
 Procedia Computer Science 67 (2015) 312 – 321

1877-0509 © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 6th International Conference on Software Development and Technologies
for Enhancing Accessibility and Fighting Info-exclusion (DSAI 2015)
doi: 10.1016/j.procs.2015.09.275

ScienceDirect
Available online at www.sciencedirect.com

q6th International Conference on Software Development and Technologies for Enhancing
Accessibility and Fighting Infoexclusion (DSAI 2015)

Low-cost natural interface based on head movements

João M. S. Martinsa,*, João M. F. Rodriguesa,b, Jaime A. C. Martinsb
aInstituto Superior de Engenharia, University of the Algarve, 8005-139 Faro, Portugal
bLARSyS (ISR-Lisbon) and CIAC, University of the Algarve, 8005-139 Faro, Portugal

Abstract

Sometimes people look for freedom in the virtual world. However, not all have the possibility to interact with a computer in the
same way. Nowadays, almost every job requires interaction with computerized systems, so people with physical impairments do
not have the same freedom to control a mouse, a keyboard or a touchscreen. In the last years, some of the government programs
to help people with reduced mobility suffered a lot with the global economic crisis and some of those programs were even cut
down to reduce costs. This paper focuses on the development of a touchless human-computer interface, which allows anyone to
control a computer without using a keyboard, mouse or touchscreen. By reusing Microsoft Kinect sensors from old videogames
consoles, a cost-reduced, easy to use, and open-source interface was developed, allowing control of a computer using only the
head, eyes or mouth movements, with the possibility of complementary sound commands. There are already available similar
commercial solutions, but they are so expensive that their price tends to be a real obstacle in their purchase; on the other hand,
free solutions usually do not offer the freedom that people with reduced mobility need. The present solution tries to address these
drawbacks.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the 6th International Conference on Software Development and
Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI 2015).

Keywords: Accessibility; Assistive Technologies; e-Inclusion; Face Tracking; Human-Computer Interaction; Kinect sensor.

* Corresponding author. Tel.: +351 964935902

E-mail address: joao.miguel.martins@sapo.pt

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 6th International Conference on Software Development and
Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI 2015)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.09.275&domain=pdf

313 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

1. Introduction

People often seek freedom through virtual means, or they simply need to use a computer to work. However, not
everyone has the skills to interact with a computer in the same way. People with motor difficulties or reduced
mobility, including seniors, ultimately do not have the same freedom as other persons to use a mouse, keyboard or
touchscreen. Since electronic devices are all scattered through different occupational sectors, the need to interact
with a computer is a crucial capacity. Nowadays, with all the economic problems that families and businesses
support, including government cuts in accessibility programs, it is imperative to develop low cost human-computer
interfaces (HCI). These low cost interfaces can be developed, for instance, by reusing outdated sensors from game
consoles, such as the Microsoft Kinect.

We can find in the literature many techniques and algorithms for the detection of faces1,2, facial features3,4, and
facial poses5,6. However, we are most interested in analyzing complete functional systems that perform the same or
similar functionalities as the solution we intend to develop, i.e., a natural interface for persons with reduced mobility
to interact with a standard computer based on head or/and facial movements.

