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a b s t r a c t 

Respiratory motion and the associated deformations of abdominal organs and tumors are essential infor- 

mation in clinical applications. However, inter- and intra-patient multi-organ deformations are complex 

and have not been statistically formulated, whereas single organ deformations have been widely stud- 

ied. In this paper, we introduce a multi-organ deformation library and its application to deformation 

reconstruction based on the shape features of multiple abdominal organs. Statistical multi-organ mo- 

tion/deformation models of the stomach, liver, left and right kidneys, and duodenum were generated by 

shape matching their region labels defined on four-dimensional computed tomography images. A total of 

250 volumes were measured from 25 pancreatic cancer patients. This paper also proposes a per-region- 

based deformation learning using the non-linear kernel model to predict the displacement of pancreatic 

cancer for adaptive radiotherapy. The experimental results show that the proposed concept estimates 

deformations better than general per-patient-based learning models and achieves a clinically acceptable 

estimation error with a mean distance of 1.2 ± 0.7 mm and a Hausdorff distance of 4.2 ± 2.3 mm 

throughout the respiratory motion. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Statistical formulation of respiratory motion including the de- 

formation of multiple organs and tumors is of increasing interest 

in external-beam radiotherapy. Specifically, in image-guided radio- 

therapy (IGRT), it is important to reduce exposure in normal tis- 

sues while accurately targeting lesions with respiratory motion. 

However, large anatomical variations in the shape and motion of 

abdominal organs can occur when treatment lasts several weeks, 

while time-series three-dimensional (3D) computed tomography 

(CT) images can only be obtained for initial radiation planning 

( Rigaud et al., 2019; Magallon-Baro et al., 2019 ). Recent technical 

advances enable treatment plans to be modified based on a daily 

X-ray cone-beam CT (CBCT). This process is called adaptive radio- 

therapy (ART) ( Posiewnik and Piotrowski, 2019; Hvid et al., 2018 ). 

Abdominal organs such as the stomach, and duodenum or the pan- 

creas neighbor each other, but the pancreas cannot clearly be de- 

tected, even on CBCT images. Because missing pixel values or arti- 
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facts often appear in CBCT images (see Fig. 1 ), ART for abdominal 

regions is technically more difficult and remains a challenging area 

of research ( Magallon-Baro et al., 2019; Posiewnik and Piotrowski, 

2019 ). To approach these issues, this paper focuses on the poten- 

tial of model-based tumor localization in pancreatic cancer treat- 

ment using statistical modeling of patient-specific multi-organ mo- 

tion and deformation. 

Statistical shape modeling (SSM) has been widely investigated 

for the modeling of organ shapes based on prior knowledge 

( Heimann and Meinzer, 2009; Soliman et al., 2017 ), and interest 

has grown in its application in machine learning with intra- or 

inter-patient datasets with point-to-point correspondence ( Rigaud 

et al., 2019; Magallon-Baro et al., 2019; Nakamura et al., 2019; Tilly 

et al., 2017 ). For instance, interfractional shape variations in the 

prostate and rectum have been statistically modeled for radiation 

therapy planning ( Nakamura et al., 2019; Haekal et al., 2018; Bon- 

dar et al., 2014 ). A statistical deformation model ( Ehrhardt et al., 

2011; Jud et al., 2017 ) based on a four-dimensional (4D) CT im- 

ages has also been reported. Unlike physics-based modeling ( Fuerst 

et al., 2015; Nakao and Minato, 2010; Nakao et al., 2007 ), statisti- 

cal modeling is a data-driven approach that does not explicitly de- 

scribe the elasticity and physical conditions of organs. Image-based 
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Fig. 1. Clinical needs for indirect deformation reconstruction in ART: (a) CBCT im- 

ages with missing pixels and (b) a conceptual image of pancreatic cancer localiza- 

tion from multi-organ shape features. 

( Sotiras et al., 2013; Ruhaak et al., 2017 ), point-based ( Haekal et al., 

2018; Shibayama et al., 2017 ), or mesh-based ( Rigaud et al., 2019; 

Magallon-Baro et al., 2019; Nakamura et al., 2019; Nakao et al., 

2019 ) deformable registration techniques have been used to obtain 

point-to-point correspondence between two datasets. Specifically, 

respiratory motion ( Jud et al., 2017; Fuerst et al., 2015; Ruhaak 

et al., 2017; Wilms et al., 2016 ) has mainly been investigated in 

the field of image-based lung modeling. 

Our aim in this paper is to statistically model inter- and intra- 

patient deformation along with the motion of multiple abdomi- 

nal organs. The relationships among organs, especially those be- 

tween pancreatic cancer and its surrounding organs, are also in- 

teresting and worth investigating ( Yu et al., 2016; Fontana et al., 

2016 ). Image-based registration assumes that the 3D image or the 

regions of interest of organs are a continuous space. It also as- 

sumes that the displacement is spatially smooth for regularization 

( Sotiras et al., 2013; Zhang and Chen, 2018; Oh and Kim, 2017; 

Klein et al., 2010 ). However, the mechanism for multi-organ de- 

formation is complex and not fully understood. Respiratory motion 

widely affects abdominal regions, in which several organs are ad- 

jacent to or connected with each other. Therefore, to analyze in- 

dividual motion and deformation accurately, a model capable of 

capturing sliding motion or rotation near the organ boundary is 

needed ( Jud et al., 2017 ). Hence, interest in deformable mesh reg- 

istration (DMR) has recently resurged. The inter- and intra-patient 

variations in cervix–uterus anatomy were recently modeled for ra- 

diation therapy planning ( Rigaud et al., 2019; Tilly et al., 2017 ). 

The correlation of liver and pancreas tumor motion ( Robert et al., 

2017 ) and daily changes in the stomach, duodenum, and pancreas 

( Magallon-Baro et al., 2019 ) have been analyzed through DMR. To 

the best of our knowledge, there has been no report clarifying the 

relationship between the inter- and intra-patient deformations of 

multiple organs and tumors, even though the clinical needs for 

such modeling in radiotherapy and motion recognition are high 

( Jadon et al., 2014; Iwai et al., 2017; Teske et al., 2015; Whitfield 

et al., 2012 ). 

In this paper, we introduce a localized deformation reconstruc- 

tion framework based on the shape features of multiple organs. To 

model the relationships of the spatial deformation fields between 

abdominal organs and the tumor, a statistical multi-organ defor- 

mation library is constructed by shape matching organ meshes 

generated from 4D-CT datasets (250 volumes). We apply the de- 

veloped library to estimate the motion and deformation of the 

pancreatic cancer through kernel regression. Five abdominal or- 

gans (the liver, stomach, duodenum, and right and left kidneys) 

located around the pancreas are used as multidimensional shape 

features. In such a procedure, a low number of cancer patients in 

the database can decrease the estimation performance, which is a 

common problem in clinical machine learning. To design the non- 

linear kernel-based framework that maps the motion/deformation 

of pancreatic cancer and its surrounding organs, we address the 

following fundamental issues: 

• We statistically investigate the level of complexity of the mo- 

tion dynamics of multiple abdominal organs, their deformation, 

and relationships through DMR. 
• We propose the concept of per-region, localized kernel learn- 

ing for stable deformation estimation, rather than learning on a 

per-patient basis. 
• We analyze which organ sets are good estimators for predict- 

ing the motion/deformation of gross tumor volume (GTV) and 

determine an appropriate number of dimensions for the feature 

space. 
• We evaluate the final estimation performance for the inter- and 

intra-patient validation and address whether the proposed con- 

cept is clinically acceptable. 

