Our approach complements many of these models, while making use of more recent theoretical 

developments. The belief update scheme we have employed has been used to reproduce a 

range of other behaviours (FitzGerald et al. 2014; Friston et al. 2015b; Moutoussis et al. 2014), 

physiological responses (Friston et al. 2014; Schwartenbeck et al. 2015b), and pathologies 

(Schwartenbeck et al. 2015a), emphasising its plausibility as a description of brain function. 

Additionally, our use of active inference allows us to appeal to a physiologically plausible 

process theory (Friston et al. 2017a), that facilitates the formation of empirical hypotheses 

about electrophysiological data. For example, we would expect that there would be an increase 

in the effective connectivity (in healthy subjects) between the regions connected by the second 

branch of the superior longitudinal fasciculus as Dirichlet parameters are accumulated. We 

anticipate that this should be reflected in the activities of neurons in these brain regions, and 

that dynamic causal modelling for evoked responses (David et al. 2006) provides a means to 

test this hypothesis experimentally. We pursue this in the next section. 

 

 

Computational lesion deficit analysis 

 

We have established that, just as with anatomical lesions, there are several functional lesions 

that can induce very similar behaviour. This raises an important question. Is the mapping from 

lesion to behaviour truly a many-to-one mapping? In other words, is it possible, given the 

(simulated) behavioural data, to determine which lesion model generated it? If so, this could 

have important implications for clinical diagnosis, as it would allow the separation of distinct 

functional categories of visual neglect.  
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To answer this question, we used synthetic eye tracking data from each of the lesion models. 

To assess the ability of the paradigm to disambiguate among lesions, we computed the log 

likelihood of simulated behaviour for every combination of lesion and model. This log 

likelihood or evidence was computed by summing the likelihood of each saccade under the 

posterior probability of saccade, under each MDP model. Clearly, in a practical application, 

one would need to estimate (subject specific) parameters that best accounted for the observed 

behaviour (Schwartenbeck and Friston 2016). However, in this instance, there are no unknown 

parameters and the log evidence for any given model reduces to the expected log likelihood, 

under that model. Given that we know each set of lesion data was generated by one of the 

models, we can calculate the posterior probabilities of each model using a softmax function of 

the likelihoods for each synthetic dataset.  

The results of this Bayesian model comparison are shown in Figure 5.6. It is clear from the 

confusion matrix shown in the figure that one can reliably disambiguate between health and 

pathology. Furthermore, the lesions in A, (i.e., a synthetic disconnection between dorsal and 

ventral attentional systems) although visually very similar to those of the other two lesion 

models, produce a characteristic behavioural pattern, allowing the lesion identity to be 

recovered. This disambiguation speaks to an empirical test of our anatomical model: if one 

were to take patients with visual neglect, with known anatomical lesions as determined by 

imaging, one might expect to find (for example) that a lesion deficit analysis using eye 

movements for patients with disconnection of the superior longitudinal fasciculus will find 

greater evidence for an A lesion than for any of the other lesion models. Lesions of E and C 

could not be disambiguated from one another using only synthetic saccades. That the latter 

model has a greater posterior probability for both sets of simulated data suggests that this is a 

simpler explanation for the data, and has incurred a lower complexity penalty during Bayesian 

model comparison. However, they were clearly identified as being abnormal, and not due to 

simulated lesions of the superior longitudinal fasciculus; i.e. A. This suggests that 

distinguishing between the two may require an additional data modality, such as reaction time, 

pupillometry, or electrophysiology. 
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Figure 5.6 - Confusion matrices constructed from 40 saccades. The matrix on the left shows 

the (log) model evidence for each model, m (columns), given synthetic eye tracking data, o, 

generated from each model (rows). This is equivalent to the (log) likelihood or model 

evidence, as there were no unknown parameters. These results were generated using multiscale 

representations with lesions at the coarsest resolution in all cases. On the right is the matrix of 

posterior probabilities. This is obtained from the matrix on the left, using a softmax function 

applied to the log evidence is in each row (i.e., for different models of each synthetic dataset). 

 

 

Summary 

 

Visual neglect can be formulated as a computational bias in an active inference scheme that 

can be quantified in terms of abnormal prior beliefs. In the above, we identified three, 

theoretically motivated, functional lesions. On defining a generative MDP model that 

performed a cancellation task, we found that the connectivity implied by the model structure 

corresponded well to the anatomy of the dorsal and ventral attention networks, in addition to 

their subcortical influences. The functional lesions in this anatomical assignment matched 

lesions associated with visual neglect; namely, in the second branch of the superior 

longitudinal fasciculus, the putamen, and the pulvinar. The saccadic behaviour generated 

under these lesion models closely resembles that of patients with visual neglect. To provide a 

more realistic spatial representation, we used a multiscale encoding of visual state space, 

which implements a multiscale resolution. This allowed us to demonstrate visual neglect at 

different scales. Encouragingly, although the saccadic behaviours appeared homogenous 

across each lesion model, we found that we could recover distinct groups of lesions by 
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comparing the evidence for each lesion in synthetic data. In principle, this demonstrates that 

computational phenotyping of visual neglect patients is possible. 

 

Dynamic causal modelling 

 

As we have seen, perception is a fundamentally active process. While this is true across 

modalities, it is especially obvious in the visual system, where what we see depends upon 

where we look (Andreopoulos and Tsotsos 2013; Ognibene and Baldassarre 2014; Parr and 

Friston 2017a; Wurtz et al. 2011). In this section, we consider the anatomy that supports 

decisions about where to look, and the fast plastic changes that underwrite effective saccadic 

interrogation of a visual scene. We appeal to the metaphor of perception as hypothesis testing 

(Gregory 1980), treating each fixation as an experiment to garner new information about states 

of affairs in the world (Mirza et al. 2018; Mirza et al. 2016; Parr and Friston 2017c). Building 

upon recent theoretical work (Parr and Friston 2017b) outlined in the first part of this chapter, 

which includes a formal model of the task used here, we hypothesised that the configuration 

of a visual scene is best represented in terms of expected visual sensations contingent upon a 

given saccade (‘what I would see if I looked there’) (Zimmermann and Lappe 2016). This 

implies a form of short-term plasticity following each fixation, as the mapping from fixation 

to observation is optimised.  

The purpose of this study is not to evaluate whether we engage in active vision, as there is 

already substantial evidence in favour of this (Mirza et al. 2018; Yang et al. 2016a), but to try 

to understand how the underlying computations manifest in terms of changes in effective 

connectivity. Our aim is to establish whether there is neurobiological evidence in favour of 

optimisation of a generative model (Yuille and Kersten 2006) that represents visual 

consequences of fixations as a series of eye-movements are performed. 

In the following, we describe our experimental set-up, including our gaze-contingent 

cancellation task. Through source reconstruction, we demonstrate the engagement of frontal, 

temporal, and parietal sources, and note the right-lateralisation of the temporal component. 

We then detail the hypothesis in terms of network models or architectures and use dynamic 

causal modelling (DCM) to adjudicate between models that do and do not allow for plastic 

changes in key connections. This model comparison revealed a decrease, from early to late 

fixations, in the inhibition of neuronal populations in the ventral network by those in the dorsal 

network. 
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Network architecture 

 

Paraphrasing the description of the active visual system given above, functional neuroimaging, 

neuropsychological, and structural connectivity studies converge upon a system that can be 

separated into a bilateral dorsal frontoparietal network, and a right lateralised ventral network. 

In brief, functional imaging experiments (Corbetta and Shulman 2002; Vossel et al. 2012) 

during visuospatial tasks reveal activation of the frontal eye fields (FEF) and the intraparietal 

sulcus (IPS) in both hemispheres, but greater involvement of the right temporoparietal junction 

(TPJ) than its contralateral homologue. The volumes of the white matter tracts connecting the 

components of the dorsal attention network are comparable, while those connecting the ventral 

network sources are of a significantly greater volume in the right hemisphere (Thiebaut de 

Schotten et al. 2011). Neuropsychological asymmetries reinforce this network structure, with 

right hemispheric lesions much more likely than left to give rise to visual neglect (Halligan 

and Marshall 1998).  

As we highlighted above, neglect (often) appears to be a consequence of a disconnection 

between the ventral and (right) dorsal networks (Bartolomeo et al. 2007; He et al. 2007). Given 

the dorsal frontoparietal origins of cortico-collicular axons (Fries 1984; Fries 1985; Gaymard 

et al. 2003; Künzle and Akert 1977), frontal control of eye position (Bruce et al. 1985; Sajad 

et al. 2015), and the representation of visual stimulus identity in the ventral visual (‘what’) 

stream (Goodale and Milner 1992; Ungerleider and Haxby 1994), this is consistent with the 

idea that the connection between these networks is the neural substrate of an embodied 

(oculomotor) map of visual space. It is worth noting that the temporo-parietal component of 

the ventral attention network is not within the ventral visual stream. However, it has been 

associated with target-detection operations (Chica et al. 2011; Corbetta and Shulman 2002; 

Serences et al. 2005) that rely upon a simple form of visually derived stimulus identity. 

Although our focus is in the visual domain, we note that similar networks appear to be involved 

in auditory attention and neglect (Dietz et al. 2014). 

Synthesising these theoretical and neuroanatomical constructs, we hypothesised that the 

coupling between the dorsal and ventral attention networks changes with successive fixations 

in a saccadic task. This hypothesis is based upon the idea that, as an internal model of the task 

is optimised, the relationship between fixation locations and their visual consequences should 

become more precise (see (Parr and Friston 2017b) for a simulation that demonstrates this). If 

this is the case, this could manifest in one of two ways. The effective connectivity from the 

temporoparietal cortex to the frontal eye-fields could increase over time. Alternatively, plastic 

changes in connections in the opposite (dorsal-to-ventral) direction could decrease their 
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effective connectivity to relieve descending inhibition of the ventral-to-dorsal projections 

arising from superficial pyramidal cells. Ultimately, both of these would enhance the influence 

of ventral parietal over dorsal frontal regions. We used an oculomotor cancellation paradigm, 

based upon the classic pen-and-paper line cancellation task used to assess visual neglect 

(Albert 1973; Fullerton et al. 1986). In this task, patients with neglect tend to cancel (by 

crossing out) lines on the right side of a piece of paper but miss those on the left. Using 

magnetoencephalography (MEG) and dynamic causal modelling (DCM) for evoked responses 

(David et al. 2006) we assessed changes in effective connectivity between dorsal frontal and 

ventral temporoparietal sources during early and late cancellations (fixations) in healthy 

participants. Our task involved performing saccades to targets on a screen that, once fixated, 

changed colour and were considered cancelled.  

 

Methods – Experimental design and imaging 

 

We recruited 14 healthy right-handed participants (8 females and 6 males) between the ages 

of 18 and 35 from the UCL ICN subject pool under minimum risk ethics. Participants were 

seated in the MEG scanner (whole-head 275-channel axial gradiometer system, 600 samples 

per second, CTF Omega, VSM MedTech, Coquitlam, Canada), with a screen about 64cm in 

front of them, showing the stimulus display (size 40 x 29.5cm). This was presented using 

Cogent 2000 (developed by the Cogent team at the FIL and the ICN and Cogent Graphics 

developed by John Romaya at the LON at the Wellcome Department of Imaging 

Neuroscience).  

