1,147 research outputs found

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Low-cost natural interface based on head movements

    Get PDF
    Sometimes people look for freedom in the virtual world. However, not all have the possibility to interact with a computer in the same way. Nowadays, almost every job requires interaction with computerized systems, so people with physical impairments do not have the same freedom to control a mouse, a keyboard or a touchscreen. In the last years, some of the government programs to help people with reduced mobility suffered a lot with the global economic crisis and some of those programs were even cut down to reduce costs. This paper focuses on the development of a touchless human-computer interface, which allows anyone to control a computer without using a keyboard, mouse or touchscreen. By reusing Microsoft Kinect sensors from old videogames consoles, a cost-reduced, easy to use, and open-source interface was developed, allowing control of a computer using only the head, eyes or mouth movements, with the possibility of complementary sound commands. There are already available similar commercial solutions, but they are so expensive that their price tends to be a real obstacle in their purchase; on the other hand, free solutions usually do not offer the freedom that people with reduced mobility need. The present solution tries to address these drawbacks. (C) 2015 Published by Elsevier B.V

    Tool for spatial and dynamic representation of artistic performances

    Get PDF
    This proposal aims to explore the use of available technologies for video representation of sets and performers in order to serve as support for composition processes and artistic performer rehearsals, while focusing in representing the performer’s body and its movements, and its relation with objects belonging to the three-dimensional space of their performances. This project’s main goal is to design and develop a system that can spatially represent the performer and its movements, by means of capturing processes and reconstruction using a camera device, as well as enhance the three-dimensional space where the performance occurs by allowing interaction with virtual objects and by adding a video component, either for documentary purposes, or for live performances effects (for example, using video mapping video techniques in captured video or projection during a performance)

    Multisensor Data Fusion for Human Activities Classification and Fall Detection

    Get PDF
    Significant research exists on the use of wearable sensors in the context of assisted living for activities recognition and fall detection, whereas radar sensors have been studied only recently in this domain. This paper approaches the performance limitation of using individual sensors, especially for classification of similar activities, by implementing information fusion of features extracted from experimental data collected by different sensors, namely a tri-axial accelerometer, a micro-Doppler radar, and a depth camera. Preliminary results confirm that combining information from heterogeneous sensors improves the overall performance of the system. The classification accuracy attained by means of this fusion approach improves by 11.2% compared to radar-only use, and by 16.9% compared to the accelerometer. Furthermore, adding features extracted from a RGB-D Kinect sensor, the overall classification accuracy increases up to 91.3%

    Database for 3D human pose estimation from single depth images

    Get PDF
    This work is part of the project I-­-DRESS (Assistive interactive robotic system for support in dressing). The specific objective is the detection of human body postures and the tracking of their movements. To this end, this work aims to create the image database needed for the training of the algorithms of pose estimation for the artificial vision of the robotic system, based on the depth images obtained by a sensor Time-­-of-­-Flight (ToF) depth camera type, such as the incorporated by the Kinect One (Kinect v2) device.Peer ReviewedPreprin

    Convergence Stability of Depth-Depth-Matching-Based Steepest Descent Method in Simulated Liver Surgery

    Get PDF
    We recently established that our digital potential function was globally stable at the point where a virtual liver coincided with its real counterpart. In particular, because three rotational degrees of freedom are frequently used in a surgical operation on a real liver, stability of the potential function concerning three rotational degrees of freedom was carefully verified in the laboratory, using fluorescent lamps and sunlight. We achieved the same stability for several simulated liver operations using a 3D printed viscoelastic liver in a surgical operating room equipped with two light-emitting diode shadowless lamps. As a result, with increasing number of lamps, stability of our depth-depth matching in the steepest descendent algorithm improved because the lamps did not emit an infrared spectrum such as the one emitted by our depth camera. Furthermore, the slower the angular velocity in a surgical sequence, the more overall stability improved
    corecore