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Abstract

Unlike traditional open surgery where surgeons can see the operation area

clearly, in robot-assisted Minimally Invasive Surgery (MIS), a surgeon’s

view of the region of interest is usually limited. Currently, 2D images from

fluoroscopy, Magnetic Resonance Imaging (MRI), endoscopy or ultrasound

are used for intra-operative guidance as real-time 3D volumetric acquisition is

not always possible due to the acquisition speed or exposure constraints. 3D

reconstruction, however, is key to navigation in complex in vivo geometries

and can help resolve this issue. Novel 3D shape instantiation schemes are

developed in this thesis, which can reconstruct the high-resolution 3D shape

of a target from limited 2D views, especially a single 2D projection or

slice. To achieve a complete and automatic 3D shape instantiation pipeline,

segmentation schemes based on deep learning are also investigated. These

include normalization schemes for training U-Nets and network architecture

design of Atrous Convolutional Neural Networks (ACNNs).

For U-Net normalization, four popular normalization methods are reviewed,

then Instance-Layer Normalization (ILN) is proposed. It uses a sigmoid

function to linearly weight the feature map after instance normalization and

layer normalization, and cascades group normalization after the weighted

feature map. Detailed validation results potentially demonstrate the practical

advantages of the proposed ILN for effective and robust segmentation of

different anatomies.

For network architecture design in training Deep Convolutional Neural

Networks (DCNNs), the newly proposed ACNN is compared to traditional

U-Net where max-pooling and deconvolutional layers are essential. Only

convolutional layers are used in the proposed ACNN with different atrous

rates and it has been shown that the method is able to provide a fully-

covered receptive field with a minimum number of atrous convolutional layers.

ACNN enhances the robustness and generalizability of the analysis scheme by

cascading multiple atrous blocks. Validation results have shown the proposed

2



method achieves comparable results to the U-Net in terms of medical image

segmentation, whilst reducing the trainable parameters, thus improving the

convergence and real-time instantiation speed.

For 3D shape instantiation of soft and deforming organs during MIS,

Sparse Principle Component Analysis (SPCA) has been used to analyse a 3D

Statistical Shape Model (SSM) and to determine the most informative scan

plane. Synchronized 2D images are then scanned at the most informative scan

plane and are expressed in a 2D SSM. Kernel Partial Least Square Regression

(KPLSR) has been applied to learn the relationship between the 2D and 3D

SSM. It has been shown that the KPLSR-learned model developed in this

thesis is able to predict the intra-operative 3D target shape from a single

2D projection or slice, thus permitting real-time 3D navigation. Validation

results have shown the intrinsic accuracy achieved and the potential clinical

value of the technique.

The proposed 3D shape instantiation scheme is further applied to intra-

operative stent graft deployment for the robot-assisted treatment of aortic

aneurysms. Mathematical modelling is first used to simulate the stent graft

characteristics. This is then followed by the Robust Perspective-n-Point

(RPnP) method to instantiate the 3D pose of fiducial markers of the graft.

Here, Equally-weighted Focal U-Net is proposed with a cross-entropy and

an additional focal loss function. Detailed validation has been performed

on patient-specific stent grafts with an accuracy between 1− 3mm. Finally,

the relative merits and potential pitfalls of all the methods developed in

this thesis are discussed, followed by potential future research directions and

additional challenges that need to be tackled.
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1 Introduction

1.1 Motivation

With continuing technological advances, surgery is moving from traditional

open surgery to Minimally Invasive Surgery (MIS), and more recently to

robot-assisted MIS. In traditional open surgery, an operation is performed

through a large incision, usually around 10cm, causing large scars, long

recovery time and much pain [7]. In MIS, operation tools are inserted

through a much smaller incision, usually around 2cm, with smaller scars,

shorter recovery time and less pain [7]. In robot-assisted MIS, instruments are

enhanced by articulated wrists, vision is enhanced for bimanual operation,

and both pre-operative and intra-operative images can be combined for

effective surgical navigation. An illustration of a current robot-assisted MIS

system is shown in Fig. 1.1. Thanks to these developments, surgery is now

focused on the systematic level impact on patients, avoiding isolated surgical

treatment or anatomical alteration, with careful consideration of metabolic,

haemodynamic and neurohormonal consequences that can influence the

quality of life. These advances are underpinned by continuing technological

developments in diagnosis and imaging.

Unlike in traditional open surgery, where surgeons can see the operation

area with naked eyes, In MIS, due to the small incision, the operation area

is usually not visible. Common 3D imaging techniques including Computed

Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound are

not applicable for supplying 3D navigation as well due to the radiation, time

in-efficiency or low-resolution. For MIS that can be accessed by cameras or

catheters, 2D RGB images or 3D point clouds are usually used for navigation.

For example, for bronchoscopic biopsy, 2D RGB images are used to find the

catheter position in airways with the help of electra-magnetic tracking [8, 9].

For Radio-Frequency Cardiac Ablation (RFCA), catheters are inserted intra-

operatively first to collect a 3D point cloud and then the reconstructed mesh
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Figure 1.1: A brief illustration of robot-assisted MIS system, with robot,
manipulation clinician, navigation system, and patient.

based on the collected point cloud is used for navigation [10]. For surgeries

without the access of cameras or catheters, 2D views including projections

from fluoroscopy, 2D images from ultrasound and also 2D slices from CT

or MRI are used [6, 11–15]. This 2D navigation is not sufficient for MIS

which is a 3D task. Therefore, there is a pressing need of developing 3D

shape reconstruction techniques directly from 2D views. In this thesis, I

am working on 3D shape instantiation which instantiates the 3D shape of a

target from limited 2D views, especially a single 2D projection or slice. With

limiting the required input to be a single 2D view, real-time 3D navigation

could potentially possible. Fig. 1.2 illustrates the 3D shape instantiation

concept developed in this thesis, where the 3D shape of metastatic liver is

reconstructed from their corresponding single 2D MRI slice.

During MIS, the deformation of soft tissue is complex. Complex surgical

navigation and planning are made possible through the use of both pre- and

intra-operative imaging techniques such as ultrasound, CT, and MRI [16]. In

this thesis, a learning-based general shape instantiation framework is proposed

to reconstruct the 3D shape of a soft organ from its a single 2D view. The

method learns the target deformation from pre-operatively collected training
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Figure 1.2: An illustration of the concept of 3D shape instantiation, where
the 3D shapes of eight metastatic livers are reconstructed from
their a single 2D MRI slice respectively. These liver shapes look
different from normal ones, as these patients experienced the liver
resection operation before.

data, including 2D projections or slices and the corresponding 3D shapes

at different time positions. The learned model is then used to reconstruct

intra-operatively in real-time the target 3D shape from a single new 2D

projection or slice.

The method is also generalized to stent graft deployment during endovascu-

lar intervention of aortic aneurysms. During such procedures, a stent graft is

compressed into a delivery device, advanced to the target aneurysm and then

deployed. In this thesis, an effective 3D instantiation scheme is proposed for

the interactive placement of stent graft with the alignment of fenestrations to

side branch blood vessels and scallops to anchoring sites. With this method,

the deformation of a stent graft is decomposed into multiple rigid deforma-

tion components. Each rigid deformation component is reconstructed by the

Robust Perspective-n-Point (RPnP) method [17] and these rigid deformation

components are then combined to reconstruct the 3D shape of the entire

stent graft.

For achieving a complete and automatic 3D shape instantiation pipeline,

image segmentation based on Deep Convolutional Neural Network (DCNN)

is also explored, including the normalization methods in training DCNN and

neural architecture design of Atrous Convolutional Neural Network (ACNN)
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for medical image segmentation.

1.2 Thesis Outline

The outline of this thesis is as follows:

In Chapter 1, the background and basic concept of 3D shape instantiation

are introduced.

In Chapter 2, recent techniques of machine learning in surgery are reviewed,

particularly for those methods related to surgical planning and medical image

analysis. The emerging trends and major challenges are also highlighted.

In Chapter 3, Batch Normalization (BN), Instance Normalization (IN),

Layer Normalization (LN) and Group Normalization (GN) are reviewed in

terms of relative merits and potential problems when used for medical image

segmentation. Three datasets covering the Right Ventricle (RV), aorta, and

Left Ventricle (LV) are used for the validation. Although most DCNNs adopt

BN as the normalization method by default without a careful consideration

of its performance, the results show that a detailed subdivision of the feature

map, i.e., GN with a large group number or IN, achieves a higher accuracy.

Considering the fact that in most of existing methods, normalization for

each layer is fixed. Batch-Instance Normalization (BIN) is one of the first

proposed methods that combines two different normalization methods to

achieve diverse normalization for different layers. However, two potential

issues exist in BIN, first, the clip function is not differentiable everywhere.

Second, the combined feature map does not follow a normalized distribution,

which may be detrimental for signal propagation in DCNN. Hence, Instance-

Layer Normalization (ILN) is proposed by using the sigmoid function for

combining feature maps and cascading group normalization afterwards. The

performance of ILN is validated on the RV and LV segmentation, and the

results show that the proposed ILN outperforms existing normalization

methods with accuracy improvements.

In Chapter 4, the issue of down-sampling DCNN is investigated. The

current DCNNs usually use down-sampling layers for increasing the receptive

field and gaining abstract semantic information. These down-sampling layers

decrease the spatial dimension of feature maps, which can be detrimental

to medical image segmentation. Atrous convolution is an alternative to the

down-sampling layer. It increases the receptive field whilst maintaining the
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spatial dimension of feature maps. In this chapter, a method for effective

atrous rate setting is proposed to achieve fully-covered receptive field with

a minimum number of atrous convolutional layers. Furthermore, different

atrous blocks, shortcut connections and normalization methods are explored

to select the optimal network architecture settings. These lead to a new and

full-scale DCNN - Atrous Convolutional Neural Network (ACNN), which

incorporates cascaded atrous II-blocks, residual learning and Fine Group

Normalization (FGN). Application results of the proposed ACNN demon-

strate that the proposed ACNN can achieve comparable segmentation Dice

Similarity Coefficients (DSCs) to that of the U-Net, optimized U-Net with

IN and hybrid networks, but with significantly reduced trainable parameters

and therefore is computationally efficient for both training and inference.

In Chapter 5, a real-time and registration-free framework for dynamic 3D

shape instantiation is proposed. With this method, an approximate optimal

scan plane is first determined by analysing the pre-operative 3D Statistical

Shape Model (SSM) of the anatomy with Sparse Principal Component

Analysis (SPCA) and considering practical constraints. Kernel Partial Least

Square Regression (KPLSR) is then used to learn the relationship between

the pre-operative 3D SSM and a synchronized 2D SSM constructed from 2D

projections or slices obtained at the approximate optimal scan plane. Finally,

the derived relationship is applied to a new intra-operative 2D projection or

slice obtained at the same scan plane to predict the high-resolution 3D shape

intra-operatively. A major feature of the proposed framework is that no

extra registration between the pre-operative 3D SSM and the synchronized

2D SSM is required. Detailed validation is performed and the results (mean

accuracy of 2.19mm on patients with a real-time computation speed of

1ms) demonstrate its potential for clinical use for real-time, high-resolution,

dynamic 3D intervention and guidance.

In Chapter 6, a real-time framework is proposed to reconstruct the 3D shape

of a fenestrated stent graft utilising only a single low-dose 2D fluoroscopic

projection. First, markers are placed on the fenestrated stent graft. Second,

the 3D pose of each stent segment is reconstructed by the RPnP method.

Third, the 3D shape of whole stent graft is reconstructed via graft gap

interpolation. In addition, Equally Weighted Focal U-Net is proposed to

segment the fluoroscopic projections of customized markers into multiple

classes and to determine the centres of markers. The proposed Equally
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Weighted Focal U-Net utilises U-Net as the network architecture, equally

weighted loss function for initial marker segmentation, and then equally

weighted focal loss function for improving the initial marker segmentation.

The method is validated on patient-specific datasets, achieving an average

distance error of 1− 3mm.

Finally, Chapter 7 summarises the technical achievements, relative merits

and potential pitfalls of the methods proposed in this thesis, as well as

potential future research directions.
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2 Machine Learning in Medical

Imaging

1

Machine learning is a useful tool in medical imaging. Before detailing

the technical approaches developed during this PhD, the applications of

machine learning, especially deep learning, in medical classification, detection,

segmentation, registration and shape instantiation are briefly discussed.

These application domains cover both pre-operative diagnosis and intra-

operative navigation.

2.1 Introduction

The use of machine learning for medicine can be dated back to the early years

of developing the MYCIN system [24]. Machine learning is able to "see"

patterns from data, extract meaningful features and combine features for

computer-aided diagnosis and decision support system. It is now increasingly

used for risk stratification [25], genomics [26], imaging and diagnosis [27, 28],

precision medicine [6], and drug discovery [29]. The introduction of machine

learning in surgery is more recent and it has a strong root in imaging and

navigation, with early techniques focused on feature detection and computer

assisted intervention.

Traditional supervised learning methods include Support Vector Machine

(SVM) [30], decision tree [31] and naive Bayes [32] while traditional unsuper-

vised learning methods include K-means [33], Gaussian mixture model [34]

and Markov random fields [35]. With recent successes of AlexNet [36], deep

learning methods, especially Deep Convolutional Neural Network (DCNN)

where multiple convolutional layers are cascaded, have enabled automatically

1Part of the content in this chapter are based on [Xiao-Yun Zhou, Yao Guo, Mali Shen,
Guang-Zhong Yang. "Artificial Intelligence in Surgery" Frontier of Medicine, accepted.]
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learned data-driven descriptors, rather than ad hoc hand-crafted features,

to be used for image understanding with improved robustness and gener-

alizability. VGGNet extended the AlexNet with deeper layers and smaller

convolutional kernels [37] while ResNet extended the VGGNet to be much

deeper with using residual learning [38]. Faster Regional Convolutional

Neural Network (R-CNN) extended the application of deep learning from

image classification to object detection [39], where the bounding boxes of

objects were also regressed. Fully Convolutional Network (FCN) extended the

application of deep learning from object detection to image segmentation [40].

After that, machine learning especially deep learning has been widely applied

in medical image analysis including classification, detection, segmentation,

registration and shape instantiation. Common network architectures used in

medical imaging are summarized in Fig. 2.1.

2.2 Applications of Machine Learning in Medical

Imaging

2.2.1 Classification

Classification outputs the diagnostic value of the input which is a single

or a set of medical images or volumes of organs or lesions. In addition to

traditional machine learning and image analysis techniques, deep learning

based methods for pre-operative planning are on the rise in the research

community [41]. For the latter, the network architecture for classification is

composed of convolutional layers for extracting information from the input

images or volumes and fully connected layers for regressing the diagnostic

value.

For example, a classification pipeline with a Convolutional Neural Network

(CNN) architecture of Google’s Inception, with Inception and ResNet algo-

rithm and with different training strategies has been proposed to classify the

lung, bladder and breast cancer types [42]. Chilamkurthy et al. demonstrate

that deep learning can recognize intracranial haemorrhage, calvarial fracture,

midline shift and mass effect through testing a set of deep learning algorithms

on head Computed Tomography (CT) scans [27]. The mortality, renal fail-

ure and post-operative bleeding in patients after cardiosurgical care can be

predicted by Recurrent Neural Network (RNN) in real time with improved
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Figure 2.1: Node graphs of 1D representations of architectures commonly
used in medical imaging. (a) Auto-encoder, (b) restricted Boltz-
mann machine, (c) recurrent neural network, (d) convolutional
neural network, (e) multi-stream convolutional neural network,
(f) U-net (with a single downsampling stage). "Reprinted from
Publication A survey on deep learning in medical image analysis,
42, Litjens, Geert and Kooi, Thijs and Bejnordi, Babak Ehte-
shami and Setio, Arnaud Arindra Adiyoso and Ciompi, Francesco
and Ghafoorian, Mohsen and Van Der Laak, Jeroen Awm and
Van Ginneken, Bram and Sánchez, Clara I, 2.2. Neural networks,
Pages 63, Copyright (2019), with permission from Elsevier."
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accuracy compared to standard-of-care clinical tools [25]. ResNet-50 and

Darknet-19 have been used to classify benign or malignant lesions in ultra-

sound images, showing similar sensitivity and improved specificity [43]. These

studies show promising human-level accuracy with good reproducibility, but

explainability of these approaches remains a potential hurdle for regulatory

considerations.

2.2.2 Detection

Detection provides the spatial localization of regions of interest, often in

the form of bounding boxes or landmarks, additionally to image- or region-

level classification. Similarly, deep learning based approaches have shown

promising results. Compared to traditional algorithms which are task-specific

due to hand-crafted feature extractors, DCNNs for detection usually consist of

convolutional layers for feature extraction and regression layers for regressing

the bounding box properties.

For detecting prostate cancer from 4D Positron-Emission Tomography

(PET) images, a deeply stacked convolutional autoencoder was trained to

extract the statistical and kinetic biological features [44]. For pulmonary

nodule detection, 3D Group Convolutional Neural Networks (G-CNNs) were

proposed with good accuracy, sensitivity and convergence speed [45]. CNNs

were frequently used in orthopaedics for cartilage lesion detection [46]. For

breast lesion detection, Deep Reinforcement Learning (DRL) based on an

extension of the deep Q-network was used to learn a search policy from

dynamic contrast-enhanced Magnetic Resonance Imaging (MRI) [47]. To

detect acute intracranial haemorrhage from CT scans and to improve network

interpretability, Lee et al. [48] used an attention map and an iterative process

to mimic the workflow of radiologists.

2.2.3 Segmentation

Segmentation can be treated as a pixel- or voxel-level image classification

problem. Early works on deep learning for segmentation often adopted

a sliding window based system. Specifically, each image or volume was

divided into small windows, CNNs were trained to predict the target label

at the central location of the window. Image- or voxel-wise segmentation

can be achieved by running the CNN classifier over densely sampled image
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windows. One of the well-known networks that falls into this category is

Deepmedic, which had shown good performances for multi-modal brain

tumour segmentation from MRI [49]. However, the sliding window based

system is inefficient as the network activations of overlapping regions were

computed repeatedly. More recently, it was replaced by FCNs [40]. The key

idea was to replace the fully connected layers in a classification network with

convolutional layers and up-sampling layers, which significantly improved

the segmentation efficiency. For medical image segmentation, U-Net [3] [50],

or more generally, encoder-decoder network is a representative FCN that has

shown promising performances. The encoder has multiple convolutional and

down-sampling layers that extract image features at different scales. The

decoder has convolutional and up-sampling layers that recover the spatial

resolution of feature maps and finally achieves pixel- or voxel-wise dense

segmentation. A review of different normalization methods in training U-Net

for medical image segmentation could be found in [4] and Instance-Layer

Normalization (ILN) was proposed for training U-Net for medical image

segmentation in [22].

For navigating the endoscopic pancreatic and biliary procedures, Gibson

et al. [51] used dilated convolutions and fused image features at multiple

scales for segmenting abdominal organs from CT scans. For interactive

segmentation of placenta and fetal brains from MRI, FCN and user defined

bounding boxes and scribbles were combined, where the last few layers of FCN

were fine-tuned based on the user input [52]. For aortic MRI, Bai et al. [53]

combined FCN with RNN to incorporate spatial and temporal information.

The segmentation and localization of surgical instrument landmarks were

modelled as heatmap regression and FCN was used to track the instruments

in near real-time [54]. For the segmentation and labelling of vertebrae from

CT and MRI, Lessmann et al. proposed an iterative instance segmentation

approach with FCN, where the network concurrently performed vertebra

segmentation, regressed the anatomical landmark and predicted the vertebrae

visibility [55]. For pulmonary nodule segmentation, Feng et al. addressed

the issue of requiring accurate manual annotations when training FCNs by

learning discriminative regions from weakly-labelled lung CT with a candidate

screening method [56].
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2.2.4 Registration

Registration is the spatial alignment between two medical images, volumes or

modalities, which is particularly important for both pre- and intra-operative

planning. Traditional algorithms usually iteratively calculate a parametric

transformation, i.e., elastic, fluid or B-spline model to minimize a given metric,

i.e., mean square error, normalized cross correlation, or mutual information,

between the two medical images, volumes or modalities. Recently, deep

regression models have been used to replace the traditional time consuming

and optimization based registration algorithm.

Example deep learning based approaches include VoxelMorph based on

CNN structures for maximizing the standard image matching objective

functions by leveraging auxiliary segmentation to map an input image pair to

a deformation field [57]. An end-to-end deep learning framework was proposed

with three stages: affine transform prediction, momentum calculation and non-

parametric refinement to combine affine registration and vector momentum-

parameterized stationary velocity field for 3D medical image registration [58].

Pulmonary CT images were registered by training a 3D CNN with synthetic

random transformation [59]. A weakly supervised framework was proposed

for multi-modal image registration, with training on images with higher-level

correspondence, i.e., anatomical labels, rather than voxel-level transformation

for predicting the displacement field [60]. Markov decision process with

each agent trained with dilated FCN was applied to align a 3D volume to

2D X-ray images [61]. Brain Image Registration Network (BIRNet) was

proposed to predict deformation from image appearance for image registration,

with training an FCN with both the ground truth and image dissimilarity

measures, where the FCN was improved with hierarchical loss, gap filling and

multi-source strategies [62]. A Deep Learning Image Registration (DLIR)

framework was proposed to train CNN on image similarity between fixed

and moving image pairs, hence affine and deformable image registration can

be achieved in an unsupervised manner [63]. RegNet had been proposed by

considering multi-scale contexts and was trained on artificially generated

Displacement Vector Field (DVF) to achieve a non-rigid registration [64]. 3D

image registration can also be formulated as a strategy learning process with

3D raw image as the input, the next optimal action, i.e., up and down, as

the output, CNN as the agent [65].
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2.2.5 3D Shape Instantiation

For intra-operative 3D reconstruction, 3D volumes can be scanned with MRI,

CT or ultrasound. In practice, this process (3D/4D) can be time-consuming

or with a low resolution and is not applicable for intra-operative navigation.

Real-time 3D shape instantiation which reconstructs the intra-operative 3D

shape from a single or limited 2D images is an emerging area of research in

intra-operative guidance.

For example, a 3D prostate shape was reconstructed from multiple non-

parallel 2D ultrasound images with a radial basis function [66]. The 3D

shape of Abdominal Aortic Aneurysm (AAA) was reconstructed from two 2D

fluoroscopic images [67]. The 3D shapes of fully-compressed, fully-deployed

and also partially-deployed stent grafts were reconstructed from a single

projection of 2D fluoroscopy with mathematical modelling, combined with

the Robust Perspective-n-Point (RPnP) method [17], graft gap interpolation

and Graph Convolutional Network (GCN) [6,11,68]. Furthermore, Equally

Weighted Focal U-Net [6] was proposed to automatically segment the makers

on stent grafts to improve the efficiency of the intra-operative stent graft

shape instantiation framework [21]. Moreover, the 3D AAA skeleton was

reconstructed from a single projection of 2D fluoroscopy with skeleton de-

formation and graph matching [69]. The 3D liver shape was reconstructed

from a single 2D projection or slice with Principal Component Analysis

(PCA), Statistical Shape Model (SSM) and Partial Least Squares Regression

(PLSR) [70]. This work was further generalized to a registration-free shape

instantiation framework for any dynamic organ with sparse PCA, SSM and

kernel PLSR [19]. Recently, an advanced deep and one-stage learning strategy

that estimates 3D point cloud from a single 2D projection was proposed for

3D shape instantiation [23].

2.3 Conclusion and Future Outlook

Machine learning has been widely adopted in medical imaging for tasks

ranging from anatomical classification, detection, segmentation, registration

to instantiation. The results seem to suggest that the deep learning based

methods can outperform those rely on conventional approaches. However,

data-driven approaches often suffer from inherited limitations, making the
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deep learning based approaches less generalizable for a different test data,

less explainable in terms of the results and more data-demanding.

To overcome these issues, close collaborations between multidisciplinary

teams, particularly the surgeons and machine learning researchers should

be encouraged to generate large scale annotated data, providing more train-

ing data for machine learning algorithms. An alternative solution is to

develop machine learning techniques such as meta-learning [71], or learning

to learn [72], that enable generalizable systems to perform diagnosis with

limited dataset yet improved explainability.

Although many state-of-the-art machine learning and deep learning al-

gorithms have made breakthroughs in the field of general computer vision,

the differences between medical and natural images may impede their direct

clinical applicability. In addition, the underlying models and the derived

results may not be easily interpretable by humans, therefore it raises issues

such as potential risks and uncertainty in surgery. Potential solutions to

these problems would be to explore different transfer learning techniques

to mitigate the differences between natural and medical image modalities

and to develop more explainable machine learning algorithms to enhance

its decision-making performance. Furthermore, utilizing personalized multi-

modal patient information, including omics-data and life style information,

in the development of machine learning can be useful in early detection

and diagnosis, leading to personalized treatment. These also allow early

treatment options featured with minimal trauma, smaller surgical risks and

shorter recovery time.

In addition to these common challenges in applying machine learning

in medicine, another two key and specific challenges for intra-operative

navigation are: 1) the deformation of organs/tissues forcing the pre-operative

planning to work with a dynamic and uncertain environment during surgery;

2) during a surgery, one important requirement is to assist surgeons in real-

time. In this thesis, I am working on these two challenges and proposing 3D

shape instantiation which is a real-time and instantaneous high-resolution 3D

reconstruction technique based on an input of a single or limited 2D views.

Specifically, in my work, the only input is usually a single 2D projection or

slice and the algorithm running time is faster than the image update time,

hence real-time 3D reconstruction could be achieved and updated along the

dynamic environment.
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3 Normalization in Training U-Net

for Medical Image Segmentation

1]

Medical image segmentation, which labels the class, anatomy, or medical

device of each pixel in an image, is important and fundamental for many

medical tasks. In my PhD work, segmenting the Right Ventricle (RV) from

2D Magnetic Resonance Imaging (MRI) images is essential to reconstruct 3D

RV shapes for intra-operative navigation in robotic cardiac interventions [6].

In 3D robotic path planning for Fenestrated Endovascular Aortic Repair

(FEVAR), segmenting markers on fenestrated stent grafts is useful for recon-

structing 3D stent graft shapes [73] and segmenting the aorta is useful for

reconstructing the intra-operative 3D Abdominal Aortic Aneurysm (AAA)

skeleton [14,74]. For a complete 3D shape instantiation pipeline, during my

PhD, I worked on proposing new and general segmentation methods. To

connect with my 3D shape instantiation work in chapter 5 and 6, the RV,

Left Ventricle (LV) and aortic segmentation are used as the main validation.

In this chapter, I will introduce my work on the normalization in training

U-Net for medical image segmentation.

3.1 Introduction

Conventional segmentation methods for both natural and medical problems

are usually based on features (edge, region, angle, etc.) which need an expert-

designed feature extractor and trained classifier, while recent segmentation

methods based on Deep Convolutional Neural Network (DCNN) extract and

1The content of this chapter is based on [Xiao-Yun Zhou, and Guang-Zhong Yang.
"Normalization in training U-Net for 2D biomedical semantic segmentation." IEEE
Robotics and Automation Letters 4.2 (2019): 1792-1799.] and [Xiao-Yun Zhou, Peichao
Li, Zhao-Yang Wang, Guang-Zhong Yang. "U-Net Training with Instance-Layer
Normalization." MICCAI-MMMI workshop, 2019: 101-108.
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classify the features automatically with multiple non-linear modules [75].

Fully Convolutional Network (FCN) is the first proposed DCNN which re-

alized pixel-level classification and hence semantic segmentation by using

convolutional and deconvolutional layers, as well as skip architectures [40].

Ronneberger et al. introduced FCN into 2D biomedical semantic segmenta-

tion, proposed U-Net with dense skip architectures, and achieved reasonable

results on neuronal structure and cell segmentation [3]. A systematical review

has been carried out by Litgens et al. on the application of DCNN in medical

image analysis including segmentation, classification, detection, registration

and other tasks [41]. DCNNs for medical semantic segmentation could be

divided into 3D [76] and 2D [77] based on the dimension of convolution. As

the main purpose of the work in this chapter is to increase the automation of

3D shape instantiation in chapter 5 and 6, where the input image is usually

2D, hence this chapter mainly focuses on 2D DCNN.