The sequence of stimuli is illustrated in Figure 5.7. Following a fixation cross, a set of 16 black 

dots appeared on the screen, simultaneously, in pseudo-random (using the Matlab random 

number generator) locations. When a dot was fixated, it changed from black to red (i.e. was 

‘cancelled’). Participants were asked to look at the black dots, but to avoid looking at the red 

dots. We tracked the eyes of the participants while the dots were on screen using an SR 

Research eye-tracker (Eyelink 1000 – operated using Psychtoolbox) sampling at a frequency 

of 1kHz. We divided the cancellation events into two categories: early (first 8) and late (last 

8).  
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Figure 5.7 - Oculomotor cancellation task and pre-processing. The graphic on the upper 

left illustrates the sequence of events for a given trial. First, a fixation cross is presented for 2 

seconds. After this, a display with 16 black dots is randomly generated and presented for 15 

seconds. This is followed by a blank screen for 3 seconds. The dots were placed within an 8x8 

grid (not visible to the participants), as shown in the lower left schematic. When the dots were 

visible on screen, we tracked the eyes of the participant. Whenever their gaze entered a square 

containing a black dot, this changed from black to red and remained red for the rest of the trial. 

Participants were instructed to look at the black dots, and to avoid looking at red dots. Events 

were defined as the time at which the eye crossed into the square, causing a change in colour 

(i.e. a cancellation). There were 15 of these trials per block, with 6 blocks per participant. The 

lower left plot shows a histogram of the time intervals between saccadic dot cancellations, to 

give a sense of the latency between saccades. These latencies are reported using a (natural) 

logarithmic time scale (with time in seconds) over the first 2.5 standard deviations above and 

below the mean. The mean here is -1.0597, corresponding to roughly 3 cancellations per 
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second (consistent with the 3-4Hz frequency of saccadic sampling (Hoffman et al. 2013)). On 

the right, we show the sequence of pre-processing steps used and the first principal component 

of the ensuing evoked response. The evoked response to early cancellations is averaged from 

6738 events, and the response to late cancellations from 6571. Superimposed upon this is a 

trace of the eye speed in peristimulus time in arbitrary units. This is aligned so that zero 

corresponds to the average speed during the time in which the fixation cross was present. 

 

 

Although almost all perceptual tasks call upon some sort of engagement with the sensorium, 

this task emphasises the active nature of visual processing through making the visual element 

of the task as simple as possible. This still calls upon optimisation of beliefs under an internal 

model, as formalised in (Parr and Friston 2017b). As outlined above, this has some validity in 

relation to disorders in which active vision is impaired. However, it is worth noting that other 

approaches to studying these processes, particularly those that focus on behavioural (as 

opposed to neurophysiological) measures (Mirza et al. 2018; Yang et al. 2016a), make use of 

more complicated visual stimuli – so that different saccades afford different levels of 

information gain about a particular scene category. 

Our pre-processing steps (using SPM 12 - http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) 

are specified in Figure 5.7. As participants generally had no trouble in cancelling all 16 dots, 

we rejected all trials for which they were unable to do so (assuming these were due to eye-

tracker calibration errors). We merged the epoched data from all participants, and averaged 

the epochs corresponding to the first 8, and the last 8, cancellations over all participants to 

create a grand average. This meant we averaged over fixations preceded by saccades from all 

possible directions, ensuring any directional eye movement induced artefacts following 

cancellation were averaged away. Using robust averaging provides an additional protection 

against artefactual signals, as this iterative procedure rejects those trials that deviate markedly 

from the mean response. The average eye-speed is shown in Figure 5.7 (black dotted line) to 

illustrate that it falls to its minimum at about the same time as the target is cancelled. The first 

principal component, across spatial channels, of the averaged evoked response (to a 

cancellation) in each condition is shown on the same plot. To further interrogate the changes 

in effective connectivity, we additionally constructed grand averaged responses to each of the 

16 cancellations in a trial. These were used for the more detailed model of (parametric) time-

dependent responses described below. 

In Figure 5.8, we show the reconstructed source activity obtained using multiple sparse priors 

(Friston et al. 2008). This scheme tries to infer the sources in the brain that generated the data 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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measured at the sensors. There are an infinite number of possible solutions to this problem, 

but Bayesian methods attempt to find the simplest of these. Our results – using standard 

settings (Litvak et al. 2011) – show a relatively symmetrical distribution of frontal and 

posterior cortical sources, and a right lateralised (asymmetrical) temporal component. While 

the inferred locations are more ventromedial than we might expect (likely due to the ill posed 

nature of the MEG inverse problem), it is encouraging that we can recover sources that are 

broadly consistent with the known anatomy, and lateralisation, of the attention networks 

(Corbetta and Shulman 2002) from these data.  

 

 

Figure 5.8 - Source reconstruction with multiple sparse priors. These images show the 

Bayes optimal source reconstruction under multiple sparse priors (and following application 

of a temporal Hanning window) for the first 8 cancellations (left) and the second 8 

cancellations (right) in a trial. This reveals a set of symmetrical sources in both the frontal and 

posterior cortical sources, with a right lateralised temporal component. The striking 

asymmetry of these temporal sources (dashed circles) is encouraging, considering the known 

rightward lateralisation of the ventral attention network. While we might expect the frontal 

sources to be more dorsal, this may reflect the ill-posed nature of MEG source localisation – 

there are many possible combinations of sources in 3D space that could give rise to the same 

pattern of activation over the 2D sensory array. The estimated responses show the greatest 

amplitude at around 100ms. In the left plot (showing the maximal response for the first 

condition), the red lines indicate the reconstructed activity from the early cancellations and 

grey from the late cancellations. In the right plot (maximal response for the second condition), 

red is late and grey is early. Bayesian credible intervals are shown as dotted lines for each 

response. The confidence associated with the posterior probability maps (PPM) (Friston and 
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Penny 2003), in addition to the variance explained, are included in the upper left of each plot, 

and the location at which the response is estimated is given in the lower right. 

 

 

Dynamic causal modelling 

 

Dynamic causal modelling (DCM) tries to explain measured electrophysiological data in terms 

of underlying neuronal (i.e., source) activity (Friston et al. 2003). This rests upon optimising 

the model evidence (or free energy) for a biophysically plausible neural mass model. The (log) 

evidence that data (y) affords a model (m) is: 

 

ln ( | ) [ln ( , , | ) ln ( , | ) ]

[ln ( | , )] [ ( , | ) || ( , | )]

q

Generative model Approx. posterior

q KL

ComplexityAccuracy

p m E p m q m
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 −

= −

y y x θ x θ

y x θ x θ x θ
    (5.8 

 

DCM makes use of a Variational Laplace procedure (Friston et al. 2007), a close relative of 

the scheme expressed in Figure 2.1, to optimise beliefs (q) about neuronal activity (x)  and the 

parameters (θ) that determine this activity (e.g., connection strengths) and the (likelihood) 

mapping (e.g., lead field) from x to y. The lead field matrix maps source activity to the 

measured sensor data on the scalp (Kiebel et al. 2006). In maximising model evidence, DCM 

finds the most accurate explanation for the data that complies with Occam’s principle; i.e., is 

minimally complex (as measured by the KL-Divergence between posteriors and priors). By 

comparing different generative models, we can test hypotheses about biologically grounded 

model parameters; here, condition-specific changes in connectivity under a particular network 

architecture. 

The generative model we used is the canonical microcircuit model (Bastos et al. 2012; Moran 

et al. 2013a), which incorporates four distinct neuronal populations per source of a distributed 

(hierarchical) network (Figure 5.9). These are spiny stellate cells, superficial and deep 

pyramidal cells, and inhibitory interneurons. The connections associated with each of these 

populations conforms to known patterns of laminar specific connectivity in the cerebral cortex 

(Felleman and Van Essen 1991; Shipp 2007; Zeki and Shipp 1988), allowing us to distinguish 

between ascending and descending extrinsic (i.e. between source) connections. This accounts 
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for the prior probability density (p(x,θ|m)) that, supplemented with a lead-field provides a 

likelihood (p(y|x,θ)) and completes the forward or generative model. 

 

Figure 5.9 - The canonical microcircuit. The equations on the left of this schematic describe 

the dynamics of the generative model that underwrites the dynamic causal modelling in this 

chapter. The x vectors represent population specific voltage (odd subscripts) and conductance 

(even subscripts). Each element of the x vectors represents a distinct cortical source. The 

notation a◦b means the element-wise product of a and b. The matrix A determines extrinsic 

(between-source) connectivity (here illustrated as connections between a lower source i and a 

higher source i+1), while G determines the intrinsic (within-source) connectivity. Subscripts 

for these matrices indicate mappings between specific cell populations. For example, A1 

describes ascending connections from superficial pyramidal cells (source i) to spiny stellate 

cells (source i+1), while A3 describes descending connections from deep pyramidal cells 

(source i+1) to superficial pyramidal cells (source i). Experimental inputs – in our case, the 

cancellation of the target on fixation – are specified by u. On the right, we illustrate the 

neuronal message passing implied by these equations. Red arrows indicate excitatory 

connections and blue inhibitory. Superficial pyramidal cells give rise to ascending connections 

that target spiny stellate and deep pyramidal cells in a higher cortical source. Descending 

connections arise from deep pyramidal cells that target superficial pyramidal cells and 

inhibitory interneurons. 
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Figure 5.10 – Network architecture. This schematic illustrates the form of the network model 

we used to test our hypothesis. The dorsal network is present bilaterally (FEF and IPS) and is 

connected to the ventral network – represented by the temporoparietal junction (TPJ) – on the 

right. The TPJ receives input as it sits lower in the visual hierarchy than the FEF (Felleman 

and Van 1991). Our hypothesis concerns the (highlighted) connections between the two 

networks. We compared models that allowed for changes or visual search-dependent plasticity 

in connections from the TPJ to left FEF (1), from the TPJ to right FEF (2), from the left FEF 

to TPJ (3), from the right FEF to TPJ (4), and every combination of the above. The matrices 

on the right illustrate the specification of these connections. The A matrices are the same as 

those in Figure 5.9 and represent extrinsic connections between sources (with subscripts 

indicating which specific cell populations in those sources). B specifies the connections that 

can change between the early and late cancellations and C specifies which sources receive 

visual (i.e., geniculate) input. To ensure that the signs of the A (and C) connections do not 

change during estimation, their logarithms are treated as normally distributed random 

variables. This ensures an excitatory connection cannot become an inhibitory connection and 

vice versa. 

 

As we were interested in changes in the coupling of the dorsal and ventral attention networks, 

we specified our generative model as in Figure 5.10; incorporating the bilateral dorsal network 

and the right lateralised temporoparietal contribution to the ventral network (consistent with 

the source reconstruction above). The connections between the right temporoparietal junction 

(rTPJ) and the left frontal eye field (FEF) probably involve an intermediate thalamic relay 

(Guillery and Sherman 2002; Halassa and Kastner 2017), but this was omitted for simplicity. 
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Our hypothesis was that the connections between the rTPJ and each FEF would change 

between early and late target cancellations – as evidence is accumulated and the precision (c.f., 

efficacy) of likelihood mappings increases (Parr and Friston 2017b). Figure 5.10 highlights 

these ascending and descending connections. After fitting the full model (with modulation of 

all four connections) to our empirical data, we used Bayesian model reduction (Friston et al. 

