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Abstract
Computer assisted surgery (CAS) systems intraoperatively support the
surgeon by providing information on the location of hidden risk (e.g.
vessels, nerves) and target structures (e.g. tumors) during surgery. In
this way CAS techniques have been a major driving force for improving
patient outcomes for many applications such as orthopedic surgery
and neurosurgery. However, CAS is currently not used in the daily
clinical routine for laparoscopic interventions. The main reason for
this discrepancy are soft tissue deformations that make intraoperative
registration (and thus intraoperative navigation) difficult. In this work, a
novel, biomechanics based approach for real-time soft tissue registration
from sparse intraoperative sensor data such as stereo endoscopic images
was developed.
At the core of the method lies an accurate, yet real-time capable fi-
nite element (FE) model of the liver. For this purpose, a novel GPU
based multigrid finite element solver is presented. The solver is based
on a novel mapping scheme that allows to transfer displacements and
forces between unstructured, non-conforming, higher order meshes. In
order to achieve high efficiency on parallel hardware, a sparse approxi-
mate inverse approach is used for preconditioning and smoothing. By
pre-computing and subsequently adapting this operator to the current
deformation each time step, the approach becomes real-time capable.
In order to match the preoperative organ model to an intraoperative
partial surface, the novel Physics based Shape Matching (PBSM) scheme
is presented. This approach treats the non-rigid surface registration as
an electrostatic-elastic problem, where an elastic body that is electri-
cally charged (preoperative model) slides into an oppositely charged
rigid shape (intraoperative surface). In contrast to previous attempts at
biomechanically based registration, this novel physics based interpreta-
tion allows casting the shape matching problem into a single variational
formulation. It is also the first method that employs a non-linear, yet real-
time capable biomechanical model of the liver for registration purposes.
In a large validation study based on numerical and phantom data, it was
shown that the novel method outperforms state-of-the-art algorithms.
Further contributions of this work include methods for simulating tissue
cutting during the intervention as well as new validation tools for CAS
systems.
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The skill of writing is to create a context in
which other people can think.

— Edwin Schlossberg

1.

Introduction

Over the last decade computer assisted surgery (CAS) has become an
invaluable tool in clinical practice. CAS (sometimes also called im-
age guided surgery or computer assisted intervention) refers to using
computer-based methods during intervention planning and execution.
The main purpose of such systems is to intraoperatively support the
surgeon by providing information on the location of hidden risk (e.g.
vessels, nerves) and target structures (e.g. tumors) during surgery. In a
similar fashion as navigation systems in a car help drivers to reach their
destination in a fast and secure way, a CAS system guides a surgeon
during the intervention. Here, preoperative planning data based on 3D
tomographic images are used as a map of the patient. In analogy to the
satellite position sensor used in a car navigation system, sensor data such
as intraoperative imaging or tracking information is used to identify the
hidden structures of interest within the surgical site. This allows the
surgeon to remove tumors in an oncologically adequate manner while
simultaneously preserving the surrounding healthy tissue. CAS technolo-
gies are especially beneficial in the context of minimally invasive surgery
(MIS) as these procedures pose additional challenges to the surgeon such
as a small surgical field, difficult hand-eye coordination and loss of 3D
vision. In this context, CAS does not only help to reduce patient trauma
and recovery time, but also facilitates the development of new operating
techniques.
CAS methods are well established in the realm of neurosurgery and
orthopedic surgery and have improved patient outcome [GWL99] [YC06].
However, such techniques are not currently used in clinical daily routine
for most minimally invasive procedures in the abdominal cavity (so called
laparoscopic interventions). In this context, intraoperative guidance
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based on preoperative planning data remains a challenging problem. The
main reason for this are soft tissue deformations caused by respiratory
movement, heartbeat, pneumoperitoneum or surgical instruments. Due
to these deformations the initial planning data significantly differs from
the intraoperative patient anatomy. In order to accurately register the
planning data to the patient (and thus provide a meaningful guidance),
the soft tissue deformations have to be compensated in real-time.
For minimally invasive interventions, the available intraoperative data
that can be used for registration purposes is usually very limited. In stan-
dard laparoscopy the endoscopic video image is the only available data
source. With the advent of 3D monitors and robotic surgery systems,
stereo endoscopes have been introduced into clinical practice. These
systems allow reconstructing a 3D surface model of the surgical site
[RBK+12]. However, they only provide information about the organ
surfaces and not about internal motions (where the risk and target struc-
tures are located). Additional volumetric imaging modalities usually
generate a higher overhead in terms of time and overall costs. Laparo-
scopic ultrasound (US) probes provide a cheap, but real-time capable
image source [LVR+12]. However, not only is the resolution limited, but
the probe only provides information in a particular image slice. More
accurate imaging such as intraoperative C-arms do produce high resolu-
tion data, but require especially equipped operating rooms and special
protocols due to radiation exposure [FMHN08]. In summary, especially
these intraoperative sensors that integrate well into the surgical workflow
do not provide enough resolution on the soft tissue deformations in
time and/or space in order to provide meaningful guidance for many
interventions. That’s why the problem is also referred to as soft tissue
registration based on sparse data.
In this thesis a new approach is developed that seeks to track soft tissue
movements from sparse intraoperative sensor data by using a-priori
information about the tissue’s mechanical properties. At the heart of the
approach is a real-time capable biomechanical model based on the finite
element (FE) method. Different approaches are developed to recover
the displacements of risk and target structures in real-time from stereo
endoscopic image data. Furthermore, it is shown how the biomechanical
model can be adapted during the intervention and a set of new meth-
ods for evaluating soft tissue registration algorithms is presented. The
approach is applied to laparoscopic partial liver resection for evalua-
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tion purposes. However, it is important to point out that variations of
the method can be applied to many different laparoscopic soft tissue
interventions.

1.1. Research questions
The primary objective of this work was to investigate if biomechanically
based soft tissue registration is a viable approach for real-time intraoper-
ative image guidance based on sparse sensor data. This general research
goal can be broken down into the following different parts:

• How does the complexity of the elasticity model influence the
registration accuracy?
Many different biomechanical models have been proposed for dif-
ferent organs in the literature. They all differ in terms of complexity
and parameterization. Especially with respect to real-time require-
ments, the question arises how complex (and thus computationally
demanding) the model has to be in order to achieve a sufficient
registration accuracy. In particular, it has to be investigated if a
linear elasticity model is sufficient or if a non-linear model has to
be used. Furthermore, it should be estimated if patient-specific
parameter variations have a huge impact on the accuracy.

• Can the model be solved numerically in real-time on operation
room compatible hardware?
The elasticity based biomechanical model is discretized and solved
numerically using the FE method. Here, it has to be determined
which resolution is required in order to obtain sufficient accuracy.
Furthermore, new methods have to be developed in order to make
the computation more efficient. This in particular applies to the
selection of suitable element technology. Also, the real-time model
is much coarser than large-scale models typically used in engineer-
ing applications. It thus becomes feasible to use novel memory
heavy pre-computations to speed up the computations. Special
care has to be taken to design a suitable linear solver, as this is the
most expensive part of the computation. Finally, it is interesting
to investigate how the numerical performance can benefit from
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massively parallel hardware (general purpose graphics processing
units, GPGPU).

• How can the information obtained from sensor data be accu-
rately and efficiently imposed on the model?
The information obtained from intraoperative sensor data (e.g. dis-
placements of organ surfaces) is imposed on the biomechanical
model in terms of displacement boundary conditions and con-
straints. It is crucial for the registration accuracy that this is done in
an accurate way. In particular, the following points are of interest:
As points with known displacement do not necessarily coincide
with the node positions of the coarse FE mesh, an efficient way has
to be found to transfer these displacements. Also, the intraopera-
tive sensor data can contain a significant amount of noise. Here,
it is interesting to investigate how the biomechanical model can
be used for regularization when the constraints are imposed in a
soft way (e.g. through Robin boundary conditions). Finally, in a
typical setting the boundary conditions are not completely known
(e.g. the hidden side of the organs). Here, the question arises if it
is viable to approximate these boundaries with simple models (e.g.
zero displacement or zero traction).

• How can the biomechanical model be updated in an efficient
way during the intervention?
During many interventions the surgical scene changes significantly.
This is in particular true if tissue is resected. In this case the
changes to the organs have to be reflected in the biomechanical
model in order to continuously provide a meaningful guidance.
In the context of FE discretizations this means that the mesh has
to be changed. Real-time re-meshing along arbitrary geometries
(i.e. cut lines) is very challenging. In particular, the simulation can
become unstable if ill-shaped elements (so-called sliver elements)
are created. In this work, alternative methods are investigated that
can embed discontinuities and geometry boundaries into existing
grids without re-meshing. Instead, affected elements are enriched
with more complex, discontinuous shape functions.
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• What are suitable validation protocols and tools for non-rigid
soft tissue registration from sparse sensor data?
The validation of accuracy is a very important step towards a
thorough evaluation for computer assisted surgery systems. In
soft tissue interventions it is very complicated and sometimes
even impossible to obtain reliable in vivo ground truth data. For
this reason numerical simulations, organ phantoms and animal
experiments are used as a means for validating the accuracy of CAS
systems. A goal of this work is to develop a suitable validation
strategy for the development of non-linear registration algorithms.
In particular, tools for in silico and phantom based validation are
investigated.

1.2. Contributions

Starting from the aforementioned research questions, a set of novel
approaches, methods and algorithms has been developed. These include
an efficient FE scheme based on quadratic tetrahedra and a fast GPU-
based linear solver. Also, a novel physics-based shape matching approach
and advanced techniques for cutting simulations resulted from this work.
These algorithms and components are brought together into a novel
prototype for biomechanically based real-time soft tissue registration.
The most important contributions of this work on the algorithm and
system level are:

Algorithms

• Accurate surface embedding for higher order FE meshes: For
real-time deformable model simulation, high-resolution visualiza-
tions meshes have to be mapped to a low-resolution computational
grid. In this work, a novel mapping scheme was introduced that
generates smooth surface deformations and preserves local shape
even for low-resolution computational meshes. It can be used to
establish high quality mapping between higher order FE meshes for
visualization purposes or to build multigrid hierarchies [SLH+13].
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• Fast GPU based solving scheme: A novel multigrid scheme for
solving quadratic FE-models on the GPU was developed. In order
to achieve high efficiency on parallel hardware, a sparse approxi-
mate inverse approach is used for preconditioning and smoothing.
In order to make this operator real-time capable, it is pre-computed
and subsequently adapted to the current deformation each time
step (rotation warping). The approach is the first to use a GPU-
based multigrid scheme for solving real-time elasticity problems
on higher-order unstructured grids.

• Physics-based shape matching: The novel physics-based shape
matching (PBSM) approach can be used to robustly register intra-
operatively acquired surface meshes (e.g. from stereo endoscopic,
time-of-flight or ultrasound sensors) to preoperative planning data.
The key idea of the method is to describe the non-rigid registra-
tion process as an electrostatic-elastic problem, where an elastic
body (preoperative model) that is electrically charged slides into
an oppositely charged rigid shape (intraoperative surface). As the
technique is based on a preoperative volumetric FE model, it nat-
urally recovers the position of volumetric structures (e.g. tumors,
vessels) [SRB+14].

• FE methods for flexible discontinuity and geometry embedding:
The adaptation of finite element meshes to geometry changes dur-
ing the simulation (e.g. cracks, cuts) is challenging. In this thesis
approaches based on the extended FEM (X-FEM) and the discontin-
uous Galerkin FEM (DG-FEM) are explored that solve this problem
without re-meshing. In particular, a dynamic co-rotated X-FEM
formulation for arbitrary cuts and an efficient coupling of enriched
elements with the DG-FEM technique is presented. The meth-
ods can open up new approaches for embedding geometry into
non-conforming meshes [PSS+14] [SSDH13].

Systems
• Real-time biomechanical model for liver registration: Starting

from the available elasticity based liver models from the literature,
several simulation studies were run to identify a suitable model for
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real-time registration [STR+11]. It was found that a co-rotational
model based on quadratic tetrahedral elements offers the necessary
performance while maintaining sufficient accuracy [SRD+11].

• First prototype system for stable real-time FE based soft tissue
registration in the context of laparoscopic liver resection:The sys-
tem combines stereo endoscopic and tracking data to derive con-
straints for a real-time biomechanical model. The system supports
shape matching from pure geometric data for initial registration as
well as texture based tracking for continuous real-time guidance.
It was implemented as an extension to the MediAssist framework
[SSRD10] [SKW+12] [SRB+14].

• New set of validation tools for CAS: Mechanically realistic silicon
soft tissue phantoms were developed using parameter optimization
approaches on FE models. These organ phantoms can be included
in larger torso models to allow obtaining a reliable ground truth
data for soft tissue registration scenarios. Furthermore, the results
of this thesis contributed to a novel in silico evaluation tool for CAS.
The developed validation workflows and tools initiated the launch
of the open data validation platform www.open-cas.org [SRB+13].

• The Medical Simulation Markup Language (MSML): The MSML
not only offers a generalized and flexible description for biomechan-
ical simulation, but also for the workflow how the biomechanical
model is constructed from tomographic data. In this way, the
MSML can act as a middleware between all tools used in the model-
ing pipeline and thus greatly facilitates the prototyping of medical
simulation workflows for clinical and research purposes [SSS+14].

1.3. Outline
The aim of this thesis is to detail and discuss the developed methods that
have been outlined in the previous section. Due to the lack of established
textbooks in the realm of both soft tissue simulation and real-time finite
element methods, this text is self-contained. Thus, all major results of
this thesis can be understood without the need of consulting further
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literature. In order to strike a balance between readability and mathemat-
ical rigor, further literature will be referenced where appropriate. The
necessary fundamentals (e.g. elasticity theory, finite element methods,
solver technology) are not introduced in separate chapters, but rather
presented along the way where necessary to understand research results.
Naturally, the first chapters will contain significant amounts of these fun-
damentals, while subsequent chapters focus purely on research results.
The following chapters of this thesis are organized as follows:

• Chapter 2 outlines the concept of biomechanically based soft tissue
registration. For this purpose, some details on the medical example
application (i.e. minimally invasive partial liver resection) are given.
Furthermore, the specific components and techniques that have to
be developed in order to realize this approach are discussed.

• Systems that use similar approaches are presented in chapter 3.
Furthermore, the state of the art is discussed for all areas that are
affected by the research that has been conducted in this thesis.

• A concise introduction to elasticity and soft tissue simulation is
given in chapter 4. These fundamentals facilitate the numerical
analysis of suitable biomechanical liver models.

• Chapter 5 is dedicated to an in-depth introduction to the numerical
solution of elasticity problems using finite element methods. Also,
the efficient quadratic co-rotated tetrahedral FE formulation is
presented.

• Chapter 6 focusses on the presentation of a novel GPU based
FE solver. The necessary fundamentals in solver technology (e.g.
preconditioning, subspace and multigrid methods) are briefly intro-
duced. Then the components of the new solver such as an efficient
mapping scheme as well as highly parallel preconditioners and
smoothers are detailed.

• A first prototype for stable real-time FE based soft tissue regis-
tration in the context of laparoscopic liver resection is presented
in chapter 7. This includes the mathematical derivation of the
novel physics-based shape matching scheme as well as a thorough
validation of the system.
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• The developed methods for simulating surgical cuts are discussed
in Chapter 8. Based on an introduction to the X-FEM and the
DG-FEM it is shown how cuts can be modeled without re-meshing.
In particular a dynamic co-rotated X-FEM formulation for arbitrary
cuts and an efficient coupling of enriched elements with the DG-
FEM technique is presented.

• Chapter 9 is dedicated to the most important tools that have been
developed in the course of this research work and that are likely to
have an impact on the future development of soft tissue simulation
and registration techniques. These include validation techniques
based on mechanically realistic soft phantoms and in silico evalu-
ation tools, the web platform open-cas.org as well as the Medical
Simulation Markup Language (MSML).

• A brief discussion of the presented research results along with
some remarks about promising directions of future research that is
sparked by the results of this thesis is presented in chapter 10.





Every great and deep difficulty bears in
itself its own solution. It forces us to change
our thinking in order to find it.

— Niels Bohr2.

An elasticity based approach to
soft tissue registration
In this chapter, a novel approach for biomechanical model based soft
tissue registration is outlined. In order to understand the special chal-
lenges that are associated with CAS systems for laparoscopic surgery,
the first section will provide some background on laparoscopic partial
liver resection. This intervention will serve as the showcase application
throughout this thesis. In addition, the available intraoperative sensor
data sources are described. We then outline a basic scheme for the initial
registration of preoperative planning data with the patient in the OR and
show how progressive real-time registration can be performed based on
the initial alignment. The chapter concludes with an overview on the
components that are necessary in order to implement the approach.

2.1. Laparoscopic partial liver resection

2.1.1. Laparoscopic interventions
In contrast to conventional open interventions, laparoscopic surgery is
performed using long instruments that are inserted into the abdominal
cavity through small skin incisions (Fig. 2.1). In the context of many
interventions such as partial liver resection this approach has many
benefits for the patient. It leads to faster recovery and significantly
reduces complications and post-operative pain [RRA12]. However, due
to reduced mobility as well as difficult depth perception and hand-eye
coordination, minimally invasive interventions are especially challenging
for surgeons [KDE+12]. The fundamentally different operation technique
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and body posture require a significant training effort even for surgeons
who are experienced in conventional techniques. For this reason, complex
MIS interventions can greatly benefit from computer based assistance
systems. By supporting the surgeon during the intervention (e.g. through
the intraoperative visualization of preoperative planning data), the strain
on the surgeon can be reduced. This helps to increase the accuracy as well
as the quality of the intervention and the patient’s safety [SBvDS12].

Figure 2.1.: In order to perform laparoscopic surgery (left) the abdomen
has to be inflated with carbon dioxide (right) [©Heidelberg
University Hospital].

The novel registration methods developed in this thesis are exemplar-
ily evaluated in the context of laparoscopic partial liver resection. The
purpose of this minimally invasive intervention is the removal of liver
tumors. In a recent study on 2466 patients, Rao et al. compared laparo-
scopic partial liver section to the conventional open approach. They
showed that the laparoscopic technique leads to a reduced mortality rate,
less positive resection margins of malign operations as well as a reduced
amount of blood transfusions [RRA12]. Despite these results, the conven-
tional open surgery is the standard procedure in many clinical centers.
Among the reasons for the slow adoption of the MIS technique are the
more difficult operating technique, increased training requirements and
a more difficult tumor localization due to the heavily reduced tactile
sense [GAA+12]. Furthermore, the access to central liver metastases is
often difficult in the laparoscopic setting. Consequently, Nguyen et al.
found that 65% of all published literature on laparoscopic liver resec-
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tion deal with special cases that are easier to perform (45% are atypical
wedge resection and 20% are left lateral segment resections) [NGG09].
In this context, a CAS system could help to make central liver metastases
treatable in a minimally invasive way.

2.1.2. Liver anatomy
The liver is located in the upper abdomen right below the diaphragm
and is protected by the lower rib cage. It is the largest internal organ
and weighs about 1.2-1.4kg in healthy adult females and about 1.4-
1.8kg in adult males [Lip11]. Surrounded by the collagenous Glisson
capsule, the liver is an extremely vascular organ. Oxygen rich blood is
supplied through the Hepatic artery, while nutrient rich blood from the
gastrointestinal tract flows into the liver through the portal vein. The
blood returns to the heart through the left, middle and right hepatic vein
which coalesce into the vena cava. Due to the high amount of blood
flow, the liver is especially susceptible to metastatic tumors [Per07]. It
was discovered by C. Couinaud that the liver can be divided into eight
functionally independent segments [BCG+00]. During partial resection,
it is very important to keep enough segments alive in order to preserve
the functionality of the liver. That is why cut lines have to be placed
along the edges of the Couinaud segments. This requires very accurate
planning and execution, making liver surgery an excellent application
for CAS methods.

2.1.3. Hepatic motion
During free breathing, the liver is subjected to significant motion.
In a meta study, Clifford et al. found that the respiratory motion
strongly varies between individuals in terms of magnitude and direction
[CBLC02]. The most significant motion occurs in the cranio-caudal di-
rection with magnitudes ranging from 10 mm to 26 mm. It should be
pointed out that the liver does not undergo a pure whole organ trans-
lation, but is subjected to considerable non-rigid deformation. Thus,
peak displacements inside the liver can reach up to 34 mm and registra-
tion errors up to 15 mm occur, if a pure rigid registration is performed
[RMOZ04]. In addition to respiration induced motion, cardiovascular
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activity changes the position of the liver. However, with a magnitude of
less than 1 mm this effect is comparably small [KMAB04].
The hepatic motion during laparoscopic surgery is significantly different.
First of all, the abdomen is insufflated with carbon dioxide in order to cre-
ate enough operating space in preparation of laparoscopic interventions.
This so called pneumoperitoneum severely changes the intraoperative
position of the liver in comparison with the preoperative position during
CT imaging [FMHN08]. Thus, an initial non-rigid alignment is needed
at the beginning of the intervention in order to compensate this effect.
Furthermore, the liver is often moved from its original location using
laparoscopic instruments or retractors during surgery. This is the pri-
mary source of liver motion during the intervention and leads to large
deformations. Finally, the respiratory motion is strongly attenuated due
to the pneumoperitoneum.

2.2. Available intraoperative sensor data
By definition, laparoscopic surgery is not possible without an endoscope.
In clinical routine, monoscopic endoscopes are typically used. However,
starting with the adoption of the daVinci telemanipulation system, stereo
endoscopes became widely available (see Fig. 2.2) [MMD+04]. These en-
doscopes do not only provide the surgeon with a three dimensional view
on the surgical site (thus alleviating a major drawback of MIS), but they
also enable the development of powerful computer vision algorithms.
Based on the stereo images, it is possible to perform instrument and soft
tissue tracking [MY12]. Furthermore, a complete 3D reconstructions of
the surgical site can be obtained [RBS+12]. With the advent of affordable
and easy-to-use 3D monitors, adoption of stereo endoscopic technology
in daily clinical routine is increasing [SBKK12]. New developments such
as chip-on-the-tip and LED lighting help to continuously increase the
image quality and resolution. Thus, it is to be expected that stereo endo-
scopes will remain the primary sensor source for CAS in the laparoscopic
context in the near future. However, alternative sensors such as time-of-
flight endoscopes or structured light approaches exist, but are not used
in clinical practice yet [MHMB+13].
Accurate tracking of the patient and important surgery devices such as
needles, instruments or endoscopes is very important for every CAS
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Figure 2.2.: Stereo endoscope from the daVinci telemanipulation system
(left) [©Intuitive Surgical, Inc.] and optical tracking system
NDI Polaris Aurora (right) [©Northern Digital, Inc.].

system. A common approach is to use a stereo camera system and an
infrared light source to track small marker balls that can be attached to
surgical devices. These optical tracking systems such as the NDI Polaris
(see Fig. 2.2) achieve sub-millimeter accuracy and are used in many
commercial CAS systems (e.g. BrainLab [GWL99] for neurosurgery). A
major drawback of the optical tracking is the line of sight requirement.
This condition is often difficult to fulfill in the OR setting. That’s why
electromagnetic tracking systems are used for many interventions. How-
ever, they do not achieve the same accuracy as optical trackers and can
suffer from noise and distortion if metallic or electrical devices are within
the tracking range. Other promising tracking technology that hasn’t been
used in the OR yet are radio frequency identification (RFID) based chips
and small, wireless accelerometers.
In terms of volumetric imaging modalities, 2D laparoscopic ultrasound
(US) is often used for intraoperative guidance [LVR+12]. It is cheap,
provides real-time information and can be integrated into the surgical
workflow reasonably well. Information from 2D ultrasound probes can
be combined into 3D images for intraoperative soft tissue registration
and guidance [NHS+07]. However, 2D ultrasound has several draw-
backs. Not only is the field of view limited, but the trocar placement in
laparoscopic surgery can make it difficult to obtain a complete overview
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of the organ [LVR+12]. Furthermore, the image quality of US is much
lower if compared to CT and MRI due to a low signal-to-noise ratio and
reflection artifacts.
A very accurate way to obtain volumetric images is to use special OR-
compatible X-ray devices called C-arms. These systems are particularly
well suited in order to obtain an initial registration of planning data
[FMHN08] [KWG+13b]. However, this technology is still relatively ex-
pensive, it needs a lot of space in the OR and can only be used a limited
number of times in order to keep the radiation exposure low for patients,
surgeons and nurses.
The goal of this work is to research new model based techniques for soft
tissue registration based on limited intraoperative sensor data. These
methods ultimately aim at providing guidance without the invasive, ex-
pensive and/or time consuming use of additional complex intraoperative
imaging modalities. That is why throughout this thesis, all approaches
will be based on only stereo endoscopic and tracking data. However,
we point out that the developed techniques can easily be extended to
include other intraoperative data such as US.

2.3. Surface based registration

2.3.1. Initial registration
In this section we sketch a biomechanically based approach to register
planning data to the patient at the beginning of the intervention. This
technique relies on a biomechanical model of the liver which is built
from segmented CT or MRI data. During the intervention, the method
uses an intraoperative 3D surface model of the liver which is obtained
from the sensor data using suitable 3D reconstruction, image stitching
and texture based segmentation techniques. The goal is to align the
biomechanical model with the intraoperative surface. In other words, the
boundary conditions (i.e. forces or displacements on the surface of the
model) have to be determined in such a way, that the deformed model
matches the intraoperative surface as best as possible (see Fig. 2.3).
In this work we propose the physics-based shape matching (PBSM) ap-
proach to establish the shape correspondence between preoperative and
intraoperative data and to determine the appropriate boundary condi-
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Figure 2.3.: Scheme for initial alignment of preoperative planning data
based on tomographic imaging with intraoperative endo-
scopic images.

tions. More specifically, the non-rigid registration process is regarded
as an electrostatic-elastic problem, where an elastic body (preoperative
model) that is electrically charged slides into an oppositely charged rigid
shape (intraoperative surface). In other words, a suitable distance mea-
sure (Fig. 2.3) drives the deformation while the biomechanical model acts
as a regularization term. The scheme does recover the full volumetric
displacement field and does not need any known correspondences (i.e.
landmarks). However, any landmark based approach can be used to
enhance the accuracy of PBSM by connecting the known landmarks with
stiff springs.
In the intraoperative setting, organ surfaces are only partially visible.
Naturally, the question arises how the boundary condition on the hidden
surface should be modeled. A straight forward approach is to use a-
priori information about the movement of organ surfaces. In accordance
with results from the literature ([CMG+07], [HDP+13]), we fix areas with
negligible motion during the registration. In order to further enhance the
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registration accuracy, the PBMS approach can be used in an optimization
scheme to estimate the unknown boundary conditions. For this purpose,
different characteristic surface regions should be defined (e.g. surface
connected to diaphragm). Then the unknown surface forces can be
assumed to be constant on each surface in order to avoid an ill-posed
inverse problem.
As explained in the previous section, the liver is still affected from
respiratory motion in the laparoscopic setting. As this movement is
comparatively small, it will be neglected in the evaluations that are
presented in this thesis. As the respiratory movement is periodic, the ex-
tension from the static setting to dynamic boundaries is straight forward.
Using the signal from the medical ventilator, a dynamic model of the
intraoperative liver surface can be spatio-temporally registered with the
preoperative data. This registration results in dynamic (moving) initial
boundary conditions.

2.3.2. Landmark based progressive real-time registration
Having established an initial correspondence between intraoperative
and preoperative data (and thus having computed the initial boundary
conditions), texture based soft tissue tracking can be used to determine
the displacement on the liver surface (Fig. 2.4). Although it is possible
to directly impose the observed displacements as Dirichlet (pure dis-
placement boundary conditions), it is usually a better idea to impose
them in a weaker way as Robin boundary conditions. Physically, this
can be interpreted as connecting the landmarks through springs with the
organ’s surface.

2.4. A system for biomechanically based soft
tissue registration

In this section, we discuss the basic components that have to be developed
in order to design a system that implements the presented registration
approach. The discussion in particular links these components to the cor-
responding chapters in this thesis and thus serves as a natural extension
to the thesis outline given in section 1.3.
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Figure 2.4.: Scheme for progressive real-time guidance using texture
based feature tracking and biomechanical modeling.
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Fig. 2.5 shows the main system components. At the heart of the approach
lies a real-time capable, accurate biomechanical model. The first step in
the development is the identification of a suitable elasticity model which
is extensively discussed in chapter 4. A critical challenge is the robust,
real-time numerical solution of the identified model. In order to achieve
that goal, efficient FE discretizations have to be employed (see chapter
5). Furthermore, new linear solvers have to be developed that are able to
harness the computing power of massively parallel hardware (chapter
6). The most important component of the system is the actual registra-
tion of the preoperative biomechanical model with the intraoperative
sensor data. This means computing the initial boundary conditions and
subsequently adapting the boundary based on texture tracking. In the
developed prototype system, this is achieved using the novel physics-
based shape matching scheme (chapter 7). In practice, the construction
of suitable biomechanical models from preoperative tomographic data
is very time consuming. That is why new tools for simplifying this
biomechanical modeling workflow can significantly speed up develop-
ment and validation of biomechanically based approaches (chapter 9).
Finally, the biomechanical model has to be adapted according to changes
in the surgical scene. In addition to current force and displacement
boundary conditions, this often means adapting the boundary of the
geometry itself (e.g. due to cutting). Possible solutions to this problem
are discussed in chapter 8.
In addition to CAS system design, its accurate validation is crucial for
further development and clinical use. In this context it is particularly
challenging to generate reliable and repeatable validation set-ups with
known ground truth deformations. In this work, the validation is based
on sophisticated phantoms (e.g. chapter 7). A detailed view on me-
chanically accurate soft tissue phantoms is given in chapter 9. In the
same chapter we discuss the impact of open validation data and suitable
platforms for data sharing and benchmarking.



If a man will begin with certainties, he shall
end in doubts; but if he will be content to
begin with doubts he shall end in certainties

— Francis Bacon3.

State of the art
In this chapter we discuss the state of the art for all research areas that
are relevant to this work. Initially, possible medical applications in the
realm of kidney, prostate, heart and liver surgery and their specific chal-
lenges are discussed. Along the way current CAS approaches for these
interventions are presented with a strong emphasis on biomechanically
based methods. As surface-to-surface registration (or shape matching)
is an important component in the system, the relevant background for
rigid and non-rigid surface matching is subsequently discussed. It has
already been pointed out that the focus of this work is to develop suit-
able biomechanical models for the registration process. Thus, typical
approaches to biomechanical modeling for abdominal organs will be
discussed and an extensive review on current real-time FE modeling
techniques is presented. Current methods for simulating surgical cuts are
subsequently introduced. Finally, we take a look at validation techniques
for CAS systems.

3.1. Computer assisted interventions
Computer based intraoperative image guidance helps surgeons to pre-
cisely visualize and target the surgical site by providing critical informa-
tion during the intervention. Typically, this means to intraoperatively
display preoperative planning data using suitable visualization tech-
niques such as augmented reality [BFMR08]. Although this approach is
well established in orthopedics and neurosurgery, it is still not widely
used in the laparoscopic setting. Both Peters et al. [PC08] and Cleary et
al. [CP10] identify the difficult compensation of soft tissue movements
as a primary reason for this development.
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3.1.1. Neurosurgery

In order to provide meaningful computer guidance during craniectomy,
the arising nerve tissue movements (brain shift) have to be compensated
[SSND01]. In this context, biomechanical models have first been applied
to intraoperative registration. Warfield et al. presented an algorithm
based on a linear elasticity model [CDT+05]. A stereo camera system
is used to derive the displacement on the brain’s surface and the finite
element method is employed to solve the ensuing boundary problem.
The group was able to demonstrate in a patient study that the registration
error could be reduced from 7.4 mm to 1.8 mm if compared to a rigid
registration technique [ACW+07]. Miller et al. have improved on this
work by exploring more elaborate biomechanical models [Mil00]. In par-
ticular, they used a non-linear, patient-specific biomechanical model for
brain shift compensation [WMKW07]. When compared to intraoperative
MRI measurements, the registration showed a maximal error of 1 mm.
The group also presented a very interesting comparison of different ma-
terial models in order to estimate the influence of the model complexity
on the registration result [HWM06]. The study shows that viscoelastic
effects have only minimal impact on the solution. However, there is a big
difference between a geometric non-linear (and thus rotation-invariant)
model and a linear material model. Thus, it can be concluded that the
typically used linear models limit the obtainable registration accuracy
for the brain shift problem [WHM09].

3.1.2. Laparoscopic partial nephrectomy

For partial nephrectomy (partial resection of the kidney) only an initial
registration is necessary as soft tissue movement during the intervention
is minimal. In this context Nakamura et al. presented a manual registra-
tion approach in order to generate an augmented reality overlay in the
endoscopic video [NNZ+10]. An improved method was developed by
Pratt et al. [PMV+12]. Here, the surgeon picks a landmark in the preop-
erative mesh using ray intersection and then selects the same landmark
in the video image. By using a stereo endoscope, the system can then
derive the intraoperative 3D point and matches it to the preoperative
data. The final rotational alignment is done manually using a special 3D
input device. The work also includes a hardware platform for displaying
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input device. The work also includes a hardware platform for displaying

augment reality visualization on the daVinci telemanipulation system.
One possibility to automate the registration step is to use small navi-
gation markers around the structure of interest. Intraoperatively, these
markers are initially registered to the planning data using volumetric
imaging. Baumhauer et al. presented such a system for computer as-
sisted partial nephrectomy [BFMR08]. They use 4 navigation markers
and a Siemens Arcadis C-arm device for intraoperative registration. The
markers are subsequently tracked in endoscopic images in order to gen-
erate an overlay image in the endoscopic view. An in silico and in vitro
evaluation of the results showed good tracking stability and reasonable
accuracy of the approach. For a recent review on CAS methods in the
context of partial nephrectomy we also refer to Hughes-Hallett et al.
[HHMM+13].

3.1.3. Laparoscopic prostatectomy
The resection of tumors in the prostate (prostatectomy) is a common
use case for robotic surgery. In 2012, around 80% of prostatectomies
in the US were performed using robotic assistance [SHHM+13]. Typi-
cally, diagnosis and preoperative planning is done based on magnetic
resonance (MR) imaging [HAT+12]. One possibility is to additionally
use intraoperative MRI for guidance [PFtH+08]. However, this is not
only very expensive, but the intraoperative MRI is of much lower quality
than the preoperative images. Furthermore, image acquisition is slow
and MR compatible operating equipment has to be used. In contrast,
intraoperative 3D transrectal ultrasound (TRUS) is comparably cheap,
easy to use and provides real-time data on the surgical site. In order to
use MR based preoperative data in this context, it has to be registered
to the TRUS image. In addition to manual registration [SKX+08] several
automatic registration approaches have been proposed for this purpose.
Alterovitz et al. proposed a FE based technique [AGP+06]. For this
purpose they employ a 2D linear elastic FE model for each segmented
MRI slice. The boundary conditions as well as material parameters
are estimated by using a steepest descent optimization algorithm on
top of the biomechanical model. Crouch et al. presented a method to
register segmented prostate surfaces [CPC+07]. The approach makes
use of medial shape models in order to get compute an initial guess of
the boundary conditions. The accurate boundary conditions are then
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Figure 3.1.: FE based registration of MR slices for soft tissue registration
in the context of prostatectomy (right) [AGP+06] and manual
overlay of a tumor and a vessel during laparoscopic partial
liver resection (right) [NSMM11].

estimated using a Nelder-Mead simplex search algorithm. More recently,
Hu et al. used biomechanical modeling to learn a statistical shape model
(SSM) that represents all possible deformations and used the SSM to
derive a dense deformation field from the US sensor data.

3.1.4. MIS at the heart
For minimally invasive interventions at the heart, image guidance based
on preoperative data is still in in development state. One possibility is to
use US imaging of the heart (echocardiography) for guidance [KVPP10].
An interesting research area in this context seeks is the motion compen-
sation of the beating heart’s surface using robotic technology. The idea
behind this methods is to track the movement of the heart’s surface in
video images [SY07]. In order to robustly estimate dense displacement
fields on the heart, pseudo-physical models such as thin plate splines
[RPL08] or finite element based biomechanical models can be employed
[BPH11].
Pratt et al. presented a biomechanically based approach for real-time
intraoperative soft tissue registration for MIS interventions at the heart
[PSVSY10]. They use temporally resolved 4D-CT data in order to build a
3D model of the heart’s movement. The forces on the heart’s surface are
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then determined using a FE model. Instrument-induced displacements
on the surface are obtained using feature tracking in stereo endoscopic
images and the total deformation of the organ is finally computed by
superimposing the tracked displacements with the previously computed
forces. For this registration process, Pratt et al. use a non-linear biome-
chanical model which is solved using FE and explicit time integration. A
big drawback of this method is the poor stability of the time integration
technique. Thus, it is not possible to reliably simulate all deformations
that typically arise during an intervention.