We note that the purpose of shape/deformation reconstruction 

is different from that of image segmentation, for which a variety of 

deep learning methods that directly use image features in the re- 

gions of interest have been proposed ( Xu et al., 2019 ). The current 

difficulties of ART for pancreatic cancer lie in the few opportuni- 

ties for directly identifying the GTV of the day. The influence of 

respiratory-associated deformation on the ART procedure is prob- 

ably larger than that of daily gradual changes in the GTV’s vol- 

ume. In this paper, as shown in Fig. 1 (b), we argue that the motion 

and deformation of the pancreatic cancer can be indirectly recon- 

structed from the multi-organ features of the surrounding ”visible”

organs, regardless of the size and shape of the tumor of the day, 

even if the pancreas is totally ”invisible” because of missing pixels 

in CBCT images or motion artifacts in 4D-CT images. The developed 

indirect estimation framework helps optimize radiation treatment 

in that the radiation dose can be locally transported to the moving 

tumor while maintaining a safe margin around organs at risk. 

2. Methods 

2.1. Statistical multi-organ deformation model 

In this study, 4D-CT images I (k ) 
t ( k = 1 , 2 , . . . , 25 : patient ID, t = 

1 , 2 , . . . , 10 : time phase of 4D-CT images) of 25 pancreatic cancer 

patients who underwent intensity-modulated radiotherapy (IMRT) 

in Kyoto University Hospital were used for statistical modeling 

and deformation learning. This study was performed in accordance 

with the Declaration of Helsinki and was approved by our institu- 

tional review board (approval number: R1446). 4D-CT images for 

a patient consisted of 3D-CT images (image size: 512 × 512 pixels 

and 88–152 slices, voxel resolution: 1 . 0 mm × 1 . 0 mm × 2 . 5 mm) of 

10 time phases for one respiratory cycle. All images were measured 

under the condition of respiratory synchronization, where t = 1 

corresponds to the end-inhalation phase and t = 6 corresponds to 

the end-exhalation phase. 

The 3D labels of the organs at risk (OARs), which were man- 

ually outlined for dose calculation in the radiation planning, were 

used as the multi-organ shape database. In the daily clinical proce- 

dures in Kyoto University Hospital, the regions of the entire body, 

stomach, liver, duodenum, left and right kidneys, and the GTV of 

the pancreatic cancer are labelled by board-certified radiation on- 

cologists, as shown in Fig. 2 (a). We note that stable outlining is 

not clinically available for the stomach, duodenum, and pancreas 

because of their unclear boundaries, image contrasts, and air con- 

tents. In addition, this paper does not focus on automatic segmen- 

tation techniques. Because the labels were actually determined in 

radiotherapy procedures after clinical validation, we used them as 

ground-truth regions for the five organs and the GTV to build the 

multi-organ deformation library. 
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Fig. 2. Deformation reconstruction framework using the shape features of multiple abdominal organs. (a) CT slice image with the 3D contours of the liver, stomach, duo- 

denum, left and right kidneys (left), and the GTV of pancreatic cancer along with the vertex distribution of the meshes (right). (b) Block diagram of the framework. The 

template meshes are registered to individual organ regions using Laplacian-based diffeomorphic shape matching (LDSM). The motion and deformation of pancreatic cancer 

are predicted from sparsely sampled multi-organ features using kernel regression. 

Fig. 3. Flow of the inter- and intra-patient shape matching. The spatial deforma- 

tion D t between the end-inhalation state and time phase t is obtained from the 

corresponding vertices of the two registered meshes. 

Fig. 2 (a) shows an example of tetrahedral meshes S (k ) 
t and 

their volumetric point distribution for five organs and the GTV of 

the pancreatic cancer. ( Table 1 summarizes the notations used in 

this paper.) Additionally, Fig. 2 (b) shows the flow of the devel- 

oped framework. The meshes of different or gans (the liver, for in- 

stance) differ in the number of vertices and the structure of the 

mesh, because they were independently generated from different 

CT images. As shown in Fig. 3 , the corresponding models M 

(k ) 
t 

(with the same vertex and the same mesh structure) that pre- 

cisely approximate the surfaces of S (k ) 
t , were computed by DMR 

using a template T and the target mesh. To address the trade-off

between feature-preserving shape matching and spatially smooth 

deformation, DMR is performed by the proposed Laplacian-based 

diffeomorphic shape matching (LDSM), which is an extension to 

Laplacian-based shape matching ( Kim et al., 2015 ). Because the 

registered models achieve point-to-point correspondence, spatial 

Table 1 

Notation table 

Symbol Definition 

t time phase for 4D-CT 

k patient id 

i, j vertex id 

I (k ) 
t time series, 3D-CT volumes 

S (k ) 
t organ surfaces 

T template mesh 

M 

(k ) 
t registered models (deformed templates) 

v i position of vertex 

u i displacement of vertex 

r i j relative position between vertex i and j 

x i feature vector 

y i estimated displacement vector 

Fig. 4. Examples of complex inter-patient shape changes and the interactions 

among multiple abdominal organs. (a) A part of the liver and stomach deform in 

different directions near their boundaries (red and blue arrows). (b) The duode- 

num and right kidney do not contact each other in the template model, but are in 

contact in the patient models (green and yellow arrows). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

deformation D 

(k ) 
t = M 

(k ) 
t − M 

(k ) 
1 

can be represented by calculating 

the displacement vector of the corresponding vertex. 

To stably compute a 3D deformation field of multiple organs, 

accurate shape matching is required. The shape variation and de- 

formation of abdominal organs such as the stomach and duode- 

num include considerable volume changes including rotations and 

sliding boundaries. Fig. 4 shows examples of complex inter-patient 

shape changes and the interaction between multiple abdominal or- 

gans. A part of the liver and stomach deform in the different di- 

rections near their boundaries. The duodenum and right kidney do 

not contact each other in the template model, but are in contact in 

the patient models. Image-based registration generally deals with 

multiple organs as one continuous image space, and an individ- 

ual organ’s deformation or interactions among specific organs can- 

not be discriminated. In addition, the registration error tends to 

increase in areas with large curvature such as the tips of the or- 

gans and boundaries of neighboring organs ( Jud et al., 2017; Nakao 

et al., 2019 ). Specifically, our focus in this paper is to model multi- 

organ motion/deformation and its interaction, and to examine the 

efficacy of the proposed feature-preserving registration methods 

for abdominal organs with large shape variations such as the stom- 

ach and duodenum. To capture rotational components or possi- 

ble sliding motions caused by the interaction of multiple organs, 

the registration process is applied to each organ’s mesh indepen- 

dently. In addition to intra-patient registration, our approach en- 

ables the construction of a statistical deformation model, making 

inter-patient deformation analysis possible. The details of the ap- 

plied DMR method, LDSM, are described in Section 2.3 . 