2016c) to evaluate the evidence for models with every combination of these condition-specific 

effects (early versus late) enabled or set, a priori, to zero. 

 

Results 

 

Figure 5.11 reports the results of a model comparison between 16 (24) models that allowed for 

different patterns of search-dependent changes in the forward and backward connections 

between each FEF and the rTPJ. Given our grand average data, model 8 has a posterior 

probability of 0.827. This model allows for changes in backwards connections, and the forward 

connection from rTPJ to the right FEF, but not to the left FEF. This provides evidence in favour 

of changes in the efficacy of dorsal-ventral connections. Acknowledging that other models, 

although improbable, were found to be plausible, we averaged our results across models, 

weighting each model by its posterior probability. Following this Bayesian model averaging, 

we still found striking changes in the backward connections, which show a decrease in 

effective connectivity for late compared to early cancellations. As backwards connections are 

(net) inhibitory, this corresponds to a disinhibition of the superficial pyramidal cells – the 

origin of ascending connections – in the TPJ. In other words, the effective connectivity during 

the later stages of the trial changed, compared to that during the first few cancellations, to 

relieve the inhibitory effect of the dorsal attention network on the source of its input from the 

ventral network.  
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Figure 5.11 - Model comparison and Bayesian model averaging. This figure shows the 

results of comparing models with different combinations of condition-specific effects on the 

forward and backward connections between the right TPJ and the frontal eye fields. We 

performed this comparison using Bayesian model reduction (Friston et al. 2016c), which 

involves fitting a full model that allows all four connections to change and analytically 

evaluating the evidence for models with combinations of these changes switched off. The 

upper plots show the log posterior probabilities associated with each model, and the posterior 

probabilities. The winning model (number 8) allows for modulation in connections 2, 3, and 

4 (see Figure 5.10). The lower plots show that, for the later fixations, there is a modest increase 

in the effective connectivity in connection 2, but a decrease in 3 and 4. These values 

correspond to log scaling parameters, such that a value of zero means no change. The lower 

left plot shows these parameter (maximum a posteriori) estimates for the full model (that 

allows for all connections). The lower right plot shows the Bayesian model average of these 

estimates (weighted by the probability of each reduced model to account for uncertainty over 

models). Bayesian 90% credible intervals are shown as pink bars.  
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The effects of this disinhibition can be seen in the reconstructed neuronal activities shown in 

Figure 5.12. During later cancellations, the activity of the superficial pyramidal cells in the 

rTPJ has a greater amplitude than evoked during earlier fixations. Figure 5.10 shows that this 

is the population inhibited by the descending connections (labelled 3 and 4). These are the 

connections that show the greatest change (both relative and absolute, despite being slightly 

weaker at baseline than the forward connections). Although the change in ascending synapses 

is small or absent, the increase in activity in these forward projecting TPJ cells has driven an 

increase in the amplitude of responses in all populations in each FEF. The most dramatic effect 

is in the deep pyramidal layer, which receives direct input from the superficial TPJ cells. Figure 

5.12 additionally shows the resemblance between the activity in deep pyramidal cells in FEF 

and the simulated rate of belief updating obtained under a Markov Decision Process model of 

the same behavioural task: for details, please see (Parr and Friston 2017b). This model 

represents a formalisation of the ideas raised in the introduction; namely, that representations 

of visual space depend upon beliefs about the sensory consequences of actions. In brief, the 

differences in the rate of belief updating from early to late fixations are due to the optimisation 

of the mapping from fixation location to the presence or absence of a target. More precise 

beliefs later in the task enable faster and more confident belief updates (that translate 

physiologically into increased effective connectivity; i.e., the rate constants of neuronal belief 

updating). 
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Figure 5.12 - Estimated neuronal activity. These plots show the estimated activity in each 

excitatory cell population. Dashed lines indicate the superficial pyramidal cells that give rise 

to ascending connections and are inhibited by higher cortical sources. Ascending connections 

target the spiny stellate cells (dotted lines), and the deep pyramidal cells (unbroken lines). The 

latter give rise to descending connections. The activity here is shown for early (blue) and late 

(red) cancellations, for each of the cortical areas shown in Figure 5.10. The lower left plot 

(highlighted) shows the simulated evoked responses obtained from the Markov Decision 

Process model described in (Parr and Friston 2017b) and earlier in this chapter, drawing from 

the process theory associated with active inference (Friston et al. 2017a). It is computed by 
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taking the absolute rate of change of the sufficient statistics of posterior beliefs about the 

current fixation location, summed over spatial scales (please see the discussion for details). 

While the y-axis here is arbitrary, the x-axis extends to 250ms, consistent with the theta 

frequency of saccadic eye movements. There is a striking resemblance between the simulated 

rate of belief updating and the frontal eye field neuronal activity estimated from our empirical 

data. 

 

To explore the changes in coupling demonstrated above in a more parametric way, we inverted 

a DCM that was identical to that described above, but treated each cancellation as a separate 

event. This meant that, in place of the relatively coarse division into ‘early’ and ‘late’, we 

could test hypotheses about parametric changes in connection strength over 16 sequential 

cancellations. Figure 5.13 illustrates a model comparison that tests these hypotheses, endorsing 

the pattern of changes found in Figure 5.11. Due to the implicit model of time-dependent 

effects, this enables us to plot the estimated changes in coupling throughout the trial, as shown 

in Figure 5.13. These show a progressive decrease in the strength of inhibitory backwards 

connections, with a modest increase over time in excitatory forward connections. 

 

 

Figure 5.13 – Time-dependency of modulatory changes. The plots on the right of this Figure 

are the same as those in Figure 5.11, but modelling a parametric effect of number of previous 

cancellations. For this model, in place of the ‘early’ and ‘late’ conditions, we treated each 
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sequential cancellation as a separate event. Because the model is parameterised in terms of 

log-scaling parameters, linear (i.e., [0,1,…,15]) parametric effects of time (number of previous 

cancellations) correspond to a monoexponential change in coupling (starting from a strength 

of  exp(0), corresponding to 100%). The two most probable models are the same as in Figure 

5.11, and the overall pattern of changes shown in the MAP estimates is the same (but with 

some evidence in favour of a small change in connection 1). The plots on the left show the 

estimated changes in each connection with successive cancellation events, as a percentage of 

their initial values. These indicate an increase in the strength of forward excitatory connections 

over time, and a decrease in backward inhibitory connections. 

 

Discussion 

 

The results presented here provide evidence in favour of short term plastic changes in the 

connections between the dorsal and ventral attention networks during the active interrogation 

of a simple visual scene. This supports an enactive perspective on visual cognition (Bruineberg 

2017; Hohwy 2007; Vernon 2008), as it is consistent with the idea that we represent visual 

sensations as the consequences of action – and that these contingencies may be learned over a 

short time period. While these results have interesting implications for active vision, they also 

constrain the way in which cortical neuronal circuits might implement inferential 

computations. That the descending connections appear to change the most is consistent with 

the idea that ascending signals in the brain carry evidence for or against hypotheses represented 

in higher areas. While this appears counterintuitive, the evidence afforded to a hypothesis 

about one variable (e.g. location on a horizontal axis) depends upon beliefs about other 

variables (e.g. location in the vertical axis). In other words, dorsally represented beliefs about 

eye position, if represented in any factorised coordinate system, must act to contextualise the 

ascending signals from the ventral to dorsal network. As this is learned over successive 

fixations, this contextualisation (i.e., interaction between factors) leads to increasingly precise 

mappings between eye position and its visual consequences – consistent with the disinhibition 

we observed here. This is analogous to the increase in amplitude of evoked responses 

following cueing in working memory paradigms (Lenartowicz et al. 2010) that can be 

reproduced in silico by appealing to beliefs about the context of ascending signals (Parr and 

Friston 2017d). 

An interesting question that arises from this is what type of coordinate system the frontal eye 

fields might employ. The argument given above applies regardless of the choice of coordinate 

system but depends upon there being some factorisation (Parr and Friston 2017a). This 
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factorisation could be representation of a horizontal and a vertical axis (McCloskey and Rapp 

2000) or could be closer to a wavelet decomposition – used in computational visual processing 

(Antonini et al. 1992). The latter separates an image into different spatial scales and 

resolutions. For example, we might represent which quadrant of space we are looking at, and 

which sub-quadrant within that quadrant. Either of these systems requires far fewer neurons 

than we would need if we were to independently represent each location in visual space. This 

is an important aspect of the normative (active inference) theory on which the simulations in 

Figure 7 were based. In brief, the sorts of generative models used by the brain to infer the 

causes of its sensory input are subject to exactly the same imperatives used in Bayesian model 

comparison; namely, the brain's generative or forward models must provide an accurate 

account of sensations with the minimum complexity. Reducing the number of parameters via 

factorisation is, in theory, an important aspect of minimising complexity or redundancy 

(Barlow 1961; Barlow 1974; Friston and Buzsaki 2016; Tenenbaum et al. 2011). We used a 

decomposition of location into quadrants to simulate the belief updating shown in the lower 

left of Figure 5.12, which enables us to reproduce visual neglect at different spatial scales (Parr 

and Friston 2017b), consistent with neuropsychological observations (Grimsen et al. 2008; 

Medina et al. 2009; Ota et al. 2001; Verdon et al. 2009).  

Visual neglect is increasingly recognised as a disconnection syndrome (He et al. 2007). 

Specifically, it can arise through damage to the white matter tracts that link right dorsal frontal 

sources to ventral temporoparietal areas (Doricchi and Tomaiuolo 2003; Thiebaut de Schotten 

et al. 2005). A disconnection of this sort would preclude the changes we have observed in 

these connections. From the perspective of active inference, this means that saccades to the 

left side of space represent poor perceptual experiments, as the capacity to learn from them is 

diminished (Denzler and Brown 2002; Lindley 1956; MacKay 1992; Yang et al. 2016a). We 

have previously argued that syndromes in which active scene construction is impaired – visual 

neglect being an important example – may result from pathological prior beliefs about these 

action-sensation mappings (Parr et al. 2018b). An inability to change this mapping following 

observation, perhaps due to white matter disconnection (Catani and ffytche 2005; Geschwind 

1965a), means that actions that would otherwise engage (and modify) a given connection 

afford a smaller opportunity for novelty resolution (Parr and Friston 2017b). The failure to 

update this mapping is consistent with the impairments in spatial working memory that have 

been elicited in saccadic tasks in neglect patients (Husain et al. 2001). This suggests that one 

could follow up this idea by temporarily disrupting changes in these (dorsal-ventral) 

connections using transcranial magnetic stimulation. We hypothesise that this will induce 

saccadic scan paths consistent with those observed in visual neglect (Fruhmann Berger et al. 

