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A Road to VITM: Previous workshops and symposia on 
virtual trials in breast imaging 
Predrag R. Bakic, §,1 Stephen J. Glick, 2 Hilde Bosmans, 3 Kyle J. Myers, 4 Andrew D. A. Maidment 5 

1Lund University, Malmö, Sweden; 2Food and Drug Administration, Silver Spring, MD; 3Katholieke 

Universiteit Leuven, Belgium; 4Puente Solutions LLC, Phoenix, AZ; 5University of Pennsylvania,  

Philadelphia, PA 

 

 

BACKGROUND AND PURPOSE 

Computer simulation of the anatomy, imaging, and interpretation has been used for a long time for assessing 

performance of breast imaging technology. A combined approach was initiated around 2009-10, when the 

phrase virtual clinical trials (VCTs) emerged. Several VCT workshops and symposia were organized by the 

imaging community. We briefly review presentations and discussion points from the VCT meetings at 

International Workshops on Breast Imaging (IWBI), Annual Meetings of the American Association of Physicists in 

Medicine (AAPM), and SPIE Medicinal Imaging conferences. 

 

 

REVIEW OF VCT MEETINGS ON MEDICAL IMAGING CONFERENCES 

VCT Symposium at AAPM 2013, Indianapolis, IN 

(Chairs: P.R. Bakic, K.J. Myers) 

A two-hour symposium included four invited presentations on the real time 

and small-scale anatomy simulation, computational phantom generation from 

clinical data, and in silico task-based assessment of imaging systems. The 

presenters included: Predrag R. Bakic, Kyle J. Myers, Ingrid Reiser, Nooshin 

Kiarashi, and Rongping Zeng.1 

 

 

VCT Symposium at AAPM 2014, Austin, TX 

(Chairs: K.J. Myers, P.R. Bakic) 

A two-hour symposium included three invited presentations on the statistical 

approach to evaluate phantom realism, observer models and realism testing, 

and simulation methods from an industry perspective. Presenters included: 

Kyle J. Myers, Predrag R. Bakic, Craig K. Abbey, Matthew A. Kupinski, and 

Thomas Mertelmier.2 
 
 

 

§ Predrag.Bakic@med.lu.se 

mailto:Predrag.Bakic@med.lu.se
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VCT Symposium at AAPM 2016, Washington, D.C. 

(Chairs: P.R. Bakic, K.J. Myers) 

A two-hour symposium included four invited presentations on the 

multi-modality virtual phantoms, cellular scale simulations, and visual 

search and anthropomorphic model observers. Presenters included: 

Kyle J. Myers, Christian Graff, Predrag R. Bakic, Mini Das, and Ali N. 

Avanaki.3 

 

 

VCT Workshop at IWDM 2016, Malmö, Sweden 

(Chairs: P.R. Bakic, A.D.A. Maidment) 

A two-hour workshop included five invited updates from academia 

and regulatory agencies. The panel discussion suggested future 

directions: define diagnostically relevant tasks, share VCT modules, 

develop standards, track clinical outcomes, extend to multimodality 

imaging, simulate inter-operator variability, and validate simulations. 

Presents included: Predrag R. Bakic, Andrew D.A. Maidment Stephen J. Gick, Hilde Bosmans, and Alistair 

Mackenzie.4 

 

 

VCT Workshop at IWBI 2018, Atlanta, GA 

(Chairs: P.R. Bakic, S.J. Glick) 

A four-hour workshop included four invited updates from academia, 

industry, and regulatory agencies. Presented were also five proffered 

short talks. The panel discussion focused on VCT realism, inter- 

operability, need for data standards, and support to multimodality 

and multiscale simulations. Presenters included: Predrag R. Bakic, 

Stephen J. Glick, Rongping Zeng, Ann-Kathrine Carton, Andrew D.A. 

Maidment, Alistair Mackenzie, Thomas Mertelmeier, Christiana 

Balta, Janne Vignero, Bruno Barufaldi, and Oliver Diaz.5 

 

 

VCT Workshop at SPIE 2021, Digital Forum 

(Chairs: H. Bosmans, F.W. Samuelson) 

A two-hour workshop included eight presentations from academia, 

industry, and regulatory agencies on the set-up, validation, and use of 

VCT platforms, with a live demonstration of a VCT platform. 

Presenters included: Hilde Bosmans, Frank W. Samuelson, Ehsan 

Samei, Predrag R. Bakic, Andrew D.A., Maidment, Aldo Badano, 

Alistair Mackenzie, Tom Kimpe, Bruno De Man, and Maryellen Giger 
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VCT Workshop at IWBI 2022, Leuven, Belgium 

(Chairs: P.R. Bakic, S.J. Glick) 

A four-hour workshop with two invited lectures from academia, 

and eight proffered short talks. The panel discussion focused on 

collaborative studies, exchanging simulation software, cross- 

comparison, risk of bias, and community building – which led to 

the International Summit on Virtual Trials in Medicine – VITM!6 

Presenters included: Predrag R. Bakic, Stephen J. Glick, Raymond 

J. Acciavatti, Ann-Katherine Carton, Marcelo A.C. Vieira, Lisbeth 

Vancoillie, Antonio Sarno, Lucas R. Borges, Richad Osuala, Juhun 

Lee, Kristina Bliznakova, Ehsan Samei, Hilde Bosmans, Andrew 

D.A., Maidment, Paul Kinahan, and Robert M. Nishikawa.7 

DISCUSSION 

Common research and discussion topics 

Previous scientific meetings on virtual trials highlighted several recurring discussion topics, e.g., evaluation of 

virtual trials realism for various simulation tasks and developing data and simulation standards. 

Major discussions & developments 

Early meetings (AAPM 2013-16) emphasized mainly the activities and discussions within the AAPM Task Group 

on Virtual Tools for the evaluation of New 3D/4D Breast Imaging Systems (TG234). 

With VCT workshops at IWBI 2016-2022, the wider medical imaging community has become more and more 

familiar with the VCT approaches and benefits. Thus, the discussions reflected on the topics of interest at the 

time, e.g., sharing the simulations and developing appropriate data standards (IWBI 2016); 

multimodality/multiscale simulations (IWBI 2018); and collaborative studies, cross-comparison, and further 

community building (IWBI 2022) – which led to the initial planning of VITM 2024! 

Future directions 

VITM 2024 program reflects the current topics of interest and open questions. Future directions in virtual trials 

research are summarized within the VITM 2024 Discussion sessions on: Bridging real and virtual trials, 

Intersection of Physics and Biology simulations; Overcoming barriers to VCT wide accessibility and 

implementation; and Enhancing diversity in digital patients. 

 

 

CONCLUSION 

VITM reflects the development of the virtual trial community formed over many years, and recurring needs for 

tools to communicate, evaluate, expand, and maximize the benefits of computer modeling in medical imaging. 



VITM 2024 5 
 

 
ACKNOWLEDGEMENTS AND CONFLICT OF INTEREST 

Previous VCT seminars and workshops have been supported by AAPM/TG234, IWBI, and SPIE funding, as well as 

the funding sources of participating presenters. 

 

 

REFERENCES 

1. Bakic PR, Myers KJ, Reiser I, Kiarashi N, Zeng R. Virtual Tools for Validation of X-Ray Breast Imaging Systems. 
Medical Physics 2013; 40(6): 390. 

2. Myers KJ, Bakic PR, Abbey CK, Kupinski M, Mertelmeier T. Virtual Tools for Validation of X-ray Breast Imaging 

Systems. Medical Physics 2014; 41: 446-7. 

3. Myers KJ, Bakic PR, Graff C, Das M, Avanaki AN. Recent Advances in Virtual Tools for Validation of 3D/4D 

Breast Imaging Systems (TG234). Medical Physics 2016. 

4. Bakic PR, Myers KJ, Glick SJ, Maidment ADA. Virtual Tools for the Evaluation of Breast Imaging: State-of-the 

Science and Future Directions. In: Tingberg A, Lång K, Timberg P, editors. Breast Imaging; 2016 2016//; Cham: Springer 

International Publishing; 2016. p. 518-24. 

5. 2nd Workshop on Virtual Clinical Trials. 2018. chrome- 

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iwbi2018.synchrosystems.com/documents/2ndWorkshoponVirtualClin 

icalTrials.pdf. 
6. Virtual Imaging Trials in Medicine, VITM 2024. 2024. https://cvit.duke.edu/vitm24/ (accessed 4/11/2024. 

7. 16th International Workshop on Breast Imaging, IWBI 2022. 2022. chrome- 

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iwbi2022.com/wp- 

content/uploads/2022/05/IWBI2022_Programmaboekje_A4_Staand_1_ZONDER_snijtekens-1.pdf. 

https://iwbi2018.synchrosystems.com/documents/2ndWorkshoponVirtualClinicalTrials.pdf
https://iwbi2018.synchrosystems.com/documents/2ndWorkshoponVirtualClinicalTrials.pdf
https://cvit.duke.edu/vitm24/
https://iwbi2022.com/wp-content/uploads/2022/05/IWBI2022_Programmaboekje_A4_Staand_1_ZONDER_snijtekens-1.pdf
https://iwbi2022.com/wp-content/uploads/2022/05/IWBI2022_Programmaboekje_A4_Staand_1_ZONDER_snijtekens-1.pdf


VITM 2024 6 
 

Streamlined large-scale construction of virtual twins of 
aortic root complexes for in-silico trials of cardiac valve 
implants 
Matheson, B. A12, Dou, H. 12, Teleanu, C. 12, Hyde-Linaker, G. 3, Bryan, R. 3, Palmer, M. 4, Horner, M. 4, 

Allocco, D. 5, Flynn, D. M. 5, Blackman, D. 6, Ravikumar, N. 12, Frangi, A.F. 178, Taylor, Z. A. 12 

1 Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB); 2 University of Leeds; 

3 Synopsys, Inc.; 4 Ansys, Inc.; 5 Boston Scientific Corporation; 6 Leeds Teaching Hospitals NHS Foundation Trust; 

7 Christabel Pankhurst Institute; 8 University of Manchester 

 

BACKGROUND AND PURPOSE 
In-silico trials (ISTs) hold transformative potential in healthcare. However, creating large-scale, virtual patient 
cohorts remains difficult, especially given the challenges of automating high-quality image segmentation and 
meshing processes for complex anatomies. We introduce a fully automated methodology for generating aortic root 
virtual twins (VTs). The work is motivated by development of ISTs of Transcatheter Aortic Valve Implants (TAVIs). 
 

METHODS 
Our VT workflow comprises the following steps (figure 1): 1) segmentation of aorta and left ventricle outflow tract 
in cardiac computed tomography angiograms; 2) identification of aorta centreline and aortic root anatomical 
landmarks; 3) landmark-based warping of a template leaflet model; 4) segmentation of calcifications from a 
landmark-based region of interest around the valve plane; 5) computational mesh generation; 6) device-anatomy 
registration; and 7) boundary condition assignment. Steps 1-5 were performed using Synopsys Simpleware 
software, and 6-7 using Ansys LS-DYNA augmented with custom Python scripts. 
 
The workflow was tested on a study population of 212 patients from the REPRISE III clinical trial. The resulting mesh 
quality was assessed using standard metrics (Aspect Ratio/Jacobian). To confirm the models’ utility, balloon aortic 
valvuloplasty was simulated on a subset of the cohort. 
 

RESULTS 
A sample of the resulting VTs is visualised in figure 2. Histograms of mesh quality metrics, showing the high quality 
of models, are presented in figure 3. Sample simulation results, highlighting predicted strain in a key tissue region 
associated with device-induced conduction disturbances (1), are depicted in figure 4. 
 

CONCLUSION 
Our approach enables automated construction of high-quality VTs for complex aortic root anatomies. Given the 
labour-intensiveness of manual processes, automated workflows are paramount for IST scalability. Automated 
approaches promote traceability, verification, and reproducibility, all of which are essential for regulatory 
compliance. Future work will focus on using the VTs to predict incidence of conduction disturbances in TAVI 
cohorts. 
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Assessment of the Relative Value of Different Body Size 
Measurands to Inform the Needed Radiation Dose in 
CT Imaging: A Virtual Trial Study 
Njood Alsaihati, Francesco Ria, Justin Solomon, Jered Wells, Ehsan Samei 

 

 

BACKGROUND AND PURPOSE 

In recent years, the utilization of computed tomography (CT) has increased, driven by advancements in 

technology and its versatile applications.1 Alongside this expansion, concerns have also increased regarding the 

potential risks associated with radiation exposure.2,3 In this scenario, the effective management of radiation 

dose is crucial to minimize radiation exposure. However, similar to other X-ray based medical imaging 

modalities, the level of radiation dose used during CT image acquisition directly impacts the resulting image 

quality. 

Specifically, when X-ray beams pass through the patient body, they undergo attenuation, scattering , or 

transmission. Moreover, as the body size increases, the probability of X-ray attenuation increases, resulting in 

higher energy deposition and a reduction in transmitted beam intensity. Consequently, fewer X-ray photons 

reach the detector for a given exposure leading to increased relative quantum noise and degrading the final 

quality of the image. As a result, achieving consistent image quality across different patient body sizes 

necessitates the administration of appropriate levels of radiation dose. 4,5 However, determining the appropriate 

radiation dose tailored to the individual is complicated by the range of body habitus and size among patients 

encountered in clinical operations. 

This scenario is further complicated by the fact that patient body size is not characterized by a singular metric; it 

can be described by a multitude of measurements. Common clinical metrics like body weight and body mass 

index (BMI) are frequently used to describe patient size, but patients with identical body weights or BMIs may 

be associated with different body habitus thus limiting their utility in CT. A more useful metric for CT imaging 

was introduced in the American Association of Physicists in Medicine (AAPM) Report 220.6 The concept of 

water-equivalent diameter (Dw) accounts for both geometric size and tissue attenuation variations within the 

patient. Nonetheless, the appropriateness of each metric in dictating the CT scanner radiation output to achieve 

optimal image quality has not yet been determined. 

The purpose of the study was to assess the utility of different measurands of patient size in terms of their 

reliability to dictate the needed radiation dose to achieve a targeted image noise magnitude. To do so, we 

exploited virtual imaging trials (VITs) framework which stands as a crucial tool because it benefits from the 

ground truth representation of patient sizes and shapes. 
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METHODS 

1. Image Acquisition 
In this study, six virtual patients (XCAT phantoms, Duke University) were used to represent a diverse spectrum of 

body habiti.7 These virtual patients underwent simulated CT imaging using a scanner-specific simulator known as 

DukeSim developed at Duke University.8,9 The imaging process involved two protocols. First, chest CT scans 

simulated at seven fixed mA levels (40, 66, 132, 158, 198, 264, and 528 mA), both with and without noise. 

Second, CT scans covering the head, neck, and shoulder regions simulated across 10 fixed mA levels (50, 70, 90, 

120, 170, 220, 300, 400, 550, 750, mA), both with and without noise. 

2. Data Analysis 

Following image acquisition, a comprehensive analysis was conducted as follows. Dw was calculated from each 

image slice (Dw_slice), at the center slice (Dw_center), averaged across all slices (Dw_average), and as the median across 

all slices (Dw_median). Additionally, patient weight and BMI were investigated as patient size candidates. 

Average noise magnitude values for each slice (𝜎𝑠𝑙𝑖𝑐𝑒) were determined by subtracting each noise-free image 

from its noisy counterpart. Using the Beer-Lambert Law and the relationship between noise and mA, a 

functional model was developed to establish the relationship between noise, size, and mA, as represented by 

the equation: 

𝜎𝑠𝑙𝑖𝑐𝑒 = 𝑐1[𝑐2 𝑚𝐴 𝑒−(𝑐3𝑠𝑖𝑧𝑒)]−𝑐4 (1) 

In equation 1, parameters c1, c2, c3, and c4 represent the fitting parameters. The model was fit to the data 

using curve fitting function. In this analysis, Dw_slice was assumed to be the gold standard size metric for 

determining the required mA to achieving a target noise level. The other size metrics were evaluated in relation 

to Dw_slice. Two figures of merit were used to evaluate the efficacy of each size metric in predicating the needed 

mA and noise magnitudes accurately. In particular, the root mean square error (RMSE), and the mean percent 

error (MPE) in mA and noise were computed using the formula: 
 

𝛼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝛼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑟𝑒𝑓 
𝑀𝑃𝐸 = | 

𝛼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑟𝑒𝑓 

| 𝑥 100 (2) 

where 𝛼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 refers to the predicted values of mA or noise for the evaluated size metric (i.e. Dw_average, 

Dw_median, Dw_center, weight, and BMI). 𝛼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑟𝑒𝑓 
is the predicted values of mA or noise for the gold standard 

metric (i.e. Dw_slice). 

RESULTS 

The results in Table 1 and Table 2 present the mean percent error of the various size metrics in predicating the 

required tube current and achieving the targeted noise level across different body regions: chest region and 

head, neck and shoulder region. These metrics are compared relative to the gold standard metric Dw_slice. 

In chest region, weight and BMI exhibit the highest percentage error in predicating the required tube current 

and targeted noise level. The RMSE values for the noise model corresponding to Dw_slice , Dw_average, Dw_median, 

Dw_center, weight, and BMI are 3.12, 7.00, 6.92, 6.95, 8.33, and 7.28, respectively. Additionally, Figure 1 show 

surface fits illustrating the relationship between mA, size metrics, and 𝜎𝑠𝑙𝑖𝑐𝑒 for the chest protocol data. 
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Conversely, in the head, neck, and shoulder regions, all size metrics, including Dw metrics, weight, and BMI, 

demonstrate significantly higher percentage errors. Furthermore, the RMSE values for the noise model 

associated with Dw_slice , Dw_average, Dw_median, Dw_center, weight, and BMI are 0.87, 5.65, 5.73, 5.66, and 5.65, 

respectively. 

Table 1 Mean percent error in image noise (σ) and tube current (mA) for various size metrics in the chest region 
 

Size metric Mean % error in 𝝈 Mean % error in mA 
Dw_average 12.5 20.9 
Dw_median 12.5 20.3 
Dw_center 12.5 20.3 

Weight 18.2 32.9 

BMI 14.4 23.5 

 

Table 2 Mean percent error in image noise (σ) and tube current (mA) for various size metrics in the head, neck and shoulder regions 
 

Size metric Mean % error in 𝝈 Mean % error in mA 
Dw_average 32.7 56.1 
Dw_median 32.8 56.3 
Dw_center 33.3 56.5 

Weight 32.9 56.4 

BMI 33.1 56.1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 3D surface fits showing the relationship between mA, size metrics, and average noise magnitude 𝜎slice for chest protocol data. 

DISCUSSION 

In this study we assessed how different patient size surrogates can predict the required radiation output to 

obtain a specific image noise magnitude in CT studies. Our analysis of the chest data shows weight and BMI do 

(a) slice(mA, Dw_slice) (b) slice(mA, Dw_average) (c) slice(mA, Dw_median) 

(d) slice(mA, Dw_center) (e) slice(mA, Weight) (f) slice(mA, BMI) 
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not accurately capture variations in size and attenuation resulting in the highest mean percentage error in mA 

and noise. On the other hand, the head, neck, and shoulder data results highlight the importance of considering 

anatomical variations when assessing size metrics for predicating the required radiation dose to target a specific 

noise magnitude. The substantial variations in size and attenuation along the z-axis requiring dynamic estimates 

of patient size. Metrics such as Dw_average and Dw_median are region-dependent. For example, in the chest region, 

these metrics values may closely align, whereas differences are observed when analyzing the head, neck, and 

shoulder regions together. 

Achieving optimal image quality with minimal radiation exposure is crucial in medical imaging. However, 

traditional assessments using patient images are limited due to the lack of a definitive ground truth and 

incomplete patient data, such as weight and BMI records, which may sometimes not be recorded or updated on 

the day of imaging the patient. Moreover, concerns about repeated patient imaging due to radiation exposure 

further complicate these assessments. VITs offer a solution by simulating diverse patient types and imaging 

conditions. Leveraging data from virtual patients represented by XCAT phantoms and DukeSim scanner, such 

assessments become feasible, providing access to never-before-available information for refining CT imaging 

protocols to account for variations in patient body habitus and composition. 

CONCLUSION 

Not all size estimates carry the same level of relevance to inform dose for CT imaging. Care should be exercised 

when predicting scanner performance using metrics non-representative of patient body habitus. The findings 

are dependent on the body part being imaged. Furthermore, the study highlights the significance of VITs in 

addressing these challenges. VITs offer a more reliable representation of patient sizes and shapes, providing 

valuable insights in assessing the utility of different size metrics in determining the necessary radiation dose to 

achieve targeted image quality. 
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In silico clinical trial to assess the influence of orientation 
on the primary stability of a cementless acetabular cup 
Mark Taylor ( Flinders University) 

Background 

Achieving primary fixation of cementless acetabular components is critical for ensuring longevity of the 

device. The initial mechanical environment, particularly the bone strains immediately adjacent to the 

cup and the micromotions at the bone implant interface are dependent on a number of factors including 

cup placement and orientation. The Lewinnek safe zone (LSZ) of 40 degrees of inclination and 15 

degrees of version plus/minus 10 degrees has been widely adopted as the target for acetabular cup 

placement. However, studies have reported that actual cup alignment can vary from 20 to 60 degrees 

of inclination and 0 to 40 degrees of version. The influence of alignment, both within and outside the 

LSZ, on primary stability are poorly understood. The aim of this study is to assess the influence of 

acetabular component alignment within an in silico clinical trial framework. 

Methods 

Finite element models of 57 implanted hemi-pelvii were generated from CT scans of a cohort of end 

stage osteoarthritis patients using a custom scripted ISCT work flow (Simpleware, Synopsys Inc.) which 

included: auto-segmentation, defining an anatomical reference frame; sizing and positioning of the 

cementless acetabular component; calibration of CT scan to define bone material properties; mesh 

generation; definition of contact surfaces; defining loading and boundary conditions to simulate level 

gait and post-processing. Each pelvis was implanted with the following cup orientations 

(inclination:version angles in degrees): 40:15 (reference); 30:5; 30:25; 50:5; 50:25; 20:-5; 20:35; 60:-5 

and 60:35. Bone strain immediately adjacent to the implant and mircomotions (gap and shear 

micromotions) were used to assess primary stability. Analysis was performed at the levels of the 

individual subjects and the entire cohort. 

Results and Discussion 

There was significant variation in the predicted strains and micromotions for the reference cup 

alignment (40:15) and both were moderately correlated to the average bone modulus of the pelvii. The 

mean and 95th percentile equivalent strains varied from approx. 950 to 5300 microstrain and 3900 to 

18500 microstrain respectively. Similar trends were observed for the predicted micromotions. Within the 

LSZ, the influence of cup positioning only had a minor effect on the bone strains, with an average 

variation of 5%. However, with upto 20% variation was predicted for an individual. There was greater 

variation in the predicted micromotions, with an average variation across the cohort of approx. 25% and 

individuals experiencing variations of up to 55%. Outside of the LSZ, the mean strain variation across 

the cohort increased to 12% with peak of upto 39% reported for an individual. Similar trends were 

observed for the predicted micromotions. 

 
In conclusion, at both the individual subject and cohort levels, micromotion was more sensitive to 

changes in the acetabular cup alignment than the peri-prosthestic bone strains. 
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BACKGROUND AND PURPOSE 
A literature search in the field of dentomaxillofacial radiology revealed several ex-vivo/in-vitro studies and few in-
vivo studies in which technical imaging components have been optimized towards better performance in dental 
practice. In present study, the feasibility of a Virtual Imaging Trial (VIT) platform to potentially set-up similar studies 
in a virtual setting is illustrated. 
 

METHODS 
An in-house developed framework and the necessary digital phantoms were prepared for the following potential 
studies: i) the impact of intra-canal post material type (Ni-Cr alloy, fiberglass, gutta-percha) and acquisition settings 
(mA, kV) on root fracture (RF) visibility; ii) the effect of a metal artefact reduction algorithm on RF visibility in a 
tooth treated endodontically and restored with a metal post; iii) image artefact levels from candidate new 
restorative materials, like graphene; iv) effect of patient rigid motion on image artefacts. In addition, features not 
available on the real system were modeled, i.e., automatic exposure control and extended mA and kV ranges, were 
added to potentially study the full extent of the impact of these parameters. Patient dose levels were also 
quantified.  
 

RESULTS 
The generated images showed the influence of different restorative materials, dose levels, rigid motion, and post-
processing on the quality of the final images. Tendencies retrieved from illustrating several conditions were 
consistent with findings in literature. Images were considered sufficiently realistic. Furthermore, the platform was 
able to simulate scenarios that are difficult or impossible to replicate physically in a controlled and repeatable way.  
 

CONCLUSION 
The dental CBCT platform has considerable flexibility, and can model a range of tasks in VITs, from RF visibility, 
through to an exploration of image artefacts. Optimization studies are possible through simultaneous modelling of 
task and patient dose. The platform also has application as teaching tool. 
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The use of phantoms in virtual imaging trials for 
microcalcification detection optimization in digital 
breast tomosynthesis 
Cockmartin L, Houbrechts K, Marinov S, Marshall N W, Vancoillie L, Verhoeven H, Sanchez de la Rosa 

R, Carton A-K*, Bosmans H* 

*Contributed equally as senior authors 

ABSTRACT 
 
When designing virtual imaging trials (VIT), it is essential to determine the required level of realism of the task and 
background. This work aims to validate two simulated breast backgrounds:physical L1 phantom (acrylic spheres in 
water) and virtual anthropomorphic phantom (Stochastic Solid Breast Texture (SSBT)) against patients for 
microcalcification detection in digital breast tomosynthesis (DBT) using a hybrid VIT. Patient and L1 images were 
acquired on a GE Senographe Pristina™ DBT system. Realistic DBT projections of the SSBT phantom were simulated 
using the Computer Assisted Tomography SIMulator (CatSim) software (GE HC), including quantum and electronic 
noise, detector Modulation Transfer Function and x-ray scatter at an energy of 23keV. Voxel models of individually 
segmented calcifications were created from a micro-CT dataset of biopsy specimens. Calcifications of similar sizes 
were grouped into clusters based on the distribution of real clusters in DBT. Projections of microcalcifications were 
created using CatSim and inserted into background images. The same cluster templates were used for all three 
backgrounds to allow pairwise comparison. Reconstructed volumes of 40x40x40mm³ were included in an observer 
study with 120 signal present and 120 signal absent volumes for each background type. Three readers localized and 
rated the presence of a cluster on a scale from 1-4. Area under the alternative free-response receiver operating 
characteristic (AFROC) curve was used as figure of merit. The reader-averaged areas under the curve for patients, 
SSBT and L1 were 0.70±0.04, 0.74±0.04 and 0.76±0.03 respectively. Microcalcification detectability was similar in 
patient and SSBT backgrounds(p=0.09), yet small differences were found between patients and L1(p=0.02). No 
difference was seen between L1 and SSBT(p=0.44). 
The SSBT phantom is a validated alternative for patients in VIT when studying microcalcification detection in DBT, 
while L1 offers a close approximation. 
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Finite element modeling of patient- and disease- 
specific lung respiration for the lung function 
assessment 
Amar Kavuri, Fong Chi Ho, Jerry Worthy, Zhuohan Zhou, Ehsan Samei, W. Paul Segars, Ehsan Abadi 

Center for virtual imaging trials, Duke University 

BACKGROUND AND PURPOSE 

The validity of studies of lung disease through virtual trials depends on accurate mechanical modeling of lung respiration.[1] 

Current respiration models are generic and lack the necessary variability in motion, especially considering the presence of lung 

diseases of varying severity [2,3]. The aim of this work was to develop a respiration model that incorporates disease-specific 

mechanics and respiratory forces. 

METHODS 

Five parametric respirations were generated accounting for Chronic Obstructive Pulmonary Disease (COPD) abnormalities. 

The overall framework of this study is shown in Figure 1. The anatomy of the lungs and disease abnormalities (emphysema 

and air-trapping) were modeled by segmenting CT scans of patients of different sex (2M, 3F), age (43.3±10.9 years), and BMI 

(25.2±6.12), replicating the method used for the generation of the state-of-the-art human models (e.g., XCAT) [4]. The diseased 

lung models were converted into tetrahedral meshes using finite element modeling software (ABAQUS). Tissue specific 

mechanical properties (Young’s modulus and Poisson’s ratio) were assigned to each tissue type (Table 1) [5]. Patient-specific 

forces and boundary conditions were applied to both lungs’ surfaces. The magnitudes of forces were adjusted iteratively until 

a target volume was achieved for each time frame. The resultant motion vectors and lung models were utilized to generate 

voxelized phantoms over the respiratory cycle. 

 

 
Figure 8: Computational framework used to model respiration. 
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Table 3:Mechanical properties of lung tissues used for simulation: Young’s modulus (Ε), Poisson’s Ratio (ν), and Volume Density (ρ) [5]. 
 

Tissues Young’s modulus, Ε 

(MPa) 

Poisson’s Ratio, ν Density, ρ (g/ml) 

Healthy Lung 3.74x10-3 0.3 0.26 

Emphysema 49 0.4 0.045 

Air-trapping 33 0.33 0.078 

RESULTS 

Figure 2 shows an example lung model simulated at full inspiration and at an intermediate respiration level. The left lung was 

set to include multiple areas of emphysema while the right lung was defined as healthy. The results show the bottom of the 

lungs displace more as expected compared to that of the top due to diaphragm pressure. The diseased lung is also seen to 

compress less compared to that of the healthy lung. 

 

Figure 9: Simulated lung models at full inspiration (left) and an intermediate respiration level (middle) with left lung includes disease 

areas. The magnitude of displacement is represented by color(right). 
 

Figure 10: 3D trajectory of sample nodes calculated from the biomechanical finite element model to demonstrate the tracking of specific 

nodes on the left and right lungs during the respiration process. 

Figure 3 demonstrates the 3D trajectory of sample nodes during the respiration simulation process. 
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DISCUSSION 

The generated lung models demonstrate distinct volumetric alterations in diseased regions compared to healthy parenchyma 

and differences in respiration motion attributed to the presence or absence of disease. Although the simulation possesses certain 

capabilities, it is not without its drawbacks. Currently, each tissue that is simulated is characterized by a uniform composition. 

In our subsequent research, we plan to explore methods to represent the variability within each organ’s tissue. 

CONCLUSION 

This work developed an accurate biomechanical finite element model for lung respiration using patient- and disease-specific 

mechanics. The model will enable more reliable and accurate virtual trials such as studying the relevance of quantitative CT in 

assessing lung function in disease. 
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Generation of digital breast phantoms with patient- 
based internal structures from breast CT images 
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BACKGROUND AND PURPOSE 

To generate digital breast phantoms from patient breast CT (bCT) scans, incorporating random realistic shapes and 
patient-based internal structures. 

METHODS 
Principal Component Analysis (PCA) was applied to the breast surface of 488 patient bCT scans acquired from 
multiple sites, representing shape variance with linearly-independent vectors. These vectors were used to generate 
400 breast models with varying shapes, voxelized through mesh reconstruction. Complete phantoms were created 
by integrating these models with fibro-glandular tissue distributions retrieved from 119 pre-segmented bCT scans 
from one site, using non-rigid image registration. Tissue distribution was characterized through glandular density 
computation along the axial, coronal, and sagittal directions. To compare the anatomical texture of synthesized and 
real breasts, 50 coronal 2D regions of interest (ROIs) measuring 43.7 mm on a side were extracted from each 
breast, and a Hann window was applied to reduce edge effects. The 2D noise power spectrum (NPS) of each ROI 
was calculated, averaged across ROIs, and radially averaged to yield a 1D NPS. Power-law functions were fitted to 
these radial profiles and the slopes compared to prior publications on segmented bCT images. 

 

RESULTS 
The fourteen-component PCA model, explaining 99.99% of data variance, yielded a median mean absolute error of 
0.78 mm (IQR=[0.67, 0.96] mm) compared to the original shapes. Fibroglandular tissue concentrated caudally and 
anteriorly, exhibiting a symmetrical lateromedial distribution. Synthesized breasts, compared to real ones, 
demonstrated a percent relative error in median peak magnitude of 41%, 31%, and 88% along the axial, sagittal and 
coronal directions, respectively, indicating major challenges in tissue alignment near the nipple. In the spatial 
frequency range of 0.07 lp/mm to 1 lp/mm, the average fitted power-law slope was found to be 2.7 (SD=0.2) for 
synthesized breasts and 2.3 (SD=0.3) for real breasts (both median R² > 0.99), differing from Metheany et al’s 
findings (2.1, SD=0.3). The statistically significant difference in these average values likely reflects glandular density 
discrepancies. 

 

CONCLUSION 
The developed model can simulate digital breast phantoms with different shapes and patient-based internal 

structures. This tool holds promise for conducting virtual clinical trials, providing a valuable resource for 3D breast 

imaging optimization and evaluation.
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Deep Learning-Driven Development of Patient-Specific 
Digital Twins with Automatic Quality Control 
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Ehsan Abadi, Ehsan Samei, Joseph Lo+, William Paul Segars+ 

Center For Virtual Imaging Trials 
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BACKGROUND AND PURPOSE 
Patient-specific phantoms improve virtual imaging trials by accurately representing the population at large. We 
present an automated phantom generation framework comprising 3 modules: (1) deep- learning segmentation of 
up to 140 anatomical structures, (2) volumetric- and statistical-based quality assessment to reject poor 
segmentation masks, and (3) generating 3D polygon mesh representations. External validation yielded DSC for 
selected structures as follows: bladder 0.87 clavicle 0.92, femur 0.94, gallbladder 0.80, heart 0.85, kidneys 0.92, 
liver 0.97, lungs 0.97, pancreas 0.83, pelvis 0.95, ribs 0.81, scapula 0.89, spleen 0.97, sternum 0.88, and stomach 
0.89. The segmented masks were used to define patient-specific phantoms represented as 3D polygon meshes. We 
have designed 2500+ new anthropomorphic phantoms. 

 

INTRODUCTION 
Virtual Imaging Trials (VIT) offer cost-effectiveness, speed and scalability in the evaluation and optimization of 
existing medical imaging technologies compared to traditional clinical trials [1-4]. VIT requires a virtual patient 
population that mimics the anatomy and physiology of the patient. 
Computational anthropomorphic phantoms are used to create the virtual patient population. These simulated 
phantoms are expected to be realistic to be indicative of true population regarding organ volume, boundary, tissue 
properties, and blood flow. 
There have been several attempts in building successful anthropomorphic phantoms for this purpose. Full body 
phantoms were build based on the Visible Male and Female datasets [6] for adult male and female [5] . 
Computational phantoms of the male and female newborn patients were defined using Nonuniform rational B-
spline (NURBS) surfaces [7]. Sixty adult and ninety pediatric computational phantoms of varying age, height, and 
body mass percentiles representative of large population have been released in last decade [8, 9]. However, the 
current phantom library sample size is inadequate for use in virtual imaging studies. Several studies have shown 
that sample size in thousands is required to improve the reliability of the virtual imaging trials [10-12]. However, 
the generation of computational phantoms has faced significant challenges due to the painstakingly slow and 
resource-intensive process of manually segmenting organ boundaries. This bottleneck has impeded the expansion 
of phantom libraries that can effectively represent the population at large. 
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In this work, we propose an automatic phantom generation framework that can generate a large number of 
phantoms with improved quality and realism and publicly release 1000 patient-specific digital twins of diverse age, 
race, sex, and body habitus. We use the deep learning-based algorithm to segment up to 140 structures from full-
body Patient CTs. Automatic quality control module is proposed that can flag cases of segmentation failures using 
volume, anatomical knowledge, and statistical Gaussian Mixture Model. An interactive web application is publicly 
released for displaying phantoms. The phantoms are simulated using an in-house developed virtual scanner for 
underweight, healthy, and obese category patients and the efficacy of these phantoms for virtual imaging trials is 
demonstrated. 

METHODS 
We used public and private models to train, validate and test segmentation models. The private dataset from Duke 
University Health System is used for creating anthropomorphic phantoms. The nn-UNet [13] model is subjected to 
quality control for selecting favorable cases, which are subsequently employed in constructing phantoms which can 
be simulated via scanners to facilitate virtual imaging trials. Four training datasets with a total of 5527 images were 
included in our study. The public dataset TotalSegmentator [14] and a private dataset from Duke University Medical 
Center (DukeCT) was used for model development and validation, and AMOS [15] and XCAT [7] were used for the 
evaluation of segmentation model. 
A deep learning-based algorithm [13] is trained for the purpose of segmenting using ground-truth labels from public 
models and pseudo-labels obtained from other public and private models, allowing for more efficient utilization of 
available labeled data. We train a total of four models, each specializing in segmenting different sets of structures. 
The first model focuses exclusively on bone segmentation, encompassing a set of 62 classes. The second and third 
models are designed to segment 61 and 17 classes, respectively, covering a diverse range of anatomical structures. 
To create accurate ground truth labels for the training set, we employ a combination of strategies. We leverage the 
labels from the publicly available dataset called TotalSegmentator. Additionally, we utilize a combination of private 
models and public models to generate automated labels. This approach allows us to expand the training data and 
incorporate a wider range of anatomical variations and complexities. Consequently, our training methodology is 
supervised learning using pseudo-labels. 

RESULTS 
The segmentation model was validated on one public dataset (AMOS) and a private dataset (XCAT). A comparison 
was made between our model, a publicly available model called TotalSegmentator, and a commercial model. The 
results are shown in box plots (Figure 1), indicating that our model performs similarly to the public models. 
However, the commercial model sometimes failed to produce 
segmentation results when the structure’s field of view was partial, or the commercial model lacked confidence 
based on quality control measures. To ensure a fair comparison and respect the commercial model’s design choice, 
cases with a Dice similarity coefficient (DSC) of 0 were removed for the private model in the box plot analysis. The 
box plot represents the reference standard mask available for the evaluated structures. It should be noted that not 
all models could segment all structures; hence, not all structure DSC values could be reported. 
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In our study, we implemented an anatomical knowledge-based quality control method for bone segmentation, 
leveraging bone symmetry as a criterion. This approach, albeit efficient in identifying poor segmentation instances, 
may introduce a systematic bias by potentially rejecting cases where bones are more than 50% dissimilar in volume. 
Despite this limitation, the method proved effective for preliminary screening: out of 3648 initial cases, 3581 images 
or 98% met the symmetry criterion. Images failing to meet the threshold were flagged for subsequent re-
evaluation, pending improvements in the bone segmentation model. 
We obtained a dataset of 3581 images from the first anatomical knowledge-based Quality Control set. This initial 
phase was followed by performing basic volumetric evaluations of different organs. Our additional analysis criteria 
called for the removal of any CT scan in which over 25% of the anatomical structures were missing due to improper 
or insufficient scanning. Utilizing a volume threshold technique—that is, finding zero volume instances in the 
organs under examination—made this determination easier. A refined data set of 3435 CT images was produced 
because of this filtration process. 
Following that, a thorough statistical Quality Control (QC) phase was applied to these images, focusing on key 
organs such as the liver, lungs, stomach, spleen, pancreas, heart, gluteus, and esophagus. This QC step reduced the 
dataset to 2561 images by locating and eliminating outliers within these structures. 
We present the demographic composition of phantoms built based on data from a single institution, reflecting the 
patient demographics of that health system. The population is primarily White, followed by Black, with a smaller 
representation of Asian individuals and other races categorized as 'Other'. Additionally, the sampling from PET/CT 
scans introduces a systematic bias, with a predominance of male subjects, likely attributable to the higher incidence 
of prostate cancer imaging. 

CONCLUSION 
We build computational phantoms using the fusion of deep learning techniques stringent quality control and 
announce their public release. To offer the world a glimpse into the realm of these digital marvels, we have 
designed an interactive web application with the power to categorize and display phantoms by age, sex, and race. 
The applicability of these phantoms for conducting virtual imaging trials is demonstrated, highlighting their 
versatility across a broad spectrum of applications. This versatility underscores the potential of our phantoms to 
revolutionize virtual trials and beyond, offering a wide range of possibilities for research and development in the 
field of medical imaging. 
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Figure 11 Box plots for DSC comparison for a private and a public dataset for multiple structures (top) and 3D rendered 

segmentation masks obtained from our model (bottom). 
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Library of Realistic, Image-based 4D Beating Heart 
Models 
Ethan Malin, Can Ceritoglu, Tilak Ratnanather, Ehsan Samei, and Paul Segars 

 

 

BACKGROUND AND PURPOSE 
To create a population of detailed, anatomically variable 4D beating heart models for medical imaging research. 
 

METHODS 
We obtained several sets of 4D CT data from healthy patients selected from the PROMISE national clinical trial. 
Each patient dataset was electrocardiogram-gated and contained 10-12 time frames over the cardiac cycle. The 4D 
data for each patient was imported into the Simpleware ScanIP software (licensed by Synopsis). The AS Cardio tool 
automatically segmented the four chambers of the heart, the left ventricular myocardium, the great vessels, and 
the coronary arteries from each time frame of the data as well as output 17 landmarks corresponding to major 
features of the heart. The segmentations from frame 1 of each dataset were used to create the initial instance of 
the heart with each structure defined as a polygon mesh via a marching cubes algorithm. Given the landmarks and 
segmentations for each frame, the MC-LDDMM mapping algorithm was used to calculate the frame-to-frame 
motion of the heart. The 3D motion fields were applied to the cardiac model from frame 1 to make it beat, creating 
a time-changing mesh model. Cubic spline curves were fit to the time changing locations of each vertex point of the 
meshes creating a 4D continuous model from which any number of time points can be sampled over the cardiac 
cycle. Example heart models were imported into whole-body XCAT computational phantoms and imaged with the 
DukeSim CT simulator, under various imaging parameters, to demonstrate the utility of the models 
 

RESULTS 
The image-based cardiac models accurately mimic the twisting, contracting motion of the heart for various 
anatomically variable subjects. When combined with DukeSim, realistic virtual cardiac imaging data can be 
produced for research. 

DISCUSSION 
The library of realistic cardiac models can provide a vital tool for 4D cardiac imaging studies. 
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digital breast phantoms 
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BACKGROUND AND PURPOSE 

Many tasks in medical imaging optimization are difficult or impossible to carry out with the use of clinical data, 

either because they would require multiple repeated image acquisitions of the same human subject, or because 

they require control of parameters which are unavailable to the researcher, such as the size and location of a 

tumour. Realistic software phantoms can be an option for such tasks. Software phantoms allow otherwise 

unavailable imaging or anatomy related parameters to be varied and their effect on image quality estimated, 

enabling optimisations that cannot be done using clinical data alone. 

Digital phantoms created through a variety of means are currently in use in breast imaging research1. Digital 

breast phantoms based on the Perlin Noise algorithm – a form of gradient noise – has the potential to 

realistically represent both the appearance and variability of real breast tissue. The algorithm properly known as 

Noise, was first described by Ken Perlin in 19852. It and its derivatives have since become ubiquitous in 

computer graphics and special effects. It is a flexible algorithm which generates smoothly and continuously 

varying structures of a set spatial frequency, in any dimension. We have previously described the basic method 

of using Perlin noise to generate breast tissue3-6. The realism of the resulting phantoms have been verified by 

expert breast radiologists7. This study describes new features that we are currently implementing in order to 

improve the appearance and realism of phantoms generated with the method. 

 

Figure 12 Perlin Noise building blocks of different frequencies 
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METHODS 

The basic Perlin Noise algorithm generates smoothly varying random structures of a set frequency or scale, 

controlled by a set of randomly selected gradients (Figure 1). Our in-house developed method uses a fractal 3D- 

implementation of the Noise algorithm. It combines a set of noise volumes with increasing frequency, providing 

structures with features of a range of different scales. By applying perturbation functions to the combined 

volume, a ridged appearance approximating fibrogladular breast tissue is achieved. Basically, this takes one 

minus the absolute value of the noise (which normally varies from -1 to 1) and increases the slope of the noise 

function to create sharper transitions. Figure 2 shows these steps for a sample volume. 

From this state, a threshold value between 0 and 1 is applied, binarizing the noise distribution and creating 

strand-like features of a specific thickness. To capture the variation inherent in breast tissue, the complete 

phantom volume is built up by combining several volumes of Perlin Noise with different thresholds in order to 

get a range of differently sized features. Separate thresholds and other parameters is used to generate different 

types of tissue, e.g. dense and adipose. Different tissues can then be mapped to different attenuation properties 

for image generation. The finished Perlin volumes are then mapped to realistic breast shapes and global 

distributions of dense and adipose tissue. 
 

 

Figure 2 From left to right: 1. A combined Perlin volume of several (16) constituent noise volumes of different frequencies. 2. 

The absolute value of this volume, showing a ridged appearance of the noise, and 3. The previous noise volume raised to the 

power of ten to create sharper slopes/ridges. 