For the template mesh generation, first, one case was randomly 

selected to be the initial shape for the template mesh T , and its 

surface was resampled to 400 vertices and 796 triangles. At this 
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point, the number of vertices was determined by qualitatively con- 

sidering shape representation of the five organs and the GTV. The 

registration accuracy and final number of sampling points that are 

suitable for deformation reconstruction were investigated in the 

experiments. Next, the corresponding mesh models M 

(k ) 
t were ob- 

tained by registering T to the individual surfaces S (k ) 
t . Because the 

mesh models M 

(k ) 
t have point-to-point correspondence, the aver- 

age shape M can be obtained by calculating the average of each 

coordinate. We used M as the final template. This process was per- 

formed on the stomach, liver, left and right kidneys, and duode- 

num. By keeping the template close to the data in advance, our 

aim is to reduce the influence of the adopted data selection while 

preventing an increase in matching error. The efficacy of this tem- 

plate setting has been confirmed in a variety of organs in past 

studies ( Nakamura et al., 2019; Nakao et al., 2019 ). 

2.2. Localized deformation learning model 

To learn respiratory motion/deformation, the end-inhalation 

phase ( t = 1 ) of 4D-CT images is used as the initial patient 

anatomy. In the clinical setting, this information is obtained from 

a 3D-CT measured for radiotherapy planning. All remaining data 

( t = 2 , 3 , . . . , 10 ) are used for kernel learning in one batch with- 

out separating them by time. In the prediction stage, the time- 

varying position of the pancreatic cancer is estimated using the 

kernel function and the multi-organ features. No information about 

the time phase is needed for this prediction. In other words, the 

4D-CT database is used to statistically learn the variation in respi- 

ratory deformation, and the time phase and its continuity are uti- 

lized in neither training nor prediction. Because tumor localization 

can be achieved statically regardless of the time evolution, stable 

estimation is possible without error accumulation even if irregular 

respiration occurs during treatment. 

In our framework, complete anatomical contours of the CBCT 

images are not needed for GTV prediction during treatment. It is 

designed to predict the motion/deformation of GTV from partly 

observed anatomical features in the CBCT images available dur- 

ing daily treatment over time. We hypothesize that the small parts 

of shapes or contours detectable from the CBCT images are suffi- 

cient for this prediction. For instance, local textures or some cor- 

responding points of the surrounding organs are the candidates of 

the available feature sets. The experiments were designed to clarify 

which feature sets are effective for predicting GTV. 

As the second technical challenge, we introduce the localized 

multi-organ features for modeling inter- and intra-patient varia- 

tion of deformation from a dataset containing a limited number 

of patients. To model spatial deformation, per-patient-based learn- 

ing, in which one patient’s data are used as one set of training 

data, has been generally employed as a straightforward approach. 

Instead of reconstruction on a per-patient basis, the aim of this pa- 

per is to formulate a method for local deformation reconstruction 

that models nonlinear motion for a small region of the estimation 

target. In the proposed learning model, a small local region of the 

target organ is used as one set of training data. This approach is 

based on the hypothesis that local regions with similar shape fea- 

tures show similar displacements, which is commonly assumed in 

each continuous space of organs. 

The difference in the proposed per-region based deformation 

learning is twofold: (1) the ability to reconstruct shape variations 

and (2) the stability of learning obtained by separating the train- 

ing datasets into small regions. In traditional per-patient based de- 

formation learning, because the organ shapes are globally mod- 

eled or controlled, shape representations are limited to the number 

of patient data m . In contrast, in the proposed per-region based 

deformation learning, organ shapes are locally modeled per each 

small region of curved surfaces. More shape variations can be re- 

constructed by learning the relationship between the local shape 

features and the deformation. The stability of learning should also 

improve because the number of training units is greatly increased 

by separating the organ shapes into small regions. In this approach, 

the number of training data is m × n when the number of patients 

in the data is m and n small regions of the target organ are con- 

sidered. The details of the deformation reconstruction framework 

is described in Section 2.4 . 

2.3. Feature preserving deformable mesh registration 

In this study, to achieve both globally stable and locally 

strict DMR, our aim is to address the trade-off between feature- 

preserving shape matching and spatially smooth deformation. 

To approach this in DMR, the concept of progressive, feature- 

preserving shape update ( Nakao et al., 2019; Kim et al., 2015 ) is 

introduced into the large deformation diffeomorphic metric map- 

ping (LDDMM) scheme ( Zhang and Chen, 2018; Beg et al., 2005 ). 

The objective function in the proposed LDSM is described as fol- 

lows. 

E( u ) = d(Y, φ(X )) + 

∫ 1 

0 

‖ L ( u (s )) ‖ 

2 ds, (1) 

where X is the source (template) mesh, Y is the target surface, and 

d is the distance function between the two surfaces. In addition, 

φ( X ) is a continuous and differentiable transformation that maps X 

to the deformed mesh, L ( · ) is the Laplace–Beltrami operator and 

L ( u ) is the discrete Laplacian of the displacement field. 

The first term evaluates the difference between the deformed 

template and the target surface. The second is a regularization 

term to make the deformation field \ boldmath u smooth. In the 

context of image-based LDDMM, the difference in voxel intensi- 

ties between the deformed and the target image is evaluated in 

the first term. Minimizing the nearest point-to-point distance was 

originally employed as a basic strategy in DMR, however, it does 

not consider 3D geometry, and maintaining mesh topology is dif- 

ficult with this approach. We focus on the importance of fea- 

ture preservation to avoid incorrectly matching local structures 

( Nakao et al., 2019 ) in mapping distant structures, 3D geometric 

information of the template mesh is used to preserve the local 

features of organ shapes. In the mapping function φ, a Laplacian- 

based shape matching (LSM) scheme ( Kim et al., 2015 ) is intro- 

duced for progressive shape updates while preserving features as 

much as possible. The mean value of the nearest bidirectional 

point-to-surface distance (called the mean distance in this paper) 

is used for d . A discrete Laplacian was first formulated for geome- 

try modeling ( Nealen et al., 2006 ), and has recently been applied 

to the non-rigid shape registration of anatomical structures ( Nakao 

et al., 2019; Kim et al., 2015 ). In Kim et al. (2015) , LSM registers 

curved surfaces with shape variations better than LDDMM. 