Chen et al.7, developed a system that allows a user to control the mouse pointer by moving his head, still
requiring a positional sensor attached to it. Rajaee8 developed in 2004 a project that allowed people with physical
disabilities access to the internet using a switch on a computer or a Personal Digital Assistant (PDA). Through
specific software, one could navigate and send emails using switches. Connor et al.9,10 developed the Camera
Mouse, as a substitute to the conventional mouse, especially for users with motor difficulties. It is a software that
works with any conventional camera connected to the computer, and is based on face tracking. The commercial
product DynaVox Eyemax System11,12, is also a system for people with reduced mobility and is controlled only by
eye movements. This software allows interaction using the strategy that best suits the user (symbols, photographs,
words and/or letters). It has several high quality synthesized voices, and supports Bluetooth and Wi-Fi for easy
connection to the Internet. It can even use a configurable infrared emitter, which allows basic control of television,
radio, air conditioning or any other devices. Another commercial solution is the Quha Zono Mouse13. It's a plug and
play solution, wireless, allowing through the user's body movement, to move the cursor on screen, select, click and
close items. The device can be attached to the head, wrist, foot or any other body part. Visual Interaction GmbH
offers the myGaze Assistive Eye Tracker solution (also a commercial solution). This system is adapted to be used
with screens from 10" to 22". The sensor is placed in front of the monitor, and connects to the computer via USB
cable14. The manufacturer also offers a development package, consisting of an API (Application Programming
Interface) and a sensor. With the API, this sensor can be integrated into different Operating Systems (OS). Xcessity
Software Solutions developed KinesicMouse, which uses the Kinect sensor to simulate the use of a conventional
computer mouse, allowing single and double clicks with certain facial movements. This solution does not require
any sensor or structure fixed on the user's body, which relays a freedom of movement, providing that the user is in
the sensor's field of view. This software (paid license) is available for download at the KinesicMouse site15. If we
compare prices, the last one is the cheapest, and in terms of computer mouse operation, sufficient. It is however, a
more expensive solution than freeware/open source ones based on a cheap webcam, but allows greater freedom of
movement thanks to the depth measurements provided by the Kinect sensor.

This paper focuses mainly on the development of a low-cost interface that allows control of the computer without
a keyboard, mouse or touchscreen, while being easy to use and open source, so that those who have the possibility
and wish, can improve or adapt to their liking. The interface is based on the Kinect sensor, and allows computer
control only by the movement of the head, eyebrows (up/down) and the mouth (opening/closing), in addition to
available voice commands. A final full-functional solution that can work in any type of monitor is presented. The
main contribution is the development of a fully functional, ready to use, low cost natural mouse interface, that is
being offered as open source software, which the user (with the help of a programmer) can improve and adapt to
his/her liking. The proposed solution was tested with real users.

It is also important to mention that systems similar (with the same principles) to the one presented have a larger
application. For instance in the present, and also in a near future, systems similar to this one, that can track the user
face and/or eyes can be integrated in different applications such as interactive installations, or virtual public
relations, which interact in real time with the user, by knowing their head and/or body positions, see e.g., the
PRHOLO project16,17.

314 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

2. The framework

As mentioned in the previous section, the system has only one hardware component in addition to any standard
computer (with a Microsoft Windows Operating System installed), which is a 1st generation Kinect sensor that can
be bought in any second hand store with prices around 70€. In terms of software, the application should allow the
user to control the mouse cursor and respective clicks, while also having the system setup and configuration through
easy-to-use menus. The developed application was named “UserTracking”, and was tested with the Kinect “for
Xbox 360” and “for Windows” sensors, both using a resolution of 640×480 px (pixels) for RGB and depth, and a
frame rate of 30 fps (frames per second) maximum. For the application development, it was used: for the application
development, it was used the Kinect for Windows SDK v1.8 (Software Development Kit) available from
Microsoft18 and the C# programming language19.

The audio acquisition, RGB, and depth data was done by a Kinect sensor placed above the screen, centered with
it (see Fig. 3 and 4). From the depth and RGB information, the closest user is detected and the face position is
estimated. The Animation Units18 are also extracted, for the eyebrows and mouth, which will in turn serve as the
“mouse buttons” (clicks). Sound, which serves as additional (optional) commands for the “mouse buttons”, is
acquired in parallel. Having covered the mouse buttons (see Sections 2.2 and 2.3), it is first important to know the
exact position of the mouse in the monitor, which is achieved by estimating the face pose, i.e., where the face is
looking, to the left/right or up/down, and move the mouse accordingly.