Most of previous research on DCNNs for medical image segmentation

focused on architecture design, loss function, and network cascade for specific

tasks. For example, atriaNet composed of multi-scaled and dual-pathed

convolutional architectures was proposed for left atrial segmentation from

late gadolinium enhanced MRI [78]. A hierarchical DCNN was designed with

a two-stage FCN and dice-sensitivity-like loss function to segment breast

tumours from dynamic contrast-enhanced MRI [79]. The thrombus was

segmented from CT images with detectnet, FCN and holistically-nested edge

detection [80]. Equally-weighted Focal U-Net combined with focal loss and

U-Net was proposed to segment the small metal markers from fluoroscopic

images of fenestrated stent grafts [21].

One fundamental component in DCNN is the normalization layer. Initially,

one of the main motivations for normalization was to alleviate the internal

covariate shift where layers’ input distribution changes [81]. The main step

in DCNN is to apply convolutional kernels with trainable parameters on

feature maps to extract new features iteratively. During the training of

a DCNN, the input of a layer depends on all the parameters/values in

its previous layers/feature maps. Small changes in shallow input feature

maps or image batches accumulate and amplify along the depth of network,

causing deep layers to be trained to fit these distribution changes rather than

the real and useful content. This phenomenon is called internal covariate

shift [81]. However, recent work considers the use of normalization layer is
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also beneficial, because it increases the robustness of networks to fluctuation

associated with random weight initialization [82], or it achieves smoother

optimization landscape [83]. In this chapter, we keep this motivation question

open and focus on identifying efficient normalization strategies.

For a feature map with dimension of (N,H,W,C), where N is the batch

size, H is the feature height, W is the feature width, C is the feature channel,

Batch Normalization (BN) [81] [84] was the first proposed normalization

method which calculated the mean and variance of a feature map along

the (N,H,W) dimension, then re-scaled and re-translated the normalized

feature map with additional trainable parameters to preserve the DCNN

representation ability. Instance Normalization (IN) [85] which calculated

the mean and variance along the (H,W) dimension was proposed for fast

stylization. Layer Normalization (LN) [86] which calculated the mean and

variance along the (H,W,C) dimension was proposed for recurrent networks.

Group Normalization (GN) [87] calculated the mean and variance along the

(H,W) and multiple-channels dimension (C) and was evaluated on image

classification and instance segmentation. Weight normalization [88] [89]

based on re-parameterization on weights was used in recurrent models and

reinforcement learning. Batch Kalman normalization estimated the mean

and variance considering all preceding layers [90]. There are also researches

proceeding to other aspects. L1 and L∞ BN [91] was proposed for half-

precision (16bit) implementation. Normalization propagation [92] estimated

the mean and standard deviation data-independently. Spectral normaliza-

tion [93] and virtual batch normalization [94] were proposed specifically for

training generative adversarial networks. Cosine normalization [95] applied

cosine similarity instead of dot multiplication in DCNN.

These normalization methods are proposed for different tasks and there

are thus far no specific review comparisons regarding their performance in

medical image segmentation. The comparisons in [87] between BN, IN, LN

and GN/BN and GN are for image classification/instance segmentation.

In natural semantic segmentation (3.1a), parameters are usually sharable

between tasks and fine-tuning or extracting features from pre-trained feature

maps are popular. A BN is often used by default without comparing its

performance with other normalization methods. In medical semantic seg-

mentation (3.1b), the target is a specific anatomy, medical device, tumor or

functional region etc. A network trained from scratch is common, allowing
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a b

Figure 3.1: (a) semantic segmentation of cars, people, trees, etc. from a
natural image [2], (b) semantic segmentation of RV from a MRI
image.

exploring different normalization methods.

In this chapter, first, the most widely applied four normalization methods

- BN, IN, LN, and GN are reviewed and compared specifically for medical

image segmentation. U-Net is selected as the network architecture due

to its wide application. Second, a new normalization method is proposed.

Recently, Nam et al. proposed Batch-Instance Normalization (BIN) [96],

which combined BN and IN with a trainable parameter. However, two risks

potentially exist: 1) the trainable parameter was restricted in the range of [0,

1] with clip function which is not differentiable at input values of 0 and 1; 2)

the combined feature map was no longer with a normal distribution, which

is harmful for signal propagation in DCNN. In this chapter, Instance-Layer

Normalization (ILN) is proposed to combine IN and LN: 1) sigmoid is used to

solve the non-differentiable characteristic of clip function at input values of 0

and 1; 2) an additional GN16 - GN with a group number of 16 is added after

the combined feature map to ensure a normal distribution of the combined

feature map. A widely-applied and popular network architecture - U-Net

[3] is used as the network to validate the proposed ILN on the RV and

LV image segmentation. The U-Net details, four traditional normalization

methods, the proposed ILN, data collection for the RV, aorta and LV, and the

implementation details are introduced in Sec. 3.2. Detailed experiments and

comparisons are provided in Sec. 3.3. It is shown that detailed subdivision

of the feature map, i.e. GN with a large group number or IN, out-performed

other normalization methods in terms of accuracy, despite the fact that BN is
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currently widely used. No obvious improvements regarding the convergence

speed and lowest converged loss are observed. The proposed ILN outperforms

existing normalization methods with noticeable accuracy improvements in

most validations in terms of the Dice Similarity Coefficient (DSC). Discussion

and conclusion are in Sec. 3.4.

3.2 Methodology

Systematic details about DCNN can be found in [97], while this chapter only

focuses on explaining the concepts of data propagation, network architecture

and loss function in Sec. 3.2.1. The algorithms of BN, IN, LN and GN are

explained in Sec. 3.2.2, 3.2.3, 3.2.4 and 3.2.5 respectively. The proposed ILN

is stated in Sec. 3.2.6. The data collection and implementation details are

given in Sec. 3.2.7.

3.2.1 Network Details

With an input feature map FN×H×W×C (the first feature map is the image

batch input), N is the batch size, H the height, W the width, C the channel,

a trainable convolutional kernel TC×K×K moves along the height and width

of FN×H×W×C, indicating an output feature map:

F̂N×H′×W′×1 = FN×H×W×C · TC×K×K (3.1)

where K is the convolutional kernel size, H′ = H//S, W′ = W//S, where //

is floor division and S is the convolutional stride. When S > 1, the feature

spatial dimension decreases after the convolution. When 0 < S < 1, the

feature spatial dimension increases after the convolution. For extracting

richer features, multiple TC×K×K are trained, resulting in F̂N×H′×W′×C′ .

U-Net, which is a widely applied DCNN structure for medical semantic

segmentation is used as the network architecture in this chapter, its ar-

chitecture is shown in Fig. 3.2. It gradually increases the receptive field

(the pixels it sees) with max-pooling layers, resulting in decreased spatial

dimensions. Then U-Net recovers and increases the spatial dimension with

deconvolutional layers.

An increased receptive field is useful for extracting the semantic information.

However, the consequent decreased spatial dimension is disadvantageous for
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Figure 3.2: The structure of U-Net used in this chapter, Conv - convolution,
Deconv - deconvolution.

spatial information. Skip connections are used to concatenate the feature

maps from shallow layers and deep layers to combine the semantic and spatial

information.

All the convolutional and deconvolutional layers are followed with a ReLU

activation, except the 1× 1 convolutional layer at the last which predicts the

class probability. Softmax is used to transform the final feature map into

probabilities and cross-entropy is used as the loss function:

loss(p, y) =







−log(p) if y = 1.0

−log(1.0− p) if y = 0.0
(3.2)

where y is the ground truth, p is the prediction probability. Stochastic

Gradient Descent (SGD) is adopted to train the TC×K×K×C′ to obtain a

minimum loss. When the distribution of FN×H×W×C changes, TC×K×K×C′ is

influenced and trained to fit this distribution change, resulting in interval

covariate shift which decreases both the training speed and accuracy.

3.2.2 Batch Normalization (BN)

BN is the first proposed algorithm for solving the interval covariate shift. It

normalizes FN×H×W×C to achieve a mean of 0.0 and a variance of 1.0 while

maintains the representation capability of a DCNN with two more trainable

parameters - γ, β.

45



In BN [81], the mean and variance are calculated along each channel:

µc =
1

N × H × W

N
∑

n=1

H
∑

h=1

W
∑

w=1

fn,h,w (3.3)

δ2c =
1

N × H × W

N
∑

n=1

H
∑

h=1

W
∑

w=1

(fn,h,w − µc)
2 (3.4)

The feature map is normalized by:

f̂n,h,w =
fn,h,w − µc
√

δ2c + ǫ
(3.5)

where ǫ is a small value used to increase the division stability. After this

normalization, f̂n,h,w is always with the mean of 0.0 and the variance of 1.0,

which limits the DCNN representation capacity [81]. Additional trainable

parameters γc and βc are added to each channel to recover the representation

power:

f ′
n,h,w = γcf̂n,h,w + βc (3.6)

BN is applied after the convolution and before the activation. There are

two ways of applying BN during the inference: 1) use the moving average

mean and variance in the training stage to normalize the test feature map,

as recommended in [81]; 2) use the mean and variance in the test stage to

normalize the test feature map, as recommended in [98]. In this chapter,

both ways are explored and the optimal one is used for the comparison with

other normalization methods.

3.2.3 Instance Normalization (IN)

In IN [98], the mean and variance are calculated for each channel and each

instance of the batch:

µn,c =
1

H × W

H
∑

h=1

W
∑

w=1

fh,w (3.7)

δ2n,c =
1

H × W

H
∑

h=1

W
∑

w=1

(fh,w − µn,c)
2 (3.8)

46



The feature map is normalized by:

f̂h,w =
fh,w − µn,c
√

δ2n,c + ǫ
(3.9)

3.2.4 Layer Normalization (LN)

In LN [86], the mean and variance are calculated along each instance of the

batch:

µn =
1

H × W × C

H
∑

h=1

W
∑

w=1

C
∑

c=1

fh,w,c (3.10)

δ2n =
1

H × W × C

H
∑

h=1

W
∑

w=1

C
∑

c=1

(fh,w,c − µn)
2 (3.11)

The feature map is normalized by:

f̂h,w,c =
fh,w,c − µn
√

δ2n + ǫ
(3.12)

3.2.5 Group Normalization (GN)

In GN [87], the mean and variance are calculated along each instance of the

batch and multiple instances of the channel. The difference between GN and

IN/LN is that a group of channels M = C//G are grouped together for the

normalization, G is the number of group, M is the number of channel per

group:

µn,g =
1

H × W × M

H
∑

h=1

W
∑

w=1

g·M
∑

m=(g−1)·M+1

fh,w,m (3.13)

δ2n,g =
1

H × W × M

H
∑

h=1

W
∑

w=1

g·M
∑

m=(g−1)·M+1

(fh,w,m − µn,g)
2 (3.14)

The feature map is normalized by:

f̂h,w,m =
fh,w,m − µn,g
√

δ2n,g + ǫ
(3.15)

In this chapter, GN with different numbers of group is seen as different

normalization methods and are compared.
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Figure 3.3: The curves of clip and sigmoid function.

In IN, LN, and GN, additional parameters are also used for recovering the

DCNN representation ability. Multiple ways of adding γ and β may exist.

In this chapter, we follow [87] and add parameters for each feature channel,

which results in 2C parameters for each feature map.

3.2.6 Instance-Layer Normalization

A trainable parameter ρ is added to linearly weight the normalized feature

map of IN F̂
I

and the normalized feature map of LN F̂
L
. In the original

BIN [96], ρ was clipped to be in the range of [0, 1] with a clip function, as

shown in Fig. 3.3.

However, clip function is not differentiable at input values of 0 and 1. In this

chapter, sigmoid function Sigmoid(x) = 1/(e−x + 1) which is differentiable

everywhere is applied to solve this potential issue:

F̂
IL

= Sigmoid(ρ) · F̂I
+ (1− Sigmoid(ρ)) · F̂L

(3.16)

An additional potential issue in the original BIN is that the combined

F̂
IL

is no longer with a mean of 0.0 and a variance of 1.0, this non-normal

distribution may be harmful for signal propagation in DCNN. In this chapter,

we solve this issue with applying an additional GN16 on the weighted F̂
IL

:

µn,g =
1

H × W × M

H
∑

h=1

W
∑

w=1

g·M
∑

m=(g−1)·M+1

f̂ IL
n,h,w,m,M = C//16 (3.17)
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δ2n,g =
1

H × W × M

H
∑

h=1

W
∑

w=1

g·M
∑

m=(g−1)·M+1

(f̂ IL
n,h,w,m − µn,g)

2,M = C//16

(3.18)

where M is the number of channel in each feature group, // is floor division,

g ∈ [1, 16]. Following BN [81], additional parameters γ and β are added to

preserve the DCNN representation ability f ′ILN
n,h,w,c = γcf̂

ILN
n,h,w,c + βc.

3.2.7 Data Collection and Implementation Details

Three datasets: RV scanned with MRI, with 256 × 256 image size, aorta

scanned with CT, with 512 × 512 image size, and LV scanned with MRI,

with 256× 256 image size are used for the validation. As the main purpose

of this chapter is to improve the automation of 3D shape instantiation,

where the input image is usually 2D, we mainly focus on 2D medical image

segmentation. The 3D CT image is sliced into multiple 2D images for the

validation.

37 RV scans [99] were acquired from a 1.5T MRI scanner (Sonata, Siemens,

Erlangen, Germany), from both the asymptomatic and Hypertrophic Car-

diomyopathy (HCM) subjects, from the atrioventricular ring to the apex,

with a 10mm slice gap, a 1.5− 2mm pixel spacing, and 19− 25 time frames

for the cardiac cycle. 6082 images were collected in total. All images were

labelled by one expert with Analyze (AnalyzeDirect, Inc, Overland Park, KS,

USA) and were augmented by rotation from −30◦ to 30◦ with 10◦ as the

interval. The 37 subjects were split randomly into three groups for three-fold

cross validation, with 12, 12, and 13 subjects for each group respectively.

20 aortic CT scans were acquired from the VISCERAL data set [100]. 4631

images were collected in total and were augmented by rotation from −40◦

to 40◦ with 10◦ as the interval. The 20 subjects were split randomly into

three groups for three-fold cross validation, with 7, 7, and 6 subjects for each

group respectively.

45 LV MRI scans were acquired from the SunnyBrook data set [101]. 805

images were collected in total and were augmented by rotation from −60◦ to

60◦ with 2◦ as the interval. The 45 subjects were split randomly into three

groups for three-fold cross validation, with 15 subjects for each group.

The maximum and minimum intensity value of all subjects are used to
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re-scale the image intensity to a maximum value of 1.0 and a minimum value

of 0.0. In the cross validation, one group was used as the testing data while

the other two groups were used for the training data. Due to the limitation

of available images, no validation dataset was split or used.

The kernel size of convolutional and deconvolutional layers is 3, except the

last convolutional layer whose kernel size is 1. The pool size for max-pooling

is 2. The stride of deconvolutional layers is 2. The number of channel in the

first feature map - C is 16. The momentum is 0.9. Step-wise learning rate

schedule was used, as it allows careful and manual adjustment of the learning

rate. Training with two epochs usually achieved the lowest converged loss and

was used in our experiments. Three to five initial learning rates were tested

for each experiment and the one with the best performance in terms of the

accuracy is reported in this chapter. Several step-wise methods were explored,

i.e. dividing the learning rate by 5 or 10 every half or one epoch. Dividing

the learning rate by 5 at the second epoch showed optimal performance and

was used. This is also consistent with the learning rate schedule in [102].

Momentum SGD was used as the optimizer with the momentum set as 0.9.

Weights were initialized with a truncated normal distribution with the stddev

as 2/(32 × C), where C is the channel number. Biases were initialized as 0.1.

ρ was initialized as 0.5. This training strategy was determined by testing

multiple training strategies on the vanilla U-Net [3], and was applied to all

other CNNs.

The largest explored batch size for the RV, aorta, and LV are 32, 16, and

32 respectively in this chapter. This is determined by the GPU memory. As

the RV and LV are with smaller image size and consume less GPU memories,

the largest batch size the GPU can hold is larger.

DSC was calculated as the evaluation metric:

DSC = 2 · |Y ∩ P|
|Y + P| (3.19)

where Y is the ground truth and P is the prediction. As only two classes

exist, only the foreground DSC is shown in this chapter.
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3.3 Results

As stated in Sec. 3.2.2, there are two ways of applying BN during the inference.

Both of them are evaluated in Sec. 3.3.1. The optimal results are selected to

represent the BN performance and are used for later comparisons between

different normalization methods in Sec. 3.3.2. It is known that training the

same model multiple times would result in slightly different results [97]. In

this chapter, the same phenomenon exists and the corresponding validations

are in Sec. 3.3.3. Segmentation examples are illustrated in Sec. 3.3.4.

To evaluate the advantage of using the sigmoid function over the clip

function (in original BIN [96]), three comparison experiments were set up:

1) using clip function with one trainable parameter Clip(ρ)10 for IN feature

map while the parameter for LN feature map is 1 − Clip(ρ)10; 2) using

sigmoid function with one trainable parameter Sigmoid(ρ) for IN feature

map while the parameter for LN feature map is 1 − Sigmoid(ρ); 3) using

softmax function with two trainable parameters Softmax(ρ1, ρ2) for IN and

LN feature map respectively. Comparison results are shown in Sec. 3.3.5.

To evaluate the advantage of adding GN16 after the combined feature

map, two comparison experiments with or without GN16 are conducted.

Results are shown in Sec. 3.3.6. As GN16 performed similarly to IN [4],

no normalization, IN, LN, GN4 are chosen as the baseline to validate the

performance of the proposed ILN, as presented in details in Sec. 3.3.7. The

training curves of ρ at eight randomly-selected layers are shown in Sec. 3.3.8.

In the following paragraphs, RV-1 refers to the first fold of cross validation

(using the first group as the testing while using the second and third group

as the training) for the RV, this name also applies to RV-2, RV-3, Aorta-1,

Aorta-2, Aorta-3, LV-1, LV-2, LV-3. BS refers to batch size. S/M/L refers to

the small/medium/large batch size, indicating batch size of (1, 16, 32), (1, 8,

16), (1, 16, 32) for the RV, aorta, LV respectively. LR refers to the learning

rate. GN4, GN8, GN16 refers to the group normalization with group number

of 4, 8, 16.

3.3.1 Using BN during Inference

TestI (using the mean and variance of the testing feature map to normalize

the testing feature map) and TrainI (using the moving average mean and

variance of the training feature map to normalize the testing feature map)
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are validated on the three datasets with small, medium and large batch

size. The mean±std DSCs are shown in Tab. 3.1. It is evident that TestI

outperformed TrainI in most experiments, except those for the CT images

(aorta) with medium and large batch sizes. However, this conclusion needs

more systematic experiments to validate its generalization. In this chapter,

we use the optimal DSC achieved by either TestI or TrainI to represent the

BN performance.

3.3.2 Comparison between Normalization Methods

To compare different normalization methods, U-Nets are trained with three

datasets (RV, Aorta, LV), three cross validations, seven normalization meth-

ods (None, BN, GN4, GN8, GN16, IN, LN) and three batch sizes (small,

medium large). The mean±std DSCs achieved are shown in Tab. 3.2, 3.3,

and 3.4 respectively. It can be seen that for most experiments, GN16 or

IN achieves the highest accuracy. For most exceptions, GN16 or IN could

achieve similar accuracy to the highest value. As the number of channel

in the first feature map - C in this chapter is 16, GN16 is similar to IN

which divides the feature map into very small groups. It could be concluded

that detailed subdivision of the feature map during normalization potentially

leads to higher accuracy.

Adding normalization increases the running time of each iteration. In

general, BN is faster than IN, LN and GN. There is no obvious trend regarding

the LR. It is worth noting that training with small batch size outperformed

that with large batch size. In the following paragraphs, we select experiments

with small batch size for showing the convergence and patient errors.

Three experiments - RV-2, Aorta-1, LV-1 are selected randomly to show

the loss convergence during the training in Fig. 3.4. Unlike the report in [81]

where the DCNN was trained 14 times faster, no obvious improvements on

the convergence speed is observed. The optimal normalization methods for

RV-2, Aorta-1 and LV-1 are GN16, GN16, and IN respectively. Obvious

lower loss is achieved by GN16 for the RV-2 test while this phenomenon is

not obvious for the Aorta-1 and LV-1 test. We think the validations are not

enough to make a general conclusion.
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Table 3.1: Mean±std DSCs of segmenting the RV, aorta, and LV with BN;
TestI and TrainI are used during inference; "-" means an optimal
LR could not be found for that case; highest DSC in bold and
blue.

BS Test Mean±std DSCs Optimal LR
TestI TrainI TestI TrainI

S RV-1 0.7133±0.2693 0.6895±0.2760 0.5 0.05
RV-2 0.7139±0.2859 0.6579±0.3306 1.0 0.1
RV-3 0.6745±0.3029 0.6070±0.3390 1.0 0.05

aorta-1 0.8368±0.1405 0.8249±0.1773 0.5 0.5
aorta-2 0.7689±0.2178 0.7832±0.2072 0.5 0.1
aorta-3 0.8060±0.2294 0.7707±0.2707 1.5 0.1
LV-1 0.9240±0.0808 0.9020±0.1110 0.5 0.1
LV-2 0.8864±0.1391 0.8686±0.1999 1.0 0.1
LV-3 0.8479±0.1643 0.8063±0.2300 1.0 0.1

M RV-1 0.7025±0.2796 0.6533±0.2930 1.0 0.1
RV-2 0.6833±0.3091 0.6131±0.3316 1.0 0.1
RV-3 0.6415±0.3275 0.5529±0.3678 1.0 0.05

aorta-1 0.7804±0.2061 0.8036±0.1714 1.5 0.1
aorta-2 0.7276±0.2525 0.7726±0.2009 1.0 0.5
aorta-3 0.7408±0.2798 0.7787±0.2453 1.0 0.5
LV-1 0.9054±0.0864 0.8384±0.2111 0.5 0.1
LV-2 0.8431±0.1769 0.8567±0.1815 0.5 0.5
LV-3 0.7899±0.2186 0.7085±0.2701 1.0 0.05

L RV-1 0.6794±0.2847 0.6556±0.2873 1.0 0.5
RV-2 0.6670±0.3066 0.6283±0.3108 1.0 0.5
RV-3 0.6380±0.3267 0.5838±0.3377 0.5 0.1

aorta-1 0.7668±0.2070 0.7782±0.1842 1.0 0.1
aorta-2 0.7200±0.2423 0.7458±0.2243 1.5 0.1
aorta-3 0.6200±0.3557 0.7449±0.2594 1.5 0.1
LV-1 0.8868±0.1432 - 0.5 -
LV-2 0.7892±0.2325 0.7085±0.1887 1.0 0.1
LV-3 0.7677±0.2151 0.7076±0.2919 0.5 0.5
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Figure 3.4: The training loss of U-Net with no normalization, BN, GN4,
GN8, GN16, IN, and LN for RV-2 (left), aorta-1(middle), and LV-
1(right) segmentation, the losses were recorded every 20 iterations,
smoothed by a moving average window of 31, and truncated for
clear plot.
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Table 3.2: Mean±std DSCs of the RV segmentation with different normalization methods (highest DSC in bold and blue).

Test Method Mean±std DSCs Optimal LR Time (Seconds/20 Iterations)
S-BS M-BS L-BS S-BS M-BS L-BS S-BS M-BS L-BS

RV-1 None 0.6944±0.2428 0.6654±0.2838 0.6306±0.2647 0.5 0.1 1.0 0.5 2.6 4.8
BN 0.7133±0.2693 0.7025±0.2796 0.6794±0.2847 0.5 1.0 1.0 0.88 3.6 6.6
GN4 0.7023±0.3078 0.6887±0.2734 0.6791±0.2879 0.5 0.5 1.0 1.1 5.3 9.4
GN8 0.6952±0.2932 0.6744±0.3033 0.6616±0.3098 1.5 0.5 1.5 1.1 5.2 9.3
GN16 0.6989±0.2964 0.6755±0.2966 0.6732±0.2991 1.0 0.5 1.0 1.1 5.3 9.2

IN 0.7346±0.2352 0.6856±0.2927 0.6662±0.3121 1.5 1.5 1.0 1.0 4.0 7.3
LN 0.6906±0.2954 0.6928±0.2701 0.6606±0.2876 0.1 0.5 0.5 1.0 4.1 7.5

RV-2 None 0.6452±0.3297 0.6150±0.3130 0.5951±0.3339 0.1 0.5 0.1 0.5 2.6 4.8
BN 0.7139±0.2859 0.6833±0.3091 0.6670±0.3066 1.0 1.0 1.0 0.88 3.6 6.6
GN4 0.6795±0.3088 0.6238±0.3424 0.6439±0.3136 0.1 1.0 0.1 1.1 5.3 9.4
GN8 0.7155±0.2752 0.6258±0.3503 0.6386±0.3253 1.0 0.1 1.0 1.1 5.2 9.3
GN16 0.7291±0.2720 0.6835±0.3091 0.6785±0.3027 0.5 0.5 1.5 1.1 5.3 9.2

IN 0.7022±0.3002 0.6565±0.3303 0.6382±0.3448 0.1 1.0 1.0 1.0 4.0 7.3
LN 0.6789±0.3123 0.6376±0.3175 0.6418±0.3151 0.5 1.0 0.1 1.0 4.1 7.5

RV-3 None 0.6117±0.3455 0.5715±0.3490 0.5629±0.3358 0.05 0.1 0.05 0.5 2.6 4.8
BN 0.6745±0.3029 0.6415±0.3275 0.6380±0.3267 1.0 1.0 0.5 0.88 3.6 6.6
GN4 0.6548±0.2963 0.5931±0.3520 0.5850±0.3474 0.5 0.5 0.5 1.1 5.3 9.4
GN8 0.6366±0.3354 0.6092±0.3459 0.5867±0.3495 1.0 1.0 0.5 1.1 5.2 9.3
GN16 0.6735±0.3080 0.7153±0.2683 0.6532±0.3161 1.0 1.5 0.5 1.1 5.3 9.2

IN 0.7145±0.2732 0.6317±0.3282 0.6158±0.3391 1.0 0.5 1.0 1.0 4.0 7.3
LN 0.6118±0.3366 0.6292±0.3348 0.6025±0.3316 0.1 1.0 0.05 1.0 4.1 7.5
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Table 3.3: Mean±std DSCs of the aorta segmentation with different normalization methods (highest DSC in bold and blue).