Let X denote a tetrahedral mesh with n vertices v i ∈ V (i = 

1 , 2 , . . . , n ) and edges, the deformation map φ( X ), that is, the de- 

formation field u in the LSM, is obtained by iteratively updating v i 
while minimizing the following objective function: 

E( u ) = E shape + δE pos 

= 

n ∑ 

i =1 

‖ L ( v ′ i ) − L ( v i ) ‖ 

2 + δ
n ∑ 

i =1 

‖ p i − v i ‖ 

2 , (2) 

where v ′ 
i 

is the vertex position to be solved, p i is a positional con- 

straint set to v i , and δ is a weight parameter configured according 

to the problem. The positional constraint p i is determined as an 

internal division point of the smoothed position and its projected 

position on the target tangent plane. For the details of the defini- 

tion of the positional constraints between the template and target 
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Fig. 5. Per-region-based localized deformation learning: (a) a displacement map- 

ping model, and (b) deformation learning by considering the continuity of spatial 

deformation. 

shape, refer to Nakao et al. (2019) . L ( v i ) is the discrete Laplacian at 

vertex v i , defined by 

L ( v i ) = 

∑ 

j∈ V i 
ω i j ( v i − v j ) (3) 

Here, ω ij are the edge weights and V i is the set of adjacent ver- 

tices of one ring connected by vertex v i and the edge. The dis- 

crete Laplacian is used as a shape descriptor and approximates the 

mean curvature normal of the triangular mesh. Although there are 

several variations of the weights, the general one is cotangent dis- 

cretization based on the per-edge Voronoi areas. The first term in 

Eq. (2) is a penalty for shape changes to the mesh, and the second 

term increases if the constrained vertex is distant from the nearest 

surface of the target mesh. By computing v ′ 
i 
, which minimizes the 

objective function, the template model is updated while preserving 

the shape as much as possible. 

In the proposed LDSM, in addition to LSM, the regularization 

term in Eq. (1) is used to achieve a spatially smooth and diffeo- 

morphic deformation. This can be simply implemented by adding 

the term to Eq. (2) as follows: 

E( u ) = E shape + E de f orm 

+ δE pos (4) 

where E deform 

is the magnitude of the discrete Laplacian of the de- 

formation field u defined by 

E de f orm 

= 

n ∑ 

i =1 

‖ L ( u i ) ‖ 

2 (5) 

Because Eq. (5) is a quadratic form at vertex positions v i , this 

minimization problem can be computed in a short time by solv- 

ing linear equation ( Nealen et al., 2006 ). The step-by-step update 

avoids local mismatches at the early stage if there is a considerable 

distance between the two surfaces. Once the template is updated, 

local displacement u i = v ′ 
i 
− v i is obtained. We note that the origi- 

nal LDDMM does not preserve the shape of the template, and some 

studies report results with unstable or irregular matching espe- 

cially for large deformations with rotation ( Nakao et al., 2019; Kim 

et al., 2015 ). In the proposed framework, in addition to the regular- 

ization term, Laplacian-based shape preservation is introduced into 

the iterative deformation process. 

2.4. Localized kernel for deformation reconstruction 

This section explains the per-region-based localized deforma- 

tion learning proposed in this paper, by comparing it with the per- 

patient-based deformation learning generally used in population- 

based modeling ( Rigaud et al., 2019; Nakamura et al., 2019 ). Fig. 5 

briefly illustrates the concept. Because the aim of this paper is to 

reconstruct target deformation from multi-organ features, the dis- 

placement vector y i is mapped from multiple points sampled from 

the surrounding organs, as shown in Fig. 5 (a). We hypothesize that 

the local displacement y i of GTV can be calculated from the feature 

vectors x j of the vertices v j that are sparsely sampled from the 

surrounded organs. In this paper, feature vector x j is constructed 

using the relative position r i j and displacement u j of the sampled 

vertex. 

Here, the problem is to learn the mapping from the registered 

multi-organ models generated through DMR. We assume that each 

vertex of the registered mesh models represent the intrinsic lo- 

cal region of the organs. Per-patient-based learning is a straight- 

forward approach in which the mesh model M obtained from one 

patient’s data is used as one set of training data. This approach is 

based on the idea that the displacement in the local regions of or- 

gans is similar to that of the corresponding regions of the training 

dataset with similar shape features. The displacement u i at vertex 

i is learned from the displacement u i of the corresponding vertex 

v i in other cases. However, in per-region-based localized deforma- 

tion learning, a small region �i of the mesh model M is used as 

one set of training data. This approach is based on the idea that 

the two local regions in the target shape (i.e. GTV) that are close 

each other show similar displacement because the target surface is 

generally assumed to be a smooth curved manifold. For instance, 

in Fig. 5 (b), the displacement vectors u j adjacent to v i are similar 

to those of v i . In other words, the displacement u i can be learned 

from the displacement u j of all vertices v j in other cases. 

We formulate the per-region-based deformation learning model 

using kernel functions. Based on the spatial mapping in Fig. 5 (a), 

the local displacement y i of GTV is computed from multi-organ 

shape features x i using Eq. (6) . 

y i = 

N ∑ 

j=1 

α j k ( x i , x j ) , x j ∈ X , α j ∈ R 

N (6) 

where k : X × X → R is the kernel function defined for scalar com- 

ponent of the 3D displacement vector, N is the number of training 

datasets, and α j is the weight vector. A Gaussian function is used 

for kernel function k , which is k ( x i , x j ) = exp (−β|| x i − x j || 2 /N) . For 

a given y = [ y 1 , . . . , y N ] 
T , α = [ α1 , . . . , αN ] 

T are calculated by mini- 

mizing the cost function E( \ boldmath α), which is expressed as 

E( α) = ‖ y − K α‖ 

2 + λαT K α (7) 

where K ∈ R 

N×N is the kernel matrix whose elements are defined 

by K i j = k ( x i , x j ) , and λ is the regularization parameter, which pe- 

nalizes deviations of α. The optimized weights are given by α = 

(K + λI) −1 y ( I : indentity matrix). 

The feature vector x i of the local region for per-region-based 

learning is constructed using the relative position r i j of the target 

vertex and the displacement vector u j of the surrounding organs 

as follows. 

x i = [ r i j , u j ] , r i j = v i − v j (8) 

In this study, the sampled vertices obtained from 24 patients 

were used in leave-one-out cross-validation to construct the ker- 

nel matrix, and all vertices of the five organs (liver, left and right 

kidneys, stomach, and duodenum) were considered as candidates 

for shape features x . 

x ALL = [ x ST , x DU , x LI , x LK , x RK ] (9) 

where ST, DU, LI, LK, and RK are the stomach, duodenum, liver, left 

kidney, and right kidney, respectively. For instance, when 50 ver- 

tices are sampled from each organ model, the dimension of the 

feature vector x i is 1500 according to r i j , u j ∈ R 

750 . Because the 

shape features are evaluated in high-dimensional feature space, in 

per-patient-based deformation reconstruction, the estimation error 

may increase if there are no corresponding vertices with similar 

characteristics among the 24 cases. 

Alternatively, in the proposed per-region-based deformation 

learning, the displacement is locally learned per vertex; in other 
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words, it can be reconstructed from the deformation of different 

regions. Therefore, when 200 vertices are used to represent the tar- 

get pancreatic cancer (for example), the training dataset is substan- 

tially increased to 24 × 200 = 4800 , whereas the number of di- 

mensions of the feature space is 1500, which is the same as that of 

per-patient-based approach. This means that the number of neigh- 

borhood data points increase in the generated feature space, and 

the displacement of the target vertex can be reconstructed using 

more datasets. Therefore, using a per-region-based kernel formula- 

tion improves the estimation performance and more stable results 

can be expected. 