2.1. Mouse position controlled by the movement of the face

User detection is performed by the FaceTracking algorithm20 using the Kinect for Windows SDK v1.8, which
requires data (images) obtained simultaneously by the RGB and IR (depth) cameras. In addition to those images, it
also requires information of the skeleton, so that it can reduce the image size, namely the region of interest where
the detection and tracking algorithms are applied. Having a face detected, the next step is to calculate the “focal
point” (the point where the face is looking at, in the screen).

First, to determine the focal point, we must know where the users face is, in respect to the Kinect position, so we
can determine the spatial location of the face relative to the Kinect, and the screen location in relation to the Kinect
sensor. In the Kinect reference space, all points that represent a face obey the Cartesian system shown in Fig. 1
(left). The reference origin is physically in the midpoint between the RGB camera lens and IR receiver. When a face
is detected by the Kinect, the Active Appearance Model algorithm (AAM)21,22,23 applies the CANDIDE-3 facial
model24.

An example of a user with the face points represented by the CANDIDE-3 parameterized face mask is shown in
Fig. 1 (middle), with the red arrow (vector) representing the orientation of the face relative to the Kinect. As default,
we chose this vector originating in the midpoint between the user's eyes. In Fig. 1 (right), the direction the user is
facing is represented by vector (corresponding to the direction of the arrow in Fig. 1 middle) and the Kinect’s
reference origin is O. Point P is the midpoint between the user's eyes (and therefore the origin of vector). Point Q
represents the focal point defined by the intersection between vector and the plane Π formed by the display.

Fig. 1. Left: face mesh representation in Kinect space. Middle: facial representation using the CANDIDE-3 model and respective (red)
orientation vector. Right: representation of the user's face coordinates by the centroid position and orientation vector .

315 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

As the Kinect is placed on the top-center of the monitor (see Fig. 3 and 4), the integrated sensors lie on the screen
plane, so points like Q, with Cartesian coordinates (x, y, z) in the screen Π plane have a null depth component, i.e.,
z=0.

Initially, the coordinates of the focus point are determined relative to the Kinect in meters (m), and then they are
mapped to image coordinates on the screen in pixels (px). This is mathematically formulated as an interception of a
ray with an object, which corresponds to the coordinates of point Q, that is given by . Considering

, and we obtain . Since Q
belongs to the same plane z = 0, we can now conclude , and therefore the point Q
can be written as

Note that when the user is parallel facing the screen (), . As the API only tracks faces when the
deviation angle (yaw angle) is between [-45º, 45º], and when the elevation angle (pitch angle) is between [-20º,
20º]7, then, . It is important to notice, that while the API can provide the centroid, yaw and pitch angles, it
does not provide the orientation of vector

Vector is quite simple to compute also by applying trigonometric functions, nevertheless it can consume more
computational resources (particularly in older computers), so it was chosen to adopt another strategy. We used
points of the facial mask returned by the Kinect API (as mentioned above, the API uses the facial model CANDIDE-
3, which is shown in Fig. 2, left). The origin point P of the orientation vector () was determined from the eyes (Fig.
2, middle). For each eye, we selected three points which form a triangle. In the case of the right eye, the triangle
ABC, for the left eye, the triangle DEF.

Fig. 2. Left: facial model CANDIDE-3 (adapted from24). Middle: computation of P, the origin point of the orientation vector (). Right: the
orthogonal vector for the right eye.

The centroid, Fig. 2 (middle), of ABC and DEF triangles are represented by points M and N respectively, and can
be calculated as and . Since P is the
midpoint between the two centroids it can be determined by . To compute the
orientation vector it was necessary to compute the two vectors and each orthogonal to the plane defined by
point {A, B, C} and {D, E, F} (right and left eye) respectively. Fig. 2 (right), illustrates this for the right eye, as

, , and is obtained by the cross product, . We can apply the same reasoning to
compute , the orthogonal vector to the left eye, with , . Finally, one can calculate the
orientation vector This vector is actually the unit vector director of the line segment defined

. The origin of the orientation vector is located at point P, as shown in detail in Fig. 2 (middle).
So far all the calculations were conducted in spatial coordinates (3D) in meters, which need to be converted into

screen/monitor coordinates (in px) for the mouse pointer. We define point G (in px) as the corresponding point Q
(in m), now converted to the screen coordinate system in pixels. One should take into account that the two systems
have the vertical axis in opposite directions, as shown in Fig. 3 (left).