Test Method Mean±std DSCs Optimal LR Time (Seconds/20 Iterations)
S-BS M-BS L-BS S-BS M-BS L-BS S-BS M-BS L-BS

Aorta-1 None 0.8165±0.1843 0.7965±0.1689 0.7932±0.2030 0.05 0.05 0.5 1.0 7.9 15.0
BN 0.8368±0.1405 0.8036±0.1714 0.7782±0.1842 0.5 1.5 1.0 1.5 6.5 12.5
GN4 0.8310±0.1556 0.7928±0.1783 0.7615±0.2122 1.5 0.1 1.0 2.2 10.5 18.5
GN8 0.8314±0.1620 0.8223±0.1745 0.8065±0.1496 1.0 1.0 1.0 2.0 10.7 19.0
GN16 0.8412±0.1483 0.8207±0.1613 0.8155±0.1431 0.5 1.5 1.0 1.7 11.5 19.2

IN 0.8320±0.1518 0.8273±0.1313 0.8174±0.1478 1.5 1.0 1.0 1.7 7.1 13.7
LN 0.8193±0.1913 0.7292±0.2391 0.7038±0.2930 1.0 1.0 0.5 1.6 7.4 14.3

Aorta-2 None 0.7938±0.2081 0.7692±0.2175 0.7532±0.2480 0.05 0.1 0.5 1.0 7.9 15.0
BN 0.7832±0.2072 0.7726±0.2009 0.7458±0.2243 0.5 1.0 1.5 1.5 6.5 12.5
GN4 0.7863±0.2090 0.7681±0.2201 0.6923±0.2935 1.0 1.0 0.1 2.2 10.5 18.5
GN8 0.8099±0.1724 0.7588±0.2425 0.7623±0.2275 0.5 0.5 0.5 2.0 10.7 19.0
GN16 0.7916±0.1974 0.7891±0.1934 0.7084±0.2587 0.5 1.5 0.5 1.7 11.5 19.2

IN 0.7734±0.2166 0.7529±0.2278 0.7249±0.2663 1.0 1.0 1.5 1.7 7.1 13.7
LN 0.7793±0.2213 0.7270±0.2623 0.7053±0.2339 1.0 1.0 1.5 1.6 7.4 14.3

Aorta-3 None 0.7718±0.2712 0.7611±0.2821 0.7281±0.2798 0.05 0.5 0.5 1.0 7.9 15.0
BN 0.8060±0.2294 0.7787±0.2453 0.7449±0.2594 1.5 1.0 1.5 1.5 6.5 12.5
GN4 0.7917±0.2654 0.7423±0.2810 0.7217±0.3010 0.5 0.5 0.1 2.2 10.5 18.5
GN8 0.8059±0.2490 0.7715±0.2632 0.7774±0.2420 0.5 1.0 1.0 2.0 10.7 19.0
GN16 0.8221±0.2055 0.7721±0.2523 0.7664±0.2724 0.5 1.5 1.5 1.7 11.5 19.2

IN 0.7942±0.2284 0.7895±0.2355 0.7600±0.2443 0.5 1.5 0.5 1.7 7.1 13.7
LN 0.7586±0.2741 0.7122±0.3068 0.6992±0.3068 1.0 0.5 1.0 1.6 7.4 14.3
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Table 3.4: Mean±std DSCs of the LV segmentation with different normalization methods (highest DSC in bold and blue).

Test Method Mean±std DSCs Optimal LR Time (Seconds/20 Iterations)
S-BS M-BS L-BS S-BS M-BS L-BS S-BS M-BS L-BS

LV-1 None 0.9240±0.0678 0.8344±0.2036 0.5277±0.3078 0.1 0.1 0.5 0.5 2.6 4.8
BN 0.9240±0.0808 0.9054±0.0864 0.8868±0.1432 0.5 0.5 0.5 0.7 3.0 5.5
GN4 0.9229±0.0979 0.8684±0.1552 0.8113±0.2102 0.5 1.5 0.1 1.1 5.3 9.4
GN8 0.9233±0.0864 0.8876±0.1346 0.7582±0.2196 1.0 1.0 0.5 1.1 5.1 9.5
GN16 0.9306±0.0560 0.9233±0.0672 0.9006±0.1058 0.1 1.0 1.0 1.0 5.1 9.1

IN 0.9313±0.0657 0.9099±0.1064 0.8982±0.1230 0.5 1.0 1.0 1.0 3.9 7.3
LN 0.8426±0.1775 0.8552±0.1719 0.8531±0.1592 1.0 1.0 0.5 1.0 4.0 7.5

LV-2 None 0.8874±0.1592 0.7287±0.2496 0.5219±0.2830 0.1 0.05 0.1 0.5 2.6 4.8
BN 0.8864±0.1391 0.8567±0.1815 0.7892±0.2325 1.0 0.5 0.5 0.7 3.0 5.5
GN4 0.8931±0.1352 0.8050±0.2018 0.7279±0.2128 0.5 0.5 1.0 1.1 5.3 9.4
GN8 0.8844±0.1161 0.8430±0.1439 0.7815±0.2229 1.0 0.1 0.1 1.1 5.1 9.5
GN16 0.8915±0.1288 0.8479±0.1736 0.8188±0.1608 1.0 0.5 1.0 1.0 5.1 9.1

IN 0.8894±0.1459 0.8013±0.2428 0.7973±0.2138 0.5 0.5 1.0 1.0 3.9 7.3
LN 0.7806±0.2038 0.8389±0.1925 0.7059±0.1642 0.5 0.5 1.0 1.0 4.0 7.5

LV-3 None 0.8081±0.2345 0.6956±0.2828 0.6526±0.2932 0.1 0.05 0.5 0.5 2.6 4.8
BN 0.8479±0.1643 0.7899±0.2186 0.7677±0.2151 1.0 1.0 0.5 0.7 3.0 5.5
GN4 0.8123±0.2355 0.7288±0.2526 0.7034±0.2515 0.5 1.5 0.1 1.1 5.3 9.4
GN8 0.8116±0.2297 0.7620±0.2508 0.7756±0.2422 0.1 1.5 1.0 1.1 5.1 9.5
GN16 0.8447±0.1882 0.8255±0.1982 0.8013±0.2097 0.5 0.5 0.5 1.0 5.1 9.1

IN 0.8401±0.1856 0.8044±0.2107 0.7660±0.2404 1.0 1.5 1.5 1.0 3.9 7.3
LN 0.7979±0.2437 0.7674±0.2555 0.6973±0.2699 0.1 0.1 1.0 1.0 4.0 7.5
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Figure 3.5: mean DSC for each patient for the RV (top), Aorta (middle), LV
(bottom) segmented by U-Net with None, BN, GN4, GN8, GN16,
IN, LN normalization methods.

We further show the mean DSC for each patient in Fig. 3.5. Due to the

complex parameter setting when acquiring CT or MRI images, the image

intensity distributions are always different between patients. Hence, internal

covariate shift is produced and some patients are with low segmentation

accuracy. In Fig. 3.5, the main accuracy improvements achieved by nor-

malization appear at those patients with low initial accuracy, i.e. patient

31 for RV, patient 15 for Aorta, patient 44 for LV. This proves that the

accuracy improvement with normalization methods come from its improved

generalization ability.
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Table 3.5: Mean and std of the mean DSC when training the same model in
six times.

Normalization Experiment Mean DSC Std DSC (6 runs)
None LV-1 0.8916 0.0248
BN LV-3 0.8274 0.0129
GN4 RV-3 0.6436 0.0222
GN8 Aorta-2 0.7924 0.0097
GN16 Aorta-3 0.8091 0.0148

IN RV-1 0.7035 0.0226
LN LV-2 0.8189 0.0562

3.3.3 Multiple Runs

It is known that training the same model multiple times indicate different

results - 2% variance as stated in [97]. In medical semantic segmentation,

this exists as well. We select randomly one experiment for each normalization

method and train it additionally five times. The mean and std of the mean

DSCs of different trainings are shown in Tab. 3.5. We can see that the

std between multiple runs is very large, sometimes can be even larger than

the accuracy improvement. In this chapter, all the results shown above

are trained only once, this is fair for each method. However, running the

experiments in multiple times may indicate different results.

3.3.4 Segmentation Results

The 3D aortic shape reconstructed from the aortic segmentation is shown

in Fig. 3.6b, which could be registered to navigate the Magellan (Hansen

Medical, CA, USA) robotic system. As the RV and LV are MRI images with

10mm slice gap, 3D reconstruction could not be extracted. The 2D RV and

LV segmentation results are shown in Fig. 3.6a and 3.6c respectively, which

could be used to instantiate 3D shapes and hence to navigate cardiac robotic

interventions.

3.3.5 Sigmoid vs. Clip vs. Softmax Function

The mean±std segmentation DSCs of using clip, sigmoid and softmax function

to combine the IN and LN feature map are shown in Tab. 3.6. We can see

that sigmoid function achieves the highest DSC for most cross validations,
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a b c

Figure 3.6: Segmentation examples of the RV (a), aorta (b) and LV (c). red
- the ground truth, green - the segmentation results, yellow - the
overlap between the ground truth and the segmentation results.

Table 3.6: Mean±std segmentation DSCs of using clip, sigmoid and softmax
function to combine the feature map of IN and LN, highest DSCs
are in blue and bold colour.

Method RV-1 RV-2 RV-3
Clip 0.702±0.295 0.707±0.299 0.666±0.319
Sigmoid 0.692±0.304 0.724±0.284 0.675±0.301
Softmax 0.688±0.290 0.720±0.279 0.664±0.323
Method LV-1 LV-2 LV-3
Clip 0.900±0.099 0.864±0.184 0.804±0.246
Sigmoid 0.903±0.118 0.888±0.135 0.828±0.189
Softmax 0.895±0.151 0.866±0.153 0.827±0.228

except RV-1 experiment, which proves the effectiveness of the proposed

method in this chapter - replacing the clip function in original BIN [96] with

sigmoid function.

3.3.6 With or Without GN16

The mean±std segmentation DSCs of adding or not adding GN16 after the

combined feature map of IN and LN are shown in Tab. 3.7. We can see

that, the method with adding GN16 achieves the highest DSC for most cross

validations, except LV-3 experiment. This result proves the effectiveness of

adding GN16 after the combined feature map and also proves the importance

of maintaining the normal distribution of feature maps.
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Table 3.7: Mean±std segmentation DSCs of adding or not adding GN16 after
the combined feature map of IN and LN, highest DSCs are in blue
and bold colour.

Method RV-1 RV-2 RV-3
No 0.692±0.304 0.724±0.284 0.675±0.301
Yes 0.714±0.290 0.737±0.267 0.680±0.305

Method LV-1 LV-2 LV-3
No 0.903±0.118 0.888±0.135 0.828±0.189
Yes 0.919±0.098 0.893±0.127 0.827±0.211

Table 3.8: Mean±std segmentation DSCs of using no normalization, IN, LN,
GN4, and the proposed ILN with the U-Net framework, highest
DSCs are in blue and bold colour.

Method RV-1 RV-2 RV-3
None 0.688±0.296 0.678±0.318 0.661±0.323
IN 0.709±0.266 0.715±0.278 0.655±0.327
LN 0.702±0.287 0.718±0.270 0.662±0.309
GN4 0.679±0.303 0.701±0.291 0.671±0.309
ILN 0.714±0.290 0.737±0.267 0.680±0.305

Method LV-1 LV-2 LV-3
None 0.899±0.134 0.872±0.167 0.784±0.280
IN 0.905±0.114 0.876±0.131 0.836±0.207
LN 0.898±0.120 0.858±0.187 0.793±0.262
GN4 0.908±0.113 0.841±0.196 0.800±0.255
ILN 0.919±0.098 0.893±0.127 0.827±0.211

3.3.7 Comparison of ILN to Other Methods

The mean±std segmentation DSCs of using no normalization, IN, LN, GN4,

and the proposed ILN with the U-Net framework are shown in Tab. 3.8. We

can see that, except the LV-3 experiment, the proposed ILN outperforms

all other traditional methods with considerable accuracy improvements.

This result proves the effectiveness of the proposed ILN in medical image

segmentation.

3.3.8 Training Curves of ρ

In order to show that the proposed ILN does achieve a weighted normalization

between IN and LN, the ρ training curves of eight layers were selected

randomly from LV-1 experiment to be shown in Fig. 3.7. We can see that
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Figure 3.7: The training curves of eight ρ selected randomly from the 22
layers in U-Net.

ρ was trained to be different values and the proposed ILN achieved diverse

normalization at different layers. As the ground truth of ρ is not known and

it is impossible to judge the curve correctness, a comparison regarding the ρ

training curves of ILN and BIN is not illustrated.

The CPU used is Intel Xeon(R) E5-1650 v4@3.60GHz×12. The GPU

used is Nvidia Titan XP. Comparing ILN to IN, the parameter number

increases 22, as one parameter is added to each layer. The training time

for 200 iterations increases from 34.8s to 36.5s due to the additional GN16

calculation.

3.4 Discussion and Conclusion

Most DCNNs for semantic segmentation applied BN as the normalization

method. For medical image segmentation which is usually trained from

scratch, it is possible to substitute the BN with other normalization methods

for better performance. In this chapter, we proved that detailed subdivision

of the feature map, i.e. GN with a large group number or IN, facilitates

the generalization of the trained model and hence improves the performance.

Our experiments also indicate other conclusions: 1) small batch size out-

performed large batch size; 2) TestI out-performed TrainI when applying BN

during inference. However, we do not think our experiments are sufficient to

fully prove these two conclusions. Hence, we would leave it open.

The proposed ILN strategy is generic and flexible. The three components -

IN, LN and GN16 are selected as examples and it is worth to explore other

combinations as well in the future. The proposed ILN framework is validated
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on medical image segmentation with a U-Net framework. We believe that

it could also be useful for other tasks, which needs further validation and

exploration. The proposed ILN failed to achieve the highest DSC for the

LV-3 experiment. It may due to the fact that the weighted normalization

of IN, LN and GN16 is not suitable for this experiment. Due to the fact

that weighting more normalization methods will increase the running time

of each iteration in both the training and testing stage, in this chapter, only

IN and LN are weighted. In the future, the proposed ILN framework would

be extended to weight more normalization methods. The mean and std DSC

are used to justify the achieved accuracy, other statistical values, i.e. p-value,

can also be supplied to enhance the evaluation. To further evaluate the

proposed trainable ILN, a baseline experiment with the ρ in ILN fixed rather

than being trained can be added.

Although the focus of this chapter is a fundamental problem in training U-

Net for medical image segmentation - normalization, this chapter connects and

contributes to surgical robotic vision. The three segmented anatomies - RV,

aorta, LV could be used for cardiac robotic navigation [10] and surgical robotic

path planning, based on previous work of 3D shape instantiation [6] [67].

In conclusion, first, this chapter explores the medical image segmentation

in surgical robotic vision and focuses on the normalization in training U-Nets.

Four most popular normalization methods - BN, IN, LN and GN are reviewed

and compared in details. Detailed subdivision of the feature map, i.e. GN

with a large group number or IN, improves the accuracy of training U-Net

for medical semantic segmentation. This accuracy improvement is mainly

from improved generalization ability of the trained model. This work could

help with indicating the future direction on proposing new normalization

methods.

Second, to improve the accuracy of medical image segmentation based on

U-Net, the ILN was proposed to combine the feature map of IN and LN with

an additional trainable parameter and sigmoid function, then add GN16 after

the combined feature map. Although, various normalization methods have

been proposed, the accuracy improvements of the proposed ILN - almost 2%

DSC shows the importance of carefully tuning the normalization strategy

when training DCNNs for medical image segmentation.
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4 Atrous Convolutional Neural

Network (ACNN) with Full-scale

Feature Maps

In chapter 3, I discussed my work on normalization methods in training Deep

Convolutional Neural Network (DCNN) for medical image segmentation.

Except normalization, network architecture design is another important

research area that can improve the performance of training DCNN for medical

image segmentation. In this chapter, I will introduce my work - Atrous

Convolutional Neural Network (ACNN) for medical image segmentation.

U-Net is the most popular traditional DCNN for medical image segmentation

with using max-pooling layers to increase the DCNN receptive field and

deconvolutional layers to recover the spatial dimension. In this chapter, I

design a new network architecture where no max-pooling layers are used.

The receptive field is increased by atrous convolution. As the main purpose

of this chapter is to improve the automation of the 3D shape instantiation

work in chapter 5 and 6, main validations are focused on the RV, LV and

aortic 2D segmentation.

4.1 Introduction

In medical image segmentation, conventional methods are based on ad hoc,

expert-designed feature extractors and trained classifiers. Recently, the

use of DCNNs has shown promising results for many vision-based tasks

including image classification [36], object detection [103], and semantic

image segmentation [5]. In DCNN, features are extracted and classified

automatically by training multiple non-linear modules [75]. Unlike traditional

fully connected neural networks where each output node is linked to all input

nodes, an output node of DCNN only links to regional input nodes, known as
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the receptive field (the input nodes that influence an output node). Multiple

convolutional layers, as shown in Fig. 4.1a, and down-sampling layers, i.e.,

pooling layers shown in Fig. 4.1b, are cascaded to achieve a large receptive

field coverage. This large receptive field is essential for extracting and

classifying underlying visual features and semantic details. The use of this

kind of DCNN means that the feature map is also down-sampled, which can

be detrimental to pixel-level tasks, i.e., segmentation. For medical images

with focal lesions, local features with small sizes may be discarded due to

down-sampling.

In order to compensate for decreased dimension of feature maps, various

techniques have been proposed. For example, deconvolutional layers and

non-linear up-sampling are used respectively in Fully Convolutional Network

(FCN) [40] and SegNet [104] to recover the down-sampled feature map to

the input image size. An alternative is to use atrous convolution [5], also

known as dilated convolution [105], to replace the down-sampling layer in

traditional DCNNs to increase the receptive field. Atrous convolution inserts

zeros between non-zero filter taps to sample the feature map as shown in

Fig. 4.1c. It increases the receptive field with the atrous rate but maintains

the spatial dimension of feature maps without increasing the computational

complexity. However, applying atrous convolution introduces a high demand

on memory usage and the inserted zeros of atrous convolution cause input

node or information missing. These challenges have limited the practical

use of atrous convolution, particularly for medical image segmentation. For

example, a high-resolution and compact CNN was designed with dilated

convolution and residual learning for brain MR volume segmentation [106].

As mentioned above, memory shortage is the first challenge for applying

atrous convolution, as high-resolution feature map propagation consumes a

large amount of memory. In previous work, atrous convolution was usually

applied jointly with down-sampling layers as a trade-off between the accuracy

and memory. For example, in Deeplab [5], a feature map at 1/8 spatial

size of the input image was first extracted by multiple convolutional and

down-sampling layers. Feature maps with a larger receptive field but with the

same 1/8 spatial size were then calculated by multiple atrous convolutional

layers. Subsequently, bilinear interpolation was used to recover the spatial

dimension of the down-sampled feature maps, while conditional random

field was used to refine the predicted pixel-level probability. In multi-scale
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Figure 4.1: Illustrations of using DCNN with different receptive fields for
medical image segmentation: (a) convolutional layer with a 3× 3
receptive field; (b) pooling layer with a 2× 2 receptive field; (c)
atrous convolutional layer (atrous rate is 2) with a 5×5 receptive
field.
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context aggregation [105], a feature map with 64× 64 dimension was firstly

down-sampled from the input image, then a context module with seven

atrous convolutional layers was applied to extract features with a larger

receptive field at the same spatial dimension. Similar joint usage of atrous

convolutional and down-sampling layers can also be found in [107].

In practice, setting the atrous rates is another challenge when applying

atrous convolution. This is because the output node only links to input

nodes which align with non-zero filter taps, as shown in Fig. 4.1c. The input

nodes which align with zero filter taps are not considered. There are thus far

no standard ways of setting the atrous rates. For example, an atrous rate

setting of (1, 1, 2, 4, 8, 16, 1) was allocated for achieving a receptive field of

67× 67 in [105] following the strides of max-pooling layers in FCN. Wang et

al. found that an atrous rate setting of (2, 4, 8) would cause gridding effects

(regular input nodes are missed) and proposed a hybrid atrous rate setting,

i.e., (1, 2, 5, 9) to guarantee the coverage of all input nodes [107]. An atrous

rate setting of (6, 12, 18) was used for each block and an atrous rate setting

of (1, 2, 4) was set inside each block in [108] based on empirical knowledge.

In this chapter, we propose a full-scale DCNN where the spatial dimension

of intermediate feature maps remains the same as that of the input image.

This is different from the work of [109], for which the spatial dimension of

intermediate feature maps at the residual stream is still smaller than that of

the input image. For proposing a full-scale DCNN, the proposed network

needs to: 1) maximize the receptive field with as few atrous convolutional

layers as possible to save the memory usage; 2) fully cover the receptive field

without missing any input node. In the following sections, we first prove a

method that sets the atrous rate as (k)n−1 at the nth atrous convolutional

layer, where k is the kernel size and n is the sequence number of atrous

convolutional layer, can achieve the largest and fully-covered receptive field

with a minimum number of atrous convolutional layers in Sec. 4.2.1. Then

six atrous blocks, three shortcut connections and four different normaliza-

tion methods are explored in Sec. 4.2.2, to select the optimal atrous block,

shortcut connection and normalization method through experimental investi-

gations. Finally, a full-scale DCNN - ACNN is proposed by using multiple

cascaded atrous II-blocks, residual learning and Fine Group Normalization

(FGN). Cardiovascular Magnetic Resonance Imaging (MRI) and Computed

Tomography (CT) image segmentation of the Right Ventricle (RV), Left
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Ventricle (LV) and aorta are used to validate the proposed ACNN with data

collection shown in Sec. 4.2.3 and with results shown in Sec. 4.3. U-Net [3],

optimized U-Net with FGN [4] and a hybrid network similar to [5] are used

as the comparison for performance assessment. It has been shown that

the proposed ACNN can achieve comparable segmentation Dice Similarity

Coefficients (DSCs) compared to other techniques with much less trainable

parameters and model sizes, indicating the benefit of full-scale feature maps

in DCNN. Discussions and conclusions are stated in Sec. 4.4.

4.2 Methodology

4.2.1 Atrous Rate Setting

In this section, we focus on optimizing the atrous rate setting which would

achieve the largest and fully-covered receptive field with a minimum number

of atrous convolutional layers. Before presenting the detailed mathematical

derivation, three 1D receptive field examples with three different atrous rate

settings are intuitively shown in Fig. 4.2. In this three-layer network, with

an atrous rate setting of (1, 2, 4), a receptive field of 15 is achieved, while

with an atrous rate setting of (1, 2, 9), a receptive field of 25 is achieved

with a coverage ratio (the ratio of linked input nodes over all input nodes in

the receptive field) of 0.84. With the proposed atrous rate setting of (1, 3,

9), the largest receptive field of 27 is achieved with a full coverage, i.e., the

coverage ratio is 1.0. Detailed mathematical proofs are presented below. For

simplification, batch size is considered as 1 here.

With an input feature map Fn−1 of size H × W × cn−1, an output feature

map Fn of size H×W× cn is calculated by the nth atrous convolutional layer

with an atrous rate rn and padding, where F0 ∈ R
H×W×c0 , Fn ∈ R

H×W×cn ,

n ∈ [1,N] ∩ N, and r = (r1 · · · rN)
⊤ ∈ N

N, where N ∈ Z+ is the total

number of atrous convolutional layers. Here H ∈ N is the feature height

and W ∈ N is the feature width, though these two values are usually equal

for medical images. The channel number of feature maps is denoted as

c = (c0 · · · cN)
⊤ ∈ N

N+1, and F0 is the input image. By ignoring the

non-linear modules, i.e., ReLU, and the biases, an equivalent 2D atrous

convolution could achieve a backward propagation from Fn to Fn−1, which

can be decomposed into two 1D atrous convolutions [110], with kernel vn
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Figure 4.2: Three 1D receptive field examples with different atrous rate

settings for a three-layer network: (a) an atrous rate setting of
(1, 2, 4), (b) an atrous rate setting of (1, 2, 9), (c) an atrous rate
setting of (1, 3, 9). The colour represents the link number from
the bottom/input node to the top central/output node. ρ3 is the
coverage ratio defined by Equ. 4.7, r is the atrous rate array, s3

is the receptive field size, f(1∼3) is the 1D feature map, f0 is the
1D input image, d3t is the receptive field of f30, these notations are
explained and used in Sec. 4.2.1.
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indexed by t ∈ Z:

vnt (k, rn) =

k−1

2
∑

u=− k−1

2

wn
u · δ(t − urn), where δ(t) :=

{

1 t = 0

0 t 6= 0
(4.1)

Here, k is an odd number which represents the kernel size, i.e., 3, 5, or 7. t is

the pixel index. wn
u , each element of weight matrix w

n ∈ R
k, is a trainable

variable, where 1(t) : Z → {0, 1} is an indicator function defined as:

1(t) :=

{

1 t = 0

0 t 6= 0
(4.2)

Denote vectors f0, fn as the 1D input image and the nth 1D feature map,

both indexed by t. f0 can be calculated from fn by:

f0 = v1 ∗ · · · ∗ vn ∗ fn (4.3)

Define dn(k, r) := f0(fn = 1(t)), in which fn = 1(t) indicates that only

the central pixel of fn is with a non-zero value (=1). It is calculated as:

dn(k, r) := v1 ∗ · · · ∗ vn ∗ δ(t) (4.4)

By setting w
n = (1)k, ∀n, vectors consisting of 1, then dnt ∈ N, the element

indexed by t ∈ Z, is the link number from fn0 to the input image’s pixel or

node. Thus, dn represents the receptive field of fn0 , where its receptive field

coverage could be represented by the non-zero element number in vector dn:

‖dn‖0 :=
∑

t

(

1− 1(dnt )
)

(4.5)

and its receptive field size sn ∈ N is calculated as:

sn(k, r) = 1 + (k − 1)
n
∑

m=1

rm (4.6)

The receptive field coverage ratio of fn0 , denoted by ρn ∈ R+, is then defined

as:

ρn(k, r) :=
‖dn‖0

sn
(4.7)
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In order to ensure a fully-covered receptive field from an output pixel or

node, our target is to maximize the receptive field size with a constraint of

receptive field coverage ratio:

max
r∈NN

{

sN : ρN = 1
}

(4.8)

By substituting Equ. 4.6 and Equ. 4.7 into Equ. 4.8, the optimization

problem can be converted as:

max
r∈NN

{

∥

∥dN
∥

∥

0
:
∥

∥dN
∥

∥

0
= 1 + (k − 1)

N
∑

n=1

rn

}

(4.9)

The total link number from fn0 to f0 is represented by:

‖dn‖1 =
∑

t

dnt = (k)n (4.10)

where (k)n represents an exponent calculation. It is the upper bound of ‖d‖0
because:

‖d‖0 ≤ ‖d‖1 , ∀dt ∈ N, ∀t ∈ Z (4.11)

where

‖d‖0 = ‖d‖1 ⇔ dt ∈ {0, 1}, ∀t ∈ Z (4.12)

We assume that Equ. 4.12 holds. By substituting this into the constraint of

Equ. 4.9:

1 + (k − 1)
N
∑

n=1

rn = (k)N (4.13)

This is a sum of geometric progression; one solution can be obtained as:

r ′ =
(

1 · · · (k)n−1 · · · (k)N−1
)⊤

(4.14)

It satisfies a uniformly covered receptive field: dN
t (k, r

′) =

{

0 t 6∈ S

1 t ∈ S
,

where S := [− sN−1
2 , s

N−1
2 ] ∩ Z in 1D and the same in 2D, which satisfies

the equivalent condition in Equ. 4.12 and thus is a solution to Equ. 4.9.

Therefore, the atrous rate setting of (k)n−1 at the nth atrous convolutional

layer could lead to the largest and fully-covered receptive field under the
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condition that the same number of atrous convolutional layers is used.

Traditional DCNNs composed of convolutional layers and down-sampling

layers are with Gaussian covered receptive field. The path number for nodes

at F0 contribute to FN
0,0 shrinks quickly from the central area to the outer

area, which is called Gaussian damage in [110]. The weights for the outer

area nodes grow during the training, indicating that outer area nodes are

also important. A weight initialization with higher weights at the outer

area and lower weights at the central area was tried to compensate this

Gaussian damage, however, the improvement is limited and unstable [110].

We propose uniformly covered receptive field which may be a solution for

Gaussian damage, but with a quite different purpose - achieve fully-covered

receptive field with minimum number of atrous convolutional layers.

4.2.2 Atrous Convolutional Neural Network

I first introduce the ACNN structure briefly in these two paragraphs and then

explain each component of the proposed ACNN in details in below sections.

With the proof in Sec. 4.2.1, a receptive field of (k)N could be achieved by a

block of N atrous convolutional layers. Each node in the receptive field is

linked evenly. In this chapter, the kernel size of atrous convolutional layers

is 3, following the settings used in [37]. A block of N atrous convolutional

layers has a receptive field of (3)N. We call this block as atrous block and

the one specific with N atrous convolutional layers as N-block, here N is

expressed in the roman numeral.