As described in the introduction, we are interested in the fol- 

lowing questions: which organ sets are good estimators for defor- 

mation reconstruction and what number of dimensions of the fea- 

ture space is appropriate. Fig. 6 shows two examples in which the 

three vertices are mapped to the target vertex, which is a prob- 

lem of obtaining the target displacement based on features sam- 

pled from different organ sets, [ x LI ] from the liver or [ x ST , x DU ] 

from the stomach and duodenum. The liver does not have clear 

anatomical connectivity to the pancreas, and the shape feature is 

relatively stable with a small deformation. The stomach and duo- 

denum are connected to the pancreas, but their deformation is 

large ( Magallon-Baro et al., 2019 ) and unstable. Because the shape 

features of all organs are not always obtained from CBCT images, 

to explore the prediction performance when using specific organ 

sets is worth investigating for clinical application. In general, when 

using higher dimensions for shape features, more shape variations 

and complex deformations can be modeled, but calculation cost in- 

creases and the contribution of each feature to the final estimation 

results is reduced. Because the appropriate dimensions of the fea- 

ture vectors are problem-specific, we explore the estimation per- 

formance for different dimensions in the experiments, and investi- 

gate the possible organ sets for localizing pancreatic cancer. 

3. Experiments 

In the experiments, statistical multi-organ deformation mod- 

els were first generated by inter- and intra-patient shape match- 

ing. The registration performance for each organ was confirmed 

while comparing it with the results from three existing registra- 

tion methods. Then, the efficacy of the multi-organ shape features 

in predicting the motion and deformation of pancreatic cancer was 

analyzed. The performance of the proposed per-region-based de- 

formation learning was evaluated by comparing it with conven- 

tional per-patient-based learning. The value of weight parameter β
for kernel function was determined from the results of numerical 

experiments. 

The overall framework was implemented using Visual C/C++, 

OpenGL, and the Intel Math Kernel Library. A computer with a 

graphics processing unit (CPU: Intel Core i7 3.7 GHz, Memory: 

Fig. 6. Examples of displacement mapping models using multi-organ shape fea- 

tures. (a) Shape features sampled from the liver and (b) from the stomach and duo- 

denum. 

64 GB, GPU: NVIDIA GeForce GTX 2080Ti) was used throughout 

the experiments. Regarding the regularization parameters, we used 

10.0 for δ and 0.1 for λ after the examination of several parameters 

sets. 

3.1. Shape matching performance 

In this study, the mean distance (MD) ( Rigaud et al., 2019; 

Kim et al., 2015 ), the Hausdorff distance (HD) ( Huttenlocher et al., 

1993 ), Laplacian of the displacement (LD) ( Nakao et al., 2019 ) and 

Dice similarity coefficient (DSC) were used as the shape similarity 

criteria. MD and HD measure geometric distance, and DSC mea- 

sures the volume overlap between the deformed meshes and the 

ground truth meshes. The Hausdorff distance measures the longest 

distance between two surfaces, whereas the mean distance is the 

mean value of the nearest bidirectional point-to-surface distance. 

Unlike segmentation or recognition problems, statistical mod- 

eling requires point-to-point local correspondence between two 

shapes. For example, because the Dice coefficient only measures 

volume overlap, it is not suitable for evaluating per-region cor- 

respondence, nor is it suitable for measuring the quality of lo- 

cal matching. To identify unique/distinctive shape features specifi- 

cally for the stomach and duodenum is very difficult because their 

shapes consist of smooth curved surfaces and substantially vary 

among patients. Therefore, we use the Laplacian of displacement 

as additional evaluation criteria. LD is the magnitude of the second 

derivative of the displacement field, and it evaluates the smooth- 

ness of registration. If shape features and vertex density are well 

preserved in DMR, this value decreases. The registered results with 

smaller MD, HD and LD values achieve the correspondence of local 

shapes. 

The proposed shape matching method (LDSM) was compared 

with three existing shape matching approaches, that is, 

• Piecewise Affine Transformation (PWA) ( Pitiot et al., 2006; Zhou 

et al., 2010 ) 
• Large deformation diffeomorphic metric matching (LDDMM) 

( Beg et al., 2005 ) 
• Laplacian-based shape matching (LSM) ( Kim et al., 2015; Saito 

et al., 2015 ) 

For all algorithms, the affine transformation was processed in 

advance to match the posture and volume of the overall shape 

globally. To confirm the initial difference and complexity of intra- 

/inter-patient matching of abdominal organs, we also listed the ge- 

ometric errors of rigid and affine registration (AF) results. 

Table 2 shows the quantitative comparison results of the DMR 

algorithms for each of the five organs. The HD errors of rigid and 

affine registration are more than 12 mm, and large errors remain 

in the stomach and duodenum. LDSM and LSM achieved a signifi- 

cantly smaller mean distance and Hausdorff distance with an error 

of less than 1 mm, which shows better performance than PWA and 

LDDMM in terms of matching organs’ shapes. There are no signif- 

icant differences on the two distance metrics of LSM and LDSM 

(one-way analysis of variance, ANOVA; p < 0.05 significance level). 

Regarding the Laplacian of the displacement field, LDSM obtained 

smaller values than LSM, indicating that smooth deformation that 

reduces unstable surface matching can be performed by LDSM. In 

DMR, the accuracy of shape representation and smooth deforma- 

tion from the template is a trade-off. Using the LDSM method, 

the Hausdorff distance is less than 1 mm (not significantly differ- 

ent compared to that of LSM), and the Laplacian of displacement 

is better than that of LSM. Based on these results, we selected 

the LDSM for constructing the deformation library of the five 

organs. 
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Table 2 

Quantitative comparison results: mean distance (MD), Hausdorff distance (HD), mean and maximum Laplacian of the displacement (LD), and Dice similarity coefficient (DSC) 

of the DMR algorithms for the five organs. The values are shown as mean (minimum and maximum). 

Liver Methods 

Rigid AF PWA LDDMM LSM LDSM 

MD [mm] 6.2 (3.4–11.6) 4.7 (2.9–8.5) 1.6 (1.1–2.4) 0.5 (0.3–0.7) 0.2 (0.1–0.3) 0.2 (0.1–0.3) 

HD [mm] 22.1 (13.9–44.8) 19.0 (10.0–37.5) 10.0 (4.7.–28.7) 3.6 (1.3–14.8) 0.9 (0.4–1.9) 1.1 (0.5–2.2) 

LD (mean) [mm] 2.4 (1.1–4.5) 2.3 (1.0–4.6) 1.1 (0.8–1.6) 1.5 (1.0–2.2) 1.2 (0.8–1.7) 

LD (max) [mm] 12.7 (5.3–25.3) 12.0 (4.6–26.9) 6.8 (3.6–13.3) 8.8 (4.4–20.6) 7.0 (3.7–15.2) 

DSC [%] 82.2 (68.9–90.8) 86.5 (76.3–92.0) 95.7 (92.4–97.2) 98.0 (96.1–98.6) 98.1 (96.1–98.7) 98.1 (96.1–98.7) 

Stomach Methods 

Rigid AF PWA LDDMM LSM LDSM 

MD [mm] 5.6 (3.2–10.0) 4.4 (2.6–9.7) 1.4 (0.9–2.1) 0.5 (0.2–1.1) 0.2 (0.1–0.3) 0.2 (0.1–0.4) 