 

 

 

 

 

Blending dense and adipose tissue 

By partly reusing the same set of random gradients, different tissue can be more realistically blended together. 

This could include tumours, that could be made to correlate with the appearance of the surrounding tissue. 

To blend more adipose and more dense sections of the breast together, Perlin Noise was generated as described 

above, with different combinations of parameters for dense and adipose tissue. By using the same basic set of 

random gradients for both adipose and dense tissue, structures will continue between dense and adipose 
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compartments and not stop abruptly at compartment borders. However, by also varying the frequency content 

by cutting lower frequencies from the adipose tissue, we can subtly change the appearance of the Perlin 

structures so that they appear to more naturally blend from dense fibrous strands into less dense structures in 

the adipose tissue. Dense and adipose regions of the breast were assigned by generating a simple fractal Perlin 

volume of the same size as the phantom volume, thresholding it into two regions and assigning one of them as 

dense and one as adipose. 

Varying density over time 

Breast tissue changes in appearance over time, and the most typical age related change is that density 

decreases, both locally and globally. Simulating this is important in order to realistically simulating e.g. repeat 

screening rounds of the same population. Our tissue simulations are well suited to this as they can easily be 

modified by changing threshold values and distributions while maintaining the overall shape and appearance of 

the simulated tissue. By gradually increasing the thresholds that control strand thicknesses and dense area 

extent, a gradual change in density occurs. Local density changes by varying strand thickness, global density 

changes by varying the extent of the dense area. 

 

 

RESULTS 

Figure 3 simultaneously illustrates the simulation of realistic blending of dense and adipose tissue and density 

changes due to age. Note that for clarity a simple 3D block of tissue is used, with no realistic breast shape 

applied. 
 

Figure 3 Blended dense and adipose tissue, going from more dense (right) to less dense (left). Note that both the dense and 

adipose tissue changes, and that both the local appearance and global distribution of the dense tissue alters over time. Also 

note the way in which fibrous structures continue across dense/adipose tissue borders and naturally blend together. 

 

 

 

DISCUSSION 

Previous studies have shown that breast phantoms generated using our method can be made to realistic enough 

for radiologists to sometimes mistake them for real breasts. The added possibility to gradually change the 

appearance of the breast tissue so as to approximate age-related changes is important especially for virtual 

clinical trials of screening programs, as the appearance of a breast cannot be expected to realistically remain 

consistent over time. 
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Validation of the new imaging features through human observer studies are needed and are currently in the 

pipeline. A limitation of the current simulation model is that it lacks directionality. In order to make structures 

look as if they are emanating from an imagined nipple like how the ducts of a real breast would, in future work 

we plan to control the gradients of the low frequency noise. 

CONCLUSION 

Breast phantoms generated using our Perlin Noise-based method are flexible and easily adaptable. A more 

realistic blending of dense and adipose tissue and gradual density changes over time as demonstrated here can 

potentially add to that realism. 
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The Virtual Kidney 
David Cox, Paul Segars, Ehsan Samei 

 

 

BACKGROUND AND PURPOSE 

Computational phantoms can serve as virtual patients in medical imaging simulations, or virtual imaging trials, to 

conduct studies where it is difficult to impossible to use real patients. They allow repeated imaging of the same 

subjects under various conditions to evaluate and optimize imaging devices and techniques. We develop the 

XCAT phantoms that are widely used for this purpose. These phantoms, consisting of adults and pediatrics at 

different ages, heights, and weights, were developed using low-resolution PET-CT imaging data. High resolution 

details were added to each phantom based on anatomical templates derived from the Visible Human imaging 

data from the National Library of Medicine (NLM). The Visible Human anatomical images have an in-plane 

resolution of 0.33mm. With the higher resolution, it is possible to create more detailed vessels and inner 

structures for the organs that can be mapped into each different XCAT anatomy. Figure 1 shows the current 

detail, derived from the NLM data, present in the kidneys of an example adult male XCAT phantom. 
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Figure 1. A model of human kidneys for an adult male based on 0.33mm resolution images. 

Even higher resolution data is now coming available via the Human Organ Atlas project, https://human-organ- 

atlas.esrf.eu/. For this, hierarchical phase-contrast tomography (HiP-CT) is being used to image excised whole 

organs at a resolution of 25 microns and selected regions of organs at a level of a few microns. The images from 

the Human Organ Atlas offer unprecedented detail down to the cellular level for whole organs such as kidneys 

as well as the brain, liver, lungs, etc. Our goal is to use these images to construct a new generation of phantoms 

with ultra high-resolution detail for use in simulated imaging trials. The specific focus of this work is the kidney, 

analyzing the HiP-CT data for the first time to see what structures can be segmented via thresholding and the 

use of the marching cubes algorithm to build 3D models. 

METHODS 

The marching cubes algorithm (Lorensen and Cline) produces isosurfaces representing the boundaries of 

objects. In our case, we want to visualize the various structures within a kidney. The specific structures that can 

be visualized from HiP-CT images depend on the tissue types and their x-ray attenuation. Marching cubes finds 

an isosurface that delineate objects within a threshold range. By analyzing HiP-CT images with marching cubes 
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for different ranges of intensity values, we produce isosurfaces that delineate various structures. Thus, marching 

cubes allows us to model the different kidney structures. 

We implemented software in Python to construct isosurfaces using the scikit marching cubes implementation. 

We utilized the LADAF-2020-31 image set of a complete kidney available from the Human Organ Atlas 

(Tafforeau). The scikit implementation produces isosurfaces that are represented as 3D triangular mesh models. 

Different models were obtained by specifying different intensity values (referred to as the level of interest 

parameter in the scikit documentation) as an input parameter to the marching cubes algorithm. 

The image set of the kidney consisted of 4282 JPEG2000 images, each 3287 × 2215 pixels in the X and Y 

dimensions. The dataset covered the whole organ with an isotropic resolution of 25 microns. To visualize the 

anatomy as 3D models, the images were stacked in the Z direction. Stacking all 4282 images produced a 3D 

model of the entire kidney. To see inside the kidney, fewer images were stacked. For example, stacking 2141 

images allowed us to produce a 3D model of half a kidney allowing us to more easily see interior structures. In 

some cases, we created slices through the kidney by stacking smaller numbers of images. For example, a slice 

would be produced from a stack of 100 images. (Note, when the images are stacked, each “pixel” acquires a Z- 

value. The term “voxel” is used to refer to these three-dimensional values). 

The resulting 3D meshes are false colored to help visualize structures. In the typical case a triangle bisects a cube 

formed by four voxels. The colors of the triangles in a mesh depended on the actual intensity values of the 

nearest voxels. In a common case a triangle bisects a cube and its vertices are interpolated to be located 

between voxels. The final color of the triangle is then calculated by assigning colors to the voxels and 

interpolating those values. 

In some cases, the images were pre-processed using contrast stretching. Contrast stretching doesn’t alter the 

final 3D mesh models. However, it does allow a different false coloring of the triangles in the mesh making. 

When intensity values fall within a narrow range, the triangles tend to have one color. Through contrast 

stretching, the triangle can be represented with a wider range of colors to assist in visualization. 

 ltering the “level of interest” parameter to the marching cubes algorithm produces different isosurfaces and, 

therefore, different 3D models. The different 3D models allowed us to test segment the kidney into different 

tissue types and structures. 

RESULTS 

The images are provided as JPEG200 files and intensity values are represented at 16-bit gray levels. Thus, gray 

levels vary from 0 to 65,535. These are normalized to values from 0.0 to 1.0 with 0.0 representing pure black 

and 1.0 representing pure white. The distribution of gray levels is depicted in Figure 2. Figure 2 consists of three 

distinct peaks representing at least three distinct populations of intensity values. 
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Figure 2. Intensity profile for HiP-CT JPEG2000 images with intensities normalized to 0.0 to 1.0. 

 

 

 

Figure 3 illustrates a 3D mesh model of a slice of the kidney consisting of a stack of 101 images (specifically, 

images 1000 to 1100). The image on the top represents the entire slice. The orange structures correspond to 

blood vessels in typical anatomical diagrams of the kidney. The blue-white regions represent either tissues that 

have finer structures or, possibly, noise from the imaging process. 
 

Figure 3. Kidney mesh model for a “slice” of images 1000 to 1100 and an isolevel (or “level of interest”) equal to 0.4. Top is 

the entire kidney and bottom is a close-up view revealing finer structural details. 

The kidney has arteries and veins that transport blood into and out of the organ. It also has renal vessels that 

direct urine away from the kidney and tissue consisting of a million nephrons and glomeruli that filter urine from 

the blood into the renal vessels. Figure 4 illustrates a 3D mesh model of the network of blood vessels segmented 

from the images with the isolevel set to 0.51. 
 

Figure 4. Network of blood vessels visualized using the marching cubes algorithm with an isolevel of 0.51. 
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Segmenting the renal tubules and urine collection system is problematic using thresholding. Figure 5 is an 

example of the isosurfaces created for an isolevel of 0.34. In the center of the kidney extending to the right are 

structures that correspond to renal tubules and ureters found in typical anatomical renderings of the kidney. 

However, a considerable amount of noise is also present. Separating the signal from the noise in these images 

remains an ongoing task. 
 

Figure 5. Example of using thresholding to segment renal tubules and the urine collection system of the kidney. 

Figure 6 illustrates an example of segmenting the filtration system of the kidney – the one million nephrons and 

glomeruli in the kidney. While the isosurfaces generated in Figure 6 correspond to what one might expect from 

anatomical renderings of the kidney, it is hard to conclude that the isosurfaces in Figure 6 correspond to real 

anatomy or are the result of noise in the images. 
 

Figure 6. Example of using thresholding to segment the filtration system of the kidney. The regions colored blue are possible 

sites of nephrons/glomeruli. However, more work remains to ensure that these isosurfaces are not imaging noise. 

DISCUSSION 

High resolution imaging such as HiP-CT allows us to resolve the whole organ at 25 micron resolution – roughly 

one fifth to one tenth the size of a glomerulus in the kidney. Our experiments illustrate the ability to analyze 

these images using algorithms such as marching cubes to create 3D models segmented into different highly 

detailed structures. Marching cubes fits surfaces to intensity bands within the image through thresholding. It 

gave us an initial view to see what is possible to define in the high-resolution images by separating intensity 

values. More work will investigate other segmentation algorithms to better define the interior structures of the 

kidney to very small detail. 

CONCLUSION 

Technology now allows CT imaging of excised whole organs at the cellular and near-cellular level. This study 

represents our initial analysis of the data to see what structures the intensity values in the images define. 

Thresholding can be seen to bring out noisy representations of the vessels and structures within the kidney. 

 nfortunately, there isn’t a clear separation of all the ob ects. Our next step is to establish a segmentation 
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pipeline using a combination of manual, semi-automatic, or automatic techniques to better delineate structures 

to convert to 3D models. The 3D models will then be used to greatly enhance the anatomical detail in our series 

of XCAT phantoms for use in virtual imaging trials. 
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Subject-specific airway modeling of patients with 
chronic bronchitis and small airway disease 
Fong Chi Ho, W. Paul Segars, Ehsan Samei, Ehsan Abadi 

BACKGROUND AND PURPOSE 

The geometry of the human bronchial tree plays a pivotal role in gas-exchange efficiency and dissipation, 

impacting factors such as airway resistance, ventilation, and gas flux. These geometric attributes, including the 

size and shape of airways, influence the airflow dynamics, leading to variations in gas exchange efficiency across 

different individuals. Advanced imaging techniques, such as high-resolution computed tomography (CT), have 

facilitated the quantitative analysis of these geometric factors, offering insights into their correlation with 

pulmonary function and disease states[1]. 

A geometrical airway attribute of clinical relevance is the homothety ratio, defined as the ratio of the child-to- 

parent branch diameter or length in the bronchial tree [2]. This ratio reflects the tapering and branching patterns 

of the airways, indicating the airway remodeling in pathological conditions. Previous measurements have shown 

a homothety ratio of 0.80 to 0.85 for normal human lungs, and about 0.77 in patients associated with the presence 

of chronic bronchitis (CB) and small airways disease (SAD), both of which are phenotypes of chronic obstructive 

pulmonary disease (COPD)[3]. A hallmark of COPD is the geometric changes in the airways that restrict airflow. 

Therefore, analyzing airway structure can improve the diagnosis and understanding of COPD. One example is a 

study that showed correlations between airway geometry (distribution of minimal inner cross-sectional area of 

airways, expressed by a fractal index) and airflow limitation and future body mass index reduction in COPD 

patients, as predicted by Hess– urray’s law.[4, 5] 

Structural changes in the bronchial tree as well as the physiological impairment of airflow have correlations with 

COPD GOLD level, i.e., [6] a post-bronchodilator FEV1/FVC (forced expired volume in one second/ forced vital 

capacity). A limitation of the FEV1/FVC is predicted from the population without COPD at the similar age, gender, 

and body composition as the patient. Thus, there is a need for quantifying the impact of airway changes on 

pulmonary function in a patient-specific manner which may be achieved through patient-specific airway modeling 

to [7, 8]. Despite the recognized importance of accurate COPD airway modeling, a notable gap has existed in 

developing models that incorporate physical airway-related measurements derived from patients to reflect the 

individual’s specific airway geometry and pathological conditions. 

This study aimed to develop a subject-specific airway anatomy model for individuals with diagnosed COPD, 

incorporating phenotype characteristics and FEV1 measurements. The model is further applicable to virtual 

imaging trials towards personalized diagnostics and evaluation of treatment strategies. 

METHODS 

1. Computational model 

Ten patient-specific human models were generated based on the clinical cases from the COPDGene Phase 1with 

various COPD severities [9-11]. The homothety ratios in the airway diameter (hd, COPD) and length (hl, COPD) were 

measured per generation from the airways that were segmented from corresponding CT images. The segmented 

airway tree was grown asymmetrically based on the patient’s measured FEV1 and homothety ratios, and further 
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ℎ 4 

informed based on the characteristics of CB and SAD from literature [12-14]. For the modeling SAD, mucus 

occlusions were inserted based on parametric response mapping (PRM) maps of non-emphysematous region [15, 

16]. 

2. Airway modeling 

Bronchial tree follows Poiseuille's law in an optimal airflow under resting conditions for the 6th generation and 

beyond. This infers a fractal-shaped tree structure with minimized energy loss within a confined volume[17]. The 

structure with a fractal dimension of 3 and a homothety ratio of 0.7937 aligns with the Hess–Murray law [5]. The 

air resistance across generations is proportional to the bronchiole length homothety ratio and inversely 
proportional to the fourth power of the corresponding diameter homothety ratio (R ∝ 

1 
∝ 

 ℎ𝑙 ) [2]. The total air 
 

ℎ 𝑑 

resistance (RN) from generation 1 to generation N is calculated using a homothety ratio hp per generation p and 

the initial air resistance R0 in generation 0 as follows: 

(1) 
The airway geometry on ventilation follows ΔPN = RNΦ, with ΔPN being the total air pressure drop in the airways 

from generation 0 to N, RN the air resistance from generation 0 to N, and Φ the air flux in liter per second. The air 

resistance is inversely proportional to the air flux. In airway diseases like SAD and CB in COPD, the variation in 

bronchiole length compared to non-diseased individuals is assumed to be neglectable compared to the variation 

of inner diameters of the bronchioles. By using FEV1 and predicted FEV1 as the air flux Φ for COPD patients and 

healthy patients accordingly, a ratio of ΦCOPD to Φhealthy can be calculated as follows: 

𝑅0[1+∑𝑁
 

𝑝 
 1   ℎ𝑙,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 ( ) ] 

𝛷 𝐹𝐸𝑉 𝑅 𝑝=12𝑝 ℎ4 

  𝐶𝑂𝑃𝐷  =  1,𝐶𝑂𝑃𝐷  =  𝑁,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 𝑑,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 (2) 
𝛷ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝐹𝐸𝑉1,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑁,𝐶𝑂𝑃𝐷 𝑝  1  ℎ 

𝑅0[1+∑𝑁 
𝑝( 𝑙,𝐶𝑂𝑃𝐷 ) ] 

𝑝=12 4 
𝑑,𝐶𝑂𝑃𝐷 

After simplification, the diseased airways can be modeled asymmetrically using different homotheties in length 

(hl,1,COPD, hl,2,COPD) and diameter (hd,1,COPD, hd,2,COPD) on each of the bifurcated bronchioles. Since minor differences 

among the homothety ratios of individuals can induce a significant change in respiratory performance[2], the 

airway-length homothety ratio, in the presence of COPD with CB and SAD, maintained a small variability (5%) as 

the non-diseased airways. The airway-diameter homothety ratio is deduced based on the following equation with 

clinically measured FEV1. The homothety ratios in the first multiple generations (Nseg) were measured from the 

initial segmentation[13]. 
𝑝 𝑁seg 1   ℎ𝑙,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑝  1   ℎ𝑙,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 

∑𝑝=1 𝑝( 4 ) + ∑𝑁 𝑝( ) 

  𝐹𝐸𝑉1,𝐶𝑂𝑃𝐷  = 
𝐹𝐸𝑉1,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑁 ℎ4
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𝑝=Nseg2 
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4 
𝑑,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 
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−𝑝 (3) 

∑ seg( 𝑑,1,𝐶𝑂𝑃𝐷+ 𝑑,2,𝐶𝑂𝑃𝐷) + ∑𝑁 ( 𝑑,1,𝐶𝑂𝑃𝐷+ 𝑑,2,𝐶𝑂𝑃𝐷) 
𝑝=1 ℎ𝑙,1,𝐶𝑂𝑃𝐷 ℎ𝑙,2,𝐶𝑂𝑃𝐷 𝑝=Nseg ℎ𝑙,1,𝐶𝑂𝑃𝐷 ℎ𝑙,2,𝐶𝑂𝑃𝐷 

The mucus occlusion in airways was included in the airway pruning and air resistance calculation to indicate the 

loss of gas-exchange functionality, realistically reflecting the FEV1 measurement. 

3. Quantitative Assessment 

The percentage of airway pruning was quantified and compared between diseased and healthy airways. The 

modeled airways were validated by comparing the averaged number of terminal bronchioles per mL of lung to in 

vivo measurements of 28 explanted lungs scanned by high resolution micro-CT[18]. To confirm that the proposed 

models aligns with patient-specific spirometry measurements, the accuracy and variability of the values on the 

ℎ 

ℎ 
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right-hand side of Equation (3) were evaluated by comparing them to the ground truth values of clinical spirometry 

measurements of FEV1/FEV1, predicted, as expressed on the left-hand side of the same equation, using the mean 

absolute error and standard deviation. 

RESULTS 

Figure 1 shows an example of the proposed airway modeling. Figure 1a demonstrates the CT airway segmentation 

of a patient diagnosed with ‘mild’ COPD (GOLD level 2 [6]. Figure 1b shows the asymmetrical airways grown using 

the proposed method without airway-related disease and with variability of 5% in airway-diameter homothety 

ratios across generations of bronchioles (hl = 0.85±0.03 and hd = 0.84±0.04). Figure 1c illustrates the asymmetrical 

airways grown from the same initial airways with COPD characterization of reduced diameter by inflamed 

bronchus and bronchioles (hl = 0.84±0.04 and hd = 0.79±0.03). 

Figure 2a demonstrates the averaged percentage change in airway pruning across ten airway modeling using 

spirometry-induced homothety ratios. The averaged percentage of pruning gradually increases with the airway 

generation from the 9th generation, and prominently located in the peripheral lung region from the 16th to the 

18th generations. This result coheres the pathological change of reduced airway diameter across generations due 

to the inflammation by CB and SAD[3]. Figure 2b shows the percentages of airway pruning across the lobes of the 

patients by comparing the modelling of diseased airways to the healthy airways. 

a 
 
 
 
 
 
 
 
 
 

 
Figure 1. (a) An example of initial airway segmentation from the patient COPDGene CT data with seven airway generations with CB and 

SAD. (b) The asymmetrical airways grown without airway-related disease. (c) The asymmetrical airways grown with chronic bronchitis 

characterization of reduced airway-diameter homothety ratio, resulting in airway pruning (red), including the gas-trapping region calculated 

from PRM. 

b 

b c 

a 
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Figure 2. (a)The percentage of airway pruning across modeled airway generations by comparing the number of airways per generation 

between a healthy individual and COPD patient. (b) The percentage of airway pruning across lobes by comparing the number of airways per 

lobe between the healthy individual and COPD patient. 

The average number of terminal bronchioles per mL of lung across ten patients was 3.50±0.15 which cohered to 

the quantity measured in micro-CT[18]. The ratio of modeled air resistance between COPD patients and healthy 

individuals with 5% variability was compared with the ratio of clinical spirometry measurement of 

FEV1/FEV1,predicted, resulting in a difference of 16.32%±6.77%. 

DISCUSSION 

This study developed subject-specific COPD airway models that incorporate structural information from CT scans 

and homothety ratios from the physical airway-related measurements. 

CONCLUSION 

This study moves beyond generic airway modeling and bridges the gap between one-size-fits-all modeling and 

patient-specific needs by developing realistic airway modeling for future virtual imaging trials. The novel 

methodology can provide sets of realistic virtual patients modeling different severities of COPD to investigate 

techniques for more accurate COPD diagnostics and management and personalized treatment strategies. 
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In silico modeling of growing spiculated breast mass 
lesions 
Miguel A. Lago, Vanday Bund u, Aldo Badano 

Division of Imaging, Diagnostics and Software Reliability, OSEL, CDRH, U.S. Food and Drug 

Administration, Silver Spring, MD, USA 

INTRODUCTION 

In silico models of medical imaging have the potential to study scenarios that are unattainable in normal 

circumstances and allow for less expensive and less time-consuming trials. Here, we focus on the development of 

models of growing spiculated breast mass lesions. Previously, our group developed a fully in silico clinical trial to 

study breast cancer detection [1] that replicated the results of a real clinical trial. This study was later expanded 

as a longitudinal clinical trial with a growing lesion [2-4] in which we characterized the visibility of breast masses 

at different growing stages. However, the question of how to model the malignancy of lesions still remains. It is 

known that spiculations is one of the most understood biomarkers for malignancy. In this research, we introduce 

a spiculation model for the previously reported lesion growing algorithm with varying parameters to control 

length, thickness, and density. To validate the malignancy appearance of these spiculations, we conducted a 

reader study with expert radiologists on breast images. 

METHODS 

1. In silico breast imaging 

We generated in silico breast mammograms using the VICTRE pipeline [5, 6]. An anthropomorphic model of the 

breast is created, including internal tissue composition (glandular, adipose, ligaments, etc.), and compressed 

between two plates. This breast phantom includes a list of candidate lesion locations based on the terminal duct 

lobular units. A Monte Carlo X-ray simulation based on MC-GPU [7] was performed, resulting on a Digital 

Mammography (DM) image for the corresponding compressed breast phantom. Figure 1 shows the steps of this 

in silico imaging pipeline. 
 

 

 

 
2. Lesion growing 

Figure 1. Pipeline for the in silico clinical trial for breast imaging 

The lesion growth model was presented by Sengupta et al. [2, 3] and simulates the internal growth of a breast 

mass tumor. The growth of these mass models is driven by the interstitial tumor pressure, the concentration of 

metabolites, and the stiffness of the local tissues. The initial location of the tumor growth is selected from 
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candidate locations during the breast phantom generation. This location defines its final shape and size resulting 

in unique morphologies for each mass. 

A mass lesion core was grown to an average size of 3-mm radius. For each lesion, we set spiculation growing 

parameters to generate three different levels based on that growing stage. The spiculation generation was 

controlled by parameters directing the number of spiculations, their initial thickness, and their maximum length. 

Spiculations grow from the perimeter of the given 3D mass core on an initial perpendicular direction as branches. 

Each growing step, these spiculations move on a similar path with randomized small direction changes, always 

moving away from the core. On each iteration, the spiculation branch has a small probability of splitting in two 

branches. Additionally, as the growing increases, the branch width decreases. A branch is considered dead when 

its thickness is 0 or the maximum number of iterations is reached. We created spiculations at three different 

conspicuity levels (L1, L2, and L3), by varying their thickness, length, and number of branches. Figure 2 shows a 

projection of the 3D model for the same mass lesion with spiculations at different growing stages on the largest 

spiculation settings (L3). Figure 3 shows an example of the DM projection of the same mass with the three 

spiculation conspicuity levels (L1, L2, and L3). 
 

 

Figure 2: Example of a projection of the 3D model of a single mass at different growing stages with corresponding growing spiculations at 

the most conspicuous level (L3). This model is later inserted on the phantom before the projection simulation. 

 

 

L1 L2 L3 

   
 

Figure 3: Example of a single mass at the same growing stage generated with three degrees of spiculations. From least conspicuous 

spiculations (L1), to most conspicuous spiculations (L3). 

3. Reader study design 

Ten different mass cores (realizations) were generated, each of them at the three spiculation levels for a total of 

30 different images. A perceptual 2-alternative-forced-choice (2AFC) experiment was designed in which 
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participants were shown two mass images next to each other and had to click on the “most malignant mass” from 

two images. 

We conducted this experiment as part of the medical imaging perception lab during the European Society of Breast 

Imaging conference (EUSOBI) in 2023. Six radiologists, all of them experts on breast imaging, were recruited to 

participate in this study. The total number of pair-wise comparisons was 300. 

RESULTS 

Figure 4 shows the results of the percentage of times the three spiculation levels were chosen over the other 

image. Radiologists selected the higher spiculation level (L3) as more malignant over the middle level (L2) and the 

middle level (L2) over the lower level (L1) with significant differences. 
 

Figure 4: Forced-choice experiment results comparing radiologists choosing the “more malignant lesion” between three different levels of 

spiculations. All participants saw the same pairs of images. Error bars are the standard deviation of the mean over 6 participants for 200 

image pairs for each level (* p<0.05, **** p< 0.0001). 

DISCUSSION 

The study presented aims to validate the inclusion of spiculations to model, to a certain point, the degree of 

malignancy of in silico breast masses. A radiologist typically scores a screening case using image features that 

make them suspicious enough to recall the case. Spiculations is one of many, which is unlikely to happen by itself 

without any other co-occurring feature. However, by isolating the effect of spiculations, we can understand their 

significance. 

Finally, although the definition of malignancy cannot be ascertained from only imaging, it is important to know 

what biomarkers or features we can include on our models that can account for it. This may lead to more complex 

in silico clinical trials that include spiculations (an indicator for malignancy) as one of the features to be considered. 
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CONCLUSION 

Understanding what makes a lesion malignant and being able to tune our lesion simulation parameters for this 

will help improve the realism and quality of our in silico imaging trial pipeline. Adding spiculations to lesions allows 

for the use of the VICTRE pipeline in more complex tasks such as lesion malignancy classification for in silico studies 

closer to clinical scenarios. 
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Biologically informed in-silico models of tumor growth 
dynamics 
J.B. Stevens, W.P. Segars, J.G. Liu, and K.J. Lafata 

 

 

BACKGROUND AND PURPOSE 
To create computational tumor models and improve realism in virtual imaging trials by simulating growth dynamics 
of avascular tumors via assimilation of imaging data and mathematical biology models. 

 

METHODS 
We developed a tumor growth model that is spatially constrained by boundary conditions derived from PET/CT 
images. We implemented a stochastic PDE model to capture the dynamic evolution of tumor and immune cell 
populations. We solved the system of equations numerically using a finite difference scheme. Boundary conditions 
were derived from gross-tumor-volume contours and were used to create a surface mesh. To simulate growth, we 
developed a Monte Carlo scheme whereby tumor cells are distributed around concentric spheres according to their 
local density defined by the solution to the PDE. Immune cell interactions were modelled based on interaction 
distance (i.e., between immune cells and tumor cells) and interaction probabilities. The resulting cellular point-
cloud was voxelised based on cell densities using a recursive, histogram-based approach and Gaussian smoothing. 
Spatial differences in nutrient density were parameterized via PET habitat analysis and encoded into the model. 
Cellular entropy and tumor volume were used to quantify changes in texture and morphology. 
 

RESULTS 
Based on simulated tumor cell dynamics, we observed qualitative and quantitative differences in tumor volume, 
texture, and necrotic core formation. Tumor volume increased with time to a stable value that was greater for less 
necrotic tumors. Final tumor volume was 18.2% lower for necrotic tumors compared to less necrotic tumors. Mean 
absolute gradient was used to quantify entropy fluctuation and was equal to 0.4801 and 0.8360 for the regular and 
necrotic tumors respectively. 

CONCLUSION 
We developed a methodology to grow 3D tumors with biological interpretability and characterized the growth 
across varying levels of necrosis. This technique can inform the realism of in-silico tumor models and enhance the 
quality of virtual imaging trials.  
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Effects of misalignment between mechanical and x-ray 
breast images in simultaneous digital breast 
tomosynthesis and mechanical imaging 
Predrag R. Bakic,§ Rebecca Axelsson, Hanna Tomic, Sophia Zackrisson, Anders Tingberg, Magnus Dustler 

Lund University, Department of Translational Medicine, Skåne University Hospital, Malmö, Sweden; 

BACKGROUND AND PURPOSE 

Simultaneous digital breast tomosynthesis (DBT) and mechanical imaging (MI) – DBTMI – is a novel breast 

cancer screening approach. DBT acquires low-dose projections to reconstruct breast slices, which reduces 

anatomical noise. MI uses a pressure sensor to measure stress on the compressed breast surface. DBTMI can 

identify false positive detections to improve screening specificity. A preliminary clinical study of 52 women 

suggested that DBTMI could resolve 33% false positives, which were not resolved by DBT+ultrasound.1 

An important step in DBTMI is the alignment between MI and radiographic images. The MI clinical descriptor is 

the Relative Mean Pressure over the lesion Area (RMPA), calculated as the average stress over the 3x3 sensor 

elements and normalized for the overall average stress on the breast.2 Potential DBT-MI misalignment may 

cause errors in RMPA and affect clinical decisions. This work analyzes the effects of misalignment using 

simulated DBTMI data. 

METHODS 

Previously, we simulated DBTMI using computational breast phantoms, ray tracing x-ray acquisition, and finite- 

element model of the compressed breast and the MI sensor with 10 mm isotropic spatial resolution.3,4 The 

phantoms simulated various volumetric density with a spherical lesion. In that previous study, RMPA was 

calculated assuming an ideal DBT-MI alignment. 

In this study, we simulated the misalignment by shifting DBT relative to MI images in orthogonal directions 

parallel to the MI sensor. Simulation was repeated for different lesion locations, and using four phantoms with 

different volumetric breast density, VBD (see Fig.1). We have identified maximum RMPA changes, relative to the 

ideal alignment. In addition, the analysis was repeated assuming another MI sensor with 5 mm isotropic 

resolution. 
 

 

 
 
 

 
(a) 
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(b) 

Figure 1 Simulated anatomy in our study. (a) ML sections of phantoms with volumetric breast density, VBD, of (L-R): 4%, 7%, 

9%, 12%. (b) CC sections of phantoms with the lesion (red) located at (L-R): 5, 4.4, 3.8, 3.2, 2.6, 2.0 cm from the breast 

surface. 

RESULTS 
 

 

  

y 

(a) (b) 
Figure 2 Distribution of (a) the stress (kPa) and (b) Relative Mean Pressure over the lesion Area (RMPA), on the 

surface of simulated compressed breasts with VBD of (top-bottom): 12%, 9%, 7%, and 4%, and MI sensor with 
the 10-mm resolution. 
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(a) (b) 
Figure 3 Distribution of (a) stress (kPa) and (b) Relative Mean Pressure over the lesion Area (RMPA), on the 

surface of simulated compressed breasts with VBD of (top-bottom): 12%, 9%, 7%, and 4%, and MI sensor with 
the 5-mm resolution. 

 

 

Figs. 2 and 3 show distributions of the stress and RMPA over the breast phantom surface, for the MI sensor 

resolution of 10 mm and 5 mm, respectively, as calculated by the FE analysis. The simulated lesion was centered 

at 33.6 mm and 21.4 mm, in caudal-cranial (x) and chest-nipple (y) directions, respectively. 

Tables 1 and 2 list the stress and RMPA, respectively, at the lesion location (i.e., for the perfect DBT-MI 

alignment) as well as the relative difference in the stress and RMPA, respectively, for assumed misalignments in 

x and y directions, using the simulated MI sensor with the spatial resolution of 10 mm. Listed are the values 

averaged over six lesion depths, shown in Fig. 1(b). Similarly, Tables 3 and 4 list the stress and RMPA at the 

lesion, respectively, as well as their relative differences for various misalignments, using the simulated MI sensor 

with the spatial resolution of 5 mm. 

Table 1: The effect on the stress of misalignments in caudal-cranial (x) and chest-nipple (y) directions, for a 10-mm MI sensor 
 

 

VBD (%) 
Stress (kPa) 

@ Lesion 

Relative Differences in Stress (%) Average over 
Misalignment 

s 
x-10 mm x+10 mm y-10 mm 

y+10 
mm 

12 12.4±0.5 21.5±1.3 58.6±5.7 16.1±1.4 32.2±3.8 32.1±7.1 
9 11.8±0.7 20.9±2.3 5.5±3.2 13.5±2.6 31.9±5.4 18.0±7.2 

7 12.5±0.8 21.6±3.8 6.1±2.8 16.7±1.9 30.4±5.6 18.7±7.5 

4 11.4±0.5 20.5±2.1 8.8±5.4 22.5±2.7 33.9±4.0 21.4±7.6 

Average over VBDs 21.1±5.0 19.8±9.0 17.2±4.4 32.1±9.6 22.5±14.7 
 

 

Table 2: The effect on the RMPA of misalignments in caudal-cranial (x) and chest-nipple (y) directions, for a 10-mm MI sensor 
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VBD (%) 
RMPA 

@ Lesion 

Relative Differences in RMPA (%) Average over 
Misalignment 

s 
x-10 mm 

x+10 
mm 

y-10 mm 
y+10 
mm 

12 1.42±0.02 23.5±0.3 12.9±0.7 13.0±0.2 18.8±0.5 17.1±0.9 

9 1.29±0.02 14.7±0.6 6.2±0.8 20.3±0.4 22.0±3.3 15.8±3.5 

7 1.34±0.02 13.8±0.2 6.8±0.7 21.8±0.4 26.6±2.6 17.2±2.8 

4 1.31±0.03 15.2±0.2 6.8±0.8 23.6±0.1 25.5±3.4 17.8±3.5 

Average over VBDs 16.8±0.8 8.2±1.4 19.7±0.6 23.2±5.5 17.0±5.7 
 

 

Table 3: The effect on the stress of misalignments in caudal-cranial (x) and chest-nipple (y) directions, for a 5-mm MI sensor 
 

 

VBD (%) 
Stress (kPa) 

@ Lesion 

Relative Differences in Stress (%) Average over 
Misalignment 

s 
x-5 mm x+5 mm y-5 mm y+5 mm 

20 12.4±0.9 9.8±1.0 12.7±2.7 8.5±2.9 13.8±3.2 11.2±5.2 

15 12.2±1.5 11.4±2.9 7.5±6.1 7.5±3.9 10.7±7.8 9.3±11.0 

10 13.1±1.5 14.0±4.8 12.4±4.6 15.1±4.9 14.7±6.1 14.1±10.2 

5 11.9±1.0 11.1±2.1 10.8±2.6 11.5±4.5 16.1±5.2 12.4±7.6 

Average over VBDs 11.6±6.0 10.9±8.5 10.7±8.3 13.8±11.6 11.7±17.6 
 

 

Table 4 The effect on the RMPA of misalignments in caudal-cranial (x) and chest-nipple (y) directions, for a 5-mm MI sensor 
 

 

VBD (%) 
RMPA 

@ Lesion 

Relative Differences in RMPA (%) Average over 
Misalignment 

s 
x-5 mm x+5 mm y-5 mm y+5 mm 

20 1.48±0.06 
13.0±0. 

7 
16.3±1.5 5.5±0.4 13.2±1.2 12.0±2.1 

15 1.51±0.10 
11.0±1. 

3 
6.4±1.4 5.4±0.9 12.3±2.5 8.8±3.3 

10 1.55±0.09 
10.9±1. 

5 
7.3±0.7 7.2±0.6 13.1±1.6 9.6±2.4 

5 1.51±0.07 
11.5±0. 

9 
8.6±1.4 9.7±1.2 13.9±1.1 10.9±2.4 

Average over VBDs 
11.6±2. 

3 
9.6±2.6 7.0±1.7 13.1±3.4 10.3±5.2 

 

 

 

 

DISCUSSION 

The background tissue distribution has substantial effect both on the MI stress at the lesion location, and on the 

relative difference in stress caused by DBT-MI misalignment, as seen in Table 1. On the other hand, the relative 

difference in RMPA (Table 2) is lower as compared to the relative difference in the MI stress (Table 1): 17.0 vs. 

22.5%, as averaged over all the misalignments and VBDs. This result is expected, since the RMPA calculation 

includes local averaging and normalization of the stress, which reduces the variation. 
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When simulating the MI sensor with a higher spatial resolution (i.e., with the 5-mm sensor element size), the 

observed relative difference in the stress (Table 3) and RMPA (Table 4) are lower as compared to using a 10-mm 

sensor: 11.7% vs. 22.5% for the stress, and 10.3% vs. 17.0% for the RMPA. This suggests that the 5-mm sensor 

may reduce variations in RMPA due to potential DBT-MI misalignment. We are working with the MI sensor 

manufacturer to prototype and test a 5-mm MI sensor. In addition, we have been developing DBTMI fiducial 

markers to improve the accuracy of the DBT-MI alignment. 

We have observed that with a 5-mm sensor, the calculated RMPA values at the lesion tend to be higher than 

with a 10-mm sensor, e.g., 1.51 vs. 1.34 (as averaged over all VBDs, Tables 4 and 2). This may be caused by the 

size of the 3x3 ROI for local averaging of the stress when calculating RMPA. With the 5-mm sensor, the size of 

this ROI is (15 mm)2 , while with a 10-mm sensor, the ROI size is (30 mm)2. The ROI is centered at the lesion 

location, and the 3x3 averaging over a smaller physical ROI would likely yield a higher value. This is of 

importance when discriminating between malignant and benign lesions based upon the RMPA values; the 

discriminating criteria may differ for MI sensors with different resolution. 

Our preliminary simulation analysis of the effect of misalignment shows an agreement with the estimated 

variation in RMPA from clinical DBTMI. Our preliminary analysis of 31 clinical DBTMI datasets suggested an 

average relative difference in RMPA of 14.3%±12.2%,5 which is comparable to the relative difference of 

17.0%±5.7% from our simulation. Analysis of a larger number of clinical datasets is ongoing. 

CONCLUSION 

Preliminary simulation suggests that misalignment between MI and x-ray images can affect clinical decisions. 

The effect depends on the lesion position, the background distribution of dense tissue, and the spatial resolution 

of the MI sensor. Further tests and the sensor optimization to ensure correct alignment are ongoing. 
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System-specific simulation of mammography for 
processing images 
Franziska Mauter 1,2, Marta Pinto 2, Marcel Reginatto 1, Ruben van Engen4, Mathias Anton1, Ioannis 

Sechopoulos2,3,4 

1Divison of Ionising Radiation, Physikalisch -Technische Bundesanstalt,  Braunschweig, Germany 
2Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands 
3Dutch Expert Centre for Screening ( LRCB), Nijmegen, Netherlands 
4Technical Medicine Centre, University of Twente, Enschede, The Netherlands 

BACKGROUND AND PURPOSE 
To develop a fast Python-based mammography simulator that generates system-specific for processing images using 
deep learning to estimate the X-ray scatter components. 

METHODS 
Thickness maps per tissue type are generated from a digital 3D phantom via a ray-tracing projector. Using an X-ray-
spectrum model and system-specific measurements of tube outputs, air-kerma-to-mean-signal relationships, 
modulation transfer functions, noise power spectra, and signal-mean-to-variance relationships, a raw projection 
image that includes system performance limitations is generated. A U-net trained on Monte Carlo (MC) simulations of 
homogeneous breast phantoms is used to predict the scatter signal of the final image (s. Fig.). Simulated images were 
visually inspected by an expert in the field of mammography image quality. Computation times were averaged for the 
generation of mammograms derived from 20 virtually compressed patient breast CT data with compressed breast 
thicknesses between 3.9 cm and 6.8 cm. Average scatter prediction time of the U-net and performance measures 
based on mean relative difference (MRD) and mean absolute relative difference (MARD) inside the breast area were 
derived from an independent MC test set of 100 simulations. 

RESULTS 
Visual inspection of the simulated images by an expert indicates reasonable results. A complete simulation takes 198 
s, resulting in a minimum time saving of approx. 90 % compared to pure MC simulations. Scatter prediction by the U-
net takes, on average, 140 ms with a median MRD of -0.1 % (Q1: -0.2 %, Q3: 0.0 %) and a median MARD of 2.5 % (Q1: 
1.8 %, Q3: 3.2 %). 
 

CONCLUSION 
Using a U-net to estimate the scatter signal of a mammogram gives good results and significantly reduces the 
computation time for the entire simulation. 
A comprehensive objective validation of the simulation results against real acquisitions will be performed to ensure 
the authenticity of the generated data. 
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Implementing detailed antiscatter grid modelling for 
Virtual Imaging Trials applications 
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BACKGROUND AND PURPOSE 

This work explores the application of detailed grid modeling in Virtual Imaging Trials, and presents a case study 

for digital mammography (DM). Antiscatter grids are widely used in diagnostic x-ray imaging as a scatter 

rejection technique. However, assessing the impact of grids on image quality for a specific task using physical 

measurements can be challenging. In this regard, VITs are an important tool to simulate the impact of 

antiscatter grids for tasks that are closely related to what is found in clinical applications. To better understand 

the implications of the antiscatter grids on image quality, the modelling avoided simplifications as much as 

possible, while maintaining reasonable simulation times. The grid structure is simulated, along with interactions 

within the grid. 

METHODS 

Breast phantoms were generated (section B.1.) with four distinct group sizes and glandular volume. Afterwards, 

three types of lesions were generated (section B.2.): microcalcifications, spiculated masses and lobular masses. 

Digital mammography images were simulated (sections B.3. and B.4.) using a combination of Monte Carlo 

simulations with ray tracing techniques, and the image quality was compared between two types of antiscatter 

grid and without grid in place. 

B.1. Phantom generations 

The breast phantoms used in this study were generated using the BreastPhatom software1 in combination with 

the VictrePipeline2. The maximum thickness of the compressed breast phantoms was increased to 7 cm to 

include thicker breasts found in the population undergoing DM examination, for this, the volume of the 

uncompressed breast was also increased. In total, four different breast sizes were generated based on thickness: 

(i) 3.5 cm, (ii) 5.0 cm, (iii) 6.0 cm and (iv) 7.0 cm. 

B.2. Tasks 

Two categories of lesions were considered in this study, masses and microcalcifications. Two types of masses 

were generated using the breastMass software2, lobular (a more regular shape), and spiculated (irregular shape 

with spicules emerging from the center), The diameters (excluding the spicules) ranged from 2.5 mm to 6.0 mm. 

The clusters of microcalcifications were obtained from the software described in Van Camp et al3. The number 

of microcalcifications in the cluster varied from 9 to 15, with an average size ranging from 120 micrometers to 

180 micrometers. They were randomly distributed in a 0.125 cm3 cube. 

B.3. System geometry and general parameters 
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The source to detector distance was 65 cm. The x-ray field size irradiated the entire detector (12 cm x 24 cm). 

The detector was modelled as an amorphous selenium layer of thickness 0.25 mm. X-ray spectra were simulated 

using a W/Rh anode/filter combination with a tube potential ranging from 26 kV to 32 kV, adjusted by breast 

size, The spectra were obtained from the SpekPy software4. The breast was positioned at 1.5 cm above the 

detector, and between the compression and support plates (1 mm thickness, PMMA). The linear grid has a 

height of 1.5 mm, focal distance of 65 cm, a frequency of 31 l/cm and a ratio of 5. The septa were composed of 

lead, and the interspace material of paper fibre. The cellular grid has a height of 2.4 mm, focal distance of 65 cm, 

frequency of 15 cells/cm, and a ratio of 3.8. The septa were composed of copper, and the interspace material is 

air. For both grids, the total cover is 0.4 mm of carbon fibre. 

B.4. Image formation 

First, the necessary reciprocal motion of the antiscatter grids were studied by simulating flood images of the 

bucky. This motion was modelled as a rectilinear uniform movement around the central position of the grid, 

perpendicular to the septa alignment of the linear grid. The cellular grid was rotated approximately 48 degrees 

to minimize artifacts, and the same linear motion was modelled. The required displacement was determined by 

analyzing the NNPS of the flood images until the curves were uniform at high frequencies (up to 4 mm-1), where 

grid artifacts are usually present. Afterwards, flood images were acquired with other energies (2 keV step) to 

cover the entire range of the x-ray spectra. 