For this conversion, we need to know the exact position of the Kinect sensor in relation to the monitor/screen. It
is requested in the application’s initial startup (just one time) for the person who will initially configure the
application to manually enter the Kinect’s position (in centimeters) relative to the monitor/screen (see also Section 3
and Fig. 4). We define w as the horizontal distance from the Kinect to the upper left corner of the monitor, h the
distance from the base of the Kinect to the top of the visual area of the screen (Fig. 3 second column), the width,
and height of the screen, the horizontal resolution of the image, and is the vertical resolution used in the
screen. This allows for the translation of point Q with coordinates (in m) to G with coordinates (x, y, 0) (in
px): , , where the constant 0.05 reflects the 5 cm distance

316 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

between the lowest point of the Kinect base and the point of origin of the spatial coordinates of Kinect (Fig. 3, third
column).

Fig. 3. Left to right: representation of the coordinate systems of the monitor/screen and the spatial coordinates of the Kinect system. The
measures w and h, necessary for system configuration. The distance between the reference point and the Kinect base. An example of a calibration

process.

Data acquisition from the Kinect is subject to noise, manifested as the mouse position floating when the user has
no body or head movements. Some strategies were tested to reduce this noise: (a) the average of the n last mouse
points, (b) the weighted average of the n last mouse points, (c) the average of the last n-t points (excluding t, the
outliers), (d) the application of a Kalman filter, and (e) the development of a dead zone, i.e., an area where the
mouse does not suffer (coordinate) changes, together with a delay in the mouse acceleration and velocity.

None of the strategies a) to d) presented sufficient stabilized results. The strategy e) was the one chosen due to be
less CPU demanding, and still present good results. It was divided into two main components: (i) the definition of a
dead zone, i.e., a circular area with a radius 3 px around the last mouse position, where the coordinates of the mouse
are kept fixed even if the mouse coordinates are floating inside that area, for 3 s (seconds). Multiple values have
been tested, and it was found that those allowed for comfortable use (nevertheless, they can be changed in the
configuration menu of the application). With higher values the mouse coordinates on the screen are more stable, but
lose accuracy for small intended movements, e.g., when it is pretended to access small icons (like virtual keyboard
letters).

In combination with the previous strategy, it was developed (ii), a delay in the acceleration and
displacement/velocity of the mouse on the screen, proportional to the RGB image acquisition rate. This delay factor
is again adjustable at the beginning of the application; it also serves to “adjust” the user’s comfort. Different users
feel more or less comfortable with different accelerations and velocities on the mouse movement, as users with
certain types of reduced mobility it is expected a preference for a slower moving pointer.

There is also an automatic calibration step performed in the first use of the software. During this process, the user
should aim the face (for convenience, it was said to “point the nose”) to the nine points (numbers) that appear
sequentially on the screen, Fig. 3 (right). The user should try to stay at each point for about 3 seconds. After this
time, another fixing point appears. And so on, up to nine points. The result of this process allows the user to have
greater control of the mouse pointer. In the case presented (Fig. 3, right) the user was asked to repeat the process,
once he/she missed two points (4 and 5).