The proposed ACNN is designed into multiple cascaded atrous blocks to

increase the receptive field linearly by (3)N. For achieving a H × W (usu-

ally W = H) whole-image coverage, H/(3)N blocks are cascaded. For solving

the gradient vanishing/exploding problems and facilitating back propaga-

tion, shortcut connections including residual learning, identity mapping and

dense connection, and normalization methods including Batch Normalization

(BN), Layer Normalization (LN), Instance Normalization (IN) and Group

Normalization (GN), are explored and assessed.

Atrous Block

To determine the optimal ACNN structure, different atrous blocks are ex-

plored. As the test image size in this chapter is 512 or 256, six atrous blocks
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(I-block, II-block, III-block, IV-block, V-block, VI-block) are assessed with

the receptive field of 3, 9, 27, 81, 243, 729, respectively, as shown in Fig. 4.3.

The feature channels of the input and output feature map are the same.

(f)

AR=1

AR=3

AR=9

AR=27

AR=81

AR=243

VI-block

RF=729×729

(e)

AR=1

AR=3

AR=9

AR=27

AR=81

V-block

RF=243×243

(d)

AR=1

AR=3

AR=9

AR=27

IV-block

RF=81×81

(c)

AR=1

AR=3

AR=9

III-block

RF=27×27

(b)

AR=1

AR=3

II-block

RF=9×9

(a)

AR=1

I-block

RF=3×3

Figure 4.3: Six atrous blocks: I-block, II-block, III-block, IV-block, V-block,
VI-block with 1, 2, 3, 4, 5, 6 atrous convolutional layers inside the
block. The Atrous Rate (AR) is set as (3)n−1 at the nth layer, n ∈
[1,N]∩N is the sequence number of the atrous convolutional layer,
N ∈ {1, 2, 3, 4, 5, 6} is the total number of atrous convolutional
layers in each block.

The optimal atrous block is determined by experiments, as shown in Sec.

4.3.1. Here, we state and use the conclusion in advance - atrous II-block is

the optimal atrous block and is used in the following context.

Shortcut Connection

Plain DCNN experiences the degradation and gradient vanishing/exploding

problems [38]. Shortcut connection is a solution to these problems. Three

popular shortcut connections are explored in this chapter: 1) residual learning

[38], 2) identity mapping [111], 3) dense connection [112]. Dense connection

is seen as a shortcut connection method, as it was shown to be re-exploring

the feature maps while residual learning was shown to be re-using the feature

maps in [113], hence it is classified as the same type of techniques as residual
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learning - shortcut connection in this chapter. In residual learning, the

normalization layer and ReLU are placed after the atrous convolutional layer

and Fn−2 is added to Fn. For identity mapping, the normalization layer and

ReLU are placed before the atrous convolutional layer and Fn−2 is added

to Fn. In dense connection, the normalization layer and ReLU are placed

before the atrous convolutional layer and Fn−1 is concatenated to Fn. As

the feature map is in high-resolution and the layer number is large (64 layers

for the RV and LV experiments while 128 layers for the aorta experiments)

in this chapter, fully dense connection could not be achieved due to the

extremely high memory usage. In this chapter, a dense connection is placed

after 16 (for the RV and LV experiments) or 32 (for the aorta experiments)

atrous II-blocks, resulting in four dense connections in total. This grouped

dense connection is called dense4 connection, as the atrous convolutional

layers are concatenated four times.

The optimal shortcut connection is determined by experiments, as shown

in Sec. 4.3.2. Here we rely on the fact that residual learning is the optimal

shortcut connection and is used in the following context.

Normalization Method

For DCNN, when the value distribution of shallow feature maps or parameters

changes, the parameters of deep layers would be trained to fit this distribution

change rather than to fit the real and useful content. This phenomenon was

defined as interval covariate shift [81] and is detrimental to both the training

speed and performance.

In this chapter, batch size of 1 is mainly explored, as it was shown that batch

size of 1 out-performed larger batch sizes for medical image segmentation in

chapter 3. For the proposed ACNN where the feature channel is the same

for all intermediate feature maps, BN and IN are the same as Fine Group

Normalization (FGN) (set the group number of GN as the feature channel in

this chapter or the number of channel in the first feature map in [4]) when

the batch size is 1. Hence, FGN which also represents BN and IN, GN4 which

sets the group number of GN as 4 and LN are explored for the subdivision

of feature maps.

During inference, one way to apply BN, IN, LN and GN is to use the mean

and variance of the current testing feature maps to normalize the testing
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feature maps. BN in this mode is called BN-train in this chapter. There is

an additional way to apply BN, i.e., to use the moving average mean and

variance of the training feature maps to normalize the testing feature maps.

BN in this mode is called BN-infer, which is also explored in this chapter.

The optimal normalization method is selected based on experimental

results, as shown in Sec. 4.3.3. Here, we assume that - FGN is the optimal

normalization method. FGN was also shown to be the optimal normalization

method when using a U-Net structure for medical image segmentation in

chapter 3. For a U-Net structure, FGN is different from BN and IN, as the

feature channel changes inside the DCNN. To be consistent with chapter 3

and for better generalizability, FGN is used as a representation of FGN, IN

and BN in this chapter.

ACNN Architecture

The final proposed ACNN architecture is shown in Fig. 4.4. Multiple atrous

II-blocks with residual learning and FGN are cascaded. The number of

residual II-blocks - (H−1)/8 is determined by the input image size, i.e., 32 for

a 256× 256 image while 64 for a 512× 512 image.

4.2.3 Experimental Setup and Validation

Three cardiovascular MRI and CT datasets for RV, LV and aorta segmentation

were used for validation of the proposed ACNN.

Right Ventricle (RV) 37 patients, with different levels of Hypertrophic

Cardiomyopathy (HCM) were scanned with a 1.5T MRI scanner (Sonata,

Siemens, Erlangen, Germany) [6], involving 6082 images with 10mm slice

gap, 1.5 ∼ 2mm pixel spacing, 19 ∼ 25 times frames, and 256× 256 image

size. Analyze (AnalyzeDirect, Inc, Overland Park, KS, USA) was used to

label the ground truth. Rotation from −30◦ to 30◦ with 10◦ as the interval

was used to augment the images. Three groups, with 12, 12, and 13 patients

respectively, were split randomly from the 37 patients for three-fold cross

validations.

Left Ventricle (LV) 45 patients, from the SunnyBrook MRI data set [101]

were used, it has 805 images with 256× 256 image size. Rotation from −60◦
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Conv3 AR=1 FGN ReLU

+ Conv3 AR=3FGNReLU

Conv3 AR=1 FGN ReLU

+ Conv3 AR=3FGNReLU

Residual II-block

Residual II-block

⋯
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Conv3 AR=1 FGN ReLU

+ Conv3 AR=3FGNReLU

Conv3 AR=1 FGN ReLU

+ Conv3 AR=3FGNReLU
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Residual II-block

Figure 4.4: The network architecture of the proposed ACNN. The number
of residual II-blocks is determined by (H−1)/8, H is the height
or width of input image. AR - atrous rate, Conv3 - atrous
convolution with kernel size of 3, Conv1 - atrous convolution with
kernel size of 1.
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to 60◦ with 2◦ as the interval was used to augment the images. Three groups,

with 15 patients respectively, were split randomly from the 45 patients for

three-fold cross validations.

Aorta 20 patients, from the VISCERAL data set [100], were used, 4631

CT images with 512×512 image size. Rotation from −40◦ to 40◦ with 10◦ as

the interval was used to augment the images. Three groups, with 7, 7, and 6

patients respectively, were split randomly from the 20 patients for three-fold

cross validations. As we mainly focus on 2D medical image segmentation

in this chapter for increasing the automation of 3D shape instantiation in

chapter 5 and 6, each 3D aortic CT scan is sliced into multiple 2D CT images

for the validation.

The maximum and minimum image intensity of all patients were used to

re-scale the image intensity to 0.0 ∼ 1.0. Due to the limitation of available

image data, the validation dataset were not split or used. For cross validations,

two groups were used in the training stage while the other group was used

in the testing stage. The kernel size of the last atrous convolutional layer

is 1 while the kernel size of all the other atrous convolutional layers is 3.

The momentum was set as 0.9. Multiple epoch settings, i.e., 1, 2, or 3

and multiple learning rate schedules, i.e., dividing the learning rate by 5

or 10 at the second or third epoch, indicating an optimal learning schedule

that: two epochs were trained and the learning rate was divided by 5 at the

second epoch. Five initial learning rates: 1.5, 1.0, 0.5, 0.1, 0.05 were trained

for each experiment and the highest accuracy achieved on the test dataset

was recorded as the final accuracy to avoid non-optimal hyper-parameter

settings. For all experiments conducted, Stochastic Gradient Descent (SGD)

was utilized as the optimizer.

Pixel-level softmax was applied after the proposed ACNN to transfer the

network outputs into probabilities:

pnc =
eync

∑NC
i=1 e

yi
(4.15)

Here, y is the output of proposed ACNN, p is the predicted probability, NC is

the number of predicted classes. Cross-entropy was used as the loss function:
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Loss = −
W
∑

i=1

H
∑

j=1

NC
∑

nc=1

L(i,j,nc)log(P(i,j,nc)) (4.16)

DSC was used as the evaluation matrix:

DSC = 2 · |L ∩ P |
|L+ P | (4.17)

The DSC of the foreground is selected to represent the segmentation accuracy.

The workers used were Titan Xp (12G memory) and 1080Ti (11G memory)

with the CPUs of an Intel® Xeon(R) CPU E5-1650 v4 @ 3.60GHz × 12

and an Intel® Xeon(R) CPU E5-1620 v4 @ 3.50GHz × 8.

The method was implemented with the Tensorflow Estimator Applica-

tion Programming Interface (API). The atrous convolution and BN were

programmed with tf.layers. The IN, LN and GN were programmed with

tf.contrib.layers. The data was shuffled globally when generating the tfrecords

file and was shuffled again with shuffle size of 500 when feeding images

with tf.data, which ensures a random image input. The Tensorflow version

used is 1.8.0. The process status of the CPU and GPU both influence the

training speed. Training all models under exactly the same computer process

status is not possible. For a fair speed comparison, the time recorded in this

chapter is for 100 iterations under the computer process status where all

other processes are ended. The memory usage was recorded by using watch

nvidia-smi command. The parameter amount is for the weights and biases in

the atrous convolutional layers and was recorded based on model.summary()

in Keras.

4.3 Results

Six atrous blocks were assessed and validated on the three datasets: RV, LV

and aorta to select the optimal atrous block. For the RV and LV datasets

with an image size of 256 × 256, 128 atrous I-blocks (Model 1), 32 atrous

II-blocks (Model 2), 10 atrous III-blocks (Model 3), 3 atrous IV-blocks (Model

4), 1 atrous V-block (Model 5) were cascaded respectively for a whole-image

receptive field. The feature channel was set as 12, 16, 24, 38, 64 to maintain

a similar number of trainable parameters used in each model, this guaranteed

a fair comparison between the five models. The parameter number in each
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model was 1.66 × 105, 1.46 × 105, 1.51 × 105, 1.44 × 105, and 1.48 × 105

respectively. For the aorta dataset with an image size of 512×512, 256 atrous

I-blocks (Model 1), 64 atrous II-blocks (Model 2), 20 atrous III-blocks (Model

3), 6 atrous IV-blocks (Model 4), 2 atrous V-blocks (Model 5), and 1 atrous

VI-block (Model 6) were cascaded respectively for a whole-image receptive

field. The feature channel was set as 12, 16, 24, 38, 64, 80 respectively

to maintain a similar number of trainable parameters used in each model.

The parameter number was 3.34 × 105, 2.95 × 105, 3.08 × 105, 3.00 × 105,

3.33×105, and 2.89×105 respectively. Before confirming the optimal shortcut

connection and normalization method, identity mapping and FGN was used

as the shortcut connection and normalization method respectively in this

section of experiments. Detailed results are shown in Sec. 4.3.1.

Three shortcut connections: residual learning, identity mapping and dense4

connection were explored and validated on the three datasets to select the

optimal shortcut connection. Details are illustrated in Sec. 4.3.2. Before

confirming the optimal normalization method, FGN was used as the normal-

ization method in this section of experiments. Four normalization methods:

BN-infer, LN, FGN (the same as BN-train and IN in this chapter), GN4 were

validated on the three datasets to select the optimal normalization method

and details are presented in Sec. 4.3.3. Examples of the segmentation results

are shown in Sec. 4.3.4.

Three popular DCNNs were used for the comparison. (1) U-Net proposed

in [3] with five max-pooling layers; (2) Optimized U-Net with FGN proposed

in [4] with seven max-pooling layers to achieve the largest receptive field; and

(3) a hybrid DCNN similar to the Deeplab proposed in [5] but with much less

trainable parameters to decrease the memory usage, the intermediate eight

blocks with max-pooling and deconvolutional layers in the Optimized U-Net

were replaced with four atrous convolutional blocks which were composed of

two convolutional layers with atrous rates as 1 plus one atrous convolutional

layer with atrous rate setting of (2, 4, 8, 16) respectively. The feature channel

root was set as 16 for all methods. Details regarding the network structure

are shown in Fig. 4.5. A detailed comparison regarding the accuracy, memory

usage, and speed are given in Sec. 4.3.5. It was known that slight difference

exists even by training exactly with the same model setting in multiple

times [97]. In this chapter, this variance is given in Sec. 4.3.6.

In the following sections, RV-1 refers to the first cross validation (use the
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(c)

Max-poolingFeature map 3 × 3 Conv + FGN + ReLUInput/output3 × 3 Conv + ReLU 1 × 1 Conv3 × 3AR Conv + FGN + ReLU3 × 3 Deconv + ReLU Concatenate3 × 3 Deconv + FGN + ReLU

Figure 4.5: The network architectures of three comparison DCNNs: (a) U-
Net [3]; (b) optimized U-Net [4]; (c) hybrid network [5]; Conv -
convolutional layers, Deconv - deconvolutional layers, AR Conv
- atrous convolutional layers with atrous rate setting of (2, 4, 8,
16) respectively, FGN - fine group normalization.
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first group as the testing and use the second and third group as the training)

of RV segmentation, this notation also applies to RV-2, RV-3, LV-1, LV-2,

LV-3, Aorta-1, Aorta-2, and Aorta-3.

81



Table 4.1: The mean±std DSC, optimal learning rate (OLR), memory usage and training time for 100 iterations for the five or
six ACNN models with different atrous blocks for the RV, LV and aorta segmentation, highest DSCs are labelled in
bold and red.

Model mean±std DSC OLR mean±std DSC OLR mean±std DSC OLR Memory Time
RV-1 RV-2 RV-3

Model 1 0.6588±0.3333 0.5 0.7253±0.2846 1.5 0.6653±0.3261 0.5 2.55G 14.5s
Model 2 0.6425±0.3476 0.5 0.7169±0.2812 0.5 0.6825±0.3265 0.5 1.65G 9.4s
Model 3 0.6688±0.3284 0.05 0.7167±0.2831 0.05 0.6462±0.3344 0.5 1.67G 6.3s
Model 4 0.6470±0.3265 0.05 0.6685±0.3174 0.05 0.6208±0.3281 0.1 1.96G 4.6s
Model 5 0.6007±0.3278 0.1 0.6442±0.3205 0.05 0.5863±0.3556 1.0 8.59G 3.5s

LV-1 LV-2 LV-3
Model 1 0.8807±0.1831 1.5 0.8056±0.2467 0.1 0.7909±0.2451 1.5 2.55G 14.5s
Model 2 0.9155±0.1107 0.1 0.8590±0.1627 1.0 0.8186±0.2310 0.5 1.65G 9.4s
Model 3 0.9118±0.1172 0.5 0.8721±0.1743 0.05 0.8008±0.2493 0.5 1.67G 6.3s
Model 4 0.8857±0.1452 0.1 0.8580±0.1513 1.5 0.7921±0.2407 0.5 1.96G 4.6s
Model 5 0.8554±0.1501 0.1 0.7844±0.2204 0.05 0.7806±0.2175 0.1 8.59G 3.5s

Aorta-1 Aorta-2 Aorta-3
Model 1 0.8255±0.1833 0.1 0.7787±0.2019 0.05 0.7973±0.2185 1.5 11.72G 94.4s
Model 2 0.8491±0.1543 0.1 0.7871±0.2095 0.5 0.8365±0.1726 0.1 9.64G 62.5s
Model 3 0.8388±0.1731 0.05 0.7575±0.2528 0.5 0.8337±0.1915 0.1 9.72G 43.1s
Model 4 0.8006±0.1691 0.05 0.7235±0.2794 0.05 0.7828±0.2182 0.1 6.77G 31.8s
Model 5 0.7937±0.1580 0.1 0.6998±0.2619 0.5 0.7677±0.2568 0.1 8.82G 22.2s
Model 6 0.7026±0.2256 1.5 0.6564±0.2629 0.5 0.7427±0.2507 0.05 4.98G 24.1s
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(a) (b) (c)

Figure 4.6: The patient mean DSC for the RV (a), LV (b) and aorta (c)
dataset with using different ACNN models: Model 1, Model 2,
Model 3, Model 4, Model 5 and Model 6, the bars at the negative
Mean DSC axis indicate the model that achieves the highest
mean DSC for that patient while the bars at the positive Mean
DSC axis show the mean DSCs achieved by different models.

4.3.1 Atrous Block

The segmentation accuracy, optimal learning rate, memory usage and training

time for 100 iterations of the five ACNN models for the RV segmentation,

the five ACNN models for the LV segmentation, and the six ACNN models

for the aorta segmentation are shown in Tab. 4.1. We can see that for

most of the experiments including RV-3, LV-1, LV-3, Aorta-1, Aorta-2 and

Aorta-3, Model 2 with atrous II-blocks achieves the highest accuracy. For

those experiments that Model 2 under-performs (including RV-1, RV-2, and

LV-2), it still achieves reasonable accuracy. For the RV and LV experiments,

Model 2 with atrous II-blocks also consumes the minimum amount of memory.

However, for the aorta experiments, this advantage no longer exists. This is

because the aorta data is with a large image size of 512 × 512. This high

resolution feature map propagation consumes a lot of memory and Model

2 contains many high resolution feature maps. The training time decreases

along the number of atrous convolutional layers in each block - N for all the

three datasets.

The mean DSC for each patient in the RV, LV and aorta dataset with using

the five or six ACNN models as the segmentation methods are shown in Fig.

4.6. Model 2 with atrous II-blocks achieves the highest DSC for 12/37 RV

patients, 18/45 LV patients and 8/20 aorta patients. For some patients, i.e.,

patient 31 in the RV dataset, patient 29 and 44 in the LV dataset, patient 10

and 15 in the aorta dataset show clearly that Model 2 with atrous II-blocks
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out-performs other ACNN models. The atrous II-block is concluded as the

optimal atrous block and is used in all experiments below.

(a) (b) (c)

Figure 4.7: The patient mean DSC for the RV (a), LV (b) and aorta (c)
dataset with different shortcut connections: residual learning,
identity mapping and dense4 connection, the bars at the negative
Mean DSC axis indicate the shortcut connection that achieves
the highest mean DSC for that patient while the bars at the
positive Mean DSC axis show the mean DSCs achieved by different
shortcut connections.

4.3.2 Shortcut Connection

The segmentation accuracy, optimal learning rate, memory usage and training

time for 100 iterations of the atrous II-block ACNN for segmenting the RV,

LV and aorta with different shortcut connections: residual learning, identity

mapping and dense4 connection are shown in Tab. 4.2. We can see that, even

residual learning is not the shortcut connection which achieves the highest

accuracy at most experiments. In fact, it achieves very similar accuracy to

the highest value at those experiments where it under-performs, i.e., RV-3,

LV-1, LV-2, LV-3, Aorta-1, and Aorta-2. Dense4 connection consumes the

largest memory and takes the longest time to train. The consumed memory

of the dense4 connection for the aorta experiment is an estimated value,

as the real value is larger than 12G and the shown value is an optimized

and approximate value. Residual learning takes almost a similar amount of

memory and training time as identity mapping.
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Table 4.2: The mean±std DSC, optimal learning rate (OLR), memory usage (Mem.) and training time for 100 iterations for
atrous II-block ACNNs with different shortcut connections for the RV, LV and aorta segmentation, highest DSCs
are labelled in bold and red.

Residual learning Identity mapping Dense4 connection
Test mean±std DSC OLR Mem./Time mean±std DSC OLR Mem./Time mean±std DSC OLR Mem./Time

RV-1 0.6755±0.3226 0.5
1.66G/9.8s

0.6425±0.3476 0.5
1.65G/9.4s

0.6752±0.3256 0.05
2.68G/10.5sRV-2 0.7267±0.2839 1.5 0.7169±0.2812 0.5 0.7080±0.2940 0.1

RV-3 0.6823±0.3297 0.05 0.6825±0.3265 0.5 0.6559±0.3388 0.1
LV-1 0.9133±0.1185 0.05

1.66G/9.8s
0.9155±0.1107 0.1

1.65G/9.4s
0.9190±0.0668 0.05

2.68G/10.5sLV-2 0.8712±0.1691 0.5 0.8590±0.1627 1.0 0.8726±0.1627 0.5
LV-3 0.8153±0.2346 0.5 0.8186±0.2310 0.5 0.8032±0.2392 0.5
Aorta-1 0.8449±0.1457 0.5

9.65G/62.6s
0.8491±0.1543 0.1

9.64G/62.5s
0.8335±0.1743 0.01

≈11.89G/65.4sAorta-2 0.7820±0.2318 0.1 0.7871±0.2095 0.5 0.7809±0.2094 0.05
Aorta-3 0.8493±0.1554 0.05 0.8365±0.1726 0.1 0.8344±0.1750 0.1
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The mean DSC for each patient in the RV, LV and aorta dataset with

the three shortcut connections is shown in Fig. 4.7. For some patients, i.e.

patient 6, 12, 31 in the RV dataset, patient 20 in the LV dataset, patient 19

in the aorta dataset, residual learning out-performs other shortcut connection

methods. However, there are also some under-performed examples, i.e.,

patient 27 in the RV dataset, patient 29 in the LV dataset. Overall, residual

learning is concluded as the optimal shortcut connection method and is used

in later experiments.

(a) (b) (c)

Figure 4.8: The patient mean DSC for the RV (a), LV (b) and aorta (c)
dataset with different normalization methods: BN-infer, LN,
FGN and GN4, the bars at the negative Mean DSC axis indicate
the normalization that achieves the highest mean DSC for that
patient while the bars at the positive Mean DSC axis show the
mean DSCs achieved by different normalization methods.

4.3.3 Normalization Method

The mean DSC for each patient in the RV, LV and aorta dataset with the

atrous II-block ACNN, residual learning and four normalization methods:

BN-infer, LN, FGN, and GN4 is shown in Fig. 4.8. We can see that FGN

(green color) achieves the highest accuracy at most patients. For some

patients, i.e., patient 4, 14, 23 in the RV dataset, patient 39, 40 in the LV

dataset, patient 17, 19 in the aorta dataset, FGN out-performs obviously.

There isn’t too much difference between the memory usage of the ACNNs

with the four normalization methods (all around 1.65G for the RV and LV

experiments and 9.64G for the aorta experiments). In terms of the training

speed, FGN is similar to BN-infer and LN (around 10.0s for the RV and

LV experiments while 60.0s for the aorta experiments), while GN4 is the

slowest (around 14.5s for the RV and LV experiments while 95.5s for the

aorta experiments). The optimal learning rates of BN-infer are usually very
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small and around 0.05 while this trend does not exist for the LN, FGN and

GN4 method. FGN is selected as the optimal normalization method and is

used in the following experiments.

(a)

(c)

(b)

Figure 4.9: Four examples of the RV (a), LV (b) and aorta (c) segmentation
results. The red color indicates the ground truth, the green color
indicates the prediction, hence the yellow color indicates the
overlapped pixels which are correctly segmented.

4.3.4 Segmentation Details

Four examples of the RV, LV and aorta segmentation results are shown in

Fig. 4.9. As the RV and LV dataset are not volumetric MRI images, hence

only 2D segmentation slices are shown.
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Table 4.3: The mean±std DSC, optimal learning rate (OLR), and trainable parameters for the four different DCNNs for the
RV, LV and aorta segmentation, highest DSCs are labelled in bold and red.

The proposed ACNN Hybrid network [5] Optimized U-Net [4] U-Net [3]
Test mean±std DSC OLR mean±std DSC OLR mean±std DSC OLR mean±std DSC OLR

RV-1 0.6755±0.3226 0.5 0.7101±0.2875 1.0 0.7204±0.2795 0.5 0.6944±0.2428 0.5
RV-2 0.7267±0.2839 1.5 0.7175±0.2600 1.0 0.7002±0.2900 0.05 0.6452±0.3297 0.1
RV-3 0.6823±0.3297 0.05 0.6907±0.2862 0.5 0.6636±0.3047 0.1 0.6117±0.3455 0.05
LV-1 0.9133±0.1185 0.05 0.9205±0.0995 1.0 0.9241±0.0965 0.05 0.9240±0.0678 0.1
LV-2 0.8712±0.1691 0.5 0.8930±0.1300 0.5 0.8932±0.1211 0.05 0.8874±0.1592 0.1
LV-3 0.8153±0.2346 0.5 0.8306±0.2030 0.1 0.8434±0.1912 1.5 0.8081±0.2345 0.1
Aorta-1 0.8449±0.1457 0.5 0.8197±0.2018 1.0 0.8302±0.1652 0.5 0.8165±0.1843 0.05
Aorta-2 0.7820±0.2318 0.1 0.7846±0.2145 1.5 0.8102±0.1764 0.5 0.7938±0.2081 0.05
Aorta-3 0.8493±0.1554 0.05 0.7483±0.3072 1.0 0.8419±0.1737 1.0 0.7718±0.2712 0.05
Parameters 1.46M(RV, LV) / 2.95M(Aorta) 23.1M 1384.2M 86.5M
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(a) (b) (c)

Figure 4.10: The patient mean DSC for the RV (a), LV (b) and aorta (c)
dataset with different DCNNs: the proposed ACNN, hybrid
network [5], optimized U-Net [4] and U-Net [3], the bars at the
negative Mean DSC axis indicate the DCNN that achieves the
highest mean DSC for that patient while the bars at the positive
Mean DSC axis show the mean DSCs achieved by different
DCNNs.

4.3.5 Comparison with Other Methods

The segmentation accuracy, optimal learning rate, and parameter number of

the four different DCNNs: the proposed ACNN, hybrid network [5], optimized

U-Net [4] with FGN and U-Net [3] on segmenting the RV, LV and aorta

are shown in Tab. 4.3. The optimized U-Net achieves the highest DSCs

for 5 cross validations including RV-1, LV-1, LV-2, LV-3, and Aorta-2, the

proposed ACNN achieves the highest DSCs for 3 cross validations including

RV-2, Aorta-1 and Aorta-3, the hybrid network achieves the highest DSC

on 1 cross validation - RV-3. With achieving comparable DSCs to the other

three methods, the proposed ACNN used less trainable parameters. This

advantage is largely due to the efficiency of full-scale feature maps inside

the proposed ACNN. Compared to the out-performed DCNN - optimized

U-Net, the proposed ACNN also consumes less memory and training time for

the RV and LV experiments (1.66G memory and 9.8s training time for 100

iterations for the proposed ACNN while 8.80G memory and 15.1s training

time for 100 iterations for the optimized U-Net).

The mean DSC for each patient in the RV, LV and aorta dataset with the

four different DCNNs as the segmentation methods is shown in Fig. 4.10.

We can see that U-Net (yellow color) under-performs slightly than the other

three methods, especially for the RV and aorta data.
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Table 4.4: The mean and variance of the segmentation mean DSC of training
the same model in six times, OLR - optimal learning rate, Var. -
Variance, Aor - Aorta.