Each breast phantom was ray-traced using the Siddon’s algorithm5 with supersampling to avoid aliasing, and an 

array was stored containing the projected distance per pixel for each material. The same procedure was 

performed with the lesions. The position of the lesion was selected by regions of the breast where the 

compressed breast thickness is close to the maximum (to avoid the borders), and where glandular tissue is 

present, to avoid extremely fatty regions . The lesions were included in the phantom by subtracting the adipose 

tissue distances from the array and replacing them with the lesion material. This allowed the quick insertion of 

lesions without repeating the ray tracing step several times. 

The transmission probability per pixel was calculated from the projected distances and the attenuation 

coefficients for each material. From the initial number of particles, the transmission probabilities were 

integrated over the desired x-ray spectrum, combined with the flood images to return the average deposited 

energy per pixel and the respective quantum noise. For the scatter images, the simulations were carried out 

directly with the phantom in place and x-ray spectrum, however a low-resolution image (downsampled by 20:1) 

was obtained to speed up simulation times. The primary and scattered images were combined with the same 

number of photons emitted by the x-ray source, and the MTF and NNPS curves measured on a real system 

(MAMMOMAT Inspiration, Siemens, Germany) were applied to modulate the signal and noise in the projection 

images. 

All the simulations in this work were carried out with a modified PENELOPE6 (v. 2018) and penEasy7 (v. 2022) 

Monte Carlo code. These modifications include the usage of the Message Passing Interface (MPI) to parallelize 

the computation in a cluster. The antiscatter grid hybrid implementation is described in previous work,8 which 

combines the analytical model proposed by Zhou et al. 9 with the tracking of scattered particles within the grid. 

In this work, we extended our previous hybrid method to include 2D grids. 

The wICE cluster from KU Leuven was used to carry out the simulations. The nodes used consisted of 2 Intel 

Xeon Platinum 8360Y CPUs@2.4 GHz (36 cores each), with 256 GB of RAM. Each primary and scatter simulation 

took between 2 to 4 hours. The projection images took approximately 10 minutes to be generated. 

mailto:CPUs@2.4
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RESULTS 
 

C.1 Antiscatter grid motion study 

Figure 1 shows the impact of the grid reciprocal linear motion for linear and cellular grids (i.e. they oscillate 

between the central position). For the results, we require that the grid completes one complete cycle during the 

exposure. In 1(a) a linear grid is stationary, producing large artifacts on the image. In figure 1(b) the same grid 

performs a reciprocal motion of 1.0 cm, basically removing all artifacts. In 1(c), a cellular grid performs a 

reciprocal motion of 1.0 cm, which is not sufficient to remove all artifacts. In 1(d), the movement is increased to 

2.5 cm, producing a uniform image. 
 

 

 

 

 

Figure 1: On left: flood images of the antiscatter grids, with and without motion. Right: NNPS calculations of the 

images showing the peaks where the artifacts are present. Linear grid: (a) without motion and (b) with 1.0 cm 

maximum displacement. Cellular grid: 1.0 cm and 2.5 cm maximum displacement. 

C.2 Example of generated images 

Digital mammography images generated in this work are shown in Figure 2. The acquisitions consisted of the 

cases without antiscatter grid, with linear grid and with cellular grid. For the cluster of microcalcifications, the 

breast thickness was 7 cm, and the mean glandular dose (MGD) was fixed at 2 mGy. For the masses, a 5.8 cm 

breast thick was used, with a constant MGD of 1.5 mGy. 
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Figure 2: Comparison between the antiscatter grids and without grid case for different lesions. First row: cluster 

of microcalcifications; second row: lobular mass; third row: spiculated mass. 

DISCUSSION 

Simulating the antiscatter grid structure allows the study of grid-related artifacts on the projected images. Based 

on this information, it is possible to optimize the reciprocal motion of the grid to generate uniform images, 

avoiding an excessive cutoff effect from primary photons. In addition, this provides the contribution of 

secondary photons generated from photon-interactions within the grid (scattering from the interspace material 

or fluorescence photons from the septa material) that can be absorbed by the x-ray detector, potentially 

lowering the performance of the grid. Although this effect is minimized in mammography due to the low tube 

potential used, the scattering within the grid can be more significant in modalities that employs higher tube 

potentials, such as in diagnostic x-rays. For the microcalcification region shown in Figure 2, the linear grid has a 

primary (Tp) and scattered (Ts) transmission of 0.79 and 0.18, respectively, while the cellular grid presented 

values of 0.81 and 0.12 for Tp, and Ts, respectively. The grid performance can be assessed by a visual analysis 

exemplified in Figure 2, where the detection of microcalcifications is compared between the grids, in addition to 

the discrimination between the mass lesion types. 

CONCLUSION 

The application of Virtual Imaging Trial methods to assess the performance of antiscatter grid in x-ray medical 

imaging provides the possibility of assessing the impact on image quality in scenarios closer to that present in 

the clinics. Physical assessments are usually made in uniform phantoms under steady state conditions while 

virtual methods allow grid parameters and scattered radiation to be quantified in specific areas of patient 
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anatomy, where the local scatter conditions can vary. The methodology used in this work can be extended to 

other imaging modalities, including digital breast tomosynthesis, angiography imaging systems and cone beam 

CT. 
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Modeling propagation-based x-ray 
phase-contrast imaging: validity of the projection 
approximation 
Giavanna Jadick and Patrick La Rivière 

 

 

BACKGROUND AND PURPOSE 

X-ray phase-contrast imaging (XPCI) shows promise for improving image contrast without necessarily increasing 

radiation dose by probing a subject's refractive properties in addition to its absorptiveness. XPCI would be highly 

useful in medical scenarios, which often require rapid, high-contrast imaging of tissues with similar x-ray 

attenuation coefficients, such as a cancerous tumor embedded in healthy tissue. Prior to clinical 

implementation, corresponding XPCI forward models must be designed to accurately assess prototyped imaging 

setups, design phase retrieval algorithms, and optimize system parameters. However, a number of challenges 

have limited the computational application of developed models to date. 

An object’s refractive or “phase” properties are not immediately apparent in traditional contact x-ray imaging. 

Several approaches have been proposed for encoding phase-contrast information in an x-ray wave field’s 

intensity.1 Propagation-based imaging is one prominent technique with the unique advantage of not requiring 

specialized optics equipment given an x-ray source with sufficient spatial coherence. By moving the detector 

further from an object, phase differences in the x-ray wave field magnify and manifest as bright and dark 

intensity fringes at object edges. Unfortunately, discrete modeling of propagation-based XPCI is computationally 

expensive due to high x-ray wave field sampling requirements. This difficulty is compounded when attempting 

to invert the forward model for phase retrieval. Consequently, the projection approximation—the assumption 

that refractive effects within an object are negligible—is commonly applied to simplify computation relative to 

more accurate approaches.2 As x-ray imaging technology rapidly advances, achieving larger detector fields-of- 

view and smaller pixel sizes, the conditions of the approximation are less satisfied, and the quantitative accuracy 

of phase images may be compromised.3,4 

It is essential to understand the validity of approximations under various conditions to make informed decisions 

in imaging simulations. The purpose of this work is to assess the accuracy of the projection approximation in 

propagation-based XPCI modeling. We consider different x-ray energies, detector resolutions, and object 

thicknesses, characterizing scenarios in which more computationally intensive forward modeling is likely 

necessary. 

METHODS 

We utilized the Fresnel number NF as an initial estimate of projection approximation validity: 

𝑁𝐹 = Δ2(𝜆𝑧)−1 (1) 

where  is spatial resolution,  is x-ray wavelength, and z0 is object thickness.2 The energy E is related to 

wavelength as E = hc/, where h is Planck's constant and c is the speed of light in a vacuum. The condition NF ≫ 
1 roughly indicates that refractive effects are negligible, suggesting the projection approximation is reasonable. 
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However, it is highly idealized in that it neglects more realistic simulation elements, such as detector noise and 

blur. We computed NF at a continuum of parameters representing three conventional x-ray imaging modalities 

(Table 1). 

Table 2. Parameters used for the Fresnel number calculations. 
 

Imaging modality Energy E [keV] Resolution  [m] Thickness z0 [cm] 

Micro CT 20 0.1 – 5.0 0.1 – 2.0 

Mammography 20 10 – 120 1 – 20 

Clinical CT 50 50 – 600 10 – 50 
 

 

Figure 3. Schematic of a multislice simulation using N slices, where exp[…] indicates line integrals through the 

object’s complex index of refraction (Eq. 2) and hz is the Fresnel operator for free-space propagation over 

distance z. 

The Fresnel number findings were used to motivate parameter choice for a synchrotron micro CT-inspired 

simulation study in which propagation-based XPCI projection images of a computational phantom were 

generated using either the projection approximation or the more accurate “multislice” forward model. 

The incident wave 0 was modeled as coherent and monochromatic (E = 20 keV). Each phantom voxel (x, y, z) 

was defined according to its material's complex index of refraction, n = 1 –  + i, at energy E. Under the 

projection approximation, the wave exiting the phantom is written in terms of the accrued amplitude () and 

phase () shifts, 

𝑧0 

𝜓𝑧0 
(𝑥, 𝑦) = 𝜓0(𝑥, 𝑦) exp [−𝑘 ∫  𝑑𝑧 𝛽(𝑥, 𝑦, 𝑧) + 𝑖𝛿(𝑥, 𝑦, 𝑧)] , (2) 

0 

where k = 2E/hc is the wavenumber, z is the optical axis, and z0 is the location of the object exit plane.2 

For the multislice forward model (Fig. 1), the object is instead divided into N slices. In principle, each slice j 

should be sufficiently thin to satisfy the projection approximation. The object exit wave is then computed 

iteratively, with the wave field at each successive slice j+1 found by multiplying the wave incident from the 

previous slice j by the line integrals through the object slice (as in Eq. 2) and then applying free-space 

propagation over the slice width z0/N. We modeled the free-space propagation of a wave as a convolution with 

the Fresnel operator, 

𝜓 (𝑥, 𝑦) = ℑ−1 {ℑ{𝜓  (𝑥, 𝑦)} ⋅ exp [− 
𝑖𝜋ℎ𝑐 

𝑅(𝜈2 + 𝜈2)]} , (3) 
𝑧0+𝑅 𝑧0 

 

𝐸 𝑥 𝑦 

where  indicates the two-dimensional Fourier transform with respect to x and y.2 
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After simulating the incident wave field's modulation through the object with either the projection 

approximation or multislice model, free-space propagation to the detector was simulated as a convolution with 

the Fresnel operator over distance R. At the detector plane, the wave field was downsampled to match the 

target resolution and convolved with a normalized, two-dimensional Lorentzian point-spread function with a 

full-width at half-max equal to 1-µm.5 The final image I was then set to the magnitude of the final complex wave 

field z0+R. 

We conducted simulations of two phantoms. First, we used a simple 1-m PMMA sphere in a 5-mm slab of 

water to quantify image accuracy when varying the number of multislices from N = 0 (projection approximation) 

to 50. The 50-slice image was used as a reference for calculating divergence D relative to the most accurate 

simulation: 

 
  1  

𝐷 = ( ∑[𝐼 (𝑥, 𝑦) − 𝐼 

0.5 

(𝑥, 𝑦)]2) 

 
 
. (4) 

𝑁 𝑛pixels 
𝑁 

𝑥,𝑦 

ref 

Two pixel sizes ( = 0.05, 0.5 m) and three object-to-detector distances (R = 0, 50, 100 mm) were simulated. 

In the second simulation, we modeled a 5-mm thick, metal-stained zebrafish sample and a detector placed R = 

50 mm from the object with sampling  = 0.5 m. Wave modulation through the object was simulated using 

either the projection approximation or the multislice approach with 2, 4, and 16 slices. 
 

Figure 4. Heatmaps of the Fresnel number evaluated at parameters typical for three x-ray imaging modalities. 

 

 

Figure 5. Projection approximation vs. multislice (N=50) line profiles through the 1-m PMMA sphere with (top) 

0.05-m and (bottom) 0.5-m detector sampling. The right column shows exit wave divergence as a function of 
number of slices N. 
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RESULTS 

Figure 2 shows heatmaps of the Fresnel number for ranges of parameters corresponding to micro CT, 

mammography, and clinical CT imaging scales. The condition NF ≫ 1 is well satisfied for the mammography and 

clinical CT regimes but not at high resolutions of interest for micro CT. It is possible that with thicker samples or 

lower energies, high-resolution mammography may benefit from multislice modeling. 

Figure 3 shows line profiles through the simulated images of the 1-m PMMA sphere in water. This imaging task 

has poor x-ray absorption contrast, indicating great potential for contrast improvements using XPCI. The 

projection approximation always underestimates the amplitude of edge fringes, especially in the high-resolution 

images where fringe width is on the same order as the sampling distance. This effect worsens as the free-space 

propagation distance to the detector is increased, which increases the visibility of refractive effects. This is 

apparent in the zebrafish images, where accuracy noticeably improves as the number of slices increases (Fig. 4). 

The qualitative improvement approaches a plateau at slice widths thinner than approximately 1 mm, with a 

number of slices in the range from 4 (NF = 3.2) to 16 (NF = 12.9) depending on the desired simulation accuracy. 

This is consistent with expectations based on the Fresnel number heatmaps in Fig. 2. 

DISCUSSION 

We present an assessment of the validity of the projection approximation in forward modeling of propagation- 

based XPCI. This approximation is a hallmark of widely implemented phase retrieval techniques such as 

Paganin's method for a single defocused image.6 While such approaches may yield qualitatively pleasing images, 

their quantitative accuracy can be compromised when approximation conditions are not well satisfied. This is of 

particular interest in the context of emerging micron- and sub-micron-resolution x-ray detectors.3,4 By 

characterizing the scenarios in which more accurate forward modeling is needed, one can additionally 

determine when the more convenient approximate methods are sufficient, saving computational expense. 

 

Figure 6. The zebrafish images simulated using the projection approximation (left) and its difference with 

multislice (right columns) over a 2.5-mm field-of-view (top) and a 0.15-mm region-of-interest (bottom) as 

indicated by the red squares. For 1, 2, 4, and 16 slices, the Fresnel number is 0.8, 1.6, 3.2, and 12.9, 
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For emerging micro CT systems, quantitative XPCI will likely require phase retrieval algorithms based on a more 

accurate forward model for wave field propagation through an object, such as the multislice approach. The 

precise conditions depend on the imaging scenario at hand—object thickness, detector characteristics, and 

object-to-detector distance. Using our simple 1-m sphere simulations, one can define a maximum acceptable 

error threshold to determine the minimum number of multislices needed in the forward model. For our 

zebrafish example, the qualitatively visible accuracy approaches a plateau with slices thinner than 1 mm. The 

framework can be extended to other propagation-based XPCI setups. 

CONCLUSION 

The projection approximation is computationally convenient for discrete propagation-based XPCI modeling. 

Based on an analytical estimate, we expect the approximation is sufficiently accurate for XPCI simulations at 

clinical CT scales. For high-resolution systems such as micro CT, multislice modeling is likely necessary. Using a 

simulation study, we quantify accuracy divergence as a function of the number of multislices used. This work 

motivates the development of propagation-based phase retrieval algorithms based on this more accurate 

forward model. 

ACKNOWLEDGEMENTS AND CONFLICT OF INTEREST 

The authors declare no conflicts of interest. This work is supported by the United States National Science 

Foundation Graduate Research Fellowship Program under Grant No. 2140001. 

REFERENCES 

[1] Burvall A, Lundström U, Takman PAC, Larsson DH, Hertz HM. Phase retrieval in x-ray phase-contrast imaging suitable 

for tomography. Opt. Express. 2011;19:10359–10376. 

[2] Paganin DM, Pelliccia D. X-ray phase-contrast imaging: a broad overview of some fundamentals. Adv. in Imaging and 

Electron Phys. 2021;218:63–158. 

[3] Sundberg C, Persson MU, Wikner JJ, Danielsson M. 1-μm spatial resolution in silicon photon-counting CT detectors. J. 

Med. Imaging. 2021;8:063501. 

[4] Yakovlev MA, Vanselow DJ, Ngu MS, et al. A wide-field micro-computed tomography detector: micron resolution at 

half-centimetre scale. J. Synchrotron Radiat. 2022;29:505–514. 

[5] Koch A, Raven C, Spanne P, Snigirev A. X-ray imaging with submicrometer resolution employing transparent 

luminescent screens. J. Opt. Soc. Am. A. 1998;15:1940–1951. 

[6] Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. Simultaneous phase and amplitude extraction from a single 

defocused image of a homogeneous object. J. Microsc. 2002;206:33–40. 



VITM 2024 73 
 

Simulation Tools to Optimize the Scanning Motion for 
Next-Generation Tomosynthesis 
Raymond J. Acciavatti, Priyash Singh, Chloe J. Choi, Andrew D. A. Maidment 

University of Pennsylvania, Department of Radiology, 3400 Spruce Street, Philadelphia PA 19104 

BACKGROUND AND PURPOSE 

Digital breast tomosynthesis (DBT) is now in widespread use for breast cancer screening. In current clinical 

systems, the x-ray source moves only in the left-right (LR) direction (Fig. 1), yielding a cone-beam artifact in the 

perpendicular direction. This artifact can be visualized with a Defrise phantom.1 The phantom consists of multiple 

plastic plates at low-frequency spacing. The phantom is well visualized in the LR direction but not in the 

posteroanterior (PA) direction, since rays must traverse multiple plates in the PA direction before reaching the 

detector. 

Our research lab has constructed a prototype next-generation tomosynthesis (NGT) system to analyze how image 

quality in DBT can be improved. The NGT system is capable of source motion with an additional degree of freedom 

in the PA direction, unlike a clinical DBT system. Our previous work demonstrated that the cone-beam artifact is 

suppressed with a T-shaped scanning motion.1 The purpose of this study is to investigate a new motion following 

a convex path (forming a loop). We use theoretical modeling and breast-shape analysis to investigate whether this 

new design improves three measures of image quality relative to the T scan; namely, the cone-beam artifact, out-

of-plane blurring, and breast-outline overestimation effects. 

METHODS 

In addition to a conventional scan, T and convex scans (Fig. 2) are simulated with 191.7 mm of PA motion. All 

motions have 13 projections and a LR range of 191.7 mm. We model the AXS-2430 detector (Analogic Canada 

Corporation, Montreal, Quebec) used in the NGT system. This detector has 0.085 mm pixelation and an active 

area of 304.64 mm × 239.36 mm. The detector is –24.46 mm below the breast support. The source motion is 

constrained by a spherical arc (radius 744.05 mm) centered on the centroid of the breast support. 

The cone-beam artifact is analyzed with a Defrise phantom (frequency 0.20 mm-1, thickness 50.0 mm). The 

attenuation coefficient is treated as sinusoidal (as opposed to a square wave), as we have developed a closed- 

form solution for the projection image of a sinusoidal test object. Modulation is calculated in the LR and PA 

directions in the central slice of the phantom by normalizing signal to the corresponding signal in a uniform 

phantom with equivalent dimensions. 
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(a) Defrise Phantom: LR Frequency (b) Defrise Phantom: PA Frequency 
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Figure 1. Defrise phantoms are simulated with two frequency orientations: left-right (LR) and posteroanterior (PA). 
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Figure 2. The NGT system supports PA motion unlike current clinical DBT systems. Two simulated motions are shown. 
 

To measure out-of-plane blurring, the point spread function (PSF) is 

calculated in the z direction. Three metrics are derived from the PSF; 

i.e., full width at quarter maximum (FWQM), full width at half 

maximum (FWHM), and full width at three-quarters maximum 

(FW3QM). These metrics are illustrated in Fig. 3 at the point (0, 54.0, 

25.0) (in mm) under the convex motion. Our previous work2 

measured the spatial distribution of each metric under 1,000 random 

samplings of points in a volume with dimensions 200.0 × 100.0 × 50.0 

mm). Cumulative histograms of each metric are plotted with 95% 
confidence intervals using bootstrapped resampling (200 resamples 
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et al.3; specifically, the average breast with advanced 3D curvature (chest wall-to-nipple distance of 97 mm and 

1.0 mm3 voxels). To summarize this calculation, which was described in our earlier work4, detector pixels 

corresponding to air signal in each projection are identified. Rays are then backprojected from these pixels to the 

source, identifying voxels corresponding to air. This information is combined across projections to generate the 
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breast outline. Simulations of the breast-outline segmentation were performed with 2 × 2 detector element 

binning. 
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Figure 4. Defrise phantom reconstruction in the PA direction illustrating the cone-beam artifact in the conventional geometry. 
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Figure 5. The threshold of 5% is set for detectable modulation in Defrise phantom plot profiles under various scanning 

motions. 

RESULTS 

In the conventional scan, there is a cone-beam artifact in the PA direction (Fig. 4), as shown by the drop in signal 

distal to the chest wall. The signal amplitude falls to zero at the position 70.7 mm distal to the chest wall. There is 

a 180° phase shift between 70.7 and 141.4 mm distal to the chest wall. In the LR direction, Defrise modulation is 

kept above 5% under both conventional and convex motions but not under the T motion [Fig. 5(a)]. In the PA 

direction, both T and convex motions offer an advantage over the conventional motion; modulation is kept above 

5% [Fig. 5(b)]. 

In Fig. 6, PSF width metrics are analyzed with cumulative histograms. Shaded areas denote 95% confidence 

intervals determined from bootstrapped resampling of 1,000 random points in the volume. The three PSF width 

metrics are minimized most noticeably under a convex scanning motion, benefiting image quality. 

The breast-volume overestimate (difference relative to input phantom, 625.9 mL) is 33.3, 27.8, and 27.3 mL under 

conventional, T, and convex motions, respectively. Thus, the volume overestimate is reduced by 16.5% and 18.0% 

under T and convex motions, respectively, relative to the conventional motion. Three slices in the reconstruction 
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are illustrated (Fig. 7). The T and convex motions offer an advantage over the conventional motion in the inferior 

slice (z = 0.5 mm); the breast outline in the PA direction more closely matches the input phantom. All three scans 

yield similar breast outlines in the mid-slice (z = 24.5 mm), and these three outlines all match the input phantom 

well. The breast outlines of the three scans are essentially identical in the superior slice (z = 50.5 mm), but 

overestimate the breast size in the PA direction relative to the input phantom. 
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Figure 7. Breast-outline segmentations in three slices of the reconstruction under conventional, T, and convex scanning 

motions. 

DISCUSSION 

Our previous work demonstrated advantages of the T scan over the conventional scan; specifically, in improving 

the PA Defrise modulation in physical experiments1, minimizing out-of-focus breast-density artifacts in the z 

direction in virtual phantoms5, and improving visualization of the PA extent of the breast outline in a physical 

phantom4. The convex scan proposed in this paper continues to demonstrate advantages over the conventional 

scan, but also offers two potential benefits over the T scan; specifically, in terms of LR Defrise modulation and PSF 

width metrics in the z direction. 
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CONCLUSION 

This paper describes simulation tools that can rapidly identify a promising new scanning motion. Our next step is 

to validate these simulations with physical experiments using the NGT system. Future work should also investigate 

the scanning motions in terms of lesion detectability in breast phantoms. 
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Installing photon-counting CT in DukeSim – A 
validated and computationally efficient simulation 
framework accounting for scanner-specific physics 
and acquisition geometry 
Cindy McCabe, Brian Harrawood, Ehsan Samei, Ehsan Abadi 

 

ABSTRACT 
The purpose of this study was to develop a computationally efficient CT simulator that realistically accounts for 
conditions of clinical photon-counting CT (PCCT) systems. This simulator was built upon a state-of-the-art platform 
(DukeSim) which simulate CT projection images of computational phantoms given the geometry and physics of the 
scanner and acquisition settings. To model the photon-counting detection process, we utilized a Monte Carlo-based 
detector model with the known properties of the detectors to inform the signal and variance for a 3-by-3-pixel array 
at each preset energy threshold, as well as the spatio-energetic covariance between the thresholds for the 3-by-3-
pixel arrays. DukeSim was augmented to account for the geometry and physics of PCCT systems, including correlated 
noise between thresholds, and low-dose physics for photon starved regions. We validated the simulation platform 
against experimental measurements using a physical phantom and a clinical PCCT scanner (NAOETOM Alpha, 
Siemens). The images were acquired at four dose levels (CTDIvol of 1.5, 3.0, 6.0, and 12.0 mGy) using an ACR 
phantom – a cylindrical phantom with four inserts (bone, air, acrylic, and polyethylene). Each acquisition was 
reconstructed with three kernels (Br40, Br48 and Br56) and two slice thicknesses (0.4mm, and 1.0mm) using a 512-
matrix size. The experimental acquisitions were replicated using our developed simulation platform. The real and 
simulated images were quantitatively compared in the matter of image quality metrics (HU values, noise magnitude, 
noise power spectrum, and modulation transfer function). The discrepancy between the real and simulated data was 
on average 1.25 HU in terms of noise magnitude and 0.0026 mm-1 in terms of the frequency at 50% MTF. We 
successfully developed a validated virtual imaging platform for the emerging CT technology, enabling the 
comparison of various CT systems, as well as the optimization of imaging parameters (including dose optimization) 
for specific clinical tasks. 
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CT Performance in Quantifying Small Airway Disease 
using Paired Inspiratory-expiratory Scans: A Virtual 
Imaging Study 
Fong Chi Ho, Amar Kavuri, Saman Sotoudeh-Paima, Mobina Ghojogh Nejad, Ehsan Samei, W. Paul Segars, Ehsan Abadi 

BACKGROUND AND PURPOSE 

Chronic obstructive pulmonary disease (COPD) is characterized by multiple underlying conditions, including 

emphysema and chronic airway inflammation[1]. The pathological changes of the lungs in COPD have been 

demonstrated using quantitative computed tomography (CT) for chronic bronchitis and small airways disease 

(SAD) respectively, by measuring the inflamed bronchial wall thickness with bronchiole internal diameter larger 

than 2 mm[2], and density measurements of the nonemphysematous gas-trapping region with bronchiole internal 

diameter less than 2 mm by parametric response mapping (PRM)[3]. 

The PRM registers CT images in both end-respiration states to measure the density differences in emphysema and 

SAD region simultaneously, which has shown a progression from SAD to emphysema with increasing COPD 

severity [4]. Thus, an accurate quantification of functional Small Airway Disease (fSAD) as gas trapping in airway 

anatomy is vital to reflect the severity and the early diagnosis of both emphysema and SAD. However, the density- 

based fSAD measurement does not fully reflect the major abnormality in SAD being the complete airway occlusion 

by the chronic mucus hypersecretion and concentration. Therefore, mucus score is utilized as a clinically related 

biomarker to quantify the occurrence of complete airway occlusion by mucus plugs using a bronchopulmonary 

scoring system[5]. Previous studies have demonstrated correlations between mucus score of COPD patients 

without mucus-related symptoms and the associated reduction in clinical disease measurement accuracy[6]. 

Hence, the evaluation of airway occlusion on CT images complements the COPD patient assessment. 

However, quantifying airway occlusion is limited by the CT image quality. CT image quality has been recently 

improved by the introduction of photon-counting CT (PCCT) that offers enhanced spatial resolution and reduced 

image noise compared to conventional energy-integrating CT (EICT) systems. This advancement holds the 

potential to more accurately quantify mucus plugging and the anatomy of functional Small Airway Disease. To 

assess such potential, virtual imaging trials can be utilized since, providing a ground truth known framework for a 

systematical evaluation and the parameter optimization investigation. In this study, we developed and utilized the 

first suite of virtual COPD patients with mucus modeling at both end-respiration states to evaluate the PCCT 

against EICT in mucus quantification by a novel imaging biomarker, PercOcclusion. 

METHODS 

Section 1. Computational Models with COPD 

Five anthropomorphic, computational human models (XCAT phantoms) were developed at both end-inspiration 

and end-expiration states (XCATINSP and XCATEXP) with varied severity of COPD based on the clinical COPDGene 

Phase 1 dataset. The organs and major structures were defined for each XCAT phantom [7, 8] by segmenting the 

clinical CT cases in both end-respiration states using a vendor-based segmentation program (DirectOrgan 2.0, 

Siemens) and other segmentation methods [9-11]. 
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The emphysema and fSAD masks per end-expiration CT case were segmented by the PRM followed by a median 

filter of 5x5x5 pixels and a connected component analysis to reduce the image noise and eliminate the smaller 

blobs segmentation, respectively. The filtered PRM masks were fine-tuned by a radiologist to classify as healthy 

parenchyma, emphysema, and fSAD regions. 

After modeling the XCAT for both end-respiration states using initial organ segmentation, a large deformation 

diffeomorphic metric mapping (LDDMM) was performed to transform the XCATEXP to the XCATINSP by spatially 

aligning every organ across the states[12]. The same diffeomorphic transformation was applied to obtain a PRM 

in inspiration (PRMINSP) from the PRM masks in expiration (PRMEXP) containing the definition of emphysema, fSAD, 

and overlapped region. Based on the fSAD distribution on PRMINSP, mucus of various densities, shapes, locations, 

angles, and lengths were modeled in the XCATINSP (Section 2). Mathematically extended models for the airways 

and vessels were also incorporated in the XCATINSP implementing bronchitis characteristics following pathological 

COPD patient statistics[13]. The XCATINSP was then statistically textured with parenchyma and its secondary 

pulmonary lobules defined using the techniques of Abadi et al [13]. An inverted LDDMM of the same 

diffeomorphisms was performed to complete a XCATEXP with parenchyma, detailed airways and vessels, and one- 

to-one mucus mapping to the XCATINSP. The complete workflow of phantom generation in both respiration states 

is illustrated in Figure 1. 

Section 2. Mucus modeling 

Chronic entrapped mucus was modeled with the distributions of shape (round, oval, lobulating, and complex), 

location (anterior and posterior), and angle (acute and obtuse) based on contrast-enhanced CT measurements 

[14]. The mucus was installed in the earliest generation of bronchiole in every connected region of gas trapping 

indicated by the PRMINSP. Mucus size was modeled to fit 10% to 100% of the airway in varied lengths, showing 

different levels of bronchiole occlusion and airflow limitation. A diverse density of mucus was assigned with 

resulting 0 HU to 130 HU in CT acquisitions, demonstrating the gradual production of mucus protein and a steady 

reabsorption of the water content in the chronic entrapped mucus[15]. 

 

Figure 1. The workflow in paired inspiratory-expiratory phantom creation. (1) Initial CT organ segmentations. (2) LDDMM performed 

diffeomorphic transformation. (3) Fine-tuned PRMEXP masks with classified emphysema and fSAD regions. (4) LDDMM mapping of the 
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PRMEXP to PRMINSP. (5) XCATINSP modeled with detailed lung structures and mucus as informed by the PRMINSP. (6) XCATEXP with detailed lung 

structure and one-to-one mapping of mucus from XCATINSP using an inverted LDDMM. 

Section 3. Virtual Acquisitions 

To simulate CT images from the phantoms, we used the DukeSim CT simulator [16]. In this study, the phantom 

projections were generated by DukeSim simulating a clinical PCCT and an EICT (NAEOTOM Alpha, SOMATOM 

Definition Flash, Siemens). The virtual CT acquisitions used 120kV at dose levels of 20, 60, and 100 mAs with typical 

tube current modulation (TCM)[16]. The projections were reconstructed using weighted filtered back projection 

(wFBP) and iterative reconstructions techniques (SAFIRE and PNR) in vendor-specific reconstruction software 

(ReconCT, Siemens), with a field of view of 500 mm in 2 pixel sizes (0.49 and 0.98 mm), two slice thicknesses (0.75 

and 1.5 mm for FLASH and 0.4 and 1.5 mm for NAEOTOM Alpha), and two reconstruction kernels (Q40 and Qr61). 

Section 4. Quantitative Assessments 

The mucus was quantified using a novel imaging biomarker, ‘PercOcclusion’, which quantifies the percentage of 

the airway in the area obstructed by the mucus to distinguish the partial bronchiole occlusion from the complete 

occlusion. 

 
𝑃𝑒𝑟𝑐𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 = 

𝑀𝑎𝑥(𝐴𝑟𝑒𝑎𝑚𝑢𝑐𝑢𝑠 ) 
 

𝐴𝑟𝑒𝑎𝑎𝑖𝑟𝑤𝑎𝑦 

 
𝑥 100% 

The PercOcclusion was measured and referenced to the ground truth, which was established by generating a 

mono-energetic representation of the phantoms at the effective energy (70 keV) of the acquisition process. The 

accuracy and variability of the biomarker measurements for each XCATINSP across all cases were evaluated against 

that of the ground truth in terms of the absolute error mean and standard deviation. 

RESULTS 

Figure 2 illustrates the variability of mucus modeled across four shapes, two locations, and two angles. Full occlusion and 30% 

occlusions are shown. Figure 3 shows a qualitative comparison of the EICT (FLASH) and PCCT (NAEOTOM Alpha) 

scanners imaged at 100mAs and reconstructed in 2 different kernels at the smallest slice thickness available (0.75 mm for 

FLASH and 0.4 mm for NAEOTOM Alpha). In this example, a mucus with a ground truth density of 0 HU and a PercOcclusion 

of 53 was inserted in the airway based on the PRMINSP measurement. The same mucus was labeled in a magnified area for 

every scanner condition. The partially occluded mucus is visible in both EICT and PCCT images but is shown as complete 

occlusion in the EICT images. The improved spatial resolution of the PCCT scanner shows superior details in the mucus 

silhouette compared to the EICT scanner, distinguishing the partial occlusion, and offering a closer resemblance to the ground 

truth. The use of the sharp kernel in the PCCT scanner results in a sharper boundary and less dilated mucus, which can lead to 

a more accurate quantification. 

 

 

 

 

 
Figure 2. Variability of mucus modeled across shape, location, angle and size based on distributions measured from contrast-enhanced CT 

images. 
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Figure. 3. A qualitative comparison for EICT (FLASH) and PCCT (NAEOTOM) scanners using 2 kernels against the ground truth rendition 

of an XCAT phantom with mucus of 0 HU and 53% occlusion. The EICT and PCCT images were reconstructed using wFBP and iterative 

reconstruction, respectively. 

 

Table 1 shows the average and standard deviations of the PercOcclusion absolute error measurements across multiple 

protocols. The PercOcclusion accuracy was improved by using higher dose levels, smaller voxel sizes, and shaper 

kernels. Holding other settings constant, switching from the soft to sharp kernel improved the accuracy by 2.74% on EICT and 

15.03% on PCCT, respectively. The accuracy improved by 27.04% for PCCT and insignificantly for EICT by increasing the 

dose level from 60mAs to 100mAs. Using a pixel size of 0.49 mm instead of 0.98mm reduced the average absolute mean error 

by 12.76% for EICT and 31.54% for PCCT. Comparing the absolute mean errors among the scanners at optimized settings 

(100mAs, 0.49mm voxel size, sharp kernel), PCCT showed more accurate quantifications by an average of 23.15%, compared 

to EICT. 

 
Table 1. The absolute PercOcclusion mean and standard deviation of error measurements across protocols and settings 

  Energy-integrating CT (wFBP)    Photon-counting CT (PNR)  

60mAs 100mAs  60mAs 100mAs 
    

PercOcclusion (%) 0.49mm 0.98mm  0.49mm 0.98mm 0.49mm 0.98mm  0.49mm 0.98mm 

Soft 30.15±31.39 32.51±32.58 26.12±28.07 30.34±30.73  26.12±28.07 30.34±30.73 18.36±24.33 24.89±27.14 

Sharp 29.05±29.95 33.79±32.91 24.64±26.03 28.38±28.87  24.64±26.03 28.38±28.87 11.71±15.63 19.99±23.47 
 

DISCUSSION 

This study highlights the potential of PCCT, alongside optimized imaging parameters (higher dose levels, smaller 

voxel sizes, and sharper kernels) in the setting of virtual imaging trial with COPD patient models and a novel 

imaging biomarker, PercOcclusion, to enhance the mucus occlusion quantification in small airways, a critical 

aspect of COPD pathology not fully addressed by previous methods. 

CONCLUSIONS 

By leveraging PCCT technology and developing a virtual imaging trial with modeled COPD patient mucus at 

different respiratory states, the study presents a novel approach to overcoming the limitations of direct clinical 

measurements with enhanced diagnostic accuracy of SAD and COPD, facilitating earlier detection and more 

effective management. 
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PyAnsys-heart: a python library for LS-DYNA multi-
physics heart simulation 
Martijn Hoeijmakers, Wenfeng Ye, Karim El Houari, Clémentine Shao, Michel Rochette, Mark Palmer (Ansys) 
 

ABSTRACT 
Physics-based computer simulations of the heart have huge potential in the medical device industry and clinical 
practice, for instance to accelerate and improve device designs, assist clinical decision making, or guide 
treatment planning. The importance of modeling choices with respect to electrophysiology, mechanics and 
fluid dynamics, and their respective coupling strongly depends on the application of interest. LS-DYNA is a finite 
element solver that offers the necessary multi-physics capabilities and features for heart modeling. However, 
setting up these models and obtaining physiological results is still a highly manual process and requires 
expertise in LS-DYNA usage, heart physiology, and scripting. In this paper we propose a python-based high-level 
interface to LS-DYNA, that is free-to-use and dedicated to heart modeling. We introduce the relevant heart 
modeling features that are available and introduce the modular python library to set up and drive these 
simulations. Two example models are presented: a bi-ventricular mechanical model and a full heart electro-
mechanical coupled model. 
 

 

Figure 1: A) Whole heart geometry and diagram describing the coupling with the 0d circulation 
model. B) Pressure volume loops for the four cavities obtained from the coupled 3D-0D model. 

C) Electrical activation time field 
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The Setup of Porous Media Valve Model with Ansys LS- 
DYNA ICFD using Patient Specific Heart Models from 
Synopsys Simpleware 
Chien-Jung (Peggy) Huang, George Hyde-Linaker, Chris Goddard, Rodrigo Paz, Facundo Del Pin, 

Christoph Maurath, Rebecca Bryan,  Thierry Marchal, Mark Palmer 

 

 

 

BACKGROUND AND PURPOSE 

The numerical simulation of cardiovascular flow using patient specific geometries is helpful for understanding 

diseased hearts and the design of medical devices. To obtain valid and credible numerical results, a good quality 

mesh is crucial. This means all elements meet certain criteria including aspect ratio, growth rate, no 

intersections, etc. For patient-specific geometries, it usually requires a large amount of manual effort on 

transformation from medical images to smooth and high-quality mesh. Building an automated workflow can 

save a lot of time on model preparation. As to cardiac flow simulation and analysis, the heart valves play an 

important role. However, it is hard to obtain the detailed leaflet geometry through CT scans. It is labor intensive 

to reconstruct the valves leaflet out of patient-specific geometries, and it needs more computation time to 

perform fluid-structure interaction simulation. A lumped model adding resistance to the flow to simulate the 

close of valves is a more practical approach. This study aims to build and optimize an automated workflow of 

generating mesh of heart geometries and apply porous media models for valves to simulate the cardiac flow in a 

beating heart. 

METHODS 

1. Workflow from Simpleware to LS-DYNA 

The Synopsys Simpleware [1] software offers automated segmentation solutions that can convert medical 

imaging data into high-quality mesh of patient-specific geometries. From CT scans, Simpleware can extract 

regions of interest, perform segmentation, and generate simulation ready mesh with minimum manual effort 

(Figure 1). The workflow has been further improved so that the generated mesh is more suitable for flow 

simulations. Simpleware generates surface mesh of the boundary of blood pool, and automatically assigns 

different part id numbers to different parts of the heart, inlets, and outlets. This makes it easier to set boundary 

conditions on different parts. The outcome mesh consists of low skewness triangular elements, flat inlet and 

outlet surfaces with clean edges (Figure 2). There are no intersections of separate surfaces, and the small 

structures in ventricles are preserved and smooth. All the mesh is exported into one file. It is then imported into 

LS-Prepost [2] to be edited and transformed into LS-DYNA keyword format, then it is ready for flow simulation 

for LS-DYNA ICFD solver [3]. The ICFD solver is able to generate volume mesh from input surface mesh. LS- 

Prepost can record the commands used, so that the same steps can be easily applied on other heart geometries 

from Simpleware. The whole process can be completed in less than 20 minutes. 
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Figure 7 The automated workflow from CT scans to flow simulations. 

 

Figure 8 The surface mesh generated by Simpleware. 

The workflow can also be applied on a series of scans taken at different phases in the cardiac cycle on the same 

patient. It has been successfully used on three sets of 4D heart scans of different patients, each with 10 to 12 

frames. The mesh topologies in all the frames generated by Simpleware are identical, meaning that it is possible 

to calculate the movement of every node. A python script is developed to convert the mesh of different frames 

into keywords of prescribed motion on each node. The flow simulation in the beating heart can be set up in less 

than 30 minutes. 

2. Porous media valve model 

To consider the existence of the valves and their influence on the cardiac flow, a porous media model has been 

developed in the ICFD solver. The porous media model introduces resistance to the flow to simulate the opening 

and closing mechanism of valves through the parameter of permeability. With a low value of permeability, the 

resistance is high representing a closed valve, and vice versa. The permeability can be either a user-defined 

profile or computed from the pressure difference across the porous region. The porous media model defines a 

porous media region within a certain shape. The region is defined with parameters of the shape, and it can be 

set to be moving attached to parts of the geometry. There is no need to make any changes to the established 

mesh. In this study, cylindrical regions of porous media at valve locations are used as shown in Figure 3. 
 

Figure 9 The set-up of the porous media regions for left heart at the location of mitral and aortic valves. 
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RESULTS 

1. Flow simulation inside a beating heart 

The automated workflow has been successfully applied on three sets of 4D heart scans. The meshes of blood 

pools of the four chambers, aorta and pulmonary artery have been generated, and their movements have been 

converted into nodal prescribed motion. Figure 4 shows an example of a blood pool geometry at the beginning 

and end of the systole phase. Flow simulations inside these three beating hearts with LS-DYNA ICFD solver have 

been performed without existence of valves, and the obtained pressure fields are shown in Figure 5. 
 

Figure 10 The geometry at the beginning (left), end (middle) of the contraction phase and the displacement on each node 

(right). 
 

Figure 11 The obtained pressure field of three different heart models at the beginning of the contraction phase (without 

valves). 

2. Porous model with prescribed permeability 

The porous media valve model is added to the left heart in one of the three established heart models. From the 

scans, the systole and diastole phases can be identified. Therefore, the profiles of permeability for mitral and 

aortic valves can be designed as shown in Figure 6. The permeabilities remain constant initially, and the 

permeability profiles increase or decrease during the transition between systole and diastole phase. From the 

obtained velocity fields at systole and diastole phases in Figure 6, it can be observed that the flow from the left 

ventricle is blocked at the mitral valve during systole phase and the flow is blocked at the aortic valve during 

diastole phase. 
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Figure 12 The prescribed permeability function (left) and the velocity magnitude fields (right) on cross-sectional plane at 

systole and diastole phases. 

3. Porous model with permeability as function of pressure difference 

In a more realistic model for valves, it should consider the fact that the valve closes and opens due to its 

interaction with the nearby flow field. An assumption is made that the heart valves open and close due to 

pressure difference across them. For example, for aortic valve, if the ventricle has greater pressure compared to 

aorta, the aortic valve opens. Otherwise, the aortic valve closes. Therefore, in the model, the permeability is set 

to be a tanh function of the pressure difference across valve regions, as stated in Satiago et al. [4]: 
 

𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛 ∆𝑝−∆𝑝𝑟𝑒𝑓 

𝑘 = ( ) ∙ (1 + tanh ( 
2 𝑆 

)) + 𝑘𝑚𝑖𝑛. (1) 

where k stands for permeability and kmax and kmin are its maximum and minimum values, p and pref are the 

pressure difference and a pressure reference value, and parameter S adjusts the slope. The obtained 

permeability profiles of the aortic and mitral valves are plotted in Figure [7]. 
 

Figure 13 The obtained permeability profile (left) according to the pressure difference and the velocity magnitude fields (right) 

on cross-sectional plane at systole and diastole phases. 

DISCUSSION 

The simulation results of flow in three hearts demonstrates that the automated workflow can be applied on 

various patients with minimal manual effort, and the flow simulation in the beating hearts can be successfully 

performed with LS-DYNA ICFD solver. Without considering valves, the flow gets pushed to atrium and aorta or 

pulmonary artery when the ventricle contracts. After adding the porous model on the valve areas in the left 

heart, the flow gets pumped to the aorta during systole, and fills the ventricle from the atrium during the 

diastolic phase. For the case that the permeability is determined by pressure difference, the valves open and 

close as expected. However, at two locations there is sudden drop of the permeability. It is because the 

movement of the heart is linearly interpolated from 10 frames. Between the transition of frames, the sudden 
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change of the boundary motion introduces a peak in pressure field, affecting the value of permeability. If more 

frames are used in one cardiac cycle or fluid-structure interaction can be introduced, the boundary motion can 

be smoother thus this issue can be resolved. Currently, Simpleware can generate an all-on-one model including 

mesh of blood pool, myocardium, and outer tissues. A multi-physics heart model coupling fluid, structural, and 

electrophysiology is under development. 