HD [mm] 21.5 (10.0–53.5) 17.5 (9.3 –39.2) 7.3 (3.7–14.9) 3.1 (1.3–10.4) 0.8 (0.3–1.9) 0.9 (0.4–1.8) 

LD (mean) [mm] 2.0 (0.5–5.4) 2.1 (0.8–5.0) 1.1 (0.7–2.0) 1.3 (0.8–2.5) 1.1 (0.6–2.0) 

LD (max) [mm] 6.8 (1.7–18.2) 8.7 (3.6–43.2) 6.3 (3.0–10.8) 7.7 (3.9–15.7) 6.6 (2.9–12.2) 

DSC [%] 69.5 (51.5–82.4) 75.0 (54.2–85.7) 92.6 (89.4–95.6) 96.5 (95.3–97.5) 97.2 (96.0–98.1) 97.0 (95.7–98.2) 

Duodenum Methods 

Rigid AF PWA LDDMM LSM LDSM 

MD [mm] 4.7 (2.9–7.7) 3.8 (1.8–7.2) 1.2 (0.7–2.9) 0.5 (0.3–1.4) 0.2 (0.1–0.5) 0.2 (0.1–0.5) 

HD [mm] 19.2 (9.0–38.2) 17.0 (7.4–40.4) 6.7 (2.9–23.0) 3.6 (0.8–13.1) 0.8 (0.3–4.2) 0.9 (0.4–5.0) 

LD (mean) [mm] 1.1 (0.4–2.7) 1.5 (0.6–2.6) 1.0 (0.6–2.1) 1.2 (0.6–2.9) 1.0 (0.6–2.3) 

LD (max) [mm] 3.5 (1.0–9.5) 6.6 (2.2–16.3) 6.9 (3.0–26.8) 7.8 (2.9–28.6) 7.2 (2.9–22.5) 

DSC [%] 56.7 (29.9–72.6) 64.0 (28.5–80.8) 86.9 (54.1–92.6) 93.1 (70.6–96.4) 94.2 (69.0–97.4) 94.2 (72.2–97.2) 

Left kidney Methods 

Rigid AF PWA LDDMM LSM LDSM 

MD [mm] 3.6 (1.9–6.8) 2.8 (1.5–6.1) 0.8 (0.6–1.2) 0.3 (0.2–0.9) 0.1 (0.1–0.2) 0.1 (0.1–0.3) 

HD [mm] 13.1 (5.5–27.6) 12.3 (5.5–27.6) 4.8 (2.7–9.4) 2.8 (0.7–16.4) 0.5 (0.2–1.8) 0.7 (0.2–2.1) 

LD (mean) [mm] 1.5 (0.5–2.5) 1.7 (0.7–4.1) 0.9 (0.5–2.2) 1.2 (0.6–2.9) 1.0 (0.5–2.3) 

LD (max) [mm] 5.0 (1.7–10.8) 7.5 (2.6–21.7) 6.9 (3.1–15.4) 7.8 (3.0–24.6) 7.2 (2.6–21.7) 

DSC [%] 81.0 (65.4–90.1) 86.0 (76.4–92.9) 95.9 (90.0–96.9) 97.2 (95.9–98.4) 97.4 (96.0–98.4) 97.4 (95.9–98.5) 

Right kidney Methods 

Rigid AF PWA LDDMM LSM LDSM 

MD [mm] 3.5 (1.6–6.4) 2.8 (1.3–6.1) 0.8 (0.6–1.0) 0.3 (0.2–1.0) 0.1 (0.1–0.2) 0.1 (0.1–0.3) 

HD [mm] 12.7 (5.9–25.9) 12.0 (4.8–24.6) 4.3 (2.4–9.1) 2.9 (0.5–13.1) 0.4 (0.2–0.9) 0.6 (0.3–2.0) 

LD (mean) [mm] 1.4 (0.3–4.5) 1.6 (0.7–3.1) 0.8 (0.4–1.6) 1.0 (0.5–2.0) 0.8 (0.5–1.6) 

LD (max) [mm] 4.7 (1.6–5.9) 8.6 (2.7–20.9) 6.9 (2.7–14.5) 8.1 (2.9–23.1) 7.0 (2.7–21.6) 

DSC [%] 82.8 (67.2–92.1) 87.0 (73.2–93.6) 96.2 (94.8–97.3) 97.4 (96.3–97.9) 97.7 (96.6–98.6) 97.6 (96.4–98.4) 

3.2. Multi-organ deformation analysis 

So far, no study has investigated the impact of inter- and intra- 

subject variation on abdominal multi-organ deformation. Our DMR 

framework can directly provide a statistical representation of the 

registered organ models M 

(k ) 
t , which can then generate the mean 

and variation of respiratory motion/deformation between subjects. 

3.2.1. Statistical motion dynamics 

Fig. 7 shows the statistical motion dynamics with deformation 

computed from registered organ models for ten time phases in one 

respiratory cycle. The mean displacement for all corresponding ver- 

tices are visualized as the centerline, and the standard deviation is 

depicted as a colored band. The graph shows that the mean and 

standard deviation of the displacement at the end-expiration phase 

is 12.1 ± 7.2 mm for the liver, 10.3 ± 5.5 mm for the stomach, 

10.2 ± 5.9 mm for the duodenum, 11.4 ± 6.2 mm for the left kid- 

ney, 13.8 ± 8.4 mm for the right kidney, and 7.6 ± 4.2 mm for the 

GTV of the pancreatic cancer. The standard deviation is relatively 

large compared with the magnitude of the displacement. This in- 

dicates that there are large individual variations in respiratory mo- 

tion and organ deformation. Hence, to estimate the 3D tumor re- 

gion with only a mean deformation model would be difficult. 

3.2.2. Statistical deformation model 

Fig. 8 shows the deformation modes that correspond to the 

first two eigenvalues of the registered organ models. The eigen- 

values and eigenvectors were computed from the set of displace- 

ment vectors of all vertices based on singular value decomposition. 

The central figures show the mean shape and mean displacement. 

The translucent shape is the end-inspiration phase ( t = 1 ), and the 

opaque shape is the end-expiration phase ( t = 6 ). The left/right 

images were generated by changing the weights to plus/minus σ , 

which is twice the square root of the eigenvalues. 

The types of variety of motion and deformation can be charac- 

terized according to their morphological properties as follows: 

• The first eigenvector mainly encompasses variation in the scale 

of deformation, which indicates that individual difference is 

large during the respiratory cycle. 
• The second eigenvector is associated with the directions and 

rotations of deformation. Interestingly, the rotation axis and di- 

rection of rotation differ for each organ. 

We also confirmed that the subspace representation using two 

eigenvectors explains 96.1% of the total deformation variation. 