2008; Karnath and Rorden 2012). Encouragingly, this approach has previously been used to 
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induce other features of visual neglect (Ellison et al. 2004; Platz et al. 2016), including changes 

in line bisection and visual search performance following stimulation of the right TPJ. 

An additional direction for future research concerns the use of more complex visual 

environments. In this study we kept the visual stimuli as simple as possible. However, many 

interesting phenomena in active vision can be elicited using more sophisticated, and often 

dynamic, manipulations. An advantage to using stationary targets is that they induce scanning 

saccades as opposed to reactive saccades – of the sort associated with a suddenly appearing 

target. The former are accompanied by greater involvement of the frontal part of the dorsal 

network, while the latter implicates the parietal part (Pierrot-Deseilligny et al. 1995). Given 

that our hypothesis concerned the frontal regions of the dorsal network, the use of static targets 

facilitated the involvement of these regions. However, the inclusion of a second condition in 

which targets suddenly appeared would help us to further interrogate the respective 

contributions of the frontal and parietal cortices to these processes. 

Specifically, it would be interesting to probe the computational mechanisms that underwrite 

differences between scanning and reactive saccades for both perception and neurobiological 

measurements (Zimmermann and Lappe 2016). This may relate to the time required for belief-

updating, which itself is likely to depend upon the sorts of beliefs that are updated. Typically, 

cortical areas that sit higher in the anatomical hierarchy (Felleman and Van Essen 1991; Shipp 

2007; Zeki and Shipp 1988) are thought to represent stimuli that evolve over longer time-

periods (Hasson et al. 2015; Hasson et al. 2008; Kiebel et al. 2008; Murray et al. 2014), in 

relation to early sensory cortices. Given that the frontal eye fields are engaged in control of 

scanning saccades, which occur at about 3-4 Hz, it is plausible that the time-scale for updating 

beliefs about ‘where I am looking’ corresponds to this frequency. Speculatively, short-latency 

reactive saccades may be driven by lower cortical regions (e.g. parietal cortex) that represent 

the locations of fast-changing stimuli and may not leave enough time for completion of belief 

updating in frontal areas. This might account for the changes in spatial perception of stationary 

stimuli that follow adaptive changes in saccadic amplitude, but the absence of this 

phenomenon when dynamic stimuli induce reactive saccades. This is because, under the view 

that we represent visual space in terms of the visual consequences of saccades, a failure to 

complete belief updating – in brain regions representing alternative saccades – may preclude 

the sort of changes in coupling between frontal and temporoparietal areas observed here. 

Intuitively, this is sensible when constructing a motor map of visual space: there is little point 

in including transient stimuli, as they are unlikely to be there on looking back. This idea 

predicts that there should be a diminished inhibition of return following a reactive, as opposed 

to a scanning, saccade. 
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Summary 

 

In this section, we tested the hypothesis advanced in the previous section that the coupling 

between dorsal and ventral frontoparietal networks is altered during visual exploration. To do 

so, we used dynamic causal modelling based upon a network motivated by pre-existing 

structural, functional, and neuropsychological data. We found greatest evidence for a model 

that allowed for modulation in connections from the dorsal to the ventral network. Bayesian 

modelling averaging revealed a decrease in the effective connectivity of these connections, 

resulting in a disinhibition of ventral sources by the dorsal attention network. These results are 

consistent with the idea that the visual data obtained following a saccade drive plastic changes, 

optimising beliefs about the sensory consequences of a given saccadic fixation. This has 

potentially important implications for syndromes in which visual exploration is disrupted – 

notably, visual neglect. We hope that understanding (and measuring) these changes in effective 

connectivity in health will yield insights into the pathophysiology of disconnection syndromes. 

 

Conclusion 

 

In this chapter, we started by developing a generative model capable of performing a saccadic 

variant line-cancellation task of the sort used to assess visual neglect. To efficiently represent 

memories of whether a given target had been cancelled or not, we framed this in terms of a 

model that represented visual input as the sensory consequence of eye-movements. This meant 

the status of the targets was ‘stored’ in the conditional probabilities of the former given the 

latter. This construction induced a novelty term in the expected free energy, which 

implemented a form of inhibition-of-return, preventing revisiting of previously cancelled 

targets. Using this generative model, we illustrated how a range of computational lesions could 

elicit a neglect syndrome, consistent with the range of anatomical lesions that can cause this. 

Based upon the architecture of the message passing implied by the generative model, and 

previous neuropsychological studies of visual neglect, we associated the computational lesions 

with hypothetical neuroanatomical substrates. The implication of this assignment was that the 

conditional probability of the target status (cancelled or not) given the fixation location could 

be represented in the connections between dorsal frontal and right temporoparietal regions. 

Given the optimisation of this probability distribution during performance of the task in 

question, we hypothesised that we would be able to detect a change in coupling between these 
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regions using magnetoencephalography. Using dynamic causal modelling in healthy human 

subjects, we found evidence in favour of this hypothesis. 
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 6 – Computational neurology and Bayesian inference 

 

Introduction 

 

Computational theories of brain function have become very influential in neuroscience. They 

have facilitated the growth of formal approaches to disease, particularly in psychiatric 

research. In this chapter17, we provide a narrative review of the body of computational research 

addressing neurological and neuropsychological syndromes, and focus on those that employ 

Bayesian frameworks. In doing so, we seek to place the investigations into active vision (and 

its disorders) presented in this thesis into the broader context of inferential pathology in 

neurology. Bayesian approaches to understanding brain function formulate perception and 

action as inferential processes. These inferences combine ‘prior’ beliefs with a generative 

(predictive) model to explain the causes of sensations. Under this view, neuropsychological 

deficits can be thought of as false inferences that arise due to aberrant prior beliefs (that are 

poor fits to the real world). This draws upon the notion of a Bayes optimal pathology – optimal 

inference with suboptimal priors – and provides a means for computational phenotyping. In 

principle, any given neuropsychological disorder could be characterised by the set of prior 

beliefs that would make a patient’s behaviour appear Bayes optimal. We start with an overview 

of some key theoretical constructs and use these to motivate a form of computational 

neuropsychology that relates anatomical structures in the brain to the computations they 

perform. Throughout, we draw upon computational accounts of neuropsychological 

syndromes. These are selected to emphasise the key features of a Bayesian approach, and the 

possible types of pathological prior that may be present. They range from visual neglect 

through hallucinations to autism. Through these illustrative examples, we review the use of 

Bayesian approaches to understand the link between biology and computation that is at the 

heart of neuropsychology.  

The process of relating brain dysfunction to cognitive and behavioural deficits is complex. 

Traditional lesion-deficit mapping has been vital in the development of modern 

neuropsychology but is confounded by several problems (Bates et al. 2003). The first is that 

there are statistical dependencies between lesions in different regions (Mah et al. 2014). These 

arise from, for example, the vascular anatomy of the brain. Such dependencies mean that 

regions commonly involved in stroke may be spuriously associated with a behavioural deficit 

(Husain and Nachev 2007). The problem is further complicated by the distributed nature of 

 
17 This chapter is adapted from (Parr et al. 2018b) 
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brain networks (Valdez et al. 2015). Damage to one part of the brain may give rise to abnormal 

cognition indirectly – through its influence over a distant region (Carrera and Tononi 2014; 

Price et al. 2001). An understanding of the contribution of a brain region to the network it 

participates in is crucial in forming an account of functional diaschisis of this form (Boes et 

al. 2015; Fornito et al. 2015). Solutions that have been proposed to the above problems include 

the use of multivariate methods (Karnath and Smith 2014; Nachev 2015) to account for 

dependencies, and the use of models of effective connectivity to assess network-level changes 

(Abutalebi et al. 2009; Grefkes et al. 2008; Mintzopoulos et al. 2009; Rocca et al. 2007) in 

response to lesions.  

In this chapter, we consider a complementary approach that has started to gain traction in 

psychiatric research (Adams et al. 2015; Adams et al. 2013b; Corlett and Fletcher 2014; 

Friston et al. 2017e; Huys et al. 2016; Schwartenbeck and Friston 2016). This is the use of 

models that relate the computations performed by the brain to measurable behaviours (Iglesias 

et al. 2017; Krakauer and Shadmehr 2007; Mirza et al. 2016; Testolin and Zorzi 2016). Such 

models can be associated with process theories (Friston et al. 2017a) that map to neuroanatomy 

and physiology. This complements the approaches outlined above, as it allows focal 

neuroanatomical lesions to be interpreted in terms of their contribution to a network. Crucially, 

this approach ensures that the relationship between brain structure and function is addressed 

within a conceptually rigorous framework – this is essential for the construction of well-

formed hypotheses for neuropsychological research (Nachev and Hacker 2014). We focus here 

upon models that employ a conceptual framework based on Bayesian inference. 

Our motivation for pursuing a Bayesian framework is that it captures many different types of 

behaviour, including apparently suboptimal behaviours. According to an important result 

known as the complete class theorem (Daunizeau et al. 2010; Wald 1947), there is always a 

set of a prior beliefs that renders an observed behaviour Bayes optimal. This is fundamental 

for computational neurology as it means we can cast even pathological behaviours as the result 

of processes that implement Bayesian inference (Schwartenbeck et al. 2015c). In other words, 

we can assume that the brain makes use of a probabilistic model of its environment to make 

inferences about the causes of sensory data (Doya 2007; Knill and Pouget 2004), and to act 

upon them (Friston et al. 2012b). Another consequence of the theorem is that computational 

models that are not (explicitly) motivated by Bayesian inference (Frank et al. 2004; O'Reilly 

2006) may be written down in terms of Bayesian decision processes. Working within this 

framework facilitates communication among models, and ensures they could be used to 

phenotype patients using a common currency (i.e., their prior beliefs). It follows that the key 

challenges for computational neuropsychology can be phrased in terms of two questions: ‘what 
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are the prior beliefs that would have to be held to make this behaviour optimal?’ and ‘what are 

the biological substrates of these priors?’ 

The notion of optimal pathology may seem counter-intuitive, but we can draw upon another 

theorem, the good regulator theorem (Conant and Ashby 1970), to highlight the difference 

between healthy and pathological behaviour. This states that a brain (or any other system) is 

only able to effectively regulate its environment if it is a good model of that environment. A 

brain that embodies a model with priors that diverge substantially from the world (i.e., body, 

ecological niche, culture, etc.) it is trying to regulate will fail at this task (Schwartenbeck et al. 

2015c). As such, pathological regulators may be thought of creatures who model their world 

inaccurately. In other words, they are good regulators of a hypothetical alternative world that 

is more coherent with their model. If pathological priors relate to the properties of the 

musculoskeletal system, we might expect motor disorders such as tremors or paralysis (Adams 

et al. 2013a; Friston et al. 2010b). If abnormal priors relate to perceptual systems, the results 

may include sensory hallucinations (Adams et al. 2013b; Fletcher and Frith 2009) or 

anaesthesia. In the following, we review some important concepts in Bayesian accounts of 

brain function. These include the notion of a generative model, the hierarchical structure of 

such models, the representation of uncertainty in the brain, and the active nature of sensory 

perception. In doing so we will develop a taxonomy of pathological priors. While this 

taxonomy concerns types of inferential deficit (and is not a comprehensive review of 

neuropsychological syndromes), we draw upon examples of syndromes to illustrate these 

pathologies. We relate these to failures of neuromodulation and to the notion of a 

‘disconnection’ syndrome (Catani and ffytche 2005; Geschwind 1965a). 