3.1.5. Conventional liver surgery

The group of Cash et al. has investigated biomechanical model based
compensation of soft tissue movements during open liver interventions
[CMS+05] [CMG+07]. They use a laser range scanner in order to obtain
an intraoperative surface of the liver. This surface is then imposed
on a linear elasticity FE model using so called closest point boundary
conditions: Here, the intraoperative surface is first rigidly registered to
the preoperative model. Subsequently, the position of each FE node on
the closest point boundary is set to the displacement of the closest point
in the intraoperative surface mesh. If only the displacement in normal
direction is imposed, the boundary of the FE model is free to slide along
the intraoperative surface. In this way an exact match can be computed
through an iterative process. This approach was enhanced by Dumpuri et
al. and Simpson et al. [DCDM10] [SDJM12] in two critical aspects. First,
the initial rigid registration is performed using the weighted patch ICP
(see previous section) in order to improve the stability and accuracy of the
process. Furthermore, the correspondences between the intraoperative
surface and the FE mesh are established by solving a Laplace equation
on the surface of the undeformed FE grid. More recently, Rucker et
al. showed an approach to estimate the boundary conditions on the
unknown surface [RWC+13]. They describe the boundary conditions in
terms of a bivariate polynomial form and use a Levenberg-Marquardt
procedure to optimize its position. In the context of open liver surgery,
the liver is usually de-mobilized. Thus it is only necessary to derive an
initial match between preoperative and intraoperative data. That is why
the presented algorithms are not aimed at progressive real-time motion
compensation.
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3.1.6. Laparoscopic partial liver resection
The design of CAS systems for laparoscopic interventions at the liver is
especially difficult. Here, it is not only necessary to obtain an accurate
initial registration, but it is also necessary to compensate ongoing tissue
movements due to instruments and respiration in real-time. Nicolau et al.
showed that manual overlays can be feasible if the field of view is very
limited. However, they identify the automatic, progressive registration
during the intervention as a central building block for a CAS system in
the context of laparoscopic liver surgery [NSMM11]. The most common
approach to intraoperative guidance for liver surgery is to use ultrasound
as an additional intraoperative modality. Nakamoto et al. equipped a
laparoscopic 2D US probe with a magnetic tracking marker [NHS+07].
With this setup, they were able to register the 2D slices spatially and
temporally and obtain a 4D dataset of the liver. A similar approach
was presented and evaluated by Sahin et al. [SBKS14]. Instead of regis-
tering preoperatively obtained tomographic data to the intraoperative
image, they directly segment the tumor in the obtained US data. On
big drawback of this approach is that it is not possible to generate an
intraoperative visualization of important planning data such as cut paths
or the position of important vessels. For more information on the use of
laparoscopic ultrasound for abdominal soft tissue interventions we refer
to the review paper by Lango et al. [LVR+12].
Intraoperative X-ray imaging by means of a C-arm system has also
been proposed to initially align the intraoperative surgical site with
preoperative data [FMHN08] [KWG+13b]. However, this approach does
not only require complex intraoperative imaging, it also exposes patients,
physicians and nurses to radiation. Furthermore, this technique does not
allow for progressive real-time tracking of soft tissue deformations.
More recently Haouchine et al. presented a biomechanically based
approach for real-time liver registration [HDP+13]. They use a stable
co-rotational model in conjunction with implicit time integration. In
this way, the model is sufficiently accurate and stable. They show that
texture based tissue tracking can be used to maintain correspondences
between preoperative and intraoperative models for short periods of
time. However, not only is a necessary initial registration missing in
these attempts, but the method is also very susceptible to modifications
of the surgical scene (e.g. blood).
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3.1.7. Radiation therapy
In the context of radiation therapy, soft tissue motion compensation is
a highly relevant research area for treatment areas such as the lungs or
abdominal organs. Here, we only mention these approaches that are
methodically relevant to this work. A simple, yet efficient approach to
compensate respiratory induced motion was introduced by Hostettler
et al. [HNF+06] [HNS+08]. This technique uses an incompressibility
assumption for the abdominal organs in order to derive a dense dis-
placement field. Although only a simple phenomenological approach
is used, the reported errors are less than 3 mm. A more elaborate ap-
proach is used by Brock et al. in order to register tomographic images
in inspiration and expiration [BSD+05]. They use the commercial soft-
ware Hypermorph in an iterative scheme in order to derive boundary
conditions for a FE elasticity model.

3.2. Surface registration and shape matching
Many types of intraoperative sensor data such as stereo endoscopic, time-
of-flight or laser range scanner data can be used to reconstruct 3D surface
models of the surgical site [Sto12] [DCDM10] [RBS+12] [MHMB+13]. In
this context non-rigid registration of two triangular meshes (sometimes
referred to as shape matching or shape correspondence) has to be performed
in order to provide image guidance. The shape matching is especially
challenging in the intraoperative setting due to noisy sensor data, only
partially visible surfaces, ambiguous shape descriptors and the require-
ment to keep the computation time low.
The registration problem can be tackled by directly searching for pairwise
correspondence, by first computing an aligning transformation between
the two shapes or by an iterative combination of these approaches (hybrid
methods) [KZHCO10]. The iterative closes point (ICP) algorithm uses
a simple, yet efficient hybrid scheme for rigid point cloud registration
[YM92]: For each iteration, correspondence is established using the
nearest-neighbor relationship. The best-fit transformation is subsequently
derived by minimizing the distances of corresponding points in a least-
squares sense. Although the ICP is guaranteed to converge, it often
converges to a local minimum and not to the global best-fit solution.
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Thus, a good starting pose is crucial for the algorithm’s performance.
Several improvements have been made to address this problem [RL01]. A
good approach is to directly establish correspondence pairs (e.g. through
graph matching [dSGF+12] or voting techniques [LF09]) in order to
compute a good initial pose before running the ICP. As demonstrated in
the weighted-patch ICP variant, it is also possible to include landmark-
based techniques directly into the ICP formulation [CCD+08].
For non-rigid shape matching a dense set of corresponding feature points
has to be found. Additionally, the global consistency of a non-rigid
transformation is usually ensured by adding a regularization term to
the minimization criterion [KZHCO10]. Different types of regularization
(e.g. geodesic distance, transformation similarity) have been proposed in
the literature [KZHCO10]. Although deformation based regularization
measures have been investigated [CR03] [ZSCO+08] no attempt has been
made thus far to use a biomechanical model for that purpose.
An interesting approach to point set registration was presented by Myro-
nenko et al. [MS10]. They treat the registration process as a probability
density estimation problem. The problem is solved by fitting Gaussian
mixture model centroids (first point set) to the data (second point set)
by maximizing the likelihood. This approach called coherent point drift
algorithm was extended to include non-rigid matching by using a reg-
ularization term that ensures the smoothness of the deformation. For
an extensive review of current rigid and non-rigid surface registration
techniques we refer to Tam et al. [TCL+13].
In this thesis the novel physics based shape matching algorithm is pro-
posed. We describe non-rigid surface registration as an electrostatic-
elastic problem, where an elastic body that is electrically charged (preop-
erative model) slides into an oppositely charged rigid shape (intraopera-
tive surface). The idea of using electric potentials to match objects has
already been explored for rigid alignment [CSLY01] and in the context
of shape recovery [JWR04].
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3.3. Biomechanical modeling of
abdominal organs

3.3.1. Elasticity based material models
Many different continuum mechanics based material models with vastly
different complexity levels have been proposed for soft tissue. In con-
trast to the simple linear models that have been used in the previously
presented registration approaches, accurate soft tissue simulation usu-
ally requires non-linear modeling [Fun93]. Models have been proposed
for many organs and tissue types such as the liver [NMHB04] [RES10]
[KS05] or the brain [MC97] [Mil00]. The dynamical behavior of soft
tissue is typically modeled using viscoelastic approaches. The models
are usually parameterized by subjecting organs to pre-defined forces and
measuring the resulting deformation using volumetric imaging. In this
context, some methods have been proposed for in-vivo analysis of the
tissue. These approaches allow to determine a patient-specific parame-
terization during the intervention. Jordan et al. showed how a parameter
identification technique on top of a finite element model can be used to
parameterize a porcine liver model from 3D ultrasound data [JSZH09].
During the in vitro experiment the group used artificial perfusion in order
to mimic in vivo conditions. A similar approach based on a stereo camera
system instead of 3D US was presented by Lister et al. [LGD10].

3.3.2. Biomechanical workflow
Using elasticity theory, the continuum mechanics based models can
be mathematically formulated as a boundary value problem. This is
typically solved numerically using discretization techniques (e.g. the
FE method) that require a volumetric computational grid to be gener-
ated. This workflow consists of several stages: Segmentation, surface
meshing, mesh cleaning, volumetric meshing, definition of boundary
conditions and material properties. Different software tools exist for each
of these steps. There are many established open-source packages for seg-
mentation [PHK04] [TSF+07] [WVW+05], mesh processing [CCC+08],
volumetric meshing [FP09], biomechanical simulation [FDD+12] and
post processing [HAL04]. Commercial CAE packages such as Materialise
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Mimics and 3matics, ABAQUS and Ansys are also frequently used in
biomechanics applications.
Some software packages combine segmentation, meshing, simulation
and post-processing capabilities into a single application [MEAW12]
[PHK04]. Furthermore, the Monitor Markup Language (MML) was
integrated into the CamiTK framework in order to facilitate the compar-
ison between different simulation backends and modeling approaches
[FDKP12]. However, currently there is no modeling language that can
represent the whole biomechanical modeling workflow. Furthermore, the
presented systems are not easily expandable without in-depth knowledge
of the respective framework.
Some simulation frameworks like SOFA use elaborate XML-based for-
mats to model biomechanical simulations [FDD+12]. However, there
is currently no standardized format for describing material properties,
boundary conditions or simulation parameters. During the development
of the medical simulation markup language (MSML) that is presented in
this thesis, we looked at the following markup schemes: The Virtual Real-
ity Modeling Language is an XML-based description for physical objects
[CB97]. In the medical field, the Medical Reality Modeling Language can
represent typical data arising in image-guided surgery [GNK+01]. The
Surgical Simulation and Training Markup Language (SSTML) describes
surgical workflows and organ models for surgery training [BTPE06]. In
the context of biomechanical simulation, the Physical Model Language
(PML) was designed to achieve a unified formulation of both FE and
mass spring models [CP04]. It should be pointed out that, in contrast to
MSML, none of the presented approaches allow for flexible extension
(e.g. towards new material models) or compatibility checking.

3.4. Real-time finite element modeling

3.4.1. Model-order reduction techniques
One possibility to simulate non-linear, viscoelastic models in real-time is
to rely on extensive pre-computations. This approach is taken by model-
order-reduction techniques based on eigenvalue computations [BJ05]
[NACC08] or statistical analysis [KRS09] [MKSN+12]. Clements et al.
even propose to build an atlas for all deformations that can occur during
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an intervention and to compute the intraoperative solution through linear
combinations of these pre-computed deformation patterns [CDC+07].
All these approaches have the big drawback of becoming invalid as soon
as the model is substantially changed (e.g. due to surgical cutting) during
the intervention. Furthermore, it is difficult to predict the soft tissue
deformations caused by surgical instruments.

3.4.2. Explicit time integration

One method for directly solving the biomechanical model in real-time
was presented by Miller et al. The group used a FE approach in the
total Lagrange formulation in conjunction with low order elements and
an explicit time integration scheme (total Lagrangian explicit dynamics -
TLED) [MJLW07]. Joldes et al. presented a extension of the approach
that significantly reduces the volume locking effect [JWM08]. Taylor et
al. demonstrated the inherent parallel nature of the algorithm with an
efficient implementation on graphics hardware (GPU) [TCO08] [TCC+08]
[CP08].

3.4.3. Fully non-linear models with
implicit time integration

The explicit time integration scheme is only stable, if the time step is
sufficiently small. Depending on the boundary conditions, this stable
time step can become extremely small, thus rendering the method very
inefficient despite its small computation time per time step. In contrast,
the time step can often be several orders of magnitudes larger if implicit
time integration is used.
However, a discrete formulation of non-linear elastic models based on
an implicit time integration technique requires a non-linear system solve
during each time step. This typically means an iterative solve of linear
systems (Newton-Raphson approach) and re-computing the stiffness ma-
trix for every iteration. The multiplicative Jacobian energy decomposition
(MJED) approach presented by Marchesseau et al. allows for a very fast
computation of the stiffness matrix. However, the approach still needs
several linear system solve per time step.
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3.4.4. Corotated finite elements

Corotated finite elements offer a promising alternative to fully non-linear
elasticity models [FH05]. The idea of this approach is to extract the
rotational component of the deformation gradient and then use a lin-
ear material law. The resulting formulation is rotation-invariant, but
only requires one linear system solve per time step. In the realm of
computer graphics corotated FE have become an established method for
physically and visually accurate interactive simulation of deformable
models [HS04] [MG04]. It is well known that quadratic tetrahedra per-
form much better than linear tetrahedral elements in many engineering
applications [CK92]. This is in particular true for the simulation of in-
compressible objects. However, despite the widespread use of FE based
simulations in computer graphics, only three groups have investigated
quadratic volumetric FE in the context of real-time deformable models
[KMBG09][MTPS09][WKS+11]. They all concluded that higher order el-
ements are superior to linear elements in terms of speed and accuracy.
The primary reason that prevents the use of higher order FE methods
for real-time deformable model simulation is the much more difficult
integration into the visualization pipeline. In addition to a more diffi-
cult grid generation, it is in particular challenging to accurately map
high resolution surface meshes to the computational grid. Weber et
al. showed that basis functions in Bernstein-Bézier form yield a high
quality embedding [WKS+11]. However, the presented approach did not
make use of curved, isoparametric elements. Mezger et al. showed that
isoparametric FE clearly improve the geometric approximation of coarse
computational meshes [MTPS09]. They use a special meshing approach
to make sure that all FE nodes lie on the surface mesh. If the geometry
approximation of the computational grid is sufficiently close, this allows
extrapolating the displacements to surface points outside the FE mesh
without visible artefacts. A straight forward technique to avoid extrap-
olating displacements to points outside the FE mesh, is to completely
submerge the high resolution surface mesh into the computational grid
[LST09]. Unfortunately this approach is very inaccurate in comparison
with boundary conforming FE meshes [ZSTB10].
The novel mapping scheme that will be presented in this work is moti-
vated by developments in the field of shape editing techniques. There,
both the pyramid coordinate scheme developed by Sheffer et al. as well as
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the Green Coordinates introduced by Lipman et al. use a representation
that includes the surface normal [SK04] [LLCO08].

3.4.5. Fast linear solvers
During the simulation, the linear system solve (and the update of the
stiffness matrix if necessary) is the most expensive part of the simulation.
Therefore, a fast linear solver is key to achieving real-time performance.
Multigrid schemes have proven to be very efficient solvers. Consequently,
it has been shown that deformable models can be efficiently solved
using multigrid schemes on structured hexahedral grids [DGW11a].
Although this approach allows to simulate large models in real-time, a
lot more degrees of freedom are necessary in comparison with boundary
conforming unstructured FE grids [ZSTB10]. An alternative formulation
that uses unstructured tetrahedral grids and transfer operators based on
barycentric mapping was developed by Georgii et al. [GW08]. However,
volume locking of linear tetrahedral elements can severely degrade the
performance of this type of multigrid scheme.

3.4.6. GPU-based finite element solvers
It is especially challenging to run linear solvers on massively parallel
hardware (graphic processing units - GPU). Allard et al. presented a
matrix-free implementation of a GPU based conjugate gradient (CG)
solver [ACF11]. Weber et al. used a novel GPU-compatible stiffness
matrix assembly technique [WBS+12]. Although a pure CG solver can be
very efficiently implemented on the GPU it can become very inefficient
for higher resolution meshes if used without a preconditioner. However,
only the simple Jacobi preconditioner can be readily used in a GPU
framework. More powerful preconditioners such as incomplete Cholesky
factorization (IC) or incomplete LU factorization (ILU) techniques are
not only expensive to compute, but also have to be applied in a recursive
fashion. An interesting alternative is the factorized sparse approximate
inverse preconditioner (FSAI) [KY93]. This preconditioner is applied by
a simple sparse matrix-vector multiplication (SpMV) which can be very
efficiently carried out on the GPU. Its main drawback is the very high
set-up time. In this work, we will present an approach to pre-compute
the FSAI preconditioner and adopt a rotation warping scheme to adjust
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the preconditioner every time step. A similar scheme was previously
proposed by Courtecuisse et al. [CAD+10].

3.4.7. Distributed computing
A possible solution for accelerating biomechanical simulations (espe-
cially if run in a context of a large CAS system) is the distribution of the
computational workload over several workstations. Chrisochoides et al.
showed how grid computing can help to reduce registration times during
image guided neurosurgery [CFK+06]. However, for many interventions,
the intraoperative navigation has to be updated in real-time (up to 25Hz).
Thus, the question arises if distributed computing can actually speed up
the image guidance in this scenario, or if the gain in processing power is
offset by the additional delay for the inter-workstation communication.
Several techniques have been developed for parallelizing applications
over different computers. The message-passing interface (MPI) is used
in high-performance computing on tightly coupled large-scale computer
clusters [GLS99]. A much more flexible approach is offered by the com-
mon object request broker architecture (CORBA) [Vin97]. This standard
allows exchanging data and remote method calls between programs
written in different programming languages and running on different
computers. However, this flexibility results in a complex architecture
and difficult usage. The simple object access protocol (SOAP) relies
on an XML message format to offer a simple, but very flexible access
to distributed computing [BEK+00]. The drawback of this approach is
that it is significantly slower than CORBA. This is due to the additional
time that is required to parse the XML messages and the usage of the
hypertext transfer protocol (HTTP).

3.5. Surgical cutting
Simulating surgical cuts with finite element based discretization tech-
niques is a challenging problem. A straight forward approach is to simply
remove the elements along the cutline [CDA00] [CJA+10]. However, this
procedure does not only lead to a poor approximation of the cut, but it
also violates the conservation of mass. In order to obtain a more accurate
solution, local re-meshing around the cut has to be performed [MS97].
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This approach can easily lead to ill-shaped tetrahedra (so called sliver
elements) that can impair not only the performance, but also the stability
of the simulation. Although complex procedures have been proposed
that address this problem [BGTG04] [SDF07], the main drawbacks of
the re-meshing approach still remains; the computationally demanding
mesh adaptation procedure, the generation of many additional degrees
of freedom as well as potential stability issues.
Novel methods thus seek to model the discontinuity in the solution
without changing the grid topology. One possibility is to enrich the
elements along the cutting front with additional, discontinuous basis
functions. This approach is called the extended finite element method
(X-FEM) [FB10]. Vigneron et al. use this method to compensate the
brain shift that occurs during craniectomy in the presence of resected
tissue [Vig09] [VWRV11]. In this scenario, a static linear elasticity model
ist used. A first application of an X-FEM based technique for real-time
cutting of 3D deformable objects was presented by Jerabkova et al. [JK09].
The work by Hegemann et al. showed how X-FEM based techniques can
be used simulate complex fracture phenomena in the context of computer
animation [HJST13]. Kaufmann et al. showed how the approach can be
used to model very complex cuts through shell elements [KMB+09].
For 3D problems, there is currently no X-FEM based solution that allows
for partially cutting elements along a progressing cutting front. This is
not only a challenging geometric problem, but the numerical integration
of partially cut elements is very difficult. Most importantly, harmonic
shape functions have to be used if the cut ends within an element. As
these functions do not have small, compact support as polygonal shape
functions, it is necessary to enrich further elements in the neighborhood
of the elements that are partially cut. An interesting solution to this
problem was presented by Gracie et al. [GWB08]. The group used a
technique based on the discontinuous Galerkin method [LNSO04] in
order to couple enriched and non-enriched elements.
A different approach to the accurate simulation of surgical cutting is to
use a hierarchical, high resolution hexahedral grid [JBB+10] [DGW11b].
The idea of this method is to simply model the cut by disconnecting the
grid along the element boundaries. This simplifies not only the geomet-
rical handling and the implementation of the cutting problem, but also
enables the simulation of multiple cuts. Furthermore, the solution of
the arising linear system of equations can be easily accelerated using
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multigrid solvers due to the regular grid hierarchy. However, very high
resolution grids have to be used in order to achieve a decent accuracy.
Thus, the method needs much more degrees of freedom in comparison
with X-FEM based techniques in order to achieve the same accuracy. One
possibility to reduce the number of degrees of freedom is to group ele-
ments together in order to form so called composite elements [WDW13].
However, this procedure reduces the accuracy for corotated elasticity and
fully non-linear formulations.

3.6. Validation of CAS systems
The validation of accuracy is a very important step towards a thorough
evaluation for CAS systems [JGMJ06]. It is especially important for
algorithms, modules and systems that are in a research or prototype
state. In order to provide navigational information to the surgeon, CAS
systems rely on suitable intraoperative sensors such as tracking systems,
endoscopic video or ultrasound data. Typically, complex algorithms for
sensor processing and registration techniques are used in order to align
preoperative planning data to the patient based information provided
by the sensors. In this context, the first validation step is to assess the
accuracy of each individual component before proceeding to validate
the whole system. Validation data can be acquired in silico, in vitro or
in vivo including numerical simulations, phantoms or clinical data sets
[JGMJ06].
Until now, numerical environments for in silico validation of sensor
hardware and processing algorithms are usually restricted to simple
synthetic data [HPE+07]. Even more elaborate approaches to sensor data
simulation are often only used as a means for preliminary validation
during development [RBS+12].
In contrast, phantom data is widely used for sensor processing validation.
Models based on polyvinyl alcohol (PVA-C) can reproduce both the
acoustic and the mechanical properties of human tissue and are suitable
for validating ultrasound-based techniques [SAFP04]. The properties
of the material can be tuned by changing the exact composition of
the material and the number of cycles of a freeze-thaw process that is
applied during manufacturing. Sufficient experience in handling this
substance is required in order to accurately adjust its properties. Silicon
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phantoms are often used in the context of endoscopic image processing.
Examples include phantoms of the heart [RPL08], [SSPY10] and the liver
[NME+09]. Different paints allow to emulate typical optical properties
such as specular reflections. However, it is challenging to reproduce
realistic texture patterns in this way.
Animal organs in vitro can also be used for accurate validation and bench-
marking of image processing techniques in the context of endoscopic
interventions [MHMB+13]. Careful planning and time consuming post
processing is required in order to obtain ground truth values using this
approach.
For the validation of non-rigid registration techniques it is important to
obtain a sufficiently dense ground truth of the deformation field. This can
be achieved by placing small marker balls inside a phantom [DCDM10].
Depending on the scenario, many marker balls are required for this pur-
pose. Thus, it is important to set up the configuration in such a way that
the processing of the ground truth data (segmentation, spatio-temporal
registration) can be done (semi-)automatically. An important aspect in
this application area is the accuracy of the phantom’s mechanical behav-
ior. Kerdok et al. performed the first quantitative analysis by means of
force measurements and finite element analysis of appropriate silicon
material for simple shapes [KCO+03]. More recent results show how
phantoms for complex organ geometries can be constructed that provide
an adequate accuracy in terms of the mechanical properties [HLBT12].





If people do not believe that mathematics is
simple, it is only because they do not realize
how complicated life is.

— John von Neumann4.

Biomechanical modeling
of soft tissue
In this chapter the foundations of continuum mechanics based soft tissue
modeling are introduced. We start by outlining the fundamentals of
elasticity theory before presenting typical material models for biological
soft tissue in general and the liver in particular. In order to facilitate
the development of a real-time capable finite element models in the
upcoming chapters, we finally present a simulation study that compares
different model types with respect to their use for liver registration. The
presentation of elasticity theory is kept as compact as possible without
impairing accuracy or understandability. For more detailed treatments
please refer to the excellent textbooks by Holzapfel [HG01] and Ogden
[Ogd97].

4.1. A short introduction to elasticity

4.1.1. Kinematics
We consider a body B that can be viewed as a continuous distribution of
matter in space and choose a standard right-handed orthonormal coordi-
nate system as the reference frame (Fig. 4.1). The body moves in space
from one instant of time to another, occupying different geometrical
regions Ω0, ...,Ω in the process. These regions are called configurations
of B at time t. The configuration Ω0 at time t = 0 is called the initial
configuration while the configuration Ω at t is called the current config-
uration. Our goal is to describe the deformation of B with respect to a
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Figure 4.1.: Deformation of the body B with material points P, Q and in-
finitesimal line element dX from the reference configuration
Ω0 to the current configuration Ω (based on [Wik13])

reference configuration. Throughout this text, we will always assume the
initial configuration to be our reference configuration.
We start by analyzing a continuum particle P ∈ B. It is important to note
that P has no point mass (as opposed to a discrete particle in Newtonian
mechanics). The particle is at position X in the reference configuration
and moves to the position x in the current configuration (Fig. 4.1). We
define the vector field

x = ϕ(X, t) (4.1)

that maps the positions X ∈ B of all points in the reference configuration
to their respective positions x in the current configuration. In our analysis
we assume that ϕ possess a continuous derivative and that it is uniquely
invertible, i.e. the inverse mapping

X = ϕ−1(x, t) (4.2)
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exists. Here, some important terminology should be introduced. ϕ
is also called the motion of the body B over time. If we look at ϕ
at a specific point in time, ϕ is called the deformation of the body.
Thus, we speak of deformation if we mean the motion of a body that
is independent of time. A body undergoing a deformation can change
its shape, position and orientation. If the deformation is constant for all
X ∈ B, the deformation consists only of translations and rotations and is
called a rigid-body motion. Please note that in contrast to the common
definition of deformation which implies changes to the body’s shape, the
continuum mechanics definition also includes rigid body motions.
Often the deformation is described in terms of the displacement

u(X, t) = x(X, t)− X (4.3)

of the body B.
Continuum mechanics can be regarded as describing the behavior of
infinitesimal line, area and volume elements during the passage from the
reference to the current configuration. The second order tensor

F(X, t) =
dx
dX

=
dxi
dXj

= xi,j =∇x = Gradx (4.4)

describes the relation between the spatial line element dx and the ma-
terial line element dX and is called the deformation gradient. Here, we
showcased several different notations for the deformation gradient: The
vectorial notation, the index notation and its shortened version as well as
the notation using the nabla and the material gradient (Grad) operator.
For more information on the notation of variables and operators used
in this thesis please refer to the glossary. Using the relation (4.3), the
deformation gradient can also be expressed in terms of the displacement
field u(x, t):

F(X, t) =
du
dX

+ I = ui,j + δij =∇u + I = Gradu + I (4.5)

Assuming that the derivative of the inverse mapping ϕ−1 exist, we can
define the inverse of the deformation gradient

F−1 =
dX
dx

= gradX (4.6)
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in an analogous manner. Please notice that the lowercase grad operator
denotes the derivative with respect to x (spatial gradient).

4.1.2. Deformation of infinitesimal elements
In order to describe the change of infinitesimal volume elements due
to deformation, we regard the parallelepiped that is spanned by the
three non-coplanar line elements dX(1),dX(2),dX(3) at the point X in B.
Assuming that this triad is positively oriented, its volume dV0 in the
reference configuration

dV0 = (dX(1) × dX(2)) · dX(3) = det(dX(1),dX(2),dX(3)) (4.7)

is given by the triple scalar product. In accordance with eq. (4.4) we can
write

dx(i) = FdX(i) (4.8)

and can thus derive the volume

dV = (dx(1) × dx(2)) · dx(3) = det(FdX(1),FdX(2),FdX(3)) (4.9)

of the deformed element. Using the relationship

det(AB) = det(A)det(B) (4.10)

we can finally derive

dV = det(F)det(dX(1),dX(2),dX(3)) = det(F)dV0 ≡ JdV0. (4.11)

The determinant J of the deformation tensor (i.e. the Jacobian of the
transformation ϕ) is the local ratio of current volume to reference volume
of a material volume element. By definition (impenetrability of matter
and non-singularity of F),

J ≡ detF > 0. (4.12)

It is also important to point out, especially in the context of soft tissue
modeling, that for incompressible materials J = 1.
We now seek to describe the deformation of the infinitesimal surface
element dA0 with the normal N from its reference configuration dA0 =
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dA0N to its current configuration dA = dAn. We start by expressing the
volume of a deformed parallelepiped eq. (4.9)

dV = dA · dx = JdV0 = JdA0 · dX (4.13)

through its base area. Noting that

dA · dx = dA · FdX = FTdA · dX, (4.14)

we can derive
(FTdA− JdA0)︸ ︷︷ ︸

0

·dX = 0 (4.15)

As this must hold for arbitrary line elements dX, we can describe the de-
formation of the arbitrary surface element dA0 through the deformation
gradient tensor F:

dA = JF−TdA0 (4.16)

This relationship is known as Nanson’s formula.

4.1.3. Strain measures
The deformation gradient tensor characterizes the deformation of in-
finitesimal line, area and volume elements during the body motion. In
order to construct meaningful material laws it is necessary to determine
the strain (i.e. the 3D equivalent of stretch) inside a body. Strain can
be described as a measure for the change in length of infinitesimal line
elements. It should be pointed out that strain is not a necessarily a
physically measurable quantity, but rather a theoretical concept. Conse-
quently, many different strain measures exist. In the following, the most
important strain tensors for soft tissue modeling are presented.
First, it is important to understand that the deformation gradient tensor is
not a suitable strain tensor; this can be seen from the polar decomposition
theorem.

Theorem 1 The polar decomposition theorem: For any non-singular second
order tensor A there exist a unique symmetric, positive definite second order
tensor U and an orthogonal second-order tensor R such that

A = RU (4.17)
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For a proof we refer to Ogden [Ogd97]. With respect to the deformation
gradient tensor (keep in mind that it is non-singular) this means that
it can be decomposed into a pure rotation matrix R and a pure stretch
matrix U. Thus, F changes under pure rigid body motions. For appar-
ent reasons, the invariance under rigid body motions is an important
property of a useful strain measure. Thus F cannot be directly used
as a strain tensor. One possibility to recover rotational invariance is
to perform a polar decomposition for each computation step and to
use the remaining stretch matrix as a strain measure. Alternatively, a
quadratic strain measure can be used. The first approach is often used in
real-time simulations (see chapter 5), while the second possibility is used
in classical solid mechanics as it allows for a better analytic analysis of
the ensuing equations.
Upon inserting the deformation gradient tensor into the Cauchy-Green
strain tensor

C = FTF (4.18)
it is easy to see that C is rotation invariant (keep in mind that RTR = I
due to the orthogonality of R):

C = FTF = (RU)TRU = UTRTRU = UTU. (4.19)

Another important strain measure is the related Green-Lagrange strain
tensor

E =
1
2
(C− I) =

1
2
(FTF− I) =

1
2
((∇u + I)T(∇u + I)− I), (4.20)

which is also symmetric and rotation invariant. Please note that both
tensors are non-linear and must be in order to be rotation invariant. In
order to facilitate the development of linear elasticity theory later on, we
list the infinitesimal strain tensor

ε =
1
2
(∇u +∇uT), (4.21)

which is the linearization of the Green-Lagrange strain tensor.

4.1.4. Balance principles
In classical continuum mechanics, the behavior of objects is governed by
four conservation laws: The conservation of mass, the balance of linear
and angular momentum as well as the conservation of energy.
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It is intuitively clear, that the body B is a closed system and its mass m
does not change, even if B does occupy different geometrical regions
Ω0, ...,Ω over time. If we denote the density of B with ρ0(X) in the
reference configuration and the density in the current configuration with
ρ(x) we thus require the mass to be the same in the current and in the
reference configuration:

m =
∫

Ω0

ρ0(X)dV0 =
∫

Ω
ρ(x)dV = const. > 0 (4.22)

This is the conservation of mass in integral form. The linear momentum
in the current configuration

∫

Ω
ρvdV =

∫

Ω
ρẋdV (4.23)

is changed, when B is subjected to external forces. In this context, so
called volumetric body forces (e.g. gravity, electromagnetic forces) are
distinguished from contact forces that act on the surface of B. The
gravitational body force ∫

Ω
ρgdV (4.24)

can be written in its integral form using the gravitational constant g. An
analogous integral description for the contact force

∫

∂Ω
t(x,∂Ω)dA (4.25)

can be found by defining the contact force density (or surface traction
vector) t(x,∂Ω). The balance of linear momentum can be written as

∫

∂Ω
t(x,∂Ω)dA +

∫

Ω
ρgdV≡ D

Dt

∫

Ω
ρvdV =

∫

Ω
ρv̇dV. (4.26)

For a body to be in complete equilibrium it is not sufficient that all
internal and external forces acting on the body are in balance. Even if
all external forces cancel out (static equilibrium) the body can still be
subjected to a rotational motion, if these forces act on different points
of the body. The rotational equilibrium is ensured by the balance of
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rotational momentum. By using the position vector r(x) = x− x0 relative
to a fixed point x0 it can be formulated as

∫

∂Ω
r× t(x,∂Ω)dA +

∫

Ω
r× ρgdV≡ D

Dt

∫

Ω
r× ρvdV =

∫

Ω
r× ρv̇dV.

(4.27)
In the context of thermodynamics the conservation of energy and the
balance of momentum is supplemented by the conservation of energy.
However, in the realm of soft tissue simulation the thermal effects of the
body motion are extremely small and are usually neglected. Thus, the
body motion can be fully described using the three balance principles
described above.

4.1.5. The concept of stress
Cauchy postulated that the surface traction vector t has the same value
for all boundaries with the same normal direction n. In other words, t
only depends on the surface normal and we can write:

t(x,∂Ω) = t(x,n). (4.28)

From this postulate, Cauchy’s fundamental stress theorem can be estab-
lished.

Theorem 2 Cauchy’s stress theorem: Provided that it is continuous in x, the
stress vector t(x,n) depends linearly on n, i.e. there exists a second order tensor
field σ independent of n, such that

t(x,n) = σ(x)n (4.29)

for all x in B. The tensor σ is called the Cauchy stress (or true stress) tensor.

The theorem is usually proven ([Ogd97], [Bon97]) by constructing a
tetrahedron that lies in the Cartesian rectangular planes (see Fig. 4.2).
After applying the balance of linear momentum eq. (4.26) and collapsing
the height of the triangle (h 7→ 0) the external body and inertia forces
vanish. The application of the postulate then leads to Cauchy’s stress
tensor. Furthermore, it can be shown that the balance of rotational
momentum implies the symmetry of the Cauchy stress tensor [HG01].
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Figure 4.2.: Cauchy’s tetrahedron: The traction t(n) on the surface with
normal n can be expressed as a linear combination of the
tractions on the coordinate planes (based on [Wik13]).

As a direct consequence we can express the force

df = t(σ,n)dA = σ(x)ndA (4.30)

on an infinitesimal surface element (the so called surface tractions) in
the current configuration using the Cauchy stress tensor and the surface
normal.
Please note that the balance laws have so far been formulated in the
current, deformed configuration. However, in a typical scenario the
deformed geometry of B is actually the solution that we would like to
solve for. It is thus impossible to integrate over the current configuration.
This problem can be overcome by relating all forces to the reference
configuration and solving the problem using the so called material
description. In order to facilitate this formulation, we relate the surface
force df to the undeformed surface element dA0 through the use of
Nanson’s formula eq. (4.16):

df = σ(x)ndA = σ JF−TNdA0 = PNdA0 (4.31)
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Here, we introduced the first Piola-Kirchhoff stress tensor

P = JσF−T (4.32)

which relates surface forces in the current configuration to surface ele-
ments in the reference configuration. The passage from σ to P is often
referred to as the Piola transformation. Please note that, in contrast to
the Cauchy stress tensor, the first Piola-Kirchhoff tensor is not symmetric
(because F is generally not symmetric).
Many different stress measures have been proposed in the literature
apart from the Cauchy and the first Piola-Kirchhoff stress tensor. At this
point we will only mention the symmetric second Piola-Kirchoff stress
tensor

S = JF−1σF−T = F−1P = ST (4.33)

which is very important in the context of soft tissue simulations for
reasons that will be extensively discussed in chapter 4.2.