CONCLUSION 

This study demonstrates a nearly automated and fast workflow from medical scans to flow simulation in beating 

hearts. The porous media model is easy to set up and can effectively simulate the mechanism of the valves. This 

method saves a large amount of time and manual labor as well as provides a route to applications within large 

scale multi subject analysis. 

ACKNOWLEDGEMENTS AND CONFLICT OF INTEREST 

No potential competing interest was reported by the authors. 

REFERENCES 

[1]  3D Image Segmentation Software: Simpleware ScanIP 

https://www.synopsys.com/simpleware/software/scanip.html 

[2]  The advanced pre and post-processor for LS-DYNA: LS-Prepost 

https://lsdyna.ansys.com/knowledge-base/ls-prepost/ 

[3] Ansys LS-DYNA Multiphysics Solver https://www.ansys.com/products/structures/ansys-ls-dyna 

[4]  Santiago, A., Butakoff, C., Eguzkitza, B., Gray, R.A., May-Newman, K., Pathmanathan, P., Vu, V. and Vázquez, 

M., Design and execution of a verification, validation, and uncertainty quantification plan for a numerical 

model of left ventricular flow after LVAD implantation. PLoS computational biology. 2022, 18(6):e1010141. 

https://www.synopsys.com/simpleware/software/scanip.html
https://lsdyna.ansys.com/knowledge-base/ls-prepost/
https://www.ansys.com/products/structures/ansys-ls-dyna


VITM 2024 92 
 

Towards a Validated Digital Twin Using Computational 
Physiology via the Pulse Physiology Engine 
Aaron Bray, Emily Veenhuis, M.S., Jeffrey B. Webb, M.S., and Rachel B. Clipp, PhD. 

BACKGROUND AND PURPOSE 

The Pulse Physiology Engine (Pulse) is an open source computational physiology engine designed to develop and 

integrate multiscale models for an individualized whole-body predictive patient physiology model1. Pulse is 

composed of lumped-parameter models that represent the fluid dynamics and thermodynamics of the systems 

within the body, including the cardiovascular, respiratory, and renal systems. These system models are then 

coupled with models that represent diffusion, pharmacokinetics, pharmacodynamics, and baroreceptor and 

chemoreceptor feedback2,3. This combination produces a dynamic representation of the whole-body physiology 

for the healthy state. The model parameters are then scaled to represent the effects of disease, injury, and 

treatment4–6. These same parameters can be modified to create a digital twin of a specific patient. Previously, a 

“standard” male and a “standard” female patient have been validated7; however, a digital twin requires the 

validation for a range of patients. This study modifies these parameters to validate a range of specified patients 

to demonstrate the ability of Pulse to act as a digital twin. 

METHODS 

The Pulse patient framework was updated to allow for additional patient-specific parameters to be set. This 

includes the ability to specify blood pressures through a combination of any two of the following: pulse, 

diastolic, systolic, or mean arterial pressure. The remaining blood pressure can be calculated from known 

equations. Initial validation for the standard female also demonstrated that the stroke volume and cardiac 

output were not calculated with a gender-specific equation. The cardiovascular system in Pulse was updated to 

specific the cardiac output based on gender, then the stroke volume was calculated based on the cardiac output 

and the patient-specific heart rate. Pulse uses automated spreadsheets for all systems and levels of validation. 

Previously, the literature (validation) values were statically specified for a male young adult patient. We first 

linked the Pulse patient specification file to the spreadsheet at comparison time. This then provides access to 

the gender, weight, age, etc. We then added dependencies to scale the validation parameters based on the 

literature and patient-specific parameters. For example, the cardiac output and blood flow distributions are 

gender-dependent, the lung volumes are weight-dependent, and the heart rate and blood pressures are 

specified in the patient file. 

Table 1 Patient Population Input Parameters for the Pulse Physiology Engine Digital Twin Study 
 

 Male Female 

Age (year) 18, 45, 65 18, 45, 65 

Height (cm) 163, 180.34, 190 151, 162.56, 175.5 

Body Mass Index 16, 23.71, 29 16, 22.31, 29 

Body Fat Fraction 0.02, 0.21, 0.25 0.1, 0.32, 0.2 



VITM 2024 93 
 

A 
 
 
 
 
 

 
patient population was created by varying patient input parameters to represent a diverse population. The 

patient input parameters are shown in Table 1. A total of 13,122 patient combinations are generated using the 

patient parameters in Table 1. Each patient combination was tested for validity by testing for certain edge case 

combinations that can introduce inconsistencies within the model, leading to unrealistic scenarios that defy 

stabilization criteria. These conflicts are most frequently observed with extreme height and BMI combinations 

and heart rate and blood pressure combinations. Invalid patient parameter combinations were thrown out, 

resulting in a total of 4,374 valid patients to be simulated. To simulate a patient, the Pulse tuning algorithms 

scale the model parameters to produce the specified patient. After the parameters were tuned and the 

computation reached a stable state, the simulation was further executed for two minutes. A validation 

comparison was then completed for each simulated patient. Each output parameter from Pulse was compared 

to the patient-specific validation values produced by the dynamic spreadsheet. The percent error is then 

calculated and categorized into good (less than 10% error), fair (between 10% and 30% error), and poor (greater 

than 30% error). 

RESULTS 

Each system in Pulse was analyzed separately to assess performance. The parameter output errors were 

grouped for each system and the percent of parameters than were in the good, fair, and poor categories was 

calculated. This process was completed for the “standard” male and female patients, and then for the 

cumulative male and cumulative female patients. All systems except the renal system were found to have 80% 

of parameters categorized with less than 10% error and over 90% were categorized with less than 30% error. 

Renal demonstrated a 40-60% good error performance and 60-80% were categorized as fair or good. This 

further revealed that Pulse validates at a higher rate for the male patients than the female patients. This is 

particularly true for the cardiovascular, respiratory, and tissue systems. 
 

Heart Rate (beats/minute) 60, 72, 100 60, 72, 100 

Respiration Rate 

(breaths/minute) 

8, 12, 20 8, 12, 20 

Mean Arterial Pressure (mmHg) 70, 87, 100 70, 87, 100 

Pulse Pressure (mmHg) 30, 40.5, 60 30, 40.5, 60 
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Figure 1 The radar plots illustrate the overall validation for the “standard” male and female patients and the cumulative male and female 
populations. All systems except the renal system were found to have 80% of parameters categorized with less than 10% error and over 

90% were categorized with less than 30% error. 

The box plots in Figure 2 show the validation spread across the unique patients as each input parameter is 

varied while holding the remaining values at the standard value. This allows us to study the sensitivity of each 

input parameter on the validation of the output parameters. This reveals that validation of the cardiovascular 

system is most sensitive to the heart rate variation followed by the blood pressure. The respiratory system 

showed a similar sensitivity to the respiration rate. This is unsurprising as the heart rate and respiratory rate are 

the “drivers” of each of these symptoms. The downstream effects of modifying these parameters in the Pulse 

system may not be well controlled. Both the validation spreadsheet and the model tuning algorithm may need 

to be adjusted to stabilize the system with respect to varying these two parameters. The respiratory system 

further showed sensitivity to the Body Mass Index due to the scaling of the various lung volumes based on size. 

This scaling may be causing large changes in validation at the extremes of this value. The renal system showed 

consistent sensitivity to all parameters with poor validation outcomes across all patients, including the 

“standard” male and female patients. 

DISCUSSION 

Overall, our population study of Pulse patients shows positive validation results as we vary patient parameters. 

This indicates that creating digital twins is achievable with Pulse. While many of our systems perform extremely 

well, the renal system fails validation for even the standard patients and further fails with patient-specific 

parameters. The consistent failure across the outputs to inputs demonstrates that the fundamentals of the renal 

system need to be investigated and improved to reflect validated physiologic function. Further sensitivity 

analysis conducted on the tuning algorithm itself may reveal improvements to address validation sensitivity to 

the “driver” components of heart rate and respiration rate. Validating Pulse against a cohort of patients using 

electronic health record data. We are exploring the use of data from PhysioNet to complete this study; however 

data reflecting non Intensive Care Unit patients can be challenging to locate. 
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Figure 2 The box plots illustrate the sensitivity of the validation parameters when varying the input parameters individually. This is shown 
for the cardiovascular and respiratory systems, where the blue line is “standard” male and the red line is the “standard” female results. 

CONCLUSION 

This study shows strong promise for the use of Pulse as a digital twin, which could provide support for virtual 

trials related to specific medical conditions and treatments. However, model improvements and further 

validation could address current deficiencies in Pulse. 
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FAST (Fast Analytical Simulator of Tracer)-PET: an 
accurate and efficient PET analytical simulation tool 
Suya Li1, Mahdjoub Hamdi1, Kaushik Dutta 1, Tyler J. Fraum 1, Richard Laforest1, Kooresh I. 

Shoghi1,2 

1Department of Radiology, Washington University School of Medicine, St Louis MO USA 

2Department of Biomedical Engineering, Washington University in St Louis, St Louis MO USA 

BACKGROUND AND PURPOSE 
Simulation of Positron Emission Tomography (PET) images is essential in the development and validation of 
quantitative imaging workflows and advanced image processing pipelines. Existing Monte Carlo or analytical PET 
simulators often compromise on either efficiency or accuracy. We aim to develop and validate FAST (Fast 
Analytical Simulator of Tracer)-PET, a novel analytical framework to simulate PET images accurately and 
efficiently. 

METHODS 
An overview of the workflow is shown in Figure 1a. FAST-PET simulates PET images by performing precise 
forward projection, scatter, and random estimation that match the Siemens Vision-600 PET/CT scanner 
geometry and statistics. Although the same process should be applicable to other scanner models, we focus on 
the Biograph Vision-600 here. Calibration and validation of FAST-PET were performed through comparison with 
an experimental scan of a National Electrical Manufacturers Association (NEMA) Image Quality (IQ) phantom. 
Further validation was conducted between FAST-PET and Geant4 Application for Tomographic Emission (GATE) 
in clinical image simulations. 

 

RESULTS 
 

Figure 1b depicts representative slices of experimental and simulated (FAST-PET and GATE) 5-seconds and 120-
seconds scans of the NEMA phantom. The distributions of mean activity shown in Figure 1c are similar among all 
three methods for long (120s) and short (5s) acquisition times. Figure 1d depicts representative FAST-PET and 
GATE slices of clinical patient simulations with diagonal and opposite diagonal profiles. Scatter plots and 
concordance correlation coefficient values in Figure 1e confirm the agreement between GATE and FAST-PET in 
terms of both mean activity and variability. FAST-PET significantly outperforms GATE in efficiency, simulating a 
PET image in about 2.5 minutes compared to GATE's 56 hours on a 24-core, 3GHz Intel computer. 

CONCLUSION 

FAST-PET has been developed and validated as an analytical simulation tool, designed to produce PET images 

that mirror those acquired from actual scanners and GATE simulations, while markedly reducing the processing 

time. 
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Multi-organ volume estimations using automated 
segmentation in a large clinical population 
Mobina Ghojogh Nejad, Lavsen Dahal, William Segars, Ehsan Samei, Joseph Lo (Duke University) 

 

 

Background 

There are limited data on internal organ volumes in a large clinical population. Access to organ volume data may 

alter decision making in clinical practice for opportunistic screening of presymptomatic diseases, risk prediction, 

or to optimally select matched donors for organ transplantations. For example, imaging-based volumetry of the 

liver is vital in the preoperative planning for major hepatic resection or liver transplantation as well as in the 

determination of future remnant liver volume. Despite clinical relevancy of organ volume estimations, there are 

limited standardized methods to calculate organ volumes in clinical settings. Historically, morphologic 

assessment of internal organs was limited to two-dimensional linear estimations given the ease of performing 

such measurements from cross-sectional images. 9 The variability in morphology or orientation of the organ may 

cause inconsistent measurements leading to overestimation or underestimation of the volumes.10 Three- 

dimensional volume measurements traditionally relied on tedious work of manual outlining of organ boundaries 

in each imaging sections.11 This limitation precludes development of large-scale dataset-based volume 

estimations in various clinical entities. Here we first introduce an image analysis framework for automated 

segmentation of multiple organs and volume estimations and then report the results for a large clinical 

population. 

 

 

Methods 

In this retrospective study, we used public and private models to train, validate and test segmentation models. 

The private dataset was provided by Duke University Health System, through institutional review board (IRB) 

approved protocols and was employed to create anthropomorphic phantoms. The nn-UNet model underwent 

the quality control for selecting favorable cases which subsequently were used to construct the phantoms. Four 

datasets with a total of 5895 images were included in our study. The public dataset of TotalSegmentator and a 

private dataset from Duke (DukeCT) were used for model development and validation, and other public datasets 

including CT_ORG, ABDOMEN_1K, AMOS, and XCAT were used for the testing and evaluation of the 

segmentation model. The labels for DukeCT dataset were generated automatically using public and commercial 

models. These labels were used as the reference standard to train the segmentation model. 

A proportion of images as well as corresponding medical records for subjects with extremely high or 
low volumes were reviewed to assess validity of the segmentations. 
Results: The dataset comprises CT scan images obtained from 2265 individuals, including 467 females 
and 1985 males, with a mean age at the time of imaging recorded as 67±23 years. 
The demographic distribution of the dataset revealing 24% of the individuals are of African American descent, 

34% are of Hispanic/Latino origin, and 56% belong to the white racial category. Mean of height, weight, and 

body mass index (BMI) were 1.71±0.12 meter, 83±20 kg, and 28±5.9 kg/m2, respectively. We calculated mean 

volume of 1673±470 mL for liver. 2 subjects demonstrated liver volume less than 600 mL and liver volume was 
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more than 3000 mL in 36 individuals. Among the low-volume outlier cases, situs inversus totalis led to 

incomplete segmentation of mispositioned liver in one case, while the other had severe cachexia as a result of 

widespread systemic metastasis without any error in liver segmentation by the model. The review of imaging 

data in 3 subjects with abnormally high liver volumes revealed multiple hepatic masses, metastatic lesions or 

liver infiltration. 

For spleen, we measured mean volume of 258±167mL. 14 cases found to have zero spleen volumes. Reviewing 

image segmentations and medical records confirmed previous complete splenectomy in 10 cases. 17 cases 

demonstrated calculated volumes more than 1000 mL. We reviewed images for 5 cases and confirmed accurate 

segmentations. The clinical diagnosis was chronic lymphocytic leukemia in two patients, non-Hodgkin lymphoma 

in two cases, and post-transplant lymphoproliferative disease in one patient. 

Discussion 

We introduced an AI based multiorgan automated segmentation platform and later applied the model in a large 

population of screening patients. We also investigated clinical correlations of extremely low or high estimated 

volumes to evaluate validity of the segmentation model predictions. Organ volumes data have been reported 

previously in smaller datasets for limited number of organs. Our results indicate mean liver volume of 1673±460 

mL which is consistent with previous reports for liver volume. 

Large imaging dataset and the simultaneous multiorgan segmentation model are the strength of our study. 

However, there are some limitations in this study. Rather than estimating volumes from healthy individuals, our 

focus on whole body CT imaging led to including many patients who underwent CT imaging for prostate disease, 

hence the imbalance in the patient sexes. This may cause internal organ volume alternations as a consequence 

of disease process or therapeutic interventions. This is a common limitation in organ volume studies as CT 

images are usually performed in individuals with specific risk factors for a disease or already have diagnosed 

clinical findings. 

Conclusion 

We used a multi-organ auto-segmentation algorithm to estimate organ volumes in a large clinical dataset. Our 

model could generate accurate segmentations and subsequent volume estimations in the presence of 

pathologic processes. Our results are generally in accordance with previously reported organ volumes. 
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Table 1. Calculated mean of organ volume using automated segmentation model 

 

Organ Volume (mL) 
Stomach 262 ±157 
Gallbladder 26.8 ± 23.3 
lung 3082 ± 860 
Brain 753± 542 
heart 589 ± 146 
Urinary bladder 128 ± 95 
Femur 673± 263 
Humerus 2601 ± 72 
Vertebrae T1 23 ± 5 
Vertebrae L1 55±13 
Vertebrae C1 14.6 ± 5.9 
Pancreas 75± 27 
Seminal vesicles 8.0 ± 8.3 
Adrenal 8.0 ± 3.3 
Liver 1673 ± 470 
Spleen 258 ± 167 
Prostate 23 ± 26 
Left kidney 157± 50 

 
Figure.1 Liver volume distribution by sex 

Figure.2 Spleen volume distribution by sex 
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Stochastic numerical phantoms to enable optoacoustic 
tomography virtual imaging studies 
Umberto Villa (The University of Texas at Austin) , Refik Cam ( University of Illinois at Urbana - 

Champaign ) , Panpan Chen ( University of Illinois at Urbana -Champaign ), Hsuan-Kai Huang ( University 

of Illinois at Urbana-Champaign ) , Fu Li ( University of Illinois at Urbana -Champaign ) , Luke Lozenski ( 

Washington University in St Louis ) , Evan Scope Crafts (The University of Texas at Austin) , Seonyeong 

Park ( University of Illinois at Urbana -Champaign ), Mark Anastasio (University of Illinois at Urbana- 

Champaign) 

Purpose 

Optoacoustic tomography (OAT) is a non-invasive, ionizing radiation-free, low-cost imaging modality that could 

help identify new biomarkers for early cancer detection, as well as monitor response to treatment. By combining 

endogenous hemoglobin optical contrast with ultrasound detection principles, OAT can assess tumor 

angiogenesis and hypoxia, which result from the increased metabolic activity of aggressively growing malignant 

tumors. However, widespread application of OAT in a clinical setting requires further investigation. To address 

this, a computational framework is developed to enable objective assessment of prototype-stage OAT system 

designs and image reconstruction methods by use of clinically relevant numerical phantoms. 

Methods 

The proposed breast and mouse optoacoustic phantoms leverage validated tools (VICTRE and MOBY, 

respectively) for the generation of realistic anatomical structures. Functional, molecular, optical, and acoustic 

properties are then assigned to each anatomical structure within physiological ranges. Numerical lesions are 

modeled to include viable tumor cells, a necrotic core, and/or a peripheral angiogenesis region. A two- 

compartment pharmacokinetic model is used to define the evolution of contrast agent concentration in dynamic 

contrast-enhanced studies. These numerical phantoms are then virtually imaged using a GPU-accelerated high- 

fidelity multiphysics imaging operator coupling photon transport and wave propagation. 

Results 

Several case studies will be presented to illustrate the use of the proposed framework to guide OAT system and 

reconstruction method designs, as well as training and assessing AI-based approaches. 

Conclusion 

The proposed framework will enhance the authenticity of virtual OAT studies. It can be widely employed for the 

investigation and development of advanced image reconstruction and machine learning-based methods, as well 

as the objective evaluation and optimization of the OAT system designs. 
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MC-GPU v2.0: upgraded GPU-accelerated x- 

ray imaging device simulator 
Andreu Badal ( FDA) 

Purpose 
 

Introducing MC-GPU v2.0, an upgraded version of the first GPU-accelerated Monte Carlo software for x-ray 

imaging device simulation. 

Methods 

MC-GPU was originally released in 2009 with the vision of leveraging the nascent capability of massively-parallel, 

general-purpose programmable GPUs to accelerate the CPU-based PENELOPE package for simulating x-ray 

imaging devices. The combination of faster hardware and optimized software enabled the simulation of 

applications that required exceedingly long computation times with previous codes, such as cone beam CT 

scans. Multiple versions of MC-GPU have been developed over the years for specialized applications, such as 

mammography. In the new major release version of the software, we are bringing together features from 

different versions of the code, some new capabilities, upgraded physics models, algorithmic optimizations, and 

multiple bug fixes. A key improvement in the new version is the implementation of a more realistic and flexible 

detector and anti-scatter grid model that can reproduce multiple detector technologies used in clinical practice 

or under development, such as photon-counter detectors. 

Results 

We will describe the code upgrades and present example simulations that highlight the new capabilities of MC- 

GPU v2.0. To show the range of modifications, we will focus on the simulation of dedicated breast-CT devices 

using different detector technologies. An example CT simulation with a direct conversion integrating detector is 

shown in Figure 1. Validation and verification activities performed during the development of the new code, and 

a study of the effect of the upgraded physics models, will be presented. 

Conclusion 

GPU-accelerated Monte Carlo simulations are a valuable tool for in silico evaluation of x-ray imaging devices, 

and have been successfully used for device research and development and regulatory evaluation. The improved 

computational models implemented in MC-GPU v.2.0 extend the class of devices that can be accurately studied 

with this software, enabling new research opportunities. 
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Figure 1: Volume rendering of a MC-GPU simulated breast-CT scan reconstructed with a FDK cone-beam 

CT algorithm (left and center). Voxel dose distribution (with white corresponding to highest dose and 

blue to lowest) tallied by MC-GPU at the central plane of the VICTRE breast phantom for the complete 

CT acquisition (right). 
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Towards Consensus recommendations on reliable 
development and use of Virtual Imaging Trials 
Ehsan Abadi, Bruno Barufaldi, Miguel Lago, Andreu Badal, Claudia Mello -Thoms, Nick Bottenus, 

Kristen A. Wangerin, Mitchell Goldburgh, Lawrence Tarbox, Alejandro F. Frangi, Andrew Maidment,  

Paul E. Kinahan, Hilde Bosmans, Ehsan Samei 

 

 

ABSTRACT 

The concepts and methods underlying Virtual imaging trials (VITs) have been maturing over the last several 

years. These advances include continued developments of diverse models of human anatomy and diseases, as 

well as scanner-specific models of various imaging devices. Given the remarkable progress and benefits of 

VITs across a wide range of imaging modalities and applications, it is essential to establish robust frameworks 

to facilitate their widespread use within the medical imaging research community. To enable this, certain 

conditions must be met. Firstly, models of patients and imaging devices need to be credible, i.e., they need to 

be rigorously verified and validated, ensuring a sufficient level of realism and diversity for the intended 

imaging trial. Another vital requirement is reproducibility, where virtual resources and documents are 

designed in a way that enable researchers to seamlessly reproduce data and findings of previous trials. Further, 

virtual trials should be accessible which necessitates streamlined coding, proper data management schemes, 

standardized input/output formats with proper headers and identifiers, and user-friendly programs. To achieve 

these conditions (credibility, reproducibility, and accessibility), consensus guidelines are needed for 

collaboration, sharing, and interoperability of VIT components, a task that is recently taken on by the AAPM 

Task Group 387. The purpose of this abstract is to provide a summary of this task group developments with a 

focus on the key requirements of credibility, reproducibility, and accessibility. We include diverse imaging 

applications and modalities (e.g., X-ray imaging, nuclear medicine, MRI, Ultrasound), and provide examples 

for advancements and challenges encountered in each domain. Additionally, we discuss unmet needs and 

suggest the potential solutions towards positioning virtual trials as a powerful resource for medical imaging 

research and practice. 



VITM 2024 110 
 

Technical note: computed tomography phantom image 
dataset for virtual clinical trial validation 
Dimitar Petrova, *, Gizem Yeginb, Rodrigo Trevisan Masserab,  Kwinten Torfsb, Hilde Bosmansa,b 

aDept. of radiology LUCMFR, UZ Leuven, Belgium; bMedical physics and quality assessment, KU Leuven, Faculty 

of medicine, Belgium. 

*dimitar.petrov@uzleuven.be 

INTRODUCTION 
 

In the medical imaging context, virtual clinical trials (VCT) are an alternative to the classical clinical trials for 

evaluating and optimizing imaging concepts and technologies[1]. A VCT platform for computed tomography (CT) 

that simulates images that closely match the images generated on real scanners can serve as a crucial tool for CT 

quality evaluation and optimization. In this case, all imaging chain links are replaced by virtual counterparts, 

designed to simulate as close as possible the real patients and imaging system. 

Some of the major challenges in VCT are related to the simulation realism and validation of the simulated 

images. In order to solve these issues, a number of research groups[2], [3], [4] have validated their VCT 

frameworks against phantom images aiming to match the simulated images to the real acquisitions in terms of 

CT numbers, sharpness and noise characteristics. Shankar et al. [5] adds the task-based validation of real versus 

simulated anthropomorphic data. Nevertheless, performing such comparisons requires access to a CT scanner 

and sometimes an extensive amount of time performing the actual scanning. Also the absence of a publicly 

available database with calibration images and the corresponding phantom models might hamper the 

comparison between different VCT frameworks. 

The aim of this work is to provide an extensive database of phantom images acquired at 3 CT scanners at 

different scanning parameters and the corresponding virtual phantom with chemical composition and material 

density. 

METHODS 

Anthropomorphic phantom 
 

mailto:dimitar.petrov@uzleuven.be
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Figure 14 Left: A photograph of the physical phantom and the three parts. Right: A CT slice of the phantom with the phantom parts and 

anthropomorphic landmarks denoted with numbers and letters. 

An abdomen phantom (QRM, Mohrendorf, Germany) with anthropomorphic features was used for the CT 

acquisitions and was later carefully segmented and virtualized. The ellipsoid phantom base (figure 1.A) with axes 

of 200mm and 300mm is intended to mimic the human tissue with respect to density and X-ray attenuation 

characteristics of a human abdomen. It comprises a bone-like spine compartment with spongiosa and corticalis 

mimicking areas with 200HU and 550HU respectively at 120kV (figure 1.1). Liver and spleen compartment (figure 

1.2-1.3) provide the appropriate CT values of 60HU at 120kV. All organ simulating compartments are embedded 

in soft tissue-equivalent material with approximately 30HU at 80-120kV. In order to achieve more clinically 

relevant patient size, the base was situated within an 400mm x 300mm extension ring (figure 1.B) that simulates 

a fatty layer with -80HU at 120kV. Within the main phantom body a cylindrical insert with low-contrast targets 

was situated (figure 1.C and figure 2). The cylindrical insert was produced based on an in-house design dedicated 

for task-based image quality, i.e. the detection of subtle lesions in a largely homogenous liver. The number of 

targets was chosen to create enough ‘signals’ for human or model observer reading. The first half of the 

cylindrical insert contained a total of 45 spheres with diameters of 4, 6 and 8mm with contrast of -20HU 

compared to the soft-tissues mimicking background. Each sphere size was 15 times represented within the 

insert in a uniformly distributed manner. The second half of the cylinder consisted of only background for signal- 

free image extraction. 

All three parts of the phantom were extended to a length of 170mm in order to acquire signal present and signal 

absent images during the same acquisition, with the aim to save time and avoid potential discrepancy between 

the two classes. A practical disadvantage is the total weight of the phantom. 

Acquisition data 

The physical phantom was scanned on a Siemens SOMATOM Edge energy integrating CT (EI-CT) scanner, a 

Siemens SOMATOM Force EICT scanner and a Siemens NAEOTOM Alpha photon-counting CT (PC-CT) scanner 

(Siemens Healthineers, Erlangen, Germany) with a wide range of scanning and reconstruction parameters and 

their combinations, with a total of 324 acquisitions per EI-CT and 648 acquisition for the PC-CT. Table 1 shows all 

parameters for each scanner. 

Table 3 This is the caption of a table, should be left aligned above the table 
 

Parameters SOMATOM Edge SOMATOM Force NAEOTOM Alpha 

Tube voltage [kVp] 80, 120 80, 120 90, 120 

CTDI [mGy] 3.6, 7.2, 10.7 3.6, 7.2, 10.7 3.6, 7.2, 10.7 

Reconstruction algorithm FBP, IR strength 3 FBP, IR strength 3 QIR strength 1 and 3 

Reconstruction kernel Br40f, Br54f, Br62f Br40d, Br54d, Br64d Br40f, Br56f, Br64f 
Field of view [mm2] 250x250, 300x300, 

350x350 
250x250, 300x300, 
350x350 

250x250, 300x300, 
350x350 

Slice thickness [mm] 1.5, 3.0, 5.0 1.5, 3.0, 5.0 1.5, 3.0, 5.0 
Matrix size 512x512 512x512 512x512, 1024x1024 

 

 

Virtual phantom 

In order to compare the outcome from a VCT framework to the acquired real phantom images, the phantom 

needed to be virtualized. This was performed via careful segmentation of the compartments mimicking human 
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shaped organs – liver and spine - further smoothed via mathematical functions. The major structures and 

simpler phantom landmarks were approximated with mathematical functions – phantom body, spleen, 

cylindrical insert, target spheres and extension ring. The resulting mathematical representation of the phantom 

was made such that it oversamples 3 times the real phantom size. This was selected as a compromise between 

phantom accuracy and virtual phantom memory size. 

The phantom elemental composition and density were provided by the manufacturer; the 9 material 

attenuation coefficients were described with certainty up to 5%. 

Database 

The image database and phantom characteristics were stored on a cloud server and are available for non- 

commercial purposes upon request after publication of peer reviewed paper. The image dataset was stored in a 

structured DICOM format, where the hospital sensitive DICOM tags were removed, and all acquisition 

parameters were left in the same format as exported from the scanner. The resulting total volume of 

uncompressed data is 164 GB. The file naming will be given using the following schematic: (CT scanner)- 

_(kVp)_(filtration)_(dose level)_(reconstruction kernel)_(reconstruction algorithm)_(Field of view)_(matrix 

size)_(slice thickness) 

In order to be granted with access to the database, please email: dimitar.petrov@uzleuven.be 

Comparison 

To illustrate how the virtual phantom and the image database can be used to check the validity of a VCT 

framework, an example study was conducted. For this purpose the DukeSim framework was used [2] with the 

standard parameters for EI-CT as configured by the authors. The input parameters were selected to closely 

match the chosen scanning parameters of the SOMATOM Edge EI-CT scanner (table 2). 

Table 2 This is the caption of a table, should be left aligned above the table 
 

Parameters SOMATOM Edge DukeSim 

Tube voltage [kVp] 120 

CTDI [mGy] 7.2 ~21 

Reconstruction algorithm FBP 

Reconstruction kernel Br40f Hann filter; f1=0.4mm-1 

Field of view [mm2] 300x300 
Slice thickness [mm] 3.0 
Matrix size 512x512 

The resulting images were used to conduct a number of tests including CT number accuracy, contrast, 

sharpness, noise and task-based image quality. 

CT number accuracy 
The HU mean measurements were performed using ImageJ [6] with circular ROIs where possible and in the 

center of the cylindrical insert, liver, extension ring, main phantom body, spongiosa and corticalis 

compartments of the spine. 

Sharpness 
The sharpness was measured in terms of modulation transfer function. The methodology is in-house developed, 

but inspired by [7]. Due to constrains of the reconstruction algorithm provided with the DukeSim framework, 

mailto:dimitar.petrov@uzleuven.be
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there was insufficient air region reconstructed, so the estimation of the MTF from the air-phantom border was 

not possible. Thus we adjusted the algorithm to perform the measurement from the border of soft tissue and 

the corticalis compartment of the spine. 

Noise characteristics 
The noise was estimated in two ways 1) using the global noise level (GNL) and 2) via the noise power spectrum 

both evaluated from the soft tissue region with CT numbers between 0HU and 170HU. The algorithm is also in- 

house developed, but based on the work of Christianson et al. [8] and Smith et al. [9]. 

Task based image quality 
The image quality will be evaluated using a recent development of a channelized Hotelling model observer 

(CHO) reading the low-contrast spheres within the cylindrical insert [10]. The two-layer volumetric CHO design 

first locates the targets within cropped VOI and then applies a volumetric anthropomorphic CHO tuned to match 

human results. The results will be represented in a form of Dtr, denoting the smallest barely visible sphere size. 

Showing higher image quality for lower Dtr values. 

RESULTS OF THE EXAMPLE USECASE 

It was possible to create CT images with Dukesim of the virtual phantom and evaluate these images with the 

same tools as the corresponding real CT scans. The results are shown in the successive graphs. 

The HU accuracy test shows a close match between the real and the virtual scan, with a max deviation of 10 HU 

in the soft tissue region (Figure 4 T-L). Evaluation of sharpness confirms the close correspondence in terms of 

spatial resolution between both images too (Figure 4 B-L). A similar result is found for the noise power spectrum 

(Figure 4 B-R). There is a large discrepancy between the GNL measurements with the real images showing higher 

noise level. This is due to the very different dose levels at which the two methods were compared. 
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Figure 4. Top-Left: The CT number accuracy results. The HU measured from the SOMATOM Edge image are plotted against the CT 

numbers of the images simulated using DukeSim; Top-Right: The global noise level results; Bottom-Left: the modulation transfer function 

comparison; Bottom-Right: the normalized noise-power spectrum comparison. 
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Figure 5. The task based image quality comparison. The left curve shows the percentage correct results for 4, 6 and 8 mm spheres for both 

methods with logistic regression curve fitted to the data. The right graph shows the diameter threshold (Dtr) of the smallest visible sphere. 

While MTF and noise power are very similar, the model observer performance results are significantly different 

(figure 5). This is mainly caused by artifacts seen in the simulated image, due to the limited amount of 

projections. Deviations as seen in this study are the main reason for the use of a reference data base as 

proposed in this work. 

CONCLUSION 

With this work we provide a dataset of about 1000 CT scans of an anthropomorphic phantom scanned at 

different scanning parameters and different CT scanners. Along with this dataset we provide a fairly accurate 

virtual model of the phantom with detailed properties in order to be successfully simulated. The worked 

example shown in this work summarizes how the dataset and model can be used in practice. 
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BACKGROUND AND PURPOSE 

Ideally, the assessment of new imaging systems should be conducted through clinical trials. However, these 

studies often face practical limitations, primarily driven by concerns about radiation exposure, as well as 

significant time and financial constraints. Additionally, optimizing these systems is a formidable challenge, given 

the multitude of parameters available in modern imaging technology, the inherent diversity in patient 

populations in terms of anatomy and pathology, and the absence of a definitive ground truth for reference. A 

promising alternative is the use of Virtual Clinical Trials (VCTs), an emerging technique that assesses medical 

systems through computer-simulated scenarios involving patients, imaging equipment, and interpretation 

processes. VCTs have gained substantial popularity in breast imaging research, primarily because of the 

relatively low occurrence of breast cancer within screening populations1. 

In the realm of VCTs for X-ray imaging systems, Monte Carlo (MC) simulations are regarded as the gold standard. 

These simulations meticulously model individual photons and their statistical interactions with matter. While 

highly accurate, MC simulations come with a significant computational burden and time consumption, especially 

when applied to tomosynthesis or computed tomography (CT), which require the generation of tens or 

hundreds of projections for a single acquisition1-4. Ray-tracing algorithms address these limitations. These 

algorithms approximate primary x-ray-tissue interactions using the Beer-Lambert law and therefore offer a 

faster and more efficient means of simulating imaging systems, albeit with a reduced level of realism compared 

to MC simulations1,2,5,6. 

While the capabilities and applications of x-ray simulators are evident, there is room for improvement in terms 

of tailoring them to specific scanners and ensuring compatibility between different simulator platforms1. This 

research will primarily focus on the latter aspect. If VCTs are conducted appropriately, they should yield 

consistent results regardless of the simulation pipeline used. We cross-validated the outcomes obtained from a 

ray-tracing simulator (OpenVCT) and an MC simulator (MC-GPU)5,7. This study aims to address two key 

questions: 1) Can one VCT pipeline accurately predict the results generated by another VCT pipeline? and 2) Do 

ray-tracing algorithms offer sufficient realism to potentially replace MC simulators for specific tasks, in this case, 

lesion detectability in DBT? 

METHODS 

The overall experimental design is based on a previous study8. 
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1. Phantom generation 

i. Simplex-noise phantoms 
The texture of the breast parenchyma was modeled using Simplex noise.9 Simplex noise, an enhancement over 

Perlin noise, offers smoother transitions and reduced directional bias through a sophisticated interpolation 

function and a simplex grid. Ninety-nine plate-shaped phantoms were created using a simplified version of the 

algorithm from Barufaldi et al8. Each phantom measures 308 mm  240 mm  45 mm with a uniform voxel size 

of 200 microns. They were designed to span the full extent of the detector area (304.64 mm  239.36 mm). No 

coarse masks were used to ensure an even distribution of the glandular tissue throughout the phantom volume. 

No refinement using histogram thresholding was performed. The parameters used for Simplex-noise phantom 

generation are summarized in table 1.9 

Table 1. Noise parameters used for Simplex-noise phantom generation. 

Noise parameters Values 

Range of set levels {[min, min], [max, max]} {[0.85, 0.95], [0.97, 0.98]} 

Number of volumes 3 

Range of octaves (min:max in 1 step) [4, 16] 

Persistency 0.73 

Lacunarity 1.5 

The three-dimensional model of the spherical breast mass, measuring 6 mm in each dimension, was created 

with an isotropic resolution. We inserted 154 lesions uniformly across the central layer of each Simplex-noise 

plate phantom, corresponding to the mid-thickness region, by employing the voxel additive technique outlined 

by Barufaldi et al9. This method integrates the lesion into the existing tissue structure by combining their 

attenuation coefficients, yielding more lifelike imagery. Accordingly, the composite attenuation coefficient is 

calculated as the cumulative attenuation coefficients of the lesion and the underlying breast tissue. In this study, 

the weighting factor assigned to the lesion (wl) was set at 2.0%10. 

ii. Conversion of VCTX (OpenVCT) to RAW (MC-GPU) 

As MC-GPU does not readily support partial-volume indices, modifications were made to binarize the phantom 

volume into 100% adipose and 100% glandular tissues. The allocation of each voxel to glandular or adipose 

tissue was determined stochastically, adhering to the predefined partial volume fractions of each index. This 

ensured the proportional distribution of tissue types within the phantom aligned with the specified ratios. The 

density of the inserted lesions was adjusted to achieve an adequate level of detectability. The overall breast 

density was maintained at a constant level. A subset of 33 phantoms was used for MC-GPU analysis, instead of 

the larger set of 99 that was used for OpenVCT. 

2. Image acquisition and reconstruction 

OpenVCT and MC-GPU pipelines were used to simulate x-ray projections of the generated phantoms. The image 

acquisition parameters (Table 1) were simulated to resemble the NGT system with an AXS-2430 detector 

(Analogic Canada Corporation, Montreal, Quebec). A Docker environment was used to execute MC-GPU as a 

part of the VICTRE pipeline11. No other components of the VICTRE pipeline were used; reconstructions and 

reader studies were performed outside of the pipeline to ensure consistent image looks between OpenVCT and 

MC-GPU. The central slice of the reconstruction was generated using commercial software (Briona 9.0.4, Real 

Time Tomography, Villanova, PA) with simple back projection. Table 2 summarizes the acquisition parameters. 



VITM 2024 118 
 

Table 2. Summary of the system parameters. 
X-ray parameters values 

Angular range 7.5 

Source-to-Imager distance (mm) 738 

Breast support-to-Imager distance (mm) 22.5 

Detector element size (mm) 0.085  0.085 

Detector size (pixels) 3584  2816 

Reconstruction size (pixels) 0.085  0.085 

3. Virtual reader studies 

An open-source virtual reader studies software called Medical Virtual Image Chain (MeVIC)12 was used to 

simulate image displays on a high-resolution monitor and lesion detection studies based on a mathematical 

virtual reader model. A Channelized Hotelling Observer (CHO) model with 15 Laguerre-Gauss channels and 

spread 24 was trained and tested. 

4. Data analysis 

To evaluate the spatial dependency in lesion detectability, the reconstructed images were segmented into three 

distinct rectangular zones (anterior, middle, and posterior), each representing different distances from the chest 

wall. Independent sets of regions of interest (ROIs) of 201  201 pixels were randomly selected for each region 

to train and test the CHO model. The data comprised [1000, 650] ROIs with lesions (“diseased”) and [1000, 650] 

without (“healthy”) for each spatial region, for [OpenVCT, MCGPU]. The performance of lesion detection was 

calculated using regional Receiver Operating Characteristic (ROC) analysis, employing open-source R software 

tools like pROC, auctestr, and psycho13-16, which facilitate computation of the Area Under the ROC Curve (AUC) 

and the detectability index (d'). The comparison of the ROC curves was conducted using the DeLong test17. 

RESULTS 

When comparing the computational efficiency of the two pipelines, it was observed that one pipeline completed 

its process within approximately 15 to 20 seconds, whereas the other required significantly more time, ranging 

from 9 minutes and 15 seconds to 9 minutes and 30 seconds. This indicates a substantial difference in 
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computational speed, with the ray-tracing OpenVCT being markedly faster. 

 

 
Figure 1. ROC curves and quantitative metrics from OpenVCT (left) and MC-GPU (right) are shown, with each curve corresponding to a 

different region. 

Both OpenVCT and MC-GPU experiments demonstrated a consistent trend in lesion detectability. Lesion 

detectability was significantly lower in the anterior region compared to the middle and posterior regions. 

Statistical analyses showed significant differences with p-values for anterior versus posterior comparisons being 

<0.001 for OpenVCT and 0.13 for MC-GPU; and for anterior versus middle, p-values were <0.001 for OpenVCT 

and 0.06 for MC-GPU. The discrepancies in AUC or detection index (d') between OpenVCT and MC-GPU are 

attributable to their differing phantom formats. Specifically, OpenVCT accommodates partial volume voxels, 

whereas MC-GPU does not, necessitating adaptations in the experimental setup. 

It is important to note the different numbers of ROIs used in the two experiments: 1000 ROIs for OpenVCT and 

650 ROIs for MC-GPU. The reduced number of ROIs in the MC-GPU experiment was due to longer computation 

times, limiting the analysis to 33 phantoms compared to 99 for OpenVCT. 

DISCUSSION AND CONCLUSION 

Monte Carlo simulations are detailed, computationally complex software that serve as the gold standard in 

simulating x-ray imaging systems because of the high degree of physical realism. Ray-tracing offers a faster, 

more efficient alternative, albeit with some realism trade-offs. The comparative evaluation of OpenVCT and MC- 

GPU in DBT simulations revealed comparable results in terms of AUC and d’, underscoring the potential utility of 

ray-tracing VCT pipelines in practical clinical applications. 
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Addressing the multiplicity challenge of spectral CT 
through physics-regulated estimation of composition in 
spectral energy CT (PRECISE CT) 
Mojtaba Zarei (Duke University), Jayasai Rajagopal ( Duke University ), Nicholas Felice ( Duke University ), Ehsan 

Samei (Duke University) 

Purpose 

An integral component of spectral computed tomography (CT), spectral material decomposition is commonly 

captured in terms of specific material or energy-dependent renditions. This study aims to utilize a virtual 

imaging trial (VIT) platform and a deep neural network to decompose spectral information in terms of material 

primer components, density and atomic number, catheterized as physics-regulated estimation of composition in 

spectral energy CT (PRECISE CT). 

 

Method 

A VIT platform was employed to generate a comprehensive training dataset and the corresponding ground truth 

in terms of physical density (ρ) and effective atomic number (Zeff) from 32 computational phantoms. The 

simulations were done assuming a state-of-the-art photon-counting CT system. This dataset was designed to 

encompass realistic variations encountered in clinical settings and includes four sets of clinically relevant energy 

thresholds, two dose levels, four iodinated contrast agent concentrations, and three reconstruction kernels. To 

enhance the robustness of our model, a novel physical-informed regularization loss was added to a generative 

adversarial network (GAN) loss. The model was then trained and evaluated using a test set including 16 distinct 

computational phantoms. 

 

Results 

Density and effective atomic number maps in the test set exhibited a low normalized mean squared error (less 

than 5% for ρ and less than 1% for Zeff). Additionally, estimated material domains exhibited a peak signal-to-

noise ratio of 40 dB for the ρ and 35 dB for the Zeff images. Multiscale-structural-similarity-index-measures for 

both domains were greater than 0.99. 

 

Conclusion 

The results demonstrate that spectral CT data can decompose into the primary attributes of the material 

generating the CT contrast. This was enabled by a novel training approach based on VIT that circumvents the 

limitations of accessing the training dataset and accurate ground truth, coupled with the integration of physical-

informed regularization within a GAN. This strategy may address the ongoing challenge of robust rendition of 

spectral data for efficient interpretation. 



VITM 2024  124 

 

 



VITM 2024  125 

 

Development of organ-specific suppression technique 
for dynamic chest radiography using virtual patients 
Futa Goshima1, Rie Tanaka1 , Ryuichi Nagatani 1, Ryunosuke Goto 1, Noriyuki Ohkura2,   

Isao Matsumoto3  

1. College of Medical, Pharmaceutical & Health Sciences, K anazawa University, Ishikawa, Japan  

2. Department of Respiratory Medicine, Kanazawa University hospital, Ishikawa, Japan   

3. Department of Thoracic Surgery, Kanazawa University, Ishikawa, Japan  

BACKGROUND AND PURPOSE 

Dynamic chest radiography (DCR) is a flat-panel detector (FPD)-based functional X-ray imaging method. DCR 

allows the evaluation of lung function, based on changes in lung density during respiration. However, the 

evaluation is adversely affected by overlapping organ shadows in the lungs. The purpose of this study was to 

develop a deep-learning-based organ-suppression technique for DCR. 