 

The generative model  

 

Bayesian inference 

 

Much work in theoretical neurobiology rests on the notion that the brain performs Bayesian 

inference (Doya 2007; Friston 2010; Knill and Pouget 2004; O’Reilly et al. 2012). In other 

words, the brain makes inferences about the (hidden or latent) causes of sensory data. ‘Hidden’ 

variables are those that are not directly observable and must be inferred. For example, the 

position (hidden variable) of a lamp causes a pattern of photoreceptor activation (sensory data) 

in the retina. Bayesian inference can be used to infer the probable position of the lamp from 

the retinal data. To do this, two probability distributions must be defined (these are illustrated 
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graphically in Figure 6.1a). These are the prior probability of the causes, and a likelihood 

distribution that determines how the causes give rise to sensory data. Together, these are 

referred to as a ‘generative model’, as they describe the processes by which data is (believed 

to be) generated. Bayesian inference uses a generative model to compute the probable causes 

of sensory data (Beal 2003; Doya 2007; Ghahramani 2015). Many of the inferences that must 

be made by the brain relate to causes that evolve through time. This means that the prior over 

the trajectory of causes through time can be decomposed into a prior for the initial state, and 

a series of transition probabilities that account for sequences or dynamics (Figure 6.1b). These 

dynamics can be subdivided into those that a subject has control over (Figure 6.1c), such as 

muscle length, and environmental causes that they cannot directly influence. 

 

 

Figure 6.1 – Generative models. These networks graphically illustrate the structure of 

generative models, using the same notation as in Figure 2.2. (a) The simplest model that 

permits Bayesian inference involves a hidden state (s) that is equipped with a prior P(s), 

labelled D. This hidden state generates observable data (o) through a process defined by the 

likelihood P(o|s) (vertical arrow, labelled A). (b) It is possible to equip such a model with 

dynamically changing hidden states. To do so, we must specify the probabilities of 

transitioning between states P(sτ + 1|sτ) (horizontal arrows, labelled B). (c) Transitions between 

states may be influenced by the course of action (π) that is pursued. (d) Hierarchical levels can 
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be added to the generative model (Friston et al. 2017f). This means that the processes that 

generate the hidden states can themselves be accommodated in the inferences performed using 

the model.    

 

Predictive coding 

 

Predictive coding is a prominent theory describing how the brain could perform Bayesian 

inference (Bastos et al. 2012; Friston and Kiebel 2009; Rao and Ballard 1999). This relies 

upon the idea that the brain uses its generative model to form perceptual hypotheses (Gregory 

1980) and make predictions about sensory data. The difference between this prediction and 

the incoming data is computed, and the ensuing prediction error is used to refine hypotheses 

about the cause of the data (see Figure 2.1). Under this theory, the messages passed through 

neuronal signalling are either predictions, or prediction errors. There are other local message 

passing schemes that can implement Bayesian inference (Dauwels 2007; Friston et al. 2017c; 

Winn and Bishop 2005; Yedidia et al. 2005), particularly for categorical (as opposed to 

continuous) inferences, and these are described in Chapter 2 and Appendix A.2. Although we 

use the language of predictive coding in the following, we note that our discussion generalises 

to other Bayesian belief propagation schemes. 

The notion that hypotheses are corrected by prediction errors makes sense of the kinds of 

neuropsychological pathologies that result from the loss of sensory signals. For example, 

patients with eye disease can experience complex visual hallucinations (ffytche and Howard 

1999). This phenomenon, known as Charles Bonnet syndrome (Menon et al. 2003; Teunisse 

et al. 1996), can be interpreted as a failure to constrain perceptual hypotheses with sensations 

(Reichert et al. 2013). In other words, there are no prediction errors to correct predictions. A 

similar line of argument can be applied to phantom limbs (De Ridder et al. 2014; Frith et al. 

2000). Following amputation, patients may continue to experience ‘phantom’ sensory percepts 

from their missing limb. The absence of corrective signals from amputated body parts means 

that any hypothesis held about the limb is unfalsifiable. In the next sections, we consider some 

of the important features of generative models, and their relationship to brain function. 

 

Hierarchical models 
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Cortical architecture 

 

An important feature of many generative models is hierarchy. Hierarchical models assume that 

the hidden causes that generate sensory data are themselves generated from hidden causes at 

a higher level in the hierarchy (Figure 6.1d). As a hierarchy is ascended, causes tend to become 

more abstract, and have dynamics that play out over a longer time course (Kiebel et al. 2008; 

Kiebel et al. 2009). An intuitive example is the kind of generative model required for reading 

(Friston et al. 2017f). While lower levels may represent letters, higher levels represent words, 

then sentences, then paragraphs.  

There are several converging lines of evidence pointing to the importance of hierarchy as a 

feature of brain organisation. One of these is the patterns of receptive fields in the cortex 

(Gallant et al. 1993). In primary sensory cortices, cells tend to respond to simple features such 

as oriented lines (Hubel and Wiesel 1959). As we move further from sensory cortices, the 

complexity of the stimulus required to elicit a response increases. Higher areas become 

selective for contours (Desimone et al. 1985; von der Heydt and Peterhans 1989), shapes, and 

eventually objects (Valdez et al. 2015). The sizes of receptive fields also increase (Gross et al. 

1972; Smith et al. 2001). 

A second line of evidence is the change in temporal response properties. Higher areas appear 

to respond to stimuli that change over longer time courses than lower areas (Hasson et al. 2015; 

Hasson et al. 2008; Kiebel et al. 2008; Murray et al. 2014). This is consistent with the structure 

of deep temporal generative models (Friston et al. 2017f) (a sentence takes longer to read than 

a word). A third line of evidence is the laminar specificity of inter-areal connections that 

corroborates the pattern implied by electrophysiological responses (Felleman and Van Essen 

1991; Markov et al. 2013; Shipp 2007). As illustrated in Figure 6.2, cortical regions lower in 

the hierarchy project to layer IV of the cortex in higher areas. These ‘ascending’ connections 

arise from layer III of the lower hierarchical region. ‘Descending’ connections typically arise 

from deep layers of the cortex, and target both deep and superficial layers of the cortical area 

lower in the hierarchy. 

In addition to the anatomical and physiological evidence for hierarchical organisation 

summarised above, neuropsychological data emphasises the functional importance of this 

organisation. For example, it has been argued that deficits in semantic knowledge can only be 

interpreted with reference to a hierarchically organised set of representations in the brain. This 

argument rests on observations that patients with agnosia, a failure to recognise objects, can 

present with semantic deficits at different levels of abstraction. For example, some 

neurological patients are able to distinguish between broad categories (fruits or vegetables) 
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but are unable to identify particular objects within a category (Warrington 1975). The 

preservation of more abstract knowledge, with impairment of within-category semantics, is 

taken as evidence for distinct hierarchical levels that can be differentially impaired. This is 

endorsed by findings that some patients have a category-specific agnosia (for example, a 

failure to identify living but not inanimate stimuli) (Warrington and Shallice 1984). A model 

that simulates these deficits relies upon a hierarchical structure that allows for specific 

categorical processing at higher levels to be lesioned while maintaining lower level processes 

(Humphreys and Forde 2001). Notably, lesions to this model were performed by modulating 

the connections between hierarchical levels. This resonates well with the type of 

computational ‘disconnection’ that predictive coding implicates in some psychiatric disorders 

(Friston et al. 2016a). We now turn to the probabilistic interpretation of such disconnections. 

 

Ascending and descending messages 

 

The parallel between the hierarchical structure of generative models and that of cortical 

organisation has an interesting consequence. It suggests that connections between cortical 

regions at different hierarchical levels are the neurobiological substrate of the likelihoods that 

map hidden causes to the sensory data, or lower level causes, that they generate (Friston et al. 

2017f; Kiebel et al. 2008). This is very important in understanding the computational nature 

of a ‘disconnection’ syndrome. It implies that the disruption of a white matter pathway 

corresponds to an abnormal prior belief about the form of the likelihood distribution. This 

immediately allows us to think of neurological disconnection syndromes – such as visual 

agnosia, pure alexia, apraxia, and conduction aphasia (Catani and ffytche 2005) – in 

probabilistic terms. We will address specific examples of these in the next section. Under 

predictive coding, the signals carried by inter-areal connections have a clear interpretation 

(Shipp 2016; Shipp et al. 2013). Descending connections carry the predictions derived from 

the generative model about the causes or data at the lower level. Ascending connections carry 

prediction error signals. 
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Figure 6.2 – Hierarchy in the cortex. This schematic illustrates two key features of cortical 

organisation. The first is hierarchy, as defined by laminar specific projections. Projections 

from primary sensory areas, such as area V1, to higher cortical areas typically arise from layer 

III of a cortical column, and target layer IV. These ascending connections are shown in red. In 

contrast, descending connections (in blue) originate in deep layers of the cortex and project to 

both superficial and deep laminae. The second feature illustrated here is the separation of 

visual processing into two, dorsal and ventral, streams. In terms of the functional anatomy 

implied by generative models in the brain, this segregation implies a factorisation of beliefs 

about the location and identity of a visual object (i.e., knowing what an object is does not tell 

you where it is – and vice versa). 

 

Sensory streams and disconnection syndromes 

 

What and where? 

 

Figure 6.2 illustrates an additional feature common to cortical architectures and inference 

methods. This is the factorisation of beliefs about hidden causes into multiple streams. 

Bayesian inference often employs this device, known as a ‘mean-field’ assumption, which 

‘carves’ posterior beliefs into the product of statistically independent factors (Beal 2003; 

Friston and Buzsáki 2016). The factorisation of visual hierarchies into ventral and dorsal 

‘what’ and ‘where’ streams (Ungerleider and Haxby 1994; Ungerleider and Mishkin 1982) 

appears to be an example of this. A closely related factorisation separates the dorsal and ventral 

attention networks (Corbetta and Shulman 2002). This factorisation has important 
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consequences for the representation of objects in space. Location is represented bilaterally in 

the brain, with each side of space represented in the contralateral hemisphere. As it is not 

necessary to know the location of an object to know its identity, it is possible to represent this 

information independently, and therefore unilaterally (Parr and Friston 2017a). It is notable 

that object recognition deficits tend to occur when patients experience damage to areas in the 

right hemisphere (Warrington and James 1967; Warrington and James 1988; Warrington and 

Taylor 1973). Lesions to contralateral (left hemispheric) homologues are more likely to give 

rise to difficulties in naming objects (Kirshner 2003). 

The bilateral representation of space has an important consequence when we frame neuronal 

processing as probabilistic inference. Following an inference that a stimulus is likely to be on 

one side of space, it must be the case that it is less likely to be on the contralateral side. If 

neuronal activities in each hemisphere represent these probabilities, this induces a form of 

interhemispheric competition (Dietz et al. 2014; Rushmore et al. 2006; Vuilleumier et al. 