4.1.6. Boundary value problem of elasticity
The conservations laws can be combined into a single partial differential
equation (PDE). Together with appropriate boundary conditions and a
material law, this PDE forms a boundary value problem. We start by
inserting the Cauchy stress tensor into the balance of linear momentum
(eq. 4.26) to derive

∫

∂Ω
σ(x)ndA +

∫

Ω
ρgdV =

∫

Ω
ρv̇dV. (4.34)

From this, Cauchy’s first equation of motion
∫

Ω
divσ(x)dV +

∫

Ω
ρgdV =

∫

Ω
ρv̇dV (4.35)

is derived by applying the divergence theorem (A.1.1) to the surface term.
As this relation has to hold for any volume dV in B the differential (local)
form

divσ(x) + ρg = ρv̇ (4.36)

immediately follows from the integral (global) form (4.35).
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As stated above, this partial differential equation cannot be solved when
formulated in terms of the current (unknown) configuration (spatial
description). Therefore, we use the mass conservation and Nanson’s for-
mula to express eq. (4.34) with respect to the reference configuration:

∫

∂Ω0

σ JF−TNdA0 +
∫

Ω0

ρ0gdV0 =
∫

Ω0

ρ0v̇dV0. (4.37)

Inserting the definition of the first Piola-Kirchhoff stress tensor eq. (4.32)
and application of the divergence theorem yields the material description
of Cauchy’s first equation of motion

∫

Ω0

DivPdV0 +
∫

Ω0

ρ0gdV0 =
∫

Ω0

ρ0v̇dV0. (4.38)

The boundary value problem is typically stated using the local formula-
tion

DivP + ρ0g = ρ0v̇ ∀x ∈Ω0 (4.39)

of Cauchy’s equation of motion in material description. In addition to
the equilibrium equation, boundary conditions have to be specified on
the elastic body B in order to pose a physically sensible problem (please
see Fig. 4.3 for an example). The parts of the surface ΓD ⊆ ∂Ω where the
position (or the displacement) of the body are known are called Dirichlet
boundary conditions. In contrast, surface tractions are imposed on the
Neumann boundary ΓN . In order for the problem to be well posed,
either Dirichlet or Neumann boundary conditions have to be prescribed
on the whole boundary (∂Ω = ΓD ∪ ΓN). Furthermore, ΓD and ΓN are
not allowed to overlap, i.e. ΓD ∩ ΓN = ∅. By specifying the spaces of
functions that satisfy these boundary conditions

VD(ΓD,x) = {x|x = x ∀x ∈ ΓD} (4.40)
VN(ΓN , t) = {x|(σn) = t ∀x ∈ ΓN} (4.41)

we can finally state the boundary value problem of non-linear elasticity:
Find x ∈ C2(Ω) ∩ C1(Ω) ∩VD(ΓD,x) ∩VN(ΓN , t) s.t. eq. 4.39 holds.
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B
ΓD

ΓN1

ΓN2

Figure 4.3.: A cantilever beam is fixed at the left end (zero displacement
at Dirichlet boundary ΓD) and a uniform surface pressure is
applied at the top (on Neumann boundary ΓN1). Zero force
boundary conditions are prescribed on all other surfaces
(Neumann boundary ΓN2).

4.2. Material laws for biological soft tissue
The boundary value problem introduced in the previous section cannot
be solved without a constitutive equation that relates the position x (or
the displacement u) to the stress tensor values. In the context of elas-
tic bodies this relationship is called the response function G(F(X, t),X).
In the following section we will see that some of the already encoun-
tered strain and stress measures form special (so called work conjugate)
pairs. The work conjugancy relationship arises from the definition of
the internal elastic energy that is stored in B during the deformation.
Furthermore we will see that the internal elastic energy is an important
concept in the context of hyperelastic material models, which are the
most important class of non-linear models for soft tissue mechanics. We
will also introduce basic techniques for modeling viscoelastic behavior.
Finally, it is shown under which assumptions the nonlinear elasticity
problem reduces to a linear problem.
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4.2.1. Mechanical energy in elastic bodies
If the material response is purely elastic and no energy is dissipated as
heat, the balance of mechanical energy can be directly derived from the
equation of motion. Multiplying Cauchy’s equation of motion (4.36) with
the velocity v yields

divσ · v + ρg · v = ρv̇ · v. (4.42)

By using the product rule (see A.1.2) and introducing the spatial velocity
gradient l = gradv we derive

div(σv)− σ : l + ρg · v = ρv̇ · v. (4.43)

We note that in light of the product differentiation rule, the mass term
can be rewritten to

ρv̇ · v = ρ
1
2

˙v · v = ρ
D
Dt

1
2

v2. (4.44)

The spatial velocity gradient l is usually additively decomposed

l = d + w (4.45)

into the symmetric rate of deformation tensor

d =
1
2
(l + lT) = dT (4.46)

and the antisymmetric rate of rotation sensor

w =
1
2
(l− lT) = −wT . (4.47)

It is quickly shown that the material velocity gradient

Gradv =
∂v(X, t)

∂X
=

D
Dt

∂ϕ(X, t)
∂X

= Ḟ (4.48)

is identical to the time rate change Ḟ of the deformation gradient. The
relationship between the spatial velocity gradient l and Ḟ is given by

l =
∂v
∂x

=
D
Dt

∂ϕ (X, t)
∂x

=
D
Dt

∂ϕ (X, t)
∂X

∂X
∂x

= ḞF−1. (4.49)
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We note that due to the symmetry of σ, we have

σ : l = σ : d + σ : w = σ : d. (4.50)

Inserting this result into eq. (4.43) as well as using the relationship (4.45)
and subsequently integrating over the volume of the current configura-
tion yields

D
Dt

∫

Ω

1
2

ρv2dV +
∫

Ω
σ : ddV =

∫

Ω
div(σv)dV +

∫

Ω
ρg · vdV. (4.51)

The balance equation for mechanical energy in spatial description

D
Dt

∫

Ω

1
2

ρv2dV +
∫

Ω
σ : ddV =

∫

∂Ω
t · vdA +

∫

Ω
ρg · vdV (4.52)

immediately follows from the application of the divergence theorem and
the definition of the surface traction (4.30). The right hand side of the
equilibrium equation is the external mechanical power or rate of external
mechanical work

Pext(t) =
∫

∂Ω
t · vdA +

∫

Ω
ρg · vdV (4.53)

is the power input on the region Ω. The kinetic energy

K(t) =
∫

Ω

1
2

ρv2dV (4.54)

can be regarded as an generalization of Newtonian mechanics to contin-
uum mechanics. If K is zero (i.e. no inertia forces), then the dynamic
BVP reduces to a non-linear static problem. The stress power or rate of
internal mechanical work is given by

Pint(t) =
∫

Ω
σ : ddV. (4.55)
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In order to derive the balance of mechanical energy in material (La-
grangian) form, we formulate the internal mechanical work in terms of
the material description:

Pint(t) =
∫

Ω0

σ : lJdV0 =
∫

Ω0

Jσ : ḞF−1dV0 =
∫

Ω0

Jtr(σT ḞF−1)dV0

(4.56)

=
∫

Ω0

Jtr(ḞF−1σ)dV0 =
∫

Ω0

Jtr((ḞF−1σ)T)dV0 (4.57)

=
∫

Ω0

Jtr(σTF−T ḞT)dV0 =
∫

Ω0

JσF−T : ḞdV0 =
∫

Ω0

P : ḞdV0

(4.58)

We furthermore define the first Piola-Kirchhoff traction vector

TdA0 = tdA (4.59)

in order establish the balance of mechanical energy in material descrip-
tion:

D
Dt

∫

Ω0

1
2

ρ0v2dV0 +
∫

Ω0

P : ḞdV0 =
∫

∂Ω0

T · vdA0 +
∫

Ω0

ρ0g · vdV0 (4.60)

The stress power per unit reference volume

wint = Jσ : d = P : Ḟ = S : Ė (4.61)

of a material is thus given by the double contraction of a stress tensor
and an associated strain rate tensor. The equation above lists the most
important ones of these couples known as work conjugate pairs (please
refer to the appendix A.2 on how to derive the work conjugacy of the
second Piola-Kirchhoff stress tensor S and the material time derivative
of the Green-Lagrange strain tensor Ė).

4.2.2. Hyperelastic materials
Biological soft tissue is usually modeled using a phenomenological ap-
proach. Based on in vitro or in vivo measurements, mathematical models
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are fitted to experimental data that describe the stress-strain relation-
ship. In this section, the important hyperelastic approach to soft tissue
modeling is discussed. Although only isotropic hyperelastic materials
are considered at this point, the approach can be extended to include
anisotropic material behavior [HG01]. The extension of the model to
viscoelastic material response is detailed in the subsequent section.
Materials are called Cauchy-elastic if the stress field in the deformed
configuration only depends on the state of deformation and not on the
deformation history. That means we can define a so called response
function G that relates the deformation gradient tensor F to the Cauchy
stress field σ:

σ(x, t) = G(F(X, t),X) (4.62)

By inserting this definition into the already familiar Piola transforma-
tion

P = JσF−T = JG(F)F−T =H(F) (4.63)

we can define the response function H that relates the deformation to
the first Piola-Kirchhoff stress tensor.
The problem of describing a suitable response function for biological
soft tissue is usually tackled by describing the internal energy of a
material. For this purpose, we postulate the existence of a so called
elastic potential or strain energy function Ψ that is defined per unit
reference volume. Materials for which Ψ exists and only depends on the
deformation (Ψ = Ψ(F)) and not on the deformation history are called
(pure) hyperelastic materials.
We now show how elastic response functions for work conjugate stress-
strain tensors pairs can be derived from the elastic potential. The time
derivative of the internal energy

Ψ̇ = wint = P : Ḟ (4.64)

is the internal work which can be expressed through the work conjugate
pair. On the other hand, we can apply the chain rule to derive

Ψ̇ =
∂Ψ
∂F

: Ḟ. (4.65)
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By subtracting the above equations we obtain
(

∂Ψ
∂F
− P

)
: Ḟ = 0 (4.66)

which has to hold for arbitrary F and Ḟ and thus we can conclude:

P =
∂Ψ
∂F

=H(F) (4.67)

The same technique can be used to express the second Piola-Kirchhoff
stress tensor

S =
∂Ψ
∂E

=H(E) (4.68)

in terms of the Green-Lagrange strain tensor. This relationship allows
to compute the response function once the relationship between the
elastic potential and the deformation is known. Please note that while
hyperelastic materials (also called Green-elastic) are evidently always
Cauchy-elastic, the converse is not necessarily true. Although the stress
field for Cauchy-elastic materials is independent of the deformation path,
in contrast to hyperleastic materials the work done (i.e. the internal
energy) by the stress field can depend on the deformation history.
Naturally, material models should be constructed in a way that the
boundary value problem has an (ideally unique) solution that corre-
sponds to the physical observations. The mathematical treatment of the
uniqueness and existence of non-linear elasticity problems is still an area
of active research and revolves around the concept of the polyconvexity
of strain-energy functions (see e.g. [HN03] [H+94]).
On the physical level, there is one important necessary condition for
the strain energy function: It should be invariant under superimposed
rigid-body motions, i.e.

Ψ(F) = Ψ(QF) (4.69)

for all orthogonal tensors Q. If we choose Q to be the transpose of the
orthogonal rotation tensor R that arises from the polar decomposition
(see theorem 1) of F,

Ψ(F) = Ψ(RTRU) = Ψ(U) (4.70)

we learn that Ψ has to be independent from the rotational component
R in order to be invariant under superimposed rigid-body motions. In
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classical continuum mechanics, the strain energy is usually expressed
in terms of the quadratic, rotation invariant Cauchy-Green deformation
tensor C (or the Green-Lagrange tensor E) instead of the pure stretch
tensor U. Thus it is not necessary to perform a polar decomposition
during analysis.
A material is called isotropic if its properties (e.g. the stress response) are
identical in all directions. This means, that the property is not affected if
the reference configuration is translated or rotated. If the strain energy
function is formulated in terms of the Cauchy-Green deformation tensor
C, this requirement can be expressed mathematically as

Ψ(C) = Ψ(QCQT) (4.71)

where QT again denotes an arbitrary orthogonal tensor (rotation matrix).
The representation theorem of invariants shows how to construct the
strain energy function for isotropic materials [Hol00]:

Theorem 3 The representation theorem for invariants: If a scalar-valued tensor
function with the argument C is an invariant under a rotation according to
(4.71), it may be expressed in terms of the principal invariants of C:

I1(C) = trC (4.72)

I2(C) =
1
2

[
(trC)2 − tr(C)2

]
(4.73)

I3(C) = detC (4.74)

The questions remains how the strain energy function should be con-
structed. If Ψ is continuously differentiable with respect to the invariants,
we can expand Ψ into the infinite power series

Ψ(I1, I2, I3) =
∞

∑
p,g,r=0

cpgr(I1 − 3)p(I2 − 3)q(I3 − 1)r. (4.75)

Here, the coefficients cpqr are the material parameters that have to be
experimentally determined. Please note that this expansion has been
chosen such that the material is energy-free in the reference configuration
(i.e. C = I). It is a common approach to separate the strain energy
functional

Ψ = Ψiso + Ψvol (4.76)
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into a part Ψvol that only depends on the volume change and a so
called isochoric part Ψiso that is independent of the volumetric changes
[Hol00].
We have already discovered in section 4.1.2 that I3 = detC = (detF)2 is a
measure of the volumetric change during the deformation. Therefore, it
is readily seen that the general expression

Ψvol =
∞

∑
r=0

cr(I3 − 1)r (4.77)

describes an internal energy that is induced by volumetric changes. A
simple and yet widely used formulation is

Ψvol = p(I3 − 1)2. (4.78)

In the fully incompressible case, p serves a Lagrange multiplier during
the computation of the solution and can be associated with the hydro-
static pressure. In this case, p is not a material parameter, but can be
determined through the incompressibility constraint. If the material is
modeled as nearly incompressible (which is often the case for biological
soft tissue), p can be regarded as a penalty factor for the volumetric
change. In this case, it is often replaced through its inverse D1 = 1/p.
If the material is incompressible, there are no volume changes and the
isochoric part of the strain energy

Ψiso(C) = Ψiso(I1, I2) (4.79)

depends on the invariants I1, I2. However, these invariants vary during
volumetric changes. In the context of compressible materials, the mod-
ified deformation tensor F = J−1/3F and the associated modified right
Cauchy-Green tensor C = FTF are used as deformation measures in the
strain energy function. It is evident, that detF = detC = 1 and thus the
strain energy

Ψiso(C) = Ψiso(I1, I2) (4.80)

based on the invariants I1, I2 of C is not influenced by volumetric
changes.
In the following section, common material models are presented for
the isochoric strain energy. Although we will formulate them for the
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incompressible case in the form of the potential Ψiso(C), it is important
to note that they generalize to the compressible domain by simply using
the modified formulation Ψiso(C) based on the modified deformation
measures introduced above [Hol00].
The Mooney-Rivlin material model

Ψiso(C) = c1(I1 − 3) + c2(I2 − 3) (4.81)

has originally been developed for isotropic rubber-like materials and is
often used for soft tissue modeling. One of the simplest hyperelastic
models is the neo-Hookean model

Ψiso(C) = c1(I1 − 3). (4.82)

The material parameter c1 can be associated with the shear modulus µ
by the formula µ = 2c1. The neo-Hookean model can be considered a
special case of the reduced polynomial model

Ψiso(C) =
N

∑
i=1

ci(I1 − 3)i (4.83)

with N = 1 [RES10].
The simplest model for a compressible hyperelastic material is the Saint
Venant-Kirchhoff model. For simplicity reasons, its strain energy func-
tion

Ψ(E) =
λ

2
(trE)2 + µtr(E2) (4.84)

is usually formulated in terms of the Green-Lagrange strain tensor. The
parameter λ is called Lame’s first parameter, while µ denotes the shear
modulus (or Lame’s second parameter). The Saint-Venant Kirchhoff
model is often used for real-time applications in computer graphics. It is
quickly shown (see appendix A.3 for details) that this model results in
the linear relationship

S =
∂Ψ
∂E

= λ(trE)I + 2µE (4.85)

between S and E. Although the model can be very well suited for many
large displacement problems, its formulation has several disadvantages.
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It is not based on a decomposition of the strain energy function into an
isochoric and volumetric part (the third invariant J is not even explicitly
used). It is also not monotonic in compression and can thus break
down for large compressive strains. Consequently it does not satisfy the
polyconvexity condition.

4.2.3. Visco-elasticity
The stress response of a biological soft tissue does not only depend on
the instantaneous strain, but also on the deformation history. This can be
observed during a simple indentation experiment. The material response
during the loading phase is different from the unloading (recovery) phase.
In particular, the stress will only gradually decrease over time after the
indenter has been completely removed. This relaxation process cannot
be captured by purely hyperelastic models. A general approach to model
this viscoelastic behavior is to express the time-dependent strain-energy
function

Ψ̂ =
∫ T

0
G(t− s)

∂Ψ
∂s

ds (4.86)

in terms of a convolution integral between the stress power and a re-
laxation function G(t,C) [TCC+08]. In order to facilitate an efficient
computation, it is often assumed that the relaxation function does not
depend on the current strain. This approach to separate the purely
hyperelastic material response from the viscoelastic behavior is called
Quasi-Linear-Viscoelasticity (QLV) [Fun93]. A useful representation of
the relaxation function G(t) is given by the Prony series

G(t) = Ginf +
N

∑
i=1

Gie−t/τi (4.87)

where Ginf is the long term modulus once the material is totally relaxed
and τi are relaxation times. This model has a physical interpretation in
form of a special spring-dashpot network that is called the generalized
Maxwell model [Hol00]: A spring with the stiffness Gin f is arranged in
parallel to N Maxwell elements. Each Maxwell element in turn consists
of a series of one spring and one dashpot. In practice it is often much
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more difficult to determine Gin f than the instantaneous (purely elastic)
modulus G0. By noting that

G(t = 0) = G0 = Ginf +
N

∑
i=1

Gi, (4.88)

the relaxation function can be described in the equivalent form

G(t) = G0 −
N

∑
i=1

Gi(1− e−t/τi ). (4.89)

If the relaxation function is normalized with G0 we obtain

g(t) = 1−
N

∑
i=1

gi(1− e−t/τi ) (4.90)

and can subsequently express the time dependent hyperelastic material
coefficients (see e.g. eq. 4.83) by the equation

ĉij(t) = cijg(t). (4.91)

The QLV model is considerably more computational intensive than a
pure hyperelastic model. A more efficient, but less accurate approach
is to use a phenomenological viscosity formulation based on the com-
putational model. If a linear elastic model is discretized in space using
the finite element method (we will discuss this procedure in detail in the
next chapter) the result is the system of ordinary differential equations
(ODEs)

MÜ + KU = fext. (4.92)

Here, U is a vector of nodal displacements, M denotes the mass matrix,
K is the stiffness matrix and fext encapsulates the external forces. The
idea of the widely used Rayleigh damping is to add an artificial damping
term to the above equations

MÜ + DU̇ + KU = fext. (4.93)

In this formulation the damping matrix D is constructed by the linear
combination

D = αM + βK (4.94)
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with the scalar coefficients α and β that control the viscoelastic behav-
ior.
The generalization of the Rayleigh damping scheme to hyperelastic
materials is straightforward. In this case, the discrete form eq. (4.92) is
not a linear system of ordinary differential equations, but a non-linear
one. Thus, the time-discretization of the ODEs yields a non-linear system
of equations. This is typically solved by iteratively solving linear systems
(Newton-Raphson algorithm). During this procedure, Rayleigh damping
can be employed within each linearization step.

4.2.4. Linear elasticity
The non-linear system solve using Newton-Raphson iterations is not
only computationally expensive, but can lead to instabilities especially
for dynamic problems. If the deformation of the body is small (i.e.
‖Gradu‖ << I) and the stress-strain relationship is linear, it is not neces-
sary to solve the non-linear problem. Instead, a computationally efficient
linear elasticity model can be used. It is important to point out that
this model is often used for metals. However, soft tissue deformations
are usually large and the small strain assumption is thus not justified.
Also, as discussed above, the material response of soft tissue is highly
non-linear. It can thus be expected (and will indeed be shown in study
presented in the next section) that the linear model introduces a signifi-
cant error in soft tissue simulation. However, we will see in the following
chapter that linear elasticity serves as an important building block for
real-time capable algorithms. Therefore, the model will be presented in
this section. For a more mathematical rigorous derivation of the linear
model from the presented non-linear, hyperelastic model we refer to the
textbook by Ogden [Ogd97].
In the context of linear elasticity it is often more convenient to use the
displacement u (see eq. 4.3) as the primary variable. Recalling the
relationship between F and u eq. (4.5) we can derive

Gradu =
∂ui
∂Xj

=
∂ui
∂xk

∂xk
∂Xj

= (gradu)F = gradu(Gradu + I) (4.95)

Thus it follows that under the small strain (linear) approximation Gradu
and gradu can be used interchangeably. In other words, as the reference
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configuration and the deformed configuration are nearly identical, i.e.
the spatial and material derivative are the nearly the same. Consequently,
the already defined infinitesimal strain tensor

ε =
1
2
(Gradu + (Gradu)T) =

1
2
(gradu + (gradu)T) (4.96)

can be alternatively expressed through a spatial derivative. Under these
approximations, the rate deformation tensor

d =
1
2
(gradv + (gradv)T) ≈ ε̇ (4.97)

can be regarded as the time derivative of the infinitesimal strain tensor.
This leads to the important finding that in the framework of linear
elasticity, ε̇ is work conjugated to the Cauchy stress tensor σ (see eq.
4.61). Under the small strain assumption the strain energy rate per unit
reference volume can be approximated by the strain energy rate per unit
deformed volume, i.e.

Ψ̇ = Jσ : ε̇ ≈ σ : ε̇. (4.98)

Through this result we can establish the material law using the hypere-
lastic strain energy based approach. As the purpose of the small strain
approximation is to achieve a completely linear formulation, the Saint-
Venant Kirchhoff model is the obvious choice. With the previous results
eq. (4.85) we obtain

σ =
∂Ψ
∂ε

= λtrεI + 2µε. (4.99)

In order to compactly state the linear elastic BVP we again define the
function spaces that satisfy the boundary conditions

VD(ΓD,u) = {u|u = u ∀u ∈ ΓD} (4.100)
VN(ΓN , t) = {u|(σn) = t ∀u ∈ ΓN} (4.101)

on the Dirichlet boundary ΓD and on the Neumann boundary ΓN , re-
spectively. By using the Cauchy stress in the spatial Cauchy equation of
motion eq. (4.36), we can formulate the complete, displacement-based
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boundary value problem for linear elasticity: Find u ∈ C2(Ω) ∩ C1(Ω) ∩
VD(ΓD,u) ∩VN(ΓN , t) s.t.

Divσ + ρ0g = ρ0ü ∀u ∈Ω0 (4.102)

ε =
1
2
(Gradu + (Gradu)T). (4.103)

It is very important to point out that in linear elasticity, the boundary
value problem is defined in terms of the reference configuration. How-
ever, the Cauchy stress tensor is used instead of the first Piola-Kirchhoff
tensor. The physical explanation for this approximation is that the refer-
ence configuration and the deformed configuration coincide and thus the
Piola transform becomes unnecessary. More mathematically speaking,
there exists one linear approximation of both the first Piola-Kirchhoff and
the second Piola-Kirchhof stress tensor. This linear stress tensor can be
identified as the Cauchy stress tensor (see Ogden for details [Ogd97]).
By noting that v = ẋ = u̇ we can also state the balance of mechanical
energy for the linear elasticity formulation:

D
Dt

∫

Ω0

1
2

u̇2dV +
∫

Ω0

σ : ε̇dV =
∫

∂Ω0

t · u̇dA +
∫

Ω0

ρg · u̇dV (4.104)

4.3. Soft tissue modeling for liver registration
We evaluated several biomechanical liver models from the literature and
a new simplified model with regards to their application to intraoperative
soft tissue registration. The following section summarizes the methodical
approach as well as the results from this evaluation study as published
in the corresponding paper [STR+11].
Obviously, the registration accuracy depends on both the boundary
conditions generated from intraoperative sensor data and the complexity
and parameterization of the model. The parameterization of biological
soft tissue is very difficult as the material properties greatly vary under
different testing conditions (in vitro or in vivo, amount of organ perfusion
and loading cycle). Thus, the liver models and their parameterizations
that have been proposed in the literature vary significantly [RES10]
[JSZH09] [KS05]. Naturally, the question arises how these differences
and additional patient-specific variations affect the registration accuracy.
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Furthermore, it is interesting to analyze if complex QLV models are really
needed for soft tissue registration, or if simpler hyperelastic or even linear
elastic models are sufficient. Especially with real-time applications in
mind it is highly desirable to keep the computation times low.
A numerical sensitivity analysis was performed for several QLV mod-
els from the literature as well as a previously proposed linear elastic
model [CMG+07]. For this purpose, a finite element (FE) model of a
liver phantom was subjected to typical deformation patterns that occur
during surgery by applying appropriate displacement boundary condi-
tions. We imposed deformations caused by respiratory motion as well as
deformations caused by the indentation through surgical instruments.
Furthermore, the models from the literature were compared to a new
simplified hyperelastic liver model that uses Rayleigh damping.
Three of the most recently published viscoelastic models were selected
for the study. All models were parameterized using experiments with
porcine livers. Raghunathan et al. used ex-vivo measurements in a
humidified chamber [RES10], whereas Jordan et al. performed the mea-
surements on an artificially perfused liver [JSZH09]. Kim et al developed
their model from in-vivo experiments [KS05]. Jordan et al. and Raghu-
natan et al. use a reduced polynomial model to model the hyperelastic
component, while Kim et al. parameterize the Mooney-Rivlin model.
All models use a QLV approach and a Prony series representation to
describe the visco-elastic behavior of the material. The parameterization
for the three models are shown in Table 4.1

Table 4.1.: Parameterization of QLV models for the liver. For an explana-
tion of the viscoelastic coefficients, please refer to eq. (4.90).

Author Model type C10 C01 C20 D1 g1 τ1 g2 τ2 g3 τ3

Jordan Reduced poly- 79,2 - 257 4.38 0.832 0.15 - - - -
et al. nomial, QLV ·10−4

Raghuna- Reduced poly- 397.7 - 208.6 8.38 0.503 2.1 0.185 47.1 0.142 380
than et al. nomial, QLV ·10−4

Kim Mooney- 322.96 161.47 - < 10−5 0.2866 1.537 0.2022 6.09 - -
et al. Rivlin, QLV
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4.3.1. Simplified liver model
Organ motion compensation has to be performed in real-time during an
intervention. That is why the biomechanical model does not only have
to be accurate, but also very computationally efficient. We thus seek to
simplify the models obtained from the literature. In particular we do
not model the viscoelastic behavior with the computational intensive
QLV approach, but with numerical Rayleigh damping. The hyperelastic
properties of the new simplified model are described by the neo-Hookean
formulation. The simplified model is parameterized according to a
reference model (we chose the model by Raghunatan et al. for the study,
but it should be noted that other models can be approximated as well)
by performing numerical simulations of an indentation experiment on
an idealized cylindrical object (Fig. 4.4). The indentation has a maximal
depth of 10 mm and is performed at speeds of 1 mm/s and 10 mm/s.
No-slip boundary conditions (BCs) are prescribed on the bottom of the
cylinder and pressure BCs are enforced during the simulation (Fig. 4.4).
The commercial FE package Abaqus (Version 6.9-1) is used to solve a
discretized FE model of the cylinder. The cylinder is discretized with
hybrid quadratic hexahedral element to avoid volume locking. The
complete mesh contains 3264 elements and 14921 nodes. The coefficients
for the simplified model that were obtained by a parametric study are
listed in Table 4.2.

Table 4.2.: Parameters of the new simplified liver model.
Neo-Hookean material Rayleigh damping

New simplified liver model C10 D1 α β

365 8.38 · 10−4 0 0.21

4.3.2. Numerical sensitivity analysis
A geometrically realistic surface model of the human liver was obtained
from a liver phantom using a laser scanner. Subsequently, a quadratic
tetrahedral FE mesh (5170 elements, 8970 nodes) is constructed using the
commercial software Hypermesh (Version 10). In order to realistically
model the boundary conditions, we consider two different deformation
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Figure 4.4.: Cylinder with boundary conditions (left), cylinder deformed
by indentation (right)

patterns. The deformations caused by respiratory motion is modeled in
accordance with Cash et al. [CMG+07]: The lower left side of the liver is
fixed (zero displacement boundary), displacement BCs are prescribed on
the upper surface of the liver (see Fig. 4.5) and all other surface remain
stress-free. The maximal displacement of this deformation pattern is
48.5 mm with a mean displacement of 12.8 mm. In order to model an
instrument indentation we apply local displacement boundary conditions
(Fig. 4.5). The maximal displacement of the indentation is 11.07 mm
with a mean displacement of 0.57 mm.
In order to assess the similarity of the registration result obtained using
the different models, we compare all simulation results to a reference
model. We again choose the model by Raghunathan et al. to serve as the
reference model. However, it is important to point out that the choice
of the reference model has only a negligible effect on the results as we
are only interested in the relative differences between the models. In
addition to the two other already presented QLV models and the new
simplified model, we use a linear elastic model for comparison. As
detailed in Table 4.3 the elastic modulus E and Poisson’s ratio ν of the
linear model are chosen to match the coefficients of the neo-Hookean
model. All simulations are using the Abaqus FE package. We use hybrid
quadratic tetrahedral elements to avoid volume locking, implicit time
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Figure 4.5.: Displacement boundary conditions (orange) to simulate or-
gan motion caused by respiration (left) and contact with
surgical instruments (right)

integration with automatic control of the increment size and a maximal
half-step residual of 0.1.

Table 4.3.: Parameters of the linear elastic model
Linear elastic material Rayleigh damping

Linear elastic model Young’s modulus (E) Poisson ratio α β

1987 0.36 0 0.21

In the presence of the respiratory deformation pattern all nonlinear
models give nearly identical results. The maximum difference between
the models is less than 0.6 mm while the maximum distance between
the simplified model and the reference model is even closer (0.25 mm).
However, the computation results obtained using the linear model differs
substantially by a maximum distance of 3.9 mm. In case of the simulated
instrument indentation the results show a different picture. Here the
linear model is very close to the reference solution (0.66 mm). The
simplified model also stays close to the reference (maximal distance 0.27
mm). In contrast, there is a noticeable difference of 1.1 mm between the
different non-linear models.



68 Chapter 4. Biomechanical modeling of soft tissue

Figure 4.6.: Liver model deformed by a respiratory motion pattern (left)
and by a simulated contact with surgical instruments (right)

Table 4.4.: Registration errors in comparison to a QLV reference model
Deformations caused by Deformations caused by

surgical instruments respiratory motion

Maximal distance Mean distance Maximal distance Mean distance
[mm] [mm] [mm] [mm]

Jordan et al. 1.14 0.22 0.58 0.16

Kim et al. 1.11 0.18 0.55 0.13

Simplified model 0.27 0.007 0.25 0.07

Linear model 0.66 0.007 3.88 1.28

4.3.3. Towards real-time simulation
It can be seen that the simplified model leads to results that are very
close to the QLV reference model in both scenarios. It can thus be
concluded that the viscoelastic behavior can be described using the
computationally efficient Rayleigh damping. It can also be observed
that the linear model is very inaccurate in the first scenario. This can be
attributed to the large rotational component of the deformation pattern
that cannot be adequately captured by the linear Cauchy deformation
tensor. It is interesting to note that these results are in line with the
results obtained by Cash et al. using linear modeling (max. displacement
of 3-4 cm and error around 4 mm). Due to the rotation-invariance of
the non-linear Cauchy-Green deformation tensor, all geometrically non-
linear models lead to very similar deformation fields. Interestingly, the
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model complexity and parameterization have only negligible effects. This
behavior has previously been observed for the brain shift problem in
neurosurgery [HWM06].
In the instrument indentation setting, the linear model performs much
better. Its distance to the reference model is roughly twice as large (0.66
mm) as the distance of the neo-Hookean model (0.27 mm). This can be
attributed to the comparatively small overall deformations and in par-
ticular to the absence of large rotational components in the deformation
pattern. It is important to note that the parameterization of the model
plays a bigger role than in the previous scenario. However, even though
the stiffness parameters of the models vary considerably, all models
perform reasonably well (max. distance 1.14 mm).
The different parameterization of the models form the literature can
largely be attributed to the different testing conditions. These differences
are large if compared to patient-specific variations. Thus, the results of
the study suggest that a difficult patient-specific parameterization of the
model might not be necessary for intraoperative soft tissue registration.
It is important to note that these findings are only true for displacement-
zero traction boundary conditions. As explained in the previous chapter,
this type of BCs naturally arises from intraoperative imaging modalities
(e.g. endoscopes, ultrasound). However, if surface tractions were to be
prescribed on the liver surface (e.g. by using an intraoperative force
sensor) the sensitivity of the registration accuracy with regards to the
model parameterization would be much higher.
It can be concluded that linear models are not suitable for liver registra-
tion. Due to the large deformations, a rotation-invariant, geometrically
non-linear formulation has to be employed. It was also demonstrated
that simple Rayleigh damping can be used instead of complex QLV
models without sacrificing accuracy.
The next chapter will be dedicated to exploring fast finite element solving
techniques for biomechanically based soft tissue registration. Building
on the primary result of the presented study - that soft tissue registration
requires the use of a geometrically non-linear model, but that the material
law is not very important - it will be shown how so called corotated
elements are can lead to an efficient, yet accurate model for real-time
registration.





A computer will do what you tell it to do,
but that may be much different from what
you had in mind.

— Joseph Weizenbaum5.

Real-time finite element
formulation
In this chapter, a computational soft tissue model for the non-rigid
registration process is developed. We start by outlining a variational
form of the BVP for linear elasticity. Subsequently it is shown how the
variational form can be discretized in space using the finite element (FE)
method and how to obtain the fully time-discrete formulation using time
integration techniques. With respect to a future real-time application
of the approach, a FE model based on quadratic corotated tetrahedra
that is very accurate and efficient is presented. The accuracy of the
model is demonstrated in different numerical studies. We also describe a
lightweight solution for distributed computing in the context of computer
assisted surgery.

5.1. Variational formulation

5.1.1. Weak solution in Sobolev spaces
The basic idea of a finite element method is to discretize the physical
problem in a so called weak (or variational) form instead of its classi-
cal strong formulation. For this purpose we define the test functions
δu ∈ C∞

0 ∩VD(ΓD,0) with compact support that vanish on the Dirichlet
boundary ΓD. Then, we demand that the L2 scalar product

∫

Ω0

(Divσ + ρ0g− ρ0ü)δudV0 = 0 ∀δu (5.1)
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between the residual of the partial differential equation (PDE) and the
test functions vanishes for all δu. Rephrasing the divergence term using
the product differentiation rule

Divσ · δu = Div(σδu)− σ : Gradδu (5.2)

and application of the divergence theorem yields
∫

Ω0

Divσ · δudV0 =
∫

Ω0

Div(σδu)dV0 −
∫

Ω0

σ : GradδudV0 (5.3)

=
∫

ΓN

t · δudA0 −
∫

Ω0

σ : GradδudV0. (5.4)

Here, t are the prescribed traction boundary conditions on ΓN . Inserting
this in eq. 5.1 gives rise to the weak form of Cauchy’s equation of
motion:
∫

Ω0

σ : GradδudV0 −
∫

ΓN

t · δudA0 −
∫

Ω0

(ρ0g · δu + ρ0ü · δu)dV0 = 0.

(5.5)
It is apparent, that each u which solves the original boundary value
problem (BVP) is also a solution to the weak formulation. It can also be
shown that each u ∈ C2(Ω) ∩ C1(Ω) ∩VD(ΓD,u) ∩VN(ΓN , t) for which
eq. (5.5) holds is also a solution of the classical PDE [Bra07]. However, if
we only assume u ∈ VD(ΓD,u) ∩VN(ΓN , t) and not u ∈ C2(Ω) ∩ C1(Ω),
then the weak formulation has more solutions than the classical one.
Through the definition of weak derivatives the space of all solutions
u ∈ VD(ΓD,u) ∩VN(ΓN , t) to eq. 5.5 can be identified with the Sobolev
space H1(Ω) [Bra07]. It should be noted that there are physical problems
(e.g. shock problems) which have no classical solutions, but do have a
solution in H1(Ω).
The solution space is not only a Sobolev space, but also a Hilbert space
(hence the notation H1(Ω)). Thus, the powerful tools of functional
analysis open up a natural way of discretizing the weak form by finite
element based techniques. Also, the concept of weak solutions in Sobolev
spaces is a very useful tool in the analysis of uniqueness and existence
of solutions to BVP. In particular, the Lax-Milgram theorem establishes
that the bilinear form (5.1) has a unique solution if it is strongly coercive
[Bra07].
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5.1.2. Static formulation: Minimizing energy functionals
In the following section we will formulate the static problem in terms
of minimizing the total energy of B. It will become apparent that this
variational formulation is identical to the weak formulation. This physics-
based derivation provides an elegant and intuitive access to weak formu-
lations and will be extensively used in this thesis.
The total potential energy of the system can be formally derived from
the balance of mechanical energy for linear elasticity eq. (4.104). For this
purpose we assume that each particle in B is at rest at the beginning
of the simulation, i.e. v(x, t = 0) = 0. Omitting the inertia forces (static
approximation) and integrating eq. (4.104) over time then yields

Π(u) =
∫

Ω0

σ : εdV0 −
∫

∂Ω0

t · udA0 −
∫

Ω0

ρg · udV0. (5.6)

The solution to the static problem can be interpreted as the configuration
that minimizes this energy functional. The principle of stationary poten-
tial energy states a necessary condition for a stationary point in Π(u): It
requires the directional derivative with respect to the displacements u

Π(u,δu) = DδuΠ(u) =
d

dh
Π(u + hδu)

∣∣∣∣
h=0

= 0 (5.7)

to vanish in all directions [Hol00]. Carrying out the variation on the
internal elastic energy yields:

DδuΠ(u)int =
d

dh

∫

Ω0

σ : εdV0

∣∣∣∣
h=0

(5.8)

=
d

dh

∫

Ω0

σ :
1
2
((∇u + h∇δu) + (∇u + h∇δu)T)dV0

∣∣∣∣
h=0
(5.9)

=
∫

Ω0

σ :
1
2
(δ∇u + δ∇uT)dV0

∣∣∣∣
h=0

(5.10)

=
∫

Ω0

σ : δ
1
2
(∇u +∇uT)dV0 =

∫

Ω0

σ : δεdV0 (5.11)
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Similarly, the external energies (loads) can be expressed as

DδuΠ(u)ext =
d

dh

∫

∂Ω0

t · (u + hδu)dA0 +
d

dh

∫

Ω0

ρg · (u + hδu)dV0

∣∣∣∣
h=0

(5.12)

=
∫

∂Ω0

t · δudA0 +
∫

Ω0

ρg · δudV0 (5.13)

and thus the complete variational form is

DδuΠ(u) = DδuΠ(u)int + DδuΠ(u)ext = 0 (5.14)

⇔
∫

Ω0

σ : δεdV0 =
∫

∂Ω0

t · δudA0 +
∫

Ω0

ρg · δudV0. (5.15)

We can thus summarize the variational formulation of the
static elasticity problem: Find the displacement field u ∈ V =
H1(Ω) ∩VD(ΓD,u) ∩VN(ΓN , t), s.t. eq. (5.15) holds for all δu ∈ H1 ∩
VD(ΓD,0). It can be quickly shown (symmetry of σ) that the variational
form is equivalent to the weak formulation.