METHODS 

Four-dimensional (4D) extended cardiac-torso (XCAT) phantoms with normal heart rate (60 beats/min), slow 

breathing (6 breaths/min), and diaphragm displacement (4 cm) were generated. An X-ray simulator was used to 

create the projection images of the XCAT phantoms. The projection was conducted under the same imaging 

conditions as in the actual DCR. In addition to the original images, projected images of the organ structures to be 

suppressed (bone, mediastinum, and diaphragm) were created and used for training pix2pix, to estimate the 

organ images from original images (Figure 1). The organ suppression images created by subtracting the organ 

images from the originals, were evaluated based on the structural similarity index measure (SSIM) and peak 

signal-to-noise ratio (PSNR). The clinical cases were processed using a trained model. 

RESULTS 

The proposed method resulted in high values for both metrics in every organ examined (PSNR/SSIM:48.3 

dB/0.986 for bone, 35.7 dB/0.826 for mediastinum, and 30.1 dB/0.962 for diaphragm). Visual evaluation 

confirmed that organ shadows were reasonably suppressed in the resulting images of both the XCAT phantom 

and real patients (Figure 2, 3 ). The results indicate that the proposed method can effectively reduce organ 

shadows. 

CONCLUSION 

The proposed deep learning-based organ-suppression technique for DCR is expected to improve the evaluation 

of lung function. 
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Figure 1 Projection images of the XCAT phantom with (labelled as original) and without specific organ structures (bone, 

mediastinum, or diaphragm) (labelled as organ). 

 

Figure 2 Examples of organ-specific suppression images in XCAT phantom. 
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Figure 3 Examples of organ-specific suppression in images of clinical cases. 
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Deep physics-informed super-resolution of cardiac 4D-
flow MRI: a synthetic study in patient-specific 
geometries 
Fergus Shone (CISTIB, University of Leeds), Alejandro Frangi (University o f Manchester),  Erica 

Dall 'Armellina ( University of Leeds ), Zeike Taylor (University of Leeds), Peter Jimack (University of 

Leeds)  

Purpose 

4D-flow magnetic resonance imaging (MRI) provides non-intrusive blood flow reconstructions in the left 

ventricle (LV), and has the potential to become a key tool in both research and clinic. However, low spatio-

temporal resolution and the presence of significant noise artifacts hamper the accuracy of derived 

haemodynamic quantities and thus limit the effectiveness of the modality to establish links between 

haemodynamic abnormalities and pathologies. Further, models that are constrained by boundary conditions are 

impacted by additional uncertainty which arises due to low spatial resolution of structural cine-MRI. 

Methods 

We introduce a physics-informed neural network (PINN) model for cardiac 4D-flow MRI super-resolution. Model 

training is constrained by low-resolution 4D-flow MRI data, the no-slip boundary condition on the endocardium 

and the governing physical equations. We utilise a self-adaptive soft-attention scheme (McClenny et al. 2023) 

with a SIREN network architecture (Sitzmann et al. 2020). Synthetic 4D-flow MRI data was produced in a cohort 

of 3 LV cases, downsampling by factors of 5 in both space and time, with artificial noise added to achieve a 

signal-to-noise ratio of 10. To enforce no-slip boundary condition, an approximated endocardium is used, 

replicating the positional uncertainty present in real 4D-flow MRI studies. 

Results 

Our PINN model is able to reconstruct clinically-relevant haemodynamic variables with increased accuracy vs 

raw 4D-flow MRI data. In Fig. 1 we demonstrate qualitative improvement in the reconstruction of vorticity fields, 

linked to MI patients (Demirkiran et al. 2022). In Fig. 2 we see our model predicts kinetic energy, also linked to 

MI (Garg at al. 2018), to a higher degree of accuracy. 

Conclusions 

A PINN-based approach is proposed for super-resolution of cardiac 4D-flow MRI. Model performance is 

demonstrated using a cohort of synthetic cases, where the model is shown to outperform raw 4D-flow MRI data 

across a range of clinically relevant metrics. 
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Figure 2: Contours of vorticity magnitude in late diastole, on a short-axis slice near the base (top row) and long-axis slice (bottom row), 

with raw 4D-flow MRI data (left column), PINN prediction (middle column) and ground truth (right column). 

 

Figure 3: Contour plots of mass-normalised kinetic energy at three short-axis slices in mid-diastole, with raw 4D-flow MRI data (left 

column), PINN prediction (centre column) and ground truth data (right column). Reported values are mean in-plane kinetic energy. 
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Evaluating breast density classification by sparse 
approximation classifiers and deep networks using 
simulated digital mammograms 

Chelsea E. Harrisa, Predrag R. Bakicb, and Sokratis Makrogiannis a  

a. Delaware State University, USA  b. Lund University, Sweden 

BACKGROUND AND PURPOSE 

Breast density is a significant consideration in assessing the risk of breast cancer. Increased density limits the 

sensitivity and specificity of mammographic screening, and is correlated with genetic predisposition to cancer. 

Although deep learning techniques have produced promising results, limited availability of annotated data is a 

challenge especially as network model sizes increase. We hypothesize that simulated mammograms may help to 

enrich training datasets and improve classification performance. 

MATERIALS AND METHODS 

We aim to evaluate the classification performance of deep networks, sparse approximation, and joint deep and 
sparse approximation techniques. In our preliminary experiments, we used regions of interests from CBIS-DDSM 
and INbreast public datasets. We have also simulated digital mammograms of various density levels. Simulated 
images are generated using open platform OpenVCT and computational breast phantoms, selected to match 
clinical density distribution, and the mapping between volumetric percent density and BI-RADS categories. We 
performed classification between the lower two and upper two BI-RADS density categories. We have employed 
five deep network models: Densenet201, InceptionResNetV2, InceptionV3, ResNet101, and Xception. We have 
compared performances of sparse representation classification using label-separated dictionary learning (LS-
SRC) and deep feature dictionaries (DF-SRC), and CNNs with transfer learning or fine-tuning. The training set is a 
mixture of simulated and real mammograms. Our test set contains only real mammograms. 

RESULTS 

Stratified 10-fold cross validation DF-SRC classification results yielded a breast density classification accuracy of 

74.62% and AUC of 0.8139 using only real mammograms for training and testing. While these results are 

encouraging, the training dataset is limited, and simulated images may address the need for a rich training 

dataset. 

CONCLUSION 

Our preliminary results suggest that deep feature dictionaries may leverage sparse approximations for breast 

density prediction. We will compare the performance of DF-SRC, LS-SRC and end-to-end CNN classifiers, with 

and without the use of simulated images. 
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Deep learning-based lung volume estimation with 
dynamic chest radiography using virtual patients 
Nozomi Ishihara 1, Rie Tanaka 1, Futa Goshima1, Haruto Kikuno 1, Noriyuki Ohkura2,   

Isao Matsumoto3  

1. College of Medical, Pharmaceutical & Health Sciences, Kanazawa University, Ishikawa, Japan 

2. Department of Respiratory Medicine, Kanazawa University hospital, Ishikawa, Japan   

3. Department of Thoracic Surgery, Kanazawa University, Ishikawa, Japan  

BACKGROUND AND PURPOSE 

Dynamic chest radiography (DCR) is a recently developed, low-dose functional imaging method. Lung volume 

estimation with DCR has been investigated; however, the lack of reliable ground truth makes R&D and clinical 

application difficult. This study aimed to develop a deep learning-based lung volume estimation method with 

DCR using a four-dimensional extended cardiac-torso (XCAT) phantom with a known lung volume. 

METHODS 

Twenty XCAT phantoms were generated and projected under the same imaging conditions as the actual DCR 

(Figure 1). A convolutional neural network (VGG19) was trained on the projection images and reference lung 

volumes derived from the log files of the XCAT phantom using a 20-fold cross-validation technique (Figure 2). 

The trained VGG19 model was also tested using one frame of DCR images of 257 real patients and computed 

tomography-derived reference lung volumes, and assessed based on the mean absolute error (MAE) and mean 

absolute percentage error (MAPE). Correlation analysis was also performed on the estimated lung volume using 

Pearson’s correlation coefficient (r), and R-squared of the linear regression (R²). 

RESULTS 

The MAE and MAPE for the total lung volume of the virtual and real patients (virtual/real) were 201/691 ml and 

3.9/14.5 %, respectively. The trained VGG19 model showed a linear correlation between the reference and 

estimated lung volumes, with r and R² of the linear regression for virtual/real patients (virtual/real); 0.99/0.81 

and 0.98/0.65 (Figure 3). 

CONCLUSION 

A deep learning-based lung volume estimation method for DCR was developed using virtual patients and was 

effective in clinical cases. Although some issues must be addressed for clinical implementation, the feasibility of 

DCR-based lung estimation was ascertained in this study. 
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Figure 1 Projection images of the extended cardiac-torso (XCAT) phantom 

SID: Source-to-image distance, FPD: Flat-panel detector, fps: flame per second 

Figure 2 Datasets for 20-fold cross-validation  

Figure 3 Relationship between reference and estimated lung volumes of 257 patients by the trained VGG19 model 
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Point-cloud Based Segmentation of the Prostate for 
Adaptive Radiation Therapy Treatment 
Jianxin Zhou1,  M. Salvatori2,  K. Fejza3,  G. M. Hermann3 ,  A. Di Fulvio 1  

1. Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 
Urbana, IL, USA. 
2. IFC-National Research Council, Via Giuseppe Moruzzi, Pisa, Italy. 
3. Department of Radiation Oncology, OSF HealthCare, Peoria, IL, USA. 

BACKGROUND AND PURPOSE 

Adaptive radiation therapy (ART) is a closed-loop treatment method that adjusts the dose-delivery plan to 

account for patients' anatomy changes with daily measurements. This adaptive workflow requires fast 

segmentation methods to contour organs and update the anatomy information. In this work, we propose a fast 

point-cloud model to segment prostate, bladder, and rectum, which enables the APT for prostate cancer 

treatment. 

METHODS 

The segmentation workflow is shown in Figure 1. We first obtain the gross boundary of the organs with Mask-

RCNN and sample the points inside to significantly reduce the data size. Then, we perform segmentation on the 

point-cloud data to achieve fast contouring. We use 38 patients’ CT images from OSF HealthCare to develop the 

model. Moreover, synthetic CT images are generated through the XCAT digital human phantom to increase the 

dataset and aid the training. We perform a 7-fold cross-validation to evaluate the model performance. 

RESULTS 

Table 1 summarizes the segmentation results. The model achieved an average 0.88±0.05 Dice coefficient for 

prostate, which outperforms other state-of-the-art segmentation models. As Figure 2 shows, our model doesn’t 

perform well for several OSF images, image 11, image 20, etc. Therefore, we used the XCAT digital human 

phantom to generate multiple synthetic images with various organ shapes to improve the model performance 

for these images. Then, the model performances of image 11 & 20 are further improved. The segmentation time 

of each point-cloud data is 1-3 seconds, using a NVIDIA RTX 3080 GPU. 

CONCLUSION 

We developed a point-cloud-based segmentation model to aid the treatment of prostate cancer. The 

segmentation accuracy of prostate is 0.88±0.05, which can be further improved by adding synthetic images to 

the training data set. The fast point-cloud-based model can enable the adoption of APT workflow in the 

treatment of prostate cancer to improve treatment efficiency. 
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Figure 1: Workflow of the prostate segmentation model 

with the point-cloud-based neural network. 

Figure 2: Segmentation result of 38 images and the improved 

result for image 11 and 20 after using synthetic images. 

. 
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The role of system simulation for product design of 

deep-silicon photon counting CT 

Erik Fredenberg (GE Healthcare)  

Photon-counting CT (PCCT) is the next major leap in detector technology for CT with the potential to significantly 

improve spectral and spatial resolution. GE HealthCare is developing a prototype wide-coverage PCCT system 

based on edge-on deep-silicon sensors. Computer simulations and virtual clinical trials play an increasingly 

important role for evaluating imaging systems, not least for the development of new technologies, such as deep-

silicon PCCT, where fast turn-around times are crucial. GE HealthCare has therefore, together with academic 

collaborators, developed a model for the deep-silicon photon-counting detector. The model has been integrated 

into the CT & X-ray simulation environment CatSim, and it has been used throughout the development process 

to evaluate system performance and to design the image chain. Our ambition for the near future is to employ 

the model for understanding the potential of new clinical applications enabled by PPCT and to bring it to use in 

virtual clinical trials. 

 

Artificial Intelligence for Healthcare: From Patient 

Twinning to Precision Therapy 
Matt Holbrook (Siemens Healthineers)  

The digital twin is a technology-based approach that links the real and digital worlds, turning data into 

actionable insights. It is made possible by advances in the availability of medical data and power of artificial 

intelligence. Siemens Healthineers is applying these concepts to workflows to maximize efficiency, better 

understand patient health, predict changes, and therapy outcomes. This presentation will outline ways in which 

current system, patient, and organ avatars are combined with disease and predictive models to impact patient 

health. 

 

VCT for breast x-ray imaging in GE HealthCare 

Ann-Katherine Carton (GE Healthcare)  
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Virtual validation of novel 4D noise reduction filter in 

abdominal dynamic CT perfusion 
Authors: Sjoerd A. M. Tunissen a, Ewoud J. Smit a,  Ioannis Sechopoulos a ,  b ,  c  

a Dept.  of Medical Imaging,  Radboudumc, Nijmegen, The Netherlands  
b Dutch Expert  Centre for Screening (LRCB), Nijmegen, The Netherlands  
c Technical Medicine Centre,  Universi ty of Twente,  Enschede,  The Netherlands  

 

BACKGROUND AND PURPOSE 

To evaluate the performance of a novel noise filtering technique for temporal data, called the 4D similarity filter 

(4DSF), using virtual imaging methods. 

METHODS 

Ten XCAT anthropomorphic digital phantoms, each with an added lesion of 10 mm diameter in the liver, were 

used. A previously validated computer simulation of a clinical wide-area CT system was used to simulate two 

protocols; a new dynamic CT perfusion (dCTP) protocol involving 12 phases and a standard clinical protocol 

involving 4 phases. The tube current and voltage levels were selected based on the 4-phase liver protocol used 

in our clinic, ensuring that the total dose of the two protocols is equivalent. Tube current was scaled based on 

patient size, but no axial or angular modulation was used. To validate the performance of the 4DSF, the standard 

deviation (σ) of the noise in the liver tissues was determined. The detectability of the lesion was determined by 

means of the Contrast-to-Noise ratio (CNR). Finally, the accuracy of the time intensity curve (TIC) of the lesion 

was evaluated by means of Mean Absolute Error (MAE) between the TIC before and after 4DSF. 

RESULTS 

On average across the 10 XCAT phantoms, the 4DSF reduced the σ of the noise from 217 HU to 30 HU for the 12-

phase protocol, and from 97 HU to 25 HU for the 4-phase protocol. The CNR of the lesion improved from 0.5 to 

1.8 for the 12-phase protocol, and from 1.0 to 3.1 for the 4-phase protocol. However, the average MAE of the 

TIC in the 12-phase protocol was 20 HU, and in the 4-phase protocol it was 6 HU. 

CONCLUSION 

High radiation dose limits the clinical implementation of dynamic CT perfusion. Therefore, using the 4DSF for 

dCTP at equal dose as 4-phase imaging, could make dCTP, for liver, feasible in clinical practice. However, the 

noise reduction comes at the cost of reduced accuracy in the TICs. Therefore, one should be careful when using 

4DSF for quantitative analysis instead of detection tasks. 
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Exploring how observer task impacts FFDM VCT 
performance 
Dan Li (FDA CDRH DIDSR), Stephen Glick (FDA), Andrey Makeev ( FDA CDRH DIDSR ) 

Purpose 

Virtual clinical trials (VCTs) and physical phantom studies have the potential for greatly decreasing the monetary 

cost and time consumed in the evaluation of new breast imaging technology. In the area of medical imaging, we 

advocate for a task-based assessment approach when evaluating image quality. Most breast imaging clinical 

studies reported in the literature involve the observer both detecting whether a suspicious lesion is present, as 

well as rating how likely it is that the lesion is malignant. In fact, the decision variable commonly used in clinical 

breast imaging studies to form a receiver operating characteristic (ROC) curve is the probability of malignancy 

(POM). Designing VCTs and physical phantom studies that accurately model clinical studies is challenging 

because it is difficult to model malignant and benign lesions. One lesion feature that that is commonly used to 

discriminate malignant and benign lesions is the border of the lesion, with malignant lesions typically portraying 

spiculations. To more accurately model clinical breast imaging studies, we explore the use of a classification task 

instead of a detection task, that evaluates the reader’s performance in discriminating between spiculated and 

lobular (non-spiculated) masses. 

Methods 

It is challenging to design VCTs and physical phantom studies that model actual clinical studies due to the 

difficulty of modeling lesions of different malignancy levels. While there are multiple signals for potential 

malignancy, spicules of the lesion is what a radiologist typically looks for when predicting likelihood of 

malignancy. To fill the gap between clinical breast imaging studies and VCT, we explored the use of a 

classification task instead of a detection task, that evaluates the readers performance in discriminating between 

spiculated and lobular (non-spiculated) masses. To assess this classification task, we use a convolutional neural 

network (CNN) model trained to differentiate spiculated and non-spiculated masses using Monte Carlo 

simulated images. The basis for using CNN observer models is that a previous study showed that the CNN based 

framework can be trained to approximate the ideal observer. In addition to the mass classification task, we also 

examine this CNN model observer in a more traditional detection task. 

Results 

This study evaluates the effect of dose and resolution on task-based performance and shows that different 

conclusions might result depending on whether the VCT study evaluates a mass detection task or a mass 

classification task. 

Conclusion 

Depending on the purpose of VCT study, the designed task should be representative enough to model the actual 

clinical scenario. Evaluation using a mass classification task might provide useful information in assessing breast 

imaging technology. 
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Ideal observer approximation in virtual imaging trials 
Mark Anastasio (University of Illinois at Urbana-Champaign), Kaiyan Li (University of Illinois Urbana-Champaign), 

Weimin Zhou ( Global Institute of Future Technology, Shanghai Jiao Tong University ), Umberto Villa ( University 

of Texas - Austin ), Hua Li ( Washington University in St. Louis ) 

Purpose 

It is widely accepted that the optimization of medical imaging system performance should be guided by task-

based measures of image quality (IQ). Task-based measures of IQ quantify the ability of an observer to perform 

a specific task, such as detection or estimation of a signal (e.g., a tumor). For signal detection tasks, the Bayesian 

Ideal Observer (IO) sets an upper limit of observer performance and has been advocated for use in optimizing 

medical imaging systems and data-acquisition designs. However, except in special cases, the determination of 

the IO test statistic is analytically intractable. Recently, supervised learning-based methods for approximating 

the IO performance for medical imaging systems have been developed. These methods hold great potential for 

virtual imaging trials (ViTs), where large ensembles of simulated but realistic image data can be produced. In this 

work, we present methods for estimating the IO performance for binary signal detection tasks, detection-

localization tasks, and detection-estimation tasks. These methods represent powerful new computational tools 

that will enhance the effectiveness of ViTs. 

Approach 

Convolutional neural networks (CNNs) are employed to approximate the IO for binary signal detection and 

detection-localization tasks. For detection-estimation tasks, a hybrid approach is developed that combines a 

multi-task CNN and a Markov-Chain Monte Carlo (MCMC) method to approximate the IO. The use of CNNs to 

estimate the data space IO performance for computational imaging systems is also investigated. 

Results 

For all considered tasks, case studies are presented to demonstrate and validate the IO estimation methods. 

Validation is accomplished by use of special cases where the IO test statistic is known analytically and/or cases 

where a MCMC method is available as a reference. For the case of X-ray CT, we demonstrate that a deep 

learning-based image reconstruction method can result in the loss of more task-specific information than a 

conventional model-based method. 

Conclusion 

This work demonstrates that the proposed CNN-based IO approximation methods can enable the application of 

IO analyses in general VITs, which may promote advanced evaluations of emerging medical imaging techniques. 
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Virtual Imaging Trial can Unveil the Relationship 
Between Intravascular Diffusivity and Intravoxel 
Incoherent Motion in MRI 

Mojtaba Lashgari, Zheyi Yang, Miguel O. Bernabeu, Jing-Rebecca Li, Alejandro F Frangi 

 

BACKGROUND AND PURPOSE 

Introduction 

Perfusion is vital for maintaining tissue function by supplying oxygen and nutrients while removing carbon 

dioxide and waste products. Consequently, perfusion imaging is essential for diagnosing and monitoring 

microvascular diseases like ischemia, hypercapnia-induced vasoconstriction, and hyperoxygenation-induced 

vasoconstriction. It also aids in distinguishing between high- and low-grade brain gliomas and serves various other 

diagnostic purposes, etc. [1 2].  

Intravoxel incoherent motion (IVIM) MRI emerges as a promising method for assessing tissue perfusion. A 

notable strength of IVIM MRI lies in its use of endogenous contrast and offering localized insights into both 

perfusion and tissue microstructure. These dual capabilities render IVIM MRI an exceptional clinical imaging 

technique [3]. 

IVIM involves the transient movement of water molecule spins within an MRI voxel during the measurement 

period, resulting in a distribution of spins' speeds in orientation and/or amplitude [4]. This distribution originates 

from the blood flowing within a microvascular network and mimics a pseudo-diffusion process. This distribution 

arises from blood flow within the microvascular network and resembles a pseudo-diffusion process. The IVIM 

theory, pioneered by Le Bihan et al. [5], hypothesize that the incoherent blood flow in microvasculature causes 

spin dephasing in blood when diffusion gradients are applied, as described by the formula: 

𝑆

𝑆0
= (1 − 𝑓) × 𝑒−𝑏×𝐷 + 𝑓 × 𝑒−𝑏×𝐷

∗
 

where S is IVIM signal, S0 IVIM signal at b=0, f  is perfusion fraction, D is diffusion coefficient, and D* is pseudo-

diffusion coefficient. 

In a standard IVIM imaging experiment, blood self-diffusion appears to attenuate signals distinctively from 

blood velocity (represented by pseudo-diffusion), yet flow-compensated diffusion gradients challenge this 

hypothesis [2]. The application of virtual imaging methods offers a promising avenue for resolving this conflict, 

offering a unique approach to studying states are not physiologically plausible in vivo. By simulating complex 

microcirculatory dynamics within tissues, these methods enable the identification of contributions from various 

parameters to the signal. Consequently, they facilitate the disentanglement of diffusion and perfusion effects, 

leading to distinguish effect of blood self-diffusion on IVIM MRI signal. 

Thus far, numerical investigations into IVIM imaging have exclusively employed an elementary computational 

approach. This technique simulates spin displacements solely according to constant blood flow velocities along 
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vascular trajectories 𝑅(𝑡′), rather than within vascular lumens. Subsequently, the acquired phase 𝜙𝑡 resulting 

from these spin displacements is calculated as: 

𝜙𝑡 = ∫ 𝛾𝐺(𝑡′)(𝑅(𝑡′), 𝑡′)𝑑𝑡′
𝑡

0

 

and finally, the approximate IVIM imaging signal is computed using: 

𝑆 = 𝑆0 × 𝔼{𝑒(𝑖𝜙𝑡)} 

where 𝔼{} is an expectation of random variable of 𝑖𝜙𝑡 [6].  

To investigate the significance of intravascular diffusivity on the simulated IVIM MRI signal, this study uses a new virtual 

imaging trial to simulate IVIM imaging signals by solving the generalized Bloch-Torrey partial differential equation using a 

new finite element solver. 

METHODS AND DATA 

Data and material 

This study uses a transmission electron image of a retinal vascular plexus network, shown in the center of Figure 1 [7]. The 
simulations were performed on ARC3, the High-Performance Computing facilities at the University of Leeds. ARC3 
consists of 252 nodes with 24 cores (Broadwell E5-2650v4 CPUs, 2.2 GHz) and 128GB of memory each, and an SSD 
within the node with 100GB of storage.  

 
Figure 1. Sub-set of murine retinal vascular plexus (red) surrounded by extra- vascular space (blue).  

Method 

To simulate IVIM MRI signal, we extend SpinDoctor [8], a diffusion MRI simulation toolbox which solves Bloch-Torrey 

partial differential equation: 
𝜕

𝜕𝑡
𝑀𝑙(𝒓, 𝑡) = ∇. (𝐷𝑙(𝒓)∇𝑀𝑙(𝒓, 𝑡)) −

1

𝑇2𝑙
𝑀𝑙(𝒓, 𝑡) − 𝑖𝛾𝑓(𝑡)𝒈. 𝒓𝑀𝑙(𝒓, 𝑡) 

 Extended solver simulates IVIM MRI signals by solving the generalised Bloch-Torrey partial differential equation: 
𝜕

𝜕𝑡
𝑀𝑙(𝒓, 𝑡) = ∇. (𝐷𝑙(𝒓)∇𝑀𝑙(𝒓, 𝑡)) −

1

𝑇2𝑙
𝑀𝑙(𝒓, 𝑡) − 𝑖𝛾𝑓(𝑡)𝒈. 𝒓𝑀𝑙(𝒓, 𝑡) − 𝒗(𝒓, 𝑡)∇.𝑀𝑙(𝒓, 𝑡) 

 which includes a velocity term of 𝒗(𝒓, 𝑡)∇.𝑀𝑙(𝒓, 𝑡). Unlike previous approaches, the extended version incorporates 

diffusion phenomena within the intravascular space by accounting for volumetric microvasculature during simulation, for the 

first-time. 
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RESULTS 

The objective of this experiment is to investigate whether alterations in intravascular diffusivity have an effect on the 

simulated IVIM imaging signal and the estimation of three parameters within the IVIM bi-exponential model. To achieve this, 

we employ three distinct intravascular diffusivity values: 10−7 𝜇𝑚2 𝑚𝑠⁄ , 1.26 𝜇𝑚2 𝑚𝑠⁄  and 3 𝜇𝑚2 𝑚𝑠⁄ —The value of 1.26 

𝜇𝑚2 𝑚𝑠⁄  is the experimental coefficient of blood diffusivity reported in [9]. Figure 2 shows the simulated signals in which the 

variations in colors denote different values of intravascular diffusivity.  

  
a b 

Figure 2. Effect of changing the blood diffusivity on IVIM imaging signal originated from both intravascular and extravascular 

spaces at the velocity of 0.01 m/s b) IVIM imaging signal originated from intravascular spaces at the velocity of 0.01 m/s 

Moreover, in this study, three models are fitted to the simulated IVIM MRI signal with intravascular diffusivities of 10−7 

𝜇𝑚2 𝑚𝑠⁄  and 1.26 𝜇𝑚2 𝑚𝑠⁄ . These models include segmented model [10], Bayesian model [11], and Adaptive model [12]. 

Figures 3.a, 3.b, and 3.c compare changes in the estimated values of D*, D, and f for different values intravascular diffusivities. 

As it can be seen in Figure 3 for different blood flow velocities and for each fitting method, increasing intravascular diffusivity 

increases the estimated D, decreases D*, and increases f. 

  
a b 

 
c 

Figure 3. Effect of changing the blood diffusivity on the estimated parameters of IVIM imaging a) D; b) D*; c) f; for the velocity 

of 0.01 m/s (orange) and 0.01 m/s (blue). 
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DISCUSSION  

It has been suggested by [5] [9] that intravascular diffusion attenuates signals differently than blood velocity, but flow-

compensated diffusion gradients contradict this theory. Since it was impossible to do an experiment in real world in which 

intravascular diffusivity is dismissed, a new virtual MRI simulator is developed to resolve this long-standing conflict. Using 

this new simulator, the theory suggested in [5] is confirmed and we gain a new insights into the effects of blood movement on 

IVIM MRI that may change the way we understood blood movement effects on IVIM MRI. 

CONCLUSION 

Virtual imaging trial demonstrates the substantial impact of intravascular diffusivity on the IVIM MRI signal, which agrees 

with previous research [5] [9]. Therefore, future numerical studies of IVIM MRI should consider the inclusion of intravascular 

diffusivity in their study. 
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BACKGROUND AND PURPOSE 

Virtual imaging trials (VIT) have advanced significantly in medical imaging through the development of human 

anatomy models, simulation of scanner-specific devices, and interpretation of images by virtual observers.1 VITs 

can be conducted with accessible ground truth and complete control over specific parameters, offering a faster, 

efficient, and objective approach to developing new imaging technologies.2–4 However, because of the complexity 

involved in conducting these trials, VIT utilization can be challenging and requires efforts to enhance their 

widespread use. 

The American Association of Physicists in Medicine (AAPM) Task Group No. 387 (TG387) has been created to 

establish and provide consensus guidelines for the reliable use of VITs, and to ensure their wide adoption in the 

medical imaging research community. In this task group, we define and discuss advanced VIT methods to establish 

robust frameworks and integrated VIT platforms to promote their broad adoption in medical imaging research. 

In this work, members of the AAPM TG387 aimed to develop an accelerated and containerized environment to 

enhance collaborative research and encourage broader use of VITs. 

METHODS 

1. Virtual Imaging Platforms 
One initiative of the AAPM TG387 involves developing strategies to ensure reproducibility and communication 

across multiple VIT platforms. Every VIT platform encompasses specific documentation that must cover the setup 

of the virtual environment, description of input and output data, procedures for data manipulation, among others. 

Establishing a “universal language” for facilitating communication across platforms poses a significant challenge. 

Two VIT pipelines renowned for breast imaging simulations were used in this work: VICTRE2,5 and OpenVCT.6 These 

pipelines facilitate the creation of in-silico breast radiographic images for evaluating digital mammography (DM) 

and digital breast tomosynthesis (DBT) technologies. They encompass software tools to generate 

anthropomorphic breast phantoms and lesions, simulate phantoms under mammographic compression, simulate 

x-ray projections data, and collect data through reader models for evaluating lesion detection and search tasks. 

Despite significant similarities, the algorithms and methods underlying the simulations differ markedly. 

Considering these differences, we have described a method to integrate and manipulate data across these 

platforms. 
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2. Creation of a Containerized Environment and Package Installation 
Docker (version 4.27, Docker, Inc., San Francisco, CA) was used for OS-level virtualization and for delivering the 

VIT platforms in packages called “containers.” Using Windows Subsystem for Linux (WSL) 2 backend OS, Docker 

automates the deployment of applications in lightweight containers so that applications can work efficiently in 

different environments in isolation. The NVIDIA containerized environment (HPC SDK 24.3, NVIDIA, 

Ubuntu22.04+CUDA 12.3) was selected for the containerized environment for both tested VIT platforms. 

Importantly, Docker containers can be used in any OS, such as Linux, Windows, and Mac. 

The required installation packages of each VIT platform were installed in each OS virtualized images using two 

commands: “docker build -t tag_name .” and “docker run -it --ipc=host -v host_path:/container_path/ --gpus all 

tag_name sh config_File.sh”. In this process, all required libraries, packages, and dependencies are installed; users 

do not need to be preoccupied in the installation of package versions, virtual environment and variables, and any 

other potential specific requirement. The docker files describe and create the working environment for the users. 

After setting up the OS virtual environment, users can explore the containerized image using the standard Docker 

commands such as run, exec, cp, etc. 

3. Data Management and Communication via Wrappers 
Wrappers were created to simplify the setup and execution of VIT pipeline software in the container-based 

environments. The wrappers streamline the data formatting and pipeline execution, ensuring compatibility and 

interoperability between diverse software components. Using wrappers, the specific VIT methods can be executed 

through a command-line interface.  

In this work, the language selected for creating the wrappers was Python (version 3, PSF). The wrappers must be 

simple and intuitive to facilitate the execution. Examples of wrappers were provided and published at the VICTRE 

GitHub page.2 The commands below show an example of process of creation of an anthropomorphic phantom 

using the VICTRE pipeline: 

from Victre import Pipeline  

 

#Initialization 

pipeline = Pipeline() #add optional arguments and constants 

 

#Run 

pipeline.generate_phantom() #add optional methods below for compression, lesion insertion, etc. 

By calling this Python script using the command “docker run”, both input and output data will be saved directly 

on your local host machine. Importantly, data and files can be transferred between containers using various 

methods. The most straightforward approach involves creating an environment to simulate and store all data in 

the local host machine (--ipc=host); however, users can also extract data from containers using the command line 

instruction “docker cp source_file destination_file”. This command allows for file transfers either to the host 

machine or within the virtualized containers (specified as “container_name:/file”). Alternatively, file transfer and 

data share can be conducted over a network by establishing a Docker network (designating an IP address and 

port) and setting up servers for synchronized file transfer. For this option, users must allow containers with root 

access which can be a constraint that must be considered in the network. The command to initiate a network is 

“docker network create network”.  

The use of containers and wrappers enables communication between independent VIT frameworks (Fig. 1). 

Wrappers and containers were tested using a hybrid environment with two VIT pipelines for simulating breast 

imaging. 
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Figure 1 Flowchart illustrating the development process of an integrated cross-platform VIT framework within a containerized virtual 

environment. (I) Utilizing wrappers to encapsulate essential packages for VIT pipeline software installation and Docker image creation. (II) 

Instantiating Docker containers for the execution of specific VIT methods. (III) Employing wrappers to facilitate the streamlined execution 

of VIT methods, data management within containers, and communication between containers. 

We used wrappers to streamline the data exchange process between the VICTRE and OpenVCT containers, 

ensuring continuous input and output operations across platforms. These wrappers are designed to convert data 

into the required format for each respective pipeline, enabling users to effortlessly access, modify, and leverage 

the full range of resources offered by both platforms. As an example, we used anthropomorphic breast phantoms 

generated with a VICTRE container and transformed the output phantoms via interface wrappers. Finally, using 

the OpenVCT container, the phantoms were modified using Simplex methods7 and x-ray projections were 

simulated using a ray tracing algorithm.8 Importantly, the inverse path for breast phantom and image simulations 

is also possible via these interface wrappers, characterizing a hybrid and containerized cross-platform 

environment. 

RESULTS 

This approach significantly accelerated the creation of the software environment by simplifying package 

installation and code compilation. The packages required to set up specific virtual environments were embedded 

in Docker images ensuring that a functioning software environment was readily available for users.  

The containerized environments support the simulation of anthropomorphic breast phantoms and x-ray images 

using different methods, such as Monte Carlo (Fig. 2, left) and ray tracing (Fig. 2, right). The environments 

facilitated data sharing among containers, ensuring data reproducibility of phantoms and images. The images 

simulated using VICTRE and OpenVCT methods were evaluated and found to be visually comparable. Furthermore, 

we adapted the original tissue structures simulated with the VICTRE pipeline by integrating parenchymal 

complexity simulated using the OpenVCT pipeline. 

 

 

 

 

(A) (B) 
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(C) (D) 
Figure 2 Examples of VICTRE phantoms simulated using containerized (left) VICTRE pipeline and (right) hybrid approach 

with containerized (right) OpenVCT pipeline. Central slices of DBT reconstructions slices are shown: (A) dense phantom, (B) 

dense phantom with Simplex-based parenchyma, (C) Fatty phantom, and (D) Fatty phantom with Simplex-based parenchyma. 

DISCUSSION  

The adoption of containerized environments for VIT simulations enhances data exchange and interoperability 

across different platforms, helping users and researchers to select and work on multiple components of different 

VCT pipelines, without the requirement to adhere to a uniform standard for data manipulation. However, 

converting data formats, integrating, and synchronizing the communication between VIT platforms are 

significantly challenging. Interface wrappers depend on a thorough understanding the workflow of multiple VIT 

platforms for seamless operation. To avoid the need for data translation between platforms, it is essential to 

develop standardized strategies. Such strategies have been explored and discussed in the AAPM TG387. 

For future work, we will explore the use Dockers in a cloud computing environment (e.g., AWS, Google Collab, 

Azure, etc.) and also the use of Kubernetes9 for automating deployment, scaling, and operations of VIT containers. 

Kubernetes can orchestrate Docker containers, managing their lifecycle across a cluster of machines. They 

automate the deployment, scaling, and management of containerized applications, ensuring they run efficiently 

and are available to meet user demand. If traffic to a container is high, Kubernetes will balance and distributing 

the network traffic. 

B. CONCLUSION 
To make VITs widely accessible, the development of strategies to streamline coding, manage data effectively, 

standardize I/O formats, and develop user-friendly interfaces are crucial. Container applications, such as Docker, 

provide a solution that addresses these requirements, supporting cross-platform integration and facilitating the 

widespread use of VITs. 
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Towards personalized imaging: a pilot virtual imaging 
evaluation of interpatient variability in chest CT 
Rajagopal, Aboulbanine, Abadi, Segars, Kapadia 

Purpose 

A personalized approach to imaging requires adding patient specific flexibility to existing generalized protocols. 

Such developments will be driven by an understanding of the interaction between interpatient variability and 

clinical task-specific imaging features. In this study, a pilot virtual imaging trial (VIT) was run with a small cohort 

of virtual patients and a generalized protocol to assess interpatient variability in chest CT. 

Methods 

A validated CT simulation platform (DukeSim) was used to simulate a generic single-source CT scanner (64x1.0 

mm collimation). Ten adult computational chest phantoms (XCAT, BMI range: 16.8-41.19), six containing visible 

lesions, were imaged with a generalized chest/lung protocol. Images were acquired at 120 kV, 1.0 pitch, and 0.5 

s rotation time. Moderate tube current modulation was applied with a quality reference mAs of 100 mAs. 

Images were reconstructed using an open-source reconstruction package (MCR Toolkit) using iterative 

reconstruction, 40 cm field-of-view, and 1.0 mm slice thickness. Ground truth masks were used to segment 

target organs in reconstructed images for analysis. CT number histograms across patient cases were evaluated 

for the heart and lungs using the first three statistical moments. A region-of-interest was extracted around each 

lesion and evaluated for local lesion contrast-to-noise ratio. 

Results 

When averaged across all patient cases, histogram analysis of the lungs found a mean value of -700 HU, 

standard deviation of 32.7 HU, and a skew of 2.75. For the heart, the histogram analysis found a mean value of 

33.2 HU, a standard deviation of 5.6 HU, and a skew of -1.76. Measured signal for lungs showed a wider range 

(49.9 HU) when compared to the heart (26.4 HU). Lesion local contrast-to-noise ratio ranged from 1.43-2.2 and 

showed a slight dependence on patient size. 

Conclusion 

We successfully performed a small scale VIT to highlight the interpatient variability across a population of virtual 

patients for a chest/lung protocol. 
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BACKGROUND AND PURPOSE 

Dynamic digital radiography (DDR) is reportedly useful for measuring scapulohumeral rhythm (SHR), an 

important parameter in assessing shoulder kinematics. This study aimed to develop optimal imaging conditions 

for SHR assessment using DDR through a virtual imaging trial (VIT). 

METHODS 
Three male virtual patients (4D extended cardiac-torso: XCAT phantom) were remodeled with the right arm 

abducted using the Rhinoceros modeling tool and projected using an X-ray simulator at four total entrance 

surface dose (ESD) levels (1/10, 1/5, 1/2, and 1 of the reference ESD) and three imaging rates (3, 6, and 15 

frames per second (fps)) (Figure 1). Glenohumeral angle and scapulothoracic angle were manually measured by 

six radiological technologists, and the measured SHR was compared to the reference SHR based on standard 

error (SE), measurement time, and inter-frame variability; the Wilcoxon signed-rank test was performed for 

mean absolute error (MAE). The image quality at each imaging rate and dose was evaluated visually. 

RESULTS 

SEs analysis indicated no trend among the three imaging rates. However, the measurement times for images 

with 6 and 15 fps took approximately 1.4 and 2.7 times longer than with a 3 fps image; the inter-frame 

variability of the measured angles was also greater. In addition, there was no significant difference in MAE 

between images at 1/2 and 1 ESD, whereas the MAE of images at 1/10 and 1/5 of ESD were significantly worse 

than those of images at 1 ESD (Figure 2). These results indicate that reasonable imaging conditions for SHR 

measurements with DDR are a total ESD of 1/2 of the reference ESD at an imaging rate of 3 fps. 

CONCLUSION 
VIT allowed the development of optimal imaging rates and doses for SHR assessment with DDR, which would be 

useful in personalized imaging of shoulder DDR. 
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Figure 1 Illustrations of (a) virtual image acquisition and (b) angle measurements in shoulder dynamic digital radiography. The red, green, 
and blue lines and yellow points represent the center line of the humerus, a line connecting the intersections of the humerus and scapula, 

the body axis, and tracking points, respectively. SID: source-to-image distance; G-angle: glenohumeral angle; S-angle: scapulothoracic 
angle 

 

Figure 2 Summary of the relationship between a total entrance surface dose (ESD) and imaging rate The ESD of conventional shoulder 

radiographs measured at Kanazawa University Hospital was used as the reference dose. The symbols (*, N.S., -) indicate a significant 

difference, no significant difference, or standard. As you can see, images obtained at one-tenth and two-tenths of reference ESD are not of 

sufficient image quality for informed consent. 

fps: frames per second 
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posterior communicating artery aneurysms 
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ABSTRACT 
Flow diversion is an established treatment method for intracranial aneurysms. The Pipeline Embolization Device 

(PED) is the most widely used flow diverter but is not FDA-approved for use in posterior communicating artery 

(PComA) aneurysms, which make up 25% of all aneurysms. PED use has extended to various off-label indications 

regardless, including PComA aneurysms. Retrospective analysis has shown that the PED is less effective in 

patients with fetal posterior circulation (FPC) but the reason for this is unclear. Clinical trials to date have not 

focused on PComA aneurysm flow diversion and it would be costly and unethical to perform a clinical trial in 

patients with FPC where the treatment may not be effective. In-silico trials based on computer modelling and 

simulation can overcome these concerns and provide a comprehensive understanding of the mechanisms 

underlying treatment failure. 

We present an in-silico trial into PED flow diversion of PComA aneurysms, aiming to understand the relationship 

between PComA patency and aneurysm occlusion in patients with and without FPC. Our cohort is comprised of 

64 patients processed from the AneuX and AneurIST databases. We apply flow-split outlet boundary conditions 

to model non-fetal and fetal configurations. We simulate transient haemodynamics pre- and post-treatment for 

each patient. The surrogate occlusion end-point for successful treatment is a reduction in aneurysm space-and-

time-averaged velocity greater than 35%. 

Preliminary results in a cohort of 17 patients with zero-pressure outlet boundary conditions demonstrate a 

significant relationship between aneurysm flow reduction and PComA outlet flow and between aneurysm flow 

reduction and PComA size. Aneurysm size, aspect ratio and inflow physiology (rest, hypertension and exercise) 

were not found to significantly affect aneurysm flow reduction. These results suggest that PED treatment of 

PComA aneurysms is complex. The full trial will help to understand this further. 
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BACKGROUND AND PURPOSE 
Dynamic chest radiography (DCR) is a flat-panel detector (FPD)-based functional X-ray imaging method used 

during respiration and cardiac pumping. As image-based functional analysis is affected by the target frame, 

determining the respiratory and cardiac phases in each frame is crucial. This study aimed to develop a deep-

learning-based cardiac phase estimation method and to determine the estimation accuracy compared to the 

conventional motion analysis methods using virtual patients (4D extended cardiac-torso: XCAT phantom). 

METHODS 
Thirty-one virtual patients (heart rate, 60 beats/min; breath holding; body mass index, 18.5~34.5 kg/m2) were 

generated by the XCAT phantom program and then projected by an X-ray simulator. A total of 1,395 DCR images 

were created, and the inter-frame subtraction images were used to train and test (21:4) a convolutional neural 

network (CNN) to estimate the cardiac phase on DCR images. The performance of CNN was compared with 

those of kernel correlation filter (KCF) tracking algorithm, template matching, and optical flow. The classification 

performance of each method was evaluated in terms of sensitivity, specificity, and accuracy, based on the 

cardiac phases derived from the log files of the XCAT phantom. 

  

Figure 1 Schematic illustration of the training session. 

 

Figure 2 Tracking area by (a) KCF tracker and template matching and (b) optical flow. The orange square represents the region of interest 
(ROI) for motion tracking by KCF tracker and template matching, and the green line represents the locus of optical flow. 
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RESULTS 
The sensitivities of the CNN, KCF tracking algorithm, template matching, and optical flow were 86.9%, 69.7%, 

71.4%, and 77.3%, respectively. The specificities were 93.4%, 92.5%, 84.9%, and 89.6%, and the accuracies were 

90.0%, 80.4%, 77.8%, and 83.1%, respectively. The CNN showed the best performance and worked reasonably 

well in distinguishing between diastolic and systolic phases on DCR images. 