2.2. Mouse buttons controlled by the movement of the face

As mentioned before, the mouse buttons can be simulated by using the mouth and eyebrows. In each acquired
Kinect frame, it is extracted the Animation Units (AU)18,25 of the eyebrows and mouth. The values of those AU
change between 0 and 1. When the user moves his eyebrows up, and his AU reaches a certain threshold value and
the software sends a command to the Operating System19,26, simulating a mouse button click. When the eyebrows
AU value is below the threshold value, the software sends a command simulating the release of the mouse button.
The same procedure is carried out for the opening and closing of the mouth (which has its own AU). Those

317 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

thresholds (limits) can be adjusted manually by the user in the software’s configuration menu. Typically, the lowest
values are more likely to produce false positives, while higher values increase the difficulty to create true positives.
In practice, different users can have different values that they feel comfortable. The most common values, were 0.2,
0.3 and 0.4 on the empiric usability tests (see Section 4).

2.3. Mouse actions controlled using voice commands

The development of voice commands is quite trivial, since it is sufficient to use the Kinect SDK, which integrates
with the Microsoft Speech API (requires installation). First, a list of phrases or words is defined, which will be the
recognized by the Microsoft Speech API. This list of commands is call a grammar. The structure of this grammar
follows the XML format27,28 and every voice command is associated with one action and simulates the same effect
as a physical mouse click (the same as in the Section 2.2). So far, we only developed English voice-commands: Left
button, Right button, Click, Left click, Right click, Double click, Click down, Click up, Drag and Drop. More
languages can be used, as it is only necessary to rewrite the XML file to the language in question, and install the
classes of the API necessary for that language.

3. The prototype

As already mentioned, the Kinect sensor must be mounted on top of the monitor, preferably in the center. If the
monitor does not have enough space to ensure the stability of the sensor it should be put on top of a support, see e.g.,
Fig. 4 (top). After mounting the Kinect and running the application for the 1st time, the initial configuration menu
appears (Fig. 4, bottom). This menu allows for the initial configurations, including inputting the distances of the
Kinect to the left corner of the monitor and to the visible screen area (see Section 2.1). After the initial
configuration, a smaller menu-bar is available, Fig. 5 (left), which keeps itself visible until a user has been detected.
After user detection, Fig. 5 (right), the bar disappears after 30 s to reappear whenever the user takes the mouse
pointer to the upper right corner, for some software control options. After these very easy-to-do procedures, the
application is ready to work. If, by any circumstance, the user needs to temporarily disable the application, e.g., use
the hand mouse, it is only necessary to put the application in “Parking Mode” (see Fig. 5) to disable the pointer
control functionality. Pressing again the same menu-bar icon resumes the head control mode.

4. Results

Several users tested the developed system with the intention to assess the overall feasibility of the system. The tests
had the goal to initially assess if the system was able to work correctly with users having different characteristics
(face morphology, skin and eye color, glasses, hair, bear, etc.) on indoor environments with different lighting. For
each test session, the users were presented with a list of tasks to be performed. Before each test session, each user
did a very small training session, to adjust, calibrate and understand the system. During the test session, each user
was filmed doing all the actions, thus, evaluating the workability of the system and assess the time he/she took to
perform each task. At the end of each session, an inquiry was done to know the comfort level felt by the user, and
his/her feedback including improvement suggestions.

Relevant user biometrics were collected in order to facilitate further analysis, including gender, age, skin, eye
color, haircut, etc., including other facial accessories as well as computer literacy/experience. For the tasks carried
during the test sessions, users had access to two virtual keyboards. In addition to the software’s own native
keyboard, it was also available Microsoft Windows’ virtual keyboard. As mentioned, all procedures were timed, and
were divided in “essential” and “non-essential” tasks. For the first, it was mandatory for the users to comply exactly
with the instructions presented in the procedure to achieve the goal of the task, while for the non-essential they were
free to choose the strategy used to achieve the goal.