5.1.3. Dynamic formulation: Hamiltonian variational
principle

In the dynamic case, the intuitive formulation in terms of minimizing the
elastic energy is replaced by the principle of least action [Ibr09]. More
formally we now seek the stationary point of the Hamiltonian variational
principle.
With the same assumptions that we made in the static case, we can derive
the Lagrangian

L(u) = Π(u)−K(u̇) (5.16)

=
∫

Ω0

σ : εdV0 −
∫

∂Ω0

t · udA0 −
∫

Ω0

ρg · udV0 −
∫

Ω0

1
2

ρ0u̇2dV0

(5.17)
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of the system [HG01]. The solution to the dynamic elasticity problem
can then be regarded as a stationary point of the Hamiltonian variational
principle

DδuH(u) =
∫ T

0
L(u)dt (5.18)

We compute the variation of the kinetic part of the Hamiltonian using
integration by parts:

DδuHkin(u) =
d

dh

∫ T

0
−
∫

Ω0

1
2

ρ0(
d(u + hδu)

dt
)2dV0dt

∣∣∣∣
h=0

(5.19)

= −
∫

Ω0

∫ T

0

1
2

ρ02
d(u + hδu)

dt
d

dh
d(u + hδu)

dt
dtdV0

∣∣∣∣
h=0

(5.20)

=
∫

Ω0

(
−
[

ρ0
d(u + hδu)

dt
δu
]T

0
+
∫ T

0
ρ0

d2(u + hδu)
dt2 δudt

)
dV0

∣∣∣∣∣
h=0
(5.21)

=
∫

Ω0


−ρ0

du
dt

δ u(T)︸ ︷︷ ︸
=0

+ρ0
du
dt

δ u(0)︸︷︷︸
=0

+
∫ T

0
ρ0

d2u
dt2 δudt


dV0 (5.22)

=
∫ T

0

∫

Ω0

ρ0üδudV0dt (5.23)

The final result was obtained by imposing that the variations are zero at
both limits of the time interval. By using the previous results obtained
in the static case eq. (5.15), the complete variation of the Hamiltonian
reads

DδuH(u) = (5.24)
∫ T

0

(∫

Ω0

ρ0üδudV0 + σ : δεdV0 −
∫

∂Ω0

t · δudA0 −
∫

Ω0

ρg · δudV0

)
dt.

(5.25)

It is reasonable to require the above equation to hold for all T during the
simulation. Thus, the dynamic problem can be posed in its corresponding
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time-differential, space variational form: Find the displacement field
u ∈ V = H1(Ω) ∩VD(ΓD,u) ∩VN(ΓN , t), s.t.
∫

Ω0

ρ0üδudV0 +
∫

Ω0

σ : δεdV0 −
∫

∂Ω0

t · δudA0 −
∫

Ω0

ρg · δudV0 = 0

(5.26)

holds for all δu ∈ H1 ∩VD(ΓD,0).

5.2. Finite element discretization
The idea of the finite element discretization technique is to not look for a
solution u to the variational problem in the infinite-dimensional space V
of continuous functions, but to an approximated solution uh in a suitable
finite-dimensional, discrete sub-space Vh ⊂ V. This subspace is typically
spanned by piecewise continuous polynomial functions that have small
support. In order to define these function spaces, Ω is divided into
different polyhedral elements (Fig. 5.1). In this context the boundary of
Ω is required to be sufficiently smoothed which is formalized through
the assumption that Ω is a Lipschitz domain.
When constructing the finite element space we are facing the fundamental
problem that is associated with every discretization technique: How to
find the best approximation to the correct solution with a given amount
of complexity in terms of degrees of freedom of the discrete system.
An important reason for the success of the FE-method are the powerful
and elegant tools that are available for a-priori error approximation.
At the core, Céa’s lemma states that the finite element approximation
uh is the near best fit to the solution u in the norm associated with
H1 [Bra07]. Geometrically speaking, the discrete solution uh is the
orthogonal projection of u into Vh with respect to the inner product that
is induced by the bilinear form (5.1). It follows that the construction of
the subspace Vh is crucial for the accuracy of the method.
The convergence of FE methods is typically studied in suitable mesh-
dependent norms. Thus, several a-priori error estimates exist for different
norms and different finite element types. For finite element spaces that
are spanned by piecewise polynomials of order p on tetrahedral and
hexahedral elements, it can be shown that the convergence rate for is of
order p + 1 if the real solution is sufficiently smooth. However, the latter
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B
M

νI
τI

Figure 5.1.: A two dimensional body B (grey line) is discretized with a
triangular finite element meshM (dashed lines). The set of
vertices VI that form the element τI is shown in green, while
the set of all elements EI around the vertex νI is colored blue.

is usually not the case in many applications. Thus first or second order
polynomials are typically used for elasticity problems.
A finite element meshM with elements τI and n vertices νI is defined to
support the basis functions that span the solution space Vh. We denote
the set of all elements τJ around the vertex νI with EI . Similarly VI is the
set of vertices that form the element τI . Typically so called nodal basis
functions NJ are used. Each nodal functions NJ satisfies

NJ(νI) = δI J (5.27)

i.e. it is zero at every other node except the associated J-th node (δ-
property). Furthermore, the nodal basis function satisfy the partition of
unity

∑
J∈VI

NJ(x) = 1 ∀x ∈ τI (5.28)

and have a small, compact support, i.e.

NJ(x) = 0 ∀x /∈ EJ . (5.29)
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The nodal basis functions for linear and quadratic tetrahedral elements
can be found in appendix A.4. In order to discretize the weak formulation,
uh is expressed by the linear combination

uh(t) = uh =
n

∑
J=1
UJ NJ = UJ NJ = UjJ NjJ (5.30)

of the n basis functions NJ with the time dependent coefficients U or U (t)
(in the above equation and from here on out summation over repeated
indices is implied). As a direct consequence of the δ-property, the
coefficients U (t) coincide with the displacements of the element nodes
when using nodal basis functions. Due to the special form of the basis
functions, the solution uh is C0-continuous and we have Vh ⊂V. It is only
through this so called conformal finite element space that statements on
uniqueness and existence of solutions can be directly transferred from
the continuous to the discrete problem.
For later use, we also introduce the displacement gradient

∇u =∇(UJ NJ) = UJ∇NJ . (5.31)

It is theoretically possible to use different function spaces for uh and the
test functions δuh. However, in practice we usually choose these spaces
to be the same (Galerkin method). Thus we have

δu =
n

∑
I=1

δUI NI = δUI NI (5.32)

5.2.1. Matrix formulation

By inserting the basis functions and the test functions into the variational
formulation (5.26) and performing numerical integration, a linear system
of ordinary differential equations can be derived. In the following we
sketch this procedure and derive the load vector as well as the mass and
the stiffness matrix.
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We start by inserting the test functions into the expression for the external
forces eq. (5.13) to derive

DδUΠ(uh)ext =
∫

∂Ω0

t · (δUI NI)dA0 +
∫

Ω0

ρg · (δUI NI)dV0 (5.33)

= δUI

(∫

∂Ω0

t · NIdA0 +
∫

Ω0

ρg · NIdV0

)
= δUIfext

I .

(5.34)

As the test functions are polynomials, the surface and volume integrals
in (5.34) can be accurately and efficiently evaluated using numerical
integration techniques such as Gaussian quadrature. For an overview on
this topic we refer to Zienkiewicz et al. [ZT77]. The resulting external
load vector fext

I (sometimes also written as fext or f ext
iI ) denotes the force

that acts on each node PI in the spatial direction j. Its length is thus 3n.
Similarly, the discretization of the inertia forces (variation of kinetic
energy) (5.23) yields

DδUΠ(uh)kin =
∫

Ω0

ρ
(
ÜJ NJ

)
(δUI NI)dV0 = δUI

∫

Ω0

ρNJ ÜJ NIdV0 (5.35)

= δUI

(∫

Ω0

ρNJ NIdV0

)
ÜJ = δUIMI J ÜJ . (5.36)

The entries of the so called mass matrix MI J (sometimes also denoted
with M or MiI jJ) are again computed using numerical integration. The
vector ÜJ (or simply Ü ) is the vector of nodal accelerations.
The internal forces obviously depend on the deformation field uh and
thus on the vector of nodal displacement U (i.e. the coefficients of the
basis functions). If the displacement is known we can compute the
internal nodal forces using numerical integration. Due to the symmetry
of σ we can derive:

DδUΠ(uh)int =
∫

Ω0

σ : δεdV0 =
∫

Ω0

σ :
1
2

(
δ∇u + (δ∇u)T

)
dV0 (5.37)

=
∫

Ω0

σ : δ∇udV0 =
∫

Ω0

σ : (δUI∇NI)dV0 (5.38)

= δUiI

∫

Ω0

σik(∇N)kIdV0 = δUiI

∫

Ω0

f̂ X,int
iI dV0 (5.39)

= δUiI f int
iI = δUIfint

I (5.40)
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Here, f̂ X,int
iI denotes internal force density. For implicit integration

schemes or non-linear static solvers of Newton-Raphson type, the tangent
stiffness matrix

KI J = KiI jJ =
∂ f int

iI
∂UjJ

=
∫

Ω0

∂ f̂ X,int
iI

∂UjJ
dV0 = ∑

τ

∫

τ

∂ f̂ X,int
iI

∂UjJ
dV0 = ∑

τ

Kτ (5.41)

is necessary. From the above equation it is apparent how the global stiff-
ness matrix KI J is constructed: First, the integrals in the above equation
are evaluated on a per-element basis. Due to the small support of the
basis functions, only few integrals (e.g. 12 for the linear tetrahedron)
have to be evaluated for each row. These elemental matrices Kτ are then
added into the global data structure (matrix assembly).
For the linear elastic model, the entries of the tangent stiffness matrix
can be computed as (please refer to the appendix A.5 for details):

KiI jJ =
∫

Ω0

(
µ∇Ni J∇NjI + µδI J

3

∑
l=1
∇Nil∇Njl + λ∇NiI∇NjJ

)
dV0

(5.42)

Here, δI J again denotes the Kronecker-delta symbol and µ,λ are the
material parameters. For linear elasticity, there is

fint = KI JUJ . (5.43)

The global matrices M,K are symmetric, positive definite sparse matrices.
Their sparsity pattern depends on the mesh topology and is thus is
irregular for unstructured grids.
Using the obtained discretization of the external, inertia and internal
forces we can state the discrete variational form

DδuΠ(u)kin + DδuΠ(u)int = DδuΠ(u)ext (5.44)

⇔ δUIMI J ÜJ + δUIfint = δUIfext
I (5.45)

As the equation holds for all variations δUI , the variational form can
be stated as a system of second order ordinary differential equations
(ODE):

MÜ + fint = fext (5.46)
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This equality also holds for non-linear problems. For the linear elastic
formulation, the internal nodal forces depend linearly on the nodal
displacements eq. (5.43) and we can express the equilibrium equations
through the following system of linear second order ODE’s:

MÜ + KU = fext (5.47)

Neumann boundary conditions (forces on the surface) are reflected in the
formulation through the external forces fext. In the following section, we
will see how Dirichlet boundary conditions (prescribed displacements)
can be imposed during the linear system solve once the system of ODEs
has been discretized using time integration techniques.

5.3. Time integration
In this section we derive the full discretization, i.e. we discretize the
ODEs in time to derive a linear system of equations. The methods
are presented with linear elasticity in mind, but easily generalize to
non-linear problems.
For viscoelastic models the internal nodal forces also encapsulate the
viscoelastic behavior (see section 4.2.3). Consequently, we can define the
tangent damping matrix

DI J = DiI jJ =
∂ f int

iI
∂U̇jJ

(5.48)

in addition to the tangent stiffness matrix eq. (5.43). Time integration
methods can be categorized into explicit and implicit methods. The
explicit methods enforce the equilibrium (5.46) only at the beginning of
the time step at the current time t, whereas implicit algorithms enforce it
at the end of the time step at time t+∆t (∆t is the time step size). Explicit
methods are very computationally efficient, as their computation only
require matrix-vector operations. In contrast, implicit methods require
solving a system of equations for every time step. However, explicit
methods are only conditionally stable. Especially for stiff systems, they
need very small timesteps to remain stable. Thus they are often a poor
choice for soft tissue simulations especially for nearly incompressible ma-
terial models [SM03]. For real-time deformable model problems, implicit
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methods have emerged as the dominant means for time discretization
[BW98].
In the following, we describe the dynamic equilibrium (5.46) at time
t + ∆t under the assumption that the system is in equilibrium at time t.
From now on we denote the point in time for each nodal quantity with
left superscript (e.g. t+∆t). The superscript t which indicates the current
time is omitted when apparent from the context. We also define

dU = t+∆tU − tU and dU̇ = t+∆tU̇ − tU̇ . (5.49)
Using the tangent stiffness matrix and the tangent damping matrix, we
can express the first order Taylor expansion of fint around t as

t+∆tfint = tfint +
∂fint

∂U̇ ( t+∆tU̇ − tU̇ ) + ∂fint

∂U ( t+∆tU − tU )(5.50)

= tfint + D ˙dU + KdU . (5.51)

As the external forces (dead loads) do not depend on the deformation,
i.e.

t+∆tfext = tfext, (5.52)
the equilibrium at time t + ∆t is

MÜ + DdU̇ + KdU = fext − fint. (5.53)

In the static, non-linear case the above equation reduces to a Newton-
Raphson iteration algorithm. It is solved by first calculating D,K for
U , then solving eq. 5.53 for dU and finally performing the update
U = U + dU . This procedure is typically repeated until dU is below a
certain threshold.

5.3.1. Implicit Euler method
The implicit Euler scheme is unconditionally stable and emerged as the
de-facto standard for real-time deformable model simulation. However,
it has only a convergence order of one. The update equations for the
implicit Euler time integration technique are:

t+∆tU̇ = tU̇ + h( t+∆tÜ )
t+∆tU = tU + h( t+∆tU̇ ) (5.54)
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Upon inserting these update equations into the equilibrium condition eq.
(5.53) we obtain the linear system

AdU̇ = b (5.55)

with the system matrix

A = M + ∆tD + ∆t2K (5.56)

and the effective load

b = fext − fint − ∆t2KU̇ . (5.57)

Thus, for each time step one linear system of equations has to be solved.
Once the system solve has been performed, the new velocities, displace-
ments and accelerations can be obtained through the update equations
(5.54).

5.3.2. Newmark method
In some cases it is desirable to achieve a higher accuracy for the time dis-
cretization technique. An attractive alternative is offered by the constant-
average-acceleration scheme of the β-Newmark method [BLM00]. It’s
additional computational overhead is negligible compared to the implicit
Euler scheme and it is of second order accuracy. The update equations
are:

t+∆tU =
4

∆t2 (
t+∆tdU )− 4

∆t
tU̇ − tÜ

t+∆tU̇ = tU̇ +
∆t
2

(
tÜ + t+∆tÜ

)
(5.58)

By again defining a system matrix

A =
4

∆t2 M +
2

∆t
D + K (5.59)

and the effective load

b = tfext − tfint + M
(

4
∆t

tU̇ + tÜ
)
+ D

(
2 tU̇

)
(5.60)
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the equation to be solved for dU can be written as

AdU = b (5.61)

We note that in contrast to the above formulation for the implicit Euler
scheme, the linear system is formulated in terms of displacements. As
we will see in the upcoming section, this allows to easily incorporate
movement constraints.

5.3.3. Projection based displacement constraints
We have already seen that Neumann boundary conditions are naturally
included in the FE formulation through the external forces fext. In con-
trast, displacement constraints have to be explicitly handled. Although
it is rather difficult to prescribe displacement constraints at arbitrary
points in B [BLM00], displacement constraints at the element nodes can
be incorporated in a very computationally efficient way. In the following
paragraph we present how to achieve this when the presented Newmark
time integration scheme is used.
If the displacement U k of certain nodes Pk,k ∈ S in the set S is already
known, the dimension of the linear system (5.61) is essentially reduced by
the size of S . However, in order to conserve matrix symmetry, the size of
the linear system is usually not changed. Instead, the displacements are
built into the system by a procedure that is called displacement projection
(see Alg. 1). The core idea is to project the nodal displacements to the
given values (i.e. set Uk = U k ∀k ∈ S) and then modify the linear system
in such a way that for the result dUk = 0 ∀k ∈ S .

5.4. Quadratic corotated tetrahedra
Having established the foundations of FE techniques, a computationally
efficient soft tissue model based on corotated quadratic tetrahedra will
be presented in this section. The formulation of the method as well as
its extensive numerical validation for real-time deformable models and
non-rigid registration is based on the respective proceedings publications
[SRD+11] [SLH+13].
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Algorithm 1 Newmark timestep with projection constraints

Project nodal displacements, i.e. set Uk = U k ∀k ∈ S
Compute tfint

Compute effective load b according to eq. 5.60
Project b, i.e. set bk = 0 ∀k ∈ S
Compute system matrix A according to eq. 5.59
Project A, i.e. set k-th row and k-th column of A to 0 and Akk = 1 ∀k ∈
S
Solve AdU = b
Update displacements and velocities according to eq. 5.58

5.4.1. Corotated finite elements
As previously discussed, linear elastic models cannot be used if an object
is subjected to large deformations, regardless of the material properties
(linear deformation measures are not rotation invariant). However, if a
fully non-linear formulation is used in a static setting or in conjunction
with implicit time integration techniques, a non-linear system of equa-
tions has to be solved for each time step (see eq. 5.53). Corotated finite
elements offer an attractive alternative to this computationally expensive
approach and have become a popular choice for real-time deformable
models in the realm of computer graphics. The core idea is to linearize
the equation of motion by performing the polar decomposition (section
4.1.3)

F = RU (5.62)

of the deformation gradient F and using the stretch matrix U as the
deformation measure. In this way a rotation-invariant formulation is
achieved. Corotated FE are usually formulated in terms of the current
nodal positions and the reference nodal positions, which are denoted
by

X = tX and X0 =
0X (5.63)

Technically speaking, all occurrences of the deformation gradient ϕ are
substituted by the stretch matrix U. In the following section we briefly
show how the complete corotated FE approach emerges through this
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approach. For a detailed derivation we refer to the appendix A.6. The
corotated Cauchy strain tensor can be formulated as

εCR =
1
2

(
RTXJ∇NJ + (RTXJ∇NJ)

T
)
− I (5.64)

The corotated stress σCR is then computed by inserting the corotated
strain tensor into the material law eq. (4.99). The corotated nodal forces

fint =
∫

Ω0

RimσCR
mk (∇N)kIdV0 (5.65)

can be derived accordingly and the corotated tangent stiffness matrix
is

KCR = ∑
e

∫

τ

∂ f̂ X,int
iI

∂XjJ
dV0 = ∑

e

∫

τ
R

∂f̂int
I

∂XJ
RTdV0. (5.66)

The approach can be described as rotating the deformation field into the
initial configuration, calculating the nodal forces using the linear Cauchy
strain tensor and finally rotating the forces back to the deformed configu-
ration. By inserting the corotated nodal forces and the corotated stiffness
matrix into eq. (5.53), we can finally express the implicit equilibrium:

MÜ + DdU̇ + KCRdU = fext − fint (5.67)

At his point, an important difference to the full non-linear formulation
has to be emphasized. When solving for the fully non-linear formulation,
a sufficient number of Newton-Raphson steps have to be used in order for
the simulation to remain stable. In contrast, the corotated form remains
stable when only one Newton-Raphson step is performed each time step.
Furthermore, the extraction of the rotational component changes the
condition number of the element matrices only marginally which renders
the simulation very stable. Although the method cannot model material
non-linearities, it offers a very efficient way to achieve a geometrically
non-linear formulation. However, in contrast to the linear FEM, the
rotation matrices have to be computed and assembled into the stiffness
matrix every time step.
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Figure 5.2.: Linear tetrahedron with 4 nodes (tet4) and quadratic tetrahe-
dron with 10 nodes (tet10)

5.4.2. Quadratic tetrahedra

The isoparametric 4-node tetrahedron interpolates the position linearly
between the nodes (Fig. 5.2). Consequently, the stress is constant over
the element and the element shows significant volumetric locking for
nearly incompressible materials [BLM00]. In contrast, the 10-node tetra-
hedron interpolates positions with 2nd order polynomials and doesn’t
suffer from severe volume locking. Thus, in the realm of mechanical
engineering it is well known that quadratic tetrahedra perform much
better than linear tetrahedral meshes in many scenarios [CK92]. This is
especially true for the simulation of incompressible objects.
Typically, the shape functions are defined in a local coordinate system
(r, s, t) and all element based operations such as calculating deformations,
extracting rotations or numerical integration are performed in this local
coordinate system. Polynomial functions (shape functions) are used to map
the local coordinates to the global coordinate system. If the polynomial
degree of the shape functions matches the order of the basis functions,
the element is called isoparametric. In case of the isoparametric 10-node
tetrahedron, the shape functions are quadratic, which allows curved
boundaries and therefore better approximation of the geometry (Fig.
5.2).
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As previously mentioned, the integrals that arise during the computation
of the forces and the stiffness matrix are evaluated numerically. One
cubature point per element is sufficient in order to integrate the stiffness
matrix term eq. (5.66) if linear basis functions are used. In contrast,
four sample points are necessary to integrate the 10-node tetrahedron.
Consequently, four rotation matrices have to be extracted per element
for accurate integration. Alternatively, it is possible to extract just one
rotation matrix per element by only using the four corner vertices in order
to compute the deformation gradient. In this case the element matrix can
be pre-computed and the numerical integration can be omitted, which
reduces the computational costs by 75%. This simplification will be
referred to as the single rotation quadratic tetrahedron.

5.4.3. Numerical validation
Numerical simulation studies on a simple beam geometry are performed
in order to compare the efficiency of the linear tetrahedral (tet4), the
quadratic tetrahedral (tet10) as well as the single rotation quadratic
tetrahedral (tet10SR) elements. In the first scenario, the beam deforms
under gravity, while it is subjected to a twisting deformation pattern in
the second scenario (Fig. 5.3). Incompressible material models (Poisson’s
ration ν = 0.49) are used throughout the study. The linear and the
quadratic corotated FEM were implemented using the Simulation Open
Framework Architecture (SOFA) toolkit [FDD+12]. For all simulations in
this study, the Newmark time integration scheme is used along with the
Pardiso direct sparse solver from the Intel MKL 10.3.
In order to perform a quantitative analysis of the discretization error for
each model, a reference solution on a high resolution quadratic mesh
(100k elements) is computed for both problems. Test models of different
resolutions are subsequently compared to this reference model. We
choose the root mean squared (RMS) error at the nodes of the reference
solution as the error measures. The RMS errors with respect to the
degrees of freedom (DOF) are depicted in Fig. 5.4.
In case of the gravity induced deformation, tet4 elements need much
more DOF (up to 40x) than tet10 elements in order to achieve the same
accuracy. This result illustrates the locking behavior of linear tetrahedral
elements. It should also be pointed out that the tet10SR formulation
shows only negligible difference to the fully integrated tet10 element.
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a) b)

Figure 5.3.: Deformation under gravity (a) and twisting deformation
pattern of a beam (b). A 1461 DOF tet4 mesh is compared to
a 714 DOF tet10 mesh. The tet10SR element fails to capture
the rotation at low resolution (b, middle), but achieves similar
accuracy to the tet10 element at higher resolution (b, right).
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Figure 5.4.: RMS error over DOF for twisting deformation (left) and
gravity induced deformation (right). The tet10 (green) and
tet10SR (blue) elements show far superior accuracy for the
same DOF than the tet4 (red) mesh.

Due to the displacement boundary conditions and the absence of volu-
metric forces, the difference in the twisting scenario is not as pronounced.
However, the tet4 elements still need an order of magnitude more DOFs.
It is apparent from Fig. 5.3 that the tet4 mesh with 1461 DOFs still shows
visible edges, while the lower resolution tet10 mesh (714 DOFs) produces
a smooth deformation. It can also be seen that the tet10SR element
fails to capture the rotations at low resolution (Fig. 5.3), but achieves a
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similar accuracy as the tet10 element for higher resolutions (right). It can
be concluded that quadratic elements are superior to tet4 elements in
both scenarios. Furthermore, the single rotation quadratic tetrahedral
formulation (tet10SR) can be a computationally efficient alternative to
the standard tet10 formulation for many applications.
We now compare the registration accuracy of the corotated formulation
with the accuracy of a complex fully non-linear QLV model. For this
purpose, we set up a similar simulation study as already presented in
section 4.3.2. Here, we use a FE model with 8744 tet10 elements (14712
nodes) and use comparable boundary conditions as in the previous study
(see Fig. 4.6). For the respiratory motion pattern scenario, the liver is
deformed over a timespan of three seconds with a maximal displacement
of 43.6 mm. The maximal displacement for the instrument indentation
simulation is 11.07 mm. The QLV model by Raghunathan et al. [RES10]
was again chosen as the reference model which was solved using the
commercial FEM software ABAQUS.
It is apparent from table 5.1 that the maximal Euclidean distance (mea-
sured at the nodes of the meshes) between the corotated model and the
QLV model is 0.47 mm for the respiratory deformation pattern. For
the instrument indentation, the corotated model and the linear model
achieve a similar accuracy (Table. 5.2).

Table 5.1.: Errors in comparison to a complex QLV model, respiratory
deformation pattern

Mean error [mm] Max error [mm] Standard deviation [mm]

Corotated model 0.13 0.47 0.08
Linear model 0.76 3.1 0.48

Table 5.2.: Errors in comparison to a complex QLV model, instrument
indentation

Mean error [mm] Max error [mm] Standard deviation [mm]

Corotated model 0.09 0.55 0.08
Linear model 0.03 0.65 0.04
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Due to the fact that the linear model cannot adequately capture the
large rotational components of the respiratory deformation pattern, it
produces large errors in this case. In contrast, the solutions of the
corotated model stay very close to the fully non-linear QLV model in
both scenarios. Thus, we again demonstrate that the accurate solution
of the displacement-zero traction boundary value problem necessarily
requires a geometric non-linear formulation, while the material non-
linearity is not that important.
It should be emphasized that this result holds, because the registration
procedure can be described as a displacement-zero traction problem.
Furthermore, the intraoperative navigation system does not have to
capture the very rapid soft tissue deformations in order to provide a
meaningful guidance. Both assumptions might not be fulfilled in the
case of surgical simulation. In these scenarios one might be interested
in calculating accurate feedback forces, which would require fully non-
linear models.

5.5. Distributed computing for intraoperative
real-time image guidance

Real-time intraoperative guidance is a computationally challenging prob-
lem. Different components such as image processing, registration and
visualizations algorithms have to be integrated into a single system. In
this context, the question arises how the components can be distributed
over different workstations. Furthermore, it has to be investigated if
distributed computation can in fact speed up computer assisted surgery
(CAS) systems, or if the additional communication overhead actually
reduces the performance of the system.
Here, we present a lightweight approach to distribute the workload
over several workstations based on the OpenIGTLink protocol. In the
following sections the basic approach is outlined and its application for
biomechanically based soft tissue registration is discussed. For further
details concerning the method as well as other applications please refer
to the original publication [SKW+12].
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5.5.1. OpenIGTLink based message passing

The OpenIGTLink protocol has been developed to share different data
types such as image or positional data between intraoperative sensors
and CAS workstations over a standard Ethernet connection [TFP+09].
The protocol has since emerged as an open source industry standard and
has also been used to send commands to a robot control unit [TFD+10].
Several native data types such as images, transforms, positional and
point data are already included in the standard OpenIGTLink protocol
specification. The protocol has also been extended to support the trans-
mission of XML messages [TFD+10]. It is thus possible to transmit all
data types that can be encoded into XML. This approach is very flexible
and well suited for small data sizes. However, it can be very slow if larger
amounts of data such as FE meshes have to be transmitted in real-time.
Therefore, we extended the OpenIGTLink protocol to natively support
mesh and boundary condition data.
In order to control distributed CAS components, OpenIGTLink was
extended to support XML-based remote method invocation. For this
purpose a registry is used to allow an easy instantiation of remote objects.
It assigns a unique identifier to each remote object upon creation. The
connection manager can then relay each XML message to the appropriate
receiver using this identifier. The method’s arguments can be encoded
directly into the XML message. Arguments that consist of large amounts
of data can alternatively be sent as a follow-up message in a native data
format in order to reduce the transmission overhead.

5.5.2. Timing measurements

The presented approach is used to run a finite element based soft tissue
registration on a remote workstation. During a set-up process, the
initial FE mesh is transferred from the primary CAS workstation to the
simulation server. For every time step, the boundary conditions are
subsequently transferred to the remote server while the deformed mesh
is sent back to the CAS server after each simulation step is completed.
We measure both the total execution time on the CAS workstation and
the total simulation time on the simulation server. The pure transmission
is thus given by the difference of these measurements.
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Table 5.3.: Transmission times for different mesh sizes using XML-based
message passing.

DOF Size [byte] Transmission time [ms]

72 11,350 2.9
291 45,127 7.1
1113 156,613 26.3
5430 728,568 100.4

13863 1,809,506 218.1
26970 3,527,806 415.4
57384 7,494,936 814.7
136254 17,746,520 2061.5

Table 5.4.: Transmission times for different mesh sizes using native data
types.

DOF Size [byte] Transmission time [ms]

72 2,048 1.0
291 8,092 1.3
1113 28,164 2.0
5430 129,432 6.0

13863 320,684 13.7
26970 618,408 26.1
57384 1,300,592 50.2
136254 3,062,696 119.2

As it should be expected, the transmission time is linear in terms of
the number of degrees of freedom (DOFs) for both the XML-based and
the native data types (Table 5.3 and 5.4). The transmission time of the
XML-encoded data is rather high as the moderately sized meshes with
5430 DOF cannot be transmitted in real-time (100.4 ms transmission
time). In contrast, the native encoding reduces the transmission time by
more than an order of magnitude. The delay for the 5430 DOF mesh is
thus reduced to 6ms. This transmission time is not only compatible with
real-time constraints, but also much lower than the computation time on
a single core CPU. The large difference between the two encoding modes
can be attributed to the significantly larger size of the XML-encoded data.
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Also, the parsing of the XML message is significantly slower than the
unpacking of the native encoding.
If highly optimized FE algorithms are run on GPU-accelerated worksta-
tion (please refer to the following chapter for details), the transmission
time can become significant in comparison to the total execution time.
However, it has to be pointed out that the whole deformed mesh was
sent back to the CAS workstation in the presented experiments. In a
typical application, the transmitted data could be optimized by only
transferring necessary data such as tumor or vessel locations.

5.5.3. Discussion
It has been demonstrated that corotated elasticity models are well suited
for real-time soft tissue registration. In addition, it has become apparent
that quadratic corotated tetrahedra severely outperform linear tetrahedra
in terms of accuracy per degrees of freedom. Finally, it was shown how
a FE based registration algorithm for a CAS applications can be moved
to a dedicated workstation.
However, even if the FE simulation does not have to share computing
resources with other CAS components, a straight forward CPU implemen-
tation only allows simulating a few hundred tet10 elements in real-time.
For many registration applications larger model sizes are required in
order to obtain a sufficient accuracy.
In the next chapter we will see how an efficient GPU-based finite element
solver can be used to significantly increase the complexity of the real-time
model. For this purpose, a highly parallel multigrid solving scheme will
be presented. Furthermore it will be shown how complex geometries
can be accurately embedded into low-resolution quadratic tetrahedral
meshes.



Science is what we understand well enough
to explain to a computer. Art is everything
else we do.

— Donald E. Knuth6.

Fast GPU-based finite
element solver

In this chapter, we present a set of novel methods to efficiently simulate
corotated quadratic FE models in real-time. First, we address the prob-
lem how high resolution surface meshes can be mapped to quadratic
isoparametric elements. In this scenario, the difficulty arises from the fact
that the mapping from the reference element to each quadratic element
is not bijective and not analytically invertible. Furthermore, there are
far less elements in a higher order FE mesh than in a linear mesh if
compared in terms of DOF. Therefore, it becomes more important to
accurately extrapolate deformations to surface points outside the FE
mesh. In this chapter, we present a novel mapping scheme to overcome
this problem.
Massively parallel hardware (so called general purpose graphics process-
ing units - GPGPU) have become a popular choice in recent years for
speeding up time-critical algorithms in the realm of image processing
and simulation. Although this hardware type offers a significantly higher
performance in terms of floating point operations per second than tradi-
tional CPU architectures, the algorithms have to be carefully designed in
order to fully exploit these resources. In particular, the algorithm has to
be heavily parallelizable. In the following, an efficient GPU based solver
for quadratic corotated tetrahedra is presented. For this purpose, we first
introduce a matrix-free scheme in order to facilitate the implementation
of a GPU based conjugate gradient (CG) solver. Then, we show how the
performance of this solver can be greatly enhanced by using a parallel
preconditioner based on the factorized sparse approximate inverse (FSAI).
Finally, we present a novel GPU-based multigrid scheme to efficiently



96 Chapter 6. Fast GPU-based finite element solver

solve elasticity models on higher order, unstructured, non-conforming
grids.

6.1. Accurate surface embedding for higher
order finite elements

In this section a novel approach to accurately map highly detailed surface
meshes to a higher order FE computational mesh is presented. The novel
mapping scheme relies on a representation of each surface vertex in
terms of a point on the computational mesh and its distance to the
FE mesh in normal direction. Through this representation, the surface
deformations remain smooth and local shape features are preserved even
if very low-resolution FE meshes are used for computation. An efficient
algorithm based on non-linear optimization is proposed to construct
the mapping. We show that the algorithm performs robustly and that
its numerical complexity is linear in the number of surface nodes and
constant in the number nodes in the computational mesh.
The following description and evaluation of the novel mapping scheme
is based on the corresponding proceedings publication [SLH+13].

6.1.1. Closest point search in higher order meshes

In order to facilitate the computation of the mapping later on, we first
detail an efficient scheme to compute the closest point p(r, s, t) in the
FE meshM for each vertex ν of the triangular surface mesh S . We will
first show how to find p(r, s, t) for a single given vertex ν. Based on this
results, a recursive mapping scheme will be introduced that can be used
to compute p(r, s, t) for all ν in S .
The distance d(r, s, t) from a point p(r, s, t) in the element τ to an arbitrary
surface vertex ν is given by

d(r, s, t) = ‖ν− xI NI(r, s, t)‖ . (6.1)
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As ν can be outside of τ, we have to constrict (r, s, t) such that p(r, s, t) is
indeed in τ. We can thus formulate the closest point search in terms of
the constrained optimization problem

mind(p(r, s, t)) s.t.
r > 0, s > 0, t > 0 and r + s + t ≤ 1. (6.2)

As previously mentioned, the solution to this problem can be analytically
determined if linear shape functions are used. For higher order shape
functions, non-linear programming techniques have to be employed. We
solve the constrained optimization problem (eq. X6.2) using an extended
Levenberg-Marquardt algorithm [NW99] [KYF05]. The Jacobian is cal-
culated using finite differences. It is important to point out that simple
Newton-Raphson iterations are not guaranteed to converge even in the
unconstrained case when ν is inside τ.
The solution to problem (6.2) can be described as the local optimum
for p(r, s, t) ∈ τ. The next step is to find the element τmin where p(r, s, t)
reaches its global minimum distance dmin inM. This can be efficiently
accomplished with a recursive algorithm (see algorithm 2).
We first select an element τ to start the iteration. Subsequently the
closest point p ∈ τ to ν is computed. This procedure is recursively called
on the neighboring tetrahedra, if p is on a face of τ. The recursion is
aborted if d = 0 (i.e. p is inside the current tetrahedron) or if the neighbor
tetrahedron that shares the face has already been visited (i.e. is in set
T ). During each recursion step, the minimum distance dmin in τmin is
updated if a closer point p̂ is found.
The algorithm efficiently computes the local minimum distance dmin for
a given initial guess τ. This local minimum coincides with the global
minimum if the initial guess τ is close enough to the real solution.