1996). An important role of commissural fibre pathways may be to enforce the normalisation 

of probabilities across space (although some of these axons must represent likelihood 

mappings instead (Glickstein and Berlucchi 2008)). This neatly unifies theories that relate 

disorders of spatial processing to interhemispheric (Kinsbourne 1970) or intrahemispheric 

disruptions (Bartolomeo 2014; Bartolomeo et al. 2007). Any intrahemispheric lesion that 

induces a bias towards one side of space necessarily alters the interhemispheric balance of 

activity (Parr and Friston 2017b). 

 

Disconnections and likelihoods 

 

The factorisation of beliefs into distinct processing streams is not limited to the visual system. 

Notably, theories of the neurobiology of speech propose a similar division into dorsal and 

ventral streams (Hickok and Poeppel 2007; Saur et al. 2008). The former is thought to support 

articulatory components of speech, while the latter is involved in language comprehension. 

This mean-field factorisation accommodates the classical subdivision of aphasias into fluent 

(e.g. Wernicke’s aphasia) and non-fluent (e.g. Broca’s aphasia) categories. The anatomy of 

these networks has been interpreted in terms of predictive coding (Hickok 2012a; Hickok 

2012b), and this interpretation allows us to illustrate the point that disconnection syndromes 

are generally due to disruption of the likelihood mapping between two regions. We draw upon 

examples of aphasic and apraxic syndromes to make this point. 
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Conduction aphasia is the prototypical disconnection syndrome (Wernicke 1969), 

disconnecting Wernicke’s area from Broca’s area. The former is found near the 

temporoparietal junction, and is thought to contribute to language comprehension. The latter 

is in the inferior frontal lobe, and is a key part of the dorsal language stream. Disconnection of 

the two areas results in an inability to repeat spoken language. This connection between these 

two areas, the arcuate fasciculus (Catani and Mesulam 2008), could represent the likelihood 

mapping from speech representations in Wernicke’s area to the articulatory proprioceptive 

data processed in Broca’s area as in Figure 6.3 (left). While auditory data from the ventral 

pathway may inform inferences about language, the failure to translate these into 

proprioceptive predictions means that such predictions cannot be fulfilled by the brainstem 

motor system (Adams et al. 2013a). 

The idea that a common generative model could generate both auditory and proprioceptive 

predictions, associated with speech, harmonises well with theories of about the ‘mirror-

neuron’ system (Di Pellegrino et al. 1992; Rizzolatti et al. 2001). These neurons respond both 

to the performance of an action by an individual, and when that individual observes the same 

action being performed by another. Similarly, Wernicke’s area appears to be necessary for 

both language comprehension and generation (Dronkers and Baldo 2009) (but see (Binder 

2015)). Anatomically, there is consistency between the mirror neuron system and the 

connectivity between the frontal and temporal regions involved in speech. The former is often 

considered to include Broca’s area and the superior temporal sulcus – adjacent to Wernicke’s 

area (Frith and Frith 1999; Keysers and Perrett 2004). 

A common generative model for action observation and generation (Kilner et al. 2007) 

generalises to include the notion of ‘conduction apraxia’ (Ochipa et al. 1994). As with 

conduction aphasia, this disorder involves a failure to repeat what another is doing. Instead of 

repeating spoken language, conduction apraxia represents a deficit in mimicking motor 

behaviours. This implies a disconnection between visual and motor regions (Catani and ffytche 

2005; Goldenberg 2003). This must spare the route from language areas to motor areas. Other 

forms of apraxia have been considered to be disconnection syndromes in which language areas 

are disconnected from motor regions, preventing patients from obeying a verbal motor 

command (Geschwind 1965b). Under this theory, deficits in imitation that accompany this are 

due to disruption of axons that connect visual and motor areas. These also travel in tracts from 

posterior to frontal cortices. 

Other disconnection syndromes include (Catani and ffytche 2005; Geschwind 1965a) visual 

agnosia, caused by disruption of connections in the ventral visual stream, and visual neglect 

(Bartolomeo et al. 2007; Ciaraffa et al. 2013; Doricchi and Tomaiuolo 2003; He et al. 2007). 
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Neglect can be a consequence of frontoparietal disconnections (Figure 6.3, right), leading to 

an impaired awareness of stimuli on the left despite intact early visual processing (Rees et al. 

2000). We consider the behavioural manifestations of visual neglect in a later section. Before 

we do so, we turn from disconnections to a subtler form of computational pathology. 

 

 

Figure 6.3 – Dorsal and ventral streams. Here we depict a plausible mapping of simple 

generative models to the dual streams of the language (left) and attention (right) networks. We 

highlight the likelihood mappings that correspond to white matter tracts implicated in 

disconnection syndromes. The number 1 in the blue circle on the left highlights the mapping 

from the left temporoparietal region, which responds to spoken words (Howard et al. 1992), 

to the inferior frontal gyrus, involved in the dorsal articulatory stream (Hickok 2012b). This 

region is well placed to deal with proprioceptive data from the laryngeal and pharyngeal 

muscles (Simonyan and Horwitz 2011). The connection corresponds to the arcuate fasciculus 

and lesions give rise to conduction aphasia. The number 2 indicates the mapping from dorsal 

frontal regions that represent eye fixation locations to ventral regions associated with target 

detection and identity. This corresponds to the second branch of the superior longitudinal 

fasciculus. Lesions to this structure are implicated in visual neglect (Doricchi and Tomaiuolo 

2003; Thiebaut de Schotten et al. 2005).  

 

Uncertainty, precision, and autism 

 

Types of uncertainty 

 

In predictive coding, the significance ascribed to a given prediction error is determined by the 

precision of the mapping from hidden causes to the data. If this mapping is very stochastic, 

the gain of the prediction error signal is turned down. A precise relationship between causes 
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and data leads to an increase in this gain – it is this phenomenon that has been associated with 

attention (Feldman and Friston 2010). In other words, attention is the process of affording a 

greater weight to reliable information (Parr and Friston 2019a).  

The generative models depicted in Figure 6.1 indicate that there are multiple probability 

distributions that may be excessively precise or imprecise (Parr and Friston 2017c). One of 

these is the sensory precision that relates to the likelihood. It is this that weights sensory 

prediction errors in predictive coding (Feldman and Friston 2010; Friston and Kiebel 2009). 

Another source of uncertainty relates to the dynamics of hidden causes. It may be that the 

mapping from the current hidden state to the next is very noisy, or volatile. Alternatively, these 

transitions may be very deterministic. A third source of uncertainty relates to those states that 

a person has control over. It is possible for a person to hold beliefs about the course of action, 

or policy, that they will pursue with differing levels of confidence.  

Beliefs about the degree of uncertainty in each of these three distributions have been related 

to the transmission of acetylcholine (Dayan and Yu 2001; Moran et al. 2013b; Yu and Dayan 

2002), noradrenaline (Dayan and Yu 2006), and dopamine (Friston et al. 2014) respectively 

(Marshall et al. 2016). The ascending neuromodulatory systems associated with these 

transmitters are depicted in Figure 6.4. The relationship between dopamine and the precision 

of prior beliefs about policies suggests that the difficulty initiating movements in Parkinson’s 

disease may be due to a high estimated uncertainty about the course of action to pursue (Friston 

et al. 2013). A complementary perspective suggests that the role of dopamine is to optimise 

sequences of actions into the future (O'Reilly and Frank 2006). Deficient cholinergic signalling 

has been implicated in the complex visual hallucinations associated with some 

neurodegenerative conditions (Collerton et al. 2005) (see Chapter 4 for a discussion of this). 
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Figure 6.4 – The anatomy of precision. The ascending neuromodulatory systems carrying 

dopaminergic, cholinergic, and noradrenergic signals are shown (in a simplified form). 

Dopaminergic neurons have their cell-bodies in the ventral tegmental area (VTA) and the 

substantia nigra pars compacta (SNc) – two nuclei in the midbrain. The medial forebrain 

bundle contains the axons of these cells, and allows them to target neurons in the prefrontal 

cortex and the medium spiny neurons of the striatum. The nucleus basalis of Meynert is found 

in the basal forebrain. This is the source of cholinergic projections to the cortex (Eckenstein 

et al. 1988). Axons originating here join the cingulum. Neurons in the locus coeruleus project 

from the brainstem, through the dorsal noradrenergic bundle, and also join the cingulum to 

supply the cortex with noradrenaline (Berridge and Waterhouse 2003). 

 

Precision and autism 

 

One condition that has received considerable attention using Bayesian formulations is autism 

(Lawson et al. 2014; Pellicano and Burr 2012). This condition usefully illustrates how aberrant 

prior beliefs about uncertainty can produce abnormal percepts. An influential treatment of the 

inferential deficits in autism argues that the condition can be understood in terms of weak prior 

beliefs (Pellicano and Burr 2012). The consequence of this is that autistic individuals rely to a 

greater extent upon current sensory data to make inferences about hidden causes. This 

hypothesis is motivated by several empirical observations, including the resistance of people 
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with autism to sensory illusions (Happé 1996; Simmons et al. 2009), and their superior 

performance on tasks requiring the location of low-level features in a complex image (Shah 

and Frith 1983). The susceptibility of the general population to sensory illusions is thought to 

be due to the exploitation of artificial scenarios that violate prior beliefs (Brown and Friston 

2012; Geisler and Kersten 2002). For example, the perception of the concave surface of a mask 

as a convex face is due to the, normally accurate, prior (or ‘top-down’) belief that faces are 

convex (Gregory 1970). Under this prior, the Bayes optimal inference is a false inference 

(Weiss et al. 2002). If this prior belief is weakened, the optimal inference becomes the true 

inference. 

The excessive dependence on sensory evidence has been described in terms of an aberrant 

belief about the precision of the likelihood distribution (Lawson et al. 2014). This account 

additionally considers the source of this belief (Lawson et al. 2017). It suggests that this may 

be understood in terms of an aberrant prior belief about the volatility of the environment. 

Volatility here means the stochasticity of the transition probabilities that describe the dynamics 

of hidden causes in the world. Highly volatile transitions prevent the precise estimation of 

current states from the past, and result in imprecise beliefs about hidden causes. In other words, 

past beliefs become less informative when making inferences about the present. Sensory 

prediction errors then elicit a greater change in beliefs than they would do if a strong prior 

were in play. This theory of autism has been tested empirically (Lawson et al. 2017), providing 

a convincing demonstration of computational neuropsychology in practice. Using a Bayesian 

observer model (Mathys 2012), it was shown that participants with autism overestimate the 

volatility of their environment. Complementing this computational finding, pupillary 

responses, associated with central noradrenergic activity (Koss 1986), were found to be of a 

smaller magnitude when participants encountered surprising stimuli compared to neurotypical 

individuals. 