In summary, the first task instructed the user to create a folder on the desktop with a specific name “Test N. #”,
where “#” is the sequence number of the test (Task 3.1). Then, they was asked to open a browser (Task 3.2), access
the YouTube website, and play a specific song (Task 3.3, from 3.3.1 to 3.3.3). With those tasks, it was intended to
test the usability of the virtual keyboard (and simultaneously check the system's response to voice commands in the

318 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

presence of music). Then, the user had to download a file (.zip) from a site in the Internet, and save it to a folder
created on the desktop (Task. 3.4). After locally saved, the file should be extracted (Task 3.5, from 3.5.1 to 3.5.3).
Task 3.6, from 3.6.1 to 3.6.4, users were asked to create a drawing of a face, and save it to a .jpg file. Finally, on
Task 3.7, from 3.7.1 to 3.7.7, users were instructed to create a text document with a specific formatting, containing
three phrases. These tasks were used to test whether the developed system allowed users to write a document using
only the movements of their head and a virtual keyboard.

Fig. 4. Top, a scenario that shows how to position the Kinect over a (laptop) monitor and a user working with the system. Bottom, configuration
window of the software.

All collected data were summarized in tables and graphs for comparison. Eight volunteers were recruited, of
which three gave up during the calibration and training phase. The reasons for withdrawal were reported as: one was
due to the difficulty to control the mouse pointer (it was too sensitive to the movements performed with the head),
the other complained of great discomfort when using the system, including neck pain. The third one had bifocal
lenses, and the fact he has to switch between the lens regions to see close/far created a great difficulty and
discomfort during system calibration.

All users who performed the trials had already experience with the software necessary for the required tasks, i.e.,
they had already used a browser, downloaded files, watched videos, listened to music on YouTube and were familiar
with Microsoft Paint and OpenOffice Writer or Microsoft Word. The time each user took to conduct the experiment
was mostly unaffected by the lack of experience with the available software. Figure 6 left, shows the time each user
took in each task.

319 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

Fig. 5. Left, the system when a user is not detected, and right, after a user being detected.

By observing the chart (Fig. 6 left), it is easy to conclude that all procedures involving the use of the virtual
keyboard are the most time consuming. Tasks 3.3 and 3.4 usually took a significant amount of time due to two
reasons: the fact that the software’s compact keyboard became too impractical to write, forcing the users to choose
the (virtual) keyboard from Microsoft Windows; the other reason was related with using the vertical scroll bars that
appeared in the web browser. Task 3.6 is a true test to control the mouse pointer; in this task, the users had to draw a
face with circles and lines in Microsoft Paint, forcing them to coordinate the displacement of the mouse with the
clicks to control the Paint application. In this task, it was found that the worst time was due to the artistic nature of
User 3. In addition, this user chose to start the test from this point, ignoring all previous goals, mentioning a lack of
willingness to continue with the test. All invalid tasks are presented with a “zero” time, due to sub-tasks that the
users decide not to do.

According to some users, the system becomes simpler to control after some practice; also, some of them found
that the mouse pointer was moving too fast for the movement they were doing with his/her head (a problem easily
corrected in the configuration menu). Users also complained, from time to time, that clicks were happening without
their order (false clicks), which was distressful; some also complained that voice commands and the mouth
movements are not always recognized.

In terms of facial characteristics (skin, eye color, glasses, etc.), it was not noticed any relevant performance hit in
the system. Although the very low number of participants does not allow for statistically significant conclusions, for
example, in the glasses/no glasses case, the average time consumed to do the tasks was almost the same, see Fig. 6
(right), where the red bars show the percentage of time above the average for each task for a person with glasses and
in blue without glasses. Moreover, users presented some suggestions to improve the native keyboard, such as the
creation of a “www” or “.com” buttons. Some users suggested that the desktop should be divided into two parts: one

Fig. 6 Left, time spent in each test (see text). Right, comparison between time spent doing the tasks by users with glasses (in red) and without
glasses (in blue).

320 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

should be an area for windows, open documents, etc., and the other part should always have a visible keyboard;
others suggested the elimination of the compact keyboard, and the exclusive use of the Microsoft Windows (virtual)
keyboard.