6.1.2. Recursive mapping scheme
We now seek to not only map the whole surface mesh S to the com-
putation grid, but also to reliable find the global minimum dmin for all
τi ∈M. For this purpose we introduce an outer recursion to the pre-
sented algorithm 2. An initial mapping correspondence is established by
finding the closest surface vertex ν0 in S for an arbitrary point p0 in τ0.
It is important to point out that this inverse mapping problem is much
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Algorithm 2 Recursively find p(r, s, t) ∈M
procedure ClosestPoint(ν,τ,dmin,τmin,T )

Solve (6.2) to find closest point p with distance d
to ν in τ
if d < dmin then

dmin = d, τmin = τ

if p is on face of τ then
if p is on surface ofM then

if p is on surface edge then
Find neighbour tetrahedron τ1 that contains
surface triangle which shares edge

else
Find tetrahedron τ1 that shares face

if τ1 exists and τ1 /∈ T then
Add τ1 to T
(p̂, d̂, τ̂) = ClosestPoint(ν,τ1,dmin,τmin,T )

if d̂ < dmin then
d = d̂, τ = τ̂, p = p̂
dmin = d, τmin = τ

return p,d,τ

easier to solve as the resolution of S is much higher than the resolution
ofM.
In order to start the outer recursion, we arbitrarily select an initial triangle
T0 that contains ν0. We than start a recursive scheme which maps all
points in a given triangle T and uses the current mapping results (p,τ) as
the initial guess for mapping the neighbor triangles of T (see algorithm
3).
The initial guess for each triangle depends on the mapping order of the
triangles. Thus, there might be mapping orders that don’t generate initial
guesses which guarantee a global optimum for dmin. That’s why the
mapping order is controlled by introducing the distance threshold dt.
The triangle T is only mapped (and the recursion only continues) if the
distance for each surface vertex in T is below dt. In order to make sure
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Algorithm 3 Recursively map triangles in S
procedure MapTriangle(T,τ,dt,P )

triangleMapped = true
for all Surface vertices ν in T do

if ν /∈ P then
Initialize empty T , dmin = inf
(p,d, τ̂) = ClosestPoint(ν,τ,dmin,τmin,T )

if d < dt then
τ = τ̂
Map vertex ν to point p in τ
Add ν to P

else
triangleMapped = false

if triangleMapped then
for all Neigbour triangles Tn do

MapTriangle(Ti,τ,dt,P)
return

that all triangles are mapped, this distance threshold is incrementally
raised until all triangles are mapped.
For implementation purposes, the recursive scheme has to be unrolled
into a loop in order to ensure an efficient and stable computation for
large meshes.

6.1.3. Accurate surface embedding
We now define a scheme that maps the surface mesh S onto the compu-
tational meshM such that the deformed surface S ′ can be extrapolated
from the deformed FE mesh M′ in a fast and correct way. For this
purpose we represent each surface model vertex ν in terms of a point p
on the FE grid and its distance d in normal direction (see Fig. 6.1). The
deformed vertex position

ν′ = p′ + dn′ (6.3)

can subsequently be constructed using the position of p in the deformed
configuration (p′) as well as the deformed normal n′. It will become
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Figure 6.1.: Sawtooth surface attached to 1D quadratic edge. The defor-
mation of the edge can be extrapolated to the surface while
preserving local shape features.

apparent from the numerical examples that the proposed mapping pre-
serves the smoothness of the deformation (and thus local shape features)
even for surface regions that lie outside of the computational mesh.

6.1.4. Smooth normal field
At any surface point p on the mesh given in local coordinates r, s with
respect to the quadratic surface triangle, the spatial derivatives

∂x(p)
∂r

= xI
∂NI(r, s)

∂r
,

∂x(p)
∂s

= xI
∂NI(r, s)

∂s
(6.4)

can be calculated using the position of the nodes and the shape function
derivatives at r, s of the 6 node quadratic triangle. The normal n at p is
then given by

n =

(
∂x(p)

∂r
× ∂x(p)

∂s

)
/
∥∥∥∥

∂x(p)
∂r
× ∂x(p)

∂s

∥∥∥∥ . (6.5)

A smooth normal field is a necessary condition for the smoothness of the
proposed mapping scheme. As the FE mesh is only C0-continuous, the
partial derivatives (and thus the normals) are discontinuous at element
boundaries. Therefore, we average the normal at each node using the
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angle weighted average scheme. This results in an averaged normal nI
for each surface vertex of the FE mesh and the normal

n = (nI NI(r, s))/‖nI NI(r, s)‖ (6.6)

can be interpolated using the standard shape functions of the quadratic
triangle. The smooth normal field that is created in this way can be
efficiently computed. Furthermore, it is not necessary to re-compute
the deformed vertex normals n′I every time step as shown in eq. (6.5).
Instead, nodal rotation matrices can be defined at each node of the
FE mesh which can be used to rotate the normal into the deformed
configuration.

6.1.5. Normal correction
The aforementioned representation of each surface vertex ν in terms of
(p,d) can be obtained by solving a global optimization problem. The
solution to this problem is not necessarily unique for complex, non-
convex meshes. In order to construct the representation we first find the
closest point p ∈M to ν. Due to the normal smoothing, the normal n
at p does not necessarily point in the direction of ν. Thus, we perform
an additional correction step to make sure that the normal n at p does
indeed point in the direction of ν. For this purpose we define the
difference vector

δ(r, s, t) = vi − (xI NI(r, s, t) + d · nI NI(r, s, t)), (6.7)

where d denotes the distance as defined in eq. (6.1). The correction step
can then be formulated in terms of the minimization problem

minδ(r, s, t)s.t.
r > 0, s > 0, t > 0andr + s + t ≤ 1. (6.8)

The optimization problem is solved in the same way as problem (6.2): A
recursive scheme along the lines of algorithm 2 is employed on top of a
constrained Levenberg-Marquardt optimizer that uses finite differences
to approximate the Jacobian.
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6.2. Matrix free conjugate gradient solver
The necessary steps for solving the fully discretized scheme of the dy-
namic corotational formulation have already been outlined in section
5.3.3. From this scheme, three computationally significant steps can be
extracted: The computation of the nodal forces, the assembly of the
stiffness matrix and the linear system solve.
The nodal force computation consists of two stages. First, the elemental
rotations are extracted and the elemental stiffness matrices are obtained
through numerical integration. Afterwards, the elemental contributions
are added to the nodal force vector. The whole process is inherently
parallel and can be easily implemented on the GPU. In accordance with
previous work (e.g. Allard et al. [ACF11]) we use one kernel launch to
perform the elemental computations such as the polar decomposition
of the deformation gradient and an additional kernel launch for the
per-vertex gather operation.
Implementing the matrix assembly and system solve step on the GPU is
much more difficult. Most linear solvers (in particular the direct ones)
do not parallelize well. For symmetric and positive definite systems an
exception exists in the form of the conjugate gradient (CG) approach.
This iterative method describes the linear system solve as a minimization
problem for convex quadratic functions. The core ideas is to use so called
conjugate directions instead of the local gradient for an efficient gradient
descent minimization scheme [NW99].
A basic sketch of the CG scheme (see Alg. 4) reveals that only simple
computational tasks such as vector addition, vector-vector multiplication
and a (sparse) matrix-vector product are necessary for the system solve.
In the context of an efficient GPU implementation, the most challenging
part is the sparse matrix-vector product (SpMV) between the system
matrix (see eq. 5.61) and the current search direction pk in each CG step.
In order to avoid a time-consuming matrix assembly, we don’t build the
system matrix every time step, but instead use a similar approach as
Allard et al. [ACF11]: We first compute the per-element contributions
for each nodal force and then accumulate these results for each node. In
contrast to Allard et al. (and in contrast to the procedure for computing
the nodal forces), we don’t use a separate kernel launch for the per-
vertex operations. Instead, we use a multi-coloring technique such that
primarily those elements who do not share a common node are processed
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Algorithm 4 Conjugate gradient algorithm for solving Ax = b

set x0 = 0, r0 = Ax0 − b,p0 = −r0,k = 0
for k = 0 < maxIter do

if ‖rk‖/‖b‖ < ε then
break

αk =
rT

k rk

ZT
k AZk

xk+1 = xk + αpk
rk+1 = xk + αApk

βk+1 =
rT

k+1rk+1

rT
k rk

Zk+1 = −rk+1 + βk+1Zk
k=k+1

in parallel. With our layout it is still possible (although very rare) that the
nodal force contributions of two elements of different color are updated
simultaneously. We thus use an atomic operation in order to add these
contributions to the nodal forces. As the atomic add causes virtually no
overhead when no write conflicts occur, it is very efficient when used in
combination with coloring techniques.
The elemental contributions are computed by multiplying dense elemen-
tal matrices with corresponding nodal vectors. The performance of this
kernel is limited by the memory bandwidth. In order to reduce the data
transfer to global memory and to reduce the amount of shared memory
used by each thread, we exploit the symmetry of the elemental matrices
and use compressed matrices for data transfer. The matrix vector prod-
uct is then performed using a constant lookup table for index mapping
between the compressed and the uncompressed matrix.

6.3. FSAI preconditioned conjugate gradients
For inhomogeneous and stiff materials, the discrete elasticity problem
becomes increasingly ill-conditioned, i.e. the condition number

κ(A) = ‖A‖ ·
∥∥∥A−1

∥∥∥ (6.9)
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becomes large. In this case, pure CG methods converge very poorly. A
proven solution to this problem is to apply a preconditioner Z1 to the
linear system. It is immediatly clear from

Z−1Adx = Z−1b (6.10)

that if Z−1 is close to A, then Z−1A is near the identity matrix and the
condition number κ is low. If a preconditioner is used in a CG scheme, it
has to be applied in each iteration, i.e. the equation

Zr = z (6.11)

has to be solved for the temporary vector r and the right hand side
z. That is why a key requirement for a good preconditioner is that
its application according to eq. (6.11) is fast and efficient. The Jacobi
preconditioner therefore simply scales A with its inverse diagonal which
means it uses the preconditioner Z = diag(A).
A family of powerful preconditioners arises from the decomposition of A
into triangular matrices. Every arbitrary square matrix can be written as
the product of a lower and upper triangular matrix (LU decomposition).
For symmetric, positive definite matrices the incomplete Cholesky (IC)
decomposition

A ≈ LALT
A = Z (6.12)

can drastically reduce the number of CG iterations for elastic problems
[CAD+10]. The application of the IC preconditioner requires two trian-
gular solves of the sparse triangular matrices LA,LT

A. While this can be
very efficient on the CPU, the triangular solve is inherently recursive,
which makes a GPU implementation difficult.
The factorized sparse approximate inverse (FSAI) preconditioner is based
on a different idea [KY93]. This method seeks to directly approximate the
inverse of A. In order to achieve this goal, A−1 is decomposed according
to

A−1 ≈GT
L GL = Z−1. (6.13)

In this context, the matrix GL is an approximation the inverse of the
lower Cholesky factor LA in terms of the Frobenius norm ‖I−GLLA‖F.

1often denoted with P in the literature, we use Z to avoid confusion with the first
Piola-Kirchhoff stress tensor
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The approximation is constructed by minimizing the aforementioned
Frobenius norm for a given sparsity pattern of GL. The commonly used
FSAI(q) method uses the sparsity pattern of |A|q.
The application of the FSAI preconditioner only needs two SpMV opera-
tions which are very fast on the GPU. It is clear that the more fill-ins are
allowed in a higher order FSAI(q) scheme, the better is the approxima-
tion to A−1. However, at the same time the SpMV becomes increasingly
time-consuming to compute.
The biggest drawback of the FSAI preconditioner is its high set-up time.
In the next section we describe how to overcome this problem.

6.3.1. Preconditioner warping
In the context of interactive simulations it is not feasible to compute the
preconditioner every timestep, especially if complex schemes such as
IC or FSAI are used. A better strategy is to compute the preconditioner
just once and then appropriately adapt it every time step. For elasticity
problems based on the corotated formulation, this can be efficiently
achieved by local rotation warping of the preconditioner [CAD+10]. The
idea is based on the fact that the change in the system matrix A is
dominated by the rotation warping of the elemental stiffness matrices
(eq. 5.66).
In order to apply these rotations to Z−1, we extract a local rotation Rn
per node. We can subsequently define the global block diagonal rotation
matrix R to formulate

RZ−1RTAdx = RZ−1RTb. (6.14)

It is important to note that we do not have to explicitly compute RZ−1RT

for each timestep, instead we serially apply the three operators. In this
case it is not even necessary to build the global matrix R, but each node
can instead be rotated using the 3× 3 matrix Rn.
In the corotated FE model, the rotations are extracted on a per element
basis. In order to compute the nodal rotations, we average the elemen-
tal rotations for each element around the node. This is done by first
averaging the deformation gradient at the node before performing the
rotation extraction according to Higham et al. [HS88]. We have found
this procedure to be more efficient than directly averaging the rotations
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using quaternions. In the case of quadratic tetrahedra, we use only the
4 corner vertices to compute the deformation gradient as explained in
section 5.4.2.
Thanks to the warping scheme, the FSAI preconditioner can be computed
in a pre-processing step from the linear stiffness matrix. It is even possible
to store the preconditioner to disk and just load it at the beginning of
each simulation.
The GPU implementation of the rotation warping and the subsequent
application of the FSAI preconditioner is straight forward as the process
is inherently parallel with a high data locality. As described above the
rotation warping is performed by simply multiplying each node with a
3× 3 rotation matrix. The application of the FSAI preconditioner requires
two SpMV products. As the FSAI matrices do not change during the
simulation, we just store them in GPU memory and apply them using a
suitable CUDA library.

6.4. GPU-based multigrid solver for
unstructured, non-conforming meshes

The computational effort for the preconditioned conjugate gradient ap-
proach does scale superlinearly in terms of the number of mesh nodes
(i.e. the DOF): Not only does the computational time for each PCG
iteration increase, but the number of PCG steps increases as well for
a fixed residual threshold. Thus, the method becomes inefficient for
high resolution models. In contrast, multigrid methods can keep the
computational effort proportional to the number of mesh nodes. The
core idea is to efficiently remove low frequency errors by solving the
linear system on a hierarchy of grids with different resolutions.
In this section, we present a novel multigrid scheme for efficiently solv-
ing elasticity problems using higher order FE on unstructured, non-
conforming grids. We furthermore outline a set of methods that allows
to efficiently implement the scheme on massively parallel architectures.
In the following, we first give a brief general introduction to geometric
multigrid schemes for solving linear systems that arise from elliptic
PDEs. In this context we especially highlight the necessary components
of the approach. Based on this discussion, we present a suitable pro-
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longation/restriction scheme and a highly parallel smoothing scheme
for simulations on unstructured grids. Finally, we detail a multigrid-
preconditioned CG solver for the real-time simulation of deformable
models.

6.4.1. Basic multigrid scheme

At the core of a multigrid solver lies a hierarchy of problem discretiza-
tions of different resolutions. This hierarchy consists of lmax levels with
the associated system matrices Al . The solution scheme starts with an
initial guess x0 on level l = 0. In practice x0 is often chosen to be a vector
of zeros or a value from a previous time step. The high frequency errors
in this solution are subsequently attenuated by applying the smoothing
operator S . Typically, a variant of a fixed point iteration is used for
this purpose (see section 6.4.3 for details). In order to eliminate the low
frequency errors, the remaining residual is consequently transferred to
the next level l + 1 with lower resolution. To do so, the residual rl is
first computed on the level l and then transferred to the lower resolution
mesh using the restriction operator R (refer to section 6.4.2 for more
information). If the maximal mesh level lmax is reached, the remaining
error el+1 is determined by solving Al+1el+1 = rl+1 on the coarser mesh.
This can be either done with a direct solver or using an iterative method
such as the previously presented preconditioned gradient approach. If
l + 1 < lmax, then the residual equation is recursively solved on the re-
maining levels of subsequently coarser meshes. In both cases, the error
correction el+1 is then transferred to the finer mesh at level l by means
of the prolongation operator P . After adding the correction term el to
the solution, a final smoothing step removes high-frequency errors that
are introduced by the prolongation process.
In practice, several variants of the described multigrid scheme are used.
First of all, the number of levels lmax can vary depending on the applica-
tion. Furthermore, the described V-cycle is usually repeated several times
until a given residual threshold is met. Finally, in many applications it
is more efficient to spend more solving time on the coarse grids, thus
leading to so called W-cycles. For a more detailed discussion on the
basics of geometric multigrid methods we refer to appropriate textbooks
[Bra07].
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Algorithm 5 V-cycle multigrid scheme for solving Ax = b

procedure MultigridSolve(x0,b, l )
x←S(x0,Al ,b)
rl = Alx− b
rl+1←R(rl)
if l + 1 < lmax then

InnerSolve Al+1el+1 = rl+1
else

MultigridSolve(el+1,bl+1, l + 1 )
el ←P(el+1)
x = x + el
x←S(x,Al ,b)
return x

6.4.2. Multigrid hierarchy for non-conforming,
higher order meshes

An accurate transfer of quantities between the meshes in the grid hi-
erarchy is key in order to achieve an efficient multigrid scheme. For
elasticity problems, the prolongation operator interpolates displacements
between the meshes. The restriction operator transfers forces from a
finer to a coarser grid. In many applications for geometric multigrid
methods (especially in the realm of computational fluid mechanics), the
finer mesh levels are constructed from an initial coarse mesh. In this way,
all mesh levels cover the same region Ω0 (conforming mesh hierarchy).
A construction of suitable prolongation and restriction operators is thus
straight forward. Typically, these operators are linear and therefore have
a matrix representation. In this context, the restriction operator is often
chosen to be the transpose of the prolongation scheme.
In order to accurately solve elasticity problems on unstructured grids,
it is important to approximate the geometry as closely as possible. It is
thus not desirable to construct the grid hierarchy from a coarse initial
mesh. Instead, each mesh in the hierarchy should approximate the
geometry as best as possible. Consequently, the meshes do not entirely
overlap (non-conforming hierarchy) and thus displacements have to be



6.4. GPU-based multigrid solver for unstructured, non-conforming meshes 109

extrapolated. When using linear tetrahedral grids, this can be achieved
using barycentric coordinates [GW08].
As outlined in section 6.1 the interpolation and extrapolation of displace-
ment and force fields that are defined on higher order isoparametric
grids is more challenging. In our multigrid scheme, we use the previ-
ously presented mapping scheme based on the surface normal in order
to interpolate the displacement between meshes (prolongation). In order
to restrict the residual force vector to a coarser mesh, we do not make
use of the surface normal. Rather, we map each nodal force to the corre-
sponding element τ in the coarse mesh that contains the closest point
p(r, s, t) to the node. This force is then distributed among the nodes of τ
according to the basis function values at p(r, s, t).

6.4.3. GPU-based smoothing
The smoothing operators that are commonly used in geometric multigrid
solvers can be expressed as fixed point iteration schemes. The idea of
this class of iterative methods is to use the non-singular matrix B in order
to express the linear system Ax = b through

Bx + (A− B)x = b. (6.15)

The definition of the iteration

Bxk+1 + (A− B)xk = b (6.16)

yields the update equation

xk+1 = xk − B−1(Axk − b). (6.17)

By decomposing A = AD + AL + AU into the diagonal matrix AD as
well as the lower triangular matrix AL and the upper triangular matrix
AU , we can define two important smoothing schemes: Choosing B = AD
yields the Jacobi method, while the Gauss-Seidel iteration scheme arises
if B = AD + AL. In a similar fashion as preconditioning techniques (see
section 6.3), smoothing operators tend to work well, if B−1 is a good
approximation of A−1. Thus, another class of commonly used smoothers
are given by triangular decompositions of A such as B = LU (incomplete
LU factorization) or B = LLT(incomplete Cholesky factorization).
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It is apparent that the most efficient smoothers (e.g. Gauss-Seidel, ILU)
rely on iteration schemes that are inherently recursive and thus not
suitable for GPU implementation. For structured grids it is possible to
divide the mesh into sets of non-neighboring elements (mesh coloring) in
order to parallelize the Gauss-Seidel method. However, this approach is
very inefficient on unstructured grids.
In order to facilitate a more efficient smoothing scheme, we use the
previously presented FSAI technique (B−1 = GT

L GL). We again choose to
precompute this decomposition and use the rotation warping technique
to update the smoothing matrix for each time step. This results in a
highly parallel algorithm that can be efficiently implemented on the GPU.
In order to compute the SpMV product in the update equation (6.17), we
again use the presented matrix-free scheme in order to avoid an assembly
of the global system matrix.

6.4.4. Multigrid-preconditioned CG for real-time elasticity
We found that in many low-resolution elasticity problems, the prolon-
gation leads to larger high-frequency errors near Dirichlet boundaries.
Consequently, many smoothing steps are necessary, if the multigrid
scheme is directly used for solving the linear system. An attractive al-
ternative is to use the multigrid scheme as a preconditioner in a PCG
algorithm. In this case, the accuracy of the multigrid iterations can be
intentionally reduced. Thus it is enough to perform one V-cycle and 1
or 2 smoothing iterations within each preconditioning step. In order
to achieve an efficient GPU implementation, we use the previously pre-
sented FSAI-preconditioned CG solver to perform the inner solve. Here,
a residual threshold as high as 0.1 can be used without significantly
degrading the performance of the solver.

6.5. Performance evaluations

6.5.1. Accurate surface embedding
The novel mapping scheme was integrated into the SOFA framework
[FDD+12]. The constrained Levenberg-Marquardt implementation from
the Levmar library was used to solve the minimization problem (eq. 6.2)
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Figure 6.2.: Bunny surface mesh deforms under gravity. Volume locking
is observed at ears for the simulation based on linear tetrahe-
dra (left), while the tet10 mesh (middle) produces realistic
and smooth surface deformations (right).

[Lou04]. All simulations are run on a single core of an Intel i7-930 and
we use nearly incompressible material models (Poisson’s ratio ν = 0.49)
in all scenarios.

Accuracy

The novel mapping scheme allows to accurately map high resolution
surfaces to very low resolution quadratic tetrahedral grids. Fig. 6.2
shows the deformation of the Stanford Bunny under gravity. It can be
seen that the surface model mapped to a quadratic mesh with 1197 DOF
deforms smoothly at the ears, although the computational mesh fails to
approximate the geometry in this area. In contrast, the 9468 DOF tet4
model shows severe volume locking at the ears.
The gravity induced deformation of a seahorse model is considered as a
second example. We construct different low resolution computational
meshes from a high resolution surface mesh with 40k triangles: A linear
tetrahedral (tet4) mesh with 258 DOF and 181 elements, a linear tetra-
hedral mesh with 992 elements and 1488 DOF as well as a mesh with
171 quadratic elements (tet10) and 1260 DOF (see Fig. 6.3). Barycentring
coordinates are used in order to map the linear tetrahedral to mesh to the
high resolution surface, while the presented mapping scheme is used to
embed the tet10 mesh. As was apparent from the previous simulations of
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Figure 6.3.: Deformation of a seahorse model, from left to right: Linear
tetrahedral FE mesh with 992 elements, the corresponding
deformed surface mesh, a quadratic tetrahedral mesh with
171 elements and the deformed surface mesh mapped to the
higher order FE mesh using the proposed mapping scheme.

the beam geometry, linear meshes do not deform nearly as much as the
quadratic FE mesh (volume locking effect). In order to ensure visually
similar deformations, we thus subject the linear meshes to higher forces
in order to overcome this artificial stiffness.
For very low resolution tet4 meshes, the barycentric surface coupling
results in large visible artefacts (see Fig. 6.4 left). In contrast, the
proposed mapping scheme smoothly extrapolates the the deformation
of the quadratic mesh is to the surface mesh and preserves local shape
features. In case of the higher resolution tet4 mesh, the visible artefacts
are substantially reduced. However, volumetric locking can still be
observed at the end of the seahorse’s tail. In contrast, the movement
on the tail is much better captured by the quadratic mesh, also it has
less DOF than the tet4 one (1260 vs. 1488). Furthermore, the barycentric
mapping leads to a visible distortion of the seahorse’s thorns even when
using the higher resolution tet4 mesh (Fig. 6.4). In contrast, the novel
mapping scheme preserves the shape of the thorns. The dorsal fin of
the seahorse is not included in the low resolution tet10 mesh and its
deformation must thus be extrapolated during the simulation. Fig. 6.4
shows that this might lead to undesirable results even if the rotation
invariant mapping is employed.
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Figure 6.4.: Seahorse subjected to volumetric force: While the barycen-
tric coupling leads to visible distortions (left, middle), the
proposed mapping preserves local shape features (right).

Speed

The performance and robustness of the approach is evaluated by map-
ping surface and volume meshes of different resolutions. We construct
two volume meshes from the Asian dragon model that is included in the
Stanford 3D scanning repository with 3000 elements and 1000 elements,
respectively. Furthermore, surface models with mesh size from several
thousands to several 100k elements are generated. The optimization
algorithms robustly finds the correct surface representation (i.e. a point
p on the computational mesh and the corresponding distance d) for all
considered surface meshes. The convergence analysis (Fig. 6.5) confirms
that the numerical complexity of the algorithm is linear in the number of
surface nodes and independent of the size of the coarse computational
mesh.
Although the constrained Levenberg-Marquardt optimization that is run
for each element is numerically complex, even large surface meshes with
several 100k elements can be mapped in less than a minute thanks to the
good convergence properties of the recursive scheme. Furthermore, the
proposed surface representation can even be constructed in an offline
process and the obtained coordinates can be simply loaded upon startup
of the online simulation.

6.5.2. GPU based PCG solver
The presented FSAI based GPU solver as well as Jacobi and ILU-
preconditioned approaches were implemented using the SOFA frame-
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Figure 6.5.: Different surface meshes are mapped to a 3000 element mesh
(blue) and a 1000 element mesh (green). The mapping time
is linear in the number of points of the surface mesh and
independent of the computational mesh size.

work [FDD+12] and the Paralution library. All CPU computation are
performed on a single core of an Intel i7-930, while the GPU implemen-
tation is run on a Tesla C2070.
We again use the simple beam geometry under gravitational load (see
Fig. 5.3) in order to assess the performance of the different solver config-
urations. We solve the dynamic problem with the Newmark integration
method and scompute 200 time steps with a step size of ∆t = 0.05s.
If the tet4 beam problem is solved using a CG-based scheme, the compu-
tation time of the nodal forces (right hand side) is negligible if compared
to the linear system solve (see Fig. 6.6). For the 1461 DOF problem, the
assembly of the nodal forces takes 10.39 ms on the CPU and the linear
system solve is performed in 222.34 ms. Whereas for the smaller 1461
DOF problem only an acceleration factor of 1.3 is achieved by running
the solver on the GPU, the large 58k DOF problem is solved more than 8
times faster on the GPU implementation. In case of the tet10 mesh, these
observations are still valid, although the nodal force computations take
about 10% of the total solving time in this scenario. For this reason, the
GPU speed-up is a bit higher for smaller problems (1.8x for the 2217 DOF
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beam). It can also be observed from Fig. 6.6 that even the GPU-based
Jacobi-preconditioned CG solver is heavily outperformed by the direct
single-core Pardiso solver, which solves the 1461 DOF problem in 25
ms.
As previously discussed, more complex preconditioners can speed up
the CG scheme. Fig. 6.7 shows that if an ILU preconditioner is used
in conjunction with the presented rotation warping scheme, a speed-
up by a factor of 3.6 can be obtained. Using the highly parallelizable
FSAI approach leads to a speed-up of 1.7x in comparison to the Jacobi-
preconditioned algorithm. For the purpose of real-time soft tissue reg-
istration it is not necessary to compute the exact solution of the linear
system for each time step. By using a residual of 0.01 as the stopping
criterion for the CG iterations, a sufficient accurate solution is obtained
and the solution time can be significantly reduced (Fig. 6.7 right).

6.5.3. GPU based multigrid solver
We apply the proposed GPU based multigrid (MG) scheme to the beam
model under gravitational load that was presented in the previous section.
We analyze a discretization with 100120 tet4 elements (57915 DOF) and a
tet10-based model with 8990 elements (41781 DOF). A residual of 0.01 is
used as the stopping criterion for the CG scheme. Furthermore, a grid
hierarchy of 3 levels is used: For the tet4 beam the meshes consist of
100120, 8990 and 1810 elements, wheres the tet10 hierarchy is made up
of meshes with 8990, 712 and 97 elements. For all MG computations, we
use one iteration with a FSAI(2) scheme for smoothing purposes. The
inner PCG solver uses an FSAI(2) preconditioner with rotation warping
and a residual threshold of 0.01.
The results of the computations are listed in Table 6.1. For comparison
purposes, we also list the corresponding timings for the direct single-core
Pardiso solver and the FSAI-preconditioned GPU-CG scheme that was
extensively discussed in the previous section. As the nodal forces have
to be computed on all levels in order to update the elemental stiffness
matrices with the current rotation, their computation time (t f orce) is
slightly higher for the MG solver. However, the additional overhead stays
well below 20% for all scenarios. It is also apparent that the multigrid
scheme is a very efficient preconditioner as the CG scheme only needs a
few iterations to convergence. In contrast, the FSAI-PCG scheme needs
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Figure 6.6.: Solution times for the tet4 beam (top) and the tet10 beam
(bottom). The complete solving time per time step for a
Jacobi-preconditioned CG solver on the CPU (green) and on
the GPU (red) is divided into the nodal force computations
(dotted line) and the linear system solve (dashed line). Total
solve time for the direct solver is shown in black.
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Figure 6.7.: Solution times for a CPU based CG solver scheme with a
Jacobi (green), ILU (blue) and FSAI (red) preconditioner in
comparison with a direct solver (black). The solution can be
significantly speed up if a residual threshold of 1e-2 (bottom)
is used for the CG scheme instead of computing the exact
solution (top).
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Figure 6.8.: Solution times for the tet4 beam (top) and the tet10 beam
(bottom). Timings for the CPU based FSAI(2)-PCG solver
(green) and the GPU variant of the algorithm (red) are listed
as well as the total solve time for the direct Pardiso solver
(black).
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Solver t f orce tsm tin tpre tcg ncg tsolve ttot
te

t4

Pardiso 408 2712 3120
GPU-PCG 147 5 5 115 1314 1461
CPU-MG 477 179 17 274 48 3 979 1476
GPU-MG 149 20 18 54 5 3 178 327

te
t1

0 Pardiso 621 2001 2622
GPU-PCG 71 5 2 80 574 645
CPU-MG 690 116 7 154 15 2 386 1076
GPU-MG 88 22 6 35 2 2 84 172

Table 6.1.: Computation times in ms for nodal force computation t f orce,
application time for preconditioner per CG step tprecond (for
MG solvers the computation times for the smoothing operator
tsm and the inner solve tin are listed as well) and for one pure
CG step tcg. Additional columns list the number of CG steps
ncg, the total linear solver time tsolve and the total computation
time ttot per time step in ms.

an average of 115 (tet4) and 80 (tet10) iterations. In case of the CPU
variant of the MG method, the largest amount of time is spent in the
smoother (179 ms per time step for the tet4 model and 116 ms for the
tet10 model). This component of the algorithm can be significantly
accelerated by using GPU hardware (up to 9x for the tet4 model). In
contrast, the acceleration of the inner PCG solve is not as pronounced.
This is due to the low size of the inner problems, which do not utilize
the full computational power of the GPU.
Overall it can be seen that the proposed GPU-based multigrid scheme
is a very efficient solver. For the linear tetrahedral mesh, it achieves
a speed-up of nearly 10x in comparison with the direct solver (5x in
comparison with the CPU-PCG approach). For the quadratic tetrahedral
discretization, this difference is even more pronounced: Here, a speed-up
of more than 15x is obtained in comparison with the direct solver.
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6.6. Discussion
In the previous chapter we have demonstrated that quadratic tetrahedral
discretizations severely outperform linear tetrahedral meshes in terms
of accuracy per number of degrees of freedom. Due to volume locking,
the linear tetrahedral mesh needs more than a magnitude more (up to
40x) DOF in order to achieve the same accuracy as a tet10 mesh. In this
chapter, a novel mapping scheme for embedding high resolution surface
models into low-resolution higher order computational meshes was
proposed. The mapping is constructed using a non-linear optimization
algorithm whose complexity scales linearly with the number of vertices
in the surface model and is nearly independent of the number of elements
in the computational model.
The main contribution of this chapter is a fast GPU-based solver
for quadratic corotated FE. Based on the novel mapping scheme for
higher order isoparametric meshes, a novel multigrid approach for non-
conforming, unstructured grids was presented. By using a novel FSAI-
preconditioned CG solver as the coarse problem solver and employing
a highly parallel smoothing scheme, the developed MG solver can be
efficiently implemented on the GPU. The MG scheme significantly out-
performs the direct Pardiso solver as well as the state-of-the-art Jacobi-
preconditioned GPU-CG solver by more than an order of magnitude. It
allows to simulate a high resolution, 8990 tet10 elements (41781 DOF)
problem at nearly 6 time steps per second. As we will see in the up-
coming chapter, this model size definitely provides sufficient accuracy in
order to be used in a soft tissue registration scheme.



All things are difficult before they are easy.
— Thomas Fuller

7.

Physics based shape matching

In the last chapters we concluded that corotated finite elements offer
an efficient, yet accurate way to model the mechanical response of soft
tissue for registration purposes (chapter 5). We also learned how these
models can be efficiently solved on the GPU (chapter 6). In this chapter,
we present a novel method for imposing the intraoperative sensor data as
boundary conditions on the biomechanical model in order to perform an
accurate registration. As detailed in chapter 3, we in particular deal with
two kinds of scenarios. First, we match a given intraoperative partial sur-
face of an organ to a preoperative biomechanical model. This set-up can
be used in order to determine an initial non-rigid registration. Further-
more, we show how known landmark displacements from endoscopic
images or US tracking can be incorporated in the formulation.
We describe non-rigid surface registration as an electrostatic-elastic prob-
lem, where an elastic body that is electrically charged (preoperative
model) slides into an oppositely charged rigid shape (intraoperative
surface). Consequently, we call this approach physics based shape match-
ing (PBSM). The elastic energy of the deformed organ is described by
a finite element based biomechanical model, while the correspondence
is enforced by the electrostatic field. As the technique is based on a
preoperative volumetric FE model, it naturally recovers the position of
volumetric structures (e.g. tumors or vessels).
The novel physics based interpretation allows casting the shape matching
problem into a single variational formulation. We show how this ap-
proach can be used for robust parameter control, partial surface matching
and the integration of landmark correspondences. In addition to the
unified mathematical formulation, key contributions in comparison with
related work are the use of a more accurate non-linear model (compared
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with [CMS+05] [DCDM10] [RWC+13]) and the ability to match partial
surfaces (compared with [CPC+07] [BSD+05]). Furthermore, PBSM can
achieve near real-time performance and can be combined with landmark
based approaches (e.g. texture tracking). The method is not only evalu-
ated through extensive simulations studies, but we also demonstrate in
a phantom experiment how liver models can be registered from stereo
endoscopic data.
In the following section the variational formulation of the electrostatic-
elastic problem and its discretization using the FEM is presented. Fur-
thermore, we outline a physics based stabilization technique and describe
adaptive control mechanisms for the PBMS parameters. Additionally,
an extension of the scheme for partial surface matching is proposed.
We present a detailed evaluation of the method using in silico test data
on three liver surface models. Furthermore, we show by means of a
phantom experiment how the PBSM scheme can be used to match a
preoperative liver model to an intraoperative surface model that has been
acquired using stereo endoscopic images.