A failure to properly balance the precision of sensory evidence, in relation to prior beliefs, 

may be a ubiquitous theme in many neuropsychiatric disorders. A potentially important aspect 

of this imbalance is a failure to attenuate sensory precision during self-made acts. The 

attenuation of sensory precision is an important aspect of movement and active sensing, 

because it allows us to temporarily suspend attention to sensory evidence that we are not 

moving (e.g., in the bradykinesia of Parkinson's disease). In brief, a failure of sensory 

attenuation would have profound consequences for self-generated movement, a sense of 

agency and selfhood. We now consider the implications of Bayesian pathologies for the active 

interrogation of the sensorium and its neuropsychology. 
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Active inference and visual neglect 

 

Active sensing 

 

In the above, we have considered how hypotheses are evaluated as if sensory data is passively 

presented to the brain. In reality, perception is a much more active process of hypothesis testing 

(Krause 2008; Yang et al. 2016a; Yang et al. 2016b). Not only are hypotheses formed and 

refined, but experiments can be performed to confirm or refute them. Saccadic eye movements 

offer a good example of this, as they turn vision from a passive into an active process (Gibson 

1966; Ognibene and Baldassarre 2014; Parr and Friston 2017a). Each saccade can be thought 

of as an experiment to adjudicate between plausible hypotheses about the hidden causes that 

give rise to visual data (Friston et al. 2012a; Mirza et al. 2016). As in science, the best 

experiments are those that will bring about the greatest change in beliefs (Clark 2017; Friston 

et al. 2016b; Lindley 1956). A mathematical formulation of this imperative (Friston et al. 

2015b) suggests that the form of the neuronal message passing required to evaluate different 

(saccadic) policies maps well to the anatomy of cortico-subcortical loops involving the basal 

ganglia (Friston et al. 2017f). This is consistent with the known role of this set of subcortical 

structures in action selection (Gurney et al. 2001; Jahanshahi et al. 2015), and their anatomical 

projections to oculomotor areas in the midbrain (Hikosaka et al. 2000). To illustrate the 

importance of these points, we consider visual neglect (paraphrasing Chapter 5), a disorder in 

which active vision is impaired. 

 

Visual neglect 

 

A common neuropsychological syndrome, resulting from damage to the right cerebral 

hemisphere, is visual neglect (Halligan and Marshall 1998). This is characterised by a failure 

to attend to the left side of space. This rightward lateralisation may be a consequence of the 

mean-field factorisation discussed earlier. Although space is represented bilaterally in the 

brain, there is no need for representations of identity to be bilateral. This means that the 

relationships between location and identity should be asymmetrical, complementing the 

observation that visual neglect is very rarely the consequence of a left hemispheric lesion.  
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A behavioural manifestation of this disorder is a bias in saccadic sampling (Fruhmann Berger 

et al. 2008; Husain et al. 2001; Karnath and Rorden 2012). Patients with neglect tend to 

perform saccades to locations on the right more frequently than to those on the left. There are 

several different sets of prior beliefs that would make this behaviour optimal. We will discuss 

three possibilities (Parr and Friston 2017b), and consider their biological bases (Figure 6.5). 

One is a prior belief that proprioceptive data will be consistent with fixations on the right of 

space. The dorsal parietal lobe is known to contain the ‘parietal eye fields’ (Shipp 2004), and 

it is plausible that an input to this region may specify such prior beliefs. A candidate structure 

is the dorsal pulvinar (Shipp 2003). This is a thalamic nucleus implicated in attentional 

processing (Kanai et al. 2015; Robinson and Petersen ; Ungerleider and Christensen 1979). 

Crucially, lesions to this structure have been implicated in neglect (Karnath et al. 2002). 

A second possibility relates more directly to the question of good experimental design. If a 

saccade is unlikely to induce a change in current beliefs, then there is little value in performing 

it. One form that current beliefs take is the likelihood distribution mapping ‘where I am 

looking’ to ‘what I see’ (Mirza et al. 2016). As illustrated in Figure 6.3 (right) this likelihood 

distribution takes the form of a connection between dorsal frontal and ventral parietal regions 

(Parr and Friston 2017a). To adjust beliefs about this mapping, observations could induce a 

plastic change in synaptic strength following each saccade (Friston et al. 2016b). If the white 

matter tract connecting these areas is lesioned, it becomes impossible to update these beliefs. 

As such, if we were to cut the second branch of the superior longitudinal fasciculus (SLF II) 

on the right, disconnecting dorsal frontal from ventral parietal regions, we would expect there 

to be no change in beliefs following a saccade to the left. These would make for very poor 

‘visual experiments’ (Lindley 1956). A very similar argument has been put forward for neglect 

of personal space that emphasises proprioceptive (rather than visual) consequences of action 

(Committeri et al. 2007). In these circumstances, optimal behaviour would require a greater 

frequency of rightward saccades. Lesions to SLF II (Doricchi and Tomaiuolo 2003; Lunven 

et al. 2015; Thiebaut de Schotten et al. 2005), and the regions it connects (Corbetta et al. 2000; 

Corbetta and Shulman 2002; Corbetta and Shulman 2011) are associated with neglect. 

A third possibility is that the process of policy selection may be inherently biased. Above, we 

suggested that these computations may involve subcortical structures. The striatum, an input 

nucleus to the basal ganglia, is well known to be involved in habit formation (Graybiel and 

Grafton 2015; Yin and Knowlton 2006). Habits may be formalised as a bias in prior beliefs 

about policy selection (FitzGerald et al. 2014). It is plausible that a lesion in the striatum might 

induce a similar behavioural bias towards saccades to rightward targets. One of the subcortical 

structures most frequently implicated in visual neglect is the putamen (Karnath et al. 2002), 
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one of the constituent nuclei of the striatum. Such lesions may be interpretable as disrupting 

the prior belief about policies. 

 

Figure 6.5 – The anatomy of visual neglect. Three lesions implicated in visual neglect are 

highlighted here. 1 – Disconnection of the second branch of the right superior longitudinal 

fasciculus (a white matter tract that connects dorsal frontal with ventral parietal regions); 2 – 

Unilateral lesion to the right putamen; 3 – Unilateral lesion to the right pulvinar (a thalamic 

nucleus). Note that lesion 1 here is the same as lesion 2 in Figure 6.3. 

 

Anosognosia 

 

The ideas outlined above, that movements can be thought of as sensory experiments, are not 

limited to eye movements and visual data. Plausibly, limb movements could be used to test 

hypotheses about proprioceptive (and visual) sensations. This has interesting consequences for 

a neuropsychological deficit known as anosognosia (Fotopoulou 2012). This syndrome can 

accompany hemiplegia, which prevents the performance of perceptual experiments using the 

paralysed limb (Fotopoulou 2014). In addition to the failure to perform such an experiment, 

patients must be able to ignore any discrepancy between predicted movements and the 

contradictory sensory data suggesting the absence of a movement (Frith et al. 2000). This 

distinction mirrors that between salience and attention in the visual domain (Parr and Friston 

2019a). As this failure of monitoring movement trajectories can be induced in healthy subjects 
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(Fourneret and Jeannerod 1998), it seems plausible that this could be exaggerated in the 

context of hemiplegia, through a dampening of exteroceptive sensory precision. 

This explanation is not sufficient on its own, as anosognosia does not occur in all cases of 

hemiplegia. Lesion mapping has implicated the insula in the deficits observed in these patients 

(Fotopoulou et al. 2010; Karnath et al. 2005a). This is a region often associated with 

interoceptive inference (Barrett and Simmons 2015) that has substantial efferent connectivity 

to somatosensory cortex (Mesulam and Mufson 1982; Showers and Lauer 1961). Damage to 

the insula and surrounding regions might reflect a disconnection of the mapping from motor 

hypotheses to the interoceptive data that accounts for what it ‘feels like’ to move a limb. This 

is consistent with evidence that the insula mediates inferences about these kinds of sensations 

(Allen et al. 2016). A plausible hypothesis for the computational pathology in anosognosia is 

then that a failure of active inference is combined with a disconnection of the likelihood 

mapping between motor control and its interoceptive (and exteroceptive) consequences 

(Fotopoulou et al. 2008). 

 

A (provisional) taxonomy of computational pathology 

 

In the above, we have described the components of a generative model required to perform 

Bayesian inference. We have reviewed some of the syndromes that may illustrate deficits of 

one or more of these components. Broadly, the generative model constitutes beliefs about the 

hidden states, their dynamics, and the mechanisms by which sensory data are believed to be 

generated. Each of these beliefs can be disrupted through an increase or decrease in precision, 

or through disconnections. Modulation of precision implicates the ascending neuromodulatory 

systems. This modulation may be important for a range of neuropsychiatric and functional 

neurological disorders (Edwards et al. 2012). 

In addition to modulation of connectivity, disconnections can completely disrupt beliefs about 

the conditional probability of one variable given another. The hierarchical architecture of the 

cortex suggests that inter-areal white matter tracts, the most vulnerable to vascular or 

inflammatory lesions, represent likelihood distributions (i.e. the probability of data, or a low-

level cause, given a high-level cause). Drawing upon the notion of a mean-field factorisation, 

we noted that such disconnections are likely to have a hemispheric asymmetry in the 

behaviours they elicit. It is also plausible that functional disconnections might occur within a 

cortical region. This would allow for disruption of transition probabilities. While not as 
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vulnerable to vascular insult, other pathologies can cause changes in intrinsic cortical 

connectivity (Cooray et al. 2015). 

Epistemic, foraging, behaviour is vital for the evaluation of beliefs about the world. Unusual 

patterns of sensorimotor sampling can be induced by abnormal beliefs about the motor 

experiments that best disambiguate between perceptual hypotheses. These computations 

implicate subcortical structures, such as the basal ganglia. There are two ways that disruption 

of these computations may result in abnormal behaviour. The first is that prior beliefs about 

policies may be biased. This can be an indirect effect, through other beliefs, or a direct effect 

due to dysfunction in basal ganglia networks. The second is that an impairment in performing 

these experiments, due to paralysis, might impair the refutation of incorrect perceptual 

hypotheses. This may be compounded by a disconnection or a neuromodulatory failure, as has 

been proposed in anosognosia. 

One further source of an aberrant priors, exploited in Chapter 4, is neuronal loss. In 

neurodegenerative disorders, there may be a reduction in the number of neurons in a given 

brain area. This results in a smaller number of possible activity patterns across these neurons 

and limits the number of hypotheses they can represent. This means that disorders in which 

neurons are lost may cause a shrinkage of the brain’s hypothesis space. In other words, the 

failure to form accurate perceptual hypotheses in such conditions may be due to an attrition of 

the number of hypotheses that can be entertained by the brain. An important future step in 

Bayesian neuropsychology will be linking tissue pathology with computation more directly. 

This may be one route towards achieving this. 

 

Conclusion 

 

While Bayesian approaches are not in conflict with other methods in computational 

neuroscience, they do offer a different (complementary) perspective that is often very useful. 

For example, many traditional modelling approaches would not predict that disconnections in 

early sensory streams, such as the retino-geniculate system, could result in complex sensory 

hallucinations. Calling upon a hierarchical generative model that makes ‘top-down’ 

predictions about sensory data, clarifies and provides insight into such issues. In the above we 

have discussed the features of the generative models that underwrite perception and behaviour. 