5. Conclusions

We presented the development of a human-computer interface that allows for touchless computer control, avoiding
the use of a keyboard, mouse or touchscreen. By reusing Microsoft Kinect sensors from old videogame consoles, the
software was developed at a reduced hardware cost, while being easy to use and supporting an open source
interface, which allows controlling the computer using only the head, eye or mouth movements, with
complementary sound commands.

Initial, small-scale system testing was done so far with eight users, with the goal to understand which tasks or
movements they had greater difficulty in performing. In addition, we also wanted to know the comfort level
experienced during the use of the interface. The feedback from users was crucial, for this reason, and an open survey
gave them freedom to suggest system improvements.

When using this type of head control system, we also found desirable modifying the OS desktop’s visual theme,
in function of user characteristics. For instance, for some users navigating and clicking in small icons generates
great discomfort, resulting in neck pain, and the constant need to move away from the computer.

As expected, the tests revealed that the system could be used by people of light or dark skin, using glasses, beard,
etc. However, it was found that the use of some types of glasses could bring discomfort to the user when using the
application, such as glasses with bifocal lenses, due to their lens transitions. It was also noticed that the controlling
the OS with the head requires some time to practice. It is therefore recommended, at least in the beginning, that the
user does not abuse the time passed in front of the computer. It is preferable to work in short intervals, until more
control over the mouse is acquired. In the adaptation phase, it is required to have some patience; otherwise, a user
will end up discouraged and put the application down. After several sessions, users begins to slowly control with
more precision the cursor displacement and clicks.

The compact native keyboard provided by the software should really be replaced with a “bigger” version, in
which the letters and numbers should have their own key. It was also suggested by the users to create a new virtual
keyboard with customizable keys, for example, having keys that are configured by the user to play back voice
messages, by making use of associated audio files or text-to-speech synthesized voice. The functionality of
automatic word completion should also be considered for the next versions.

Voice commands were not covered in the initial application goal, as they appeared as an extra during
development. However, multiple users came to prove it to be a functional part of great importance and should
inclusively be improved in future work. In those future releases, the list of commands should extend and facilitate
for example, the vertical and horizontal scroll of web pages.

There is yet a long way to go in the application improvements, nevertheless, for now, it is an open source low-
cost tool (≤70€ for the necessary hardware), that already shows good results and is an alternative to the commercial
ones. Plus, being an open-source tool, available in a public git repository at
[https://github.com/MigMart/Usertracking], we can expect several improvements made by a large community that
wants to associate with it.

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT) project LARSyS
(UID/EEA/50009/2013), CIAC (PEstOE/EAT/UI4019/2013), PRHOLO QREN I&DT n. 33845, POPH and
FEDER. We would like also to thanks our college Prof. Pedro Cardoso for the valuable comments, suggestions and
revisions.

321 João M.S. Martins et al. / Procedia Computer Science 67 (2015) 312 – 321

References

1. Nanni L, Lumini A, Dominio F, Zanuttigh P. Effective and precise face detection based on color and depth data. Applied Computing and
Informatics; 2014, 10(1-2):1-13.

2. Wang YX, Lo LY, Hu MC. Eat as much as you can: a kinect-based facial rehabilitation game based on mouth and tongue movements. In Proc.
of the ACM Int. Conf. on Multimedia; 2014. p. 743-744.

3. Xiong X, Cai Q, Liu Z, Zhang Z. Eye gaze tracking using an RGBD camera: a comparison with a RGB solution. In Proc. of the 2014 ACM Int.
Joint Conf. on Pervasive and Ubiquitous Computing: Adjunct Publication; 2014, p. 1113-1121.

4. Malawski F., Kwolek B, Sako S. Using Kinect for facial expression recognition under varying poses and illumination. Active Media
Technology, Springer International Publishing; 2014, p. 395-406.