Table 1 Estimation performance of the cardiac phase in each method. 

 Sensitivities [％] Specificities [％] Accuracies [％] 

CNN 95.6 99.2 97.1 
KCF tracking algorithm 67.4 96.9 79.5 

Template matching 76.8 99.2 86.0 

Optical flow 82.3 97.6 88.6 
CNN: convolutional neural network; KCF: kernel correlation filter 

CONCLUSION 
Deep-learning-based cardiac phase estimation techniques have been successfully developed using virtual 

patients with known cardiac phases. The developed model is expected to realize stable functional analysis of 

DCR images, resulting in a better understanding of pulmonary and cardiac conditions using DCR. 
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configuration for quantitative imaging 
Antonio Sarno1,2,*, Paolo Cardarelli3, Paolo Mauriello 1,2, Antonio Minopoli1, Carlos Mollo2, Silvio 
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BACKGROUND AND PURPOSE 

We performed in-silico investigations of an innovative scanning geometry in CBCT. Such a geometry (ExoCT) 

relies on beam collimation and an oscillating scanning trajectory for reducing detected scatter and cone beam 

artifacts with the aim of improving accuracy and precision in quantitative analysis. Such an oscillating geometry 

is obtained by substituting each of the projection of CBCT conventional protocol with several collimated 

projections over an oscillation period of the source. 

METHODS 

We simulated the scanner geometry via a GPU Monte Carlo software base on the GGEMS platform 

(https://ggems.fr). The used software yielded computation times one order of magnitude shorter than codes on 

CPU architecture. We developed a digital phantom, which replicated the Defrise phantom for the evaluation of 

the image conspicuity over the FOV. It embodied 4 material inserts at different locations for evaluating accuracy, 

precision and reproducibility of attenuation coefficients estimates. 

RESULTS 

Narrowing the beam aperture consistently reduces the scatter-to-primary ratio (SPR) (fig. 1). Replacing a CBCT 

projection with 10 collimated projections in ExoCT reduces the SPR of 86%. This implies the improvement of the 

accuracy in the estimations of attenuation coefficients of the materials included in the FOV (tab. I). As example, 

an ExoCT scan with 4 projections per oscillation, determined an increase in the accuracy of the attenuation 

coefficients estimates of test inserts between 2.6% for PC and 13.1% for PVC (Tab. I). Additionally, the oscillation 

trajectory of the ExoCT determines an enhanced reproducibility of the quantitative evaluations over the FOV, as 

opposed to what observed in CBCT (Tab. II). 

CONCLUSION 

We investigate the ExoCT scanning geometry via a GPU Monte Carlo software and a customized digital phantom. 

The ExoCT configuration was shown to increase the accuracy and reproducibility of quantitative evaluations, 

when compared to conventional CBCT. 
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The regulatory landscape of virtual tools in diagnostic 
imaging 
 

Francesco Ria1, Kelly Lindblom2, Kyle Myers3, Ehsan Samei1 
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3 Puente Solutions LLC 
 

1. Purpose 

To assess a medical product’s safety and effectiveness, clinical trials often require testing in real patients, which 

inevitably involve factors of cost, time-length, and patient risk. Such elements can be notably easier to manage by 

implementing computational models to virtually replicate realistic scenarios to simulate clinical trials. To increase 

the likelihood that regulatory bodies accept evidence from virtual clinical trials, designers of virtual tools should 

make use of standards and guidance provided by regulators. The purpose of this work is to delve into the virtual 

diagnostic imaging tools (VDITs) regulatory landscape to inform their design and implementation. 

 

2. Methods 

This study investigated guidance documents from the Food and Drug Administration Center for Devices and 

Radiological Health (FDA-CDRH), and standards from the American Society of Mechanical Engineers (ASME). In 

particular, the FDA-CDRH Qualification of Medical Device Development Tools guidance (1), the FDA-CDRH 

Assessing the Credibility of Computation Modeling and Simulation in Medical Device Submissions guidance (2), 

and the ASME-V&V40 standard to assess the credibility of computation modeling applied to medical devices (3) 

are reviewed. 

 

3. Results 

Based on current FDA guidance, VDITs can be characterized as medical device development tools (MDDTs) in the 

Non-clinical Assessment Model (NAM) category. NAM-MDDTs are non-clinical test models that measure or predict 

specific parameters and can be instrumental in the assessment of a device safety, effectiveness, or performance. 

The MDDT qualification process requires a 2-phase application for proposal and qualification (Figure 1). A qualified 

MDDT can be used to evaluate a medical device in a certain context of use without the need to reconfirm the tool 

suitability or utility. Computational models have been qualified through this program for use in the evaluation of 

the compatibility of medical implants for patients in a magnetic resonance imaging environment, eliminating the 

need for actual testing of patients with implants. Additionally, FDA is proposing a 9-step framework (ASME-

V&V40) to assess the credibility of a computational model in a medical device regulatory submission.  
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(a)  

 

(b)  

 

Figure 1. Decision framework for the qualification of Medical Device Development Tools (a); and overview of the 

generalized framework for assessing the credibility of computation modeling and simulation in medical device 

submissions (b).  

 

4. Conclusion 

Government agencies and standards development organizations are joining efforts to put forward guidance and 

standards that help ensure the safety and effectiveness of virtual tools in medical imaging and other medical 

devices. The systematic study of such resources can guide investigators in designing and implementing 

computational models that can support regulatory decision-making in the development of medical products. 
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compression model for realistic digital breast 
phantoms in mammography and digital breast 
tomosynthesis simulations 
Gustavo Pacheco a, Koen Michielsen a, Eloy García b , Oliver Díazb,c , d, Ioannis Sechopoulos a , e , f  

aDept. of Medical Imaging, Radboudumc, The Netherlands; bInstitute of Computer Vision and Robotics (ViCOROB), University of Girona, 

Spain; cFacultat de Mahemàtiques i Informàtica, Universitat de Barcelona, Spain; dComputer Vision Center, Spain; eDutch Reference Centre 

for Screening (LRCB), The Netherlands; fTechnical Medicine Centre, University of Twente, The Netherlands 

BACKGROUND AND PURPOSE 

To improve, optimize and validate a mechanical compression model to create realistic digital breast phantoms 

for mammography and digital breast tomosynthesis simulations. 

METHODS 

Simulated finite-element breast compressions were performed to obtain phantoms from segmented patient 

breast CT scans (N=88). The compression model includes elastic properties of the breast tissues, boundary 

conditions, and newly added external forces simulating the compression paddle and radiographer handling 

during the examination. To validate and optimize the model parameters, a principal component analysis (PCA) 

model derived from 3D surface scans was used. The surface scans (N=236) were acquired during clinical breast 

compression in the cranio-caudal (CC) view. The comparison involved projecting the phantom data onto the 

patient PCA base and assessing the agreement between the distributions for each of the 15 principal 

components (PCs). The compression optimization aimed to maximize the agreement between these two 

distributions. 

RESULTS 

The external forces, particularly those simulating the radiographer’s handling, had a greater impact on phantom 

shape than elastic parameter changes. 10 out of 15 PCs showed significant disagreement before introducing 

external forces and optimizing all parameters. With the final parameter set, only 4 out of 15 PCs disagreed. Two 

are related to the overall breast volume, where the disagreement can be attributed to differences in scan 

coverage between the breast CT and optical surface scans. The other two describe subtler surface features, and 

although they still exhibited disagreement, their mean values were closer to the patient distributions. 

CONCLUSION 

Using patient 3D surface scans, a compression model was optimized and validated for generating digital 

compressed breast phantoms in the CC view. Optimizing model parameters and introducing external forces 

simulating breast handling improved agreement between phantom shapes and patient scans. 
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Figure 1: Box-whisker plots for the 15 PC distributions. In each subplot, from left to right: patient scan distribution, reference 

compression model results, and optimized compression considering external forces. P-values < 0.05 denote statistically 

significant differences from the patient distribution. Subplot titles indicate the component and the percentage of explained 

variance (in parentheses). 
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Simulating ultrasound optical tomography – 
Distinguishing breast tumors from the surrounding 
healthy tissue  
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BACKGROUND AND PURPOSE 

Ultrasound Optical Tomography (UOT) is an innovative imaging technique that merges the capabilities of 

ultrasound and near-infrared optical imaging to provide a comprehensive and non-invasive approach to 

characterize biological tissue [1, 2]. By analyzing only the light that has been frequency shifted by the 

ultrasound, it provides the optical contrast of light with the spatial resolution of the ultrasound, see Fig. 1.  

To analyze the technique’s viability for the characterization of breast tumors, Monte Carlo simulations on a 

realistic breast tissue phantom are performed. The phantom consists of skin, adipose, and fibroglandular tissue 

compartments with a 1 cm3 tumor region placed in one out of six different positions. The aim of this study is to 

Figure 1: In UOT, laser light with a carrier frequency 𝑓𝐶  (blue arrows) is scattered throughout the tissue simultaneously as an 

ultrasound (US) pulse with frequency 𝑓𝑈𝑆  propagates through it. At any instant, light can interact with the US and via the 

acousto-optical effect be frequency shifted to 𝑓𝑆 = 𝑓𝐶 ± 𝑓𝑈𝑆 (red arrows). A portion of the light exiting the tissue is collected with 

a light guide that directs the light to a cryostat containing a rare-earth-ion-doped crystal. The crystal acts as a high étendue 

narrowband spectral filter capable of attenuating the carrier light (blue) while transmitting the frequency-shifted light (red). 

Since the frequency-shifted light, i.e., the UOT signal, has passed through the ultrasound pulse, detecting only this light provides 

spatially resolved information of the optical properties of the tissue. For example, if the ultrasound focus is located on a tumor 

with high optical absorption, the UOT signal is weaker since any frequency-shifted light comes from the tumor region where light 

is absorbed more.  
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investigate if the UOT signal from a tumor region can be distinguished from the surrounding tissue, despite the 

natural variations that occur in the UOT signal due to the varying tissue types.  

*ak@deeplightvision.com; †stefan.kroll@fysik.lth.se; ‡predrag.bakic@med.lu.se;  

METHODS 

The computational breast tissue phantom was created with the OpenVCT platform and simulated using 

recursive partitioning and a Perlin noise-based tissue model [3]. The phantom, with a volume of 450 ml (B-cup), 

has a volume breast density of 10.9% and is compressed to 5 cm in the medio-lateral direction. The phantom 

voxel size was 200 µm, and in this study we focused on the four tissue types of skin, adipose, fibroglandular, or 

tumor, as shown in Fig. 2. The optical properties used in this study are presented in Table 1. The absorption 

coefficients are estimated based on the content of four chromophores: oxygenated and deoxygenated blood [4], 

water [5], and lipid, where the lipid content is based on an estimated linear relationship with the water content 

[6, 7, 8]. The absorption spectrum of each chromophore is taken from Ref. [9]. The tumor absorption coefficient 

is allowed to vary to mimic the increased blood volume or deoxygenation that might occur in tumors. The 

reduced scattering at 690 nm is estimated using µ𝑠
′ (𝜆) =  𝐴(𝜆/𝜆0)−𝑏, where 𝐴 at 𝜆0 = 830 nm is taken from 

Ref. [4] and 𝑏 is estimated using the linear relationship with the water content [6, 7].  

A sequential Monte Carlo method [10, 11] is used to simulate how carrier photons are scattered throughout the 

tissue without any absorption, and the paths of the photons reaching the light guide are saved. Absorption is 

added afterwards, which significantly speeds up the process of studying variations in the absorption coefficients 

of the tissue. To estimate the UOT signal, we assume that carrier photons are frequency-shifted by the 

ultrasound with a probability that is linearly proportional to the distance the photon traveled in the ultrasound 

 Skin Adipose Glandular Tumor 

µ𝑠
′  [cm-1] 17.2 7.5 10.0 11.1 

µ𝑎 [cm-1] 0.2 0.035 0.046 0.046 → 0.092 

Table 1: Reduced scattering coefficients, µ𝑠
′ , and absorption coefficients, µ𝑎, 

used in the simulations for different breast tissues, when using a 

wavelength of 690 nm, see main text for more information.  

Figure 2: Cross sections through the computational breast tissue phantom showing adipose (dark gray), fibroglandular (light 

gray) and tumor (white). UOT simulations are performed in two locations (green lines), one over a healthy region and one over 

the tumor region. For each location, light is emitted from one of three 1 cm diameter sources (yellow lines in the top graph) 

and for each source, light is collected by a light guide centered right underneath the light source and with a 4 cm diameter 

(the blue line in the top graph covers the entire area used for detection). 
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focus (2.5 mm size). Furthermore, we assume that the carrier light leaking through the spectral filter is negligible 

compared to the UOT signal, which is reasonable since the fraction of frequency-shifted light is usually in the 

order of 1% [12] and spectral filters can have attenuations much greater than 20 dB [13, 10]. Simulations of two-

dimensional UOT images are performed at two locations, one over a healthy region and one over the tumor 

region, see Fig. 2, so that the difference in the two UOT signals can be studied.  

RESULTS 

Typical UOT signals from healthy and tumor regions can be seen in Fig. 3(a)-(b). The largest variation in signal 

occur due to the difference in photon flux throughout the tissue, e.g., since all photons are emitted from the 

source that region has a larger UOT signal compared to regions in the center of the phantom where photons are 

less likely to visit a particular region of the same volume. However, by subtracting the healthy region signal from 

the tumor region signal one can detect the tumor due to its higher absorption, see Fig. 3(c). This can be 

compared to Fig. 3(d), where the difference 

between the same two regions is shown, except there is 

no tumor.  

 We define the contrast-to-noise ratio (CNR) as  

CNR = −
ΔS − µ𝑛𝑜𝑖𝑠𝑒

𝜎𝑛𝑜𝑖𝑠𝑒
 

where Δ𝑆 is the average UOT signal difference in the 1x1 

cm2 tumor region, and µ𝑛𝑜𝑖𝑠𝑒 and 𝜎𝑛𝑜𝑖𝑠𝑒 are the mean 

and standard deviation of the average UOT signal 

difference in  the 14 other non-overlapping 1x1 cm2 regions 

covering 𝑥 = −2.5 → 0.5 cm and 𝑧 = 0 → 5 cm.  

We perform six simulations where we vary the tumor 

position within the breast phantom shown in Fig. 2 and study the average CNR as a function of the tumor 

absorption coefficient, see Fig. 4.  

Figure 3: UOT simulations performed over the (a) healthy and (b) tumor regions shown in Fig. 2. The positions of the sources 

(yellow lines) and detectors (blue lines) are also outlined. The signals have been normalized to a maximum value of 1. (c) The 

difference in signal with the tumor region marked (dashed red box). (d) The difference between the two regions when no 

tumor is present. The optical properties used are shown in Table 1, with a tumor absorption coefficient of  0.092 cm-1. 

 

Figure 4: Average CNR for the six tumor positions as 

a function of the tumor absorption coefficient. The 

error bars show one standard deviation. 
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DISCUSSION  

The present study is important as it sets a new standard for computationally investigating UOT by using realistic 

breast tissue phantoms. Furthermore, as can be seen from Figs. 3 and 4, it is clearly possible to distinguish the 

tumors from the surrounding tissue deep inside the breast, despite the natural variation of adipose and 

glandular tissue compartments. Even when tumors have the same absorption coefficient as glandular tissue 

(0.046 cm-1) an average CNR above 2 is obtained. This is partly due to the higher scattering of tumors compared 

to the other tissue types, see Table 1, but the foremost reason is that both tumor and glandular tissues are more 

absorbing than adipose tissue, and a concentrated volume of either of those tissue types can therefore be 

distinguished from the surrounding tissue which is mostly adipose.  

One open question is how well the photon flux compensation can be done in a clinical setting. For example, how 

reliably can one perform measurements at two different locations, as shown in Fig. 3(a)-(b), and how robust is 

their difference, shown in Fig. 3(c), with respect to potential clinical errors such as the positioning of the source, 

light guide, and ultrasound transducer, differences in breast thickness, or fluctuations in the laser power and the 

ultrasound pressure.  

CONCLUSION 

This study improves the methodology for how to computationally investigate UOT by using realistic breast tissue 

phantoms. Furthermore, it indicates that UOT is capable of distinguishing tumors from the surrounding healthy 

tissue. In a similar follow-up work, accepted for the SPIE Photonics Europe 2024 conference, we have made 

further improvements by including more tissue phantoms with varying breast tissue composition and focused on 

the harder problem of distinguishing malignant tumors from benign glandular tissue, which has optical 

properties similar to that of tumors.  
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BACKGROUND AND PURPOSE 

Virtual anatomical phantoms have seen widespread use in medical imaging research and radiation dosimetry. These 

phantoms have the benefit of having a defined ground truth that can be used for comparison among the different imaging 

systems.1 Due to their versatility, researchers have developed ways to improve the accuracy and detail of virtual phantoms. 

Current phantom designs include 3D clinically acquired patient scans, phantoms with organ motion, and modified standard 

body models based on references.2 These phantom designs have shown promising results, yet there is still limited representation 

available for modeling the variability of muscle and fat content within the body, an increasingly studied facet of human anatomy 

known as body composition with wide-ranging clinical significance.3,4 
Patient body composition greatly affects image quality as the interaction of ionizing and non-ionizing radiation is 

proportional with the amount and density of tissue they pass through before reaching the detector array of the imaging device.5 

Finding the exact parameters to offset this problem is challenging due to inter-patient and inter-device variability. Often, the 

approach is to tackle the problem by referring to the decision-making capabilities of experienced radiology technologists on an 

exam by exam basis.6 Thus, a body composition-adjustable phantom could prove vital to improving current methodologies. 

Current methods to model muscle and fat variability can range from manual adding and scaling to predicting body mass adjusted 

surface layers.7 Another method involves a deformation algorithm that translates each vertex point of the polygon models along 

the normal direction of the relevant face. The vertices stop once they are within a certain distance to the closest vertex. This 

method was used to develop phantoms of different weight distributions.8 Though providing some variation, these approaches 

are suboptimal due to manipulating generic phantoms or using a solely geometry-based deformation approach.  
Therefore, there is a clear unmet need for a more realistic way to model muscle and fat to represent the known spectrum 

of patient body composition9 to more optimally leverage virtual phantoms. The purpose of this study is to model changes of 

the skeletal muscle, visceral fat, and subcutaneous fat within the XCAT patient phantom library using a physics-based approach 

to represent the range of body composition found in the overall population.  

METHODS 

Patient-Specific Phantoms 

The initial phantoms used for this study were selected from the XCAT patient library. The phantoms were based on CT 

data obtained from the Duke University hospital, selected based on their good scan quality and representation of two body 

composition profiles: 1) relatively high skeletal muscle and low proportion of visceral and subcutaneous fat, and 2) relatively 

low skeletal muscle and high proportion of visceral and subcutaneous fat. These represent relative extremes of body 

composition encountered commonly in clinical practice by radiologists. A deep-learning segmentation algorithm was used to 

extract 117 total organs and structures10. These were saved into a label map as shown in Figure 1. 

  
Figure 1. Label map volume with the four main structures colored and the rest in grayscale as viewed in 3DSlicer11. 
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Polygon mesh surfaces were fit to each structure using a marching cubes algorithm (implemented through 

vtkDiscreteMarchingCubes12). The meshes were cleaned by removing defects and correcting face directions. The resulting 

meshes could have up to 1.8 million vertices. Owing to limited computational resources for the physics-based simulations, 

mesh size was reduced by 99% with the intent of modeling the displacement field and transforming the original resolution 

phantom.  

Physical dynamics using a live physics engine  

To modify the meshes in a realistic manner, the vertices and edges of the mesh faces need to be moved by changing their 

positions in space based on certain principles. One popular approach is using force-based dynamic simulations, where elements 

have force and velocity properties that are updated over time via integration methods until they reach certain conditions (e.g. 

sum of forces equal to zero). 13 Another approach that has seen more generalized and efficient results is the projective-based 

dynamic simulations, where instead of solving a different complex linear system in each time step, the calculations are 

decoupled into a local step (projecting an element onto a specific constraint) and a global step (combining the local steps and 

finding a compromise between them).  For this study, the live physics engine Kangaroo2, which employs a projective-based 

approach, was chosen because of its capability to create intuitive and realistic deformations in an efficient manner.  

Kangaroo2 

Kangaroo2 is a physics plugin for the visual programming language Grasshopper that can be accessed through the digital 

modeling software, Rhinoceros3D, www.rhino3d.com. Kangaroo2 is primarily used as a form-finding tool for architectural 

design, such as in the development of tensile membranes, timber shells, and inflatable structures.14 The engine’s solver uses a 

modified form of the dynamic relaxation algorithm.15 Initially, the structures along with the loads and constraints of the system 

termed as ‘goals’ by Piker are not in equilibrium due to having opposing rest states. The structures then start to oscillate, and 

the new position and forces are calculated to reduce the total energy, set as half of the squared distance from their rest states 

and multiplied by a weighting. This is an iterative process that stops if the energy is below a certain threshold or after several 

time steps. 

Simulation Parameters 
To set up the phantom modeling system, all 117 meshes were imported into Rhino3D. To optimize solver calculations, each 

mesh was converted into an isotropic triangular mesh. Structures were placed into 5 groups according to their unique interaction 

goals (Figure 2): subcutaneous, muscle, rigid, deformable, and visceral. To grow the specific group, a “pressure” goal is added 

wherein the vertices are subjected to a force in the normal direction that is proportional to the area of the mesh face multiplied 

by a weighting factor. A “stiffness” goal was then added that resists the mesh edges from stretching past their rest length when 

the vertices are moved by the forces. The weighting is changed depending on the group, with the rigid group having the highest 

weighting and the fat having the lowest. For collisions, a soft body collision goal was used wherein the mesh vertices are pulled 

away by a reaction force if they are checked to be in another mesh. For all goals, some velocity was conserved after every 

iteration. To keep calculation time low, 200 iterations were used, as this was found to produce satisfactory results.  

Different parameters were setup for each phantom case to demonstrate increasing or decreasing the content of muscle or 

fat. To model visceral growth, muscle stiffness was reduced to allow fat to protrude outward instead of over compressing 

organs. For muscle growth, the goal for maintaining the subcutaneous fat volume was relaxed to let the fat form over the 

muscle.  The result for each case was the deformed low resolution meshes of each phantom. 

  
Figure 2. Patient specific phantom mesh groups (L-R: subcutaneous, muscle, rigid, deformable, and visceral). Female 

example is shown. 

Calculation of the deformation field 

To apply the changes to the original, high-resolution phantom, we used image registration to calculate the transform. The 

original low resolution meshes were voxelized into a pre-transform image while the deformed meshes were voxelized into a 

post-transform image. The displacement field transform was calculated by registering the pre-transform and post-transform 

images using a diffeomorphic registration algorithm.16 The transform was applied on the original phantom image to model the 
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relatively small deformations (organs and bones) and the large deformations (such as fat or skin) were added after. A priority 

queue function was used to ensure that important structures such as the digestive tract or the heart were maintained, and no 

overlapping occurred.  

RESULTS 

The reduced meshes processed from the CT phantom are presented in Figure 2. Multiple holes are present in some meshes 

due to the thinness of the segmentation. Holes are also found in the muscles due to the segmentation algorithm not including 

the fascial strutures, thin layers of connective tissue that surround and hold muscle in place as well as separating the abdominal 

cavity into different anatomical spaces. For the physics simulations, soft organs like the heart chambers and lung lobes were 

placed in the rigid group to keep their original shape and relative location consistent.  

Figure 3 highlights the workflow to calculate and apply the deformation field from the physics-based simulation. The 

displacement field consists of the changes to the moving image without the fat and muscle. Registration attempts that included 

the fat and muscle resulted in the structures overlapping near their boundaries. This defect would then propagate as the fat 

expands. To circumvent this, the transformed fat and muscle were instead combined as a mask and added to the original. This 

workflow takes an hour to complete, with most of the time spent on the simulations.  

 

Figure 3 High resolution final image workflow. 

Figure 4 highlights four different examples changing muscle and fat content using Kangaroo2. In each of the cases, organs 

local to the growth were deformed but were within ±2% of the original volume. The visceral growth example produced a 

phantom with a large protrusion in the abdomen, where most of the initial visceral fat accumulated. The subcutaneous growth 

example grew fat in all directions with emphasis on the back side, where considerable fat was already present. This ‘obese’ 

patient can be compared with the right image of an actual obese patient that was used for the fat reduction example. The 

reduction reduced both the subcutaneous and visceral fat of the phantom. The pressure applied was negative and ‘pushed’ the 

fat inward, collapsing, and thereby shrinking the mesh.  
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Figure 4. Phantom simulations with different growth goals.  

DISCUSSION  

The techniques devised successfully changed the volumes of the different body composition components within the 

computational phantoms. The physics-based simulations along with the image conversion workflow offer a new way to modify 

phantoms to model variability in fat and muscle content. The focus of this work has been on the use of the modified phantoms 

in CT. However, the XCAT phantoms can be combined with imaging simulators modeling different modalities. As such, the 

modified phantoms can be applied to investigate the effect of body composition for modalities other than CT. The models 

constructed are also not limited to the extent of growth as shown in Figure 4 as the pressure can be changed easily. Prior to this 

study, only carefully pre-constructed mesh models were used as a basis for modifications.2,8 Also, to produce realistic 

deformations where objects interact with another, one would either require skilled 3D artists or finite element modeling. Both 

would require a significant amount of resources and time. Using the modified dynamic relaxation method, models can now be 

constructed quicker while also creating an anatomically plausible phantom.  
The simulations are highly dependent on the quality of the segmentation label map. The lack of segmented fascial layers 

may cause simulated parts to separate significantly, which reflects the significant role fascia plays in the anatomy of the human 

body. Skin was unusable for the simulation as it included all other parts that the segmentation did not assign a label to. This 

causes the computation time to increase dramatically. To overcome this, a shrink-wrap algorithm was used to recreate the skin 

after the simulation was completed.17 The results of the simulation may produce self-intersecting and thin meshes and these 

must be corrected before moving onto the image workflow. Future areas of improvement are thus found in three key areas. 

Inclusion of more structures in the segmentation algorithm will create more realistic simulations. The growth mechanism can 

be expanded upon to include physiological processes such as cell growth instead of relying just on pressure. More robust 

registration methods are desirable to represent large deformations with sliding motions across object boundaries.  

CONCLUSION 

A physics-based simulation set-up was developed to modify lower resolution phantom meshes. The deformed 
meshes were then used to calculate a displacement field to apply to the original high resolution meshes of the 
phantom. By successfully developing these techniques, one can expand on existing phantom libraries with 
phantoms that simulate the range of body composition known to exist in the overall population. The construction 
of modified patient specific models was made quicker and less demanding. Overall, these methods will provide a 
vital tool to expand phantom development and imaging research. 
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Harnessing the power of high-performance computing 
for virtual imaging trials 
Authors: Rajagopal, Aboulbanine, Wang, Abadi, Segars, Kapadia 

Purpose: Virtual imaging trials (VIT) require generating massive datasets that comprehensively cover the 

variations in clinical populations and image acquisition conditions. Such data generation requires extensive 

computational time and resources, which are often prohibitive in conventional computing settings. This 

challenge can be overcome using high-performance computing (HPC) techniques and advanced computational 

resources; however, doing so requires the problem to be optimized to use such resources. In this work, we used 

the HPC capabilities at Oak Ridge National Laboratories (ORNL) to perform a VIT on lung CT and evaluate the 

impact on data generation.  

Methods: A validated CT simulation platform (DukeSim) was integrated with ORNL’s HPC system. DukeSim uses 

a combination of ray tracing (RTCat) to estimate primary signal, and GPU-accelerated Monte Carlo (MC-GPU) for 

scatter and dose estimation. Simulations were performed on an adult computational XCAT chest phantom using 

a standardized lung scan protocol and run on two high-performance clusters: a standard compute server 

(CADES, 2 NVIDIA Tesla P100) and a dedicated GPU server (DGX2, 16 NVIDIA Tesla V100). A varied number of 

GPU resources were used to evaluate the benefit of additional parallelization on data generation.  

Results: We benchmarked DukeSim on the standard and dedicated GPU compute systems as follows: MC-GPU: 

19-45 mins (both single GPU). RTcat 121-240 min (single GPU) and 61-118 min (two GPUs); 18 min (8 GPUs). 

Projecting these benchmarks forward, we estimated that a virtual imaging trial consisting of 200 simulations 

would require approximately 143 computer hours with 8 GPUs. We are currently working on evaluating 

benchmarks for simulations on Frontier, the world’s first exascale system. We found that parallelization of RTCat 

had a strong effect on reducing run time.      

Conclusion: HPC methods at ORNL have the potential to boost VIT data generation by 5-10X using standalone 

GPU systems, and substantially higher on Frontier (Results TBD). 
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ISIT-DaT: An in silico imaging trial to objectively 
evaluate the performance of a scatter-window 
projection and deep learning-based transmission-less 
attenuation compensation method for dopamine 
transporter SPECT 
Zitong Yu (Washington University in St. Louis), Md Ashequr Rahman (Washington University in St. Louis), 

Chunwei Ying (Washington University in St Louis), Hongyu An (Washington University, St. Louis), Abhinav Jha 

(Washington University in St. Louis) 

PURPOSE 

Attenuation compensation (AC) is beneficial for the precise quantification in dopamine transporter single-

photon emission computed tomography (DaT SPECT). Conventional AC methods typically rely on a separate 

computed tomography (CT) scan, leading to higher radiation exposure and costs, and the potential of 

quantification errors due to misalignment between the SPECT and CT scans (1-3). Furthermore, many SPECT 

systems do not have a CT capability (4). In this context, a range of transmission-less (Tx-less) AC methods have 

been proposed (5-8), including these based on deep learning (DL) (9-16). In this study, we conducted an in silico 

imaging trial, namely ISIT-DaT, to evaluate a scatter-window projection and DL-based Tx-less AC method for DaT 

SPECT (DLAC). 

METHODS 

The primary objective of ISIT-DaT is to compare the DLAC method, a CT-based AC method (CTAC), and a uniform-

attenuation-map-based AC method (UAC) on quantification of the DaT uptake within the caudate, putamen, and 

GP regions by calculating the intraclass correlation coefficient (ICC). The secondary objective is to assess the 

performance on fidelity-based figures of merit (FoMs). In ISIT-DaT, we calculated the sample size following the 

strategy proposed by Walter et al. (17) We that a sample size of N = 35 provides 80% power to detect a 

difference of 0.15 between the ICC under the baseline of 0.65 and an ICC under the proposed method of 0.85 at 

a significance level of 0.05. Considering a ~20% drop-out rate, we collected images from N = 45 patients who 

underwent 3T T1-weighted MRI and CT studies. From these images, we generated a clinically relevant trial 

population, as details shown in Fig. 1. We simulated a realistic imaging protocol with a GE Discovery 670 SPECT 

system and obtained the emission data in photopeak and scatter windows. For the primary objective, we 

calculated the ICC between the DaT uptake within the caudate, putamen, and GP regions estimated by DLAC and 

those estimated by the CTAC method. For the secondary objective, we evaluated the fidelity-based performance 

of DLAC using the normalized root mean-square-error (RMSE) and the structure similarity index measurement 

(SSIM). DLAC was pre-trained on N = 175 samples. 
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RESULTS 

The trial accrual in ISIT-DaT is shown in Table 1. In Fig. 2a, we observed that DLAC performed similarly to CTAC 

(ICC = 0.85, confidence intervals: [0.75, 0.86]) and significantly outperformed the UAC on regional DaT uptake 

quantification. In addition, we observed that the estimated attenuation and activity maps obtained by DLAC 

yielded a significantly lower normalized RMSE and a higher SSIM than those obtained by UAC (Fig. 2b). Fig. 3 

shows some representative examples. 

CONCLUSION 

Primary results from ISIT-DaT demonstrated that a scatter-window projection and DL-based Tx-less AC method 

yielded similar performance to a CT-based AC method and outperformed a uniform-attenuation-map-based AC 

method on the task of regional DaT uptake quantification. 
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Figure 1. The workflow of trial population generation. 

 

Table 1. The characteristics of the patients in ISIT-

DaT cohort. 

 

Figure 2. ISIT-DaT evaluation results. (a) The ICCs 

between the estimated regional DaT uptakes and 

those estimated by the CTAC method. (b) Fidelity-

based performance evaluated on the normalized 

RMSE and SSIM. 

 

Figure 3. Representative examples (a) Attenuation 

maps of three samples obtained by the DLAC 

method and derived from CT images. Note that the 

middle sample had a head holder, which was 

correctly predicted by DLAC. (b) Ground truth 

activity maps and activity maps obtained by the 

CTAC, DLAC, and UAC methods. The upper example 

was from a healthy sample, while the lower 

example was from a diseased sample. Zoomed 

version was given in the red-boxed regions. 
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Generation of a representative synthetic phantom 
dataset for the training of neural networks in 
personalized CT dosimetry 
Marie-Luise Kuhlmann1, Stefan Pojtinger 1  

1Physikalisch-Technische Bundesanstalt Braunschweig, Germany 

 

BACKGROUND AND PURPOSE 

Computed Tomography (CT) plays a crucial role in modern medicine. The currently used computer tomography 

dose index (CTDI) only provides a rough estimate of the effective dose1. Personalized CT dosimetry is therefore 

the next step in patient risk assessment but is based on time-consuming dose calculations for each individual 

patient. One appropriate method to increase calculation speed is using neural networks. The training of neural 

networks requires a huge amount of training data, linking patient geometries (phantoms) to the effective dose. 

This work investigates whether virtually created phantoms can be used in combination with Monte Carlo 

simulations to create synthetic training data for this purpose. 

A dataset of 200 phantoms was generated based on a given statistic, addressing the need for realistic and 

representative data for the training of a neural network. As a proof-of-principle, three phantoms from the 

generated dataset were used to calculate effective dose values using Monte Carlo simulations. 

This study showed, that XCAT2 can be used to generate synthetic training data for the described purpose and 

that the resulting effective dose values show the expected differences compared to effective dose calculations 

based on CTDI and size-specific dose estimates (SSDE). 

METHODS 

Phantom generation 

For the generation of the phantom data, the commercial software XCAT Version 22 was used. To obtain a 

balanced distribution in terms of body types, organ volume, and gender, the mean values from the ICRP 

Publication 1453 were used. Based on these values, a uniform distribution was assumed with limits of ±10 % 

relative to the mean, and the phantom data was sampled from this distribution. To account for the range of 

body types, the thickness of the fat layer around the abdomen, thorax, and extremities was varied within ±10 % 

relative to the mean. 100 male and 100 female phantoms were generated with body heights between 1.5 m and 

2.10 m. 

For the simulations of effective dose, the three female phantoms (phantom A, B, and C) shown in Figure 1 were 

chosen from the dataset. The colored areas show the scan regions and the segmented organs. The chosen scan 

region from the seventh cervical vertebrae to the adrenal gland4 is typical for a thorax scan. 
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Radiation transport simulation 

For the Monte Carlo simulation, a newly implemented particle source class was used. The particle source uses 

an aluminum equivalent bowtie filter representation of a typical clinical CT scanner and an aluminum 

attenuation-matched fluence spectrum. The used Monte Carlo Software was EGSnrc5 in the 2020 version. 

To use the phantoms in the Monte Carlo Software, the NIFTI files created with XCAT were converted to the 

egsphant format implemented in EGSnrc. For each tissue ID, the interaction cross sections and the appropriate 

density were assigned using a Python script. 

For the CTDI phantom simulation, the phantom was defined as a PMMA cylinder with a height of 15 cm and a 

diameter of 32 cm. Four cylindrical holes were placed at the periphery and one in the center of the phantom.  

Calculation of dose values 

For calculating the effective dose from the phantom simulations, the absorbed energy in the respective organs 

was scored (𝐸dep,organ). The organ volumes and media densities were used to calculate the organ mass (𝑚organ) 

and from this the organ doses. The effective dose was calculated (𝐸eff,organ) by multiplying the organ values 

with weighting factors  𝑤organ from ICRP Report 1166. 

 

𝐸eff,organ =  ∑
𝐸dep,organ

𝑚organ
⁄

organ

∙ 𝑤organ 
 
(1) 

 

To calculate the effective dose using the CTDI (𝐸eff,calc), the CTDI was multiplied by the scan length (𝑙) and the 

conversion factor tabulated in the European Guideline for quality assurance7 (𝑤). 

 
𝐸eff,calc = 𝐶𝑇𝐷𝐼 ∗ 𝑙 ∗ 𝑤 

 

 
(2) 

 

The size-specific dose estimate (SSDE) was calculated by multiplying the CTDI value by a patient size-dependent 

correction factor8. The effective dose based on the SSDE was then calculated in the same way as in equation (2), 

using the SSDE instead of the CTDI. 
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Figure 1 Three phantoms from the dataset with three different body shapes. The colored areas show the simulated scan region 

with the segmented organs used to calculate the effective dose.  

 

 

 

RESULTS 

Figure 2 gives an overview of the generated data set. 

 

Figure 2: The graphic shows a selection of phantoms from the generated dataset. 

Figure 3 presents the simulated effective dose values as the ratio 
𝐸eff,calc

𝐸eff,organ
⁄ in dependence of 𝐸eff,organ 

for the three phantoms. The results show a dependence on the patient size. For the small phantom A, the 

effective dose calculated from CTDI underestimated 𝐸eff,organ by a factor of two. The use of SSDE instead of CTDI 

results in a deviation of up to 30 %. For phantom B, the effective dose calculated from the CTDI shows a 

maximum deviation of 41 %. Here, the use of SSDE instead of CTDI leads to an agreement within 6 % with 

𝐸eff,organ. For phantom C, the effective dose is slightly overestimated for CTDI as well as for SSDE. The largest 

deviation is seen for the smallest tube voltage. 
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Figure 3: The graphics show the ratio between 𝐸𝑒𝑓𝑓,𝑐𝑎𝑙𝑐  from the CTDI and SSDE and the from the organ doses calculated 

effective dose 𝐸𝑒𝑓𝑓,𝑜𝑟𝑔𝑎𝑛  for the three phantoms. 

DISCUSSION  

The simulated data showed a good agreement with the expected deviations between the SSDE and CTDI-based 

calculations compared to the calculations based on realistic patient phantoms, as described in the AAPM report 

2048. For smaller patients, the CTDI-based calculation underestimated the effective dose by a factor of two. For 

adipose patients, the opposite effect was observed. The same trend can be observed for the simulated data 

shown in Figure 3.  

The use of SSDE led to a better estimation. 

CONCLUSION 

In conclusion, this study shows that the generated phantom data based on XCAT can be used for effective dose 

calculations in EGSnrc. The results show the expected deviations compared to calculations based on CTDI and 

SSDE. Therefore, this dataset can be used for the generation of synthetic data for the training of neural networks 

to be used for fast effective dose calculations in the context of personalized CT dosimetry. 
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BACKGROUND AND PURPOSE 
The next major leap in detector technology for computed tomography (CT) is the introduction of photon-
counting detectors. 1 As opposed to conventional integrating x-ray detectors, which detect the number of 
photons that have interacted in the detector during a period of time, photon-counting detectors register single 
photons along with their energies. Photon-counting detectors have the potential to significantly improve 
spectral and spatial resolution compared to current detectors, thereby enhancing, or enabling, a range of clinical 
applications. 

Photon-counting detectors have been used in nuclear medicine for decades and were introduced for planar 
radiology (particularly mammography) 20 years ago, 2 while photon-counting CT (PCCT) is emerging now. One 
reason for the relatively slow evolution of photon-counting detectors in medical imaging is pulse pileup; the 
random staggering of two or more finite pulses, which leads to loss of counts and spectral distortion, and in the 
end image bias and reduced contrast-to-noise ratio.  

Computer simulations and virtual clinical trials play an increasingly important role for evaluating imaging 
systems, 3 not least for the development of cutting-edge technologies, such as PCCT, where fast turn-around 
times are crucial. However, pileup is an intrinsic and non-negligible part of the detection process in any PCCT 
detector; even though the effect is reduced with the speed of the detector, it will never fully go away because of 
the randomness of photon interactions. 4 

To simulate PCCT over the full spectrum of clinical applications, it is therefore of essence to have an accurate 
pileup model. We have built a detailed Monte-Carlo-type pileup model for deep-silicon (multi-segmented) 
photon-counting detectors. The model simulates individual interactions based on the detector pulse shape and 
dead time. The purpose of this study is to evaluate the accuracy in simulating a real PCCT system with the 
model, for future use in system evaluation and virtual clinical trials. As a first application, the model is applied to 
investigate the effectiveness of a pileup correction algorithm. 

METHODS 

The deep-silicon photon-counting detector 
GE HealthCare has developed a prototype wide-coverage PCCT system based on silicon detectors. 5 The 
advantages of silicon as a detector material include high-purity and high-quality elemental crystals with well-
established manufacturing processes, high charge-collection efficiency, no K-fluorescence in the relevant energy 
range, and high intrinsic energy resolution. In addition, silicon is a non-toxic material with minimal impact on the 
environment. To reach a sufficient photon stopping power in the diagnostic energy range despite the relatively 
low atomic number of silicon, the silicon wafers are oriented in an edge-on geometry. 1 This sensor 
arrangement, several centimeters thick, is referred to as a deep-silicon sensor. 
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When a photon interacts in the detector material, charge is released, which drifts as electron-hole pairs and is 
collected by electrodes on the sides of the sensors. The drift distance corresponds to the thickness of the sensor 
(not to the depth) and is therefore short, which minimizes spreading of the charge cloud. The collected charge 
generates a pulse with a height that is proportional to the energy of the photon, and comparators, implemented 
in an application-specific integrated circuit (ASIC), sort the detected pulses into energy bins. 

The relatively long interaction trajectories in the deep-silicon design enables splitting of the electrodes into 
depth segments. 1 Since each of these segment is connected to an independent ASIC channel, the count rate per 
channel, and hence the pileup effect, is substantially reduced. The deep-silicon design therefore alleviates the 
need to shrink the pixel size below optimal levels; for all photon-counting detectors, too small pixels result in 
increased pixel cross talk, which causes artefacts and reduced spectral resolution. 6 Nevertheless, pileup will 
always be present to some degree in photon-counting detectors because, by necessity, the pulse at each photon 
interaction has a finite length, whereas the photon interactions are Poisson distributed and can occur arbitrarily 
close in time. 4 

The semi-paralyzable pileup model 
The pileup behavior of real photon-counting detectors, and in particular the deep-silicon detector, has been 
shown to correspond well to the semi-paralyzable model, 7 which resides between the traditional paralyzable 
and non-paralyzable detector models. 4 In short, a photon interaction in the detector initiates a dead time during 
which only one photon can be registered. If two or more photons hit the detector during a deadtime their 
respective pulses are added, and a single photon is registered with an energy that is higher than the individual 
photons. However, even though the piled-up pulse is registered as a single event, depending on when during the 
deadtime the photons hit and the energy of the photons, the tail of the piled-up pulse may extend beyond the 
deadtime and trigger a new deadtime and a new registered photon with an energy that is generally lower than 
the individual photons.  

The semi-paralyzable detector model offers a way to describe the deterministic and statistical effects of pileup 
on a general and non-spectral level. 7 The model was used for benchmarking in this study, to understand 
whether any discrepancies between measurements and simulations are reasonable. 

Deep silicon pileup simulation and correction 
To simulate the pileup behavior in the deep-silicon detector, we have built a Monte-Carlo-type pileup model 
that emulates individual interactions based on the detector pulse shape and dead time. These detector and ASIC 
design parameters are generally known by the detector manufacturer. The pileup model has been integrated 
into CatSim, which is a detailed CT and x-ray simulation environment that has been developed at GE HealthCare 
over the last two decades. 8 

In addition to the pileup effect, an image chain for the deep-silicon system has been implemented in CatSim, 
including data-driven material-decomposition9 and pileup-correction10 algorithms. The material decomposition 
was calibrated at a reference count rate (determined by the mA and kV of the x-ray tube), and the effect of 
pileup on image quality was investigated by moving away from the calibration mA. 

RESULTS 
Figure 2 shows simulated virtual 65-keV monoenergetic images of a Gammex-like phantom at ± 200 mA relative 
the calibration mA at which the material decomposition was calibrated. Nonlinearities caused by the pileup 
effect result in pixel-to-pixel bias, i.e., ring artefacts, and large-area bias (center row), compared to the 
simulation without pileup (top row). The pileup correction algorithm effectively removes the artefacts (bottom 
row). 
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Figure 3 plots observed count rate (the sum of all energy bins) in a detector segment with high count rate and in 
another segment with lower count rate, as a function of total incident rate per dead time (τ), simulated and 
measured on a typical deep-silicon photon-counting detector. The high-count-rate segment shows clear signs of 
pileup, while the low-count-rate segment is virtually linear throughout the range of incident rates. Predictions by 
the semi-paralyzable detector model are also shown in the plots, where the model parameter β has been 
chosen to best fit the data in a least-square sense. 