3.3. Deformation reconstruction performance 

The aim of the next experiment was to investigate the pre- 

diction performance and characteristics of per-patient- and per- 

region-based learning models. For the experimental setup, 100 

corresponding vertices were randomly sampled from each organ 

model, and a total of 500 vertices were used as multi-organ shape 
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Fig. 7. Statistical motion dynamics of five abdominal organs and the GTV of pan- 

creatic cancer. The means and standard deviations of the corresponding vertices are 

plotted in the graphs. 

features, meaning that the dimensionality of the feature vector 

x was 30 0 0. The displacement vectors of the GTV y were cal- 

culated using Eq. (1) through leave-one-out cross-validation. The 

per-patient- and per-region-based learning models were evalu- 

ated using the mean distance, Hausdorff distance, and Dice sim- 

ilarity coefficient between the estimated and ground truth re- 

gions of the pancreatic cancer. Fig. 9 shows box plots of the 

three error metrics for different weight parameter values. Signifi- 

cant differences were found for all the error metrics when using 

10 −5 , 10 −4 , 0 . 001 , 0 . 01 , 0 . 1 for the weight parameters by ANOVA 

( p < 0.05). The minimal estimation error was 6.0 ± 1.5 mm for 

per-patient-based learning, and 5.2 ± 1.3 mm for per-region-based 

learning, which shows that per-region-based learning improved the 

estimation performance by 13.4%. 

The characteristics of the multidimensional feature sets depend 

on the complexity of the tumor localization problem and the num- 

ber of data sets. These are both important factors affecting the es- 

timation performance and the calculation cost. Therefore, we in- 

vestigated the relationship between the estimation error of tumor 

localization and the number of sampling points N . A mean estima- 

tion error was calculated for ten trials of random sampling from 

five organs while increasing N from 1 to 400. The weight param- 

eter of the kernel function was set to 3 . 0 × 10 −5 , which results in 

good estimation performance. 

Fig. 9 (d) shows the transition of the prediction performance 

of the two models. In the graph, per-region-based learning model 

shows consistently better prediction performance regardless of the 

number of sampling points. The estimation error decreased as 

the number of sampling points increased, and the error tends 

to converge over around 300 points. In the proposed per-region- 

based learning model, an average of 5.2 mm estimation error was 

achieved in the case of N = 300 , which is a performance that is 

similar to the previous setting, which used 500 sampling points. 

The estimation performance was also quantitatively compared 

to the conventional PCA-based, linear shape estimation approach 

Fig. 8. Statistical deformation representation of the liver, stomach, duodenum, and right kidney. Deformation variations corresponding to the first two eigenvalues from the 

registered models are visualized. The color map shows the signed distance from the mean deformation. 
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Fig. 9. Comparison of prediction performance between per-patient- and per-region-based learning. (a) mean distance, (b) Hausdorff distance, (c) Dice similarity coefficient 

and (d) estimation error of tumor localization with respect to the number of sampling points. 

Table 3 

Quantitative comparison of the estimation performance. The mean (minimum and 

maximum) values of mean distance (MD), Hausdorff distance (HD), and Dice sim- 

ilarity coefficient (DSC) for the PCA-based, per-patient-basis kernel, and proposed 

per-region-basis kernel model are reported. 

Methods 

PCA Kernel (per-patient) Proposed (per-region) 

MD [mm] 1.5 (0.8–3.4) 1.4 (0.7–4.3) 1.3 (0.6–2.8) 

HD [mm] 6.1 (3.0–9.7) 5.8 (1.9–10.2) 4.9 (1.5–8.9) 

DSC [%] 85.8 (67.2–93.2) 87.3 (66.1–93.5) 87.8 (68.0–96.8) 

using five eigenvectors. On the basis of the subspace representa- 

tion shown in the previous section, this number of dimensions 

was considered to be sufficient to cover the deformation variation 

in the dataset. For kernel-based models, the same parameters and 

the number of sampling points ( N = 300 ) were used. Table 3 lists 

the median (minimum – maximum) values of MD, HD, and DSC. 

The per-patient-basis kernel model performed slightly better than 

the PCA-based model. The proposed per-region-basis model out- 

performed the other methods, and a significantly smaller Hausdorff

distance was achieved (ANOVA, p < 0.05). These results suggest 

that the proposed concept could contribute to the stable deforma- 

tion reconstruction of the GTV. 

3.4. Multi-organ shape features 

The investigation of effective feature sets in respiratory mo- 

tion analysis is an important topic not only for kernel modeling 

but for deep learning applications. The next experiments confirm 

the relationship between 31 feature sets (all combinations of the 

five organs) and estimation accuracy in the prediction of pancre- 

atic cancer deformation. This experiment also compares the results 

of the performance of the proposed multidimensional features and 

that of other regression approaches with a single organ or low- 

dimensional features. The number of sampling points was fixed to 

300 based on the results of the previous experiments. For instance, 

when the liver and stomach are selected as feature sets, 150 points 

are randomly sampled from the liver and 150 points are randomly 

sampled from the stomach. Similarly, when all five organs are se- 

lected, 60 points are sampled from each organ. 

Fig. 10 shows the median of the Hausdorff distance sorted in 

ascending order for 31 feature sets. These results suggest the fol- 

lowing: 

• Features from smaller organ sets show better estimation perfor- 

mance than ones sampled from all five organs. 
• Estimations using only one organ tend to increase estimation 

error. Specifically, the right kidney leads to poor estimation per- 

formance. 
• The stomach, duodenum, and left kidney are the best motion 

descriptors for estimating the deformable region of pancreatic 

cancer. 

These findings suggest the validity of using the features of mul- 

tiple neighboring organs rather than features sampled from the en- 

tire abdominal area. Shape features from the liver perform worse 

despite the fact that this organ is relatively close to the pancreas, 

but they are good candidates for feature descriptors when the con- 

tours of the stomach and duodenum are not available. 

3.5. Estimation performance on motion dynamics 

The goal of the motion/deformation analysis in this paper was 

to investigate the estimation performance of pancreatic cancer us- 

ing multi-organ shape features. We analyzed the estimation er- 

ror of GTV for ten time phases of the 4D-CT dataset, as shown 

Fig. 10. Multi-organ shape features and prediction performance. LI: liver, ST: stomach, DU: duodenum, LK: left kidney, and RK: right kidney. 
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Fig. 11. Inter-patient variation of the GTV’s motion with local deformation and esti- 

mation errors. (a) Mean, maximum, and minimum paths over one respiratory cycle, 

(b) The estimation error for ten time phases. 

Fig. 12. Influence of surrounding organs on the surface displacement of the GTV. 

(a) Local deformations affected by the motion of the liver (indicated by the two 

arrows) and (b) translational motion with little deformation. The rendered surfaces 

are t = 6 and the points represent t = 1 . 

in Fig. 11 . The analysis of the multi-organ feature sets show that, 

the stomach, duodenum, and left kidney were used for this predic- 

tion. The number of sampling points and parameters for the kernel 

models were the same as in the previous experiments. Fig. 11 (a) 

shows the inter-patient variation of the GTV’s motion with local 

deformation. The mean, maximum, and minimum path in one res- 

piratory cycle are plotted as three lines, and each colored band- 

width is the standard deviation for 25-patient data. Because the 

displacement is calculated per vertex for the pancreas model, the 

difference between the maximum and minimum paths represents 

a local deformation exceeding 5 mm on average. The overall path 

also includes considerable variations with over 10 mm differences 

in individual respiratory motion. This can also be confirmed in the 

full bandwidth of Fig. 7 . 