5. Han B, Lee S, Yang HS. Head pose estimation using image abstraction and local directional quaternary patterns for multiclass classification.
Pattern Recognition Letters, 2014, 45:145-153.

6. Kondori FA, Yousefi S, Li H. Direct three-dimensional head pose estimation from Kinect-type sensors. Electronics Letters; 2014, 50(4):268-
270.

7. Chen YL, Kuo TS, Chang WH, Lai JS., A novel position sensors-controlled computer mouse for the disabled. In Proc. of the 22nd Annual Int.
Conf. of the IEEE Engineering in Medicine and Biology Society; 2000, 3:2263-2266.

8. Rajaee S. Web browser software with single switch interface for PDAs or computers. In Proc. of the IEEE 30th Annual Northeast
Bioengineering Conf.; 2004, p. 253- 254.

9. Connor C, Yu E, Magee J, Cansizoglu E, Epstein S, Betke M. Movement and recovery analysis of a Mouse-Replacement interface for users
with severe disabilities. In Proc. 5th Int. Conf. UAHCI 2009 (held as part of HCI Int. 2009); 2009, p.493-502.

10. CameraMouse, http://www.cameramouse.org, accessed 10/03/2014.
11. Dynavox EyeMax System, http://www.dynavoxtech.com/products/eyemax/, accessed 10/03/2014.
12. Toby-Churchill, Dynavox EyeMax System, http://www.toby-churchill.com/products/dynavox-eyemax-system/, accessed 10/03/2014.
13. Quha Zono Mouse, http://www.quha.com/products-2/zono/, accessed 10/03/2014.
14. myGaze Eye Tracker, http://www.mygaze.com/products/mygaze-eye-tracker/, accessed 10/03/2014.
15. KinesicMouse, http://kinesicmouse.com/, accessed 10/03/2014.
16. Alves R, Madeira M, Ferrer J, Costa S, Lopes D, Mendes da Silva B, Sousa L, Martins J, Rodrigues JMF. Fátima revisited: An interactive

installation. In Proc. Int. Multidisciplinary Scientific Conf. on Social Sciences and Arts, Varna, Bulgaria, 2014, p. 141-148
17. Alves R, Sousa L, Negrier A, Rodrigues JMF, Cardoso PJS, Monteiro J, Gomes M, Bica P. PRHOLO: Interactive Holographic Public

Relations, submitted to 3rd Int. Conf. on Advances in Computing, Communication and Information Technology, Birmingham, UK, 2015.
18. Kinect for Windows Sensor, Components and Specifications, http://msdn.microsoft.com/en-us/library/jj131033.aspx, accessed 10/03/2014.
19. Hejlsberg A, Wiltamuth S, Golde, P. The C# programming language. Adobe Press, 2006.
20. Kinect for windows, Technical documentation and tools, http://goo.gl/zkXhgp, 15/04/2014.
21. Zhou M, Liang L, Sun J, Wang Y, AAM based face tracking with temporal matching and face segmentation. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition; 2010, p.701-708.
22. Cao Z, Yin Q, Tang X, Sun J. Face recognition with learning-based descriptor. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition. 2010, p.2707-2714.
23. Yin Q, Tang X, Sun J. An associate-predict model for face recognition. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition;

2011, p.497-504.
24. CANDIDE – a parametrized face, http://www.icg.isy.liu.se/candide/, accessed 10/07/2014.
25. Microsoft Developer Network, Face Tracking, http://msdn.microsoft.com/enus/library/jj130970.aspx, accessed 20/03/2014.
26. How to: Simulate Mouse and Keyboard Events in Code, http://goo.gl/3nVCkF, accessed 29/12/2014.
27. Microsoft Speech Platform SDK 11 Documentation, http://goo.gl/qqJhHk, accessed 29/12/2014.
28. Abhijit, J. Kinect for Windows SDK Programming Guide. Packt Publishing Ltd, 2012.