Figure 4 shows pileup-induced large-area bias in terms of Hounsfield units (HU) measured in the simulated 
phantom in Figure 2. Severe bias is observed in air but is also evident in the center of the 20-cm-diameter water-
equivalent phantom material. The pileup correction algorithm virtually eliminates the bias. 

DISCUSSION AND CONCLUSIONS 
The importance of pileup correction for imaging with photon-counting detectors away from the calibration mA 
is illustrated in Figure 2 and Figure 4; pileup correction linearizes the signal so that material decomposition, 
which assumes a linear response to mA, works as expected and generates images that are free of artefacts and 
bias. As illustrated in Figure 3, the depth segments of the deep-silicon detector can be designed to see different 
count rate levels. Hence, some of the segments may exhibit a close-to linear response up to very high incident 
count rates and can be used as a guide to improve the pileup correction. 10 
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 Figure 2: Simulated virtual 65-keV monoenergetic images of a Gammex-like phantom at ±200 mA relative the 

mA at which the material decomposition was calibrated. Window Level: -500 HU. Window Width: 1400 HU. 

The discrepancies between simulated and measured data that are seen in Figure 3 are largely captured by a 
difference in the parameter β and can therefore be explained by unknown factors and non-idealities, such as 
uncertainties in the pulse shape, rather than errors in the model. Based on this, we conclude that the accuracy 
of the pileup model is high enough to simulate the behavior of typical deep-silicon photon-counting detectors 
and is suitable for future use in system evaluation and virtual clinical trials. One limitation is, however, that the 
validation was carried out on non-spectral data, i.e., the sum over energy bins. Future work will continue the 
validation on the level of energy bins and investigate spectral distortion. 

The main advantage of simulating pileup on a per-interaction level is high accuracy and reliability. Simplifications 
in modelling generally come with constraints that need to be monitored, which adds complexity to the 
simulation and risk of false interpretations of the data. A major drawback is, however, high computational 
intensiveness, which leads to low simulation speed, especially at high simulated count rates and large data sets. 
A priority for future efforts will therefore be efficiency optimization. 
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Another upcoming focus area will be to expand the model to include other effects that will interact with pileup, 
such as electronic noise residuals and correlated noise between detector pixels. Due to the high generalizability 
of the interaction-based model, we expect this integration to be relatively straight forward. 

 

 

 

Figure 3: Observed count rate (the sum over energy 

bins) as a function of total incident rate per dead 

time (τ), simulated (dashed line) and measured (solid 

line), for two different detector segments (blue and 

red lines). Markers show results from the semi-

paralyzable detector model for the values of β that 

best predict the measured and simulated data. 

Figure 4: Pileup-induced bias in terms of HU 

measured inside (upper panel), and in the air 

surrounding (lower panel), the simulated phantom in 

Figure 2. The lines correspond to the rows in Figure 

2, i.e., simulations without the pileup effect (solid), 

with pileup effect and no correction (dashed), and 

with pileup effect and pileup correction (dotted). 
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BACKGROUND AND PURPOSE 
To illustrate the use of simulated digital breast tomosynthesis (DBT) images, we compare the performance of two 

interactive segmentation methods: the deep learning-based method Segment Anything Model (SAM)[1] and the classic 

method Morphological Geodesic Active Contours (MGAC)[2]. 

METHODS 
We have used Perlin noise to generate 3D computational models of soft tissue breast lesions[3]. We simulated 14 breast 

lesions and inserted them in computational 3D breast phantoms that are based on our previous work of simulating breast 

tissue using Perlin noise[4-5]. We used OpenVCT software[6] to generate radiographic projections of the phantoms. The 

projections were reconstructed to DBT slices using an open-source method [7]. The simulated lesions consisted of a 

spherical 3D shape, within which the Perlin noise function is defined. To generate different lesion shapes, we modified the 

frequency and number of octaves of the Perlin noise. The corresponding reconstructed DBT images were used to compare 

SAM and MGAC methods. 

SAM is a transformer-based method that uses manually delineated bounding boxes as prompts and can generate the 

segmentation result. The SAM pretrained weight is trained on a large variety of natural images. Several papers have already 

used it to validate medical images[8]. The MGAC is an energy-based method. It requires manually initializing a contour near 

the object; then the contour iteratively evolves to fit the object boundary when minimizing the energy function. We have 

computed the segmented tumor area within each DBT slice and compared it with the ground truth area from the binary mask 

of the simulated tumor. The absolute and relative error in the segmented area is used as the performance measure. 

RESULTS 
The results suggested that both segmentation methods overestimate the tumor area near the central slice and underestimate 

the area in the peripheral slices. Figures 1 and 2 illustrate the segmentation performance of the two methods in the central 

and peripheral slices. The two methods have a better segmentation performance in the central slice and worse performance 

in the peripheral slice. Figure 3 illustrates the absolute error between the segmented area and the ground truth area from the 

binary mask for each DBT slice. The average absolute error is 14.8 mm2 and 21.7 mm2 in SAM and GMAC, respectively. 

Near the tumor center, we observed a relative error of 2.5 ± 1.8% and 7.6 ± 6.9% for SAM and GMAC segmentation, 

respectively. In the peripheral slices, we observed a relative error of 87.1 ± 70.2% and 97.8 ± 51.2% for SAM and GMAC 

segmentation, respectively. 
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Figure 1. Visualization of segmentation results in central slice by SAM and Active Contours (GMAC) methods. 

 

 Figure 2. Visualization of segmentation results in a peripheral slice by SAM and Active Contour (GMAC) 

methods. 
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Figure 3. Comparison of the absolute error between the segmented area and the ground truth area at slice level, 

for the SAM and Active Contour (GMAC) methods. (a) shows the absolute error of the SAM segmentation for 

each slice number index, where slice index eight corresponds to the central DBT slice. (b) shows the absolute 
error of the GMAC segmentation method for each slice number index. 

 

 

DISCUSSION 
In this study, we compared the performance of a deep learning-based (SAM) and a classic segmentation method 

(GMAC) without any data training. The results demonstrated that SAM performs better than MGAC when comparing the 

absolute relative errors between the segmented area and the ground truth area. Both methods over- estimate the true area 

in the central slice and slightly underestimate the area in the peripheral slice. Due to the limited angular range of the DBT 

imaging system, objects appear as out-of-plane artifacts in the peripheral slices. Consequently, due to this limitation, the 

tumor appears larger in peripheral reconstructed slices. To further improve the segmentation performance, especially in 

the peripheral slices, one solution could be to use supervised learning on a large DBT dataset. 

CONCLUSION 
We conducted preliminary experiments using the pre-trained SAM and MGAC to segment computer-simulated soft tissue 

breast lesions. The qualitative and quantitative results demonstrate that SAM has superior performance compared with the 

MGAC but still underestimates lesions in peripheral slices. In the future, we will conduct experiments compared with 

radiologists' delineation and various automatic segmentation methods. 
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Tube current  modulation effects on dose and image 
quality in computed tomography: a Monte Carlo 
simulation study 

Z. Aboulbanine, J. Rajagopal, E. Abadi, P. Segars, and A. Kapadia 

 

Purpose 

This work aims to estimate the effect of tube current modulation (TCM) on dose and image quality using a 

virtual imaging trial (VIT).   

 

Methods 

A simulation of a chest CT-scan was performed using DukeSim and an XCAT phantom with a standard lung 

protocol at 120kV. Eleven TCM conditions were modeled for the study ranging from 0-1.0 in increments of 0.1. 

For each TCM setting, dose distributions were calculated at a spatial resolution of 1x1x1 mm3 and evaluated 

using dose volume histograms (DVH), and image quality was assessed in terms of SNR within a region 

of interest (ROI) in the respective organ. Dose were reported for five organs in the chest: lung, heart, 

sternum, esophagus, and the skin, as well as the remaining tissue categorized as “body”.              

  

Results 

Increases in TCM strength were found to enhance the dose in the lungs, heart and sternum by a factor up to 

1.12, 1.48 and 2.10 respectively. DVH analysis indicates that the sternum received the highest voxel dose.    

 

Conclusion 

TCM increased the dose of superficial structures and organs, for instance the skin and the sternum. The dose 

outcome at the organ and voxel levels depended on TCM strength. We are currently evaluating the impact on 

SNR and also extending the study to include a larger number of XCAT phantoms. 
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TCM effect on dose and reconstructed image SNR. (a) TCM strength vs normalized dose at the sternum; (b) : TCM vs SNR; 

DVH analysis for two different TCM strength values (c) 0.9 and (d) 0.  
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(c) (d) 

TCM on (α=0.9) TCM off (α=0.0) 
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ABSTRACT 

How prevalent is spontaneous thrombosis in a population containing all sizes of intracranial aneurysms? How 

can we calibrate computational models of thrombosis based on published data? How does spontaneous 

thrombosis differ in normo- and hypertensive subjects? We address the first question through a thorough 

analysis of published datasets that provide spontaneous thrombosis rates across different aneurysm 

characteristics. This analysis provides data for a subgroup of the general population of aneurysms, namely, those 

of large and giant size (>10 mm). Based on these observed spontaneous thrombosis rates, our computational 

modeling platform enables the first in silico observational study of spontaneous thrombosis prevalence across a 

broader set of aneurysm phenotypes. We generate 109 virtual patients and use a novel approach to calibrate 

two trigger thresholds: residence time and shear rate, thus addressing the second question. We then address 

the third question by utilizing this calibrated model to provide new insight into the effects of hypertension on 

spontaneous thrombosis. We demonstrate how a mechanistic thrombosis model calibrated on an intracranial 

aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader aneurysm population. This 

study is enabled through a fully automatic multi-scale modeling pipeline. We use the clinical spontaneous 

thrombosis data as an indirect population-level validation of a complex computational modeling framework. 

Furthermore, our framework allows exploration of the influence of hypertension in spontaneous thrombosis. 

This lays the foundation for in silico clinical trials of cerebrovascular devices in high-risk populations, e.g., 

assessing the performance of flow diverters in aneurysms for hypertensive patients.  
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BACKGROUND 

Virtual imaging trials (VIT) usually focus on the task of lesion detection. For true clinical relevance, however, VITs 

need to demonstrate they can act like real clinical trials by assessing patient-level endpoints such as cancer 

diagnosis. Objective: Using lung cancer screening as a clinical example, we introduce statistical labeling of lung 

nodules as benign vs. malignant based on Lung-RADS findings including nodule size. We performed virtual 

reader studies based on a cancer classification model to assess the robustness of lesion- and patient-level ROC 

performance. 

METHODS 

Currently, our methodology harnesses real clinical data from the Lung Image Database Consortium and Image 

Database Resource Initiative (LIDC-IDRI). This data was combined with actual TCIA diagnosis data to maintain the 

authenticity of our simulations. A control prevalence mechanism was devised to ensure our dataset's balance. 

We constructed a logistic regression model, with the virtual nodule's maximum predicted size as a pivotal 

feature. This model's capacity to stratify virtual nodules based on their malignancy risk was meticulously 

evaluated. While our current focus is on real clinical data, we are in the advanced planning stages to adapt this 

approach to replicate the outcomes of the National Lung Screening Trial (NLST) in a VIT setting. 

RESULTS 

Preliminary outcomes from the VIT underscore the potential of our approach in correlating nodule size with 

malignancy probability in a simulated milieu. The model exhibited nuanced performance across different 

thresholds in the virtual environment. A comparison between Diagnosis AUC and Statistical Labeling AUC 

displayed consistent performance up to a 0.8 threshold, with increased variability thereafter. A subsequent VIT 

analysis juxtaposed against virtual diagnostic data revealed the method's promise in emulating real-world 

diagnostic paradigms. 

Conclusion 

Our statistical modeling technique provides a groundbreaking path for the evaluation of VITs using clinically 

relevant endpoints such as cancer diagnosis. This endeavor amplifies the clinical relevance of VITs, laying the 

groundwork for real-world diagnostic and therapeutic protocols. 
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Hybrid (real and virtual) imaging trials in dynamic chest 
radiography: A feasibility study 
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Yu Homareda1, Riku Yokoyama 1, Ryuunosuke Gotou1, Saho Matsuo1, Yuuna Yamawaki1,   

Haruto Kikuno1, Noriyuki Ohkura2, Isao Matsumoto3 

1College of Medical, Pharmaceutical & Health Sciences, Kanazawa University, Ishikawa, Japan  
2Department of Thoracic Surgery, Kanazawa University, Ishikawa, Japan  
3Department of Respiratory Medicine, Kanazawa University Hospital,  Ishikawa, Japan  

 

BACKGROUND AND PURPOSE 

Dynamic chest radiography (DCR) is a newly developed imaging technique to assess pulmonary function based 

on dynamic findings. Although its clinical usefulness has been reported, determining the optimal imaging 

conditions and diagnostic performance, and providing dedicated image-processing technology, is challenging. 

This study aimed to accelerate clinical research and technological development for DCR by hybrid imaging trials 

(Fig. 1). 

 

Figure 1 Overview of dynamic chest radiography. 
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METHODS 

Virtual imaging trials (VITs) were conducted in parallel with a clinical trial. Virtual, breathing patients with 

heartbeats were generated using the XCAT program and projected by an X-ray simulator at various tube voltage 

and mAs combinations. Optimal imaging conditions were determined based on the accuracy of functional 

analysis by DCR and visual evaluation of image quality. The diagnostic performance of the DCR-based pulmonary 

function assessment was evaluated in virtual patients with pulmonary impairment. Additionally, a deep learning-

based artificial intelligence (AI) model to estimate lung volume from DCR images was trained on DCR-simulated 

images and ground truth derived from the log files of XCAT phantoms. AI-based multi-organ-specific suppression 

models were also trained on a pair of DCR simulation images with and without the target organs (rib, heart, 

breast, and diaphragm). 

RESULTS 

Optimal imaging conditions and diagnostic performance of DCR were determined using VITs; real imaging trials 

based on the outcomes of VITs were effectively performed. Furthermore, AI-based lung volume estimation and 

multi-organ-specific suppression models for DCR were successfully developed using simulation images of virtual 

patients and worked effectively on real patients. 

CONCLUSION 

This feasibility study highlights the success of hybrid imaging trials for emerging imaging devices and the 

potential role of VITs in facilitating the development of AI-based technologies and their translation into clinical 

applications. 
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Development of deep learning-based left-right lung 

separation technique for lateral dynamic chest 

radiography using virtual patients 
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3. Department of Thoracic Surgery, Kanazawa University, Ishikawa, Japan 

BACKGROUND AND PURPOSE 

Dynamic chest radiography (DCR) is a recently developed technique for pulmonary functional imaging. However, 

lateral images are used only for visual assessment of thoracic motion because of the overlap between left and 

right lungs. This study aimed to develop a deep learning-based left-right lung separation technique for lateral 

DCR using a 4D extended cardiac-torso phantom (XCAT phantom). 

METHODS 

Twenty-eight XCAT phantoms in 150 phases (12 respirations/min) and those with only left and right lungs 

extracted were pseudo-projected, respectively, and 4200 pairs of original and labeled (lung) images were 

prepared as a training dataset. Using the network structure of U-net, we constructed a left-right lung separation 

model for lateral DCR images using seven-fold cross-validation with training to validation ratio of 6:1 (Fig. 1). The 

separation accuracies of the left and right lungs in the output images were quantitatively evaluated based on 

Dice and Jaccard coefficients and by visual assessment. 

 

 

Figure 1 Overview of the left‒right lung separation model for lateral DCR images using U-net. 

DCR, dynamic chest radiography 
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RESULTS 

The mean Dice and Jaccard coefficients were 0.948 (range, 0.834–0.974) and 0.903 (range, 0.716–0.950), 

respectively. In visual evaluations, misidentification of the lung fields and/or defects in the lung apex and 

base contours were observed in some cases, especially with large area under the diaphragm and/or with 

increased or decreased lung density in the lung area (Figs. 2(a)–(d)). These results suggest the need for 

additional training datasets for various body sizes. 

 

Figure 2 Examples of the output images of the XCAT phantoms in the five-fold cross-validation from the left‒right lung separation model 

for lateral DCR images: (a, b) reasonably segmented cases (male and male, BMI = 21.89 kg/m2 and 26.88 kg/m2); (c) incorrectly 

segmented case with misidentifications (male, BMI = 23.10 kg/m2); (d) incorrectly segmented case with defection (male, BMI = 31.22 
kg/m2). BMI, body mass index 

CONCLUSION 

A deep-learning-based left–right lung separation technique for lateral DCR was successfully developed using 

virtual patients. The proposed method would be useful for a better understanding of pulmonary function with 

lateral DCR, such as quantitative evaluation of thoracic and diaphragmatic movements, as well as lung volume 

changes. 
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3. Department of Thoracic surgery, Kanazawa University, Ishikawa, Japan 

BACKGROUND AND PURPOSE 
Dynamic chest radiography (DCR) is a flat-panel detector-based functional X-ray imaging technique. Pulmonary 

impairments can be detected as decreased changes in lung density due to respiration. However, breast shadows 

occasionally produce false-positive results in female patients. This study aimed to develop a deep learning–

based breast suppression technique to improve the DCR-based evaluation of pulmonary function using four-

dimensional (4-D) extended cardiac-torso (XCAT) phantoms. 

METHODS 
Fourteen female XCAT phantoms with and without breasts were generated in ten respiratory phases with bone 

suppression using the XCAT program, and then projected using an X-ray simulator in the same settings in clinical 

practice. A total of 2,100 images were obtained for the training and testing datasets (6:1). Pix2pix, a type of 

conditional generative adversarial network, was trained to map the breast-suppressed images from original 

images through leave-one-out cross-validation. (Fig. 1) The resulting images were evaluated based on two 

metrics: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). The trained model was 

applied to clinical images, and the effect of breast suppression was visually assessed. The color-mapped images 

depict changes in lung density, with higher color intensities representing higher X-ray translucency (increased 

air). 

RESULTS 
The resulting images of XCAT phantoms had PSNR of 23.6 dB and SSIM of 0.963. Visual evaluation confirmed 

that the breast shadows are successfully reduced in output images of both the XCAT phantom and real patients 

(Fig. 2). In addition, the lung area behind the breast shadows was properly assessed using the color-mapped 

images after breast suppression processing (Fig. 3).  

CONCLUSION 
The deep learning–based breast suppression model trained on the XCAT phantom was effective in contributing 

to improved pulmonary function assessment using DCR. 
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Figure 1 Overall scheme of proposed breast suppression technique. 

Figure 2 Representative images from (a) XCAT phantom (BMI 23.73 kg/m2) (b) clinical cases (a 68-year-old 

female with postoperative left-lung cancer) 

Figure 3 Results displayed as color-mapped images (a)with and (b) without breast shadows. 

These images depict changes in lung density, with higher color intensities representing higher X-ray translucency 

(increased air). 
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Generation of Synthetic brain vasculature using 
shape/anatomy guided latent diffusion models 
Yash Deo (University of Leeds), Toni Lassila (University of Leeds), Haoran Dou (University of Leeds), Nishant 

Ravikumar (University of Leeds), Alejandro Frangi (University of Manchester), Fengming Lin (University of Leeds), 

Nina Cheng (University of Leeds) 

This study addresses the significant anatomical variations within the Circle of Willis (CoW), a crucial cerebral 

artery network. CoW's diverse structures play a pivotal role in brain blood supply, reducing the risk of ischemic 

events by providing alternative routes when major vessels are blocked. However, existing classifications 

predominantly focus on common CoW configurations, leaving less prevalent variants understudied due to 

limited data. The research's core objective is to develop a generative model capable of synthesizing CoW 

segmentations while considering these anatomical variations. This model enables the creation of extensive 

virtual cohorts of brain vasculature, including less common CoW configurations. Such virtual cohorts can be 

invaluable for training deep learning algorithms, conducting in-silico trials, and furthering our understanding of 

cerebrovascular diseases. This study explores a conditional latent diffusion model that learns latent 

representations of brain vasculature, allowing for controlled generation of CoW configurations based on specific 

phenotypes. Evaluation metrics such as multiscale structural similarity index (MS-SSIM) and Fréchet inception 

distance (FID) are used to assess its performance, with comparisons against alternative generative models like 

3D GANs and 3D variational auto-encoders (VAEs) to establish its effectiveness in replicating CoW variations. 
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BACKGROUND AND PURPOSE 

 

Respiratory motion poses a significant challenge in slow rotating large Field-of-view SPECT imaging with 

multichannel collimator image formation. For instance, in myocardial perfusion imaging (MPI) it can impact 

diagnosis mis-interpreting  from artifacts 1. We have shown that simulations are useful to evaluate the effects of 

acquisition, motion, and geometry parameters on the accuracy of respiratory correction methods in SPECT using 

a set of water cylinder phantoms with different motions2. A simulation setup that is closer to clinical practice 

and could be used in Virtual Imaging Trials can be achieved using the Extended Cardiac-Torso Phantom (XCAT)3. 

While the XCAT phantom platform offers a highly versatile and realistic patient anatomy, the default respiratory 

motion cycle represents an idealized and averaged motion trace with a constant frequency and amplitude that 

might vary greatly from motions seen in clinical practice. We have already demonstrated that it is possible to 

use recorded patient motion traces as input to the XCAT phantom, thus achieving a more realistic, temporally 

varying respiratory motion affected SPECT simulation4. The purpose of this work is to investigate the effect of 

using realistic, patient-specific respiratory motion traces versus the default sinusoidal respiratory motion using 

the example of Data Driven Gating (DDG) for SPECT Myocardial Perfusion Imaging (MPI). 

METHODS 

 

To simulate realistic respiratory motion using the XCAT phantom, we use the respiratory signal of 15 patients 

recorded with an Anzai respiration belt of patients undergoing SPECT MPI5 and use the signal as input for the 

superior-inferior (SI) respiratory trajectory parameter of the phantom. For every phantom, we resampled a 

snippet of 15s of motion recording 𝑓(𝑡) by resampling it to 5Hz and adjusting the SI signal's amplitude to 

𝑓′(𝑡) =
1

2∗𝜎𝑓
, where 𝜎𝑓 is the standard deviation of 𝑓(𝑡), following the normalization procedure presented in5. 

This adjustment accounts for the respiratory motion belt's measurement of relative chest diameter changes and 

scales the signal to a realistic amplitude range in the order of 2 cm. Additionally, we set the amplitude of the 

anterior-posterior (AP) motion to 70% of the SI motion's amplitude, as the AP motion is typically smaller than 

the SI motion6. 

According to the approach presented in 4 we create 15 different realizations of the XCAT phantom with 

randomized anatomy and activity distribution parameters for each time step, resulting in 75 pairs of activity and 

attenuation maps. We also created a control phantom with default sinusoidal motion keeping the default 
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respiratory motion cycle length of 5s, sampled at 5Hz for a total duration of 15s. Activity maps were created to 

represent SPECT MPI with  75-1400 MBq Tc99m of total injected activity and four sample projection views from 

right anterior oblique (RAO) to left posterior oblique (LPO) were simulated using the SIMIND Monte Carlo 

simulation package7. Subsequently, we used the center of light (COL) method and the non-linear DDG method 

based on Laplacian Eigenmaps (LE) introduced by Sanders et al.5 to extract a respiratory surrogate signal for 

each phantom. We compute Pearson’s correlation coefficient between the extracted respiratory surrogate 

signal and the input signal. 

RESULTS 

 

In Figure 2 we show a comparison of the simulated respiratory motion trace from a real patient versus the 

default XCAT motion, showing irregularities in the patient data. 

 

Figure 2: Comparison of SI and AP motion between the XCAT phantom’s default motion and a patient-derived signal used as XCAT input. 

We found significant (p< 0.01) differences between DDG results obtained on the phantoms with the default 

sinusoidal motion versus patient derived motion, irrespective of the DDG method used. Averaged over all 

simulations, the COL method showed a correlation of 0.90 ± 0.18 for simulated motion scenarios, versus 0.74 ± 

0.26 for real motion. Meanwhile, the LE method demonstrated a near-perfect correlation of 1.00 ± 0.0034 with 

simulated motion, compared to 0.92 ± 0.086 for real motion, substantiating the superiority of the LE method 

across the board. We plot the results against the view angle and depending on the total simulated activity in 

Figure 3. 

 

Figure 3: Visualization of the mean and standard deviation (as envelope) for the COL (solid line) and LE (dashed line) DDG methods and 

motion types simulated (blue shows simulated motion, orange real motion). The columns show the 4 simulated views from RAO to LPO 

from left to right and each x-axis shows the relative count level. 
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DISCUSSION  

 

We used DDG as an example to underscores the critical role of using patient-derived motion traces to increase 

the realism of simulated SPECT data. Figure 2 shows variations in frequency and amplitude that are often 

encountered in recordings of real patient data. Figure 3 illustrates the variation in DDG outcomes based on the 

detectability of respiratory motion across different view angles and the algorithms applied. It also highlights a 

consistent difference in results, suggesting that employing the XCAT phantom's default sinusoidal respiratory 

motion might inflate outcomes, though it is important to recognize the limitations of our study. The total 

duration of our simulated respiratory data was limited, the patient derived signal traces were not based on 

quantitative SI and AP displacements as the Anzai belt's output is non-quantitative, and our simulated phantoms 

lacked diversity. We manually selected 15s subsets of the patient recordings that represented diverse motion 

scenarios. These factors may restrict the study's ability to fully capture the variability of respiratory motion 

encountered in clinical practice, but nonetheless clearly demonstrate the benefits of incorporating real motion 

data over simplified simulations. Future work could include using measurements from different motion tracking 

systems to obtain quantitative inputs for the XCAT phantom, simulating longer motion signals and more diverse 

anatomies.  

CONCLUSION 

 

Our findings highlight the significant advantage of incorporating real patient respiratory data over the default 

respiratory motion trace contained in the XCAT phantom library when creating Monte Carlo Simulations for 

SPECT MPI. 
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Phantom for training in breast imaging techniques 
Nikolay Dukov, Kristina Bliznakova, Zhivko Bliznakov  

 

A. BACKGROUND AND PURPOSE 
The educational activities performed during practical exercises of future radiographers are closely linked to the 

utilization of physical phantoms. These phantoms offer the advantage of repeated use with X-rays, thereby 

minimizing unnecessary exposure of patients to radiation while simultaneously enhancing the trainees' 

proficiency in radiographic techniques. The advancements in 3D printing technology have paved the way for the 

creation of anthropomorphic phantoms, as well as phantoms tailored for educational purposes, surgical planning 

and simulation, medical device development, 3D biopritnting, quality control and specialized tasks such as refining 

imaging procedures1-6. 3D printing technology in creating custom phantoms for use in the quality control of 

artificial intelligence (AI) models in medical imaging has also been reported; however, this field has yet to be 

explored7,8. 

In today's era, access to high-precision 3D printers has become widespread, making them suitable for fabricating 

physical phantoms tailored specifically for educational and training purposes. For instance, the utilization of 

polylactic acid (PLA) in 3D printing has revolutionized the production of realistic and cost-effective prostate 

phantoms, which find extensive application in training programs for ultrasound-guided interstitial prostate 

brachytherapy9. Moreover, the integration of 3D-printed patient-specific skull and heart models has emerged as 

an indispensable tool in medical education. These models not only enhance the teaching of anatomy but also aid 

in surgical planning, providing a versatile platform for practicing many of medical procedures and 

manipulations1,10. 

In the field of breast imaging, 3D-printed breast phantoms are extensively employed in research activities aimed 

at developing novel techniques and refining existing ones11,12. However, their utilization in training programs 

focused on breast imaging remains relatively limited. The ELPIDA team is involved in the development of 

anthropomorphic breast phantoms for both, research and educational purposes. While phantoms intended for 

scientific research and quality control often utilize rigid plastic materials lacking elasticity, those employed in 

training students in mammography techniques necessitate elastic properties. These materials must exhibit the 

ability to rebound to their original state after compression, akin to the behavior of real breast tissue. Furthermore, 

it is advantageous for these materials to closely emulate the radiological properties of authentic breast tissues, 

thereby enhancing the fidelity of training simulations. 

The ELPIDA group has previously engineered a phantom tailored for training radiographers on mammography 

simulators. This innovative design incorporated a flexible resin for printing the external breast shape, 

complemented by the use of water-absorbing polymer beads13,14. While it is well suited for the training of the 

compression with the mammography equipment, this phantom presented an unrealistic mammography image. 

The aim of this study is to develop and initially assess an accessible and practical breast phantom designed to 

enhance the preparation of future radiographers and radiologists in the acquisition of mammography images and 

skills in breast biopsies. 
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B. METHODS 

1. Digital model 
We developed a computational model of an uncompressed breast phantom (see Figure 1) using a dedicated 

software application called BreastSimulator15. The glandular structures of the breast were also considered, which 

in our case served also the purpose of the supporting structures necessary for the successful printing of the model. 

Additionally, a mathematically modeled tumor was generated separately from the breast model. Multiple spheres 

with varying diameters, including sizes of 1.6 mm, 3.2 mm, 6.4 mm, 9.6 mm, 12.8 mm, and 16 mm were separately 

modelled. These diameters were chosen based on our previous investigations16,17. Both, the tumor entity model 

and sphere models, are shown in Figure 2. The spheres were specifically designed to occupy the volume of the 

breast model, contributing to the creation of a texture resembling adipose tissue within the breast. The resulting 

computational models were converted to STL format using Fiji software18. 

 

Figure 4. Computational model of (a) the uncompressed breast phantom, (b-c) cross section of the breast model prepared for printing with 

a slicing software, the supporting structures added inside the model are visible, which were used also to mimic the glandular structures in 

the breast. 

 

Figure 5. Computational models of (a) the tumor entity and (b) the six types of sphere diameters used to fill the breast volume. 

2. Physical model 
To physically create the phantom, we utilized a stereolithography (SLA) 3D printer for the shape (skin) of the breast 

model and the glandular tissue, as well as the tumor entity, while the spheres were printed with fused filament 

fabrication (FFF) printer. The printing material used with the SLA printer was resin with a shore rating of 50, 

suitable for flexible soft parts. The height of the printing layer was set to 100 µm. The spheres were printed with 

flexible filament, a layer height of 200 µm and 40% infill. For their printing no outer walls, as well as no top and 
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bottom layers were used. This settings result with the only part of the sphere being printed, being the infill, which 

in the case was set to cross 3D pattern.  

Upon integrating the 3D printed spheres into the breast phantom, any remaining air within the breast model was 

displaced by supplementing the residual volume with olive oil. This integration of 3D printed spheres and olive oil 

aims to replicate the characteristics of adipose tissue, potentially simulating its properties. Subsequently, the 

physical breast phantom was imaged using a clinical mammography unit operating in automatic mode, following 

standard protocol for mammary gland imaging. 

C. RESULTS 
The resulting anthropomorphic breast phantom was semi-transparent, enhancing the overall visual experience. 

The components of the phantom are shown in Figure 3. Fabricated at a cost of under 100 euros in materials, it 

was utilized in radiographer training for mammography examination. The X-ray projections are depicted in Figure 

3d-e, where Figure 3d is the raw image from the mammography unit, while the X-ray image in Figure 3e is the 

resulting processed image.  

 

Figure 6. Printed physical models of the (a) spheres, (b) tumor entity and (c) shape, as well as the (d) unprocessed and (e) processed X-ray 

mammography projections of the phantom. 

D. DISCUSSION 
The phantom was successfully used in mammography training of future radiographers in terms of training both 

compression and imaging skills. Furthermore, breast biopsy training was also initiated with the phantom, and 

while the suitability of the used materials and their durability is still under evaluation, there has been a positive 

initial feedback from the involved radiologists. 

The resulting X-ray images show promise in the undertaken approach in utilizing the support structures needed 

for printing the model as glandular tissue. The printed spheres used for filling the volume of the breast model are 

soft and compressible in all directions, while the olive oil fills the remaining volume and gaps in the spheres. 

However, as depicted in Figure 3e-d, it is evident that not all of the spheres have effectively absorbed the olive 

oil, leaving some residual air. This leads to deviations from the characteristics of human breast adipose tissue. 

Ongoing tests and evaluation of the phantom showed that it can withstand multiple compressions and 

irradiations, although the exposure to X-rays results in a noticeable visual change in the color of the used material 
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for the skin to yellow. Further, due to the multiple compressions, some tearing is becoming evident in the upper 

part of the base of the phantom. Moreover, as a consequence of repeated compressions, there is a noticeable 

tearing emerging in the upper section of the phantom's base. Nevertheless, despite this issue, the phantom 

remains functional. Over twenty students and professionals have conducted compressions on the phantom thus 

far. The tearing is attributed to tension concentrated in that specific area, which will be addressed in subsequent 

iterations of the computer model's design. 

When used for breast biopsy scenarios the inflicted damage from the needle on the phantom significantly 

diminishes its operational life to just a few manipulations. As a future iteration of the physical breast phantom, 

we are looking into silicone resins as a material for the skin. 

Future work is related to the computer modelling and simulations using this phantom, with the objective of 

enhancing the imaging appearance of simulated breast structures and understanding the impact of compression 

force used in breast imaging on material elasticity. The ultimate goal is to optimize both the materials utilized for 

printing the external shape and those mimicking the internal breast structures. 

E. CONCLUSION 
An anthropomorphic breast phantom was developed for mammography studies. The model was designed to be 

compressed and to quickly restore to its original form. Furthermore, although the X-ray imaging results are not 

identical to human breast anatomy, they show promise and will be further improved. An extensive feasibility 

evaluation with radiographers and radiologists is currently in progress. 
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Advancing in the physical fabrication of 
anthropomorphic breast phantoms 
Kristina Bliznakova, Nikolay Dukov, Minko Milev, Zhivko Bliznakov 

 

BACKGROUND AND PURPOSE 

Physical anthropomorphic breast phantoms are a key instrument for performing clinical and research work carried 

out in radiological departments1-3. Major challenge and requirement in the field of X-ray breast imaging is the use 

of materials exhibiting similar X-ray absorption coefficients to those of breast tissue, especially of these to be used 

in a wide energy kilovoltage (kV) diagnostic range. There are several methods for assessing the appropriateness 

of a particular material. One such method involves fabricating sample materials and analyzing their attenuation 

characteristics. This analysis typically involves calculating linear attenuation coefficients4,5 and determining 

Hounsfield Units (HU) values through Computed Tomography (CT)6-9 experiments.  

Previously, we reported on two methods for manufacturing of physical anthropomorphic breast phantoms 

utilizing fused filament fabrication technology. In both cases, modified 3D printers and a custom-developed 

software were used7,9. The latter plays an important role in linking a series of breast patient CT scan images directly 

to the 3D printing process. One method involved the use of a single filament, a polylactic acid (PLA) one, with a 

constant filament extrusion rate for each voxel. This ensured that a precise amount of melted filament was 

extruded to every voxel corresponding to specific tissues, alongside a perimetric pattern to replicate smaller 

entities with more irregular shapes, such as glandular and tumor tissues7. 

The second approach utilized two filaments to replicate the breast tissues, a PLA filament and a polypropylene 

(PP) filament. Each layer of the phantom was printed twice, once with PLA and once with PP. The extrusion rate 

for each material was meticulously controlled voxel-by-voxel, determined by the HU of the imported CT images.  

Extensive preparatory work preceded the final printing of the breast phantoms, including the production of cubes 

with varying percentage filling. These cubes were subsequently scanned at CT facilities to assess the HU of each 

printed cube. Following the proposed methodologies, the phantoms were successfully produced and evaluated. 

However, the phantoms manufactured with these methodologies are specifically tailored for use with a particular 

energy of the X-ray beam. Thus, for each X-ray beam, a new breast phantom would need to be printed.  

An ideal breast tissue-mimicking phantom should be created from materials demonstrating HU values close to 

these of the human breast tissue at typical diagnostic CT energies, especially when printed at 100% infill density. 

This pursuit extends to design of breast phantoms, necessitating the identification of materials that faithfully 

mimic tissue characteristics. Our recent investigation demonstrates that for creating an anthropomorphic breast 

phantom with distinct filaments representing different tissue components (such as adipose and glandular), an 

effective solution involved utilizing Acrylonitrile Butadiene Styrene (ABS) for breast adipose tissue and 

Acrylonitrile Styrene Acrylate (ASA) for glandular breast tissue. This study presents the results for a new physical 

anthropomorphic breast phantom, developed with these materials used with FFF 3D printers. 
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METHODS 

In our recent investigation10, we experimentally studied the radiological properties of twenty-two 3D printing 

materials, used with FFF printing technology. We precisely determined the HU values of these materials by 

scanning test samples at a clinical CT within the range of incident x-ray beam with anode voltages of 80 kV and 

120 kV. The CT numbers for each material were analyzed, and sets of filaments were identified as potential 

representatives of breast tissues: Thermoplastic copolyester (TPC, https://formfutura.com/c/filaments/tpc-

filaments/) and ASA as potential representatives for glandular tissue and High Impact Polystyrene (HIPS) and ABS 

as representatives of the adipose tissue. In this study we chose to manufacture a breast phantom with ASA and 

ABS materials. 

The computational breast model in this study is derived by applying segmentation techniques to a patient MR 

image7. The resulting digital phantom contains two distinct types of tissues: adipose and gland. The glandular 

tissue was assigned to the skin tissue to simplify the production model. Subsequently, one pair of identified 

suitable materials (ASA, ABS) was used to replace the corresponding breast tissues, as illustrated in Figure 1. 

      

Figure 7. Computational breast phantom (left) and a slice from the segmented breast (right). 

In this study, an FFF dual extrusion 3D printer is utilized. The phantom was printed with X1-Carbon Bambu Lab 

printer. The selection of ASA and ABS, offered a distinct advantage due to their closely matched printing 

temperatures of 240°C10.  

The assessment was conducted at a clinical CT unit, the Siemens Somatom Force, under three distinct tube 

voltages: 70 kVp, 120 kVp, and 150 kVp. A slice thickness of 0.5 mm was maintained throughout the scans, 

following the Thorax standard protocol. The distances between the source and the patient, as well as between 

the source and the detector, were 595 mm and 1085.6 mm, respectively. Image slices were sized at 523 pixels x 

512 pixels, with each pixel measuring 0.285 mm by 0.285 mm, resulting in a width of 149 mm and a height of 146 

mm. 

RESULTS 

Figure 2 displays the printed anthropomorphic breast phantom. The white material of the breast phantom 

corresponds to ASA, while the green material corresponds to ABS. The printing process required a total of 4 days 

to complete. As a preparatory measure, preliminary slices were printed in advance and subsequently evaluated 

using a radiography system, as shown in Figure 2. This approach aimed to visually ascertain whether the selected 

materials accurately replicated the radiological appearance of breast tissues. 
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Figure 8. Printed breast phantom and two printed slices. The radiography image on the right is the x-ray image of the slice, shown in the 

middle. 

CT images, reconstructed from the 70 kV set of the scanned breast are shown in Figure 3. The values of the HU of 

the glandular representation were assessed across 10 slices within Regions of Interest (ROIs) located at the skin 

level. Each ROI measured 8 x 8 pixels. Meanwhile, the HU of the adipose simulation was measured through a single 

ROI, spanning 100 x 100 pixels, across 15 consecutive slices for each imaging set. Further on, to evaluate the 

average breast tissue, dedicated software designed for feature extraction from X-ray images was utilized11 as 

illustrated in Figure 4. Results are summarized in Figure 5 for the three different kV imaging sets.  

     

Figure 9. CT images, reconstructed from projections acquired at 70 kV. 
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Figure 10. Use of a dedicated software to measure the HU of the materials approximated by ASA and ABS. 

   

Mean HU = -114.86 ± 7.03 Mean HU = -72.76 ± 5.62 Mean HU = -63.51 ± 6.70 
Adipose HU = -116.142 ± 1.15 Adipose HU = -75.89 ± 0.22 Adipose HU = -60.82 ± 0.33 
Glandular HU = 45.80 ± 10.419 Glandular HU = 57.94± 10.34 Glandular HU = 65.87 ± 6.72 

70 kV 120 kV 150 kV 

Figure 11. Measured HU values, based on CT images of the breast phantom for the three different kV imaging sets. 

DISCUSSION  

The range of measured CT numbers for the replicated adipose breast tissue is between -116 HU and -60 HU for 

the incident beams of 70 kV-150 kV. The observed trend of increasing the HU with increasing the kV well compares 

with the one reported by Ma et al. 6, where the authors modelled the HU of the adipose tissue in kV as a sum of 

the HU, measured at 120kV and a kV dependent difference function ∆. For the representation of glandular tissue, 

the measured values within the mentioned kV range ranged from 46 HU to 66 HU. Further experimental studies 

are necessary to validate the observed trend of increasing HU values of glandular tissue with higher kV settings. 

Ma et al. 6 reported no energy dependence of the CT values with the kV for porcine leg, bovine tail and bovine 

ribs soft tissue samples. Other studies have shown that HU values for adipose tissue range from approximately -

138 (at 80 kV) 7 to -100 (at 120 kV)12, while fibroglandular breast tissue is reported to be around 40 HU7,12 for 

incident beams ranging from 80kV to 120kV. However, data for glandular tissue are limited, hindering 

comprehensive comparison. 
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Currently, ongoing work is focused on producing three additional breast phantoms based on a combination of TPC 

and ASA with HIPS and ABS, and their comparison with the two methods proposed by the PHENOMENO team. 

CONCLUSION 

Utilizing ASA and ABS materials has proven effective in manufacturing an anthropomorphic breast phantom 

capable of reproducing radiological properties of the breast tissue across a broad spectrum of X-ray photon 

energies. Ongoing research activities will further clarify the optimal techniques and materials with the FFF printing 

technology for fabricating physical breast phantoms.  
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BACKGROUND AND PURPOSE 

For virtual imaging trials (VIT) it is important to create a realistic virtual cohort. Often cohorts are populated with 

some statistical distribution to represent patient demographic data such as height, weight, and other variables. 

We improve on this method by instead sampling from our large database of historical SPECT data. By pulling real 

demographic data to feed to the simulation, we have a more realistic cross-section of the population that might 

participate in a clinical trial. 

METHODS 

 

Data has been extracted from the DICOM headers of more than 3500 studies and used to populate a NoSQL 

database. We randomly sample from the database to create sets of metadata for each patient in the VIT. For 

each patient sampled in the database, a virtual patient is constructed with the same demographic information 

(height, weight, age, and sex). This method creates a random and yet realistic virtual cohort. 

RESULTS 

By sampling patient metadata, we create a virtual cohort that maintains correlations between demographic 

data, and yet is completely realistic. It allows us to specify certain groups for a cohort based on age or location,  

CONCLUSION 
The utilization of historical data to create a virtual cohort allows for the ability to perform a more realistic VIT. 

Data for each virtual patient is random and yet properly correlated. VITs can thus be used to test an application 

on certain demographic segments of the population.  
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BACKGROUND AND PURPOSE 

Recently, the digital XCAT human phantom,1 the DukeSim CT scanner simulator2 (cvit.duke.edu/resources/), and 

the open-source Multi-Channel CT Reconstruction (MCR) Toolkit3 (gitlab.oit.duke.edu/dpc18/mcr-toolkit-2) have 

been combined for state-of-the-art virtual CT imaging trials.4 The MCR Toolkit provides robust reconstruction 

options for 3rd generation, multi-detector row clinical CT, but discrepancies remain between Toolkit and 

commercial CT reconstructions. In this work, we propose two strategies for reconstruction kernel fitting to 

reproduce spatial resolution and noise properties of commercial CT reconstructions, yielding more realistic digital 

surrogates of clinical CT. With the first strategy, we propose three parametric reconstruction kernel prototypes 

which govern the trade-offs between noise and spatial resolution in reconstructed images, and we show that one 

of these prototypes can be used to fit a clinical reconstruction kernel. With the second strategy, we propose the 

use of a surrogate, digital contrast and resolution phantom and a reconstruction kernel optimization procedure 

to reproduce clinical reconstruction kernels when real clinical projection data is unavailable. 

METHODS 

In Section 1 we detail three parametric reconstruction kernel window prototypes included in the MCR Toolkit for 

kernel fitting. In Section 2 we detail an open-ended kernel fitting procedure which uses a surrogate digital 

phantom. Finally, in Section 3 we describe two experiments which illustrate the strengths and weaknesses of the 

proposed approaches. 

Approach 1: reconstruction kernel window prototypes 
We propose three parametric reconstruction kernel windows. When multiplied element-wise with a standard 

ramp filter,5 these window functions trade between spatial resolution and image noise in reconstructed images 

(Figure 1). The “Smooth” kernel window is a Gaussian function with a full width at half maximum of 2 ∙ w and 

evaluated at spatial frequencies, f: 

σ(w) =
2w

2√2 log𝑒(2)
,   𝑆𝑚𝑜𝑜𝑡ℎ(f, w) = exp (

−f2

2σ(w)2). 