Test RV-1 RV-2 RV-3 LV-1 LV-2 LV-3 Aor-1 Aor-2 Aor-3
Mean 0.651 0.705 0.654 0.912 0.861 0.807 0.834 0.783 0.845
Var. 0.019 0.015 0.017 0.004 0.019 0.009 0.016 0.016 0.008
OLR 0.5 1.5 0.05 0.05 0.5 0.5 0.5 0.1 0.05

4.3.6 Multiple Runs

The proposed ACNN was trained additionally five times (plus the one in Tab.

4.3, in total six times) for each cross validation. The mean and variance of six

segmentation mean DSCs are shown in Tab. 4.4. We can see that the DSC

variance is < 2%, which is in the normal range - 1% ∼ 2% stated in [97] and

is comparable to the DSC variance - 0.97% ∼ 5.62% when training U-Net in

multiple times [4]. The average DSCs in Tab. 4.4 mostly are lower than the

mean DSCs of the proposed ACNN in Tab. 4.3. This is normal, as the mean

DSCs in Tab. 4.3 were optimized by training five different initial learning

rates. This optimization would not cause unfairness, as it was applied to all

other experiments as well.

4.4 Discussion and Conclusion

An atrous rate setting for determining the atrous rate at the nth atrous

convolutional layer as (k)n−1 where k is the convolutional kernel size is

proposed. It can achieve the largest and fully-covered receptive field with a

minimum number of atrous convolutional layers. Comparison experiments

with traditional atrous rate settings, i.e., (1, 2, 4, 8, ...) in [105], (1, 2, 5, 9,

...) in [107], or (1, 1, ..., 2, 2, ..., 4, 4, ...) in [106], are not conducted due to:

1) smaller receptive field resulted by traditional atrous rate settings would not

definitely indicate lower segmentation accuracy, as a large receptive field may

be redundant when the target is small; 2) in addition to the receptive field,

complex factors, i.e., the link number of each input node and the trainable

parameters influence the segmentation accuracy too. The complex reasons

behind a good segmentation result make it difficult to judge the atrous rate

setting from the segmentation accuracy. Hence, in this chapter, detailed

mathematical proof and derivation are given.
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Six atrous blocks: I-block, II-block, III-block, IV-block, V-block, VI-block

with a receptive field of 3, 9, 27, 81, 243, 729 respectively are proposed and as-

sessed. For an atrous block with a larger receptive field, i.e., VI-block, a fewer

number of blocks and a fewer total number of atrous convolutional layers are

needed to cover the whole input image. Under the network framework in this

chapter, i.e., atrous block cascade, identity mapping, FGN, the experiments

indicate that atrous II-block is optimal for medical image segmentation. How-

ever, if the network framework is changed or the task is changed, the optimal

atrous block may be different. For transferring the atrous blocks proposed in

this chapter to other works, additional exploration and assessment specific to

the target task are essential to select the corresponding optimal atrous block.

Dense connection was shown to be efficient in [112]. In this chapter, it

is not adopted due to its similar segmentation accuracy and high memory

consuming. Identity mapping was shown to be an improvement of residual

learning in [111]. In this chapter, it is not used due to its slightly lower

robustness and stability. Finally, residual learning is used as the shortcut

connection. BN, IN, LN and GN are the four most popular normalization

methods used in medical image segmentation. It was shown in [4] that FGN

is the optimal normalization method for U-Net structure. In this chapter,

FGN also out-performs other normalization methods and is used.

The proposed ACNN achieves comparable segmentation accuracy with the

hybrid network, optimized U-Net with FGN and U-Net, but with using less

trainable parameters. We think this achievement comes from the efficient

information contained in full-scale feature maps. This advantage is very

useful when applying the trained model to mobile devices, as the trained

model will require less memory. For data with a smaller image size, i.e., the

RV and LV dataset with image size 256 × 256, the proposed ACNN also

consumes less memory and training time. However, the consumed memory

and training time increases significantly with the image size, i.e., the aorta

dataset with image size 512 × 512. This would be further optimized with

network architecture designs in our future work. Furthermore, target specific

segmentation DCNNs are not compared in this chapter, i.e., Omega-Net

proposed for cardiac MRI segmentation [114] and Equally Weighted Focal

U-Net proposed for class-imbalance stent graft marker segmentation [21],

as additional target-specific algorithms related to the target character is

usually applied in these methods and hence these methods usually may not
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be generalizable to other datasets.

Except Sec. 4.3.6, all the other accuracy shown was recorded from the first

training only. For a fair comparison, five initial learning rates are explored for

each experiment to avoid setting the learning rate less optimally. This process

may indicate an optimized accuracy, as a sub-optimized training would not

out-perform among the five trainings. However, this process would not cause

unfairness, as it is the same for all experiments. In this chapter, only the

mean and std of the DSC accuracy are presented, additional statistical values,

i.e. p-value, would further enhance the validation in the future.

The shown training time is only for 100 iterations and under a clear

computer process status. This time could be much longer when the computer

and GPU are filled with other processes. In practice, the whole training time

takes up to 16 hours to train one model. As five learning rates were tested

for each experiment, it took up to 4 days to show one DSC in above tables

and figures. This training speed is based on tf.layers and tf.contrib.layers

programming and may be different if the implementation is programmed

differently. Hyper-parameters, i.e. the momentum and optimizer are selected

based on experience. Different results may exist if different hyper-parameter

settings are utilized.

Based on the author’s knowledge, all codes were optimized as much as

possible. Further optimization may exist and may influence the recorded

memory usage and training time. The applications of the proposed ACNN

are not limited to medical image segmentation, but also could be expanded to

natural image segmentation and other pixel-level tasks, which needs further

detailed validations.

A new full-scale DCNN - ACNN is proposed with the use of cascaded atrous

II-blocks, residual learning and FGN. A new atrous rate setting is proposed

to achieve the largest and fully-covered receptive field with a minimum

number of atrous convolutional layers. Six atrous blocks including I-block,

II-block, III-block, IV-block, V-block, VI-block, three shortcut connections

including residual learning, identity mapping, dense4 connection, and four

normalization methods including BN, IN, LN, GN are assessed with detailed

experiments to select the optimal method for the atrous block, shortcut

connection and normalization layer. With less trainable parameters than

that used in the hybrid network, optimized U-Net with FGN and U-Net,

comparable accuracy is achieved by the proposed ACNN. The less parameters
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needed in the proposed ACNN would contribute to the community, as

transferring DCNN methods onto mobile devices and realizing real-time

performances are the two common challenges faced by the current DCNN

methods. This chapter contributes to some fundamental problems in DCNN

with full-scale feature maps, i.e., the atrous rate setting, atrous block division,

wider exploration and contribution from other researchers in the future would

promote full-scale DCNNs.
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5 A Real-time and Registration-free

Framework for Dynamic 3D Shape

Instantiation

1

Due to the respiration and cardiac beating, soft organs and tissues usually

experience severe deformation and are dynamic during the surgery. Usually

this deformation is complex and has no fixed pattern. It is less informative

and insufficient to do an operation which is usually a 3D task under a 2D or

static 3D navigation. Hence, in this chapter, I work on reconstructing the

instantaneous 3D shape of an organ or tissue in real-time from its a single

2D view. This 2D view can be a 2D projection from fluoroscopy, 2D slice

from MRI or 2D image from ultrasound. Based on my work in Chapter 3

and 4 - normalization and network architecture design for training Deep

Convolutional Neural Network (DCNN) for medical image segmentation,

whose segmentation results will be used as the input, in this chapter, the

instantaneous 3D shape of an organ or tissue can be reconstructed with

patient-specific learning.

5.1 Introduction

Current clinical systems for MISs, such as cardiac radio-frequency ablation,

image-guided needle biopsies, and endovascular interventions, typically in-

corporate static 3D surfaces for guidance. Real-time dynamic tracking of

3D surfaces can help to optimize the interventional procedure, especially for

complex anatomical structures undergoing gross tissue deformation, bulk

organ motion, and potential topological changes during interventions.

1The contents of this chapter are published in [Xiao-Yun Zhou, Guang-Zhong Yang,
and Su-Lin Lee. "A real-time and registration-free framework for dynamic shape
instantiation." Medical image analysis 44 (2018): 86-97.]
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A combination of multiple imaging modalities has been used for dynamic

3D navigation. For example, a real-time registration scheme based on both

spatial registration and electrocardiography was proposed to overlay pre-

operative 3D Magnetic Resonance Imaging (MRI) or Computed Tomography

(CT) volumes onto intra-operative 2D ultrasound images for dynamic 3D

navigation [115]. 3D Transesophageal Echocardiography (TEE) was fused

with 2D X-ray fluoroscopic images using image localization and calibration

for dynamic cardiac navigation [116]. However, based on a combination of

multiple imaging modalities, the dynamic 3D shapes were either interpolated

from pre-operative 3D volumes or intra-operatively collected 3D volumes

with low-resolution. A 3D shape recovery scheme based on intra-operative

2D images including X-ray, ultrasound, and MRI could take intra-operative

information into account whilst achieving high-resolution at the same time.

This kind of 3D shape recovery is termed dynamic shape instantiation. The

scheme may or may not involve the use of template models [117]. Without

template models used, more intra-operative information and longer image

acquisition time are needed; for example, at least seven intra-operative 2D

images were needed for reasonable 3D prostate reconstruction [66]. In this

chapter, a single intra-operative 2D view is targeted and hence we focus on

template-based 3D shape instantiation.

For template-based 3D shape instantiation methods, Statistical Shape

Model (SSM) [118], Free Form Deformation (FFD) [119], and Laplacian

surface deformation [120] can be used for the representation of templates.

SSM [121] is a popular technique which represents a set of 3D meshes or 2D

contours with the same number of vertices and connectivity. SSM-based 3D

shape instantiation learns from shape variations rather than only applying

smoothness and 2D/3D similarity as the constraints. It deforms an initial

3D SSM to match intra-operative sparse inputs such as ultrasound-derived

surface points [122], digitized landmarks [123], or two or more calibrated

X-ray images [124]. These methods usually learn a model from a training

set of anatomies of multiple patients and deform the learned model for a

new patient, which requires a high anatomical similarity between patients.

This learning is not suitable for patients with anatomical anomalies, as these

patients have different anatomical shapes. For example, patients who have

undergone liver resection have a significantly different liver shape to other

subjects. A possible solution for these specific cases has been proposed
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in [70]. Here, limited optimal scan planes were determined by analyzing

the pre-operative and patient-specific 3D SSM of the liver with Principal

Component Analysis (PCA). The relationship between pre-operative 3D SSM

and synchronized 2D SSM constructed from 2D images at the optimal scan

planes was learned by Partial Least Squares Regression (PLSR). Finally, with

new intra-operative 2D images obtained at the same scan planes, the 3D shape

was instantiated intra-operatively by applying the PLSR-derived relationship.

However, in [70], the optimal scan plane determination depended on the

selected vertices that were deemed informative but were highly correlated and

clustered. PLSR can only derive linear relationships while the deformations

of most anatomies are non-linear. Based on [70], a framework which achieves

more accurate, robust, generalizable and convenient shape instantiation from

a single intra-operative 2D view is proposed in this chapter.

Subspace reprojection was proposed to determine an optimal scan plane for

SSM-based 3D shape instantiation by fitting a plane to the most informative

vertices [125]. This optimal scan plane was shown to have enhanced accuracy

compared to other scan planes [125]. By applying PCA [126] on the pre-

operative 3D SSM, the informative vertices which contribute most to the

shape variations are determined by the loadings of principal components [70].

The downside of using PCA is that the derived principal components are linear

combinations of multiple variables and therefore the selected informative

variables are highly related and difficult to interpret. This phenomenon

when reflected in our application is that the selected informative vertices

are clustered area and are not the real and independent informative vertices.

Many methods have been proposed to solve this issue, including rotation

methods [127], limited set of integers [128], and Simplified Component

Technique Least Absolute Shrinkage and Selection operator (SCoTLASS)

[129]. Simple thresholding of the loadings is a common and informal method

usually used in practice [70]; however, this method lacks theoretical support

and usually causes problems [130]. Recently, Zou et al. proposed Sparse PCA

(SPCA) which reformulated PCA into a regression-type optimization problem

and then added a L1 constraint to achieve sparse loadings; they demonstrated

improved performance of SPCA in selecting the real informative variables

over previous methods [1]. A SPCA toolbox was later developed [131].

PLSR is a linear regression method that finds the linear relationship

between two matrices: predictors and responses. It finds the principal
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components in predictors that can explain the principal components in

responses maximally by projecting the predictors and responses into a new

space. It has a similar prediction accuracy to Ridge Regression (RR) and

Principal Component Regression (PCR) [132]. It is more widely used than

RR and PCR in medical problems, such as cardiac motion prediction [133]

and craniofacial reconstruction [134], as it is more suitable for problems

with a larger number of variables and fewer number of observations [135].

However, its accuracy for non-linear motions is limited. Many non-linear

PLSR variations have been proposed and they can be divided into two

groups [136]: the first group reformulates the linear relationship into a

non-linear one by polynomial functions, smoothing splines, artificial neural

networks, and radial basis function networks while the second group maps the

original variables into a higher dimensional space and regresses the mapped

variables in the higher dimension, for example, kernel space. Kernel PLSR

(KPLSR) [135] from the second group is adopted in this chapter for improved

computation speed as its formulation is as time-efficient as PLSR and avoids

the non-linear optimization in the first group.

In this chapter, the high-resolution 3D shape of a dynamic anatomy was

instantiated from a single intra-operative 2D view in real-time. Firstly,

the anatomy was scanned by MRI or CT pre-operatively for multiple 3D

volumes along the dynamic cycle and a 3D SSM was constructed. SPCA

was applied on the pre-operative 3D SSM to select the informative vertices

which were used to fit an optical scan plane. Local adjustments of the

scan plane parameters for better accessibility, visibility or satisfying other

local constraints is possible without incurring major errors, as the later

KPLSR-based 3D shape instantiation scheme is robust to optimal scan

plane derivations. Secondly, 2D projections or slices synchronized with

the pre-operative scanning were obtained at the approximate optimal scan

plane and were sampled to generate a synchronized 2D SSM. KPLSR was

applied to learn the relationship between the pre-operative 3D SSM and the

synchronized 2D SSM. Finally, the high-resolution 3D shape was instantiated

intra-operatively by applying the KPLSR-derived relationship onto a new

intra-operative 2D projection or slice at the same scan plane. The overall

framework of the proposed dynamic shape instantiation is illustrated in Fig.

5.1. Due to the learning of patient-specific models, the framework is applicable

to any anatomy. No extra registration is needed for the pre-operative 3D
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SSM and the synchronized 2D SSM. Validation was performed on the liver

(two digital liver phantoms, one dynamic liver phantom, one in vivo porcine

liver, eight metastatic livers) and the cardiac RV (18 asymptomatic RVs and

9 Hypertrophic Cardiomyopathy (HCM) RVs); we anticipate that potential

applications of our work will include percutaneous liver biopsy, cardiac

catheterization [137], and intra-myocardial therapy [138]. For example, in

cardiac ablation, the instantiated 3D RV shape can be used to help navigate

the catheter tip to the target ablation area.

Figure 5.1: A schematic illustration of the overall framework of the proposed
dynamic shape instantiation scheme: both the 2D projections or
slices in the learning and prediction are taken at the approximate
optimal scan plane; the learning 2D SSM and learning 3D SSM
are not registered but synchronized.

5.2 Methodology

The proposed 3D shape instantiation framework mainly include three steps.

First, SPCA is used to determine the optimal scan plane for the single 2D

projection or slice by analyzing the 3D pre-operative SSM. This scan plane

is usually informative and can capture the most information regarding the

deformation of the target. Second, KPLSR is used to learn the relationship

between the 2D SSM and 3D SSM. This learning process learns the relation-

ship between two matrices with the dimension of N×p and N×p respectively.

Third, this learned KPLSR model is used to instantiate intra-operatively a

new 3D shape based on a new 2D projection or slice input. This new 2D

projection or slice is also acquired at the optimal scan plane. The methods for
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determining the optimal scan plane are described in Sec. 5.2.1. The learning

and instantiation based on KPLSR are described in Sec. 5.2.2. Finally, the

data collection and detailed validation experiments are in Sec. 5.2.3.

5.2.1 Optimal Scan Plane Determination

By pre-operatively scanning the target anatomy with CT or MRI, a 4D volume

consisting of multiple 3D volumes at different time frames along the dynamic

cycle of the anatomy was obtained. These 3D volumes were represented with

3D meshes using the same number of vertices and connectivity, which created a

pre-operative 3D SSM (a point distribution model) with vertices YN×numY×3,

where N is the number of time frames and numY is the number of vertices. By

rearranging the (x, y, z) coordinates of the vertices as independent variables,

YN×q was obtained, where q = numY ×3 is the number of variables. Without

loss of generality, YN×q was centered and normalized as Ynorm with the mean

and norm of each column as 0 and 1.

For data Ynorm, its singular value decomposition is Ynorm = UDV T , where

Z = UD are the principal components and V are the loadings of the principal

components. The ith principal component Zi, i ∈ (1, N) represents the ith

mode of variation in the anatomical deformation while the corresponding

loadings Vi represent the contribution of each variable to this mode of

variation [125]. The Vi calculated by PCA are usually all non-zero values

and hence the selected informative vertices are highly related and clustered.

The aim of SPCA is to achieve a sparse Vi. Vi can be recovered by:

β̂ridge = arg minβ‖Zi − Ynormβ‖2 + λ‖β‖2 + λ1‖β‖1 (5.1)

where,
β̂ridge

‖β̂ridge‖
= Vi, λ is a manually set positive parameter, ‖β‖1 =

∑q
j=1 |βj |

and λ1 is a manually set parameter which controls the sparsity or the number

of non-zero values of β̂ridge. Equ. 5.1 can be solved with a fixed λ and any

λ1 by Least Angle Regression Elastic Net (LARS-EN) efficiently [139].

However, Equ. 5.1 is still based on PCA due to the inclusion of Zi. To

release this dependency, a two-stage exploratory analysis was formulated

with PCA initialization and then optimization with sparse approximations.
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With yi - the ith row of Ynorm:

(α̂, β̂) = arg minα,β

N
∑

i=1

‖yi − αβT yi‖2 + λ‖β‖2 (5.2)

When ‖α‖2 = 1, then β̂ ∝ V1; the detailed proof can be found in [1]. If

the first k principal components and the lasso penalty are included, Equ. 5.2

becomes

(Â, B̂) = arg minA,B

N
∑

i=1

‖yi−ABT yi‖2+λ

k
∑

j=1

‖βj‖2+
k

∑

j=1

λ1,j‖βj‖1 (5.3)

Here, Aq×k = [α1, ..., αk] are the loadings of the first k principal components

of PCA, with the restriction of ATA = Ik×k. Then Bq×k = [β1, ..., βk] are

the approximated sparse loadings of V1:k [139].

The complete SPCA algorithm is listed in Table 5.1. The approximated

sparse loadings V̂j is a q × 1 matrix with the loading or contribution of

each variable to the jth principal component or mode of variation. The

parameter λ1,j controls the sparsity or the number of non-zero values in V̂j .

As suggested in [125], the contribution of three coordinates (x, y, z) at V̂1

was added together to represent the vertex contribution. The vertices at

all time frames with non-zero contribution were selected as the informative

vertices. A plane with the minimum sum of distances to all informative

vertices was determined as the optimal scan plane. When calculating the

sum, each distance was weighted by the vertex contribution. For multiple

scan planes, V̂j , j ∈ (2, N) can be used to determine the jth optimal scan

plane; however, this is out of the scope of this chapter as we are targeting a

single scan plane.

In [70], the real scan planes were registered to the optimal scan planes. In

this chapter, as the proposed KPLSR-based 3D shape instantiation is robust

to local scan plane deviations, which will be shown in Sec. 5.3.2, the final scan

plane is an approximate one that is both accessible and convenient for imaging

with parameters near the optimal scan plane. When the deformations or

shapes of the anatomy are significantly different between patients and hence

there are significantly different optimal scan planes between patients, such as
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Table 5.1: SPCA [1]

SPCA

Initialize A = V [:, 1 : k]:
the loadings of the first k principal components from PCA

Initialize Bq×k = [β1, ..., βk] = 0
For j=1:k

If ‖βnew
j − βold

j ‖ > criterion, which has not converged
Solve the following minimum by LARS-EN:

βj = arg minβ(αj − β)TY T
normYnorm(αj − β) + λ‖β‖2 + λ1,j‖β‖1

Update B with the normalized new βj
Update A with the normalized new αj :

αj = (1−A[:, 1 : j − 1]A[:, 1 : j − 1]T )Y T
normYnormβj

End
End

Approximated sparse loadings V̂j = βj , j = 1, ..., k.

the metastatic liver after oncological surgery, the optimal scan plane needs to

be determined on a patient-specific basis. When the deformations or shapes

of the anatomy are similar between patients and hence there are similar

optimal scan planes between patients, such as the RV, the trend of the optimal

scan planes for multiple patients is determined as a general optimal scan

plane for the anatomy and will be used directly in subsequent interventional

procedures, thus reducing the workload for clinicians. Detailed optimal scan

plane determination and approximation in our practical experiments are

given in Sec. 5.2.3.

The optimal scan plane is a suggestion. For MRI and ultrasound, it is

possible to acquire an image slice at a scan plane. While for fluoroscopy, it is

difficult to acquire a image at a scan plane, as only projections are available.

Based on my experience, in this situation, I suggest to select a projection

with a clear contour and maximum cross-section area as the replacement.

5.2.2 3D Shape Instantiation

With the pre-operative 3D SSM and the approximate optimal scan plane

obtained, 2D projections or slices synchronized with the time frames for pre-

operative scanning were obtained at the approximate optimal scan plane. The

2D anatomical contours were segmented and sampled to the same number of

2D vertices and connectivity, resulting in a 2D SSM with vertices XN×numX×2,
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where N is the number of time frames and numX is the number of vertices.

By rearranging the (x, y) coordinates of vertices as independent variables,

XN×p was obtained, where p = numX × 2 is the number of variables and

typically p 6= q. The 3D volumes and 2D projections or slices do not need to

be registered. KPLSR is then applied to learn the relationship between the

3D SSM which is the response in regression and the 2D SSM which is the

predictor in regression. For 3D shape instantiation, the new intra-operative

2D projection or slice is obtained at the same scan plane and is sampled into

the same number of vertices and connectivity as that for the original 2D SSM

with vertices x′numX×2. x
′
1×p is obtained by rearranging the (x, y) coordinates

as independent variables for applying the KPLSR-derived relationship to

predict the intra-operative response y′1×q whose (x, y, z) coordinates are then

rearranged back to obtain the intra-operative 3D shape y′numY×3.

In the following sections, we introduce PLSR and show its extension to

KPLSR.

PLSR

PLSR extracts the relationship between two matrices which could have

different dimensions. With predictors XN×p and responses YN×q, PLSR

finds the relationship between them:

ŶN×q = XN×pBp×q (5.4)

As PLSR is a regression and optimization process, approximation of Y

rather than Y is achieved. Here, Ŷ is the approximate prediction of Y . The

difference between Ŷ and Y depends on the criteria that user set. The latent

variables in X are determined by Bp×q to explain the latent variables in Y

maximally. Bp×q is later used to predict the intra-operative response y′1×q

from x′1×p. Non-linear Iterative partial Least Squares (NIPALS) is a widely

applied PLSR algorithm [135]. In this chapter, an alternative algorithm -

SIMPLS [140] - was used for increased time-efficiency.

Without loss of generality, both XN×p and YN×q are centered with the

mean of each column as 0, which are expressed by X0 and Y0 respectively

below. The main problem for SIMPLS is to compute the weight factors ri

and di, where i ∈ (1,M) and M is a manually set parameter denoting the

number of components used. ri and di maximize the covariance of ti = X0ri
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Table 5.2: SIMPLS

SIMPLS

Initialize S0 = XT
0 Y0, X0, Y0 are the centered matrix of X,Y respectively

for i = 1 : M (M is a manually set parameter - the number of components used)
if i == 1
ri = first left singular vector of SVD of S0, (ri − weights)

else
ri = first left singular vector of SVD of S0(Ip − Ci−1(C

′
i−1Ci−1)

−1C ′
i−1)

end

ti = X0ri (ti − scores)
ci = XT

0 ti/(t
t
iti) (ci − loadings)

end

Coefficient: Bp×q = RT−1Y0, where R = [r1, r2...rM ], T = [t1, t2...tM ]

and ui = Y0di with the following four conditions:

1. maximized covariance: u′iti = d′i(Y
′
0X0)ri = maximum,

2. normalized ri: r′iri = 1,

3. normalized di: d′idi = 1,

4. orthogonalized t: t′jti = 0, i > j

To satisfy the fourth condition, t′jti = t′jX0ri = (t′jtj)c
′
jri = 0, where

cj = X ′
0tj/(t

′
jtj). When i > 1, any new ri must be orthogonal to Ci−1 =

[c1, c2...ci−1]. This orthogonal projector is Ip−Ci−1(C
′
i−1Ci−1)

−1C ′
i−1, where

Ip is an identity matrix. The SIMPLS algorithm is listed in Table 5.2. For

more details of SIMPLS, please refer to [140].

KPLSR

PLSR is less suitable for regressing non-linear motions. KPLSR was used to

compensate for this shortage. A kernel function maps the predictor XN×q

into a new feature space F non-linearly with Φ : xi ∈ Rq → Φ(xi) ∈ F, i ∈
(1, N). Φ satisfies the kernel trick : Φ(xi)

TΦ(xj) = K(xi, xj). PLSR is then

constructed in the feature space F to achieve a non-linear regression for

X [135].

The kernel used in this chapter was a Gaussian kernel for its increased

accuracy over a polynomial kernel:

Kspace = exp(−K/W ) (5.5)
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Here K(i,j) = K(j,i) = (xi−xj)
2, i, j ∈ (1, N). W , the Gaussian width, was

adjusted to Ratio×maximum(KN×N ) to facilitate parameter adjustment

between different targets and subjects, Ratio is a manually set ratio which

we term the Gaussian ratio. After the Gaussian kernel, a new matrix Kspace

is acquired from X while contains more informative information than X due

to the non-linear Gaussian kernel process. With the input as X, Tab. 5.2

is a normal PLSR process, while replacing the input X to be Kspace, Tab.

5.2 allows PLSR to regress more informative and non-linear relationship,

indicating a KPLSR process. For more details regarding the proof, please

refer to [135] while for more details regarding the programming, please refer

to Xiao-Yun Zhou’s github.

5.2.3 Data Collection and Validation

The proposed framework was validated on both liver and cardiac RV studies.

The experiments included two digital liver phantoms, one dynamic liver

phantom, one in vivo porcine liver, eight livers from metastatic patients,

18 cardiac RVs from asymptomatic subjects, and 9 cardiac RVs from HCM

patients.

The acquisition of 3D meshes and synchronized 2D contours at different

time frames along the dynamic cycle for each data are given in Sec. 5.2.3

- 5.2.3. All data used the same methods to construct the 3D and 2D SSM.

With known 3D shapes consisting of 3D vertices and connectivity at different

time frames, the mid-state 3D mesh was first projected to meshes at other

time frames by non-rigid registration [141]. Then the registered mid-state 3D

mesh was mapped onto meshes at other time frames by projecting its vertices

along the normal directions. Therefore a 3D SSM with point correspondences

was constructed. With known 2D contours consisting of 2D vertices and

connectivity at different time frames, the construction of a 2D SSM was

in the same way as that for a 3D SSM but with a different registration

method [142].

Digital Livers

XCAT is a digital whole body phantom with detailed, high-resolution and

dynamic tissues [143] as shown in Fig. 5.2a and Fig. 5.2b. In this chapter, the

isotropic resolution of the volume was set at 0.625mm. 21 time frames were
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collected between exhalation and inhalation. 3D meshes of two XCAT livers

(one male and one female) were manually segmented and processed with

Analyze (AnalyzeDirect, Inc, Overland Park, KS, USA) and MeshLab [144].

