1,109 research outputs found

    Constraint-Based Simulation for Non-Rigid Real-Time Registration

    Get PDF
    International audienceIn this paper we propose a method to address the problem of non-rigid registration in real-time. We use Lagrange multipliers and soft sliding constraints to combine data acquired from dynamic image sequence and a biomechanical model of the structure of interest. The biomechanical model plays a role of regulariza-tion to improve the robustness and the flexibility of the registration. We apply our method to a pre-operative 3D CT scan of a porcine liver that is registered to a sequence of 2D dynamic MRI slices during the respiratory motion. The finite element simulation provides a full 3D representation (including heterogeneities such as vessels, tumor,. . .) of the anatomical structure in real-time

    Statistical deformation reconstruction using multi-organ shape features for pancreatic cancer localization

    Get PDF
    Respiratory motion and the associated deformations of abdominal organs and tumors are essential information in clinical applications. However, inter- and intra-patient multi-organ deformations are complex and have not been statistically formulated, whereas single organ deformations have been widely studied. In this paper, we introduce a multi-organ deformation library and its application to deformation reconstruction based on the shape features of multiple abdominal organs. Statistical multi-organ motion/deformation models of the stomach, liver, left and right kidneys, and duodenum were generated by shape matching their region labels defined on four-dimensional computed tomography images. A total of 250 volumes were measured from 25 pancreatic cancer patients. This paper also proposes a per-region-based deformation learning using the non-linear kernel model to predict the displacement of pancreatic cancer for adaptive radiotherapy. The experimental results show that the proposed concept estimates deformations better than general per-patient-based learning models and achieves a clinically acceptable estimation error with a mean distance of 1.2 ± 0.7 mm and a Hausdorff distance of 4.2 ± 2.3 mm throughout the respiratory motion

    Deformation analysis of surface and bronchial structures in intraoperative pneumothorax using deformable mesh registration

    Get PDF
    The positions of nodules can change because of intraoperative lung deflation, and the modeling of pneumothorax-associated deformation remains a challenging issue for intraoperative tumor localization. In this study, we introduce spatial and geometric analysis methods for inflated/deflated lungs and discuss heterogeneity in pneumothorax-associated lung deformation. Contrast-enhanced CT images simulating intraoperative conditions were acquired from live Beagle dogs. The images contain the overall shape of the lungs, including all lobes and internal bronchial structures, and were analyzed to provide a statistical deformation model that could be used as prior knowledge to predict pneumothorax. To address the difficulties of mapping pneumothorax CT images with topological changes and CT intensity shifts, we designed deformable mesh registration techniques for mixed data structures including the lobe surfaces and the bronchial centerlines. Three global-to-local registration steps were performed under the constraint that the deformation was spatially continuous and smooth, while matching visible bronchial tree structures as much as possible. The developed framework achieved stable registration with a Hausdorff distance of less than 1 mm and a target registration error of less than 5 mm, and visualized deformation fields that demonstrate per-lobe contractions and rotations with high variability between subjects. The deformation analysis results show that the strain of lung parenchyma was 35% higher than that of bronchi, and that deformation in the deflated lung is heterogeneous

    Magnetic resonance elastography in nonlinear viscoelastic materials under load.

    Get PDF
    Characterisation of soft tissue mechanical properties is a topic of increasing interest in translational and clinical research. Magnetic resonance elastography (MRE) has been used in this context to assess the mechanical properties of tissues in vivo noninvasively. Typically, these analyses rely on linear viscoelastic wave equations to assess material properties from measured wave dynamics. However, deformations that occur in some tissues (e.g. liver during respiration, heart during the cardiac cycle, or external compression during a breast exam) can yield loading bias, complicating the interpretation of tissue stiffness from MRE measurements. In this paper, it is shown how combined knowledge of a material's rheology and loading state can be used to eliminate loading bias and enable interpretation of intrinsic (unloaded) stiffness properties. Equations are derived utilising perturbation theory and Cauchy's equations of motion to demonstrate the impact of loading state on periodic steady-state wave behaviour in nonlinear viscoelastic materials. These equations demonstrate how loading bias yields apparent material stiffening, softening and anisotropy. MRE sensitivity to deformation is demonstrated in an experimental phantom, showing a loading bias of up to twofold. From an unbiased stiffness of [Formula: see text] Pa in unloaded state, the biased stiffness increases to 9767.5 [Formula: see text]1949.9 Pa under a load of [Formula: see text] 34% uniaxial compression. Integrating knowledge of phantom loading and rheology into a novel MRE reconstruction, it is shown that it is possible to characterise intrinsic material characteristics, eliminating the loading bias from MRE data. The framework introduced and demonstrated in phantoms illustrates a pathway that can be translated and applied to MRE in complex deforming tissues. This would contribute to a better assessment of material properties in soft tissues employing elastography