Smooth reconstruction kernels prioritize noise reduction over spatial resolution. Conversely, “Sharp” 
reconstruction kernels preserve spatial frequencies below a target value, m, and then transition smoothly toward 
zero to control noise at high spatial frequencies: 

𝑆ℎ𝑎𝑟𝑝(f, m, w) = {
1.0, f ≤ m

exp (
−(f−m)2

2σ(w)2 ) , f > 𝑚
. 

https://cvit.duke.edu/resources/
https://gitlab.oit.duke.edu/dpc18/mcr-toolkit-2
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Finally, “Enhancing” reconstruction kernels emphasize task-relevant spatial frequencies. Frequencies are 
enhanced around spatial frequency, m1, with scaling factor, s. The window’s modulation transitions to zero at 
spatial frequency, m2. 

𝐸𝑛ℎ𝑎𝑛𝑐𝑖𝑛𝑔(f, s, m1, m2, w1, w2) = {
s · exp (

−(f−m1)2

2σ(w1)2 ) − exp (
−(f−m2)2

2σ(w2)2 ) + 1, f ≤ m2

0, f > m2

. 

Notably, enhancing kernels can skew reconstructed Hounsfield Unit (HU) values, making them inappropriate for 
imaging tasks involving quantitative measurements of HU values. This is illustrated in Figure 1, where the 
enhancing kernel reconstruction shifts the HU values measured in the left ventricle from 23.5 HU to 34.1 HU. 

Approach 2: surrogate digital phantom 
The second kernel fitting procedure takes Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) 

measurements as inputs. In practice, these measurements would be taken in a physical quality assurance phantom 

scanned and reconstructed using the commercial system to be emulated. The MCR Toolkit forward projection and 

reconstruction parameters are adjusted to best match the commercial settings (similar or exact source-detector 

configuration, identical reconstruction slice thickness, etc.). A digital quality-assurance phantom can then be used 

to quantify MTF and NPS discrepancies between the commercial and Toolkit reconstructions. 

 

Figure 1. Proposed reconstruction kernel windows. Sample 
reconstructions are shown for an axial region of interest in the 
left lung of an XCAT phantom modeling emphysema. Mean ± 
noise standard deviation measurements are reported for a 
region of interest in the left ventricle of the heart (reported at 
bottom left of each reconstruction; measurement region not 
shown). Kernel parameters shown (units of mm-1): Sharp, 
w=0.2, m=0.5; Smooth, w=0.4; enhancing, s=0.4, m1=0.23, 
m2=0.68, w1=0.1, w2=0.2. 

In this work, we employ the Nelder-Mead optimization algorithm6 to solve for the parameters of the 

reconstruction kernel window to best match the Toolkit reconstruction MTF and NPS measurements with those 

from a reference scan. The reconstruction kernel window is parameterized with 10 evenly spaced control points 

spanning spatial frequencies from 0 mm-1 to the Nyquist frequency determined by the effective detector pixel 

width at the scanner’s isocenter. The parameter at each control point corresponds with the modulation of the 

kernel window (Figure 1). The 10-parameter kernel window is then interpolated to intermediate spatial 

frequencies using the MATLAB software package (R2023a; The Mathworks, Inc.) and its implementation of 

modified Akima interpolation (avoids under, overshoots when slope changes rapidly).7 To reproduce the target 

MTF and NPS measurements in the digital phantom, the following cost function is minimized: 

𝑐𝑜𝑠𝑡(𝐧d, 𝐦d, 𝐭d, 𝐩) =
‖𝐧d−𝐧r‖2

‖𝐧r‖2
+

‖𝐦d−𝐦r‖2

‖𝐦r‖2
+ 10 ∙

‖𝐭d−𝐭0‖2

‖𝐭0‖2
+ 0.02 ∙ ∑|𝐩|. 
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The ‘d’, ‘r’, and ‘0’ subscripts denote measurements from the digital phantom reconstructed with the 

parameterized window, the real phantom, and the digital phantom reconstructed with a ramp filter, respectively. 

The vector 𝐧 is the reshaped 2D NPS after adding one and computing the natural log, the vector 𝐦 contains MTF 

measurements, and the vector 𝐭 contains the mean intensity value of each reconstructed axial slice. The vector 𝐩 

contains the 10 model parameters. The final cost term penalizes the magnitude of these parameters to encourage 

modulation values less than 1.  

Kernel fitting experiments 
Two experiments were conducted to gauge the fitness of the proposed methods for reconstruction kernel 

matching. For the first experiment, full-dose CT projection data from a scan of the Gammex 464 phantom was 

used. The projection data set is available from The Cancer Imaging Archive.8,9 The projection data was acquired 

with a Siemens SOMATOM Definition Flash scanner, and the provided reference reconstruction was performed 

with a B30 kernel, a 250 mm field of view, a 1 mm slice thickness, and a pixel size of 0.49 mm in the axial plane. 

The objective of the first experiment was to match the spatial resolution and noise power in the reference 

reconstruction of this phantom using the MCR Toolkit and the proposed kernel window prototypes (Figure 1). To 

accomplish this objective, the intensity modulation in high-contrast line pairs included in module 4 of the Gammex 

phantom (4-12 lp/cm) was measured and compared between the reference B30 reconstruction and the MCR 

Toolkit reconstruction using a ramp filter. The ratios of the B30 values over the Toolkit values were then used as 

modulation values to be fitted with the kernel prototypes. 

The second experiment tested the surrogate digital phantom approach and kernel window fitting using the 

Nelder-Mead optimization method. Ultimately, this approach is intended for fitting clinical reconstruction kernels 

when projection data or exact knowledge of the system geometry are unavailable. In this work, however, we 

provide a proof of concept where the reconstruction to be matched is instead a Toolkit reconstruction performed 

with a ramp filter followed by convolution with a known edge enhancement kernel in the image domain. The 

objective is then to reproduce the spatial resolution of this convolved image with only a fitted kernel window 

applied during reconstruction. For added realism, the “Duke1” CT scanner geometry is used for creating 

projections and performing reconstruction.4 Notably, the edge enhancement kernel used in this experiment is not 

arbitrary. It is used when performing regularized iterative reconstruction of CT data with the MCR Toolkit,3 and it 

can be viewed as an image domain analogue of an equivalent reconstruction kernel window. 

RESULTS 

Figure 2 summarizes the results of the reconstruction kernel window prototype fitting experiment. In row 1, a 1 

mm axial slice through module 4 of the physical Gammex phantom is compared between the MCR Toolkit 

reconstruction using a ramp filter, the commercial reconstruction using a B30 kernel, and the MCR Toolkit 

reconstruction using a fitted sharp kernel window (w = 0.27 mm−1, m = 0.30 mm−1). Comparing the reference 

B30 kernel MTF values with the MCR Toolkit values (row 1, red text), the fitted sharp kernel window closely 

reproduces the spatial resolution measurements of the B30 kernel from 4 to 8 lp/cm. Row 2 shows 2D NPS 

measurements taken in another axial slice of the phantom containing only plastic with water equivalent 

attenuation. The Toolkit reconstruction with the fitted window visually resembles the reconstruction with the B30 

kernel; however, there is a notable discrepancy in the total noise power: 1.2e6 HU2·mm2 with the B30 kernel vs. 

2.0e6 HU2·mm2 in the Toolkit reconstruction. 
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Figure 2. CT reconstruction results in Module 4 of the 

Gammex ACR 464 phantom (“high contrast 

resolution” module). (Row 1) The phantom contains 8 

sets of line pairs representing spatial frequencies from 

4 to 12 lp/cm (line pairs / cm; yellow labels). 

Modulation transfer function (MTF) measurements 

(red text) are compared between an MCR Toolkit 

reconstruction with a ramp filter, a Siemens 

reconstruction with the B30 kernel, and an MCR 

Toolkit reconstruction with the sharp kernel window 

fitted to reproduce the MTF measurements of the B30 

kernel (columns 1-3). (Row 2) Noise power spectrum 

(NPS) measurements taken in a uniform region in 

Module 3 of the phantom (“uniformity and noise”) for 

each reconstruction. 

 

Figure 3 summarizes the results of the surrogate digital phantom experiment. Specifically, it shows the digital 

phantom used for MTF and NPS measurements (A) and an edge-enhancing 3D convolution kernel, applied in the 

image domain, which simulates an unknown reconstruction kernel (B, E). Reconstruction residuals are compared 

without (D, ramp only) and with (F) the fitted kernel window applied during reconstruction. Following kernel 

fitting, the L2 error norm cost function terms decrease in the MTF measurements (from 25.8% to 0.8%) and in the 

NPS measurements (4.5% to 0.8%; initial kernel window: inverse ramp). Panel (F) illustrates that the fitted kernel 

window reconciles the high spatial frequencies; however, some intensity bias (< 5 HU) is visible at the edges of 

the phantom.  

DISCUSSION  

In this work we have discussed two strategies for reconstruction kernel matching to improve the accuracy of 

virtual imaging trials in X-ray CT. For the first approach, we assume projection data and geometry information are 

available for the system being modeled, and we propose a series of parametric kernel window prototypes to 

simplify kernel matching. This approach proved effective for reproducing the spatial resolution of the B30 kernel; 

however, discrepancies remain in noise power measurements (Figure 2). These discrepancies are likely due to 

differences in the handling of projection data during reconstruction such as the type of projection rebinning 

performed, the angular range of data used to reconstruct each axial slice (short scan vs. full scan), and the 

numerical method used to backproject line integrals. 

For the second approach, we assumed a more general scenario where quality assurance phantom scans are 

available for a CT system, but projection data and exact system geometry may not be. To focus on the method 

and avoid decoupling of the MTF and NPS measurements, we used an image domain kernel convolution operation 

in lieu of real clinical data with an unknown kernel. The method was successful in reproducing the image domain 

kernel with a reconstruction kernel window. Reproducing a complex edge-enhancing kernel is non-trivial, but 

further work is needed to demonstrate the stability of this optimization procedure using real clinical data where 

the NPS and MTF may be decoupled, as in the first experiment. Notably, both approaches will likely struggle to 

reproduce commercial reconstructions with sharp kernels, as discrepancies between exact and assumed system 

geometries will tend to cause spatial blurring in 3rd party reconstructions. 
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Figure 3. Reproduction of an image domain resampling kernel 

with a matched analytical reconstruction window. (A) 

Reconstruction of a digital contrast-resolution phantom with a 

ramp kernel (18 cm diameter; sharpest possible 

reconstruction). (B) Image A after 3D image domain 

convolution with the edge enhancing kernel plotted in (E) 

(central line profile shown). (C) Image A reconstructed with a 

spline-interpolated reconstruction kernel window to best match 

the MTF and NPS measured in Image B. (D and F) Differences 

from Image B before and after reconstruction kernel matching. 

CONCLUSION 

The proposed kernel fitting approaches reduce discrepancies between physical and virtual scanners during 

reconstruction, improving the realism of virtual CT imaging trials. 
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Objective 

Medical physics residencies in Brazil are essential in preparing the next generation of professionals. To ensure 

the competence of future medical physicists, it is essential to employ effective educational tools. This study 

investigates the prospective impact of DukeSim v1.2, a versatile software platform, on the quality of medical 

physics residency training, in the diagnostic imaging modality. 

Methods 

DukeSim v1.2 will be implemented as a pilot program within the curriculum of the Bachelor's program in 

Medical Physics and the Medical Physics residencies at Sao Paulo State University. This software encompasses 

various modules, offering simulations of computed tomography projections, image reconstructions, and dose 

estimations. Over the coming months, medical physics residents and students will utilize DukeSim v1.2 to 

generate computed tomography projections that emulate the characteristics of CT scanners found in the clinical 

routine of residency hospitals. Data will be gathered regarding their engagement with the software and 

projected performance in simulated scenarios. 

Results 

The integration of DukeSim v1.2 holds the potential to significantly enhance the educational experience of 

medical physics residents and students. DukeSim v1.2 is expected to serve as an interactive and invaluable tool 

for residents and students to practice, engage discussion, and acquire more knowledge regarding image quality 

parameters in computed tomography image formation. 

Additional Information 

Brazil's vast territorial expanse presents challenges in ensuring equitable access to medical equipment and 

resources. The heterogeneity in the distribution of medical resources used in healthcare further emphasizes the 

need for advanced training tools. As the field of medical physics continues to evolve in Brazil, embracing 

innovative solutions becomes imperative for maintaining high educational standards. The future prospects of 

DukeSim v1.2 are promising in this context, offering a potential solution to these challenges. 
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Abstract 

Background: Sex-specific cardiac and vascular patterns are  significant  issues  that need to be considered for 

diagnosing and treating cardiovascular diseases. This is especially important when designing patient-specific 

cardiac motion models. 

Purpose: The goal of this study is to evaluate the bias in sex specific motion prediction models for X-ray 

angiography using the XCAT phantom. 

Methods: We have evaluated a motion prediction model using a recurrent neural network architecture on two 

datasets, using motion pattern described in the literature. Using the XCAT simulator, we have simulated X-ray 

angiography sequences for 33 patients (17 females and 16 males) between 11 to 45 yr, including the contrasted 

left and right coronary arteries. This dataset was generated based on the default parameter setting for the heart 

cycle. The default parameter setting for a normal length of beating heart cycle in males and females and all 

ranges of ages is equal to 1 second. The second simulated dataset included only 20 patients (10 females and 10 

males) over 50 years old with different heart curves for males and females. Then, we investigated the cardiac 

motion behavior represented by 2D affine transformation matrices resulting from the frame-by-frame sequence 

registration. 

Results: Our results show that not only are these parameters different between male and female, but the 

prediction error for predicting the future frames of angiography sequences is slightly higher for female than 

male. 

Conclusion: The integration of sex-specific information is important when designing motion prediction models 

and virtual simulators such as the XCAT phantom might help to better understand the bias due to sex in motion 

prediction models. 

Keywords: Cardiac motion prediction, Sex differences, Recurrent neural networks, X- ray angiography 
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Introduction 

Cardiovascular disease (CVD) is the number one killer among women worldwide. Controver- sially, women have 

been under-represented in most clinical trials on cardiovascular disease1. In the past 20 years, the number of 

clinical and experimental research on investigating sex- related differences has grown significantly. Compared to 

men, there is a greater prevalence of heart failure with preserved ejection fraction for female patients, and this 

is why the differences between males and females are important for age-related cardiac remodeling. 

 Moreover, how coronary artery disease appears and develops typically or atypically over the life course mainly 

depends on sex variation. Hormonal and non-hormonal factors underlay the sex variance for cardiovascular 

aging2. Sex-based differences related to AF have been identified, the most concerning being that women with 

AF have an in- creased risk for car- diovascular events, including stroke. Previous studies have indicated that the 

annualized rate of stroke is 3% in women compared with 1.6% in men. This sex-based difference in patients with 

AF is concerning and not clearly understood3. 

It has been proved that sex-specific patterns of cardiac and vascular aging are significant issues that need to be 

considered for the diagnosis and treatment of cardiovascular diseases2. In general, the female heart is smaller 

than the male heart (usually one-fourth of the men’s heart). Accordingly, the number of heartbeats per minute 

(bpm) for adult men is between 70 to 72 bpm while for adult women is between 78 to 82 bpm.   Hence, the 

heart cycle is shorter for women (average 0.75 sec) compared to men (average 0.85 sec). Apart from size 

differences, there are geometric differences such as heart mass, left and right ventricular mass, and wall 

thickness4. A general comprehension of the differences between males and females for cardiovascular diseases 

are still missing nowadays. With the recent popularity of artificial intelligence and machine learning approaches, 

the importance of considering the potential bias in the training datasets is paramount to ensure the 

development of clinical relevant models. Previously, we have introduced a patient-specific motion prediction 

approach for facilitating the navigation process of the cardiac intervention in coronary arteries 5. 

The goal of this study is to evaluate the difference between male and female heart motion in motion prediction 

algorithm. The motivation of this study is to evaluate the potential bias with a general sex-specific motion 

prediction model. 

Materials and Methods 

II.A. Data simulation with XCAT 

We have evaluated the prediction error due to the sex of patient in our LTSM-based motion prediction approach 

from X-ray angiography. The cardio-respiratory motion behavior in an X-ray image sequence was represented as 

a sequence of 2D affine transformation matrices, which provide the displacement information of contrasted 

coronary arteries in a sequence. The displacement information includes translation, rotation, shearing, and 

scaling in 2D. A many-to-many LSTM model was developed to predict 2D transformation parameters in matrix 

form for future frames based on previously generated images. 

Using XCAT simulator6, we generated two datasets. First, we have simulated X-ray angiography sequences for 

33 patients, 17 females and 16 males with age ranging from 11 to 45 yr, including the contrasted left and right 

coronary arteries. This dataset was generated based on the default parameter setting for the heart cycle. The 

default parameter setting for a normal length of beating heart cycle in males and females and all range of ages is 

equal to 1 second. A general blood pressure heart curve is defined by two heart geometries, end diastole (ED) 
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and end systole (ES). Starting with the ED phase and 4 other parameters including ES, the heart curve is 

generated for motion simulation in all phantoms while the time duration to complete the heart curve is 

considered as 1 second. The second simulated dataset included only 20 patients (10 females and 10 males) over 

50 years old with a different heart curve for males and females. All of the generated sequences had a length of 

150 frames. Then, we investigated the cardiac motion behavior represented by 2D affine transformation 

matrices resulting from the frame-by-frame sequence registration. The respiratory motion was removed, and 

only the cardiac motion was simulated in X-ray sequences. For all the frames in each sequence, the arteries were 

segmented and registered in pairs using point cloud registration. The registration matrices including the affine 

transformation parameters were saved for each sequence. We generate sex-specific heart curves for adult 

males and females based on the differences in heart rates between men and women. The average heart rate for 

adult men is 75 bpm and for adult women is 80 bpm accordingly, the amount of time to complete a heart curve 

is 0.84 sec and 0.75 sec for males and females respectively. Fig. 1 shows the difference between the default 

heart curve for XCAT and new sex-specific heart curves. 

 

Figure 1: The default XCAT heart curve is illustrated in green. ED and ES are two main parameters for defining 

the heart curve. The women specific heart curve is outlined in red and the males’ heart curve is outlined in blue. 

 

Results 

For the first dataset, according to our previous work, the 2D affine transformation parameters of visible arteries 

in the X-ray images through a sequence represent cardiovascular motion. To obtain the arteries displacements 

from frame to frame in a sequence, we first segment the coronary arteries and extracted the center lines for 

each frame and applied Coherent Point Drift (CPD) algorithm to register the centerlines frame by frame through 

the sequence. The results of the registration with CPD are sequences of 2D affine transformation matrices. The 

transformation metrics contain information about translation in 2D (Tx and Ty), rotation, scaling and shearing 

(A00, A01, A10, A11). We compared the heart motion behavior of male and female patients using the 2D 

transformation matrices. 

The range of motion for the male group is approximately 20 pixels in x direction and 

  

68 pixels in y direction while for the female group, the range of motion in x direction is about 54 pixels and 60 

pixels in y direction. Thus, according to these results, the range of motion for female patients in x is more than 
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for male patients. For the other transformation parameters (A00, A01, A10, A11), the values for males and 

females are slightly different (approximately a pixel). 

Figures 2 and 3 show the comparisons between the average values for transformation parameters over the male 

and female patients. Although there are outliers in both groups of females and males, each category has a 

specific pattern associated with each transformation parameter. Moreover, it can be seen that for female 

patients the irregularity for the motion parameters is seen more than men patients (A00 and A10) and for 

females the range of values is bigger compared to males. In terms of translation parameter differences between 

males and females, there is more visible diversity between different sexes in the x direction compared to the y 

direction. 

The parameter predictions for affine transformation with our LSTM model worked well for patient-specific 

motion prediction. To come up with a more general model (sex-specific), we compared the parameters 

prediction errors in different groups (male and female). Based on the presented results, the transformation 

parameter prediction errors for females were slightly larger compared to the prediction error for men. 

Figure 2:  Average overall females and males for 2D translation parameters in pixel (left) and for 2D 

transformation parameter A00 and A01 in pixel 

  

Figure 3: Average overall females and males over 50 yr for 2D translation parameters (Tx and Ty) in pixel and 

transformation parameters (A00, A01, A10 and A11) in pixel 
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Conclusion 

We investigated the differences between males and females in cardiac motion behavior based on two different 

datasets. Our results show differences between men and women, and higher prediction error for predicting the 

future frames of angiography sequences. This study out- lines the importance of reporting both male and female 

simulation results during imaging virtual trials, to ensure to evaluate any potential biases in the development of 

prediction models. 
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BACKGROUND AND PURPOSE 

In PET imaging, simulations are commonly used to evaluate system design, reconstruction methods, and have 

also been used for a decade for virtual imaging trials of clinical task performance [1, 2]. Two general approaches 

are photon-tracking and ray-tracing. Photon-tracking software packages that generate and track PET 

annihilation photons have found wide use, and inherently include important physical effects within the imaging 

process, such as scatter and attenuation [3]. A drawback of these methods is the relatively high computational 

cost associated with accumulating signal from individual photons, which makes obtaining low-noise images or 

sets of statistically independent ensembles challenging. In contrast, ray-tracing simulations aim to approximate 

the true mean emission signal through geometric modeling. The resulting noise-free signal, although lacking 

random and scattered coincidences, can be used to rapidly generate independent noise instances that 

adequately represent the noise and bias in the imaging chain. A drawback of ray-tracing methods is their 

reliance on either simple analytic geometries or voxelization of test objects[4]. The present work evaluates a ray-

tracing method using more complex surfaces that can be defined with non-uniform rational B-splines (NURBS) to 

represent emission and attenuation objects, which allows the simulation of detailed anatomy without the use of 

discretization.   

METHODS 

To simulate PET data, we use the ASIM[5] package from the University of Washington. ASIM takes analytically 

defined activity and attenuation distributions and creates projection data by computing intersections of line 

segments without the use of discretization (i.e. no matrix or voxels).  

Object definitions. We compare two methods for defining emission objects: elliptical and NURBS-based. Before 

recent modifications, analytic projection by ASIM could only be done using ellipses, which could be translated, 

rotated, and truncated by planes. The intersections in such cases were computed using the quadratic formula or 

linear equations in the case of planes. Figure 1 shows sample elliptical geometry and the corresponding system 

of equations, which can be solved precisely without resorting to discretization (quadratic projection).  
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Figure 1: Quadratic, non-NURBS projection in ASIM. For detectors located at (x1, y1) and (x2, y2), the length of the intersection with an 

ellipse at (xe, ye) with axes a and b cab be found from the roots 𝑡1
∗ and  𝑡2

∗ of Equations (1) and (2). The product of (𝑡2
∗ −  𝑡1

∗) with the 

object’s activity 𝜆0 is the contribution to raw PET signal. The current ASIM detector model uses block gaps as shown, with curved block 

faces.  

In recently added code, for NURBS-based objects, the intersections were computed by approximating the curved 

spline surfaces as planes, for which the intersections can be analytically computed. The algorithm iteratively 

shrunk the planes around the point of intersection until the difference between the spline and its planar 

approximation were sufficiently small, then returned the intersection from the final iteration. 

Time of Flight. We have also modified ASIM to generate time-of-flight (TOF) sinograms. For a given set of object 

boundaries, computed as described above, signal was distributed to TOF bins using integration, as shown in 

Equation 3, where Sab is the signal in a TOF bin having boundaries a and b along the line of response. The signal 

originates in an object of constant activity density 𝜆0 between 𝑡1
∗ and 𝑡2

∗ as shown in Figure 1. During detection, 

it is affected by timing uncertainty 𝜎,  modeled as the Gaussian convolution shown. Figure 2 shows the locations 

along the LOR for a particular object and TOF bin. The integral in (3) was computed using a power series 

expression of the integrand.  

 

 

Figure 2: The limits of integration used in Equation 3. The piecewise constant activity is convolved with the Gaussian timing uncertainty, 

and a second integration assigns signal to the TOF bin defined by the depicted boundaries.  

Test objects. We simulated two test objects. Test object 1 was defined with ellipses and NURBS surfaces, using 

matching coordinates. It was modeled after an Image Quality phantom and had six spheres (diameters: 10, 13 

17, 22, 28, 37mm), with a round background region (diameter: 232mm). Attenuation in the phantom was equal 
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to that of water.  Figure 3 shows the voxelized rendering of the phantom. Test object 2 was the XCAT 

phantom[6], which was defined only as NURBS surfaces.  

 

Figure 3: Test object 1, which was used to test the agreement between NURBS-based and quadratic projection. The contrast of the spheres 

was 8 to 1, and the attenuation was equal to that of water.  

Image Reconstruction. Images were reconstructed in MATLAB using the Duetto package from GE HealthCare. 

The simulations were configured to match available settings in Duetto, and a clinical three-ring scanner (148mm 

axial field of view) with 386ps TOF resolution was selected, roughly modeling a Discovery MI (GE Healthcare, 

Waukesha, USA). Scattered coincidences were included by adding a blurred, noisy version of the emission 

sinogram. Random coincidences were added to each line or response. Both scattered and random events were 

perfectly corrected in the mean (i.e. they contributed noise but no bias to reconstructed images).  

RESULTS 

The NURBS-based simulations showed good agreement with the analytic simulations. The iterative TOF 

reconstructions appeared realistic and had few artifacts. Figure 4 shows non-TOF signal from test object 1, 

created after the simulation was complete by summing the TOF bins. Figure 5 shows radial-time slices of the TOF 

sinogram, essentially showing the test object after being subjected to binning and the timing uncertainty. Both 

have the expected appearance, as well as good agreement between the quadratic and NURBS-based projection.  

 

Figure 4: Noise-free emission data for quadratic projection (left) and NURBS-based projection (center) for test object 1. The difference is 

shown on the right. Here, the TOF dimension has been summed. Color windows are matched in all panes.  
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Figure 5: Noise-free emission data in the time-radial dimensions for quadratic (left) and NURBS-based (center) projection data. The 

difference is shown on the right. Color windows are matched in all panes. 

Figures 6 and 7 show the reconstructed PET signal.  

 

Figure 6: Time-of-flight reconstructions of test object 1 made with Duetto in MATLAB using settings for a Dicovery MI 3-ring PET/CT 

scanner. Noisy coincidences in the final simulations were: 17.6M prompts, 4.0M randoms, 3.7M scatters.  

 

Figure 7: For noise-free (left) and noise-added (right) simulations, time-of-flight reconstructions of the XCAT phantom made with Duetto 

in MATLAB using settings for a Discovery MI 3-ring PET/CT scanner.   

DISCUSSION  

The simulation of PET emission data with NURBS matches the precision of the previously validated quadratic 

projection for the simple test object. The XCAT phantom simulations work as expected.  

CONCLUSION 

The extension of ASIM to use NURBS-based objects as inputs, as well as the introduction of analytically 

computed time-of-flight sinograms, appears adequate to create highly detailed simulated PET images with 

modern clinical scanner modeling.  
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BACKGROUND AND PURPOSE 

Virtual Clinical Trials (VCT) play an important role in the design, evaluation and optimization of imaging devices 

and applications, as they constitute a method to forecast their potential clinical value. To design a VCT that 

effectively addresses a clinical question, it is essential to understand the specific design requirements, or ‘level 

of realism’ needed for each of the VCT components, which vary depending on the objectives of the VCT. 

Particularly in computational breast x-ray image acquisition platforms, accurately modeling spatial resolution is 

essential for replicating clinical scenarios that evaluate the detection and characterization performance of fine 

details such as microcalcifications or spiculated mass lesions. In addition to the x-ray transport process and blur 

originating from the image receptor, the shape and emission pattern of the focal spot impact spatial resolution, 

contribute to the loss of sharpness and contrast of fine details. Furthermore, those digital breast tomosynthesis 

(DBT) systems using a scanning protocol where the x-ray source moves during exposure, encounter additional 

geometric blurring caused by the apparent increase of the focal spot width. Thus, an accurate modeling of the 

focal spot and its motion is essential for evaluating their effect on detection and characterization performance 

of fine details in the breast. To create Full-Field Digital Mammography (FFDM) and DBT projection images from 

numerical phantoms, we developed a numerical model based on the CatSim SW platform [1] [2]. This 

computational model employs a cascaded workflow, raytracing techniques, and experimentally derived models 

[1] [2]. The model is intended for scintillator-based indirect energy-integrating detectors. In this work, we first 

explain the methodology used to model the finite focal spot and focal spot motion. To assess the accuracy of 

spatial resolution, the modulation transfer function (MTF) is used as metric. We evaluate the impact of the 

spatial sampling point density within the focal spot area and the pixel dimension of the oversampled image 

receptor matrix at different clinically relevant heights above the breast support table under both static and 

dynamic focal spot conditions. 

METHODS 

1. Numerical Image Acquisition platform 
Figure 12 shows a 1D representation of the cascade of steps employed in the numerical image acquisition chain. 

Only the key elements that impact spatial resolution are shown. The focal spot of our 2D and 3D breast x-ray 

imaging device is represented by an N x N array of source points uniformly spaced over a rectangular area on the 

anode track. For the simulation experiments presented here, N was varied from 3 to 16. Each point source is 

assigned an identical weight to emulate a square emission pattern. This model provides a good first-order 

approximation of the real emission pattern. The ‘x-ray path’ originating from each source point and passing 

through a test object is traced towards a pixel of the numerical oversampled image receptor array, where each 

oversampled pixel measures m x m. For the simulation experiments presented here,  was varied from 
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5m to 20m. After modeling the processes of x-ray photon absorption and energy integration in the detection 

layer of the image receptor (details not shown), the blurring caused by optical light photons in the scintillator 

layer is modeled by applying an empirically determined filter to the oversampled detected image. Following this, 

the integration of the light photons over the sensitive areas of the photodiodes is simulated by filtering the over-

sampled image in the Fourier domain with a 2D sinc-shaped kernel representative of the photodiode's aperture 

transfer function. Subsequently, the oversampled pixels are downscaled to the effective pixel size  (100um 

pixel size) through a decimation step. Finally, all electronic noise sources are modeled as signal independent 

additive white noise (not shown). 

 

 
Figure 12 1D representation of the numerical image acquisition chain in both the spatial domain and the Fourier domain highlighting only 

the modeling steps that impact the spatial resolution. Simulation results are shown on the RIGHT. 

Figure 13 illustrates the methodology to model focal spot motion in 1D. At first, a total of n points is allocated 

along the direction of focal spot motion. The distribution of these sample points, for both the focal spot size (F’) 

and the focal spot motion length (L), is determined by the ratio of the focal spot motion length to its width. 

More precisely, a number of sample points equal to ((n+1)/ratio+1), rounded up to the nearest integer, is 

allocated to the focal spot width. Similarly, an integer number of sample points equal to (ratio x (n+1)/ratio+1), 

rounded up to the nearest integer, is allocated to the focal spot motion length. The allocated sample points for 

both the focal spot size and its motion are evenly spaced and uniformly weighted. The emission pattern, 

resulting from the focal spot's motion, is obtained by convolving these two sample point distributions. 

Subsequent to the convolution, the resulting sample points are then resampled back to the initial total T, using 

linear interpolation for adjustment. Scan protocols without and with (0.6 to 1.0 mm) focal spot motion were 

designed.  
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Figure 13 1D representation of model used to simulate focal spot motion. 

1. Modulation Transfer Function 
The Modulation Transfer Function (MTF) at image receptor level was used as a measure to evaluate the spatial resolution 

performance of the system. The MTFs for the computational models were assessed using the standard edge object method, 

and these results were then compared to a theoretical MTF analytically described by Marshall N. in 2022 [3]. 

Theory 

The pre-sampled system MTF, 𝑀𝑇𝐹𝑝𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑓), can be written as: 

𝑀𝑇𝐹𝑝𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑓) = 𝑀𝑇𝐹𝑝𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑐 𝐹𝑆 (𝑓)  𝑀𝑇𝐹𝑝𝑟𝑒 𝑚𝑜𝑡𝑖𝑜𝑛 𝐹𝑆(𝑓)  𝑀𝑇𝐹𝑝𝑟𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟(𝑓) 𝑀𝑇𝐹𝑝𝑟𝑒 𝑝𝑖𝑥𝑒𝑙 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 (𝑓) 

Hereby, 𝑀𝑇𝐹𝑝𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑐 𝐹𝑆 (𝑓)  , 𝑀𝑇𝐹𝑝𝑟𝑒 𝑚𝑜𝑡𝑖𝑜𝑛 𝐹𝑆(𝑓), 𝑀𝑇𝐹𝑝𝑟𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟(𝑓), 𝑀𝑇𝐹𝑝𝑟𝑒 𝑝𝑖𝑥𝑒𝑙 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 (𝑓) are the pre-

sampled MTF contributions from the static focal spot, the focal spot motion, the blur from optical photons in the 

detector and the pixel aperture. The 𝑀𝑇𝐹𝑝𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑐 𝐹𝑆 (𝑓)  corresponding to a focal spot with a rectangular shape 

and uniform emission pattern at a certain height above the image receptor can be mathematically represented 

by sinc(DImageReceptor/DFS_Edge  FSoptical). DImageReceptor and DFS_Edge are the distances from the image receptor to the 

numerical edge object and from the focal spot to the numerical edge object, FSoptical is the apparent optical focal 

spot size at 45 mm distance from the chest wall side and laterally centered with respect to the focal spot width. 

𝑀𝑇𝐹𝑝𝑟𝑒 𝑚𝑜𝑡𝑖𝑜𝑛 𝐹𝑆(𝑓) can be mathematically represented by sinc(DImageReceptor/DFS_Edge  L). 

Numerical image acquisition experiment 

The numerical edge object was analytically defined and represented the physical edge MTF object according to 

the requirements of IEC 62220-1-2 for measuring the spatial resolution of mammography systems. This 

numerical edge object, designed with dimensions of 120 x 60 x 0.8 mm, was implemented to be composed of 

stainless steel. It was oriented at a 3° angle relative to the focal spot length and it was laterally centered with 

respect to the focal spot width. Image acquisition simulations of the edge object were performed placing the 

edge at various, clinically relevant heights (30, 45, 70 mm) above the numerical patient support. The source to 

image receptor distance was set to 660mm. Edge images were simulated using a 34 kVp Rh/Ag equivalent x-ray 

spectrum. The MTF were computed were computed using a method similar to that described by IEC62220-1-2 

[4]. 

RESULTS 

Figure 14 presents the MTF assessments from the simulation experiment alongside the analytically determined 

‘ground truth’ MTFs. The results are shown for an edge object positioned at various clinically relevant heights (3, 

4.5, and 7 cm) above the patient support table, considering scan protocols both with and without focal spot 

motion. In scenarios without focal spot motion, the MTF error margin is smaller than 0.01 across all frequencies, 
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irrespective of the focal spot point sampling density, at all edge object heights above the patient support. In 

scenarios with focal spot motion, the MTF error margin is smaller than 0.03 across all tested frequencies and 

edge object heights. For focal spot motions of 0.6mm, 0.8mm and 1.0mm, an MTF error < 0.01 is obtained at all 

frequencies and for all heights when using 16x16, 16x16 and 12x12 focal spot sample points, respectively. The 

pixel size of the oversampled numerical image receptor array has shown negligeable impact on MTF accuracy, 

with differences less than 0.7% observed within the 0 to 5 lp/mm range. 

DISCUSSION AND CONCLUSION 

We presented an evaluation of the impact of focal spot modeling on MTF accuracy. For the investigated 

conditions, we observed that accurate system MTFs can be achieved in the presence and absence of focal spot 

motion, even when employing a sparse focal spot sampling point density (3x3). Of course, the number of focal 

spot sub-sampling points should be tailored according to the requirements of each VCT. We opted for a uniform 

emission pattern as a simple yet effective initial approach, although the actual emission patterns of focal spots 

in mammography tend to slightly diverge from this. For scenarios involving continuous focal spot motion, we 

modeled the movement as linear and constant. This simplification may not fully capture some DBT designs 

where the actual trajectory is described by an arc rather than a straight line. Our analysis focused on assessing 

MTF accuracy specifically in the direction of focal spot movement, without considering effects in the 

perpendicular direction.  
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Figure 14 MTFs assessed from simulated images of numerical slanted edge test objects at varying heights (30, 45, and 70 mm) above the 

patient support table, examined using scan protocols with and without focal spot (FS) motion. The results are compared against analytical 

'ground truth' MTFs. Various focal spot sampling densities were utilized for the simulations. 
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Generalized Methodologies for Assessing the similarity 
and dissimilarity between two datasets 
Dhrubajyoti Ghosh, Joseph Y. Lo, Liesbeth Vancoillie, Fakrul Islam Tushar, Lavsen Dahal, Ehsan Samei 

Purpose: Virtual imaging trials are a crucial avenue for advancing the development and evaluation of 

imaging techniques in simulated environments. One fundamental aspect of replicating real-world data 

within virtual settings is ensuring that the covariates, or factors, within the virtual dataset closely 

resemble those found in the real world. This necessitates a thorough assessment of the similarity 

between these datasets, a process vital for the credibility and applicability of trial outcomes. 

Methods: To assess the similarity of two distributions, various metrics can be employed. The 

Kolmogorov-Smirnov Distance (KS) measures the maximum vertical difference between cumulative 

distribution functions, making it valuable for basic goodness-of-fit testing. In contrast, the Wasserstein 

distance, also known as the Earth Mover's Distance, provides a more comprehensive measure. It 

considers both the magnitude of differences and their spatial arrangement within the entire 

distributions, offering a more detailed perspective. We applied these measurands of variability to data 

from the National Lung Screening Trial (NLST) dataset, which includes CT scans and Chest X-Ray from a 

large group of human subjects.  NLST was assessed in terms of its similarity to a replica of the trial, 

named Virtual Lung Screening Trial (VLST). The similarity was assessed in terms of demographic 

information including age, education level, ethnicity, height, and weight. Both KS and Wasserstein 

distances were employed. 

Results: The measures revealed that there is no significant evidence indicating distributional 

differences between the NLST and VLST datasets. In essence, the variability in these datasets is 

statistically similar, enabling one to be used as a training dataset and the other as a test dataset. 

Needless to say, such conclusion is dependent on the attributes that are used as a basis of any 

similarity assessment. 

Conclusion: We are aiming to conduct similar analyses on virtual datasets, comparing them to the 

NLST database. This assessment aims to determine whether the demographics within the virtual 

dataset resemble those of the NLST dataset, facilitating the evaluation of detection methods in both 

datasets. By ensuring this similarity, virtual imaging trials can provide credible and insightful outcomes. 

Additionally, using these approaches, we can assess the similarity and dissimilarity between any two 

variables in a dataset. The methodology deployed here can be used both for the assessment as well as 

the design of similarity-aware trials. 
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Oxygen Effect on Tumor Response to Irradiation: 
Insights from GATE Simulation Studies 
Zakaria Ait Elcadi, Othmane Bouhali  

 

BACKGROUND AND PURPOSE 
The Oxygen effect plays a pivotal role in how tumor cells respond to irradiation. Tumor hypoxia has been 

acknowledged as a limiting factor in treatment response for many years. Diverse approaches to enhance the 

rate of tumor control have been experimented with, aiming to amplify the radical cascade 1. 

Cells with an oxygen partial pressure (pO2) below 8-10 mmHg are generally categorized as hypoxic 2 and exhibit 

greater radio-resistance compared to cells with normal oxy- gen levels (pO2 up to approximately 100 mmHg 2). 

This phenomenon can be quantified through the Oxygen Enhancement Ratio (OER), representing the ratio 

between the dose at a specific oxygen pressure and the dose at normal oxy- gen pressure that produces an 

equivalent biological effect ICRU Report 30: Quantitative Concepts and Dosimetry in Radiobiology 3. 

In this study, the dose distribution was assessed in a spherical tumor positioned at the center of the right lung. 

This tumor was generated using an XCAT phantom of an elderly woman, and various oxygen concentrations 

were considered. The evaluation was conducted using the GATE simulation code (V9.3) 4, employing the Monte 

Carlo method. 

 

METHODS 
The investigation into the impact of oxygen on dose distribution was conducted using a female XCAT phantom, 

featuring a spherical tumor with a 1 cm diameter positioned at the center of the right lung (figure 1). This 

selection was influenced by the effect of low-density material on a spherical tumor. 
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with a density comparable to that of soft tissue. Various levels of oxygenation were applied to the spherical 

tumor to assess its response under different oxygen concentrations. The study utilized previously validated 

phase specifications of the Varian Clinac IX for a photon energy of 6MV 5. The field size was fixed at 1.2x1.2 cm², 

employing removable jaws for a spherical tumor with a 1 cm radius, ensuring the tumor’s central placement 

within the irradiation field. Oxygenation levels applied to the tumor ranged from 5 to 80 mmHg. The XCAT 

phantom was positioned at a source-surface distance of 100 cm. Results were analyzed based on deposited 

energy and OER values relative to O2 pressure in mmHg, following a specific equation 6. 

 

Figure 15 Coronal view of the female XCAT phantom show a spherical tumor centered in the right lung with a diameter of 1 cm. 

 

RESULTS 
Nine simulations were conducted for the selected pressures in the initial phase of our study (figure 2). Figure (3) 

illustrates the deposited energy based on the O2 pressure in the spherical tumor, while figure (4) displays OER 

values across O2 pressures from 5 to 80 mmHg. The statistical error was a minimum of 2% for each simulation. 
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Figure 2 Coronall view of the female XCAT phantom, simulated in GATE and targeting the spherical tumor in the right lung, exhibit a 1 

cm diameter with a 1x1 cm² field size. 

 

 

Figure 3 Energy deposition for various O2 pressures applied to the spherical tumor. 

 

Figure 4 OER values are associated with each O2 pressure ap- plied to the spherical tumor. 

 



VITM 2024  252 
 

DISCUSSION  
The figure 3 indicate that the deposited energy increases as the O2 pressure grows, reaching a plateau at 60 

mmHg. Beyond this point, the ratio remains constant (>60 mmHg), as illustrated in the figure. The OER values 

relative to O2 pressure exhibit a linear growth up to 60 mmHg, followed by stabilization (figure 4). 

In summary, the figures lead to the conclusion that regions with low oxygen pressure necessitate 

characterization by low deposited energy, requiring a higher dose to achieve effects comparable to regions with 

normal oxygenation. This consideration extends to the same biological effects to be achieved and the specific 

environment of the tumor, influencing the choice of a region with low density for this study. 

 

CONCLUSION 

The aim of this study was to explore the importance and necessity of oxygen (O2) pressure in radiotherapeutic 

treatments. It was noted that the selected dosage for these treatments may differ, not dependent on the tumor 

and its location, but rather on the oxygen pressure within the tumor itself. This leads to the subsequent step of 

initiating a new study on physiological factors and biological effects that must be considered for tumors 

exhibiting hypoxia. Additionally, the study will examine the location of these tumors in relation to regions with 

varying densities, along with evaluating the dose received by neighboring organs. 
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ABSTRACT 

Accurate diagnosis and early detection of breast cancer rely on the correct interpretation of suspicious 

microcalcification clusters in mammographic images. This interpretation remains challenging due to the subtle 

nature and large variety of calcifications. 

Simulated lesion models can be employed to optimise imaging techniques, improve deep learning models, and 

facilitate a better understanding of breast lesions. However, existing modelling techniques often lack the 

capacity to capture the diversity present in real lesions or to generate models customized to specific cases. In 

this work we present an automated, flexible toolbox to generate microcalcification clusters with specific 

characteristics and based on breast textures in mammographic images. 

This toolbox provides a method to build three-dimensional (3D) cluster models utilizing geometrical shapes and 

morphological operations. Additionally, it includes a novel technique that employs a handcrafted radiomics 

analysis to create two-dimensional (2D) models for a specific 2D mammographic image. Considering the 

computed quantitative radiomics features, it determines a plausible location for insertion, and accounts for local 

breast textures in order to find possible individual calcifications and combine these into a cluster. Consequently, 

the simulated microcalcification cluster is relevant to the image, ensuring a seamless integration within the 

existing breast tissue. 

The toolbox’s interface guides the user through the parameter tuning process, allowing for either manual 

tuning, or the utilization of pre-determined settings for specific clinical calcification types. The ability to 

customise parameters related to the cluster characteristics enables the creation of models that range from 

regular to complex. The 2D generation method specifically guarantees the generation of a unique, realistic 

cluster for each image in a dataset. Such generated models are applicable for various tasks and are compatible 

with insertion in different types of mammographic images from multiple acquisition systems. Validation studies 

have confirmed the method’s ability to simulate realistic clusters and capture clinical properties when tuned 

with appropriate parameter settings. 
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