A 3D SSM was constructed for each digital liver.

The optimal scan plane for each liver was determined with approximately

200 informative vertices and was used to slice the meshes in the 3D SSM.

The intersection contours were projected onto the slicing plane to simulate

2D contours. A 2D SSM was constructed for each liver.

Figure 5.2: The digital livers and phantom experiment setup: (a) the male
digital phantom, (b) the female digital phantom, (c) an X-ray
image of the Regina phantom, whose lungs have been modified
to simulate different respiratory positions, (d) the custom de-
signed tracking frame based on a Polaris tracker mounted on the
ultrasound transducer.

Dynamic Liver Phantom Experiment

A detailed female phantom modeled with silicone organs (the Regina model

[145]) was used. The lungs were modified to simulate respiratory motion.

In each lung, foam board inserts (each 5mm thick) were used, creating

seven different liver deformation positions. Each respiratory position was

scanned in a Siemens 64 slice SOMATOM™ Sensation CT Scanner with
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images of 0.77mm× 0.77mm in-plane resolution and 1mm slice separation.

Segmentation and processing were performed with Analyze and MeshLab.

For real-time scanning, ultrasound imaging was used. A 2D imaging

transducer used with the ALOKA prosound α10 system (Aloka Co. Ltd,

Tokyo, Japan) was affixed with an NDI Polaris passive infrared tracker

(Northern Digital, Inc, Waterloo, ON, Canada), enabling the recording of

the spatial position and orientation of the scan plane. Calibration between

systems was established by registering three known landmarks on the liver

phantom in both frames of reference. The ultrasound images were captured

from the S-video output feed of the scanner. The experiment setup is shown

in Fig. 5.2c and Fig. 5.2d.

Freehand 3D ultrasound systems require calibration and a number of

techniques and corresponding phantoms have been developed for this [146].

To calibrate the ultrasound images to the coordinate space of a tracking

device, a three-point crossed wires phantom was built. The transforms from

the coordinate space of the optical tracker to that of the CT imaging space

were calculated by PRAXIS [147]. This defined a translation and a quaternion

for the rotation between the ultrasound image points and the CT imaging

space [148]. The mean distance between the registered ultrasound image

points and the 3D meshes scanned by CT is less than 10−2mm.

Due to the constraints caused by the rib cage, the optimal scan plane

fitted with 30 informative vertices was selected as the actual scan plane. The

silicone phantom was filled with water. For each respiratory position, the

optimal scan plane was acquired with the ultrasound probe. An experienced

operator scanned the phantom using an in-house guidance system where the

silicone liver was registered to a 3D guidance mesh by three manually chosen

points. This guidance system provided the actual scan plane in real-time as

well as the desired scan plane orientation.

A semi-automatic segmentation based on active contours [149] was used to

delineate the liver contour from the 2D ultrasound images. It could determine

a contour in an ultrasound images automatically when the two end points

were selected manually. The contours were transformed to the CT coordinate

frame to achieve registered contour coordinates from which a registered 2D

SSM was constructed. The registration between 3D volumes and 2D images

was only performed for the Regina phantom for later specific comparison

and was not performed for all other data.
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Porcine Liver

One contrast enhanced 3D CT scan was captured at full exhalation using a

GE Innova 4100 interventional X-ray machine capable of fluoro-CT imaging.

Due to the respirator design, the porcine liver could not be stopped at different

respiratory positions for a 3D CT scan. Instead, fluoroscopic projections

were obtained in an Anteroposterior (AP) direction over time to cover the

animal’s respiratory motion. As only one 3D volume at full exhalation was

scanned with CT, 3D volumes at other respiration positions were simulated by

image constrained Finite Element Modeling (FEM) [150] while the collected

fluoroscopic projections were used as the image constraints. This created

multiple liver 3D meshes at different time frames. In this chapter, the

surface mesh at full exhalation was first turned into a tetrahedral mesh

using Gmsh [151]. Then, the Open Source SOFA framework [152], chosen

for its emphasis on real-time medical simulations, was used for the FEM.

The material for the liver was set to be elastic and isotropic, with a Young’s

modulus of 640 Pa and Poisson’s ratio of 0.3 [153]. A 3D SSM was constructed

for the porcine liver.

The meshes in the 3D porcine liver SSM were sliced by the optimal scan

plane determined with approximately 200 informative vertices. The sliced

contours were projected onto the slicing plane with 2D coordinates to simulate

2D contours. A 2D SSM was constructed for the porcine liver as well.

Metastatic Livers

Clinical data from eight patients (6 male, 2 female, mean age 63) with

metastatic liver tumors was collected. 4D volumes were scanned using a 1.5T

MRI scanner (Intera, Philips, Amsterdam, Netherland) using a T1 weighted

free-breathing sequence (TR = 7.83ms, TE = 2.24ms, 3.5mm × 3.5mm

in-plane resolution, 4.5mm slice thickness). Each volume consisted of 45

slices and was acquired in approximately 1.2s. 60 time frames were collected

to cover the liver motion during respiration. Due to motion artifacts caused

by respiration, we could only confidently segment the livers at full inhalation

and full exhalation. As before, the SOFA framework was used to generate

the meshes at different respiratory positions but with the 3D volumes at full

inhalation and full exhalation as the constraints. These meshes were used to

construct a 3D SSM for each patient.
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The eight metastatic patients have significantly different liver shapes

and deformations and the optimal scan planes for each patient were very

different. For this reason, for the metastatic liver, the optimal scan plane was

determined patient-specifically with approximately 50 informative vertices

for each patient and this was used to slice the meshes in the 3D SSM. The

sliced contours were projected onto the slicing plane with 2D coordinates to

simulate 2D contours. A 2D SSM was constructed for each patient.

Cardiac Data

27 subjects (18 asymptomatic subjects (Subjects 1-18) and 9 patients with

Hypertrophic Cardiomyopathy (HCM) (Subjects 19-27)) were scanned with a

1.5T MRI scanner (Sonata, Siemens, Erlangen, Germany). HCM was selected

as it is one of the diseases that influence both the shape and deformation of

the heart significantly. Short-axis cine sequences from the atrioventricular

ring to the apex were scanned with a 10mm slice gap and a 1.5− 2mm pixel

spacing. 19−25 time frames were collected. To recognize the slice location of

the atrioventricular ring and the apex, the 10mm slice gap was interpolated

to 1mm in Analyze. 3D RV meshes were segmented and built with Analyze

and MeshLab. A 3D SSM was constructed for each patient.

Even though HCM influences both the shape and deformation of the RV,

the optimal scan planes for the 27 subjects, which were determined with

approximate 150 informative vertices each, were mostly found to be along

the long axis of the heart. Four examples are shown in Fig. 5.3. Even though

the optimal scan planes in Fig. 5.3 are not exactly the same, they still share

the same trend - lying along the long axis of the heart. This similarity of

the optimal scan planes between patients is mainly due to the similarity in

deformation and shape of the RVs between patients. As later KPLSR-based

3D shape instantiation is robust to optimal scan plane deviations, we made

an adjustment to the optimal scan plane to ensure the accessibility of the

scan plane and the visibility of the RV considering the following three issues:

1) The long-axis is accessible for 2D MRI, 2) The horizontal (four-chamber)

long-axis has a clear view of the RV without overlap with other chambers,

and 3) Clinicians are familiar with this plane as it features the apex and

the atrioventricular ring. For these reasons, the horizontal (four-chamber)

long-axis plane was selected as the actual scan plane for all RVs.
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Figure 5.3: Four RVs, with optimal scan plane determination using the 150
most informative vertices: the vertices are colored by their normal-
ized importance determined by SPCA and the grey plane is the
optimal scan plane, with the overall view direction shown on the
left hand side. The red/blue/green/grey chambers are the right
ventricle/right atrium/left atrium/left ventricle, respectively.

2D MRI slices at the horizontal (four-chamber) long-axis plane with the

synchronized time frames as that for the pre-operative 4D volume scanning

were obtained for all 27 subjects. Analyze was used to segment the RV

contours and a 2D SSM was constructed for each subject.

Validation

Leave-one-out cross validation was applied for all time frames for all data.

The ith, i ∈ (1, N) time frame in the 2D SSM was left out as a new predictor

while the ith time frame in the 3D SSM was left out as the ground truth.

All other time frames were used in the learning. The error was calculated

as the Euclidean vertex-to-vertex distance between the 3D prediction and

the ground truth. The shape variation was calculated as the mean vertex-to-

vertex distance between the (i− 1)th and the (i+ 1)th time frame in the 3D

SSM.

It was shown that SPCA was able to better select the real and unrelated

informative variables than PCA on a synthetic example [1]. For the synthetic

example, the contribution of a variable and the relations between variables

were known. However, for practical data, both this contribution and the

relations were unknown; a comparison of the distribution of the informative

vertices selected by PCA and SPCA is given in this chapter. In practice,

adjusting the optimal scan plane is usually necessary for better scan plane

accessibility and target visibility. To illustrate that this adjustment will
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not incur major errors, multiple deviated optimal scan planes were used to

instantiate the 3D shape.

Both PLSR and KPLSR regress the relationships between two matrices

rather than two coordinate frames. Lee et al. applied PLSR with registration

of pre-operative 3D SSM and synchronized 2D SSM [70]. In this chapter,

this explicit registration between the 2D SSM and 3D SSM is not required.

To demonstrate this, both the registered and non-registered 2D SSM of

the dynamic phantom liver were used as the predictor for dynamic shape

instantiation. The stability of an algorithm with respect to its parameters

is important for judging its performance. PLSR has one parameter, the

number of components used, while KPLSR has two parameters, the number

of components used and the Gaussian ratio. To evaluate the stability of

PLSR and KPLSR to the number of components used, the validation was

applied on two HCM RVs with the number of components used set from

1−18. In practice, the time frames at or near the boundaries, i.e. at maximal

inhalation and exhalation or at diastole and systole, are the most difficult

time frames to recover, as the learning is more weak for these time frames.

We term these time frames boundary time frames. In this chapter, the

performance of PLSR and KPLSR at boundary time frames were validated

on two cardiac RVs (one asymptomatic RV and one HCM RV). The liver

data was collected along half of the dynamic cycle - the first and last few

time frames are the inhalation and exhalation respectively, i.e. the boundary

time frames. The cardiac data was collected along the entire dynamic cycle,

the first and last few time frames are at diastole while the middle few time

frames are at systole, i.e. the boundary time frames.

Finally, the accuracy of the proposed dynamic shape instantiation was

tested on two digital livers, one in vivo porcine liver, eight metastatic liver

patients, and 27 RVs of asymptomatic subjects and HCM patients.

5.3 Results

The results from our experiments are shown in the following sections. The

comparison between PCA and SPCA on selecting informative vertices is

demonstrated in Sec. 5.3.1. The robustness of the KPLSR-based 3D shape

instantiation to scan plane deviations is shown in Sec. 5.3.2. The validation

on releasing the registration between pre-operative 3D SSM and synchronized
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2D SSM is illustrated in Sec. 5.3.3. The stability of PLSR and KPLSR

to the number of components used is compared in Sec. 5.3.4. Boundary

time frames are tested in Sec. 5.3.5. Finally, the accuracy of the proposed

dynamic shape instantiation is validated on the liver and the heart, which is

shown in Sec. 5.3.6.

5.3.1 Comparison between PCA and SPCA

For most subjects, including the metastatic livers and cardiac RVs, it was

found that the informative vertices selected by PCA were more clustered

than the informative vertices selected by SPCA. Three examples are shown

in Fig. 5.4. Clustered informative vertices were selected by PCA due to

their related motion with the informative vertices considered to be in the

same area. SPCA can remove this inter-relation and only select the true and

sparse informative vertices.

5.3.2 Robustness to Scan Plane Deviations

To demonstrate the robustness of the proposed KPLSR-based 3D shape

instantiation to scan plane deviations, example RV results from Subject 3 are

illustrated below. 13 scan planes with some deviations from the optimal scan

plane were used to slice the pre-operative 3D SSM for 3D shape instantiation.

The distance error and the deviation for each scan plane is shown in Fig. 5.5a

and Fig. 5.5b respectively. We can see that the achieved accuracy was scarcely

influenced by local scan plane deviations, demonstrating the robustness of the

proposed KPLSR-based 3D shape instantiation to scan plane deviations. This

is important for practically implementing the proposed framework, as due to

practical constraints (access window, or other local, physical constraints), it

may be necessary to deviate slightly from the theoretical optimal scan plane.

Such deviation should not induce large changes in instantiation errors.

5.3.3 Validation of Registration-Free Instantiation

The instantiation accuracy across all time frames with registered and non-

registered predictors which were collected in the liver phantom experiment is

shown in Fig. 5.6. It can be seen that PLSR is influenced by the registration

while KPLSR shows little influence, demonstrating that explicit registration

is not required in the proposed method.
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Figure 5.4: One liver and two RV examples showing the most informative
vertices selected by SPCA and PCA: (a) a metastatic liver with
50 informative vertices determined by SPCA while 50, 150, 250
informative vertices determined by PCA, (b) an asymptomatic
RV with 100 informative vertices determined by SPCA while 50,
150, 250 informative vertices determined by PCA, (c) a HCM RV
with 101 informative vertices determined by SPCA while 50, 150,
250 informative vertices determined by PCA. The view directions
for RVs and vertex coloring are in the same way as that in Fig.
5.3
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Figure 5.5: Testing the robustness of the proposed KPLSR-based 3D shape
instantiation to scan plane deviations: (a) the mean distance
error of the 3D shape instantiation with deviated optimal scan
planes, with standard deviation calculated across 20 time frames,
(b) the deviations of the scan planes. Even though a plane could
have six transformations, three of them (rotation along the z axis,
translation along the x axis and translation along the y axis do
not influence the slicing results. The other three transformations
were explored. For example, (0, 0, 6) means rotating 0◦ along the
x axis, rotating 0◦ along the y axis, and translating 6mm along
the z axis, (c) illustration of the x, y, z axes of a plane.

Figure 5.6: The instantiation accuracy for the liver phantom experiment:
(left) the mean distance errors of PLSR with registered and non-
registered predictors, (right) the mean distance errors of KPLSR
with registered and non-registered predictors.
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5.3.4 Stability to the Number of Components Used

Instantiation for two HCM patients (Subject 21 and Subject 27) was cal-

culated along all time frames with a varying number of components used

(1−18), as shown in Fig. 5.7a and Fig. 5.7d. It can be seen that the accuracy

of KPLSR is less sensitive to this parameter - the number of components

used - than that of PLSR, as the standard deviations of KPLSR are less

than that of PLSR at most time frames. Two time frames (time frame 5 of

Patient 21, time frame 9 of Patient 27) are shown with the mean distance

errors at different numbers of components used in Fig. 5.7b and Fig. 5.7e.

Two instantiation examples colored by the distance errors are shown in Fig.

5.7c and Fig. 5.7f. The error is distributed evenly over the mesh.

Figure 5.7: Testing the influence of the number of components used on PLSR
and KPLSR: (a) the mean ± std errors for Subject 21, with the
standard deviation calculated across 1− 18 components used, (b)
mean distance errors with numbers of components used varying
from 1−18 for time frame 5 of Subject 21 (labeled with blue dots
in a), (c) a shape instantiation example colored by the distance
errors with 7 components used for time frame 5 of Subject 21
(labeled with green dot in b), with the same view direction in
Fig.5.3, d,e,f are the same as a,b,c but for Patient 27, time frame
9, 7 components used respectively.
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5.3.5 Performance at Boundary Time Frames

The mean distance errors for shape instantiation along all time frames are

shown for two selected subjects (Subject 6 (asymptomatic) and Subject 19

(HCM)) in Fig. 5.8a. The PLSR errors show large peaks near systole (time

frame 10 for Subject 6, time frame 11 for Subject 19) and diastole (time

frame 1 and 25 for Subject 6, time frame 1 and 20 for Subject 19) while

KPLSR errors show smaller increasing errors at these boundary time frames.

It can be concluded that KPLSR has better performance at boundary time

frames than PLSR.

Figure 5.8: Results at the boundary time frames and for the RV experiments:
(a) performance test for boundary time frames, (b) the instan-
tiation errors for 27 subjects (Subjects 1-18 = asymptomatic
subjects; Subjects 19-27 = HCM).

5.3.6 Accuracy of Dynamic Shape Instantiation

Mean distance errors of PLSR and KPLSR and the shape variation of two

digital phantom livers and one porcine liver are shown along all time frames

in Fig. 5.9. For the two digital livers, KPLSR achieved much lower errors at

the time frames where PLSR showed high peaks. For the porcine data, the

accuracy of KPLSR is higher than that of PLSR at most time frames. For

both digital phantom and porcine liver studies, the mean distance error of

KPLSR is much lower than the shape variation at most time frames. The

peaks for KPLSR (time frames 18-19 in Fig. 5.9b and time frames 1-2 in
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Fig. 5.9c) were caused by boundary time frames. The higher accuracy of

KPLSR for the two digital livers is not as obvious as that for the porcine

liver due to the design and linear deformation of the digital phantom.

Figure 5.9: The mean distance errors and the shape variation of the two
digital livers and the porcine liver: (a) the mean distance errors
and the shape variation for the female digital liver, (b) the errors
and shape variation for the male digital liver, (c) the errors and
shape variation for the porcine liver.

Eight patients with metastatic tumors were used for instantiation validation

with the mean distance errors of PLSR and KPLSR and the shape variation

shown along all time frames in Fig. 5.10. For most of the time frames and

patients, KPLSR achieved much more accurate instantiation results than

those of PLSR. The mean distance errors of KPLSR were also much lower

than the shape variation. The higher errors of KPLSR (time frames 29-30

for P1, time frames 1-3 and 29 for P4, time frame 22 for P5, time frame 14

for P7) were caused by boundary time frames.

Figure 5.10: The mean distance errors and the shape variation for the eight
metastatic livers.
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Shape instantiation of 27 RVs was validated with the mean distance errors

of PLSR and KPLSR and the shape variation shown in Fig. 5.8b; the standard

deviation in the graphs was from the error variation along different time

frames. Overall, KPLSR achieves both lower mean and standard deviation

errors in the instantiation than PLSR for all subjects. The error achieved by

KPLSR was also much lower than the shape variation for all subjects. The

similar results between patients also demonstrate the availability of using one

approximate optimal scan plane - the horizontal (four-chamber) long-axis

plane for all RVs in this chapter.

For optimal scan plane determination, the number of informative vertices

was determined as 5%−10% of the total number of vertices in each test mesh,

the parameter λ was fixed at 0.0001, k was set at 1 as we are targeting a

single scan plane, and the parameter λ1 was set as the number of informative

vertices. For 3D shape instantiation, with the exception of the test for

stability to the number of components used, all tests were validated with the

number of components used for PLSR optimized between 1− 8 while that

for KPLSR was empirically set between 1− 18. Overall, KPLSR achieved

better accuracy at a higher number of components used than PLSR. The

Gaussian ratio parameter of KPLSR was selected empirically.

Experiments were performed in MATLAB on an Intel(R) Core(TM) i7-

4790 CPU @3.60Hz computer. The training took approximately 1s for one

component deflation; the number of component deflations is the number of

components used. The prediction or shape instantiation took approximately

1ms.

5.4 Discussion and Conclusion

In this chapter, SPCA was applied instead of PCA to determine the informa-

tive vertices to find the optimal scan plane. We expect that nearby points on

the surface of organs will tend to move dependently in a similar fashion. This

is because the movement of one cell will cause the movement of its nearby cells

due to the connectivity of tissues. The sparse informative vertices determined

by SPCA and the clustered informative vertices determined by PCA could

illustrate the ability of SPCA to derive principal components from unrelated

original variables and hence select the true, unrelated informative vertices.

However, from our experiments, the overall trend of the informative vertices
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selected by PCA was shown to be similar to the trend determined by SPCA.

It is more reasonable to conclude that SPCA facilitates the determination

of the optimal scan plane more clearly and quickly than PCA rather than

more accurately in this case. Setting a higher number of informative vertices

when applying PCA could also achieve a good scan plane.

In practical applications, the calculated optimal scan plane is not always

accessible. The robustness of the proposed KPLSR-based 3D shape instantia-

tion to local scan plan deviations ensures the adjustment of the scan plane for

better accessibility and visibility in practical clinical scenarios. The optimal

scan plane for the RV, which will be used directly for future patients, was

determined by analyzing the pattern of the optimal scan planes for 27 RVs.

This method of determining the optimal scan plane could be adopted for

other anatomies which share similar deformation and shape across patients.

For anatomy such as the metastatic liver which has significantly different

deformation and shape between patients, the optimal scan plane has to be

determined for each patient individually.

The registration between the pre-operative 3D SSM and synchronized

2D SSM is no longer required in this chapter. The validation on a liver

phantom experiment with both registered and non-registered predictors

showed that the accuracy of KPLSR was not influenced by this. The removal

of explicit registration will decrease the workload for clinicians significantly

when applying the proposed method in practice. It was shown that KPLSR

had much higher stability to the number of components used than PLSR.

This is important for practical applications in case of the use of a suboptimal

setting of this parameter. KPLSR also had better processing at boundary

time frames than PLSR though the errors of KPLSR at boundary time

frames are still higher than at other normal time frames. This boundary

limitation corresponded to more time frames for the liver data than the

cardiac data, as the SOFA framework generated meshes at the first few and

last few time frames with very small shape variations which were usually less

than 0.3mm. In practical applications, always including the time frames at

maximum inhalation and exhalation or at systole and diastole in the training

data is highly recommended.

As pre-operative 4D volumes are not typically acquired for livers, FEM

was applied to simulate the meshes between the inspiration and expiration.

FEM or any other methods which could simulate the physical organ motion
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can thus be used to generate pre-operative 4D volumes when transferring

the proposed framework onto other target anatomies whose dynamic motion

is difficult to gate.

In general, three kinds of data are needed to apply the proposed 3D shape

instantiation: the 3D SSM for learning, the 2D SSM for learning, and the 2D

intra-operative projections or slices for prediction. Synchronization is needed

between the learning 3D SSM and the learning 2D SSM while registration is

needed between the learning 2D SSM and the 2D intra-operative projections

or slices for prediction. The 4D volume used for constructing the learning

3D SSM was scanned pre-operatively while the 2D projections or slices used

for constructing the learning 2D SSM could be scanned pre-operatively or

intra-operatively, as the learning only takes a few seconds. In practical

applications, for organs whose motion could be gated easily, i.e. the RV,

the synchronization between the learning 3D SSM and the learning 2D SSM

could be achieved through dynamic motion gating, i.e. electrocardiogram

(ECG) gating or respiratory gating. The registration between the learning

2D SSM and the intra-operative 2D projections or slices for prediction could

be achieved by setting the scan machine at the same scan position. For

organs whose motion is difficult to gate, i.e. the liver, FEM or other available

methods which could simulate the 3D volumes at different time positions

could be used to collect the learning 3D SSM and to slice for the learning 2D

SSM. The registration between the learning 2D SSM and the intra-operative

2D projections or slices for prediction could be achieved by setting the scan

machine to the same scan position as that used to slice the learning 2D SSM.

Two digital livers, one porcine liver, and eight metastatic livers were

used to illustrate the applicability of the proposed method on livers. For

patients after liver resection, monitoring is essential to see the growth of

liver. This monitoring is usually achieved by frequent 3D CT scan, which

causes radiation. With the 3D shape instantiation framework proposed in this

chapter, this monitoring can be done with a single 2D MRI scan, leading both

decreased radiation and time. As well, 27 RVs were used in our validation

with real 2D MRI slices as the predictors, which demonstrates the potential

value of the proposed method in practical operations. Even with only a

single scan plane, a mean distance error of about 2.19mm was achieved for

the RV. This error was comparable to the mean accuracy in [116] and [115]

which were approximately 2.83mm and 3.55mm for patients and animals,
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respectively. The computation time for prediction (1ms) demonstrates the

real-time ability of the proposed method.

In conclusion, a real-time and registration-free framework for dynamic

shape instantiation which is generalizable to multiple anatomies is proposed

in this chapter. SPCA is applied to select the unrelated and real informative

vertices from a pre-operative 3D SSM, which facilitates a more clear and

quick determination for the optimal scan plane. KPLSR is used to improve

the accuracy and robustness of the instantiation. For anatomies like the RV,

the optimal scan plane only needs to be determined once and then can be

used in subsequent interventions. The detailed experiments performed for the

removal of explicit registration, the stability to the number of components

used, and the performance at boundary time frames covers the issues which

may occur during practical applications. FEM extends the application of the

framework to anatomies like the liver, whose motion is difficult to gate. The

patient-specific learning removes the restrictions on the applicable anatomy.

This chapter sets the basis for applying the proposed framework to other

interventional procedures involving dynamic anatomies. This chapter only

considers the deformation caused by respiration and cardiac beating. In the

future, a consideration of the instrument insertion during the surgery would

be very helpful.

120



6 3D Shape Instantiation for

Real-time Stent Graft Deployment

1

In chapter 5, I introduced my work on a general 3D shape instantiation

framework. The training data collection and KPLSR-based learning are

patient-specific, allowing its application to multiple soft organs with the

required training data available. However, for medical devices, i.e. stent

graft, the deployment or deformation has an easier and fixed pattern which

can be decomposed into multiple rigid transformations. This kind of less com-

plex shape deformation can be reconstructed more intuitively by combining

multiple rigid reconstruction components, rather than using learning based

methods. In this chapter, I will transfer my work on 3D shape instantiation

specifically to deployed stent grafts.

6.1 Introduction

Endovascular Aortic Repair (EVAR), for the treatment of Abdominal Aortic

Aneurysm (AAA), involves the insertion of compressed stent grafts via

the femoral artery, advancement through the vasculature, subsequent device

deployment, and exclusion of the aneurysmal wall. Blood flow is re-established

through the deployed stent graft with reduced pressure on the diseased

aneurysmal wall. The risk of rupture is abolished in the absence of endoleaks.

For patients whose aneurysms involve or are adjacent to the renal and visceral

1The content of this chapter is based on [Xiao-Yun Zhou, Jianyu Lin, Celia Riga, Guang-
Zhong Yang, and Su-Lin Lee. Real-time 3D shape instantiation from single fluoroscopy
projection for fenestrated stent graft deployment. IEEE Robotics and Automation
Letters 3.2 (2018): 1314-1321.] and [Xiao-Yun Zhou, Celia Riga, Su-Lin Lee and Guang-
Zhong Yang. Towards automatic 3D shape instantiation for deployed stent grafts: 2D
multiple-class and class-imbalance marker segmentation with equally-weighted focal
U-Net. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2018: 1261-1267.]
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vessels, Fenestrated Endovascular Aortic Repair (FEVAR) is necessary; this

includes the use of a fenestrated stent graft with fenestrations or scallops

to allow perfusion of vital aortic branches and ensure optimum aneurysm

exclusion [154]. A regular stent graft used in EVAR and a fenestrated stent

graft used in FEVAR are shown in Fig. 6.1a and Fig. 6.1b, respectively. Each

stent graft is composed of multiple stent segments, and the fabric between

each two stent segments are graft gap. In addition to the location and size

of fenestrations and scallops, the size and length of the stent graft are also

customized according to patient-specific aortic geometries. An increasing

number of stent graft manufacturers, such as Cook Medical (IN, USA) and

Vascutek (Scotland, UK), are supplying fenestrated stent grafts today [155].

Stent Segment

Graft Gap

Stent Segment

Scallop

Fenestration

Gold

Marker

a b c d

Gold Marker

Figure 6.1: (a) a regular stent graft used in EVAR, (b) a fenestrated stent
graft used in FEVAR with fenestrations, scallop and gold markers
onside, (c) a fluoroscopic image example during FEVAR under
normal radiation dose, (d) safe paths for robot-assisted vessel-
fenestration cannulation. The black path is along the centrelline
of the deployed main fenestrated stent graft while the green, blue
and red path are from the black path end and aiming at the
centers of the two fenestrations and the one scallop.