7.1. Variational formulation

7.1.1. Electric potential induced by the deformed surface
Full electrostatic formulation

The deformed intraoperative surface is modeled as a rigid shape that
has a uniformly distributed surface charge. In order to derive the electric
potential that is induced by the charge, we create an unstructured tetra-
hedral volume mesh in a sufficiently large area around the surface. We
then discretize Laplace’s equation

∆φ = 0 φ = φ on ∂Ω (7.1)

on this grid using the finite element method. All nodes on the deformed
surface are assigned a zero potential, while all nodes on the boundary of
the box volume are assigned their distance to the surface. Upon solving
the discretized problem, each node J in the volume mesh is assigned
a potential value φJ . The potential at an arbitrary sample point sT
can be computed by first finding the element E in which the point is
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located before calculating the associated local coordinates ξs in E . The
potential φ and the potential gradient ∇φ at s are then given by the linear
combinations

φ(sT ) = φJ NJ(ξs) and ∇φ(sT ) = φJ∇NJ(ξs) (7.2)

of φJ weighted with the the 4 basis functions NJ (or the gradient of the
basis functions ∇NJ) evaluated at ξs.

Distance field approximation

Although the FEM-based solution of Laplace’s equation allows an accu-
rate computation of the electric potential field, the approach is computa-
tionally intensive. First of all, an unstructured tetrahedral volume mesh
has to be intraoperatively generated for each deformed surface. Further-
more, the sampling of the potential field stored as an unstructured grid
is a bottleneck of the algorithm. In order to overcome both problems,
the electric potential can be approximated by a distance field. In this
case, the potential values can be sampled using a collision detection
scheme during the simulation. A numerical finite difference scheme with
a reasonably large sample distance has to be used in order to compute
the potential gradient. In order to minimize the number of necessary
samples, we restrict the linearization to the forces that act in the direction
of the surface normal and compute the associated gradient

∇φ(sT ) ≈
∂φ(sT )

∂n
n,

∂φ(sT )
∂n

≈ φ(sT + 1
2 hn)− φ(sT − 1

2 hn)
h

(7.3)

by calculating the 1D derivative ∂φ/∂n using a finite difference scheme
with sampling distance h.

7.1.2. Variational formulation of the electrostatic-elastic
problem

The registration problem is solved by finding a deformation ϕ : X 7→ x
that maps each material point X in the initial configuration Ω0 to the
point x in the deformed configuration Ω such that Ω approximates the
given shape. We use the described corotated elasticity model to model
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the internal elastic energy Iint in terms of the corotated Cauchy stress
tensor σCR and the corotated Cauchy strain tensor εCR. Furthermore, we
assign a uniform surface charge with density q to the boundary ∂Ω of the
elastic body. Thus, the total energy of the electrostatic-elastic system

I = Iint + IΦ =
∫

Ω

1
2

σCR : εCRdV +
∫

∂Ω
qφdA (7.4)

can be expressed as the sum of the internal elastic energy Iint and the
electrostatic potential energy IΦ. We now seek a deformation mapping ϕ
that is a stationary point of I, i.e.

< δI[x],δx >
!
= 0. (7.5)

For the derivation of the variational form

< δIint[x],δx >=
∫

Ω

1
2

σCR : δεCRdV (7.6)

of the internal elastic energy we refer to chapter 5. We also point out
that the formulation can easily be reduced to a linear elastic approach by
simply inserting the linear stress and strain measures (i.e. σ,ε). In order
to express the variation of the electrical potential energy φ(x), we use the
Hessian Hφ(xt) to develop the electric potential into the Taylor series

φ(x) ≈ φ(xt) + (x− xt)∇φ(xt) +
1
2
(x− xt)

T Hφ(xt)(x− xt) (7.7)

around xt. The variational form is then given by

< δIpot[x],δx > =
∫

∂Ω

d
dh

(φ(x + hδx)qdA
∣∣∣∣
h=0

=
∫

∂Ω

(
δx∇φ + δxHφ(xt)(x− xt)

)
qdA. (7.8)

Until now we have expressed the energy densities with reference to
the (unknown) deformed configuration. We now seek to formulate the
variational form in terms of the initial configuration. First, we introduce
the initial surface charge density q0 on the undeformed infinitesimal
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surface element dA0 and assume that the surface charge is conserved,
i.e. qdA = q0dA0. Furthermore, we follow the standard linear elasticity
approximation and just replace the integral in eq. (7.6) over Ω with the
integral over Ω0 without performing a Piola transform [BLM00]. Thus,
we obtain the continuous variational form

∫

Ω0

1
2

σCR : δεCRdV0 +
∫

∂Ω0

(
∇φ + Hφ(xt)(x− xt)

)
δxq0dA0 = 0 (7.9)

that describes the registration problem.

7.2. Discretization and algorithm design
7.2.1. Discrete formulation
We construct a finite element approximation for ϕ on a linear tetrahedral
mesh. Thus, within each element the deformation field x is expressed by
x = XjJ NJ . Here, the entries of the vector XjJ describe the position of the
J-th node in the spatial direction j in the deformed configuration. In FE
theory for elasticity, the internal nodal forces in the direction i at node
I are accumulated in the discrete force vector fint = f int

iI . Similarly, we
define the vector fφ that contains the electric forces that are induced by
the potential field. We use a FE Galerkin approach and approximate the
surface integral in eq. (7.9) over each surface triangle with the one-point
Gaussian quadrature at sample point sT with the local coordinates ξs.
The force at each node for a given deformation x

fφ(x) = f φ
iI(x) =

1
2

q0 AT ∇φ(sT )i NI(ξs) and sT = XjJ NJ(ξs)

(7.10)
are then calculated by summing the contributions of each surface triangle
T with area AT around the node. As described in section 7.1.1, the po-
tential field gradient ∇φ(sT ) is sampled from the unstructured grid data
structure if a Laplacian potential field is used, while it is computed from
potential field samples if the distance field approximation is employed.
Using the obtained nodal force vectors, the discretized form of equation
7.9 reads

fint(x) + fφ(x) = 0. (7.11)
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In order to solve this highly non-linear equation, the forces have to be
linearized with respect to the nodal displacements. In analogy to the elas-
tic global stiffness matrix Kint = ∂fint/∂X [BLM00] we define the global
tangent electrostatic stiffness matrix Kφ = ∂fφ/∂X . The linearization of
eq. (7.11) around tx is then given by

(Kφ + Kint)dx = Kdx = −fφ( tx)− fint( tx). (7.12)
with the displacement vector dx = X − tX . Similar to the nodal force
calculations (7.10), the 12x12 elemental electrostatic stiffness matrix for
tetrahedron E

Kφ,E
iI jJ =

1
2

q0 AT Hφ
ij(sT )NI(ξs)NJ(ξs) (7.13)

is calculated by sampling the contributions of each surface triangle T in E .
The evaluation of the Hessian Hφ(sT ) has to be performed numerically
for both the Laplacian potential and the distance field approximation.
Here, we again restrict the linearization to the forces that act in the
direction of the surface normal and compute the associated Hessian

Hφ
ij(sT ) ≈

∂2φ(sT )
∂n2 (ni ⊗ nj), (7.14)

∂2φ(sT )
∂n2 ≈ φ(sT + h · n)− 2φ(sT ) + φ(sT − h · n)

h2 (7.15)

by using a second order central difference scheme.

7.2.2. Dynamic registration scheme
A straight forward successive solution of the linearized problem in a
Newton-Raphson scheme is numerically unstable for most registration
problems, because of the strong non-linearities in the original problem
(7.11). We introduce a physics based stabilization scheme by not just
considering the static linearized equilibrium (7.12), but instead modeling
the dynamics of the system. For this purpose we model the viscoelastic
effects with Rayleigh damping. Thus, we introduce the mass matrix M
and the damping matrix C = αM + βK in order to obtain

Md̈x + Dḋx + Kdx = −fφ( tx)− fint( tx). (7.16)
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The system of ordinary differential equations (7.16) is solved using the
constant-average-acceleration scheme of the β-Newmark method (see
section 5.3.2).

7.2.3. Adaptive parameter control
For most non-rigid registration algorithms, the main parameter of the
method is the ratio between the internal regularization energy and the
external energy that drives the deformation. In the PBSM approach this
is represented by the surface charge density q0 and the elastic modulus E.
During the registration process we control q0 based on a simple energy
criterion. Starting from a very small charge q0(t0), we update the q0 for
each time step by comparing the total elastic energy Iint and the total
potential energy IΦ:

q0(t + 1) = q0(t)Iint/IΦ (7.17)

If the sampling distance h for the gradient and Hessian computation
is too low or too high, the method can become unstable. However, the
parameter can be varied over a large range without affecting the stability
or the accuracy of the method: For all examples that we analyzed the
PBSM scheme converges for sampling distance from 2 mm to 20 mm.
All other problem-specific parameters (i.e. the density ρ, elastic pa-
rameters λ,µ and viscoelastic parameters α, β) are directly given by the
physical properties of the organ. It has to be pointed out that the method
is very robust to variations of these parameters. Furthermore we noticed
that the convergence speed can be slightly increased if the viscoelas-
tic damping is minimally more pronounced than the real viscoelastic
behavior of soft tissue (α = 0.6, β = 0.2).

7.2.4. Integration of known landmark correspondences
In some intraoperative scenarios, a sparse set of landmark correspon-
dences is available. In the context of initial registration, these can be
imprecise surface landmarks obtained from manual input or automati-
cally computed surface features. Furthermore, texture tracking can be
used for continuous real-time registration during the intervention. If
intraoperative US is available, it is even possible to determine a limited
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number of volumetric landmark correspondences (e.g. vessel bifurca-
tions).
A straightforward approach is to use these correspondences to compute
an initial rigid alignment. As the iterative linearization of the energy func-
tional can be regarded as an ICP-like scheme for non-rigid registration,
it is intuitively clear that the PBSM approach inherits many convergence
properties of the iterative closest point (ICP) algorithm. Thus, a poor
initial alignment which involves strong rotations prevents the method
from finding the correct correspondences as it becomes trapped in a local
minimum. The convergence of the PBSM method can be ensured by per-
forming an initial rigid alignment based on landmark correspondences
ahead of the core algorithm. This can be done in an automatic, robust
way using shape-descriptor based methods [dSGF+12] [dSSK+14].
If precise landmark correspondences are available, it might be more
desirable to directly integrate these deformation constraints into the
variational formulation eq. (7.9). A straightforward way to do this is to
impose the known correspondences as displacement constraints. How-
ever, noise and outliers in the sensor data can lead to large artefacts that
might even impair the stability of the method. Therefore, we impose the
constraints in a weaker way using Robin boundary conditions. Physically,
this can be interpreted as connecting the landmarks through stiff springs.
Here, the problem arises that the landmarks’ positions do usually not
coincide with the node positions of the finite element mesh. In order to
overcome this problem we compute the barycentric coordinates for each
landmark with respect to the nearest element. Subsequently, we use the
barycentric proportions to divide the spring forces among the element’s
nodes.

7.2.5. Matching of partial surfaces
In the intraoperative setting, organ surfaces are only partially visible. In
this scenario, there are surfaces where the displacement is not known
and that cannot be matched to the known partial surface. In order to
accommodate these requirements, the PBSM scheme has to be adapted.
During the matching, only those surface areas have to be activated (i.e.
given an electrical surface charge) that do indeed correspond to the
known partial surface. We use two simple geometric criteria to select
active triangles: First, we demand that the triangle has to be sufficiently
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close to the deformed (intraoperative) surface mesh. In addition, the
current normal of a triangle in the deforming volume model must be
similar to the normal of the corresponding triangle in the deformed
surface mesh in order for the triangle to be activated.
This approach works well for structures that are close to the known
partial surface. However, the registration accuracy of structures on the
far side of the organ can suffer. Furthermore, the registration can even
break down if the partial surface is too small. One way to overcome
this problem is to use additional landmarks and integrate them as de-
scribed in the previous section. Similarly, a-priori information about the
movement of organ surfaces can be imposed. For example, areas with
negligible motion can be fixed during the registration process (see e.g.
[HDB+13]). A different path can be taken if landmarks inside the organ
are known (e.g. through ultrasound). Then, an optimization scheme on
top of the PBSM approach can be used in order to resolve the movements
of the hidden surfaces (similar to the work of Alterovitz et al. [AGP+06]
and Ruckert et al. [RWC+13]).

7.3. Accuracy and performance validation
The PBSM algorithm was implemented using the SOFA framework
[FDD+12]. All simulations were run on a single core of an Intel i7-
930 CPU using the direct PARDISO linear solver from the Intel MKL. We
used a time step of 0.5s and the viscoelastic parameters of α = 0.6, β = 0.2
for all scenarios.

7.3.1. In silico evaluation
High resolution FE models were constructed from three different seg-
mented liver datasets. In order to establish a ground truth deformation,
we subsequently applied a respiratory deformation pattern to these mod-
els using the ABAQUS FEM package and a hyperelastic Neo-Hookean
material model (see Fig. 7.1). For each scenario, the surface mesh of the
undeformed and the deformed liver were extracted in order to serve as
the input for the shape matching. Furthermore, partial surface meshes
were selected that contain approx. half of the complete deformed surface.
Finally, we generated low resolution tetrahedral meshes elements for
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DOF max disp. mean disp. DOF
ground truth [mm] [mm] PBSM model

Liver #1 48873 35.03 9.97 6147
Liver #2 49920 29.22 7.46 6096
Liver #3 79158 56.68 9.17 6285

Table 7.1.: Size of the ground truth model in terms of DOF, maximal
displacement (max disp.) and mean displacement (mean
disp.) as well as size of the PBSM model for the three livers
considered in the in silico study.

Figure 7.1.: Left: Undeformed liver (red) is matched to a deformed sur-
face (blue). Right: Lower resolution FE model used to run
the PBSM scheme.

the PBSM scheme. Model sizes in terms of degrees of freedom (DOF)
and quantitative details on the imposed deformation are given in Table.
7.1.

Accuracy

The accuracy of the distance field based algorithm (DF-PBSM) is com-
pared to the approach based on the Laplacian potential field (LP-PBSM)
(see Fig. 7.2). For this comparison, a linear FE model is used for regu-
larization. The error is measured by obtaining the Euclidean distance of
the computed deformation at each point of the ground truth mesh. For
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Figure 7.2.: Error distribution of the distance field based based approach
(blue) and the Laplacian potential field based PBSM (green).
The mean is denoted by the red line, while averages are
shown using crosses.

this purpose the ground truth mesh is mapped to the lower resolution
PBSM mesh using barycentric mapping. Mean error values for DF-PBSM
(0.64 mm, 0.46 mm and 0.66 mm) are significantly lower than for the
scheme based on the Laplacian field (0.8 mm, 0.99 mm and 1.08 mm) in
all three scenarios. This can be attributed to the fact that the resolution
of the FE grid which is used for the potential field computation is not
high enough to fully capture the geometry of the deformed surface.
In contrast the distance sampling is performed on the high resolution
deformed surface.
In a second study we analyzed the impact of the non-linear elasticity
model. Fig. 7.3 shows that the mean error values for the three scenarios
(0.43 mm, 0.32 mm, 0.46 mm) are clearly reduced in comparison with
the linear elasticity model. When comparing the volume errors (blue)
and the surface errors (green) it becomes apparent that the highest errors
occurr at the surface of the models.
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Figure 7.3.: Volumetric (blue) and surface (green) error distribution for
the PBSM matching using a non-linear elastic model. The
mean is denoted by the red line, while averages are shown
using crosses.

The geometric distribution of the surface error for the first liver scenario
is displayed in Fig. 7.4: While the overall error remains well below 2 mm,
error spikes can be observed on the bottom of the liver. In this area, the
lower resolution computational mesh cannot capture all details of the
ground truth mesh. Similar error patterns can be observed for the other
example models. One possibility to reduce these errors is to use higher
resolution models for the PBSM scheme.
In a follow-up study we compare the accuracy of the non-linear DF-
PBSM scheme to the coherent point drift (CPD) algorithm. This state-
of-the-art method treat the registration process as a probability density
estimation problem and uses a regularization term that ensures the
smoothness of the deformation [MS10]. In contrast to the PBSM scheme,
the CPD approach does not use a volumetric model. Therefore, only
surface displacements can be compared and it is not possible to map
the ground truth mesh to the test model using barycentric mapping. We
thus interpolate the ground truth displacements to all nodes of the lower
resolution surface test model and measure the Euclidean distance at each



7.3. Accuracy and performance validation 133

mm

mm

Figure 7.4.: Geometrical error distribution of the liver #1 model when
matched using non-linear elastic regularization.

of these nodes. The mean error values of the PBSM method (0.49 mm,
0.33 mm, 0.49 mm) are much lower than the CPD mean error (1.96 mm,
3.22 mm, 3.95 mm). It is apparent from Fig. 7.5 that the same pattern can
be observed for the average and maximum error. Fig. 7.6 shows while
PBSM clearly outperforms CPD in terms of accuracy: Whereas the CPD
scheme ensures that all points are close to the surface, large tangential
displacement errors occur. This is especially true in areas that exhibit
very few surface features. In contrast, the much better biomechanical
based regularization of PBSM ensures a high accuracy even in these
regions.
In the intraoperative setting, typically only partial surfaces are available.
In order to mimic this setting, partial surfaces that cover approx. half of
the complete deformed surface were obtained. The preoperative volume
model is subsequently matched to the partial surface using DF-PBSM and
the corotated elasticity model. Naturally, the registration error is much
higher in those areas that are not covered by the partial surface (see Fig.
7.7). This is reflected in the mean errors (1.97 mm, 1.69 mm and 2.24 mm)
and the error distributions (Fig. 7.8). However, the registration accuracy
is high in those areas covered by the partial surface (Fig. 7.7). In a typical
surgical setting this is usually the most important area. One possibility to
increase the registration accuracy in areas away from the partial surface
is to use US imaging to find additional landmark correspondences. In the
in silico study we added a correspondence at the point with the highest
error. This clearly improves the overall registration accuracy (Fig. 7.7,
7.8).
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Figure 7.5.: PBSM (blue) vs. CPD (green) error distribution. The mean
is denoted by the red line, while averages are shown using
crosses.

Figure 7.6.: Ground truth solution (light blue and blue wireframe) is
compared to the CPD-based registration (left, red wireframe)
as well as the PBSM-based registration (right, red wireframe).
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Figure 7.7.: The left part of the liver not covered by the partial surface
exhibits much higher registration errors (left). These errors
can be significantly reduced if an additional landmark corre-
spondence is known (green).

Stability and Speed

It has already been discussed that the method can get trapped in local
minima if the initial alignment is very poor. In order to overcome this
problem we use a shape-descriptor based rigid registration algorithm
[dSGF+12] ahead of the non-rigid PBSM iterations (Fig. 7.9). With this
configuration, we observed convergence for all scenarios.
In order to assess the performance of the DF-PBSM method, we moni-
tored the number of iterations until the maximum error was within 0.1
mm of the final error and the number of time steps per second (TPS). As
can be seen from Table. 7.2, the total registration time ranges from 7s
to 19s. It should be noted that all computations were performed using
an unoptimized, single core implementation of the PBSM method. The
current bottleneck of the algorithm is the sampling of the electrostatic
surface forces using a collision detection scheme. This is an inherently
parallel problem and it is very well suited for multi-core and massively
parallel platforms. We also note that the algorithm performs around
2 time steps per second for the chosen problem sizes. This is impor-
tant as an optimized version can process intraoperative sensor data (e.g.
landmark positions from texture tracking) in real-time.
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Figure 7.8.: Error distribution for the PBSM matching using a non-linear
elastic model and partial surfaces (blue). These errors can be
significantly reduced if an additional landmark correspon-
dence is known (green). The mean is denoted by the red line,
while averages are shown using crosses.

Figure 7.9.: If an initial rigid alignement is performed (left), the PBSM
scene converges for all scenarios (right).
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DOF iterations TPS time (s)
Liver #1 6147 22 1.99 11.06
Liver #2 6096 15 2.12 7.08
Liver #3 6285 36 1.94 18.56

Table 7.2.: Model size, iteration count, timesteps per second (TPS) and
total registration time for the analyzed liver models.

7.3.2. Phantom experiment
We performed an indentation on a silicon phantom (see Fig. 7.10). The
ground truth is obtained by tracking the displacement of 6 small teflon
marker balls in CT scans of the phantom (see Fig. 7.10). A volumetric
mesh of the undeformed phantom is constructed from segmented CT
data. We then use PBSM to map three different surface meshes to
the volumetric mesh (Fig. 7.11): 1. A complete surface mesh of the
deformed phantom obtained from segmented CT data. 2. A partial
surface obtained from segmented CT images 3. A partial surface obtained
from stereo endoscopic images. The surface was obtained using dense
3D reconstruction [RBS+12], random-forest based segmentation of the
liver and image stitching. In line with related work [CMS+05] [HDP+13]
we fix small parts of the liver that have negligible motion (see Fig. 7.11)
for all partial surface matchings.
The maximal displacement of the tracked marker balls is 46.6 mm with
a mean displacement of 23.9 mm. The PBMS scheme remains stable
and converges to a solution for all scenarios. The mean error for the
complete surface matching (scenario 1) is 2.6 mm (max. error 4.9 mm).
Several factors contribute to the significantly larger errors in the phantom
experiment than in the in silico evaluations: First of all the ground truth
data can be inaccurate due to errors during the segmentation process.
Furthermore, the strong indentation (Fig. 7.10) in the experiment leads
to large variations near the indenter. Fig. 7.10 also reveals that the error
increases for partial surface matching (mean error of 4.96 mm). In a
similar pattern that has been observed during the in silico experiments
this is mainly caused by the markers that lie away from the partial surface.
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Figure 7.10.: Indentation on a liver phantom: Experimental setup (left)
and error distribution in case the full CT-reconstructed
surface, a partial CT-surface or the intraoperative surface is
used (right).

Figure 7.11.: Matching of a complete surface (left), position of markers
inside the liver phantom (middle) and fixed nodes on the
liver marked in red (right).

Although the matching to the intraoperatively acquired surface (scenario
3) gives visually satisfactory results, the error is rather high (mean error
8.7 mm). In addition to errors that occur during surface acquisition, this
can be mainly attributed to the fact that the acquired surface is too small
to adequately capture the deformation.
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Figure 7.12.: Matching of a complete surface (left), a partial surface ob-
tained from CT images (middle) and matching of an intra-
operatively acquired surface (right).

7.4. Discussion
The novel PBMS approach allows a robust, landmark-free registration of
multi-modal surfaces for image guided surgery. It is robust to parameter
variations and naturally recovers the position of volumetric structures.
In a comparison study with the CPD algorithm it was demonstrated
that biomechanically based regularization is key in order to obtain ac-
curate registration results based on sparse sensor data. Furthermore,
it was shown that non-linear elasticity models can clearly improve the
registration accuracy.
The PBSM approach allows formulating the matching problem as a
unified physics-based variational problem. The key advantages of the
PBSM method directly result from this formulation: An efficient near
real-time numerical solution scheme (even for non-linear elastic models),
the matching of partial surfaces as well as the combination with landmark
based approaches.
The implementation of the method on multi-core hardware is an impor-
tant step in order to make it fully real-time capable. This can be done
by integrating existing algorithms such as GPU based collision detection
[TMY+11] and the previously presented GPU based linear solvers into
the framework.
While being a viable registration algorithm in its own right, we especially
regard the approach as a powerful component in a larger registration
scheme. It has already been shown how any landmark based approach
(e.g. texture based tracking) can be naturally embedded into the PBSM
algorithm by connecting the known landmarks with stiff springs. In
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addition, further research should aim at improving these results by using
PBMS in an optimization scheme to estimate the unknown boundary
conditions for the biomechanical model at the hidden surfaces (similar
to Alterovitz et al. [AGP+06] and Rucker et al. [RWC+13]).



Any intelligent fool can make things bigger, more
complex, and more violent. It takes a touch of genius -
and a lot of courage - to move in the opposite direction.

— E.F. Schumacher8.

Simulation of surgical cuts
In this section we present a set of numerical methods to model discon-
tinuities in the solution of the elasticity problem without changing the
initial grid topology. In the context of real-time intraoperative registration
these methods allow adapting the biomechanical model during the oper-
ation in the presence of cutting or resection. We start by introducing the
eXtended finite element method (X-FEM) and detail an implementation
of the approach for corotated finite elements on tetrahedral grids. Subse-
quently, a formulation is presented that allows modeling arbitrary cuts
through tetrahedral elements. For this purpose, the affected elements
are enriched with harmonic basis functions that have global support.
These functions cause discontinuities at the element boundaries which
decrease the accuracy in the standard formulation. In order to overcome
this problem we present a novel formulation based on the discontinuous
Galerkin (DG) method to embed the enriched elements. A 2D prototype
implementation of the technique shows its superior convergence proper-
ties in comparison with the standard formulation. Finally, we outline the
potential of the aforementioned methods for embedding complex geome-
tries into regular, non-boundary conforming grids. For more information
on the basic formulation of the X-FEM formulation for corotated elasticity
and the simulation on arbitrary cuts through soft tissue please also refer
to the corresponding preprint publications [SSDH13] [PSS+14].
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8.1. Modeling discontinuities with the
eXtended FE method

8.1.1. The cutting problem for linear elasticity
We extend the formalization of the linear elasticity problem eq. (4.103)
to problems that involve a discontinuity (cut). More specifically, we
consider the body B that occupies the region Ω0 (Fig. 8.1). We again
prescribe displacement boundary conditions on Γd and force boundary
conditions on Γn. Additionally, we introduce a cut boundary Γc with zero
Neumann (force) boundary conditions. Along the lines of the original
elasticity problem we require that the different boundaries do not overlap
(ΓD ∩ ΓN ∩ ΓC = ∅) and that boundary conditions are defined for the
whole boundary (∂Ω = ΓD ∪ ΓN ∪ ΓC). By defining the function space

VC(ΓC,0) = {x|σn = 0 ∀x ∈ ΓC} (8.1)

in addition to VD(ΓD,u) (eq. 4.100) and VN(ΓN , t) (eq. 4.101) we can
formulate the cutting problem for linear elasticity: Find u ∈ C2(Ω) ∩
C1(Ω) ∩VD(ΓD,u) ∩VN(ΓN , t) ∩VC(ΓC,0) s.t.

Divσ + ρ0g = ρ0ü ∀u ∈Ω0 (8.2)

ε =
1
2
(Gradu + (Gradu)T). (8.3)

8.1.2. X-FEM based discretization
In agreement with standard FE procedures, we assume that B is dis-
cretized with a tetrahedral mesh (Fig. 8.1 illustrates a 2D example). In
order to facilitate an efficient, straight-forward implementation of the
extended finite element method (X-FEM), we also approximate the cut
through a first order polygonal plane within each element. Furthermore,
we lengthen or shorten the cut in such a way that it ends on an element
edge. We will see in section 8.2 how to alleviate these restrictions in order
to achieve an X-FEM based formulation for arbitrarily shaped cuts.
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Figure 8.1.: Illustration of the cutting problem in 2D. A body B with
Dirichlet boundary ΓD and Neumann boundary ΓN is cut
along the stress-free boundary ΓC (left). This cut is sube-
quently discretized using linear polynomials and the ele-
ments that are affected by the cut (blue) are enriched with
discontinuous basis functions (right).

The main idea of the X-FEM is to model the discontinuity in the mesh
not by changing the mesh topology, but by enriching the basis functions
of the finite element space. Thus, the new discontinuous basis functions
ΨJ = ΨJ(x) are introduced in order to interpolate the displacement

uh = ∑
J∈N1

UJ NJ + ∑
J∈N2

AJ N∗J ΨJ (8.4)

of the body B. Here, AJ ∈ R3 are additional degrees of freedom that
control the size of the gap that is created by the cut. We also introduce the
set N1 of all nodes and the set N2 that includes all nodes which belong
to enriched elements. N∗J are shape functions that satisfy the previously
discussed partion of unity condition and the δ-property. Although it is
theoretically possible to choose N∗J that differ from the standard shape
functions NJ (e.g. by choosing quadratic N∗J ), we choose N∗J = NJ in
accordance with previous work in the literature. In order to properly
define the discontinuous function ΨJ , the cut is typically represented
by a so called level-set function. This allows to define a region above
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the cut (Ω+) a region below the cut (Ω+). In this scenario the Heaviside
function

ΨJ = H(x) =
{

1, x ∈Ω+

−1, x ∈Ω−
(8.5)

is an obvious choice for the enrichment function ΨJ . In order to achieve
a more efficient implementation, the interpolation is typically defined in
terms of the shifted Heaviside function

ΨJ =
H(x)− HJ(x)

2
. (8.6)

In this formulation, HJ(x) denotes the value of H(x) at the J-th node.
When using shifted Heaviside functions, the enrichment term is zero at
all element nodes. Consequently, the support of the extended part of
the interpolation is limited to the enriched element which simplifies the
numerical integration during matrix assembly.
In order to use the standard FE discretization scheme, it is convenient to
define the extended vector

UX = [U1 . . .UnA1 . . .Am] (8.7)

that contains not only the n nodal displacement vectors, but also the
additional 3m degrees of freedom AJ . In a similar way, we extend the
definition of the basis functions

NX
J =

{
NJ , 0≤ J < n

NJΨJ , n ≤ J < n + m (8.8)

in order to include the extended interpolation that has been introduced
in eq. (8.4). With these definitions, the vector of internal nodal forces

fint
I =

∫

Ω0

σX
ik(∇NX)kIdV0 (8.9)

=
∫

Ωa
σX

ik(∇NX)kIdV0 +
∫

Ωb

σX
ik(∇NX)kIdV0 (8.10)

can be derived in the same way as in the standard FE formulation eq.
(5.40). In the above equation, Ωa = {x|Ψ(x) = 1} denotes the region
above the cut, while Ωb = {x|Ψ(x) = −1}. We also introduce the new
variable σX for the Cauchy stress tensor in order to explicitly state that
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within the support the extended basis functions, the stress is computed
using the enriched interpolation eq. (8.4).
It is apparent that the standard FE discretization formalism (e.g. cal-
culation of nodal forces and stiffness matrix) can be directly applied
to the extended interpolation eq. (8.4). However, the above equation
(8.10) also reveals one important difference that has huge implications
on the implementation: Due to the discontinuity inside an element, the
numerical integration cannot be performed using Gaussian quadrature
(see section 5.2.1). Instead, the two sub-elements that are created below
and above the cut have to be integrated independently. If the cut is
approximated by a first order polygonal (i.e. straight) plane, there is
only a (small) finite number of cases how a tetrahedron can be divided.
It is thus possible to divide these sub-elements into tetrahedra based
on a case-by-case analysis. Gaussian quadrature can then be performed
onto each of these sub-element tetrahedra. Please refer to the preprint
publication [SSDH13] for more detailed information on the case-based
tetrahedral subdivision scheme.
When inserting the shifted Heaviside function into the linear elastic formu-
lation, the elemental stiffness matrices of non-enriched elements remain
unchanged. Furthermore, the 24x24 elemental stiffness matrices for the
enriched elements are of the form

KX,τ =

[
Kuu,τ Kua,τ

Kau,τ Kaa,τ

]
, (8.11)

with Kuu,τ = Kτ = Kτ
ij being the standard 12x12 FE stiffness matrix with

the original degrees of freedom. We denote the region that is occupied by
element τ with Ωτ . This allows us to define the volume V of the region
Ωτ as well as the volume Va of the region Ω+ = Ωa ∩Ωτ above the cut
and the volume Vb of the region Ω− = Ωb ∩Ωτ below the cut. With this
notation the 12x12 sub-matrices of the elemental stiffness matrix is given
by
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Kuu,τ
ij = Kτ

ij

Kua,τ
ij =

(
Va

V
Ψaj +

Vb
V

Ψbj

)
Kτ

ij

Kau,τ
ij =

(
Va

V
Ψai +

Vb
V

Ψbi

)
Kτ

ij

Kau,τ
ij =

(
Va

V
ΨaiΨaj +

Vb
V

ΨbiΨbj

)
Kτ

ij

(8.12)

where Ψai and Ψbi denote the value of Ψi above and below the cut,
respectively.
It is evident from eq. 8.12 that for linear elasticity problems the additional
effort for the enriched formulation is primarily reduced to determining
the volumes Va and Vb. As this has to be performed only once when
the cut is executed, the overhead of the X-FEM is small in comparison
to standard FE. For dynamic problems, the X-FEM mass matrix can be
derived in the same way as the stiffness matrix.
If re-meshing techniques are used to model surgical cuts, the creation
of small, ill shaped (so called sliver) elements can severely reduce the
performance and stability of the simulation. In contrast, the X-FEM
approach does not suffer from this problem. Even if these kinds of ele-
ments are created during the sub-element division process for numerical
integration purposes, they do not have an effect on the simulation. How-
ever, it is apparent from eq. (8.12) that the stiffness matrix can become
ill-conditioned if either Va or Vb become infinitesimal small. In these
cases, the cut runs close to a node. A straight forward solution to this
problem is to simply do not enrich the effected node. This approach
was first proposed by Sukumar et al. for an X-FEM formulation in two
dimensions [SB00]. Experiments with our 3D implementation confirmed
that the method introduces only a negligible error while guaranteeing a
well-conditioned stiffness matrix. A typical threshold for disabling the
enrichment is min(Va,Vb)/V < ε with ε = 10−4.
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8.1.3. X-FEM for corotated elasticity
As discussed in the previous chapters, the linear elasticity model is not
suitable in the presence of large deformations. In contrast, corotated
elasticity provides a rotation invariant formulation for elastic materials
and is a well suited regularization measure for intraoperative registration
algorithms. We thus seek to derive an X-FEM formulation for corotated
elasticity.
The derivation of the nodal forces and the stiffness matrix for standard
corotated elements has already been presented in chapter 5 (see eq. 5.65
and eq. 5.66). If the extended formulation for the degrees of freedom (eq.
8.7) and the basis functions (eq. 8.8) is inserted into this derivative, it is
obvious that the elemental nodal forces and the elemental stiffness matrix
do not change for non-enriched elements (along the lines of the linear
X-FEM discretization). However, the numerical integration becomes
much more difficult for the enriched elements. For an accurate corotated
formulation, the rotation matrix has to be extracted at every integration
point. This introduces a large computational overhead, even if an efficient
scheme such as the presented element subdivision technique is used for
numerical integration. It should in particular be pointed out that this
rotation extraction and the subsequent integration of nodal force and
the stiffness matrix assembly has to be carried out for every time step.
In order to significantly reduce this overhead while still maintaining a
high accuracy formulation, we rely on the same idea that was presented
earlier for the integration of the quadratic tetrahedron: We simply assume
the rotation to be constant over a certain region in order to reduce the
number of necessary integration points. In the context of the X-FEM the
obvious choice is to extract a rotation matrix for each region above and
below the cut (see Fig. 8.2).
Starting from eq. (5.65), the extended nodal forces

fint
I =

∫

Ω0

RimσX,CR
mk (∇NX)kIdV0 (8.13)

= Ra
im

∫

Ωa
σX,CR

mk (∇NX)kIdV0 + Ra
im

∫

Ωb

σX,CR
mk (∇NX)kIdV0 (8.14)
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Figure 8.2.: In order to reduce the computational overhead, we only
extract one rotation matrix for each region above and below
the cut instead of one rotation matrix per integration point
[SSDH13].

for the enriched elements are subsequently derived by performing two
numerical integration. The elemental stiffness matrix

KX,τ,CR =
∫

τ
R

∂f̂X,int
I

∂XJ
RTdV0 (8.15)

=
∫

Ωa
Ra

∂f̂X,int
I

∂X X
J

RT
a dV0 +

∫

Ωb

Rb
∂f̂X,int

I
∂X X

J
RT

b dV0 (8.16)

is computed in the same way. The external load vector as well as the
mass matrix in a dynamic problem are the same for linear elasticity and
corotated elasticity.

8.1.4. Accuracy validation
The presented X-FEM based approach for surgical cutting was imple-
mented for unstructured tetrahedral grids in a Matlab environment. As
explained in the previous sections, a case-by-case subdivision scheme is
used for efficient numerical integration. The Newmark time integration
scheme is used in a dynamical formulation and the boundary conditions
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are imposed using the projection based technique presented in chapter
5.

Figure 8.3.: 2D sketch of beam model under gravity load (left) and with
displacement boundary conditions that impose a stretching
deformation (middle). The 3D model of a beam with a cut
under gravity load is shown on the right [SSDH13].

In order to assess the convergence properties of the method, a beam
model (dimensions 0.03m×0.06m×0.2m, elastic modulus E = 300kPa,
Poisson’s ration ν = 0.35) with two different deformation patterns is
considered (Fig. 8.3). First, we simulate a beam that was cut in the middle
under gravity load. Furthermore, we impose a stretching deformation
on this model by applying displacement boundary conditions on both
ends. A ground truth solution for both scenarios is computed using a
high resolution grid that perfectly aligns with the cut. Our previously
presented SOFA-based implementation of the corotated finite element
method is used to compute this reference solution. In contrast, the mesh
for the corotated X-FEM is chosen in such a way that the cut always runs
through different elements. For the sake of the convergence analysis, we
use a structured tetrahedral grid and sequentially double the resolution
for each spatial direction.
The convergence analysis (Fig. 8.4) shows that for the first scenario, the
X-FEM based approach achieves a higher accuracy than the standard
FEM on a perfectly aligned grid. In contrast, it does not perform as well
for the other deformation pattern. However, the convergence behavior is
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Figure 8.4.: Results of the convergence analysis for beam under gravity
(left) and the stretched beam (right). The error of the X-FEM
implementation is shown in blue, while the standard FEM
solution is marked blue [SSDH13].

very similar to the standard FE approach. This is a very promising result
as the X-FEM is competitive to a standard FE on a grid that is perfectly
aligned to the cut (perfect re-meshing). For more complex cuts that
are meshed on-the-fly, the performance of standard FE usually degrade
significantly.