    3D shape instantiation for intra-operative navigation from a single 2D projection

    Get PDF
    Unlike traditional open surgery where surgeons can see the operation area clearly, in robot-assisted Minimally Invasive Surgery (MIS), a surgeon’s view of the region of interest is usually limited. Currently, 2D images from fluoroscopy, Magnetic Resonance Imaging (MRI), endoscopy or ultrasound are used for intra-operative guidance as real-time 3D volumetric acquisition is not always possible due to the acquisition speed or exposure constraints. 3D reconstruction, however, is key to navigation in complex in vivo geometries and can help resolve this issue. Novel 3D shape instantiation schemes are developed in this thesis, which can reconstruct the high-resolution 3D shape of a target from limited 2D views, especially a single 2D projection or slice. To achieve a complete and automatic 3D shape instantiation pipeline, segmentation schemes based on deep learning are also investigated. These include normalization schemes for training U-Nets and network architecture design of Atrous Convolutional Neural Networks (ACNNs). For U-Net normalization, four popular normalization methods are reviewed, then Instance-Layer Normalization (ILN) is proposed. It uses a sigmoid function to linearly weight the feature map after instance normalization and layer normalization, and cascades group normalization after the weighted feature map. Detailed validation results potentially demonstrate the practical advantages of the proposed ILN for effective and robust segmentation of different anatomies. For network architecture design in training Deep Convolutional Neural Networks (DCNNs), the newly proposed ACNN is compared to traditional U-Net where max-pooling and deconvolutional layers are essential. Only convolutional layers are used in the proposed ACNN with different atrous rates and it has been shown that the method is able to provide a fully-covered receptive field with a minimum number of atrous convolutional layers. ACNN enhances the robustness and generalizability of the analysis scheme by cascading multiple atrous blocks. Validation results have shown the proposed method achieves comparable results to the U-Net in terms of medical image segmentation, whilst reducing the trainable parameters, thus improving the convergence and real-time instantiation speed. For 3D shape instantiation of soft and deforming organs during MIS, Sparse Principle Component Analysis (SPCA) has been used to analyse a 3D Statistical Shape Model (SSM) and to determine the most informative scan plane. Synchronized 2D images are then scanned at the most informative scan plane and are expressed in a 2D SSM. Kernel Partial Least Square Regression (KPLSR) has been applied to learn the relationship between the 2D and 3D SSM. It has been shown that the KPLSR-learned model developed in this thesis is able to predict the intra-operative 3D target shape from a single 2D projection or slice, thus permitting real-time 3D navigation. Validation results have shown the intrinsic accuracy achieved and the potential clinical value of the technique. The proposed 3D shape instantiation scheme is further applied to intra-operative stent graft deployment for the robot-assisted treatment of aortic aneurysms. Mathematical modelling is first used to simulate the stent graft characteristics. This is then followed by the Robust Perspective-n-Point (RPnP) method to instantiate the 3D pose of fiducial markers of the graft. Here, Equally-weighted Focal U-Net is proposed with a cross-entropy and an additional focal loss function. Detailed validation has been performed on patient-specific stent grafts with an accuracy between 1-3mm. Finally, the relative merits and potential pitfalls of all the methods developed in this thesis are discussed, followed by potential future research directions and additional challenges that need to be tackled.Open Acces

    Proceedings Virtual Imaging Trials in Medicine 2024

    Get PDF
    This submission comprises the proceedings of the 1st Virtual Imaging Trials in Medicine conference, organized by Duke University on April 22-24, 2024. The listed authors serve as the program directors for this conference. The VITM conference is a pioneering summit uniting experts from academia, industry and government in the fields of medical imaging and therapy to explore the transformative potential of in silico virtual trials and digital twins in revolutionizing healthcare. The proceedings are categorized by the respective days of the conference: Monday presentations, Tuesday presentations, Wednesday presentations, followed by the abstracts for the posters presented on Monday and Tuesday

    Real-time Biomechanical Modeling for Intraoperative Soft Tissue Registration

    Get PDF
    Computer assisted surgery systems intraoperatively support the surgeon by providing information on the location of hidden risk and target structures during surgery. However, soft tissue deformations make intraoperative registration (and thus intraoperative navigation) difficult. In this work, a novel, biomechanics based approach for real-time soft tissue registration from sparse intraoperative sensor data such as stereo endoscopic images is presented to overcome this problem

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics
    corecore