FEVAR is a challenging and complex procedure with multiple steps. The

principal challenge is the alignment of the fenestrations or scallops with

the target vessels. Selective cannulation of the target vessels through the
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fenestrations, and subsequent branch stent graft delivery and deployment,

are paramount to ensure successful aneurysm exclusion. This step can be

challenging and time-consuming due to vessel tortuosity and angulation,

leading to prolonged procedure and fluoroscopy time with a significant

radiation burden to patients and operators [154]. Alternative cannulation

strategies have therefore been explored such as robotic catheter systems

aiming to improve navigational accuracy and stability. One commercially

available system is the Magellan (Hansen Medical, CA, USA) which includes

a master-slave catheter and guidewire driving system. Clinical experience

with endovascular robotic systems is growing with potential advantages of

increased accuracy, safety, and stability whilst minimizing the radiation

exposure [156].

Despite advances in endovascular robotic technologies, navigation is still

dependent on 2D fluoroscopy as shown in Fig. 6.1c. Both the stent and graft

have poor visibility under fluoroscopy. High dosage fluoroscopy may improve

the visualization, however, this will increase the radiation dose. To improve

FEVAR navigation, markers are sewn onto the fenestrated stent grafts to

indicate the position and orientation of the fenestrations and scallops (Fig.

6.1b). These markers are typically made of gold, have different shapes, and

can be placed in various positions to aid in alignment of the device with the

anatomy.

There has been previous research to improve stent graft deployment.

Automatic detection and tracking of stent graft delivery devices from 2D

fluoroscopic projections have been proposed [157], with Frangi filtering and

robust principal component analysis. Optimized stent graft sizing and place-

ment for pulmonary artery stenosis using cylindrical affine transformation

and hill climbing have also been demonstrated [158]. A registration scheme

combined with a semi-simultaneous optimization strategy that is to take the

stent graft geometry into account was proposed to overlay 3D stent shapes

onto 2D fluoroscopic images for navigation [159]. However, these methods

have been demonstrated on regular off-the-shelf stent grafts for EVAR but

have not taken into consideration fenestrations or scallops. Renal arteries and

commercial markers have been highlighted on intra-operative fluoroscopic

images to aid with stent graft deployment [160]; however, this is only in 2D

and does not provide the 3D stent graft shape.

It is necessary to know exactly where fenestrations or scallops are to enable
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a complete vessel-fenestration cannulation during FEVAR. A possible 3D

navigation or robotic path is shown in Fig. 6.1d. The path travels along

the centreline of the deployed main fenestrated stent graft (black path in

Fig. 6.1d) and then is aimed at the center of corresponding fenestrations or

scallops (green, blue, red path in Fig. 6.1d). In order to keep a minimum

radiation dose during FEVAR, we aim to use a single fluoroscopic projection

of several well-placed markers for 3D shape instantiation of the deployed

main stent graft body. 3D shape instantiation in this chapter refers to 3D

shape recovery but with only a single 2D fluoroscopy projection as the input.

After being deployed into an aneurysm, the stent graft may experience

twisting, bending, rotation and translation with respect to its initial straight

state, making 3D instantiation of its entire shape, orientation and deformation

challenging. Most of these non-rigid deformations are caused by what we

term the graft gap, shown in Fig. 6.1b, which is only made up of graft fabric.

For the stent segments which include the metal stent and the graft attached

on them, as shown in Fig. 6.1b, they tend towards their initial states closely

due to their relative stiffness. Thus the deformation of the whole stent

graft could be split into the rigid transformations of stent segments and the

non-rigid deformations of graft gaps.

Stent Segment

3D Instantiation

(RPnP)

Stent Graft

3D Instantiation

(Graft Gap Interpolation)

Semi-automatic

Marker Detection

(Equally-weighted Focal U-Net)

Marker

Placement

2D fluoroscopy 3D Shape

Figure 6.2: The proposed framework for real-time 3D shape instantiation of
deployed fenestrated stent grafts.

We proposed a framework, as shown in Fig. 6.2, which reconstructs the

3D shape of a fenestrated stent graft from a single 2D fluoroscopic projection

in real-time. First, five customized markers were placed on each stent

segment of a fenestrated stent graft at different positions. Then, the rigid

transformations of individual stent segments were calculated by the Robust

Perspective-n-Point (RPnP) method [17] while the non-rigid deformation

of the entire stent graft was reconstructed by graft gap interpolations. The

proposed method was validated on five 3D printed AAA phantoms and three
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Figure 6.3: (a) an experimental fluoroscopic projection example with five
markers - the red, green, blue, yellow, and purple color indicate
marker 1, marker 2, marker 3, marker 4, and marker 5 respectively,
this marker sequencing is valid across the whole chapter; (b) 3D
printed customized markers.

stent grafts with newly placed markers, resulting in 78 images overall.

In order to improve the automation of the proposed 3D shape instantiation

method, I further worked on marker detection. One experimental fluoroscopic

projection with the customized markers labeled in different colors is shown

in Fig. 6.3a. We use marker segmentation rather than marker detection

to determine the marker center position, as segmentation is a pixel-level

classification, offers more details and hence is more precise. There are two

challenges in segmenting these customized markers into multiple-classes: 1)

the markers are very small (the reason will be explained in Sec. 6.2.2), causing

class-imbalance problems; 2) the markers are with similar appearances (the

reason will be explained in Sec. 6.2.5).

Compared to conventional segmentation methods, deep convolutional neu-

ral network which extracts and classifies the features automatically with the

125



using of multiple non-linear modules has outperformed traditional methods

in semantic segmentation. Fully Convolutional Network (FCN) was the

very first proposed network which improved the image-level classification

with CNN to a pixel-level classification with the using of fully convolutional

layers, deconvolutional layers and skip architectures [40]. Ronneberger et

al. firstly introduced FCN into biomedical segmentation and proposed U-

Net on neuronal structure segmentation and cell segmentation [3]. The

Deeplab series including Deeplabv1 [161], Deeplabv2 [5], Deeplabv3 [108],

and Deeplabv3+ [162] with Atrous convolution, Atrous Spatial Pyramid

Pooling (ASPP), and encoder-decoder modules were also popular networks

in semantic segmentation.

Class-imbalance, where the background pixel number is much larger than

the foreground pixel number, is a common challenging problem in semantic

segmentation. Allocating large weights for the foreground pixels while allocat-

ing small weights for the background pixels were usually used to concentrate

the training more on foreground pixels [3]. Three shortages exist when ap-

plying weighted loss in our application (will be proved in Sec. 6.3.1): 1) the

weight needs to be manually set; 2) when the weight is too small, weighted

loss could not distinguish between different foreground classes, while if the

weight is too large, the background would be mis-classified as a foreground;

3) its performance is insufficient.

Two-stage networks were also widely explored in both medical and natural

community to improve the network performance on small object or class-

imbalance segmentation. Cascade Fully Convolutional Network (CFCN)

was proposed to segment the liver first as a Region of Interest (RoI), and

then another FCN was trained to segment the small lesion inside the liver

RoI [163]. In Zhou et al.’s work, the pancreas was segmented firstly, and

then the cyst inside the pancreas was segmented to improve the accuracy of

the small cyst segmentation [164]. In general computer vision community,

Mask Region-CNN (Mask R-CNN) was developed, where an object bounding

box was regressed and classified firstly and then FCN was applied inside this

bounding box [165].

Apart from improving the network structure and using two-stage networks,

various researches have also been carried out on the loss function. Topology

aware FCN was proposed with considering multi-region topological rela-

tionships and smooth boundaries into the loss function for histology gland
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segmentation [166]. Convolutional AutoEncoder (CAE) was added to the

loss function to consider the shape prior for semantic segmentation, which

shown improved results in the kidney ultrasound image segmentation [167].

Recently, focal loss was introduced in the object detection domain, which

added different scaling factors automatically to focus on training hard ex-

amples [103]. However, directly applying the focal loss in [103] into our

application has three challenges: 1) the performance is insufficient (will be

proved in Sec. 6.3.2); 2) it needs careful parameter initialization; 3) the

weight used in [103] would introduce the same problems as stated before for

the weighted loss.

In this chapter, Equally-weighted Focal U-Net was proposed. "Equally-

weighted" means equal weight of 1 was applied to the foreground and the

background. "Focal" means focal loss was used. The proposed method

is a one-stage network but with two-step training, as shown in Fig. 6.4.

First, U-Net with equally-weighted cross-entropy loss function was applied to

segment a preliminary result. Second, U-Net with equally-weighted focal loss

was used to improve the preliminary segmentation. It outperformed the focal

loss in [103] and Weighted U-Net in [3] in: 1) the model trained by equally-

weighted loss is used as the initialization for later equally-weighted focal loss,

avoiding careful manual parameter initialization; 2) equally-weighted loss

avoids the possible problems caused by weighted loss and also reduces one

hyper-parameter - the weight; 3) even though equally-weighted loss under-

performs weighted loss, the later equally-weighted focal loss will improve the

preliminary segmentation result and outperform weighted loss. U-Net was

selected as the network structure, as it is easy to be trained from scratch

with limited training data (80 images in this chapter). The proposed Equally-

weighted Focal U-Net was validated on 78 testing images, showing comparable

results to the 3D shape instantiation based on manual detection.

6.2 Methodology

Stent graft modelling, 3D stent graft shape instantiation including marker

placements, rigid transformation calculations of stent segments and non-rigid

deformation instantiation of the whole stent graft, Equally-weighted Focal

U-Net for semi-automatic marker detection, experimental setup, and data

collection are introduced in this section.
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Figure 6.4: The framework of the proposed Equally-weighted Focal U-Net:
the output map is consisted of six classes: class 0 represents the
background, class 1− 5 represent the marker 1, marker 2, marker
3, marker 4 and marker 5. Red color indicates the pixels with
probability of 1 in each output class.

6.2.1 Stent Graft Modelling

Previous work, i.e. [159], usually only focused on modelling the stents for

EVAR. In FEVAR, the grafts are of equal or greater importance as fenes-

trations and scallops are on these grafts. CT could be used to acquire 3D

stent shapes but not for grafts, due to the poor visibility of the fabric under

CT. For fenestrated stent grafts, all parameters including the height, radius,

gap, etc. are known via the original stent graft design and hence enable a

mathematical modelling.

A stent graft is modelled with circles of different radii positioned at different

heights. A circle vertex was defined by
[

r ∗ cosθ, r ∗ sinθ, h
]

, as shown

in Fig. 6.5a. Neighboring vertices were connected by triangles regularly to

generate a surface mesh. The resolution in the height was set as 1mm while

that in the radial direction was set as 1◦ in this chapter. The accumulation

of these circles made up the graft modelling. To model fenestrations and

scallops, vertices within the fenestration or scallop were removed (Fig. 6.5b).
[

rcos(2πi/Nv), rsin(2πi/Nv), h′sin(2πiNs/Nv)/2
]

was used to model

the stent vertices [168], where r = rn + (rx − rn) ∗ (h′sin(2πiNs/Nv)/2 +

h′/2)/h′, i ∈ (1, Nv), Nv is the vertex number on a stent, Ns is the number

of sine wave cycles describing the stent, h′ is the height of each stent segment

(Fig. 6.5c). For the example in Fig. 6.5c, rn = 11.5mm, rx = 15mm and h′

for the six stent segments from the bottom to top are 17mm, 13mm, 13mm,

16mm, 21mm, 25mm respectively. In manufacturing, stents cannot lie across

fenestrations or scallops and are forced onto fenestration or scallop edges; we
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Figure 6.5: (a) modelling of circles, (b) modelling of graft, fenestrations
and scallop, (c) modelling of a whole fenestrated stent graft, (d)
marker placement and classification: markers are firstly classified
into five types and then markers in each type are divided for each
stent segment (five stent segments in this case).

modelled these crossed stents onto the nearest fenestration or scallop edges

too.

6.2.2 3D Stent Segment Instantiation

The non-rigid deformation of the whole stent graft was split into multiple

rigid transformations of stent segments in this chapter. The 3D pose of

each stent segment was reconstructed based on the 2D fluoroscopic marker

projections. By using the Robust Perspective-n-Point (RPnP) method, which

estimates the pose of a calibrated camera given a set of n 3D points in the

world coordinate system and their corresponding 2D projections in the image,

the 3D pose of a stent segment could be reconstructed by the 3D pose of

its n markers. Compared to the traditional 2D/3D registration, the RPnP

method has the following advantages: 1) RPnP is fast and less ambiguous as

it solves the 3D pose mathematically and non-interactively based on similar

triangles; 2) RPnP only needs 4 points to reconstruct a reasonable 3D pose.

The correspondences between 3D points and their 2D projections are supplied

by marker placement and detection in this chapter.
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Table 6.1: Marker Parameters

Marker Type Circle Sphere Tube Cross Triangle
Marker Sequencing 1 2 3 4 5
Hole Radius (mm) 0.5 0.2 0.2 - 0.63
Thickness (mm) 0.8 0.8 0.8 0.8 0.8
Length (mm) 2.6 - 2.5 3 2.5

Marker Placement and Design

RPnP could achieve 3D pose recovery with a minimum n = 4 [17]. We

adopted n = 5 for higher robustness. Five markers were sewn at five non-

planar positions on each stent segment, as shown in Fig. 6.5d. The marker

position pattern for each stent segment is similar. Stent graft markers were

designed and inspired from commercially-used gold markers into five different

shapes. The marker parameters are shown in Tab. 6.1. The lengths were

designed to be similar to that of commercial markers which are around

1− 3mm. The thicknesses were empirically-determined for both minimized

thickness and good imaging quality under lowest-radiation fluoroscopy. The

shapes were designed with maximum differentiation and to be easily sewn

onto the stents. Due to the high price of gold, these markers were printed

on a Mlab Cusing R machine (ConceptLaser, Lichtenfels, Germany) with

SS316L stainless steel powder for the experiment. The printed markers are

shown in Fig. 6.3b. The small marker size caused class-imbalance. The

five marker classes occupied 0.03%, 0.01%, 0.02%, 0.03%, 0.03% of the total

pixels of the 512× 512 fluoroscopic projection.

3D Pose Recovery for Stent Segment

For n markers on a stent segment with known reference 3D marker po-

sitions (via the original stent graft design): {P1, ..., Pn}, after the com-

pression and deployment, these 3D positions are transformed to target 3D

marker positions: {P ′
1, ..., P

′
n}. With known corresponding 2D marker pro-

jections (via fluoroscopy projection): {p1, ..., pn}, the transformation matrix

{P ′
1, ..., P

′
n} = Tran · {P1, ..., Pn} could be recovered by solving a RPnP

problem [17].

Firstly, a rotation axis was selected to reduce the number of unknown

variables - here the Z axis was chosen. Secondly, the PnP problem was
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divided into (n− 2) P3P(P3P is a special case of PnP where n is 3) problems

with an equation system [169]:

fi(x) = aix
4 + bix

3 + cix
2 + dix+ ei = 0, i ∈ (1, n− 2) (6.1)

where x was solved by the local minimum of
∑n−2

i=1 fi(x)
2. Thirdly, the depth

of each marker was determined by perspective similar triangles. Fourthly,

the rotation along the Z axis with c = cosα, s = sinα and translation
[

tx, ty, tz

]

of the markers were solved by [17]:

[

A2n×2 B2n×4

] [

c s tx ty tz 1
]T

= 0 (6.2)

The derivation of A2n×2 and B2n×4 was explained in [17]. Finally, the

solved transformation matrix was normalized by a standard 3D alignment

based on least-squares estimation [170]. This normalized matrix is the 3D

pose of the n = 5 markers and the corresponding stent segment. More details

of the derivation, proof, and calculation can be found in [17,169] and [170].

6.2.3 3D Stent Graft Instantiation

Continuous Constraints for Stent Segments

In theory, the RPnP method recovers both the position and pose accurately.

In our experiments, the drifted markers, unsuitably-small delivery device and

repeated stent graft compression and deployment (details explained in Sec.

6.3.4) caused non-rigid deformation between the reference and the target 3D

marker positions. When the transformation between the reference and target

3D marker positions is non-rigid, errors will be introduced to the recovered

position and pose. The position shift of stent segments influenced the

continuity of the entire stent graft and was corrected by applying continuous

constraints on the circle central points. The central points of all instantiated

stent segments are aligned to that of the top stent segment, as briefly

illustrated in Fig. 6.6.

Graft Gap Interpolation

After recovering the pose and correcting the position drift for each stent seg-

ment, the normal vectors and positions of graft gap circles were interpolated
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(a) (b)

Figure 6.6: An illustration of the continuous constraint: (a) initially instanti-
ated stent segments; (b) aligned stent segments after continuous
constraint.

linearly by the normal vectors and positions of neighboring stent segment cir-

cles. With graft gap vertices [ricθ+T , risθ+T , 0], here T ∈ (1◦, 360◦) controls

the twisting and rotating of a circle, θ ∈ (1◦, 360◦) is the angle of a vertex,

ri is the radius, the interpolated graft gap vertices were calculated by:







x′

y′

z′






=







xi

yi

zi






+
[

ricθ+T , risθ+T , 0
]

·







cΩ + α2cΩp αβcΩp − δsΩ αδcΩp + βsΩ

αβcΩp + δsΩ cΩ + β2cΩp βδcΩp − αsΩ

αδcΩp − βsΩ βδcΩp + αsΩ cΩ + δ2cΩp







(6.3)

where

cΩp = 1− cΩ (6.4)

The rotation matrix rotates the normal vector of initial graft gap plane

to be parallel to the interpolated one and was derived according to [171].

Here, cθ+T represents cos(θ + T ) and cΩ represents cos(Ω). sθ+T represents

sin(θ+T ) and sΩ represents sin(Ω). Ω is the angle between the circle normal

vector and the xy plane (the xy plane is shown in Fig. 6.5a).
[

α, β, δ
]

controls the bending and is the cross product of the circle normal and
[

0, 0, −1
]

.
[

xi, yi, zi

]

translates the rotated graft gap vertices to
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the interpolated position.

6.2.4 Equally-weighted Focal U-Net

Given a training or testing data set {I1, I2, ..., Ik, ..., IK}, k ∈ [1,K], where

Ik is one image example with width W and height H, W = H = 512 in

this chapter, K is the total number of images in the training or testing

data set. The intensity of each pixel in Ik is normalized into [0, 1] by:

Inormk
= Ik−min(Ik)

max(Ik)
, where min(Ik) and max(Ik) are calculated from all

images. The segmentation ground truth of Ik in the training data set is

labelled as a labelling cube: Lk = {Lk0,Lk1, ...,Lkn, ...,LkN}, n ∈ [0,N],

where N is the number of marker classes, N = 5 in this chapter (Fig. 6.4),

Lkn has the same width W and height H, Lk0 is the background labelling

layer with background pixels labelled as 1 and other pixels labelled as 0, Lkn

is the nth class foreground or marker labelling layer with the nth class marker

pixels labelled as 1 and other pixels labelled as 0. Since the markers are

very small, those markers do not fully overlap each other frequently during

the varying fluoroscopy view angle. Hence, it is reasonable to consider the

multiple-class marker segmentation as a no-overlap problem, where one pixel

only belongs to one class.

U-Net structure

According to the U-net structure [3], a normalized image Inormk
is passed

into the proposed network as an input, then a probability map cube Pk =

{Pk0,Pk1, ...,Pkn, ...,PkN}, n ∈ [0,N] is calculated, where Pkn is with the

same width W and height H. The value of each pixel in Pkn is the probability

of that pixel belongs to the nth class and is between [0, 1]. The network

structure used in this chapter is consisted of convolutional layers, max-pooling

layers and deconvolutional layers, as illustrated in Fig. 6.7. It has two paths:

a contracting path (left) and an expansive path (right). For convenience, we

term the layers that manipulate on images with the same size as a block.

In the contracting path, each block is consisted of two convolutional layers

following by a max-pooling layer. In the expansive path, each block is

consisted of two convolutional layers following by a deconvolutional layer.

The last block is consisted of two convolutional layers, a 1× 1 convolutional

layer, a pixel-wise softmax layer. The network in Fig. 6.7 is defined as a
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3-block U-Net, as three max-pooling/deconvolutional layers are used in total.

In this chapter, the stride for the convolutional layer is always 1 while that

for the max-pooling layer is always 2.

͵ × ͵ Convolutionʹ × ʹ Max Pooling

Deconvolution

Pixel-wise Softmax

Copy + Concatenate

W

H

1

W

H

F

W/2

H/2F × ʹ W/4

H/4F × Ͷ W/8

H/8F × 8 W/4

H/4F × Ͷ W/2

H/2F × ʹ W

H

F

W

H

N+1

Block with 2 convolutional layers +

1 max-pooling/deconvolutional layer

or

Argmax

Figure 6.7: An illustration of a 3-block U-Net: three max-pooling or decon-
volutional layers are used in total, two convolutional layers are
used in each block, the width W and height H of the image are
half/twice while the number of feature channel (F) is twice/half
after each max-pooling/deconvolutional layer, N = 5 in this
chapter.

Loss function

After passing Inormk
through the U-Net, each pixel will have a U-Net-

predicted value for the N+1 classes: y0, y1, ..., yn, ..., yN, n ∈ [0,N]. Pixel-wise

softmax is used to transform yn into the probability pn ∈ [0, 1] by:

pn =
eyn

∑N
i=0 e

yi
(6.5)

Cross-entropy loss is calculated across the labelling and predicted probability

cube to measure the difference between the predicted probability P and the

ground truth L:

CEloss = −
W
∑

i=1

H
∑

j=1

N
∑

n=0

L(i,j,n)log(P(i,j,n)) (6.6)
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Usually, weighted loss was applied to solve the class-imbalance problem:

WCEloss = −
W
∑

i=1

H
∑

j=1

N
∑

n=0

WnL(i,j,n)log(P(i,j,n)) (6.7)

Here, W0 = 1 while Wn > 1, n ∈ [1,N]. In this chapter, equally-weighted

loss was applied for the first-step training. Wn = 1, n ∈ [0,N]. When the loss

converges to a minimum, equally-weighted focal loss was applied to improve

the preliminary segmentation results:

Focalloss = −
W
∑

i=1

H
∑

j=1

N
∑

n=0

(1− P(i,j,n))
2L(i,j,n)log(P(i,j,n)) (6.8)

The scaling factor of (1− P(i,j,n))
2 decreases heavily the loss contribution

of correctly-segmented pixels (when P(i,j,n) = 0.9, (1 − P(i,j,n))
2 = 0.01).

However, it decreases lightly the loss contribution of wrongly-segmented

pixels (when P(i,j,n) = 0.1, (1 − P(i,j,n))
2 = 0.81). Thus the focal loss

concentrates the training on wrongly-segmented pixels or hard pixels. In

practice, fluoroscopic images are usually scanned in a coronal or oblique plane,

which enables dividing the markers into the corresponding stent segment by

their vertical positions manually, as shown by the white dividing lines in Fig.

6.5d.

6.2.5 Experimental Setup and Data Collection

Simulation of FEVAR

Five abdominal aneurysm phantoms, created from contrast-enhanced CT

data of AAA patients, were printed on a Stratasys Objet (MN, USA) in

VeroClear and TangoBlack. One example is shown in Fig. 6.8a. Three stent

grafts: iliac (6− 10mm diameter, 90mm height, Cook Medical), fenestrated

(22− 30mm diameter, 117mm height, Cook Medical) and thoracic (30mm

diameter, 179mm height, Medtronic, MN, USA) were used in the experiments.

Each stent segment of the three stent grafts was sewn on five markers at

non-planar positions. In a setup, a stent graft was compressed within a

Captivia delivery system (Medtronic, 8mm diameter, shown in Fig. 6.8a),

inserted into the 3D printed aneurysm, and deployed at the target position.
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Figure 6.8: (a) experimental setup, (b) registration of the fluoroscopic image
coordinate system to the CT coordinate system.

Data Collection

The three stent grafts with newly sewn markers were firstly scanned by a

GE Innova 4100 (GE Healthcare, Bucks, UK) for the reference 3D marker

positions before any experimental setup. For simulating FEVAR, the stent

graft diameter needed to fit the artery diameter, resulting in 14 matching

positions in total between the five phantoms and three stent grafts. Details

of each setup are shown in Tab. 6.2. After deploying the stent graft in each

setup, 13 2D fluoroscopic images from different view angles, varying from

−90◦ to 90◦ with 15◦ interval, were obtained by the same CT machine. This

varying view angle is necessary for proving that the 3D shape instantiation

works for any view angle. It caused the 2D marker shape appearances to be

similar in the fluoroscopy images, even though these markers were designed

to be differentiable in 3D.

There should be 14× 13 = 182 images, however, 11 images were not stored

by the operator. For the setups shown in Tab. 6.2, 7/14 setups expressed

by
⊙

were used for the training (80 images) of Equally-weighted Focal

U-Net, 6/14 setups (6× 13 = 78 images) expressed by
⊕

were used for the

testing; here the test image number corresponds to that in Sec. 6.3, 1/14

setup (13 images) expressed by
⊗

were abandoned due to one marker falling

off. Due to the limited available images, no validation dataset was split.

Sometimes, two experiments were set up with the same stent graft and the

same phantom. These two setups were not the same due to the different

positions inside the phantom. A CT scan was collected for each deployed
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Table 6.2: Stent Graft - Phantom Matching (
⊕

- Test;
⊙

- Train;
⊗

-
Abandon.)

Phantom number 1 2 3 4 5
Iliac (S1)

⊕ ⊙ ⊕

-
⊙

-
Test image number 1− 13 14− 26 - - -
Fenestrated (S2)

⊕ ⊕ ⊕ ⊗ ⊙ ⊙ ⊙

Test image number 27− 39 40− 52 53− 65 - -
Thoracic (S3) -

⊙ ⊙ ⊕

-
Test image number - - - 66− 78 -

stent graft. Usually, this CT scan was utilized as the ground truth of the

markers and deployed stent graft, except for one comparison validation in

Sec. 6.3.5 where the scanned 3D marker positions were used as the reference

3D marker positions too. The coordinates of marker projections on 2D

fluoroscopic images were transformed into the CT coordinate system, as

shown in Fig. 6.8b. 3D Slicer [172] was used to segment the stent 3D shape

and marker 3D shape from the CT scan. The average unsigned distance

between the reconstructed 3D shape and the ground truth was calculated in

CloudCompare software [173].

Data augmentation

To evaluate the character of the proposed network to data augmentation,

two different data augmentation methods were compared: 1) rotated the 80

training images from −36◦ to 35◦ with 1◦ as the interval; 2) rotated the 80

training images from −180◦ to 165◦ with 15◦ as the interval and flipped each

rotated image along the horizontal and vertical direction respectively. Both

data augmentation methods augmented the training images with 72 times,

resulting 5760 training images.

Image enhancement

To evaluate the performance of the proposed network to image enhance-

ment, image intensity adjustment and contrast-limited adaptive histogram

equalization were applied with MATLAB function:

I′k = adapthisteq(imadjust(Inormk
)) (6.9)
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Ground truth labelling

The markers were labelled in Analyze (AnalyzeDirect Inc, Overland Park,

KS, USA) with firstly magnifying the image from 512× 512 to 4096× 4096

for a clear labeling, and then shrinking the image from 4096× 4096 back to

512× 512.

Other parameters: the learning rate was set step-wisely and divided by

two or five manually when the loss stopped decreasing. The dropout rate was

set as 0.75. The weights in the neural network were initialized by truncated

normal distribution with mean = 0.0 and std = 0.1 while the biases were

initialized by constant 0.1. The optimizer was the momentum optimizer in

Tensorflow with the momentum set as 0.95. The batch size was set as 1.

The loss function was written by tf.nn.softmax, tf.log, and tf.reduce_mean.