We have illustrated the importance of these features through examples of their failures. These 

computational pathologies can be described in terms of abnormal prior beliefs, or in terms of 

their biological substrates. We noted that aberrant priors about the structure of a likelihood 
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mapping relate to disconnection syndromes, ubiquitous in neurology. Pathological beliefs 

about uncertainty may manifest as neuromodulatory disorders. The process of identifying the 

pathological priors that give rise to Bayes optimal behaviour in patients is promising both 

scientifically and clinically. If individual patients can be uniquely characterised by subject- 

specific priors, this facilitates a precision medicine approach grounded in computational 

phenotyping (Adams et al. 2016; Mirza et al. 2018; Schwartenbeck and Friston 2016). This 

also allows for empirical evaluation of hypotheses about abnormal priors, by comparing 

quantitative, computational phenotypes between clinical and healthy populations. Relating 

these priors to their biological substrates offers the further possibility of treatments that target 

aberrant neurobiology in a patient specific manner. 

 

 

 

 

 

Summary of key publications contributing to this thesis 

Title Comment Citation 

The active construction of the 

visual world 

Review of the anatomy of active vision 

and visual neglect as a pathology of 

active vision 

(Parr and Friston 

2017a) 

The computational anatomy 

of visual neglect 

Computational model of visual neglect, 

and demonstration that simulated lesions 

can be recovered from synthetic eye-

tracking data 

(Parr and Friston 

2017b) 

Uncertainty, epistemics, and 

active inference 

Introduction of precision (attention) to 

discrete state space models for active 

inference, their role in driving 

exploratory behaviour, and their 

adrenergic and cholinergic substrates 

(Parr and Friston 

2017c) 

Working memory, attention, 

and salience in active 

inference 

Deep temporal modelling of classic 

delay-period working memory tasks, and 

simulations of electrophysiological 

correlates of working memory 

(Parr and Friston 

2017d) 
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Active inference and the 

anatomy of oculomotion 

Modelling of brainstem oculomotor 

processes, using generalised Bayesian 

filtering to solve Newtonian equations of 

motion. Simulation of brainstem 

physiology and pathology, e.g. 

internuclear ophthalmoplegia 

(Parr and Friston 

2018a) 

The discrete and continuous 

brain: from decisions to 

movement – and back again 

Combining continuous models of 

oculomotion with discrete decision 

processes to simulate cortical, basal 

ganglia, superior collicular, and 

brainstem responses simultaneously 

(Parr and Friston 

2018c) 

Generalised free energy and 

active inference 

Technical account of inferences about 

the future, treating yet-to-be collected 

data as latent variables 

(Parr and Friston 

2019c) 

Computational 

neuropsychology and 

Bayesian inference 

Review of Bayesian accounts of brain 

dysfunction, calling upon the complete 

class theorems 

(Parr et al. 

2018b) 

Precision and false perceptual 

inference 

Simulation of a computational 

diaschisis, inspired by visual 

hallucinations in synucleinopathies 

(Parr et al. 

2018a) 

Dynamic causal modelling of 

active vision 

Demonstration, using DCM for MEG, 

that a form of visual working memory is 

represented through changes in synaptic 

efficacy 

(Parr et al. 

2019c) 

Neuronal message passing: 

Mean field, Bethe, and 

Marginal approximations 

Comparison of local Bayesian message 

passing schemes as descriptions of 

neuronal computation 

(Parr et al. 

2019b) 

Attention or Salience? Review of the distinctions between 

attentional gain processes and salience 

attribution 

(Parr and Friston 

2019a) 

The anatomy of inference: 

Generative models and brain 

structure 

Review of the anatomical process 

theories associated with active inference, 

with a focus upon the connectivity 

implied by the conditional 

independencies (Markov blankets) of a 

generative model 

(Parr and Friston 

2018b) 
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The computational 

pharmacology of oculomotion 

Simulation of a delay-period oculomotor 

task under various synthetic 

neuromodulatory perturbations, 

investigating the oculomotor 

consequences of common 

pharmacological agents 

(Parr and Friston 

2019b) 

 

 Appendices 

 

A.1 – The Laplace approximation 

 

The Laplace approximation for a variational distribution is the assumption that it takes a 

Gaussian form. This may be motivated though a Taylor series expansion of the log probability 

around the mode of the distribution: 
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The second term of the expansion disappears, as the gradient of the log probability at the mode 

is zero (by definition). The first term is constant with respect to x, so can be absorbed into the 

partition function. The result is a quadratic (i.e. Gaussian) form for the log probability, 

justifying the Laplace approximation in the region around the posterior mode. Note that the 

precision of this distribution is the (negative) curvature of the log joint probability, evaluated 

at the mode. 
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A.2 – Bethe and mean-field approximations 

 

This appendix, based upon that in (Parr et al. 2019b), outlines the two alternative message 

passing schemes used to compare the marginal message passing approach in Chapter 2.   

 

Mean-field approximation 

 

In place of the free energy expressed in Equation 2.10, variational message passing uses a 

free energy defined by choosing the family of posterior distributions to be those that fully 

factorise (in this case, over time): 
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This implies the following free energy functional: 
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Variational message passing is obtained simply by taking the gradients of this free energy with 

respect to the factors of the approximate posterior (Beal 2003). 
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Note that, unlike in Equation 2.10, we take the gradient of the free energy summed over all 

time-points (Fπ). In contrast, Equation 2.10 treats each time-step as a separate generative 

model, so takes the gradients with respect to the (temporally local) free energies (Fπτ). 
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Bethe approximation 

 

A less severe choice for the family of posterior distributions is that afforded by the Bethe 

approximation: 
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This lets us write down the Bethe free energy18: 
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We can then take the appropriate gradients and solve for their fixed points. To enforce the 

constraint that the singleton distributions are marginals of the pairwise distributions, we use 

Lagrange multipliers, which contribute the following gradients: 
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These gradients are added to those of the free energy, such that the sum of the gradients must 

be equal to zero to satisfy these constraints. In the following, we use ‘◦’ to indicate a Hadamard 

(elementwise) product, in addition to employing Kronecker tensor products and sums. 
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Substituting the singleton (s) distribution into the expression for the pairwise (S) distribution, 

and summing the pairwise distributions over each of their dimensions then gives: 
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Defining the following messages, this gives rise to the following belief-propagation scheme: 
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This may be implemented as a gradient ascent through the following scheme (used in the 

simulations in Figure 2.3): 

 

( ) ( )1 1 1 1

( )

ln ( ) ln ( ) ln

(ln ln ln )

(ln ln ln )

n n

n

n

n

 

       

   

   







− − + +

=

= +  +

= − −

= − −

s v

v B β α B β α α

β s β α

β s β α

              (A11 

 

Note the similarity between this and the simpler (but less accurate) Equation A4. 

 

A.3 – Expected free energy 

 

This appendix motivates the role of the expected free energy in policy selection based upon 

the more technical accounts in (Friston 2019; Parr et al. In Press). Because these derivations 

were originally formulated in continuous time, we do not explicitly index time steps in what 

follows. The key idea is that we can write down a KL-Divergence between two distributions, 

one of which depends upon the policy, and one that does not. By definition, this will be greater 

than or equal to zero. 
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Unpacking this divergence, we get: 
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Equation A13 says that the average surprise, or negative log evidence, associated with a policy 

is upper-bounded by the expected difference between the log posterior under a policy, and the 

log joint (steady-state) distribution over outcomes and states. This has the same form as the 

variational free energy (Equation 2.2), except that the expectation now includes a predictive 

distribution over outcomes, so is termed the ‘expected free energy’ (G). Given that this bounds 

the negative expected evidence, the negative expected free energy may be used to score the 

plausibility of each policy. Note that the smaller the expected free energy, the tighter the 

bound. 

One problem we face here is that the quantities used to calculate the expected free energy may 

not be tractable to compute. However, as detailed in Chapter 2, we can calculate variational 

approximations to these quantities that become increasingly accurate as free energy is 

minimised. Appealing to these approximations, we express the expected free energy as 

follows: 

 

( | )

( | )

( | ) ( | )

( | )

( | ) ( | )

( ) [ ( | ) || ( | , )] ln ( | )

[ ( | ) || ( | )] [ln ( | )]

( ) 0 ( | ) ( | , )

( ) [ln ( | ) ln ( , )]

( ) 0 ( | ) ( | )

( ) [ln ( | ) ln (

KL

KL Q s

Q s

P o s P s

P s

P o s Q s

F D Q s P s o P o

D Q s P s E P o s

F Q s P s o

G E Q s P o s

F P s Q s

G E Q s P











   

 

   

 

   

 

= −

= −

=  

  −

=  

  − , )]o s

    (A14 

 

The first of these approximations is the same variational approximation introduced in Chapter 

2. This says that, once we have found the Q that minimises free energy, we can use this as an 

approximation to the exact posterior distribution. The second (using the posterior as the new 
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prior19) lets us express the expected free energy in terms of a KL-Divergence between 

posteriors and priors (and a conditional entropy): 
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A.4 – Inferring uncertainty 

 

This appendix outlines a derivation for Bayesian belief updating of precision parameters using 

discrete-state space models (Parr and Friston 2017c). We assume that the precision parameters 

are distributed as gamma distributions, and follow a similar line of reasoning to that used to 

derive updates for policy precisions in previous papers. The prior distribution over the 

precision parameters is then: 
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The approximate posterior distributions have the same (gamma distribution) form and we will 

use a bold beta hyper-parameter to distinguish between the sufficient statistics of the posterior 

and prior above. A useful property of the gamma distribution, when parameterised in this way, 

is the following: 
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19 This use of ‘yesterday’s posterior as today’s prior’ is sometimes referred to as ‘Bayesian belief 

updating’. Note that this assumes we have already minimised free energy w.r.t Q. 
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Having defined these distributions, we can write the variational free energy: 
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Which can be expressed in terms of sufficient statistics (omitting constants), 
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To simplify the maths, we have approximated the free energy with that we would have 

obtained using a mean-field approximation for states over time. This is subtly different to that 

used for the marginal message passing described in Chapter 2. In Equation A19, Z represent 

partition functions (i.e. normalising constants) given by: 
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Taking the partial derivative with respect to the expected precisions gives: 
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Expressing these updates as biologically plausible gradient descents, the resulting equations 

are: 
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Note that the dimensionality implies a vector of precisions for A, where each state (column of 

A) is associated with its own precision parameter. 

 

A.5 – Novelty 

 

This appendix derives the form used to calculate the novelty (i.e. expected information gain) 

associated with the outcomes expected under a given policy. The KL-Divergence between two 

Dirichlet distributions (before and after experiencing a state-outcome pair) is as follows: 
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If aij is the Dirichlet parameter associated with the prior probability of observing i given state 

j, we add +1 to this on making this observation. This implies aij would be equal aij +1. We can 

compute the information gain (W) that would be associated with a given combination of states 

and outcomes20: 
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We can then use an expansion of the digamma function: 

 

1
( ) ln ...

2
x x

x
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Giving the following simple expression for the information gain: 

 

 
20 This uses the following identities: 

( ) ( 1)x x x =  +   

( ) ( ) ( )xx x x  =     

 

This also uses the shorthand: 

0 j kjk
a a   
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                 (A26 

The expected information gain, under a given policy, is then: 
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