Figure 8.5.: Cutting of a liver model using corotated X-FEM [SSDH13].

The developed cutting method was also applied to more complex geome-
tries (Fig. 8.5). It is important to point out that in order to achieve a good
visualization, it is necessary to split the elements that are affected by
the cut. In this context, we use the same elemental subdivision that was
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x̃r
θ

Figure 8.6.: A stress-free cut through the body B with Dirichlet boundary
ΓD and Neumann boundary ΓN ends in element τ (left). In
order to model the wedge-shaped opening of the cut, a 2D
polar coordinate system is introduced in order to define
additional harmonic basis functions (right).

constructed for the numerical integration scheme for the visualization of
the cut.

8.2. Simulating arbitrary cuts in soft tissue

It was shown in the previous section how an enrichment of the finite
element interpolation with the shifted Heaviside function can be used in
order to model cuts that run completely through an element. This type
of enrichment is usually referred to as sign enrichment. We also detailed
the arising X-FEM formulation and showed how it can be implemented
on tetrahedral grids, if the cut is approximated by a first order polygonal
(i.e. straight) plane. In the following section we will show how arbitrary
cuts can be modeled. For this purpose we first introduce another type
of enrichment that allows to model cuts that end within an element.
Furthermore, a simple numerical integration technique is introduced
that allows to derive the nodal forces and elemental stiffness matrices for
arbitrarily shaped cuts.
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8.2.1. Branch enrichment
We consider an arbitrarily shaped cut through the body B (Fig. 8.6) that
ends within the element τ (Fig. 8.6). In a 3D setting, the end of the
cut is a line that runs through τ. This line is also called the cutfront
CFτ . In the 2D example depicted in Fig. 8.6 the cutfront is reduced to
a point. The cutfront has a direction, which is given by the tangent to
the cut. The cutfront can be progressed along this direction in order to
virtually extend the cut through the whole body B (dashed black line in
Fig. 8.6).
The termination of the cut within the element τ and the resulting wedge-
shaped opening of the cut cannot be modeled using the previously
presented sign enrichment approach. Instead, additional enrichment
functions have to be used. It is intuitively clear, that these enrichment
functions will have rotational symmetries along the direction of the
cutfront (dashed black line in Fig. 8.6). As these functions can be
constant along the cutfront, Moës et al. proposed to use the 2D polar
coordinate system (r,θ) to express the values of the function [MDB99].
Here, r is the distance of an arbitrary point x̃ to the cutfront and the
θ denotes the angle between the distance vector and the direction of
the cutfront (see Fig. 8.6). Moës proposed to use the four so called
asymptotic crack tip functions (ACTF)

F1(r,θ) =
√

r sin(θ/2) (8.17)

F2(r,θ) =
√

r cos(θ/2) (8.18)

F3(r,θ) =
√

r sin(θ/2)sin(θ) (8.19)

F4(r,θ) =
√

r cos(θ/2)sin(θ) (8.20)

as additional basis functions for elements that are partially cut. This
allows us to formulate the new extended FE interpolation

uh = ∑
J∈N1

UJ NJ + ∑
J∈N2

AJ NJΨJ + ∑
J∈N3

NJ

4

∑
L=1
CJLFL(r,θ) (8.21)

for fully enriched elements. The enrichment of the interpolation with
ACTFs is also called branch enrichment. The additional degrees of
freedom are denoted with CJL and the set N3 denotes all nodes that are
branch enriched.
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We point out that the support of the ACTFs is not limited to the enriched
elements, but also includes the neighboring elements. Furthermore the
branch enrichment term violates the partition of unity eq. (5.28) and the
δ-property eq. (5.27). Consequently, the convergence rate of the X-FEM
is decreased, if only the direct neighbors of the partially cut element are
enriched with the ACTFs. In order to reduce these so called parasitic
effects, a larger neighborhood of nodes around τ can be enriched (i.e.
added to N3). However, this introduces 4 additional DOF for each
branch enriched node and thus considerably increases the computational
overhead. We also note that these nodes in a completely cut element
which are shared with a partially cut element (and are thus already
branch enriched), are not additionally enriched with a Heaviside basis
function.
For a typical 3D simulation, the cut is given by a triangulated surface.
In this context, the geometric computation of the cutfront for each ele-
ment using appropriate collision detection schemes is challenging. This
is also true for the computation of the local coordinate system that
properly defines the ACTFs. For an in-depth explanation of these impor-
tant implementation details please refer to the corresponding preprint
publication[PSS+14]-

8.2.2. Accurate numerical integration
In order to derive the nodal force vector and the elemental stiffness
matrices, we follow the approach that was outlined in the previous sec-
tion: First, the vector of all DOFs and the vector of all basis functions is
extended. Then, these extensions are inserted in the discretization for-
malism that is already known from the standard finite element technique.
As this procedure is completely analogous to the previously presented
derivation, we do not outline the details here. However, it is important
to note that the numerical integration has to be handled differently in
the presence of ACTF.
As the ACTFs are no polynomial functions, they cannot be exactly in-
tegrated using Gaussian quadrature, even when the presented element
subdivision scheme is used. We use a straight forward integration
scheme to overcome this problem: We simply embed a higher resolution
structured grid into each enriched elements and sample the displacement
function at the nodes of the structured grid. Furthermore, the polar coor-
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dinates (r,θ) are evaluated at each sample point in order to compute the
value of the ACTFs for each integration point. The big drawback of the
method is that many integration points have to be used, thus rendering
it very computationally intensive. However, for the corotated X-FEM we
again only distinguish between a rotation above and below the crack.
This means that the complex integration procedure has to be performed
only once; if the course of the cut is known beforehand, it can even be
done in a pre-computing step. For each time step, only the two regions
above and below the cut have to be rotated accordingly and assembled
into the stiffness matrix. This oversampling method can also be used for
all sign enriched elements. In this case, it is not necessary to assume that
the cut is given as a piecewise linear plane. Instead, arbitrarily shaped
cuts can be simulated. The resolution of these cuts is controlled by the
resolution of the oversampling grid.

8.2.3. Accuracy validation

The described X-FEM for the simulation of arbitrary cuts in elastic
models was implemented in the SOFA framework. In order to assess the
convergence properties of the method we again consider the two model
problems described in the previous section (Fig. 8.3). In this scenario,
we limit the analysis to linear elastic models. This allows us to compute
the ground truth solution with the commercial Abaqus finite element
method on a structured tetrahedral mesh that is perfectly aligned with
the cut. We use an unstructured tetrahedral grid for the X-FEM based
computations (see Fig. 8.7). This implies that there are elements that
have to be partially cut.
The convergence analysis (Fig. 8.8) shows that the X-FEM based ap-
proach is considerably more accurate for the same number of DOF than
the standard FE technique. This difference can be partly attributed to the
fact that an unstructured grid can be used for the X-FEM computations.
This usually does not suffer as much from volume locking as structured
tetrahedral grids. Furthermore, the results indicate that although the
X-FEM method is more accurate for the analyzed resolutions, the con-
vergence rate of the standard FE technique might be higher. However,
it is still reasonable to conclude that an X-FEM technique based on sign
enrichment and branch enrichment cannot only model arbitrarily shaped
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Figure 8.7.: Cutting simulation of a beam under gravity load (top)
and stretched beam (bottom) using the X-FEM technique
[PSS+14].

cuts, but also performs at least as good as a well meshed standard FE
approach in terms of accuracy per number of DOFs.
An example of an arbitrarily shaped cut through a more complex geom-
etry can be seen in Fig. 8.9. Here, a liver is divided by a wave shaped
cut.
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Figure 8.8.: Results of the convergence analysis for beam under gravity
(left) and the stretched beam (right). The X-FEM based tech-
nique consistently outperforms the standard FE approach for
the analyzed meshes [PSS+14].

Figure 8.9.: Arbitrarily shaped cut through a liver model using X-FEM
with sign and branch enrichment.

8.3. Efficient embedding of enriched elements
It has already been discussed that the branch enrichment violates the
partition of unity. This leads to a decrease in accuracy. One way to
overcome this problem is to enrich further elements near the crack tip.
However, this approach introduces a lot more degrees of freedom and is
thus unsuitable in the real-time setting. A more elegant way to remedy
this problem is to embed the branch enriched elements into the standard
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finite element grid using the discontinuous Galerkin (DG) method. This
finite element method allows the shape functions to be discontinuous at
the element boundaries.
In this section preliminary work towards a hybrid DG-FEM / X-FEM
method is presented. We outline the main ideas of the DG method,
show how it can be applied to problems in linear elasticity and present
qualitative results from a prototype implementation for 2D problems.
For a more detailed introduction to the DG method we refer to the
introductory text by Cockburn [BC99] or the corresponding diploma
thesis publications by Pfau [PSDH10] and Huber [Hub11]. The presented
DG formulation for linear elasticity is based on the work of Lew et al.
[TEL06] [LNSO04].

8.3.1. The Discontinuous Galerkin method

In contrast to the classic conformal Galerkin (CG) method, the discon-
tinuous Galerkin (DG) approach allows discontinuities in the solution
at the element boundaries. This has important consequences for the
problem formulation and the finite element discretization. First of all,
the space Vh of all DG solutions is not a subspace of the space V of all
continuous solutions. This means that statements about the uniqueness
and the existence of solutions do not carry over from the continuous
to the discrete formulation. Furthermore, the weak formulation of the
elasticity problem cannot be derived from Cauchy’s equation of motion
in the way that was demonstrated in section 5.1.1. In particular, it is
not possible to apply the divergence theorem to the whole region Ω0
as shown in (eq. 5.4). In contrast, it has to be applied to each element
independently and surface integrals remain in the formulation that have
to be integrated into the stiffness matrix. These surface integrals can be
regarded as interaction forces that couple the different elements whereas
in CG-FEM the coupling is achieved through the continuity condition.
In the upcoming sections we present a DG formulation that builds on
the definition of a so called discontinuous Galerkin derivative DDG.
Based on this definition, we can define a variational formulation for the
elasticity problem that can be discretized using the well-known standard
FE procedure. In order to facilitate a clean description of the method,
some terminology has to be introduced.
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For all elements τ, the set of all element faces Γ =
⋃

τ∈M ∂τ is divided
into the set

ΓI = e ∈ Γ \ ∂Ω0 (8.22)

of all inner faces as well as the set of all element faces Γd on the Dirichlet
boundary and the set of all faces Γn on the Neumann boundary. Here, e
denotes the face that is shared by elements τ+ and τ−. The associated
face normal n is oriented outwards of τ−.
Vτ

h denotes a discrete vector space of smooth scalar functions in the
element τ (e.g. the set of linear polynomials in a tetrahedral element).
With this definition, the DG finite element space can be expressed through
Vh = ∏τ∈MVτ

h . The extension of the scalar function space Vh to the space
of d-dimensional vector valued functions is called Vd

h and will later be
used to approximate the displacement field. In the same way, we define
the function space Wd

h to approximate a gradient to a function in Vh. Later,
we will also use the tensor-valued function space Wd×d

h to approximate
the deformation gradient.
It is clear that the functions in Vh are double-valued on the inner faces ΓI .
In order to a facilitate a mapping scheme to a singular value, we define
the jump J·K and the average operator {·} for the functions v ∈ Vh and
z ∈Wd

h :

JvK = v− − v+ and {v} = 1
2
(v− + v+) (8.23)

JzK = z− − z+ and {z} = 1
2
(z− + z+) (8.24)

On the boundary faces e ∈ Γ \ ΓI we additionally define

JvK = v and {z} = z. (8.25)

Several possibilities exist to define the singular value v̂ of the solution on
the element faces. The choice of this so called numerical flux determines
how the elements are coupled together. In this work we choose the flux
v̂(v) = v̂0(v) + v̂∂(v) with

v̂0(v) =




{v} on ΓI

0 on Γd
0 on Γn

, v̂∂(v) =





0 on ΓI
v on Γd
v on Γn

(8.26)
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that was proposed by Bassi and Rebay [BR97]. This flux formulation
allows to impose the Dirichlet boundary values v in a weak way.

8.3.2. Weak Discontinuous Galerkin derivative
As mentioned before, it is possible to enforce the inter-element coupling
through surface forces. However, this method requires the computation
of additional surface integrals during the stiffness matrix assembly. A
more efficient way is to define so called lifting operators that map the
surface integrals to a volume integral. Following the work of Arnold et
al. the lifting operator O1 can be derived by inserting a DG discretization
into the Poisson equation [ABCM02]. O is then defined by the equation

∫

Ω0

O(v) · z = −
∫

Γ
v⊗ n · {z}, (8.27)

where ⊗ denotes the tensor product in case v is vector valued (v ∈ Vd
h ). It

is important to note that O : L2(Γ) 7→Wd
h is a linear operator with small,

compact support. For implementation purposes it is efficient to break
down O to elemental contributions and accordingly define the elemental
lifting operator Oτ through the equation

∫

τ
Oτ(v) · z = −

∫

∂τ
v⊗ n · {z}. (8.28)

By inserting the finite element approximation for v and z in the above
equation, the matrix representation for Oτ can be derived (see [Hub11]
for details). If standard nodal shape functions are used, the support (and
thus the size of the matrix representation) includes all nodes of τ and
the nodes that share a face with τ (e.g. a total of 16 nodes in a linear
tetrahedral grid).
The lifting operator allows defining the DG derivative operator

DDGv =∇v + O(JvK)−O(Jv̂∂(v)K) (8.29)

which approximates ∇v. Here, the operator is defined on the scalar func-
tion v and consequently we have DDG : Vh 7→Wd

h . However, the extension

1usually denoted R in the literature, we use O to avoid confusion with the rotation
matrix
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to vector valued functions is straight forward: For the displacement field
uh ∈ Vd

h we define DDGuh = ei ⊗ (DDGuj), where ei denotes the unit
vectors in Rd. In this context the lifting operator O(uh) = ei ⊗O(uj) is
extended in the same way and we obtain O : [L2(Γ)]d 7→Wd×d

h .

8.3.3. DG-FEM for linear elasticity
The definition of the DG derivative opens up a very elegant way to derive
the DG-FEM discretization for elastic materials. We simply insert the
DG derivative operator DDG instead of the standard gradient operator
∇ into the variational form eq. (5.15). For linear elastic materials, the
infinitesimal strain tensor eq. (4.21) thus becomes

εDG =
1
2
(DDGuh + (DDGuh)

T) (8.30)

and the corresponding Cauchy stress tensor σDG can be computed by
inserting the strain tensor into the material law. This readily yields the
variation of the internal elastic energy

Dδuh Π(uh)int =
∫

Ω0

σDG : δεDGdV0. (8.31)

However, due to the non-conformity of the discretization the ensuing
variational problem can have multiple solutions, which often causes
instabilities in the simulation. In order to overcome this problem, a
stabilization term has to be added to the formulation. The basic idea is
to add an energy term that punishes the discontinuities (jumps) at the
element boundaries to the total energy of the system. A straight forward
approach is to simply integrate the squared jumps over the elements’
faces. The stabilization energy

Π(uh)stab =
β̃

h

∫

Γ
Juh − v̂(uh)K · Juh − v̂(uh)K · dS (8.32)

is obtained by scaling this term with a constant β̃ and the characteristic
element length h. If the constant β̃ is chosen to be very high, the DG-FEM
gives nearly identical results to the CG-FEM. In practice, the choice of β̃



8.3. Efficient embedding of enriched elements 161

heavily depends on the material parameters and can be quite difficult for
the stabilization term introduced above. That is why we use an extended
stabilization term proposed by Lew et al. that also scales the energy with
the material parameters [LNSO04] in our implementation.
The discrete matrix formulation of the DG-FEM can be derived with the
same formalism that has already been presented for the CG-FEM, for
details we again refer to [Hub11].

8.3.4. Embedding of enriched elements using DG-FEM
In order to motivate an efficient DG-FEM formulation for the embedding
of branch enriched elements, we briefly discuss the most important differ-
ences between DG-FEM and CG-FEM. First of all, each DG-FEM element
has its own degrees of freedom, whereas nodes (i.e. DOF) are shared
between the elements in a standard FE discretization. For unstructured
tetrahedral grids a DG-FEM discretization can thus easily have an order
of magnitude more DOF than the CG-FEM variant. Furthermore, the
elemental stiffness matrices are much bigger due to the larger support of
the lifting operator in comparison with standard nodal shape functions.
Consequently, the global stiffness matrix has higher connectivity. Due
to these two properties, the DG-FEM is typically not as computationally
efficient as the CG-FEM [TEL06].
For this reason, we do not use a full DG mesh in our implementation.
Instead, we use a DG-FEM formulation only for the enriched elements
and their respective neighbors. The coupling of DG and CG elements can
be achieved by slightly altering the lifting operator O: When computing
the matrix representation of O according to (eq. 8.28) we simply do not
integrate over these element faces that are shared with full CG elements.
Consequently, we compute a full lifting operator for each branch enriched
element. For each neighbor of these elements, we choose nodal shape
functions and limit the support of O to the element’s DOF as well as the
enriched element’s DOF.
Due to this approach, the number of additional DOF is negligible (espe-
cially in comparison with the added DOF due to the branch enrichment).
However, we can still leverage the crucial advantage of the DG discretiza-
tion where necessary: As the solution does not need to be continuous
at the element boundaries, the choice of basis functions is not restricted
to standard nodal shape functions. Instead, a wide variety of basis func-
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tions can be employed. In our specific application we use this freedom to
efficiently embed asymptotic crack tip functions into the discretization.

8.3.5. Accuracy validation
The outlined DG-FEM approach was implemented in Matlab for two
dimensional, linear elastic problems. The results show that the proposed
lifting operator based scheme to embed DG elements into a CG-FEM
dominated mesh is accurate and straight forward to implement. Fur-
thermore, different stabilization terms were analyzed (Fig. 8.10). It was
observed that the choice of the stabilization term has a strong effect on
the solution: If the stabilization is too low, the simulation becomes unsta-
ble. However, if the stabilization is too high, the simulation essentially
behaves like CG-FEM based discretization and all advantages of the DG
approach are lost. For non-linear elastic problems, finding the optimal
stabilization parameter proved to be difficult in our analysis and still is
an open area of research [ECL08]. However, for linear elastic problems
(and consequently also for corotated elasticity) the material dependent
stabilization term proved to be very stable. A stabilization parameter of
β = 10 was a good choice for all analyzed materials and scenarios.

Figure 8.10.: Very low resolution rectangle under displacement boundary
conditions and its DG-FEM solution without stabilization
term (left) and with a material dependent stabilization term
(right) [Hub11].
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Two model problems were considered in order to assess the convergence
behavior of the proposed hybrid X-FEM/DG-FEM for simulating arbi-
trary cuts in elastic materials. In particular, the accuracy was assessed
for different stabilization parameters. A moderate stabilization leads
to a significantly more accurate solution than a very high stabilization
parameter (which reproduces the pure CG-FEM solution).

Figure 8.11.: 2D rectangle with cut: With fixed boundary on the right and
surface loads on the top and bottom (left) as well as with
displacement BCs on the top and bottom (right) [Hub11].

8.4. Towards voxel based simulation
In the previous sections, we have analyzed a set of new methods to
simulate cuts in soft tissue. In contrast to classical re-meshing based
approaches, these techniques allow to model the cut without changing
the underlying grid topology. Computational intensive re-meshing is
thus not necessary for real-time cutting and the creation of unstable
sliver elements are avoided. In addition, the results demonstrate that
the X-FEM based approach can be more efficient than the standard FE
approach in terms of accuracy per number of degrees of freedom. This
is in particular true, if a DG-FEM scheme is used in order to embed the
enriched elements.
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On a more general level, the presented approach can be interpreted
as a paradigm shift in comparison to re-meshing techniques. Whereas
classical FE methods seeks to accurately model the problem by using
computational grids that closely resemble the geometry, the presented
methods operate on meshes that do not need to be fitted to the geometry.
Instead, more complex basis functions are used to construct the finite
element space. This paradigm also influences the implementation and
computational properties of the finite element techniques. In classical
FEM, the numerical complexity is primarily given by the number of
degrees of freedom. It was demonstrated by our experiments that non-
fitted methods can achieve a better efficiency in terms of DOF due to the
special basis functions. However, this comes at a price: The numerical
integration of the enriched elements is much more complex; not only
from an implementation point of view, but also in terms of computational
complexity.
Techniques that evolve around the discussed DG-FEM and X-FEM ulti-
mately allow efficiently simulating problems with meshes that do not
resemble the actual geometry. This helps to remove the difficult meshing
step in the biomechanical simulation workflow. Recently, some groups
have demonstrated that similar methods based on the DG-FEM can be
used for efficient simulation of elastic problems [RLB09] [BE09]. The
idea to shift some complexity into the numerical integration step in order
to reduce the number of degrees of freedom bears strong resemblance
with the idea of composite FEM that has recently become popular in the
computer graphics community [NKJF09] [WDW13].
An FE approach based on non-matching boundary grids can be especially
beneficial to solve biomechanical problems on massive parallel hardware.
First of all, these techniques allow the use of structured, rectangular
grids that result in data structures that are well suited for GPU based
computations. Furthermore, biomechanical simulations are constructed
from voxel-based tomographic images anyway. Thus, the segmented
geometry can be readily embedded into a coarser computational grid
and the numerical integration could be directly performed on the voxel
level.
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9.

Biomechanical modeling workflow
and CAS validation
Within the previous chapters a novel approach for biomechanically based
real-time intraoperative soft tissue simulation was presented. In order
to translate biomechanics based methods into clinical routine and in
order to speed up the development of such methods, efficient tools
for constructing patient-specific biomechanical models are necessary.
Currently, no solution exists that allows combining and accessing the
necessary tools such as segmentation and meshing algorithms in an
intuitive and easy way. In the upcoming section, we propose a flexible,
XML-based concept called the Medical Simulation Markup Language
(MSML) in order to overcome this problem.
An efficient and meaningful accuracy validation is another important
aspect for the efficient development of clinically viable CAS components.
In order to improve this critical development step, we propose a novel
approach for manufacturing mechanically accurate soft tissue phantoms.
Furthermore, numerics (in silico) based validation strategies are discussed
and we introduce Open-CAS, a web platform for open data in the context
of CAS validation.

9.1. The Medical Simulation Markup Language
Modeling and simulation of human organs by means of continuum me-
chanics is not only a promising approach for soft tissue registration in
the context of computer assisted surgery. The technique has also become
an important tool in diagnostics (e.g. for cardiovascular diseases), in-
tervention planning and training. The construction of patient-specific
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biomechanical models from tomographic data is a non-trivial work-
flow that can roughly be divided into six steps. Having segmented
relevant anatomical structures from tomographic data, a surface mesh
is constructed from these segmented images. Different pre-processing
operators (e.g. smoothing, coarsening) are usually applied in order to
simplify the subsequent construction of the volumetric grid. Thereafter
material properties, boundary conditions and contact surfaces are de-
fined and the simulation is performed. Finally, the data is post-processed
for visualization or diagnostic purposes.
Although a diverse ecosystem of software tools exists for each of these
steps, there is currently no solution that allows combining and accessing
these tools in an intuitive and easy way. In contrast, the available software
often even uses incompatible data formats. Whereas this is a negligible
problem for surface processing (.stl works well here), numerous different
formats exist for volumetric meshes. When it comes to describing ma-
terial properties, boundary conditions or simulation parameters it even
seems as if every tool has its own format.
The complexity of the available tools for the construction of patient-
specific biomechanical models is a major barrier for a widespread adop-
tion of these procedures into clinical research. Furthermore, the lack
of standards concerning interfaces and data formats makes prototyp-
ing medical simulation workflows for specific applications very time
consuming.
In order to overcome these problems, we have developed the Medical
Simulation Markup Language (MSML). This XML-based scheme allows
describing all stages of the simulation workflow. New components (so
called operators) can easily be included by providing a simple XML-based
description. The MSML acts as a middleware between all tools used in
the modeling pipeline and can perform dependency and compatibility
checking on the workflow components. Additionally, the MSML allows
describing a biomechanical model including all relevant information
such as a mesh description as well as the material model and boundary
conditions. This unified description can be easily exported to different
simulation engines or FE solvers.
In the following sections the XML-based concept for describing the
biomechanical workflow is outlined. Furthermore, we present a concrete
implementation and show different examples that highlight the flexibility,
robustness and ease-of-use of the approach. The presentation is based
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on the corresponding publication [SSS+14]. It should be noted that the
MSML concept is still in development and updated information can also
be found on the MSML website 1.

9.1.1. Flexible XML-based description concepts
Workflow description

Each stage in the simulation workflow is associated with certain data
types such as images, segmentation masks, meshes or an indices list.
MSML allows to link data types through so-called operators. An oper-
ator can be either defined between different stages (e.g. segmentation
algorithms link tomographic data to surface meshes, meshing algorithms
link surface meshes to volume meshes) or between data that belongs
to the same stage (e.g. surface mesh smoother, file format converter).
For each operator, an XML-file defines its input and output data types,
the data formats, all operator parameters and some information on how
the operator can be executed (Fig. 9.1). The data format and data type
descriptions must be present in the MSML alphabet. This enables a
compatibility checking between operators and their input and output
elements. If incompatible data formats are detected, but the same data
type is used, the system can use the list of known operators to suggest
an appropriate conversion operator. Data types and operators can be
added to the alphabet by simply providing an XML-file that describes the
corresponding executable or library. In this way it becomes very easy to
integrate established software tools into the MSML scheme. MSML thus
acts as a middleware between all tools used in the modeling pipeline.

Biomechanical model description

A similar XML-based approach is used to describe the actual biomechan-
ical model. Here, we additionally defined so-called fixed elements; these
elements remain the same for all biomechanics simulations regardless if
they are FE-based or not, if solid mechanic or fluid dynamic problems
are considered. The physicsModel contains the mesh and several materialRe-
gions, which denote material models for different areas that are specified
by indexGroups. The physicsElement might also contain a contactModel.

1github.com/CognitionGuidedSurgery/msml
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The element simulationSteps contains the constraints, loads and boundary
conditions which can be prescribed for each step. In addition to the
physicsModel, the object also holds a visualModel and postProcessingRe-
quests. The MSMLScene is divided into several objects and also contains
global parameters about the solver (i.e. ODE or linear systems solver
used). All other components of the final MSML alphabet (e.g. material
models, mesh types) are defined by a hierarchy of XML files. This results
in a remarkable flexibility. New material models (Fig. 9.1), boundary
condition types or even completely different physical behavior can be
defined by just adding an XML file.

<mesherTetgen type=" operator " moduleName=" TetOp "
methodName=" createVolMeshTet " >

<inputNames> <surfaceMesh/> </inputNames>
<outputName> <mesh/> </outputName>
<inputTypes> <triangularMesh/> </inputTypes>
<outputTypes> <linearTetMesh/> </outputTypes>
<inputFormats> < f i l e . vtk/> </inputFormats>
<outputFormats> < f i l e . vtk/> </outputFormats>
<parameters>
<preserveBoundary type=" bool "/> </parameters>

</mesherTetgen>

Figure 9.1.: Definition of a meshing operator in MSML.

The idea behind the unified MSML description is to allow for an easy
export to different physics engines or FE solvers. However, each of these
export targets might only support a subset of the MSML alphabet. That is
why every export operator holds a tree of compatible nodes. This allows
for an easy compatibility checking scheme that ensures the consistency
between the MSML description and the solver.

9.1.2. Implementation
The MSML scheme was implemented as a hybrid Python/C++ library.
All high level functions such as XML-parsing, compatibility checking
and operator calls are performed by the Python part. Operators can
either be executed as a function call or as a command line tool. This
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allows for a flexible integration of 3rd party tools. The current operator
collection includes different operators based on the visualization toolkit
(VTK), CGAL, Gmsh, VCGLib as well as Tetgen. These operators provide
functionality such as surface mesh size reduction, linear and quadratic
tetrahedral mesh generation, extraction of point and element indices
based on different criteria, as well as post processing operations such as
mesh coloring and mesh comparison. These operators are implemented
in C++ for performance reasons. While it is possible to store all data
associated with a MSML model into a single XML-file, it is often more
efficient to leave image and mesh data in their native formats and just
reference it by filename. All referenced data is copied to a single folder,
which can be compressed to reduce storage requirements. In our refer-
ence implementation, we use the data types (e.g. for images and meshes)
from the visualization toolkit (VTK), but it is of course possible to use
different formats thanks to the flexibility of the MSML operators.

9.1.3. Examples workflows and applications
Several different application scenarios were used in order to develop
and validate the Medical Simulation Markup Language. In the following
paragraphs two of these scenarios are presented. They can be down-
loaded along with other examples from the MSML website. The Python
implementation as well as all specifications and XML schemata are also
available for download under an open source license.

Validation of FE algorithms during development

Validation is an important and often time consuming step in FE develop-
ment. Typically, this means comparing the results obtained using novel
implementations and methods with standard techniques. The MSML can
not only simplify the generation of suitable testing scenarios, but can also
export the same scenario to different FE solvers and allows comparing
the results. We used MSML to validate a quadratic co-rotated tetrahedral
FE for real-time soft tissue simulation [SRD+11]. A MSML operator
chain was used to fully automatically extract a low-resolution quadratic
tetrahedral computational mesh from a high-resolution surface mesh of
a segmented human liver (Fig. 9.2, 9.3). Furthermore a fully non-linear
version of the model using a Neo-Hookean material was exported to
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Abaqus. Finally, MSML was used to color the meshes for visualization
purposes and to quantitatively compare the real-time algorithm with the
Abaqus ground truth model.

<mesh>
<quadraticTetMesh name=" liverMesh " f i lename="

@meshConverter " >
<tet10MeshConverter name=" meshConverter "
quadraticMesh=" liverVolumeTet10Mesh . vtk " linearMesh="

@liverVolumeMesher " />
<mesherTetgen name=" liverVolumeMesher " mesh="

liverVolumeMesh . vtk "
surfaceMesh=" @meshReducer " preserveBoundary = " 1 " />
<meshReductionOperator name=" meshReducer " outputMesh="

l i v e r X S S u r f a c e . vtk "
inputMesh=" l i v e r S u r f a c e . vtk " numberOfTriangles = " 200 " />

</quadraticTetMesh>
</mesh>

Figure 9.2.: MSML operator chain to convert a high resolution surface
mesh to a low-resolution quadratic tetrahedral FE mesh.

Figure 9.3.: Quadratic tetrahedral finite element meshes were automat-
ically built from a high-resolution surface mesh (left) and
solved using a real-time corotated algorithm within the SOFA
framework (middle) and fully non-linear Neo-Hookean
model within the ABAQUS FE-package (right).
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Multi organ simulation for radio therapy

In the framework of the Collaborative Research Centre Cognition Guided
Surgery, the MSML was adapted by Stoll et al. to simulate organ motion
for radiation therapy planning. In this context a multi organ model was
constructed from a segmented torso dataset from the Ircad database 2

(Fig. 9.4). The MSML was used to create the volume mesh, to define
the mechanical material parameters as well as the boundary conditions.
The simulation was performed using the SOFA simulation framework
[FDD+12].

Figure 9.4.: A pressure boundary condition is applied to the inner sur-
faces of both lungs (from [SSS+14]).

9.1.4. Towards intuitive finite element based simulations
The Medical Simulation Markup Language acts as a middleware be-
tween all tools used in the biomechanical modeling pipeline. This

2www.ircad.fr/softwares/3Dircadb
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allows to quickly set-up biomechanical modeling workflows for de-
velopment, prototyping and system validation. The unique feature of
the approach is its flexibility; new components, operators or material
types can be added by simply providing an XML-based description. The
Python based implementation is available as open-source software from
github.com/CognitionGuidedSurgery/msml. More material models, op-
erators and exporters (e.g. to FEBio) are continuously integrate into the
framework.
Even with a tool like MSML available, a lot of expert knowledge is re-
quired to set-up biomedical simulations. Suitable modeling techniques
and material models have to be selected in order to simulate the mechan-
ical behavior of different anatomical objects and physiological processes.
Furthermore, numerical expertise is required to choose suitable algo-
rithms and solvers for each problem. In typical mechanical engineering
applications for computer aided engineering (e.g. automotive, aerospace)
there are specially trained analysts that set up the numerical simulations
for the design engineers.
We are currently working on integrating a cognitive assistance into MSML
that can play the role of the simulation analyst and can help to make
elaborate simulation technology available for non-experts. In this context
we are using ontologies in order to encapsulate the necessary explicit
background knowledge. In addition, machine learning techniques are
used for automatic parameter selection (e.g. for volumetric grid genera-
tion). We believe that an intuitive biomechanical workflow is essential
for establishing simulations techniques in the clinical workflow.

9.2. Validating and benchmarking CAS systems

Determining the accuracy of computer assisted surgery (CAS) systems is
challenging [JGMJ06]. This is in particular true in the realm of minimally
invasive soft tissue interventions. Here, it is very complicated and
sometimes even impossible to obtain reliable in vivo ground truth data.
In this section, a novel approach for manufacturing mechanically accurate
soft tissue phantoms is presented. Furthermore, numerics (in silico) based
validation strategies are discussed and we introduce Open-CAS, a web
platform for open data in the context of CAS validation.
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9.2.1. Mechanically accurate soft tissue phantoms
Organ phantoms are a popular approach to validating algorithms for
image guided surgery. In contrast to animal experiments, phantom based
validation is cheap, repeatable and often allows determining ground truth
data with a lot less post-processing. In this context, silicone is a promising
phantom material as it is chemically robust and retains its mechanical
characteristics for years. However, it is very challenging to produce
silicone phantoms whose mechanical response really mimics biological
soft tissue. In the following we present an approach to manufacture
accurate soft tissue phantoms and show how these can be used to build
multi-organ phantoms.

Silicones for soft tissue mimicking phantoms

Most industrially used silicones are much stiffer than biological soft
tissue. Adding a so called slacker component is one possibility to soften
these materials. However, silicones that are softened in this way usually
have a very tacky surface, which makes processing difficult. Silicone
models are typically cast from two different fluid components. Upon
contact these components trigger a crosslink of the raw materials which
then cure to the final product in a couple of hours. In some cases it is
possible to control the stiffness of the silicone by changing the ratio in
which the components are mixed together.
Based on the stiffness requirements for soft tissue phantoms, several
groups of silicones from different vendors were evaluated with respect
to their application for organ phantoms: Wacker Silgel 612, Wacker
Elastosil 7616-195, Wacker Elastosil P26028, Kaupo DragonSkin, Kaupo
EcoFlex10 and Kaupo EcoFlex30. In cooperation with the Institute for
Technical Chemistry and Polymer Chemistry at the Karlsruhe Institute of
Technology, these silicones where analyzed within an Eplexor rheometer
(Fig. 9.5).
During the rheometrical analysis, each sample was compressed by 40%.
Based on the forces that were measured during each compression step,
the Young modulus of each material was then calculated for the different
load points (Fig. 9.6). We also performed a literature review in order to
extract relevant material parameters that have been determined by other
groups for different organs such as the liver or the prostate. Suitable



174 Chapter 9. Biomechanical modeling workflow and CAS validation

Figure 9.5.: A sample was manufactured from several silicone mixtures
(left) which were subsequently analyzed using an Eplexor
rheometer (right).

silicones were then selected based on the measurements, the models
obtained from the literature and other properties that are important for
manufacturing (e.g. tackiness, tear-resistance). For the liver, Elastosil
P26038 proved to be an ideal candidate due to its low stiffness and
smooth surface properties.

Manufacturing silicone based abdominal organs

In order to build a silicone liver phantom, a human liver was segmented
from CT images (Fig. 9.7). A CAD model of the phantom molds was
subsequently constructed from the liver surface model using the Materi-
alise 3Matic software package. The design of the molds was optimized
with respect to cheap rapid prototyping. The liver phantom was finally
cast from the printed molds (Fig. 9.8) in different layers. This allowed
inserting a regular pattern of small Teflon marker balls (diameter of
3.175mm) into the phantom for accurate tracking of the deformation field
in CT images.
A complete torso phantom was designed at the University Hospital
Heidelberg using the presented manufacturing techniques. The design is
completely based on segmented CT images. A rigid outline of the body as
well as bony structures were also manufactured using rapid prototyping
techniques (Fig. 9.9). OpenHELP allows simulating more complex
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Figure 9.6.: Young’s modulus in kPa in terms of compressive strain for
selected silicones.