The mean Intersection over Union (mIoU), the overlap of the ground truth

and the prediction over the union of the ground truth and the prediction,

was calculated to evaluate the segmentation performance. Except Sec. 6.3.1,

all training procedures were based on the data augmented with 30◦ image

rotation and without image enhancement.

6.3 Results

Semi-automatic marker detection with automatic marker segmentation and

manual correction for failure cases and 3D stent graft shape instantiation

were validated with errors shown in this section. The characters of the

proposed Equally-weighted Focal U-Net with respect to the number of U-Net

block, image enhancement, data augmentation, and weight are illustrated in

Sec. 6.3.1. The comparison between different methods is presented in Sec.

6.3.2. Detailed multiple-class marker segmentation results are shown in Sec.

6.3.3.

The 2D distance error of semi-automatic marker detection, the 3D distance

and the angular error of marker instantiation, the 3D distance error of stent

graft instantiation, reconstructed 3D shape details are given in Sec. 6.3.4, by

using both manually and semi-automatically detected markers. The 3D dis-

tance error is the unsigned Euclidean distance between the reconstructed 3D

markers or stent grafts and the ground truth with the position displacement

(explained in Sec. 6.2.3) corrected by aligning the centers. The angular error
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is the unsigned angle (θ in Fig. 6.5a) difference between the reconstructed

marker and the ground truth. Angular errors were measured, as the facing

and orientations of fenestrations or scallops are important for path planning

(red, green, blue path in Fig. 6.1d) in robot-assisted FEVAR. A comparison

with using pre-experimental and intra-experimental 3D marker positions as

the reference 3D marker positions is provided in Sec. 6.3.5, showing potential

accuracy improvements for in-vivo applications.

6.3.1 Network Characters

The mIoUs achieved with different setups are shown in Tab. 6.3, where the

highest mIoU is emphasized in bold font.

Number of U-Net block

Equally-weighted Focal U-Net with block number from 1− 6 were trained

to segment the multiple-class markers in Fig. 6.4, mIoUs are listed in Row

1 − 6 in Tab. 6.3. It can be concluded that 1-block U-Net and 6-block

U-Net under-performed slightly others. However, the training time increased

from 36 hours for 1-block U-Net to 120 hours for 6-block U-Net. Based on

this comparison result, 2-block U-Net was chosen as a trade-off between

the efficiency and the performance in the following validations to test the

network property.

Data augmentation

Equally-weighted Focal U-Net with 2 blocks was trained on the data aug-

mented with 30◦ image rotation and with 180◦ image rotation respectively.

The mIoUs for six classes on the 78 testing images are summarized in the Row

2 and the Row 7 in Tab. 6.3. The results showed that the mIoUs achieved

with 30◦ image rotation are higher than that with 180◦ image rotation in

most classes, except for Marker 3 and Marker 4. Hence, 30◦ image rotation

was utilized as data augmentation in this chapter.

Image enhancement

Equally-weighted Focal U-Net with 2 blocks was trained on the training

data with and without image enhancement respectively. The mIoUs of
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the six classes achieved on the 78 testing images are summarized in the

Row 2 and the Row 8 in Tab. 6.3. The results presented that the mIoUs

decreased significantly when the training data was pre-processed with image

enhancement. Therefore, the images in the training set will only be processed

by normalization in the following training.
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Table 6.3: U-Net with different setups (mIoU-mean Intersection over Union, B-Background, M-Marker, Num.-Number, Aug. -
Augmentation)

Row 30◦ 180◦ Image Block Weight Focal B M1 M2 M3 M4 M5
Aug. Aug. Enhancement Num. Loss mIoU mIoU mIoU mIoU mIoU mIoU

1
√

1 1
√

0.9996 0.6392 0.5159 0.5929 0.5692 0.5998
2

√
2 1

√
0.9996 0.7030 0.5687 0.6778 0.5094 0.5765

3
√

3 1
√

0.9996 0.7325 0.5828 0.6952 0.5453 0.6105
4

√
4 1

√
0.9996 0.7280 0.5462 0.6831 0.5266 0.5883

5
√

5 1
√

0.9996 0.7254 0.5395 0.6843 0.5156 0.5841
6

√
6 1

√
0.9996 0.6179 0.5475 0.5596 0.4424 0.4986

7
√

2 1
√

0.9996 0.4793 0.5081 0.6988 0.5523 0.5001
8

√ √
2 1

√
0.9992 0.4092 0.0843 0.2779 0.0993 0.3133

9
√

2 1 0.9993 0.1900 0.0000 0.0000 0.0000 0.0000
10

√
2 20 0.9986 0.1508 0.0428 0.1151 0.1311 0.1387

11
√

2 50 0.9981 0.4168 0.2260 0.3639 0.3037 0.3630
12

√
2 100 0.9979 0.4222 0.2195 0.3439 0.2978 0.3415

13
√

2 500 0.9967 0.3020 0.1207 0.2782 0.2531 0.2868
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Weight

2-block U-Net with the weight of 20, 50, 100, 500 were trained respectively.

The mIoUs of the six classes on the 78 testing images are listed in the Row

9-13 in Tab. 6.3. The results illustrated that 2-block U-net with the weight

of 50 presented optimal performance comparing with small weights (weight

= 20) and the large weight (weight = 500). Thus, 2-block U-Net with the

weight of 50 was applied in the following work.

Marker 5
Background

Weight = 20 Weight = 50 Weight = 100 Weight = 500

Figure 6.9: Cropped segmentation results for Marker 2 with the weight as
20, 50, 100, and 500, where red region - the ground truth, green
region - the prediction, yellow region - the correctly-segmented
pixels.

The segmentation results of the 2-block U-Net with different weights

are illustrated in Fig. 6.9. It can be seen that the five foreground or

marker classes could not be clearly distinguished between each other with

a small weight, i.e. 20. However, if the weight of the network is too large,

i.e. 500, the background was mis-classified as a foreground, as this wrong

classification contributed too less to the total loss. For example, a wrongly-

segmented background (P(i,j,n) = 0.1) contributed (1 − P(i,j,n)) × 1 = 0.9

to the total loss while a wrongly-segmented foreground (P(i,j,n) = 0.1)

contributed (1 − P(i,j,n)) × 500 = 450 to the total loss. The mIoUs of the

background decreased along the increased weight (Row 9-13 in Tab. 6.3),

which also proves this trend.
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6.3.2 Comparison between Different Methods

The performance of 2-block U-Net using five different methods were explored

in Fig. 6.10: 1) Equally-weighted Focal U-Net (the proposed method); 2)

Weighted U-Net with the weight as 50 for foreground and the weight as 1

for background; 3) U-Net with Equally-weighted Focal Loss which used an

equally-weighted focal loss from the beginning of the training; 4) Equally-

weighted U-Net with the weight set as 1 for both the foreground and the

background; 5) Weighted Focal U-Net with the weight set as 50 for the first

step training, and then focal loss with the weight of 50 for the second step

training. The performance of these methods are shown by the mean and std

IoUs. The Fig. 6.10 illustrated that the proposed method has slightly better

performance on every marker class comparing with other methods.

0 1 2 3 4 5
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0.6

0.7

0.8
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1

Figure 6.10: The mean ± std IoUs for the six classes segmented by five
different methods

6.3.3 Multiple-class Marker Segmentation

In this section, I focus more on the accuracy and release the requirement of

time-efficiency. Equally-weighted Focal U-Net with 3-block (Row 3 in Tab.

6.3) was applied to segment each testing image. The results are illustrated

in Fig. 6.11. The Fig. 6.11 showed that the proposed network could segment
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most of the images with outstanding performance, except from a few markers

in the image No.10, No.13, No.59 and No.71. Besides, the Fig. 6.12 presents

the segmentation details of image No.21 using the proposed method, where

each marker class was segmented with a high overlap between the ground

truth and the prediction.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Figure 6.11: The IoU of the six classes on 78 testing images segmented with
a 4-block Equally-weighted Focal U-Net.

Background Marker 2 Marker 3 Marker 4 Marker 5Marker 1

Figure 6.12: Cropped segmentation results for six classes on image NO.21:
red - the ground truth, green - the prediction, yellow - the
correctly-segmented pixels.
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6.3.4 3D Shape Instantiation

The 78 images contain 2470 markers, 81.01% of them were segmented with a

center position error < 1.6mm which are 2 pixels on the fluoroscopic projec-

tion and half of the marker size. The marker center positions determined

with > 1.6mm error were corrected manually. With these marker center

positions, the angular error and 3D distance error of 3D shape instantiation

were illustrated in Fig. 6.13, showing that the proposed method presents

comparable performance with 3D shape instantiation with both manual and

semi-automatic marker center determination. More 3D shape instantiation

results could be found in [6].

0 10 20 30 40 50 60 70 80
-10

0

10

20

0 10 20 30 40 50 60 70 80
-5

0

5

10

Figure 6.13: The angular error of 3D marker instantiation (top) and the 3D
distance error of 3D stent graft instantiation (bottom) using
three different marker center determination methods: MMS -
Manual Marker Segmentation; SaMS - Semi-automatic Marker
Segmentation (proposed in [6] where markers were segmented by
the U-Net while were classified manually.); the proposed method
(proposed in this chapter where markers were segmented and
classified by the Equally-weighted Focal U-Net. For both the
SaMS and the proposed method, manual correction was added
when larger errors happen.

To purely validate the proposed 3D shape instantiation method, I further

manually correct the distance error of semi-automatic marker center deter-
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mination, as shown in Fig. 6.14 top. An average distance error of 0.42 mm

(half a pixel) was achieved. Both the marker centers detected manually and

semi-automatically were used to recover the 3D markers. The 3D distance

errors of marker instantiation are shown in Fig. 6.14 bottom. An average

distance error of 0.92mm for S1, 4.08mm for S2, and 6.52mm for S3 were

achieved with semi-automatic marker detection, which were close to that

achieved by manual marker detection (0.86mm for S1, 4.08mm for S2, and

6.44mm for S3). This average distance error is comparable, as the marker

size is almost 3mm. The errors of S2 (image 27-65) and S3 (image 66-78)

were higher than S1 (image 1-26) due to two reasons: 1) the diameters of

S2 and S3 were larger than S1; 2) the deployment device was small for S2

and S3, causing more non-rigid stent segment deformations and hence more

non-rigid deformations between the reference and target 3D marker positions.

The errors of the latter two setups (image 40-65) are higher than that of

(image 27-39), as the more times S2 was compressed and deployed, the more

non-rigid stent segment deformations were introduced.

The angular errors of recovered markers and distance errors of reconstructed

stent grafts are shown in Fig. 6.15. An average angular error of 4.24◦ was

achieved with semi-automatic marker detection which is similar to that

(4.12◦) achieved with manual marker detection. An average distance error of

1.99mm was achieved with semi-automatic marker detection which is close to

that (1.97mm) achieved with manual marker detection. The average angular

and distance errors for the six setups are shown in Tab. 6.4.

Table 6.4: average errors(S1-iliac; S2-fenestrated; S3-thoracic; M-Manual;
S-Semi-automatic; Angle-degree; Distance-mm)

Stent Graft S1 S1 S2 S2 S2 S3
Image Number 1-13 14-26 27-39 40-52 53-65 66-78
Angle (S) 3.29 4.43 3.79 6.11 4.27 3.58
Angle (M) 2.83 4.25 3.66 6.18 4.24 3.57
Distance (S) 1.22 1.14 1.70 3.03 2.22 2.61
Distance (M) 1.10 1.18 1.72 3.04 2.23 2.57

Examples of 3D shape instantiation coloured by the distance error are

shown in Fig. 6.16a – the light grey mesh is the proposed shape instantiation

result while the coloured stents are the ground truth. It can be seen that
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Figure 6.14: The (mean ± stdev) distance errors of semi-automatic marker
detection (top) and 3D marker instantiation (bottom), the std
errors were calculated across multiple markers on a stent graft.
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Figure 6.15: 3D Shape instantiation errors (mean ± stdev) of angular (top)
and distance (bottom) for three stent grafts. The std of an-
gular error was calculated across multiple markers on a stent
graft while that of distance error was calculated across multiple
vertices of a stent graft.
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the bending, compressing, twisting, etc. of the stent graft, the scallops or

fenestrations are reconstructed well. Examples of the reconstructed scallop

and fenestration (Fig. 6.16b top) are compared with the real ones (Fig. 6.16b

bottom). The dark grey stents in Fig. 6.16b top are the ground truth from

CT with commercial gold markers indicating the scallop and fenestration.

b

ScallopFenestration MarkersS3S2S1

a

Figure 6.16: Examples of (a) 3D shape instantiation of the three stent grafts
colored by the distance error (colorbar of errors in mm), (b)
reconstructed scallop and fenestration (top) compared to the
real ones (bottom).

6.3.5 Influence of Non-rigid Marker Set Deformation

3D marker instantiation errors with pre-experimental and intra-experimental

3D marker positions as the reference 3D marker positions are shown in

Fig. 6.17. The errors with intra-experimental 3D references are much lower,

proving that less non-rigid deformation between the reference and the target

3D marker positions could improve the instantiation accuracy. The higher

errors in a few images (48, 55, 56, 72) are due to the mis-classification of the

markers.

The computational time is less than 8ms in MATLAB for one stent segment

instantiation on an Intel(R) Core(TM) i7-4790 CPU@3.60GHz computer.

The marker segmentation takes less than 0.1s in Tensorflow on a NVIDIA

TITAN Xp GPU. For training Focal U-Net, the first step takes about 30
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Figure 6.17: Distance errors of 3D marker instantiation with pre-experimental
and intra-experimental 3D marker positions as the reference 3D
marker positions.

minutes while the second step takes approximate 2 hours.

6.4 Discussion and Conclusion

In this chapter, the non-rigid deformation of the whole stent graft was split

into piecewise stent segment rigid transformations and then was reconstructed

by interpolating these reconstructed stent segments. The average distance

error of reconstructed stent grafts at around 1 − 3mm and the average

angular error of recovered markers at around 4◦ illustrates that this splitting

is reasonable and could be used for future work on stent grafts. The average

distance error of reconstructed stent grafts - 3mm is comparable, as the size

of the markers is approximately 3mm. Even with the limited experimental

environment (the drifted markers, unsuitably-small delivery device in terms

of the size, and repeated use of the stent graft), comparable average distance

and angular errors were achieved. It is expected that the accuracy could be

improved with more stable marker sewing, a suitable delivery device and a

one-off use of the stent graft (the stent graft is only compressed and deployed

once in in-vivo scenarios), and hence the accuracy is expected to be higher

than the experiments in this chapter.

The only input for the proposed 3D shape instantiation is a single flu-

oroscopic projection of markers, which decreases the X-ray radiation to a
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minimum, as markers are always visible, albeit not always clearly, even

under lowest X-ray radiation. Marker imaging is also robust to respiratory

and cardiac induced motions. The stents, 3D printed aneurysms, and the

holders all show up in the 2D fluoroscopic projections in our experiments. In

practice, the 2D fluoroscopic images, i.e. Fig. 6.1c, are much ’cleaner’ than

our experiments due to the block of tissue. The commercial markers made

of gold also have higher visibility than the 3D printed markers made of steel

used in this chapter. It is expected to be easier to segment and classify the

markers in practical applications.

Equally-weighted Focal U-Net was proposed to segment the customized

stent graft markers into multiple-classes. The segmented marker center

positions would be used by the RPnP method and hence automatic 3D stent

graft shape instantiation was possibly achieved. In Sec. 6.3.1,the performance

of U-Net with different block number was explored. The results showed that

Equally-weighted Focal U-Net did not achieve higher mIoU along with an

increasing block number. Possible reasons could be network degradation and

insufficient training data. In the future, the network structure will be explored

in details. In Sec. 6.3.1, different weights were explored. Usually, weighted

loss outperforms equally-weighted loss for class-imbalance segmentation, as

it treats the foreground more importantly by assigning a higher weight for it.

However, in this chapter, we consider the background as equally important

as the foreground, as a mis-classified background will also decrease the

foreground IoU. So equally-weighted loss was applied.

Due to the limited experimental environment, i.e., the expensive price of

stent graft and for printing AAA phantoms, each stent graft and phantom

are used multiple times in order to collect more data. This causes that the

same stent graft and phantom sometime appear in both the training and

testing. Even though different positions inside the phantom were used, this

may still weak the convincing of the validation. The proposed method is

capable for multiple-class marker segmentation, obtained an overall mIoU of

0.6943, and detected 81.01% markers with center position error < 1.6mm.

Comparable 3D shape instantiation error was achieved (1.9605mm) with the

approximately-automatic marker center determination method in this chapter,

with respect to 3D shape instantiation with semi-automatic marker center

determination (1.9746mm) and with manual marker center determination

(1.9874mm) in [6].
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The experiments demonstrated the potential robustness of the proposed

framework to fluoroscopic view angles - fluoroscopic images from 13 view

angles were tested and shown with neglectable difference in accuracy. How-

ever, a clear view without marker overlapping and hence easier marker

classification is still preferred to avoid the mis-classification of the markers

(examples shown in Sec. 6.3.5). The computation time of 0.1s per image

indicates that the proposed framework can work in real-time potentially, as

typical fluoroscopy acquisitions used in clinic are approximately 2-5 frames

per second.

In conclusion, a 3D shape instantiation framework for fenestrated stent

grafts including marker placement, stent segment pose instantiation, stent

graft shape instantiation and semi-automatic marker detection was proposed

in this chapter. The proposed framework only needs a single fluoroscopic

projection and is only based on markers, which decreases the X-ray radiation

to a minimum. Compared with the state-of-art 2D fluoroscopy navigation

used in robot-assisted FEVAR procedures, the proposed framework recon-

structs not only the 3D shapes of the stents but also the grafts, fenestrations

and scallops. Equally-weighted Focal U-Net was proposed for multiple-class

marker segmentation and then automatic 3D stent graft shape instantiation

could be achieved. The performance of the proposed network was explored

and discussed with different characters, such as the number of blocks, method

of data augmentation, image enhancement, and different weights. Based on

these results, 3-block Equally-weighted Focal U-Net showed optimal accu-

racy in multiple-class marker segmentation. In this chapter, the proposed

Equally-weighted Focal U-Net is only validated on fully-deployed stent graft.

Markers on fully-compressed and partially-deployed stent segments are more

difficult to segment, due to the cluster of markers and the trained model

for fully-deployed state could not be transferred to fully-compressed and

partially-deployed state. In the future, the proposed network will be further

improved and extended to a general framework for wider applications. This

work is a first step towards a complete 3D shape instantiation which predicts

the 3D shape of a fenestrated stent graft after the deployment from a single

2D fluoroscopic image of its compressed state to improve robotic navigation

for FEVAR.
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7 Conclusions and Future

Perspectives

2D medical image segmentation is the basis of both fundamental and advanced

medical image analysis tasks. Currently, most image segmentation problems

are solved by deep learning with training DCNNs. DCNN based methods have

good portability, however, 1) the performance of DCNN is not good enough

yet for practice, and post-processing and supplementary algorithms are

usually needed; 2) the generalizability of trained networks when transferring

to unseen patients is an unsolved problem; 3) DCNN is data hungry, and

in medical problems it is difficult to collect enough training data to see all

possible situations; 4) the explainability of deep learning is also a problem

that needs to be further explored. In this thesis, to achieve a complete and

automatic 3D shape instantiation scheme, I worked on the normalization

and architecture design of training DCNNs for medical image segmentation.

For normalization while training a U-Net for medical image segmentation,

I reviewed the most popular four normalization methods including BN, IN,

LN and GN on the RV, LV and aortic segmentation with three-fold cross

validation. By comparing the performance, convergence speed and converged

lowest loss, it was found that calculating the mean and variance of a detailed

feature map division usually performed better. This conclusion can help with

the development of new normalization methods. I also proposed the ILN

which linearly weighted the feature map after IN and LN to train a U-Net

for medical image segmentation under two conditions: 1) using sigmoid

function to weight the feature map after IN and LN; 2) cascading a GN

after the weighted feature map. The validation shown that the proposed ILN

could outperform other traditional normalization methods on small medical

dataset.

I further worked on 3D normalization for medical volume segmentation.

In 3D DCNNs, with an input volume V of dimensions D × H × W, where
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D, H, W represent the depth, height and width of the volume respectively,

intermediate feature maps F have a dimension of N×D×H×W×C, where

N is the batch size and C is the feature channel. C weights were added to the

feature map with one weight for each channel. To reduce the computational

complexity, the weights were multiplied to the mean of each feature channel

rather than being multiplied to each feature channel. The variance was

calculated for each feature channel independently. Hence adjustable weighted

normalization was achieved, which potentially could achieve IN, LN, and GN

with training the added weights.

For architecture design in training DCNNs for medical image segmentation,

ACNN was proposed using only convolutional layers and setting the atrous

rate as kn at the nth layer in the atrous block. Multiple atrous blocks were

cascaded to form the proposed ACNN. No max-pooling layers or deconvolu-

tional layers were used. All intermediate feature maps were with the same

resolution. It can achieve comparable segmentation results to a traditional

U-Net with fewer trainable parameters.

I further worked on 3D neural architecture design for medical volume

segmentation. Currently, due to the restriction of GPU memory and the

limited training data, medical volumes are usually cropped into patches with

the size of 64× 64× 64 or 64× 128× 128. However, this patch cropping will

cause class-imbalance problem, as some patches may contain only foreground

or background. I and my colleagues proposed a new patch cropping method

which cropped the medical volumes into a size of 512 × 512 × 8. Hence,

the class-imbalance problem was eliminated in the XY plane. The 3D

convolutional layers in the traditional U-Net and V-Net were decomposed

into XY and Z convolutions separately to compensate for the asymmetrical

property of the new patches.

The main work of my PhD is 3D shape instantiation, which is potentially

useful and important to the development and popularization of robot-assisted

MIS. However, difficulties and bottlenecks exist: 1) time is limited during

a surgery, so the input can only be a limited amount of image and the

3D shape instantiation algorithm has to be fast for real-time navigation; 2)

reconstructing a 3D shape from a 2D image is a problem that crosses different

modalities; 3) accuracy is important for a safe operation; 4) robustness to

unseen situations, i.e., tissue obstruction, decreased resolution and so on, is

vital; 5) high-resolution instantiated 3D mesh is essential. The methodology
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for 3D shape instantiation is currently based on the combination of multiple

algorithms usually. It is also task specific and one algorithm usually can not

be transferred to other tasks.

For 3D shape instantiation of soft organs, a general, real-time and registration-

free framework is proposed. It is applicable to multiple targets, once the

required training data at multiple time-frames is available. SPCA was used

to determine the optimal scan plane by analyzing the 3D SSM of the target

while KPLSR was used to learn the relationship between the 2D SSM and the

3D SSM. Multiple deficiencies also exist in the proposed framework. First,

the optimal scan plane needs to be determined patient-specifically. Second,

the KPLSR model needs to be trained for each patient. Third, the 3D SSM

needs to be collected and generated each time to determine the optimal scan

plane and to train the model. Fourth, segmenting the RV contours from

2D MRI slice and generating the 2D SSM through non-rigid registration are

essential in both the training and testing. These four points bring heavy

workloads to clinicians, which limits the practicality of the proposed frame-

work. A fifth deficiency is that even though the KPLSR-based instantiation

is robust to the number of components used, it is sensitive to the Gaussian

width parameter. This point decreases its robustness.

To compensate for the fifth point, I and my colleagues replaced the KPLSR

learning with a deep learning method in [23], where convolutional layers were

used to extract information from the 2D MRI slice while fully-connected

layers were used to regress the 3D vertex coordinates of 3D shape. Rather

than using the popular L1 and L2 loss, Chamfer loss is used. It releases the

correspondence between the ground truth vertex and the prediction vertex

during the loss calculation, hence allowing larger exploration space for the

network. This newly proposed instantiation based on deep learning can

regress 3D point cloud directly from a single 2D image with fully automatic

training, which eliminates the third and fourth deficiency mentioned above.

However, it loses the vertex correspondence and hence 3D mesh is not achiev-

able. I and my colleagues are working on combining Graph Convolutional

Network (GCN) and deep learning to instantiate directly a 3D mesh from a

single 2D image.

For 3D shape instantiation of stent grafts, the 3D shape of a fully-deployed

stent graft was instantiated with mathematical modelling, the RPnP method,

and graft gap interpolation. There are three statuses for a stent graft
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during a FEVAR or EVAR surgery: fully-compressed, partially-deployed

and fully-deployed. In addition, I worked on predicting the deployed stent

graft shape from a single 2D fluoroscopic projection of its compressed state

in [11]. The 3D mesh of a compressed stent graft was instantiated with

the same mathematical modelling and RPnP method in this thesis, but the

radius r was expended to the deployed value at each height to predict the

deployed stent graft shape. During the experiment, as the stent graft was at a

compressed state, it was impossible to collect the instantaneous 3D deployed

shape as the ground truth, hence we deployed the stent graft manually and

then scanned it with CT as the ground truth. It was obvious that the state

of the compressed stent graft was changed during the manual deployment

process, indicating that the ground truth was not accurate. Hence, the

instantiated angular error of 10◦ to 20◦ in [11] was larger than that in this

thesis.

I and my colleagues also worked on instantiating the 3D shape of partially-

deployed stent segments in [13], where the main bottleneck was the unknown

reference 3D marker positions. For both the fully-compressed or fully-

deployed state of stent segments, the reference 3D marker positions were

acquired from stent graft design or CT scans. However, the reference 3D

marker positions of partially-deployed stent segments were unknown. In [13],

a GCN was trained to learn the deformation from fully-deployed reference

3D marker positions to partially-deployed ones and the training data was

collected by partially deploying multiple stent segments multiple times. Deep

learning was also tried, however the performance was worse than GCN, as

shown in the validation in [13]. The trained model was used to predict

the partially-deployed reference 3D marker positions intra-operatively, and

then these predicted reference 3D marker positions were combined with the

mathematical modelling, RPnP method and graft gap interpolation in this

thesis for 3D shape instantiation for partially-deployed stent grafts.

We also worked on instantiating the 3D skeleton of AAA from a single

intra-operative 2D fluoroscopic image [14]. Graph matching was used to

match the pre-operative 3D AAA skeleton and the intra-operative 2D AAA

skeleton projection, and these two skeletons were registered to instantiate the

intra-operative 3D AAA skeleton. The instantiated 3D AAA skeleton is the

central-line of the intra-operative AAA and is a safe path for FEVAR robot

to follow to insert, deploy and rotate the fenestrated stent graft with the
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delivery device. In this thesis, the 3D shape instantiation for fully-compressed,

partially-deployed and fully-deployed stent grafts are validated separately.

For a complete FEVAR navigation system in practical applications, these

three components are essential to be integrated. The 3D shape of AAA, not

only the 3D skeleton, is also very important for a complete navigation system

for FEVAR.

Due to the fact that the segmented results from DCNN usually are not good

enough and manual corrections are needed, in this thesis, the 2D segmentation

and 3D shape instantiation are evaluated separately. An integrated evaluation

is essential for showing the overall navigation property in the future. Only

the deformation caused by respiration and cardiac beating is considered in

this thesis, the deformation caused during the intervention, i.e. insertion

of instruments, is not considered. For the experiments, usually phantom or

off-line patient data are used, animal and patient test are essential in the

future if clinicians wish to use the proposed technique in practical surgeries.

To summarize, 3D shape instantiation can be useful in intra-operative and

dynamic 3D navigation. First, it only needs a single 2D projection slice as the

input which potentially can achieve real-time update of the intra-operative 3D

shape. Second, the instantiated 3D shape is not only an interpolation or rigid

transformation of pre-operative 3D shapes, but also considers intra-operative

deformation through taking the intra-operative 2D projection or slice into

account. In this thesis, I proposed 3D shape instantiation frameworks for both

soft organs and the stent graft. In addition, 2D medical image segmentation is

used to supply the input of 3D shape instantiation and is also very important

for a complete and automatic 3D shape instantiation pipeline. Hence, I also

worked on the normalization and architecture design for training DCNNs for

medical image segmentation.
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