The transition of the estimation error for ten time phases us- 

ing the designed kernel model is plotted in Fig. 11 (b). Despite 

the inter-patient variation of motion and deformation observed in 

Fig. 11 (a), the mean ± standard deviation of the distance was 1.2 

± 0.7 mm and that of the Hausdorff distance was 4.2 ± 2.3 mm. 

Both errors remained small throughout the respiration. These re- 

sults suggest that the GTV can be adequately localized by the 

shape features of the surrounding organs, specifically the stomach, 

duodenum, and left kidney, even if the pancreas is not directly de- 

tected. 

In several cases, we confirmed that when the GTV is close 

to the liver, its local shape is strongly affected by the mo- 

tion/deformation of the liver. In contrast, when the GTV is located 

near the lower abdomen or duodenum, local deformation is rela- 

tively small and close to simple translational motion. Fig. 12 shows 

the two cases in which this tendency is shown. This may happen 

because of the difference in stiffness and local deformation of the 

surrounding organs. The smaller HD demonstrates that these two 

different displacements could be stably predicted by the feature 

sets (liver, stomach, and duodenum) obtained in our experiment. 

We measured the computation time needed to predict the GTV 

deformation reconstruction from multi-organ features. The over- 

all computation time for predicting GTV motion/deformation was 

47–48 s for one patient. Because kernel matrix K and optimized 

weights α are determined from the registered mesh database 

in advance, online prediction can be achieved by computing the 

matrix-vector multiplication in Eq. (6) . 

4. Discussion 

To our knowledge, this study is the first to build a statistical 

multi-organ deformation library of five abdominal organs that in- 

cludes inter- and intra-patient shape variations. Image-based de- 

formable registration ( Sotiras et al., 2013; Oh and Kim, 2017 ) is a 

popular approach for deformed bodies, however, matching multi- 

organ regions tends to result in large registration errors, especially 

around the organ boundaries. The potential of DMR has recently 

been rediscovered ( Rigaud et al., 2019; Magallon-Baro et al., 2019; 

Nakamura et al., 2019 ), and the proposed LDSM for each organ 

address problems with matching organs with rotational compo- 

nents and sliding boundaries. Moreover, it achieved stable registra- 

tion with a Hausdorff distance error of less than 1 mm. We note 

that this result outperforms the registration error of 3.1–3.3 mm 

reported for the SSM of CTV of the cervix–uterus and bladder in 

recent work ( Rigaud et al., 2019 ). 

In the latter part of this paper, the application of the pro- 

posed deformation library to time-series deformation reconstruc- 

tion of GTV (i.e., pancreatic cancer) was presented. Regarding 

studies that focus on related approaches, Wilms et al. (2017) re- 

cently proposed multi-resolution multi-object statistical models 

and showed their performance on standard shape modeling prob- 

lems. Geimer et al. (2017) developed a kernel-based framework for 

the respiratory motion estimation of lungs. In this study, we pro- 

posed a localized deformation learning model for five abdominal 

organs, and investigated effective shape features for the kernel re- 

gression of GTV motion. Despite this study’s limited data size, the 

results showed that stable estimation could be achieved through- 

out the respiration cycle. The findings and the developed database 

will be useful for determining the planning target volume of pan- 

creatic cancer from the available features of the surrounding or- 

gans. 

Table 3 shows that the minimal value of the DSC does not 

change much between the methods. A linear relationship between 

the GTV and surrounding organs can be modeled by PCA, and the 

location (or the center of magnitude) of the GTV was well esti- 

mated by all three methods. However, in some cases such as that 

in Fig. 12 (a), relatively large, local deformation was confirmed. This 

happens because the GTV is close to or neighboring the liver, and 

the liver deforms with rotational motion. Because PCA is a linear 

model, it fails to represent such complex, non-linear deformation 

due to the influence of the liver motion, and local shape errors 

become large. We believe that such non-linear deformation was 

the main reason why the minimum value of DSC does not change 

much despite the changes in maximum value. Moreover, in HD, a 

relatively large difference was confirmed. 

To clarify the focus of this research, the spatial displacement of 

the internal structures of the mesh was considered to be outside 

the scope of this paper. This is because the assumed application 

is radiotherapy planning, in which the 3D contour (i.e., surface) of 

the GTV and OARs must be estimated. Because the developed li- 

brary uses a tetrahedral mesh in the DMR and can express internal 

deformation, we consider that further modeling and evaluation of 

internal structures would be possible in future work. 
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We assume that the clinical application of the proposed tech- 

niques exists in two scenarios. One is when adapting the pre- 

computed treatment plan to the ”motion of the day”. The results 

showed that the GTV motion can be estimated from sparsely- 

sampled points of the five organs. It is difficult to stably obtain 

a clear anatomical contour because of defects or artifacts in CBCT 

images. Especially in deep organs around pancreatic cancer, feature 

acquisition becomes even more unstable. However, it is possible 

to sample local textures or partial image features from surround- 

ing organs such as the liver, and our framework does not require 

a complete anatomical contour for deformation estimation. Sparse 

features sampled from the visible portion of the surrounding or- 

gans are available as good estimators to reconstruct the 3D con- 

tour of the GTV and OARs. Thus, the developed framework does 

not assume dense, high-quality 4D-CT images and would be able 

to perform deformation/motion estimation from lower-quality im- 

ages measured during the treatment period. We believe that the 

ability to estimate tumor displacement based on clearly visible in- 

formation can improve stability of prediction during ART. 

The second clinical scenario is to apply the developed multi- 

organ library to markerless radiation in tumor-tracking radiother- 

apy. Some recent studies have reported pixel-to-shape techniques, 

i.e., 3D shape/deformation reconstruction from a single 2D image 

( Wang et al., 2019; Wu et al., 2019; Nakao et al., 2017 ). The res- 

piratory motion between the lung and the surrogate has also been 

modeled ( Geimer et al., 2017 ). With these techniques, real-time tu- 

mor localization may be possible from measured time-series X-ray 

images or surrogate motion during actual intervention. However, 

technical issues still lie in the accuracy of their shape reconstruc- 

tion, especially in the abdominal region. The developed deforma- 

tion library and extracted multi-organ feature sets would improve 

their estimation accuracy and clinical applicability. Combining such 

3D reconstruction techniques with statistical deformation models 

will be our future work. 

5. Conclusion 

In this paper, we introduced a multi-organ deformation library 

and its application to pancreatic cancer localization based on the 

shape features of multiple organs. The statistical multi-organ mo- 

tion/deformation library of the stomach, liver, left and right kid- 

neys, and duodenum was generated by the DMRs of their organ 

meshes generated from 4D-CT images (250 volumes). The pro- 

posed LDSM method achieved stable registration with a Haus- 

dorff distance error of less than 1 mm. Per-region-based deforma- 

tion learning using kernel regression was also proposed to pre- 

dict the displacement of pancreatic cancer for ART. The experi- 

ment results show that the proposed concept better estimates, and 

achieves a clinically acceptable estimation error for mean distance 

(1.2 ± 0.7 mm) and the Hausdorff distance (4.2 ± 2.3 mm) 

throughout the respiratory motion. 
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