Figure 9.7.: Liver surface model obtained from segmented CT images
(left) and CAD models of phantom molds (middle, right).

deformation pattern and inter-organ interaction. As all deformations
can be easily tracked in CT images thanks to the markers in the silicone
organs, the model thus serves as a very useful validation tool for CAS
components. It even offers a cheap, reproducible and accurate alternative
to animal experiments for many validation steps. A sample application
for the validation of 3D stereo reconstruction algorithms from endoscopic
data is shown in Fig. 9.9.
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Figure 9.8.: Upper and lower casting mold manufactured using rapid
prototyping techniques (left, middle) and final silicone liver
inside the OpenHELP torso phantom (right).

Figure 9.9.: OpenHELP torso phantom built from segmented CT images
(left), endoscopic video frame featuring several silicone or-
gans (middle) and corresponding 3D-reconstruction from
stereo endoscopic data (right).

Phantoms with non-linear response

It can be seen from Fig. 9.6 that most silicones exhibit a very linear
behavior even in the presence of large strains. In contrast, the mechanical
behavior of biological soft tissues is strongly non-linear. One possibility to
mimic real tissue behavior over a larger deformation range, the phantoms
can be equipped with a stiff core and a softer outer region (Fig. 9.10).
In this setup the question naturally arise how the parameters of the
phantom (e.g. stiffness and size of the core, stiffness of the outer shell)
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Figure 9.10.: On order to achieve a strongly non-linear mechanical re-
sponse, the organ phantom is equipped with a stiff core
and a softer outer region.

Figure 9.11.: Model of an indentation experiment in Abaqus (left). Ini-
tial (undeformed) configuration (middle) and deformed
configuration with color-coded von Mises stress (right).

should be determined. In order to address this problem we developed a
prototypical optimization approach for identifying these parameters. For
this purpose we model an indentation on the organ phantom with the
Abaqus FE package (Fig. 9.11). We use a Levenberg-Marquardt optimiza-
tion scheme and approximate the Jacobian by using a finite difference
scheme on the Abaqus-based forward FE simulation. This parameter
identification procedure is able to find suitable stiffness parameters for
the core and the shell for a fixed core size. In the future, the scheme
will be extended towards analyzing multiple load conditions (not just
a single indentation) and a variable core size. However, this scenario is
challenging as the optimization problem does not have a unique solution
and the can thus easily be easily trapped in local minima.

Workflow for ground truth computation

Evaluating phantom validation experiments is usually a very time-
consuming task. First, organs of interest have to be segmented. We
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Figure 9.12.: Post-processing of a phantom validation experiment in-
volves semi-automatic segmentation of relevant organs (left)
and automatic extraction of marker displacements for dif-
ferent deformation states (middle, right).

use snake-based algorithms implemented in the open source ITK-SNAP3

toolkit to perform this procedure in a semi-automatic way (Fig. 9.12). A
fully automatic algorithm was developed in order to segment all Teflon
marker balls and perform a registration between different states of defor-
mation: Due to the size and density of the marker balls, the segmentation
can be performed using a simple threshold procedure. Afterwards all
connected regions in the image are labeled and all regions whose pixel
size is smaller than a certain threshold are discarded. The center for each
of the marker balls is then determined by computing the center of mass
for each blob. In this way, a point cloud is extracted for each deformation
state.
In order to obtain a ground truth deformation, these point clouds have to
be registered for every deformation state. This is challenging as artefacts
in the CT images often cause the segmentation procedure to produce
point clouds of different sizes for each deformation state. Therefore,
straight forward approaches to tackle the registration problem such as a
nearest neighbor search are unreliable. Instead, we use the previously
mentioned coherent point drift (CPD) algorithm to perform the registra-
tion in a stable way. Due to the added regularization in the algorithm, the
point clouds are accurately registered and it is easy to verify if marker
points are lost or added between different states of deformation.

3www.itksnap.org
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9.2.2. in silico evaluation suite

It has already become apparent throughout this thesis (especially in
chapter 7) that the numerical computation of ground truth data (in
silico validation) is an important technique for the validation of research
prototypes in the area of computer assisted surgery. This approach
allows obtaining dense ground truth data in a reliable and repeatable
way.
Röhl et al. presented a simulation environment for accuracy validation
of 3D reconstruction techniques for stereo endoscopes [RBS+12]. Based
on an accurate camera model, the tool uses realistic organ textures and
appropriate lighting models in order to reproduce the optical properties
commonly found in endoscopic image sequences (e.g. specular reflec-
tions). It generates all necessary ground truth data such as the disparity
map of the 3D scene (see Fig. 9.13).
Current work aims at including more sensor data into the simulation
tool (e.g. tracking information). Furthermore, a soft tissue simulation
based on a corotated FE technique is integrated into the tool. This allows
validating image processing and registration algorithms in the presence
of physically realistic soft tissue deformations.
In order to enhance the realism of such a simulation tool for laparoscopic
interventions, a suitable user interface is necessary. For this reason, high-
fidelity haptic interfaces have become an important part of VR simulators
for minimally invasive surgery (MIS) training [CMJ11]. However, the
availability of these devices for validation purposes in CAS research is
severely limited due to the high costs of this special purpose hardware.
In order to overcome this obstacle we have developed a low-cost laparo-
scopic haptic input device based on the Novint Falcon game controller
(Fig. 9.14).
The customizations such as the special grip for the Falcon are manu-
factured using rapid prototyping techniques. In addition the device
can be assembled without specific tools (with exception of the sensor
circuit board). The total cost of 1800 Euro is very low compared to
standard equipment. Further development aims at making the hardware
design along with the necessary software drivers available under an
open source license. For more information on the project we refer to the
corresponding publication [SRB+14].
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Figure 9.13.: A simulation environment allows to compute accurate
ground truth data such as the disparity ground truth be-
tween the left and right stereo image or depth maps.

Figure 9.14.: CAD design (left) and prototype (right) of a low-cost laparo-
scopic input device (from [SRB+14])
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9.2.3. Open-Cas: Towards open data for CAS validation
Regardless if using in silico evaluation, soft tissue phantoms or animal
experiments, the design of reliable validation experiments is non-trivial
and time consuming. Furthermore, the execution and post processing
of experimental results from phantom or animal experiments require
not only the access to CT imaging hardware, but also manual effort (e.g.
segmentation).
Having common data sets does not only allow researchers to spend more
time on development and less time on validation, but it also allows to
benchmark algorithms against each other. In the realm of computer
vision, the Middlebury datasets are widely used for that purpose [SS02].
Although there are some datasets for the validation of CAS components
available (e.g. the Hamlyn Centre endoscopic video datasets [SSPY10]
and the 3D-IRCAD database [3Di13]), it would be desirable to have a
more extensive selection of data. In particular, it would be beneficial to
establish a common repository that can serve not only as a central access
point for data, but also for benchmark results. As the complexity of
the data is growing (e.g. different types of temporally registered sensor
data) it is especially important to develop standardized data formats
and corresponding processing tools in order to make the data easily
accessible.
Naturally, such a repository should not be limited to numerical or phan-
tom data. In the context of image processing (e.g. instrument segmenta-
tion) in vivo sensor data is often used for qualitative evaluation. In some
contexts, manually labeled image data can even serve as a reliable ground
truth. Making these kinds of data freely available would significantly
speed up the development for many research groups. This is even more
true for algorithms that rely on machine learning approaches such as
segmentation or situation recognition techniques [KWG+13a]. In these
applications, the acquisition and manual processing of suitable learning
and test data often is the most time consuming part of development.
The website Open-Cas.org (Fig. 9.15) is a first attempt at establishing
a platform for open data in the context of CAS validation [SRB+13].
Currently, both numerical and phantom based validation data is available
on the platform. More validation data is continuously added to the
database.
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Figure 9.15.: The Open-CAS website is a publication platform for open
data in the context of CAS validation [SRB+13].



Prediction is very difficult, especially about
the future.

— Niels Bohr

10.

Conclusions
Computer assisted surgery (CAS) systems intraoperatively support the
surgeon by providing information on the location of hidden risk (e.g.
vessels, nerves) and target structures (e.g. tumors) during surgery. In
this way CAS techniques have been a major driving force for improving
patient outcomes for many applications such as orthopedic surgery
and neurosurgery. However, CAS is currently not used in the daily
clinical routine for laparoscopic interventions. The main reason for
this discrepancy are soft tissue deformations that make intraoperative
registration (and thus intraoperative navigation) difficult. In this work, a
novel, biomechanics based approach for real-time soft tissue registration
from sparse intraoperative sensor data such as stereo endoscopic images
was researched. In the upcoming section, we sum up the methods that
have been developed in this context. The discussion will be guided by
the research questions that have been outlined at the beginning of this
thesis (section 1.1). In addition, further research paths that build on the
results of this work are highlighted.

10.1. Summary
The main purpose of this work was to develop a novel approach for soft
tissue registration in the context of laparoscopic partial liver resection.
At the core of the approach lies an accurate, yet real-time capable finite
element (FE) model of the liver. A novel GPU-based FE solver allows
to efficiently solve even large models in real-time. During the novel
physics-based registration process, this biomechanical model serves as
a regularization term in order to match a preoperative model to an
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intraoperative surface geometry. The results and contributions of this
thesis can be summarized as follows:

• Real-time biomechanical model for soft tissue registration
By means of a thorough simulation study it was shown that the
registration accuracy does only depend very weakly on the mate-
rial model type and its parameterization. Based in this insight a
corotated elasticity model was presented for efficient, yet accurate
soft tissue registration. The numerical efficiency of this model was
greatly enhanced through several new algorithms. First, it was
demonstrated that isoparametric quadratic tetrahedral elements
are superior to linear tetrahedral grids for soft tissue simulation. In
order to leverage the potential of quadratic elements in a real-time
setting, a novel scheme for accurately embedding high resolution
surfaces into higher order elements was developed. We also pre-
sented a novel GPU based multigrid finite element solver that fur-
ther speeds up the simulation. The developed multigrid approach
for solving elasticity problems is unique for two reasons. It is not
only the first multigrid scheme for solving elasticity problems
on unstructured, non-conforming, higher order grids, but also
the first approach to a GPU-based multigrid solver for the real-
time simulation of deformable models on unstructured grids. In
this context, the aforementioned novel mapping was used in or-
der to transfer displacements and forces between the meshes in
the grid hierarchy. In order to achieve high efficiency on parallel
hardware, a sparse approximate inverse approach was used for
preconditioning and smoothing. In order to make this operator
real-time capable, it is pre-computed and subsequently adapted
to the current deformation each time step (rotation warping). In
contrast to the state-of-the-art (using linear tetrahedral grids and
a Jacobi-preconditioned CG solver), the novel method can achieve
speedups of several orders of magnitude.

• Physics based shape matching for stable real-time soft tissue reg-
istration in the context of laparoscopic liver resection
As an important use case for soft tissue registration in laparoscopic
surgery, a system for registering preoperative planning data to in-
traoperative stereo endoscopic image data in the context of partial
liver resection was developed. Here, a 3D surface model of the
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surgical site was obtained through 3D reconstruction of the stereo
endoscopic video data and image stitching. In order to match
the preoperative organ model to an intraoperative partial surface,
we presented the novel physics based shape matching (PBSM)
scheme. This approach treats the non-rigid surface registration
as an electrostatic-elastic problem, where an elastic body that is
electrically charged (preoperative model) slides into an oppositely
charged rigid shape (intraoperative surface). In contrast to previous
attempts at biomechanically based registration, this novel physics
based interpretation allows casting the shape matching problem
into a single variational formulation. It is also the first method that
employs a non-linear, yet real-time capable biomechanical model of
the liver for registration purposes. As the technique is based on a
preoperative volumetric FE model, it naturally recovers the position
of volumetric structures (e.g. tumors or vessels). In a large valida-
tion study based on numerical and phantom data, it was shown
that the novel method severely outperforms the state-of-the-art
coherent point drift algorithm. It can be concluded from this analysis
that biomechanically based regularization by means of corotated
elasticity is a highly promising strategy for soft tissue registration
based on sparse intraoperative sensor data. Furthermore, it was
shown how known landmark correspondence (e.g. through texture
or ultrasound tracking) can be integrated into the PBSM scheme
and the algorithm was integrated into the MediAssist CAS system.

• Finite element methods for flexible discontinuity and geometry
embedding
The topology of the surgical site changes due to tissue cutting
during many interventions (e.g. partial liver resection). This poses
a big challenge for finite element based biomechanical models as
online re-meshing of the topology changes can severely impair
the performance and the stability of the simulation. In this work,
we analyzed an alternative approach for modeling discontinuities
in the solution by enriching the affected elements with special
shape functions. In particular, we showed how so called extended
FEM (X-FEM) techniques can be used to simulate arbitrary cuts
through corotated elastic models. Furthermore, it was shown how
the discontinuous Galerkin (DG-FEM) method can be used for
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an efficient embedding of the enriched elements. The performed
validation studies demonstrate that these techniques are superior
to re-meshing approaches in terms of stability and accuracy per
degrees of freedom.

• Intuitive biomechanical model workflow
In the course of this thesis work, it became apparent that the
construction of patient-specific biomechanical models from tomo-
graphic data is a non-trivial workflow and time consuming task.
Although a diverse ecosystem of software tools exists for each of
step of this workflow, there was no solution that allowed combin-
ing and accessing these tools in an intuitive and easy way. This
problem is also highly relevant in other research areas that make
use of biomechanical models such as diagnostics (e.g. for cardio-
vascular diseases), intervention planning and training. It can even
be argued that the lack of intuitive software tools for the construc-
tion of patient-specific biomechanical models is a major barrier
for a widespread adoption of these procedures into clinical re-
search. In order to overcome this problem, the flexible XML-based
Medical Simulation Markup Language (MSML) was proposed,
implemented and made available as open-source software.

• Validation tools for CAS
Accuracy validation of CAS systems is challenging. In the realm
of minimally invasive visceral interventions, it is very complicated
and sometimes even impossible to obtain reliable in vivo ground
truth data. In this work we presented several novel tools for CAS
validation. Most importantly, an approach for manufacturing me-
chanically accurate silicone soft tissue phantoms was developed.
Through the course of the validation experiments for the PBSM
scheme it was shown how small marker balls inside these organ
models can be used to track deformations in CT imaging. In addi-
tion to phantom based experiments, we also discussed numerics (in
silico) based validation strategies and introduced Open-CAS.org,
a web platform for open data in the context of CAS validation.
These methods not only help to reduce the number of necessary
animal experiments and help researchers to spend more time on
algorithm development and less time on validation. They also open
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up the path for establishing benchmark datasets in the realm of
computer assisted surgery.

10.2. Outlook
No scientific work is ever complete, but rather opens up new avenues
for further research. For the methods presented in this thesis, additional
work should in particular focus on translating the developed techniques
towards the clinical setting. In addition to smaller implementation
related issues such as improving data structures to enhance the numerical
efficiency or implementing a GPU version of the PBSM scheme, four
interesting areas for further work can be identified. These will be briefly
discussed in this section.

• Validation of the PBSM approach through animal experiments
The accuracy of the developed physics based shape matching
(PBSM) scheme has already been extensively validated using nu-
merical data and phantom experiments. Validating the approach
in the context of a porcine partial liver resection is the next step
towards demonstrating its clinical viability. In this context it will be
especially interesting to see, if the internal vessel structure of the
liver (that has not been modeled in this work) has a noticeable effect
on the registration accuracy. Furthermore, the performance of the
system should be evaluated in the presence of strong pathologies
(e.g. cirrhosis of the liver). The design of such an in vivo validation
experiment has to be carefully planned in order to obtain reliable
ground truth data. On option might be to perfuse the liver with
contrast agent in order to track the deformation of vessel bifurca-
tions in CT images. Currently, there is no publicly available data
for these kinds of experiments. Thus, we plan to release the data
from such an animal validation experiment under an open license
on Open-CAS.org in order to help validating and benchmarking a
wide variety of algorithms in the domain of registration and image
processing for CAS.

• Inter-organ interactions and estimating boundary conditions on
hidden surfaces
Within the PBSM validation experiments, we used a very simple
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model for the boundary conditions (BC) on the hidden surfaces
and either assumed zero force or zero displacement BC on different
parts of the liver. In order to further enhance the accuracy of the
PBSM scheme, it is necessary to introduce more complex models of
these boundary conditions. One possibility is to not only consider a
single organ in the biomechanical model, but to build a multi-organ
model that accurately simulates the organ-interactions on the hid-
den surfaces. However, such a model is not only computationally
intensive, but also difficult to build and to parameterize for each
patient. A better option might be to use additional ultrasound
imaging to extract volumetric landmarks. By using an optimization
scheme on top of the PBSM approach, the boundary conditions on
the hidden surfaces can then be estimated from these landmarks.

• Hierarchical non-boundary fitting discretizations
Techniques that evolve around the analyzed DG-FEM and X-FEM
ultimately allow efficiently simulating problems with meshes that
do not resemble the actual geometry. This helps to remove the
difficult meshing step in the biomechanical simulation workflow.
Furthermore it makes constructing model hierarchies easy and thus
allow for a straight forward implementation of multigrid solvers.
The approach can be especially beneficial to solve biomechanical
problems on massive parallel hardware. First of all, these tech-
niques allow the use of structured, rectangular grids that result in
data structures that are well suited for GPU based computations.
Furthermore, the necessary model representations and data struc-
ture for such a biomechanical model can be directly derived from
segmented tomographic images.

• Intuitive workflows for patient-specific biomechanical models
A lot of expert knowledge is required in order to build a biome-
chanical model from segmented tomographic images: Suitable
modeling techniques and material models have to be selected in
order to simulate the mechanical behavior of different anatomical
objects and physiological processes. Furthermore, numerical exper-
tise is required to choose suitable algorithms and solvers for each
problem. Even with a tool like the Medical Simulation Markup
Language available, this complexity will still hinder the translation
of biomechanically based methods into clinical research. That is
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why we are currently working towards a cognitive assistance that
encapsulates the knowledge of experienced simulation analysts
and can help to make elaborate simulation technology available
for non-experts. In this context we are using ontologies in order to
encapsulate the necessary explicit background knowledge. In addi-
tion, machine learning techniques are used for automatic parameter
selection (e.g. for volumetric grid generation).





A.

Additional remarks on elasticity
theory and FE methods

A.1. Basics of vector analysis
A.1.1. Divergence theorem
For any smooth vector field v(x) and any smooth tensor field A(x) that
are defined on a compact region Ω which is enclosed by the smooth,
closed surface ∂Ω we have

∫

∂Ω
v · ndA =

∫

Ω
divvdV or

∫

∂Ω
vinidA =

∫

Ω

∂vi
∂xi

dV (A.1)

∫

∂Ω
AndA =

∫

Ω
divAdV or

∫

∂Ω
AijnjdA =

∫

Ω

∂Aij

∂xj
dV (A.2)

A.1.2. Product differentiation rules for tensors
For any smooth vector field v(x) and any smooth tensor field A(x) we
have

div(ATv) = div(A) · v + div(A) : grad(v) (A.3)

A.2. Work conjugancy of S and Ė

It has already been shown in section (4.2.1) that the first Piola-Kirchhoff
stress tensor P is work conjugated to the material time derivative of
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the deformation gradient F. It is quickly shown that the material time
derivative of the Cauchy-Green strain tensor C

Ċ =
D
Dt

(
FTF

)
= ḞTF + FT Ḟ (A.4)

related to the material time derivative of the Green-Lagrange strain tensor
by

Ė =
D
Dt

1
2

(
FTF− I

)
=

1
2

(
ḞTF + FT Ḟ

)
=

1
2

Ċ. (A.5)

Based on the results of section 4.2.1 (work conjugancy of P and Ḟ), we
can thus derive

P : Ḟ = tr(PT Ḟ) = tr(ḞTP) = tr(ḞTF F−1P︸ ︷︷ ︸
S

) (A.6)

= tr(SḞTF) = tr(SFḞT) = tr(S
1
2
(ḞTF + FḞT)) (A.7)

=
1
2

S : Ċ = S : Ė (A.8)

A.3. The Saint Venant-Kirchhoff model
The elastic energy functional for Saint-Venant Kirchhoff model is defined
by

Ψ(E) =
λ

2
(trE)2 + µtr(E2). (A.9)

In order to express the relation

S(E) =
∂Ψ(E)

∂E
, (A.10)

we note the partial derivatives

∂tr(E)
∂E

=
1

∂Eij

3

∑
k=1

Ekk = δij = I (A.11)

and
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Figure A.1.: Linear tetrahedron with 4 nodes (tet4) and quadratic tetra-
hedron with 10 nodes (tet10)

S(∂E) =
∂tr(E2)

∂E
=

1
∂Eij

3

∑
k,l=1

EklEkl = 2Eij = 2E. (A.12)

Thus, we obtain

∂Ψ(E)
∂E

=
λ

2
∂
(
(trE)2)

∂E
+ µ

∂
(
tr(E2)

)

∂E
= λtrEI + 2µE. (A.13)
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A.4. Polynomial shape functions
for selected elements

A.4.1. Nodal shape functions in local (curvilinear)
coordinates

Linear 4-node tetrahedron (node numbering as shown in Fig. A.1):

N0(r, s, t) = r (A.14)
N2(r, s, t) = s (A.15)
N3(r, s, t) = 1− r− s− t (A.16)
N4(r, s, t) = t (A.17)

(A.18)

Quadratic 10-node tetrahedron (node numbering as shown in Fig. A.1):

N0(r, s, t) = (2r− 1)r (A.19)
N1(r, s, t) = (2s− 1)s (A.20)
N2(r, s, t) = (2(1− r− s− t)− 1)(1− r− s− t) (A.21)
N3(r, s, t) = (2t− 1)t (A.22)
N4(r, s, t) = 4rs (A.23)
N5(r, s, t) = 4(1− r− s− t)s (A.24)
N6(r, s, t) = 4(1− r− s− t)r (A.25)
N7(r, s, t) = 4st (A.26)
N8(r, s, t) = 4rt (A.27)
N9(r, s, t) = 4(1− r− s− t)t (A.28)

(A.29)

A.4.2. Nodal shape functions in global coordinates
The standard triangle [(1,0,0) (0,1,0) (0,0,0) (0,0,1)] is mapped to the global
coordinate system using the shape functions (isometric elements). If Xk
denotes the initial position of the k-th node of the n-node tetrahedron,
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we define the function ξ(r) that maps the local coordinates r = (r, s, t) to
the global coordinates X = (X1, X2, X3):

ξ(r) = X(r) = X(r, s, t) =
n

∑
k=0

Xk Nk(r, s, t) (A.30)

The global derivatives of the shape functions are

∂NI(x)
∂X

= J−1 ∂NI(x)
∂r

(A.31)

where J is the jacobian

J =∇ξ =




∂X1
∂r

∂X2
∂r

∂X3
∂r

∂X1
∂s

∂X2
∂s

∂X3
∂s

∂X1
∂t

∂X2
∂t

∂X3
∂t


 (A.32)

A.5. Internal nodal forces and the stiffness
matrix for linear elasticity

As detailed in section 5.2.1, the internal nodal forces are given by

fint = f int
iI =

∫

Ω0

f̂ X,int
iI dV0 = ∑

e

∫

τ
f̂ X,int
iI dV0 =

∫

Ω0

σik (∇N)kI dV0.(A.33)

By noting that the gradient of the displacement vector reads

∇u =∇(UI NI) = UI∇NI = UiI (∇N)kI , (A.34)

we can express its the derivative with respect to the nodal displacements
through

∂

∂UjJ
(∇U )ik =

∂

∂UjJ
(UiI (∇N)kI) = δij(∇NkJ). (A.35)
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The derivative of the Cauchy strain with respect to the nodal displace-
ments can thus be derived as

∂εik
∂UjJ

=
1
2

∂

∂UjJ

(
∇u + (∇u)T

)

=
1
2

∂

∂UjJ
(UiI (∇N)kI + UkI (∇N)iI)

=
1
2

(
δij(∇N)kJ + δkj(∇N)i J

)
. (A.36)

Consequently, the derivation of the Cauchy stress follows as

∂σik
∂UjJ

= 2µ
∂εik
∂UjJ

+ λδik
∂εll
∂UjJ

= µ
(

δij(∇N)kJ + δkj(∇N)i J

)
+

λ

2
δik

(
δl j(∇N)l J + δl j(∇N)l J

)

= µ
(

δij(∇N)kJ + δkj(∇N)i J

)
+

λ

2
2δik(∇N)jJ

= µδij(∇N)kJ + µδkj(∇N)i J + λδik(∇N)jJ (A.37)

and the derivative of the internal force density can be expressed as

∂ f̂ X,int
iI

∂UjJ
=

∂

∂UjJ
(σik (∇N)kI)dV0

=
∂σik
∂UjJ

(∇N)kI

=
(

µδij(∇N)kJ + µδkj(∇N)i J + λδik(∇N)jJ

)
(∇NI)kI

=
(

µδij(∇N)kJ + µδkj(∇N)i J + λδik(∇N)jJ

)
(∇NI)kI

= µδij(∇N)kJ (∇NI)kI + µ(∇N)i J (∇NI)jI

+λ(∇N)jJ (∇NI)iI . (A.38)

This yields the stiffness matrix

∂ f int
iI

∂UjJ
=
∫

Ω0

∂ f̂ X,int
iI

∂UjJ
dV0 = ∑

e

∫

τ

∂ f̂ X,int
iI

∂UjJ
dV0 = ∑

e
Ke = K. (A.39)
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A.6. Internal nodal forces and the stiffness
matrix for corotated elasticity

The polar decomposition of deformation gradient (see section 4.1.3)

F = RU (A.40)

is used to define the stretch measure

U = RTF. (A.41)

We express the displacement gradient through the nodal positions

∇u = F− I =∇(XJ NJ) = XJ∇NJ − I (A.42)

in order to relate the Cauchy strain to the nodal positions:

ε =
1
2

(
(F− I) + (F− I)T

)
=

1
2

(
(XJ∇NJ − I) + (XJ∇NJ − I)T

)

=
1
2
(
Xi J(∇N)jJ +XjJ(∇N)i J

)
− I. (A.43)

For corotated elasticity, the deformation gradient is replaced by the
stretch measure

U = RT∇F = RkiXkJ(∇N)jJ . (A.44)

Consequently, the corotated Cauchy strain reads

εCR = εCR
ij =

1
2

(
RTXJ∇NJ + (RTXJ∇NJ)

T
)
− I (A.45)

and the corotated stress is derived to

σCR
ij = 2µεCR

ij + λδijε
CR
ll .

We note that the internal nodal forces can be written in terms of the
variation of nodal position

DδUΠ(uh)int =
∫

Ω0

σ : δεdV0 =
∫

Ω0

σ :
1
2

(
δ∇u + (δ∇u)T

)
dV0

=
∫

Ω0

σ : δ∇udV0 =
∫

Ω0

σ : (δUI∇NI)dV0

=
∫

Ω0

σ : (δXI∇NI)dV0 (A.46)
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in order to derive the corotated nodal forces

DδUΠ(uh)int =
∫

Ω0

σ :
(

RTδXI∇NI

)
dV0 =

∫

Ω0

(Rσ) : (δXI∇NI)dV0

= δXiI

∫

Ω0

Rimσmk(∇N)kIdV0 = δXiI

∫

Ω0

f̂ int,CR
iI dV0

= δXiI f int,CR
iI = δXIf

int,CR
I (A.47)

with

f̂ int,CR
iI =

∫

Ω0

RimσCR
mk (∇N)kIdV0. (A.48)

In order to formulate the corotated stiffness matrix, we first compute
the derivate of the corotated Cauchy strain with respect to the nodal
positions:

∂εmk
∂XjJ

=
1
2

∂

∂XjJ
(RnmFnk + FnmRnk)− I

=
1
2

∂

∂XjJ
(RnmXnI (∇N)kI +XnI (∇N)mI Rnk)

=
1
2

(
δnjRnm (∇N)kJ + δnj (∇N)mJ Rnk

)
(A.49)

In a similar fashion as in the linear elastic case we derive

∂σCR
mk

∂XjJ
= 2µ

∂εCR
mk

∂XjJ
+ λδmk

∂εCR
ll

∂XjJ

= µ
(

δnjRnm (∇N)kJ + δnj (∇N)mJ Rnk

)

+
λ

2
δmk

(
δnjRnl (∇N)l J + δnj (∇N)l J Rnl

)

= µ
(

δnjRnm (∇N)kJ + δnj (∇N)mJ Rnk

)
+ λδmkδnjRnl (∇N)l J (A.50)
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and express the corotated force density through

∂ f̂ X,int
iI

∂XjJ
=

∂

∂XjJ
RimσCR

mk (∇N)kI = Rim
∂σCR

mk
∂XjJ

(∇N)kI

= Rimµ
(

δnjRnm (∇N)kJ + δnj (∇N)mJ Rnk

)
(∇N)kI

+Rim

(
λδmkδnjRnl (∇N)l J

)
(∇N)kI

= Rimµ
(

δnmRjn (∇N)kJ (∇N)kI + (∇N)mJ Rjk (∇N)kI

)

+λRjl (∇N)l J (∇N)mI

= Rimµ
(

δnm (∇N)kJ (∇N)kI Rjn + (∇N)mJ (∇N)nI

)
Rjn

+λ (∇N)nJ (∇N)mI Rjn

= Rimµ
(

δnm (∇N)kJ (∇N)kI + (∇N)mJ (∇N)nI

)
Rjn

+Rim

(
λ (∇N)nJ (∇N)mI

)
Rjn

= Rim
∂ f̂ int

mI
∂XnJ

Rjn = R
∂fint,CR

I
∂XJ

RT . (A.51)

The global corotated stiffness matrix is then given by

KCR = ∑
e

∫

τ

∂ f̂ X,int
iI

∂XjJ
dV0 = ∑

e

∫

τ
R

∂f̂int
I

∂XJ
RTdV0. (A.52)





B.

Glossary

A
arbitrary matrix (e.g. system matrix for linear
system)

A additional DOF for sign enriched elements

B body (object) under analysis

C Cauchy-Green strain tensor

C modified (isochoric) Cauchy-Green strain tensor

D damping matrix

d rate of deformation tensor
dA,dAn infinitesimal area element in current configuration

dA0,dA0N infinitesimal area element in reference configuration

div divergence operator in current configuration

Div divergence operator in reference configuration

dV
infinitesimal volume element in current
configuration

dV0
infinitesimal volume element in reference
configuration

dx,dxi line element in current configuration

dX,dXi line element in reference configuration

dU difference vector of nodal displacements

dU̇ difference vector of nodal velocities
dx difference vector of nodal positions
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∆t increment during time integration

E Green-Lagrange strain tensor

E set of elements inM
ε infinitesimal strain tensor

fext, fext
I , f ext

iI vector of external nodal forces

fint, fint
I , f int

iI vector of internal nodal forces

f̂ X,int
iI internal force density

fint,CR, fint,CR
I ,

f int,CR
iI

vector of corotated internal nodal forces

f̂ int,CR
iI internal force density

F deformation gradient tensor

Ḟ time derivative of the deformation gradient tensor

F modified (isochoric) deformation gradient tensor

ΓC
boundary of the cut with zero Neumann (force)
boundary conditions

ΓN
boundary with Dirichlet (displacement) boundary
conditions

ΓD
boundary with Neumann (force) boundary
conditions

G Cauchy-elastic response function

grad gradient operator in current configuration

Grad gradient operator in reference configuration
g gravity acceleration vector

H hyperelastic response function

H Hamiltonian
I identity matrix

l spatial velocity gradient

K stiffness matrix
K kinetic energy



Chapter B. Glossary 203

L Lagrangian

M mass matrix
M finite element mesh

NJ , NjJ basis functions
NI , NiI test functions

n normal in current configuration

N normal in reference configuration
ν vertex in S

O lifting operator

Ω0
region that is occupied by B in reference
configuration

Ω
region that is occupied by B in current
configuration

P first Piola-Kirchhoff stress tensor
p point in B

Pext rate of external mechancial work (power input)

Π potential energy functional

Pint rate of internal mechanical work

Ψ internal elastic energy

R rotation matrix obtained from polar decomposition
of F

ρ densitiy in current configuration
ρ0 density in reference configuration

S second Piola-Kirchhoff stress tensor
S triangular surface mesh

σ Cauchy stress tensor

t traction vector in current configuration

T traction vector in reference configuration

T element in S
τ element inM
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tr trace operator

U stretch matrix obtained from polar decomposition
of F

u,ui displacement field

U ,UJ ,U jJ nodal displacement field

U̇ vector of nodal velocities

Ü vector of nodal accelerations

δu variation of the displacement field
w rate of rotation tensor
v velocity field

v̇ acceleration field
V set of vertices inM

VD(ΓD,u) space of functions that fulfill the Dirichlet boundary
conditions on ΓD

VN(ΓN , t)
space of functions that fulfill the Neumann
boundary conditions on ΓN

wint stress power per unit reference volume
x, xi positional field in the current configuration

X, Xi positional field in the reference configuration

X ,XJ ,X jJ nodal positions
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[Ibr09] Adnan Ibrahimbegović. Nonlinear solid mechanics: theoreti-
cal formulations and finite element solution methods, volume
160. Springer, 2009.



Bibliography 225

[JBB+10] L. Jerabkova, G. Bousquet, S. Barbier, F. Faure, and J. Al-
lard. Volumetric modeling and interactive cutting of de-
formable bodies. Progress in biophysics and molecular biology,
2010.

[JGMJ06] Pierre Jannin, Christophe Grova, and Calvin R Maurer Jr.
Model for defining and reporting reference-based valida-
tion protocols in medical image processing. International
Journal of Computer Assisted Radiology and Surgery, 1(2):63–
73, 2006.

[JK09] L. Jerabkova and T. Kuhlen. Stable cutting of deformable
objects in virtual environments using XFEM. Computer
Graphics and Applications, IEEE, 29(2):61–71, 2009.

[JSZH09] P. Jordan, S. Socrate, TE Zickler, and RD Howe. Consti-
tutive modeling of porcine liver in indentation using 3D
ultrasound imaging. Journal of the Mechanical Behavior of
Biomedical Materials, 2(2):192–201, 2009.

[JWM08] Grand Roman Joldes, Adam Wittek, and Karol Miller.
Suite of finite element algorithms for accurate computation
of soft tissue deformation for surgical simulation, 2008.

[JWR04] Andrei C Jalba, Michael HF Wilkinson, and Jos BTM
Roerdink. Cpm: A deformable model for shape recov-
ery and segmentation based on charged particles. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on,
26(10):1320–1335, 2004.

[KCO+03] A.E. Kerdok, S.M. Cotin, M.P. Ottensmeyer, A.M. Galea,
R.D. Howe, and S.L. Dawson. Truth cube: Establishing
physical standards for soft tissue simulation. Medical Image
Analysis, 7(3):283–291, 2003.

[KDE+12] Markus Kleemann, Steffen Deichmann, Hamed Es-
naashari, Armin Besirevic, Osama Shahin, Hans-Peter
Bruch, and Tilman Laubert. Laparoscopic navigated liver
resection: Technical aspects and clinical practice in benign
liver tumors. Case reports in surgery, 2012, 2012.



226 Bibliography

[KMAB04] Alexander F Kolen, Naomi R Miller, Eltayeb E Ahmed, and
Jeffrey C Bamber. Characterization of cardiovascular liver
motion for the eventual application of elasticity imaging to
the liver in vivo. Physics in medicine and biology, 49(18):4187,
2004.

[KMB+09] P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, and
M. Gross. Enrichment textures for detailed cutting of
shells. ACM Transactions on Graphics (TOG), 28(3):50, 2009.

[KMBG09] P. Kaufmann, S. Martin, M. Botsch, and M. Gross. Flexi-
ble simulation of deformable models using discontinuous
Galerkin FEM. Graphical Models, 2009.

[KRS09] I. Khalaji, K. Rahemifar, and A. Samani. Accelerated statis-
tical shape model-based technique for tissue deformation
estimation. In Proceedings of SPIE, volume 7261, page
72610U, 2009.

[KS05] J. Kim and M.A. Srinivasan. Characterization of viscoelas-
tic soft tissue properties from in vivo animal experiments
and inverse FE parameter estimation. Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI 2005,
pages 599–606, 2005.

[KVPP10] Mitsuhiro Kawata, Nikolay V Vasilyev, Douglas P Perrin,
and J Pedro. Beating-heart mitral valve suture annulo-
plasty under real-time three-dimensional echocardiogra-
phy guidance: an ex vivo study. Interactive cardiovascular
and thoracic surgery, 11(1):6–9, 2010.
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Computer assisted surgery systems intraoperatively support 

the surgeon by providing information on the location of hidden 

risk and target structures during surgery. However, soft tissue 

deformations make intraoperative registration (and thus intra-

operative navigation) difficult. In this work, a novel, biomechan-

ics based approach for real-time soft tissue registration from 

sparse intraoperative sensor data such as stereo endoscopic 

images is presented to overcome this problem.
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